WO2024082120A1 - 一种干燥设备和控制方法 - Google Patents

一种干燥设备和控制方法 Download PDF

Info

Publication number
WO2024082120A1
WO2024082120A1 PCT/CN2022/125835 CN2022125835W WO2024082120A1 WO 2024082120 A1 WO2024082120 A1 WO 2024082120A1 CN 2022125835 W CN2022125835 W CN 2022125835W WO 2024082120 A1 WO2024082120 A1 WO 2024082120A1
Authority
WO
WIPO (PCT)
Prior art keywords
air pressure
preset
power
component
drying device
Prior art date
Application number
PCT/CN2022/125835
Other languages
English (en)
French (fr)
Inventor
胡朗瑜
徐兴旺
顾令东
Original Assignee
深圳汝原科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳汝原科技有限公司 filed Critical 深圳汝原科技有限公司
Priority to PCT/CN2022/125835 priority Critical patent/WO2024082120A1/zh
Priority to CN202280010159.4A priority patent/CN116801765A/zh
Publication of WO2024082120A1 publication Critical patent/WO2024082120A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D20/00Hair drying devices; Accessories therefor
    • A45D20/04Hot-air producers
    • A45D20/08Hot-air producers heated electrically

Definitions

  • the present application relates to the technical field of drying equipment, and in particular to a drying equipment and a control method.
  • Drying equipment can output heated airflow to accelerate the evaporation of water in the target object to achieve the purpose of drying. For example, after washing hair, people use a hair dryer to dry their hair with hot air.
  • drying equipment generally controls temperature by means of wind temperature feedback, that is, a temperature sensor is set near the air outlet to collect the wind temperature, and then the heating power is adjusted according to the collected wind temperature.
  • This temperature control method has at least the following disadvantages:
  • the temperature control process needs to collect the temperature of the heated airflow as the basis for feedback adjustment, the temperature control has a lag.
  • the initial air temperature of the drying equipment is too high, even if the air temperature can be lowered later, the high-temperature airflow that has been output may still burn the user.
  • the prior art generally uses thermistors (NTCs) as components for detecting wind temperature.
  • NTCs thermistors
  • the resistance of the thermistor changes nonlinearly with temperature, and the detection accuracy will drop significantly in the high temperature range (for example, above 100°C).
  • the thermistor itself also has installation errors. These reasons together lead to poor detection accuracy of thermistors, which can only give an approximate wind temperature range. Therefore, the control of wind temperature in the prior art is limited to setting a high temperature threshold to avoid excessive wind temperature, and cannot accurately control to achieve a specific wind temperature.
  • the present application provides a drying device and a control method, which are intended to solve the problem that the drying device in the prior art has low wind temperature control accuracy and may have an initial wind temperature that is too high.
  • the present application provides a drying device, including: a wind power component, a heating component, an air pressure module and a main control module, the wind power component is used to generate airflow, the heating component is used to heat the airflow, the air pressure module is used to obtain ambient air pressure, the main control module is connected to the heating component and the air pressure module, and the main control module is configured to adjust the heating power of the heating component according to the ambient air pressure.
  • the present application also provides a control method for controlling the air temperature of an output airflow of a drying device, comprising the following steps:
  • the operation of the wind power component and/or the heating component is controlled according to the ambient air pressure, the heating component is used to heat the airflow, and the wind power component is used to generate the airflow.
  • the present application also provides a readable storage medium, which stores a program, and when the program is executed by a processor, the steps of the aforementioned control method are implemented.
  • the drying equipment and control method in the present application change the heating power of the heating component by changing the ambient air pressure in the space where the drying equipment is used, so as to achieve precise control of the wind temperature.
  • FIG1 is a schematic diagram of the frame structure of a drying device in some embodiments of the present application.
  • FIG2 is a schematic diagram of a heating component in certain embodiments of the present application.
  • FIG3 is a schematic diagram of the frame structure of a drying device in some embodiments of the present application.
  • FIG4 is a schematic diagram of the structure of a drying device in some embodiments of the present application.
  • FIG5 is a schematic diagram of the structure of a drying device in some embodiments of the present application.
  • FIG6 is a schematic diagram of the structure of a drying device in some embodiments of the present application.
  • FIG7 is a schematic diagram of the steps of a control method in certain embodiments of the present application.
  • FIG8 is a schematic diagram of detailed steps of a control method in certain embodiments of the present application.
  • FIG9 is a schematic diagram of another detailed step of the control method in certain embodiments of the present application.
  • FIG10 is a schematic diagram of another detailed step of the control method in certain embodiments of the present application.
  • FIG11 is a schematic diagram of another detailed step of the control method in certain embodiments of the present application.
  • FIG12 is a schematic diagram of another detailed step of the control method in certain embodiments of the present application.
  • FIG. 13 is a schematic diagram of another detailed step of the control method in certain embodiments of the present application.
  • a drying device 10 is provided in an embodiment of the present application, including a wind power component 11 , a heating component 12 , an air pressure module 13 and a main control module 14 .
  • the wind power assembly 11 may include a motor and an impeller.
  • the motor drives the impeller to rotate, and the rotating impeller performs work on the air to make the air flow to form an airflow (the direction of the airflow is shown by the arrow in FIG. 4 ).
  • the heating assembly 12 may include one or more groups of heating wires, heating sheets and other structures. After current is input to the heating assembly 12, the heating assembly 12 dissipates heat to the surrounding air, so that the air is heated and heated.
  • the heating assembly 12 is at least partially arranged in the airflow formed by the wind assembly 11, and the heat generated by the heating assembly 12 is applied to the air flowing through, so that the drying device 10 can output hot airflow to dry the target object.
  • the gas pressure module 13 is a structure for obtaining gas pressure.
  • the air pressure module 13 itself can directly detect and obtain the air pressure, for example, the air pressure module 13 is an air pressure sensor (or altitude sensor, height sensor), a barometer, etc.
  • the air pressure module 13 is set in a non-enclosed space, the ambient air pressure of the location can be detected by contact with the air.
  • the air pressure module 13 may also be a GPS module, which can obtain the altitude of the location through the GPS signal and obtain the ambient air pressure after conversion according to the poster height.
  • the location is obtained through the GPS signal, for example, the location is Beijing, and the ambient air pressure of Beijing is obtained according to the preset map data query.
  • the air pressure module 13 can also communicate with other structures to obtain the ambient air pressure.
  • the drying device 10 can establish communication with smart terminals such as mobile phones and tablet computers through Bluetooth, WiFi, etc., and the air pressure module 13 directly obtains the ambient air pressure at the location from the smart terminal.
  • the air pressure module 13 obtains the location from the smart terminal and obtains the ambient air pressure at the location based on the preset map data query.
  • the air pressure module 13 directly communicates with the relevant barometer to obtain the ambient air pressure.
  • the air pressure module 13 can also obtain the ambient air pressure after being connected to the network.
  • the drying device 10 itself can access the Internet through wifi or mobile network, locate its position through the network, and obtain the ambient air pressure at the location according to the preset map data.
  • the air pressure module 13 can receive the ambient air pressure information sent from the server.
  • the air pressure module 13 may also be an input module such as a keypad, a touch screen, etc., and the user may query the ambient air pressure by himself and then input the ambient air pressure value through the input module.
  • an input module such as a keypad, a touch screen, etc.
  • the air pressure module 13 of the drying device 12 can also be pre-calibrated with the ambient air pressure in batches, and the air pressure module 13 is only used as a storage device to store the pre-calibrated ambient air pressure.
  • the pre-calibrated ambient air pressure is delivered to the corresponding area for sale, and the drying device 12 purchased by the user locally has been calibrated with the corresponding local ambient air pressure.
  • the air pressure module 13 refers to an air pressure sensor (or altitude sensor, height sensor), which is in direct contact with the air and detects and obtains the ambient air pressure.
  • the main control module 14 is an electrical structure capable of performing data operations, such as an MCU (single chip microcomputer), a CPU (central processing unit), etc.
  • the main control module 14 can obtain the ambient air pressure from the air pressure module 13 and control the control parameters of the drying device 10, and the control parameters specifically include the speed of the motor in the wind component 11 and/or the power value of the heating component 12.
  • the control parameters specifically include the speed of the motor in the wind component 11 and/or the power value of the heating component 12.
  • the control parameters By changing the control parameters, the wind speed of the airflow output by the wind component 11 and/or the heat generated by the heating component 12 can be changed, that is, the wind temperature and wind speed of the drying device 10 can be changed.
  • a control method is provided in certain embodiments of the present application for controlling the above-mentioned drying device 10, comprising the following steps:
  • S10 obtains the ambient air pressure through the air pressure module 13;
  • the ambient air pressure is obtained by the air pressure module 13, which refers to the air pressure value of the open environment where the drying device 10 is currently located, that is, the air pressure value of the area where the user is located when using the drying device 10.
  • the way in which the air pressure module 13 obtains the ambient air pressure can refer to the various embodiments listed above and will not be repeated.
  • S20 controls the operation of the wind power component 11 and/or the heating component 12 according to the ambient air pressure.
  • the main control module 14 uses the ambient air pressure as one of the bases for changing the control parameters, and changes the control parameters accordingly according to different ambient air pressures, such as increasing or decreasing the power value of the heating component 12, increasing or decreasing the speed of the wind component 11, so that the operation of the drying equipment 10 can be adjusted according to the change of the ambient air pressure.
  • the main control module 14 detects the change of the ambient air pressure and changes the control parameters of the drying device 10 accordingly, so that users at different altitudes can have a similar and designed use experience when using the drying device 10. In particular, it can also avoid problems such as too high wind temperature and too slow drying speed caused by changes in air pressure.
  • the specific control process will be described in detail below.
  • step S20 the operation of the heating component 12 and/or the wind component 11 is controlled according to the ambient air pressure, specifically including:
  • the drying device 10 is generally preset with one or more working modes, each working mode has a different design purpose and corresponds to different control parameters.
  • the drying device 10 is a hair dryer, and three working modes can be preset according to the blowing speed: cold air gear, medium heat gear, and high heat gear; or three working modes can be preset according to the drying time: low speed gear, medium speed gear, and high speed gear.
  • the drying device 10 When the user turns on and uses the drying device 10, the drying device 10 must be in a certain working mode.
  • the required wind speed and wind temperature are determined according to the design purpose of the working mode, and the heating component 12 and/or the wind power component 11 are calibrated to determine the control parameters of the working mode.
  • the control parameters include the rotation speed of the wind power component 11 and/or the power value of the heating component 12.
  • the main control module 14 controls the operation of the wind power component 11 and/or the heating component 12 according to the corresponding control parameters.
  • the drying device 10 may not have multiple working modes.
  • the drying device 10 is a hand dryer, which has only two states: on and off.
  • the wind speed and wind temperature of the hand dryer when it is turned on will also be determined in the early design process, and the corresponding control parameters will be calibrated.
  • its working mode refers to the state of the hand dryer being turned on.
  • S22 obtains a preset power, where the preset power is the power value of the heating component 12 when the drying device 10 operates in a working mode at a preset air pressure.
  • the operating parameters in each working mode are calibrated based on the preset air pressure, which at least includes the power value of the heating component 12 , that is, the preset power corresponding to the preset air pressure.
  • a working mode of the drying device 10 is designed to output an airflow with a temperature of 60°C.
  • the preset power of the heating component 12 in the working mode is determined to be W 1 through simulation, experimental testing, etc. at a preset air pressure. That is, under the preset air pressure environment, when the airflow temperature output by the drying device 10 in the working mode is 60°C, the power value of the heating component 12 is the preset power W 1 .
  • S23 obtains the control power based on the preset power according to the relationship between the ambient air pressure and the preset air pressure.
  • the main control module 14 When users use the drying device 10 in different regions, there may be differences between the ambient air pressure and the preset air pressure, for example, the ambient air pressure is greater than the preset air pressure, or the ambient air pressure is less than the preset air pressure. In these cases, if the main control module 14 still uses the preset power to control the heating component 12, the actual wind temperature will change due to the change in air pressure, thereby failing to achieve the design purpose of the working mode. Therefore, the main control module 14 needs to adjust the preset power according to the relationship between the ambient air pressure and the preset air pressure to obtain the control power, so that when the drying device 10 is operated in the same working mode in different ambient air pressures, it can achieve the same design purpose as in the preset air pressure.
  • the main control module 14 can directly use the preset power as the control power.
  • S24 controls the operation of the heating assembly 12 according to the control power.
  • the main control module 14 controls the operation of the heating component 12 with a control power adapted to the current ambient air pressure.
  • the drying device 10 When the drying device 10 operates in the corresponding working mode, it can achieve the same design purpose as in the preset air pressure.
  • the control parameters of each working mode are calibrated at the preset air pressure during the design process of the drying device 10.
  • the relevant data pre-stored in the drying device 10 includes the control parameters and the preset air pressure corresponding to the control parameters.
  • the main control module 14 obtains the control power adapted to the ambient air pressure based on the preset power according to the relationship between the actually detected ambient air pressure and the preset air pressure.
  • the ambient air pressure is introduced as one of the control bases in the control process of the drying device 10, so that the drying device 10 can adaptively adjust the operating parameters in various ambient air pressures, so that when the user uses the same working mode of the drying device 10 in any region, the drying device 10 can achieve the design purpose of the working mode, and the user experience is also roughly the same.
  • different working modes have different wind temperatures, and the wind temperature is used to characterize the temperature of the airflow output by the drying device 10 .
  • the purpose of designing multiple working modes of the drying device 10 is to output airflow with different air temperatures.
  • three working modes are preset according to different air temperatures: cold air gear (air temperature is the ambient air temperature), medium heat gear (air temperature 60°C), and high heat gear (air temperature 80°C).
  • the air temperatures of these three working modes are informed to the user in the instructions, packaging box, display screen, etc., and the user selects the working mode according to his own needs.
  • the power values of the heating component 12 in the above three working modes are calibrated in the preset air pressure, wherein the preset power corresponding to the cold air gear is 0, the preset power corresponding to the medium heat gear is W 1 , and the preset power corresponding to the high heat gear is W 2.
  • the air temperature of the airflow output by the drying device 10 is 60°C
  • the air temperature of the airflow output by the drying device 10 is 80°C.
  • step S23 the control power is obtained based on the preset power, specifically including:
  • the control power is obtained based on the preset power reduction.
  • the change of ambient air pressure will affect the wind temperature of the airflow output by the drying device 10.
  • the specific principle is: under different ambient air pressures, the total mass of gaseous substances contained in the same volume of gas is different. When the same total heat is input to the same volume of gas, if the gas contains a larger mass of gaseous substances, the gas will have a smaller temperature rise after being heated; if the gas contains a smaller mass of gaseous substances, the gas will have a larger temperature rise after being heated.
  • the drying device 10 when the drying device 10 is used in region A where the ambient air pressure is P 1 , the total volume of the airflow output by the drying device 10 per unit time is S, the power value of the heating component 12 is Wa , and the air temperature of the airflow output by the drying device 10 is T 1.
  • the drying device 10 is used in region B where the ambient air pressure is P 2 (P 2 ⁇ P 1 ), the same control parameters are maintained, the total volume of the airflow output per unit time is S, the heating power of the heating component 12 is also Wa , and the air temperature of the airflow output by the drying device 10 is T 2 .
  • region A Due to the different ambient air pressures in the two regions, in region A, the mass of gaseous substances contained in the gas with a volume of S is larger; in region B, the mass of gaseous substances contained in the gas with a volume of S is smaller. Therefore, when the user uses the drying device 10 in these two regions, under the premise that the power value Wa of the heating component 12 remains unchanged, the total heat input by the heating component 12 to the gas with a volume of S per unit time is the same, but due to the different masses of the gaseous substances contained, the wind temperature T 1 ⁇ wind temperature T 2 will be caused.
  • the drying device 10 when users use the drying device 10 in different regions, they may feel different wind temperatures even if the operating parameters of the drying device 10 are exactly the same. Specifically, the lower the ambient air pressure, the higher the wind temperature, and the higher the ambient air pressure, the lower the wind temperature.
  • Wind temperature not only affects the user's physical sensation, but excessively high wind temperature may also burn the skin or ignite flammable materials. If the design and production of the drying device 10 is completed in region A, in the working mode with the highest wind temperature, the wind temperature is slightly lower than the temperature that may burn the skin or ignite flammable materials. If the effect of ambient air pressure on wind temperature is not considered, when the user uses the drying device 10 in this working mode in region B, the actual wind temperature of the output airflow will exceed the above temperature, thereby causing a high temperature hazard.
  • the control power is reduced based on the preset power, thereby reducing the input heat of the heating component 12 to the airflow, thereby reducing the actual air temperature. In this way, accurate control of the air temperature can be achieved.
  • the airflow they feel has the same air temperature, and the air temperature meets the nominal air temperature of the working mode of the drying device 10, thereby providing users with a better user experience.
  • control method in the above-mentioned embodiment of the present application can also increase the power value of the heating component 12 according to the ambient pressure, so that the wind temperature of its output airflow will not be too low, while the wind temperature of the output airflow of the drying device 10 of the prior art is low under the same circumstances, which may make the user feel cold.
  • different working modes have different drying times, and the drying time is used to characterize the time taken by the drying device 10 to dry the target object from a first moisture content to a second moisture content.
  • the drying device 10 is a hair dryer, and the target object is medium-length hair (about 30 cm in length).
  • the weight of water accounts for about 30% of the total weight of the hair, and when the hair is roughly blow-dried, the weight of water accounts for about 15% of the total weight of the hair.
  • the first water content of the target object (hair) is set to 30%, and the second water content is set to 15%.
  • the drying time is the time consumed by the drying device 10 to dry the hair from a state of 30% water content to a state of 15% water content.
  • the purpose of designing multiple working modes is to correspond to different drying times.
  • three working modes are preset: slow gear (drying time 15 minutes), medium speed gear (drying time 10 minutes), and high speed gear (drying time 7 minutes).
  • the drying time of these three working modes is informed to the user in the instruction manual, packaging box, display screen, etc.
  • the user selects the working mode to dry the hair according to the needs, and when using it, the user expects to complete the hair drying process in the corresponding drying time.
  • users in different regions use the drying device 10, there is a significant difference between the time taken by the drying device 10 to complete the hair drying process in each working mode and the declared drying time, which will bring a poor user experience.
  • the shorter the drying time during the hair blowing process the faster the hair loses water, and the more likely the hair is to lose water excessively, be damaged by high temperature, etc.
  • different users tend to choose different drying times when using the drying device 10 to dry their hair. For example, users with short hair or those who are not sensitive to hair quality tend to blow dry quickly to save time, and tend to choose the working mode with the shortest drying time. Users with medium-long hair or those who are highly sensitive to hair quality tend to blow dry slowly, and tend to choose the working mode with a longer drying time. The purpose of designing multiple working modes is to meet the usage needs of these different users.
  • step S23 the control power is obtained based on the preset power, including:
  • the total mass of gaseous substances contained in the same volume of gas under different ambient pressures is different, and the total mass of gaseous substances in the gas is proportional to its water absorption capacity.
  • the total mass of gaseous substances in the gas is proportional to its water absorption capacity.
  • the drying device 10 when the drying device 10 is used in region A where the ambient air pressure is P 1 , the total volume of airflow output by the drying device 10 per unit time is S, the power value of the heating component 12 is W b , and the time consumed by medium-length wet hair from 30% moisture content to 15% moisture content is drying time t 1 .
  • the drying device 10 is used in region B where the ambient air pressure is P 2 (P 2 ⁇ P 1 )
  • the total volume of airflow output by the drying device 10 per unit time is S
  • the heating power of the heating component 12 is also W b
  • the time consumed by medium-length wet hair from 30% moisture content to 15% moisture content is drying time t 2 .
  • the gas volume S contains more gaseous substances and has a stronger water absorption capacity; in region B, the gas volume S contains less gaseous substances and has a weaker water absorption capacity. Therefore, when the user uses the drying device 10 in these two regions, under the premise that the power value W b of the heating component 12 remains unchanged, due to the difference in water absorption capacity caused by the different mass of the gaseous substances, the drying time t 1 > drying time t 2 will appear.
  • the drying device 10 when users use the drying device 10 in different regions, they may experience different drying times even if the control parameters of the drying device 10 are exactly the same. Specifically, the lower the ambient pressure, the longer the drying time, and the higher the ambient pressure, the shorter the drying time.
  • the drying time of the drying device 10 in an environment with a higher air pressure will be reduced, and the drying time in a lower air pressure will be increased.
  • the control power is obtained by reducing the preset power, thereby achieving the purpose of increasing the drying time.
  • the control power is obtained by increasing the preset power, thereby achieving the purpose of reducing the drying time.
  • the various working modes are not mutually exclusive.
  • the drying device 10 has three working modes: cold air gear (outputting normal temperature airflow), high speed gear (drying time 7 minutes), and high temperature gear (air temperature 80°C).
  • the corresponding control power is obtained according to the corresponding steps in the above-mentioned control method.
  • the design purpose of the working mode can also be combined with the above-mentioned two methods.
  • the working mode is: hair care gear.
  • the design purpose of this gear is to take into account both fast drying and reducing damage to hair quality.
  • control logic is that the first stage is to continuously output airflow with an air temperature of 80°C for t1 time, and the second stage completes the drying process in t2 time.
  • different control logics can also be used according to the above-mentioned embodiments to obtain corresponding control powers.
  • step S20 that is, controlling the operation of the wind power component 11 and/or the heating component 12 according to the ambient air pressure, further includes:
  • the control power is obtained after the preset power is increased. If the preset power itself is already a power value close to the upper limit of the power of the heating component 12 (for example, in the working mode with the highest wind temperature), the control power obtained after further increase may exceed the upper limit of the power of the heating component 12, and the heating component 12 cannot operate at the control power, thereby causing the drying equipment 10 to fail to achieve the design purpose of the working mode, for example, failing to reach the corresponding wind temperature or drying time in areas with higher air pressure.
  • S236 obtains a preset rotation speed in the working mode, where the preset rotation speed is the rotation speed of the wind power component 11 when the drying device 10 operates in the working mode at a preset air pressure.
  • the control parameters of each working mode calibrated at a preset air pressure include a preset power and a preset wind speed. That is, at the preset air pressure, the main control module 14 controls the operation of the heating component according to the preset power and controls the operation of the wind power component 11 according to the preset speed, and the drying device 10 can achieve the design purpose of the corresponding working mode.
  • S237 is reduced based on the preset speed to obtain the control speed.
  • the wind temperature is also related to the gas volume.
  • the power value of the heating component 12 is W c
  • the gas volume of the wind component 11 forming the airflow per unit time is S 1
  • the corresponding wind temperature is T c1 .
  • the rotation speed of the wind component 11 is reduced so that the gas volume forming the airflow per unit time is S 2
  • the corresponding wind temperature is T c2 . Since the gas volume S 2 ⁇ gas volume S 1 , under the premise of the same total heat input, the wind temperature T c2 >T c1 will result.
  • the wind temperature control of the airflow output by the drying device 10 can be achieved by changing the power value of the heating component 12 or by changing the rotation speed of the wind component 11.
  • the main control module 14 controls the operation of the wind power component 11 based on the preset speed reduction to obtain the control speed, thereby reducing the volume of gas forming the airflow per unit time.
  • S238 controls the operation of the heating component 12 by controlling the power upper limit, and controls the operation of the wind power component 11 by controlling the rotation speed.
  • the main control module 14 controls the operation of the wind component 11 by controlling the rotational speed, and controls the operation of the heating component 12 by controlling the power upper limit, so that the drying equipment 10 reduces the total volume of the output airflow in this working mode, increases the wind temperature to a certain extent, and indirectly realizes the theoretical wind temperature or drying time corresponding to the control power.
  • only one preset air pressure and a corresponding set of control parameters may be set. After obtaining the ambient air pressure, the corresponding control power and/or control speed are calculated using a preset function based on the difference between the ambient air pressure and the preset air pressure.
  • the number of preset air pressures in the control method is multiple, and each preset air pressure has a corresponding preset power.
  • each working mode of the drying device 10 is calibrated at different preset air pressures in a laboratory where the air pressure can be changed.
  • the control parameters of each working mode of the drying device 10 are calibrated at multiple preset air pressures by software simulation, calibration in multiple laboratories at different altitudes, and the like.
  • step S22 obtaining the preset power includes:
  • S221 calculates the absolute value of the difference between the ambient air pressure and each preset air pressure.
  • S222 selects the preset air pressure with the smallest absolute value and uses the preset power corresponding to the preset air pressure as the control power.
  • a plurality of preset air pressures are set in the design process of the drying device 10 to cover the air pressure range where humans live, and the control parameters of each working mode of the drying device 10 are calibrated in these preset air pressures.
  • the main control module 14 selects and calls the preset power in the closest preset air pressure as the control power by calculating the absolute value of the interpolation with each preset air pressure according to the detected ambient air pressure, so that the drying device 10 can adapt to the actual ambient air pressure.
  • each preset air pressure has a corresponding preset power.
  • step S22 the preset power is obtained, including:
  • S223 obtains a fitting function according to a plurality of preset air pressures and corresponding preset powers
  • Fitting is to connect a series of points on a plane with a smooth curve.
  • the curve can also be represented by a function, namely the fitting function.
  • Fitting function is a data processing method that establishes a mathematical model with limited preset data. Commonly used fitting methods include least squares curve fitting method.
  • S224 obtains the control power corresponding to the ambient air pressure according to the fitting function.
  • the ambient air pressure measured by the air pressure module 13 is substituted into the fitting function to calculate the corresponding control power.
  • the ambient air pressure detected by the air pressure module 13 is p x
  • the control power w x corresponding to the ambient air pressure p x is calculated by substituting the above fitting function f(p x ) into the fitting function.
  • the corresponding function can be obtained by interpolation calculation or the like, and the corresponding control power can be obtained according to the ambient air pressure.
  • the number of preset air pressures can be reduced, and the control power can be obtained by real-time calculation through a function, with a small amount of data and a small amount of preliminary work.
  • the control method in other embodiments may also be combined with the above two methods.
  • the corresponding preset powers W x1, W x2, W x3 ... are calibrated in multiple preset air pressures P x1, P x2, P x3 ...
  • the closest preset air pressure P xn and the corresponding preset power W xn are matched by calculating the absolute value of the difference
  • the reference preset power W xn is corrected and calculated according to the difference between the ambient air pressure P x and the preset air pressure P xn , for example, the correction value is calculated according to the preset function f (P x -P xn ), and the reference preset power W xn is corrected according to the correction value to obtain the control power W x .
  • the advantages and disadvantages of the above two methods can be combined to reduce the amount of data and the workload of the preliminary design.
  • the heating component 12 includes multiple groups of heating structures 121, and the heating structure 121 can be a structure such as a heating wire with a preset length or a heating plate with a preset area.
  • the multiple groups of heating structures 121 have the same or different rated powers, and the multiple groups of heating structures 121 can be combined in series or in parallel, or each can be independent.
  • the main control module 14 can control the heating component 12 in any of the following two ways:
  • the main control module 14 controls the opening and closing of any heating structure 121.
  • the heating component 12 includes 4 groups of identical heating structures 121. When the main control module 14 turns off one group of heating structures 121 and turns on the remaining 3 groups of heating structures 121, the heating component 12 operates at 75% of the maximum power.
  • the heating component 12 includes 1 group of heating structures 121 with a rated power of Wa and 1 group of heating structures 121 with a rated power of 2W a ; the main control module 14 turns off one group of heating structures 121 with a rated power of Wa and turns on another group of heating structures 121 with a rated power of 2W a , and the heating component 12 operates at 67% of the maximum power.
  • the main control module 14 controls the power value of any heating structure 121.
  • the heating component 12 includes two groups of identical heating structures 121.
  • the main control module 14 controls the power value of one group of heating structures 121 to be 50% of its maximum power and the power value of the other group of heating structures 121 to be 100% of its maximum power, the heating component 12 operates at 75% of the maximum power.
  • the main control module 14 can also combine the above two methods to control the heating component 12. For example, if the heating component 12 includes two identical groups of heating structures 121, the main control module 14 can also control the heating component 12 in the following way: one group of heating structures 121 is turned off, and the input power of the other group of heating structures 121 is 50% of its maximum power, and the heating component 12 operates at 25% of the maximum power.
  • the drying device 10 further includes a housing 16, an airflow channel 164 is provided in the housing 16, and the wind power component 11 is configured to generate airflow in the airflow channel 164.
  • the airflow channel 164 is a space enclosed by the side walls, which defines the size of the airflow cross section formed inside the drying device 10. Accordingly, the impeller diameter in the wind power component 11 is slightly smaller than the airflow cross section, so as to fully do work on the air in the airflow channel 164. Combining the impeller speed and the airflow cross section size in the wind power component 11, the airflow volume flowing through the drying device 10 per unit time can be calculated.
  • the air pressure module 13 needs to contact the outside air when detecting the ambient air pressure. If the air pressure module 13 is directly arranged on the outer surface of the housing 16, although it can meet the requirement of contacting the outside air, it destroys the appearance consistency of the drying device 10, and the exposed air pressure module 13 is also at risk of being easily damaged. Therefore, in some embodiments, the air pressure module 13 is arranged in the air flow channel 164, so that it can contact the air flow in the air flow channel 164 to detect the ambient air pressure, and the air pressure module 13 is hidden inside the housing 16, which will not affect the appearance consistency of the drying device 10, and the air pressure module 13 is not easily damaged.
  • the ultra-high-speed motor used in the wind power assembly 11 will form a high-speed airflow in the airflow channel 164 during operation.
  • the control method, before step S10, that is, before obtaining the ambient air pressure through the air pressure module 13, also includes:
  • the ambient air pressure is obtained through the air pressure module 13 .
  • the air pressure module 13 can accurately detect and obtain the ambient air pressure.
  • a shorter delay time such as 0.1 second, 0.3 second, 0.5 second, 0.8 second, 1 second, 1.5 second, 2 seconds, 3 seconds, etc.
  • the wind component 11 starts to operate, that is, the time for the air to be discharged after the drying device 10 is started is delayed.
  • no airflow is generated in the airflow channel 164, and the air pressure module 13 can also accurately detect the ambient air pressure.
  • the detection time of the air pressure module 13 is set within a relatively short preset time after the drying device 10 is started, for example, the preset time is set to 0.1 seconds, 0.3 seconds, 0.5 seconds, 0.8 seconds, 1 second, 1.5 seconds, 2 seconds, 3 seconds, etc. after the drying device 10 is started.
  • the preset time is set to 0.1 seconds, 0.3 seconds, 0.5 seconds, 0.8 seconds, 1 second, 1.5 seconds, 2 seconds, 3 seconds, etc.
  • the heating component 12 includes a first component 124 and a second component 123, and along the direction of the airflow (the direction of the arrow in Figure 4), the first component 124 is located upstream of the wind component 11, and the second component 123 is located downstream of the wind component 11.
  • the first component 124 can be composed of one or more of the aforementioned heating structures 121 in series and/or in parallel, and the second component 123 can also be composed of one or more of the aforementioned heating structures 121 in series and/or in parallel.
  • the structure and heating power of the first component 124 and the second component 123 can be the same or different, and the main difference between the two is the position relative to the wind component 11 in the airflow.
  • control of the heating component 12 by the main control module 14 can also include controlling the opening and closing or input power of the first component 124 and the second component 123 respectively.
  • the first component 124 and the second component 123 work at the same time, it is equivalent to heating the air at two positions of the airflow, so that the heating component 12 has a larger heat exchange area and higher heating efficiency.
  • the main control module 14 controls the heating component 12 according to the control power, if the control power is lower than the first threshold (the first threshold is roughly equivalent to the maximum power of the second component 123), the control power can be completely realized by the second component 123.
  • the control strategy of the main control module 14 is to turn off the first component 124, only turn on the second component 123 and control its operation to reach the control power. In this way, the main control module 14 can preferentially turn off the first component 124 under certain working conditions, so that the wind power component 11 will not operate in the heated airflow under these working conditions, so as to extend the service life of the wind power component 11.
  • the housing 16 of the drying device 10 has a first air inlet 161, a second air inlet 162, and an air outlet 163.
  • the airflow channel 164 includes a first air duct 164a and a second air duct 164b, and the first air duct 164a is connected between the first air inlet 161 and the air outlet 163.
  • the wind power component 11 is arranged in the first air duct 164a, and directly generates airflow in the first air duct 164a during operation.
  • the airflow enters the housing 16 from the first air inlet 161 and flows along the first air duct 164a, and flows out of the housing 16 from the air outlet 163.
  • the upstream of the second air duct 164b is connected to the second air inlet 162, and the downstream is connected to the first air duct 164a.
  • negative pressure is formed downstream of the second air duct 164b, thereby sucking the gas outside the housing 16 from the second air inlet 162 and flowing along the second air duct 164b, and finally merging into the first air duct 164a.
  • the upstream of the second air duct 164b is connected to the second air inlet 162, and the downstream is connected to the air outlet 163.
  • the wind power component 11 After the wind power component 11 generates airflow in the first air duct 164a, it will also form a negative pressure at the air outlet 163, thereby sucking the gas outside the shell 16 from the second air inlet 162 and flowing along the second air duct 164b, and finally flowing out from the air outlet 163.
  • the air pressure module 13 is arranged in the second air duct 164b. Since the flow rate of the airflow in the second air duct 164b is relatively low, the influence on the ambient air pressure is also relatively low, so that the air pressure module 13 can detect the ambient air pressure more accurately. In some embodiments, the air pressure module 13 can also be arranged in the first air duct 164a.
  • the control method described above can be referred to, that is, when the wind power component 11 is not running or the running time is less than the preset value, the ambient air pressure is obtained through the air pressure module 13.
  • the airflow in the second air duct 164b may also affect the air pressure, thereby causing errors in the ambient air pressure detected by the air pressure module 13.
  • a similar method as described above may be used, such as detecting when the wind power component 11 is not running or the running time is less than a preset value, so as to avoid the influence of high-speed airflow on the detection accuracy of the air pressure module 13.
  • the drying device 10 further includes a control circuit 15 disposed in the second air duct 164b.
  • the air pressure module 13 and the main control module 14 are both disposed on the control circuit 15, and the control circuit 15 is electrically connected to the wind power component 11 and the heating component 12.
  • the control circuit 15 constitutes the main circuit structure inside the drying device 10.
  • the airflow in the second air duct 164b flows through the entire control circuit 15.
  • the airflow can also heat the control circuit 15 to avoid overheating of the control circuit 15. Since the airflow velocity in the second air duct 164b is lower than that in the first air duct 164a, the control circuit 15 disposed in the second air duct 164b will not generate obvious wind noise.
  • the drying device 10 further includes a radiation component 17 capable of outputting infrared radiation, the radiation component 17 is connected to the main control module 14, and the main control module 14 is configured to be able to adjust the operating power of the radiation component 17 according to the ambient air pressure.
  • the radiation component 17 can generate infrared radiation of a preset band after inputting current, and directly act on the target object for drying.
  • control method in certain embodiments of the present application further includes the following steps:
  • the radiation component 17 itself will also generate heat when working. According to the aforementioned influence of ambient air pressure on wind temperature, it can be known that in an environment with low ambient air pressure, the radiation component 17 is more likely to heat the nearby airflow to a higher temperature, which reduces the heat dissipation efficiency of the radiation component 17. Not only is the radiation component 17 prone to overheating, it may also further cause the entire drying equipment 10 to overheat, and there is a possibility of scalding the user. Moreover, according to the principle of blackbody radiation, when the radiation component 17 operates at a higher temperature, spectral drift may also occur, causing the wavelength of the emitted infrared radiation to change, thereby affecting the drying time. Therefore, the ambient air pressure at which the heat dissipation efficiency of the radiation component 17 is too low is determined in advance through simulation, experimental testing, etc., and stored as a threshold.
  • the operating power of the radiation component 17 is reduced.
  • the main control module 14 correspondingly reduces the current operating power of the radiation component 17.
  • the radiation component 17 is prevented from overheating and the drying device 10 as a whole is heated, and on the other hand, the radiation component 17 can be kept in a suitable working temperature range, thereby ensuring that the radiation component 17 emits infrared radiation of a preset wavelength.
  • the drying device 10 may also be provided with other power-consuming components, such as negative ion components, hair care essential oil components, etc., which will inevitably generate heat when running, thereby increasing the heat generation of the entire drying device 10. Since the heat dissipation efficiency of the drying device 10 will decrease when the ambient air pressure is low, the main control module 14 needs to adjust the power of all power-consuming components on the drying device 10 according to the ambient air pressure to ensure the heat dissipation efficiency of the entire drying device 10 and avoid overheating of the housing 16.
  • other power-consuming components such as negative ion components, hair care essential oil components, etc.
  • a readable storage medium is further provided, wherein the readable storage medium stores a program, and when the program is executed by a processor, each step of the aforementioned control method is implemented.
  • Non-volatile memory can include read-only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM) or flash memory.
  • Volatile memory can include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous link (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM).
  • Any process or method description in a flowchart or otherwise described herein may be understood to represent a module, fragment or portion of code that includes one or more executable instructions for implementing the steps of a specific logical function or process, and the scope of the preferred embodiments of the present application includes alternative implementations in which functions may not be performed in the order shown or discussed, including performing functions in a substantially simultaneous manner or in the reverse order depending on the functions involved, which should be understood by technicians in the technical field to which the embodiments of the present application belong.

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

干燥设备(10)和控制方法,其中干燥设备(10)包括:风力组件(11)、加热组件(12)、气压模块(13)和主控模块(14),风力组件(11)用于产生气流,加热组件(12)用于加热所述气流,气压模块(13)用于获取环境气压,主控模块(14)与所述加热组件(12)、所述气压模块(13)连接,且所述主控模块(14)被配置为,能够根据所述环境气压调整所述加热组件(12)的发热功率。

Description

一种干燥设备和控制方法 技术领域
本申请涉及干燥设备的技术领域,特别涉及一种干燥设备和控制方法。
背景技术
干燥设备能够输出加热气流,加速目标物的水分蒸发以实现干燥的目的。例如人在洗发之后,使用吹风机用热风吹干头发。
现有技术中的干燥设备中一般通过风温反馈的方式进行温控,即在出风口附近设置温度传感器采集风温,然后根据采集到的风温调节发热功率。这种温度控制的方式至少存在以下缺点:
(1)由于温控过程需要采集已经加热的气流的温度作为反馈调节的依据,使得温控存在滞后性,尤其干燥设备初始风温过高时,即使后续能够将风温调节降低,但已经输出的高温气流仍然有可能烫伤用户。
(2)受限于安装空间、电路设计等因素,现有技术中一般采用热敏电阻(NTC)作为检测风温的元件。热敏电阻的电阻与温度变化是非线性的,并且在高温区间(例如100℃以上)检测精度还会大幅下降,热敏电阻自身也具有安装误差,这些原因共同导致热敏电阻检测精度较差,只能给出大致的风温区间。因此,现有技术中对风温的控制仅限于设置高温阈值以避免风温过高,而不能精确控制实现某特定风温。
发明内容
本申请提供了一种干燥设备和控制方法,旨在解决现有技术中的干燥设备对风温控制精度低,并且可能出现初始风温过高的问题。
本申请提供了一种干燥设备,包括:风力组件、加热组件、气压模块和主控模块,风力组件用于产生气流,加热组件用于加热所述气流,气压模块用于获取环境气压,主控模块与所述加热组件、所述气压模块连接,且所述主控模块被配置为,能够根据所述环境气压调整所述加热组件的发热功率。
本申请还提供了一种控制方法,用于控制干燥设备输出气流的风温,包括以下步骤:
通过气压模块获取环境气压;
根据所述环境气压控制风力组件和/或加热组件的运行,所述加热组件用于加热气流,所述风力组件用于产生气流。
本申请还提供了一种可读存储介质,所述可读存储介质存储有程序,所述程序被处理器执行时实现前述控制方法的步骤。
本申请中的干燥设备和控制方法,通过干燥设备使用空间的环境气压变化,改变加热组件的发热功率,以实现精确的控制风温。
本申请实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点可以从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式中的干燥设备的框体结构示意图;
图2是本申请某些实施方式中的发热组件示意图;
图3是本申请某些实施方式中的干燥设备的框体结构示意图;
图4是本申请某些实施方式中的干燥设备的结构示意图;
图5是本申请某些实施方式中的干燥设备的结构示意图;
图6是本申请某些实施方式中的干燥设备的结构示意图;
图7是本申请某些实施方式中的控制方法的步骤示意图;
图8是本申请某些实施方式中的控制方法的细化步骤示意图;
图9是本申请某些实施方式中的控制方法的另一细化步骤示意图;
图10是本申请某些实施方式中的控制方法的又一细化步骤示意图;
图11是本申请某些实施方式中的控制方法的又一细化步骤示意图;
图12是本申请某些实施方式中的控制方法的又一细化步骤示意图;
图13是本申请某些实施方式中的控制方法的又一细化步骤示意图。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中,相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的实施方式的限制。
如图1和图4所示,本申请的实施方式中提供了一种干燥设备10,包括风力组件11、加热组件12、气压模块13和主控模块14。
风力组件11可包括电机和叶轮。风力组件11在运行时,由电机驱动叶轮转动,转动的叶轮对空气做功而使空气流动形成气流(气流方向如图4中箭头所示)。
加热组件12可包括一组或多组电热丝、电热片等结构。向加热组件12输入电流后,加 热组件12向外散热量发至附近的空气中,使空气被加热升温。将加热组件12至少部分设置在风力组件11形成的气流中,加热组件12产生的热量对流经的空气,从而使干燥设备10能够输出热气流对目标物进行干燥。
气压模块13是一种用于获取气体压强的结构。
在某些实施方式中,气压模块13自身可直接检测获得气压,例如气压模块13为气压传感器(或称海拔传感器、高度传感器)、气压计等。将气压模块13设置在非密闭空间中时,通过与空气接触能够检测获得所在位置的环境气压。
在某些实施方式中,气压模块13亦可为GPS模块,能够通过GPS信号获所在位置的海拔高度,根据海报高度换算后得到环境气压。亦或者,通过GPS信号获得所在位置,例如所在位置为北京市,根据预设的地图数据查询得到北京市的环境气压。
在某些实施方式中,气压模块13也可与其他结构通信获得环境气压。例如,干燥设备10能够与手机、平板电脑等智能终端通过蓝牙、wifi等方式建立通信,气压模块13从智能终端上直接获得所在位置的环境气压。亦或者气压模块13从智能终端上获得所在位置,根据预设的地图数据查询得到所在位置的环境气压。亦或者,气压模块13直接与相关的气压计进行通信获得环境气压。
在某些实施方式中,气压模块13也可与网络连接后获得环境气压。例如干燥设备10本身能够通过wifi或移动网络接入互联网,通过网络定位其位置后,根据预设的地图数据查询得到所在位置的环境气压。亦或者,干燥设备10接入网络后,气压模块13能够接收到从服务器端发送的环境气压信息。
在某些实施方式中,气压模块13也可以为例如按键、触摸屏等输入模块,用户自行查询环境气压后通过输入模块输入环境气压值。
在某些实施方式中,也可按批次对干燥设备12的气压模块13预标定环境气压,气压模块13仅作为存储装置,存储预标定的环境气压。在销售网络中出售干燥设备12时,将预标定的环境气压运送至对应的地区进行售卖,用户在当地购买的干燥设备12中,已经标定了对应当地的环境气压。
以上列举了气压模块13的各种实施方式,下文中如无特别说明,气压模块13指气压传感器(或称海拔传感器、高度传感器),直接与空气接触并检测获得环境气压。
主控模块14是一种能够进行数据运算的电学结构,例如MCU(单片机)、CPU(中央处理器)等。在干燥设备10运行时,主控模块14能够从气压模块13获得环境气压,并且控制干燥设备10的控制参数,控制参数具体包含风力组件11中电机的转速和/或加热组件12的功率值。通过改变控制参数,能够改变风力组件11输出气流的风速和/或加热组件12的发热量,也即改变干燥设备10的风温和风速。
相应地,如图1和图7所示,本申请的某些实施方式中提供了一种控制方法,用于控制上述的干燥设备10,包括以下步骤:
S10通过气压模块13获取环境气压;
环境气压由气压模块13获取,指的是干燥设备10当前所处的开放环境的气压值,也即用户在使用干燥设备10时所处地区的气压值。气压模块13获取环境气压的方式可参考前文中列举的多种实施方式,不在重复。
S20根据环境气压控制风力组件11和/或加热组件12的运行。
主控模块14以环境气压作为改变控制参数的依据之一,根据不同的环境气压相应地改变控制参数,例如增加或减少加热组件12的功率值、增加或减少风力组件11的转速,从而使干燥设备10的运行能够根据环境气压的变化而调整。
上述实施方式的干燥设备10和控制方法中,主控模块14通过检测环境气压的变化对应改变干燥设备10的控制参数,从而使处于不同海拔地区的用户使用干燥设备10时能够有相似且符合设计预期的使用体验。尤其是,还能够避免由于气压变化导致的风温过高、干燥速度过慢等问题,具体的控制过程将会在下文中详述。
在某些实施方式中,如图7和图8所示,在步骤S20中,根据环境气压控制加热组件12和/风力组件11的运行,具体包括:
S21确定工作模式。
干燥设备10一般预设有一个或多个工作模式,各工作模式具有不同的设计目的,对应不同的控制参数。
例如干燥设备10为吹风机,可按照吹发速度预设三个工作模式:冷风档、中热档、高热档;亦或者按照干燥时间预设三个工作模式:低速挡、中速档、高速档。用户开启并使用干燥设备10时,干燥设备10必然处于某一个工作模式中。在干燥设备10的设计过程中,根据工作模式的设计目的确定所需的风速、风温,并且对加热组件12和/风力组件11进行标定确定该工作模式的控制参数。具体地,控制参数包括风力组件11的转速和/或加热组件12的功率值。干燥设备10在不同的工作模式中时,主控模块14按照对应的控制参数控制风力组件11和/或加热组件12的运行。
容易理解的是,在某些实施方式中,干燥设备10可能没有多个工作模式,例如干燥设备10为干手机,其只有开启和关闭两种状态。干手机在开启运行时的风速、风温也会在前期设计过程中确定,并且标定了对应控制参数,亦可理解为其工作模式即指干手机的开启的状态。
S22获取预设功率,预设功率为干燥设备10在预设气压中以工作模式运行时,加热组件12的功率值。
在干燥设备10的设计过程中,基于预设气压对各个工作模式中的运行参数进行了标定,其中至少包含了加热组件12的功率值,即对应预设气压的预设功率。
例如,干燥设备10的一个工作模式的设计目的是输出风温为60℃的气流,在预设气压中通过模拟、实验测试等方式确定了该工作模式中加热组件12的预设功率为W 1。即表明,在预设气压环境下,干燥设备10在该工作模式中输出的气流风温为60℃时,加热组件12的功率值为预设功率W 1
S23根据环境气压和预设气压的关系,基于预设功率得到控制功率。
用户在不同地区使用干燥设备10时,环境气压和预设气压可能存在差异,例如环境气压大于预设气压,或者环境气压小于预设气压。在这些情况中,如果主控模块14依然采用预设功率控制加热组件12,会因气压变化而导致实际的风温变化,从而无法实现该工作模式的设计目的。因此,主控模块14需要根据环境气压和预设气压的关系对预设功率进行调整而得到控制功率,以使干燥设备10在不同环境气压中以同一工作模式运行时,都能够实现与预设气压中相同的设计目的。
容易理解的是,如果环境气压和预设气压相同(二者差值的绝对值小于阈值,即可认为二者相同),则主控模块14直接以预设功率为控制功率即可。
S24根据控制功率控制加热组件12的运行。
主控模块14以适应当前环境气压的控制功率控制加热组件12的运行,干燥设备10在对应工作模式运行时即可实现与预设气压中相同的设计目的。
在上述实施方式的控制方法中,干燥设备10的设计过程中在预设气压标定了各工作模式的控制参数,亦可理解为,干燥设备10中预存的相关数据中包含了控制参数以及与控制参数对应的预设气压。在干燥设备10的使用过程中,主控模块14根据实际检测到的环境气压和预设气压的关系,基于预设功率得到适应环境气压的控制功率。
换言之,干燥设备10的控制过程中引入了环境气压作为控制依据之一,使得干燥设备10在各种环境气压中适应性调整运行参数,从而实现用户在任意地区使用干燥设备10的同一工作模式时,干燥设备10都能够实现该工作模式的设计目的,并且用户的使用体验也大致相同。
如图9所示,在某些实施方式的控制方法中,不同工作模式具有不同的风温,风温用于表征干燥设备10输出气流的温度。
干燥设备10多个工作模式的设计目的为输出气流具有不同的风温。在一个具体的实施例中,根据风温的不同预设了三个工作模式:冷风档(风温即环境气温)、中热档(风温60℃)、高热档(风温80℃),在说明书、包装盒、显示屏等位置告知用户此三个工作模式的风温,用户根据自身需要选取工作模式使用。在干燥设备10的设计过程中,在预设气压中对上述 的三个工作模式中加热组件12的功率值进行了标定,其中冷风档对应的预设功率为0,中热档对应的预设功率为W 1,高热档对应的预设功率为W 2。即可理解为,在预设气压中,主控模块14以预设功率W 1控制加热组件12运行时,干燥设备10输出气流的风温为60℃,主控模块14以预设功率W 2控制加热组件12运行时,干燥设备10输出气流的风温为80℃。用户在使用干燥设备10时,各个工作模式中的实际风温越接近上述值,则用户的使用体验越佳。反之,如果不同地区的用户使用干燥设备10时,各个工作模式中的风温偏离上述值,用户会感觉到干燥设备10的实际风温与宣称的风温明显存在差别,从而带来较差的使用体验。
为此,在步骤S23中,基于预设功率得到控制功率,具体包括:
S231若环境气压大于预设气压,则基于预设功率增加以得到控制功率;
S232若环境气压小于预设气压,则基于预设功率减少以得到控制功率。
根据相关气体方程可知,环境气压的变化会影响干燥设备10输出气流的风温,具体原理为:在不同环境气压下,同体积气体所包含气态物质的总质量不同。向同体积气体输入相同总热量时,如果气体包含了较多质量的气态物质,则气体被加热后升温幅度较小;如果气体包含了较少质量的气态物质,则气体被加热后升温幅度较大。
例如,在环境气压为P 1的地区A使用干燥设备10时,在单位时间内,干燥设备10输出气流的总体积为S,加热组件12的功率值为W a,干燥设备10输出气流的风温为T 1。而在环境气压为P 2(P 2<P 1)的地区B使用干燥设备10时,保持相同的控制参数,同样在单位时间输出总体积为S的气流,加热组件12的发热功率也为W a,干燥设备10输出气流的风温为T 2
由于两个地区的环境气压不同,在地区A,体积为S的气体中包含气态物质的质量较多;在地区B,体积为S的气体中包含气态物质的质量较少。因此,用户在这两个地区使用干燥设备10时,在加热组件12功率值W a不变的前提下,单位时间内加热组件12向体积为S的气体输入的总热量相同,但由于所包含的气态物质的质量不同,会导致风温T 1<风温T 2
也即,用户在不同地区使用干燥设备10时,即使干燥设备10的运行参数完全相同,也可能会感受到不同的风温。具体为,环境气压越低则风温越高,环境气压越高则风温越低。
风温不仅会影响用户使用的体感,过高的风温还可能烫伤皮肤或引燃易燃物。如果在地区A完成干燥设备10的设计和生产,在风温最高的工作模式中,风温为略低于可能烫伤皮肤或引燃易燃物的温度。如果不考虑环境气压对风温的影响,则用户在地区B使用干燥设备10的该工作模式时,输出气流的实际风温会超出上述温度,从而造成高温危险。
基于上述原理可知,在控制参数保持不变的前提下,干燥设备10在气压较大的环境中输出的风温会下降,在气压较小的环境中输出的风温会上升。为了在同一个工作模式中,干燥设备10位于任意环境气压状态下输出的气流都具有相同的风温,本申请的上述实施方式 中,在环境气压大于预设气压时,则基于预设功率增加以得到控制功率,从而增加加热组件12对气流的输入热量,起到增加实际风温的目的。同理,若环境气压小于预设气压,则基于预设功率减少以得到控制功率,从而减少加热组件12对气流的输入热量,起到减少实际风温的目的。如此能够实现对风温的精确控制,位于任何地区的用户在使用干燥设备10的相同工作模式时,感受到的气流具有相同的风温,且该风温符合干燥设备10该工作模式所标称的风温,从而给用户带来较佳的使用体验。
尤其是,在较低环境气压地区使用时,用户选择干燥设备10最高风温的工作模式时,如不考虑气压对风温的影响,则可能出现干燥设备10风温过高的危险。虽然现有技术中能够通过检测风温来调节对气流的加热功率,但这种调节方式对风温的调节具有滞后性,无法避免初始风温过高导致的危险。而本申请上述实施方式中的控制方法,在检测到环境气压较低时直接降低了加热组件12的功率值,从而彻底避免了初始风温过高的危险。同理,在较高环境气压地区使用时,本申请上述实施方式中的控制方法亦可根据环境气压提高加热组件12的功率值,从而使其输出气流的风温不会过低,而同等情况中现有技术的干燥设备10输出气流的风温较低,可能使用户感觉到寒冷。
如图10所示,在某些实施方式的控制方法中,不同工作模式具有不同的干燥时间,干燥时间用于表征干燥设备10将目标物从第一含水量干燥至第二含水量的耗时。
例如干燥设备10为吹风机,选取的目标物为中等长度的头发(长度大致为30cm左右)。一般而言,头发完全沾湿并擦去表面水珠的状态下,水分重量占头发总重量百分比大致为30%,头发大致吹干的状态下,水分重量占头发总重量百分比大致为15%。将目标物(头发)的第一含水量设为30%,第二含水量设为15%,干燥时间即干燥设备10将头发从含水量30%的状态干燥至含水量15%的状态所消耗的时间。
多个工作模式的设计目的为对应不同的干燥时间,例如预设三个工作模式:慢速档(干燥时间15分钟)、中速档(干燥时间10分钟)、高速档(干燥时间7分钟),在说明书、包装盒、显示屏等位置告知用户此三个工作模式的干燥时间。用户根据需要选择工作模式吹干头发,并且使用时用户期待能够以对应的干燥时间完成吹发过程,实际吹发耗时越接近工作模式对应的干燥时间,则用户体验越佳。反之,如果不同地区的用户使用干燥设备10时,各个工作模式中干燥设备10完成吹发过程耗时与宣称的干燥时间存在明显差别,会带来较差的使用体验。
需要说明的是,在吹发过程中干燥时间越短则表明头发失水速度越快,头发越容易出现过度失水、高温损伤发质等情况。基于不同的发质差别和使用习惯,不同的用户在使用干燥设备10对头发进行干燥时,会倾向于选择不同的干燥时间。例如,短发或对发质不敏感的用户倾向于快速吹干以节省时间,倾向于选择干燥时间最短的工作模式。而中长发或对发质 敏感程度高的用户倾向于慢速吹干,倾向于选择干燥时间较长的工作模式。多个工作模式的设计目的即为了满足这些不同用户的使用需要。
在步骤S23中,基于预设功率得到控制功率,包括:
S233若环境气压大于预设气压,则基于预设功率减少以得到控制功率;
S234若环境气压小于预设气压,则基于预设功率增加以得到控制功率。
根据相关气体方程可知,在不同环境气压下同体积气体所包含气态物质的总质量不同,而气体中气态物质的总质量与其吸水能力呈正比。换言之,对于同体积的气体,在环境气压较大时,其吸水能力较强,因此对目标物的干燥效率较高;而在环境气压较小时,其吸水能力较若,因此对目标物的干燥效率较低。
例如,在环境气压为P 1的地区A使用干燥设备10时,在单位时间内干燥设备10输出气流的总体积为S,加热组件12的功率值为W b,中等长度的湿头发从含水量30%干燥至含水量15%所消耗的时间为干燥时间t 1。而在环境气压为P 2(P 2<P 1)的地区B使用干燥设备10时,在单位时间内干燥设备10同样输出气流的总体积为S,加热组件12的发热功率也为W b,中等长度的湿头发从含水量30%干燥至含水量15%所消耗的时间为干燥时间为t 2
由于两个地区的环境气压不同,在地区A,体积为S的气体中包含气态物质的质量较多,吸水能力更强;在地区B,体积为S的气体中包含气态物质的质量较少,吸水能力弱。因此,用户在这两个地区使用干燥设备10时,在加热组件12功率值W b不变的前提下,由于气态物质的质量不同而导致吸水能力差异,会出现干燥时间为t 1>干燥时间为t 2
也即,用户在不同地区使用干燥设备10时,即使干燥设备10的控制参数完全相同,也可能会感受到不同的干燥时间。具体为,环境气压越低则干燥时间越长,环境气压越高则干燥时间越短。
基于上述原理可知,在控制参数保持不变的前提下,干燥设备10在气压较大的环境中干燥时间会减少,在气压较小的干燥时间会增加。为了在同一个工作模式中,干燥设备10位于任意环境气压状态下都具有相同的干燥时间,本申请的上述实施方式中,在环境气压大于预设气压时,则基于预设功率减少以得到控制功率,从而起到增加干燥时间的目的。同理,若环境气压小于预设气压,则基于预设功率增加以得到控制功率,从而起到减少干燥时间的目的。如此能够实现对干燥时间的精确控制,位于任何地区的用户在使用干燥设备10的相同工作模式时,完成吹发过程所耗费的干燥时间都大致相同,且干燥时间符合用户对干燥设备10该工作模式所标称的干燥时间,从而给用户带来较佳的使用体验。
需要指出的是,上述的多个实施方式中,各种工作模式之间并非互斥。例如在某些实施方式中,干燥设备10具有三个工作模式:冷风档(输出常温气流)、高速档(干燥时间7分钟)、高温档(风温80℃),用户在选取不同工作模式后,按照前述的控制方法中对应的步 骤得到对应的控制功率。在另一些实施方式中,工作模式的设计目的也可结合前述两种方式,例如工作模式为:护发档,该档位的设计目的为兼顾快速吹干和减少对发质的损坏,其控制逻辑为,第一阶段为持续输出t1时间风温80℃的气流,第二阶段以t2时间完成干燥过程,则在上述两个阶段中,亦可根据前述的实施方式采用不同的控制逻辑得到对应的控制功率。
如图11所示,在某些实施方式的控制方法中,在步骤S20中,即根据环境气压控制风力组件11和/或加热组件12的运行,还包括:
S235若控制功率大于加热组件12的功率上限;
在前述的某些实施方式中基于预设功率增加后得到控制功率,如果预设功率本身已经是一个接近加热组件12功率上限的功率值(例如在最高风温的工作模式中),进一步增加后所得到的控制功率有可能会超出加热组件12的功率上限,加热组件12无法以该控制功率运行,从而导致干燥设备10不能实现工作模式的设计目的,例如在气压较高的地区无法达到对应的风温或干燥时间。
S236获取工作模式中的预设转速,预设转速为干燥设备10在预设气压中以工作模式运行时,风力组件11的转速。
干燥设备10的设计过程中,在预设气压中,标定的各工作模式的控制参数包含了预设功率和预设风速。也即,在预设气压中,主控模块14按照预设功率控制发热组件运行,按照预设转速控制风力组件11运行,干燥设备10即可实现对应工作模式的设计目的。
S237基于预设转速减少以得到控制转速。
根据相关气体方程可知,在气压不变的前提下,风温与气体体积也相关。例如加热组件12的功率值为W c,风力组件11在单位时间内形成气流的气体体积为S 1,对应的风温为T c1。如果保持加热组件12的功率值为W c不变,减少风力组件11的转速使其在单位时间内形成气流的气体体积为S 2,对应风温为T c2。由于气体体积S 2<气体体积S 1,因此在输入总热量相同的前提下,会导致风温T c2>T c1。换言之,对于干燥设备10输出气流的风温控制,既可以通过改变加热组件12的功率值实现,也可以通过改变风力组件11的转速实现。
基于上述原理,当控制功率超过加热组件12的功率上限时(例如在步骤S234、步骤S231中),基于预设转速减少以得到控制转速,主控模块14以控制转速控制风力组件11的运行,减少单位时间内形成气流的气体体积。
S238以功率上限控制加热组件12的运行,以控制转速控制风力组件11的运行。
主控模块14以控制转速控制风力组件11运行,以功率上限控制加热组件12的运行,使得干燥设备10在该工作模式中减少输出气流的总体积,在一定程度上提高风温,间接实现控制功率所对应的理论风温或干燥时间。
在某些实施方式的控制方法中,可只设置一个预设气压和对应的一组控制参数,在获取 环境气压后,根据环境气压与预设气压差值的大小,以预设的函数计算得到对应的控制功率和/或控制转速。
在如图12所示的一些实施方式中,控制方法中预设气压的数量为多个,各个预设气压都有对应的预设功率。例如在能够改变气压的实验室中对干燥设备10的各个工作模式在不同的预设气压中进行标定。亦或者通过软件模拟、在多个海拔不同的实验室中标定等方式,在多个预设气压中对干燥设备10的各个工作模式的控制参数进行标定。
相应地,在步骤S22中,获取预设功率,包括:
S221计算环境气压与各个预设气压差值的绝对值。
S222选取绝对值最小的预设气压,以其对应的预设功率为控制功率。
在上述的实施方式中,在干燥设备10的设计过程中设置多个预设气压,覆盖人类居住的气压范围,并且分别在这些预设气压中对干燥设备10各个工作模式的控制参数进行标定。用户使用干燥设备10切换至某工作模式时,主控模块14根据实施检测的环境气压,通过计算与各个预设气压插值的绝对值,选取并调用最接近的预设气压中的预设功率作为控制功率,以干燥设备10适应实际的环境气压。
在上述实施方式中,预设气压的数量越多,则理论上对干燥设备10的控制越精确,但也会带来数据量大、前期工作量大等问题。
如图13所示的另外一些实施方式中,控制方法中预设气压的数量为多个,各个预设气压都有对应的预设功率。
在步骤S22中,即获取预设功率,包括:
S223根据多个预设气压与对应预设功率获得拟合函数;
拟合是把平面上一系列的点用一条光滑的曲线连接起来,该曲线亦可用函数表示,即拟合函数。拟合函数是一种数据处理方式,以有限的预设数据建立数学模型。常用的拟合方法有如最小二乘曲线拟合法等。
例如,在干燥设备10的设计过程中,在多个预设气压中获得对应的预设功率后,在平面坐标系中以气压值为横坐标,功率值为纵坐标,绘制多个点,各点的坐标为(预设气压,预设功率),然后以光滑曲线连接各个点获得拟合函数f(p)=w,其中自变量p为气压值,w为对应的功率值。
S224根据拟合函数,获取环境气压对应的控制功率。
获得拟合函数后,将气压模块13测得的环境气压带入拟合函数,即可计算得到对应的控制功率。例如在用户使用干燥设备10时,气压模块13所检测到环境气压为p x,带入前述拟合函数f(p x)计算得到与环境气压p x对应的控制功率w x
在其他的实施方式中,也可以采用插值计算的等方式获得对应的函数,根据环境气压获 得对应的控制功率。
在上述实施方式中,可减少预设气压的数量,通过函数的方式实时计算获得控制功率,数据量较小,并且前期工作量较小。
在其他的实施方式中的控制方法也可结合上述两种方式。例如在干燥设备10的设计过程中,在多个预设气压P x1、P x2、P x3……中标定对应的预设功率W x1、W x2、W x3……,干燥设备10运行时检测到环境气压P x后,通过差值的绝对值计算匹配最接近的预设气压P xn和对应的预设功率W xn,根据环境气压P x与预设气压P xn的差值,对参考预设功率W xn进行修正计算,例如按照预设的函数f(P x-P xn)计算修正值,按照修正值对参考预设功率W xn进行修正后得到控制功率W x。如此,可结合前述两种方式的优缺点,减少数据量和前期设计的工作量。
如图1和图2所示,在某些实施方式中的干燥设备10,其加热组件12包括多组发热结构121,发热结构121可以预设长度的电热丝或预设面积的电热片等结构。多组发热结构121具有相同或不同的额定功率,多组发热结构121可以采用串联或者并联的方式组合,亦或者各自分别独立。主控模块14能够通过下列两种方式中的任一种对加热组件12控制:
(1)主控模块14控制任意发热结构121的启闭。例如加热组件12包括4组完全相同的发热结构121,当主控模块14关闭其中1组发热结构121、开启剩余3组发热结构121时,则加热组件12以最大功率的75%运行。或者,加热组件12包括1组额定功率为W a的发热结构121和1组额定功率为2W a的发热结构121;主控模块14关闭一组额定功率为W a的发热结构121、开启另一组额定功率为2W a的发热结构121,加热组件12以最大功率的67%运行。
(2)主控模块14控制任意发热结构121的功率值。例如,加热组件12包括2组完全相同的发热结构121,当主控模块14控制其中1组发热结构121的功率值为其最大功率的50%,另1组发热结构121功率值为其最大功率的100%,则加热组件12以最大功率的75%运行。
主控模块14对于加热组件12的控制,也可结合上述两种方式。例如加热组件12包括完全相同的两组发热结构121,则主控模块14对加热组件12的控制方式还可以为:关闭其中一组发热结构121,另一组发热结构121的输入功率为其最大功率的50%,则加热组件12以最大功率的25%运行。
在某些实施方式中,如图1和图4所示,干燥设备10还包括壳体16,壳体16内设有气流通道164,风力组件11被配置为在气流通道164中产生气流。气流通道164是由侧壁围合而成的空间,限定了干燥设备10内部形成的气流截面大小。相应地,风力组件11中的叶轮直径略小于气流截面,以在气流通道164内对空气充分做功。结合风力组件11中叶轮转速和气流截面尺寸,即可计算出单位时间流经干燥设备10的气流体积。
气压模块13检测环境气压时需要接触外部空气,如果将气压模块13直接设置在壳体16外表面,虽然能够满足接触外部空气的要求,但破坏了干燥设备10的外观一致性,而且外露的气压模块13还存在容易损坏的风险。因此,在一些实施方式中,气压模块13设置在气流通道164中,使其能够与气流通道164中的气流接触而检测环境气压,而且气压模块13隐藏在壳体16的内部,不会影响干燥设备10外观一致性,气压模块13也不易被损坏。
在某些实施方式中,风力组件11采用的超高速电机,在运行时会在气流通道164内形成高速气流,高速气流流经气压模块13时会对其测得的环境气压造成影响,偏离实际的环境气压。为此,在某些实施方式中的控制方法,在步骤S10之前,即通过气压模块13获取环境气压之前,还包括:
在风力组件11未运行或运行时间小于预设值的状态下,通过气压模块13获取环境气压。
在某些实施方式中,在风力组件11未运行的状态下,气流通道164中没有高速气流,气压模块13能够精确的检测获取环境气压。
在某些实施方式中,可在干燥设备10启动后设置一个较短的延迟时间,例如0.1秒、0.3秒、0.5秒、0.8秒、1秒、1.5秒、2秒、3秒等,在经过延迟时间后风力组件11开始运行,也即延迟了干燥设备10启动后出风的时间。在此延迟时间内,气流通道164中尚未产生气流,气压模块13也能够准确的检测到环境气压。
在某些实施方式中,将气压模块13的检测时间设定在干燥设备10启动后一个较短的预设时间内,例如预设时间设置为干燥设备10启动后0.1秒、0.3秒、0.5秒、0.8秒、1秒、1.5秒、2秒、3秒等。在预设时间内,风力组件11形成的高速气流尚未达到最大风速,对环境气压的影响较小。因此气压模块13在该预设时间段内检测环境气压时,能够避免受高速气流影响,从而测得较为精确的环境气压。
如图1、图2和图4所示,在某些实施方式中,加热组件12包括第一组件124和第二组件123,并且,沿着气流的方向(图4中箭头方向),第一组件124位于风力组件11的上游,第二组件123位于风力组件11的下游。第一组件124可以为一个或多个前述的发热结构121通过串联和/或并联构成,第二组件123也可以为一个或多个前述的发热结构121通过串联和/或并联构成。第一组件124和第二组件123的结构、发热功率可以相同,也可以不同,二者主要差别在于在气流中相对风力组件11的位置。容易理解的是,主控模块14对加热组件12的控制,也可包括控制第一组件124、第二组件123各自的启闭或输入功率。在第一组件124和第二组件123同时工作时,相当于在气流的两个位置对空气进行加热,因而使加热组件12具有更大的换热面积、更高的加热效率。
然而,在第一组件124工作时,其所加热的气流会经过风力组件11,从而导致风力组件11运行在被热气流中,可能会影响风力组件11的性能和使用寿命。因此,在主控模块14 按照控制功率对加热组件12控制时,如果控制功率低于第一阈值(第一阈值大致相当于第二组件123的最大功率)时,控制功率可完全由第二组件123实现。此时,主控模块14的控制策略为关闭第一组件124,只开启第二组件123并控制其运行达到控制功率。如此,能够使得在某些工况中主控模块14优先关闭第一组件124,以使这些工况下风力组件11不会工作在被加热气流中,以延长风力组件11的使用寿命。
在更具体的实施方式中,如图5或图6所示,干燥设备10的壳体16上具有第一进风口161、第二进风口162、出风口163。气流通道164包括第一风道164a和第二风道164b,第一风道164a连接在第一进风口161、出风口163之间。风力组件11设置在第一风道164a内,运行时直接在第一风道164a内产生气流,气流从第一进风口161进入壳体16内并沿着第一风道164a流动,从出风口163流出壳体16。
在图5所示的实施方式中,第二风道164b的上游连接至第二进风口162,下游连接至第一风道164a。风力组件11在第一风道164a内产生气流后,会在第二风道164b的下游形成负压,从而将壳体16外部的气体从第二进风口162吸入并沿着第二风道164b流动,最终汇入第一风道164a。
在图6所示的实施方式中,第二风道164b的上游连接至第二进风口162,下游连接至出风口163,风力组件11在第一风道164a内产生气流后,也会在出风口163形成负压,从而将壳体16外部的气体从第二进风口162吸入后沿着第二风道164b流动,最终从出风口163流出。
图5、图6所示的实施方式中,由于风力组件11设置在第一风道164a中,第二风道164b内的空气间接受到风力组件11影响而形成气流,因此第二风道164b的气流流速小于第一风道164a的气流流速。
如图1、图5、图6所示,在某些实施方式中的干燥设备10,气压模块13设置在第二风道164b中,由于第二风道164b气流的流速较小,对环境气压的影响也较小,从使气压模块13能够到较为精确的检测到环境气压。在某些实施方式中,也可将气压模块13设置在第一风道164a中,由于第一风道164a气流的流速较大,为了流速对检测到的环境气压的影响,可参考前文的控制方法,即在风力组件11未运行或运行时间小于预设值的状态下,通过气压模块13获取环境气压。
容易理解的是,在某些实施方式中,第二风道164b中的气流也可能对气压造成影响,从而使气压模块13检测到的环境气压存在误差。同样可采用与前述相似的方式,例如在风力组件11未运行或运行时间小于预设值的状态下检测等,从而避免高速气流对气压模块13检测准确度的影响。
如图1、图5、图6所示,在更具体的实施方式中,干燥设备10还包括设置在第二风道 164b中的控制电路15。气压模块13、主控模块14均设置在控制电路15上,并且控制电路15电连接于风力组件11、加热组件12。控制电路15构成干燥设备10内部主要的电路结构。在干燥设备10运行时,第二风道164b中的气流流经整个控制电路15,除了使气压模块13更加精确的检测到环境气压以外,气流还能够对控制电路15起到散热作用,避免控制电路15过热。由于第二风道164b中的气流流速相较第一风道164a中的气流更低,因此控制电路15设置在第二风道164b中不会产生明显的风噪。
如图3所示,在某些实施方式中,干燥设备10还包括能够输出红外辐射的辐射组件17,辐射组件17与主控模块14连接,且主控模块14被配置为能够根据环境气压调整辐射组件17的运行功率。辐射组件17在输入电流后能够产生预设波段的红外辐射,直接作用于目标物进行干燥。
相应地,在本申请的某些实施方式中的控制方法,还包括以下步骤:
确定环境气压是否低于阈值。
由于辐射组件17在工作时自身也会发热。根据前述的环境气压对风温的影响可知,在环境气压较低的环境中,辐射组件17更容易将附近的气流加热较高的温度,使得辐射组件17的散热效率降低。不仅辐射组件17容易过热,还有可能提进一步使得整个干燥设备10过热,存在烫伤用户的可能性。而且,根据黑体辐射的原理,辐射组件17运行在较高温度时会还可能发生光谱漂移,使发出的红外辐射波长发生变化,而影响干燥时间。因此,预先通过模拟仿真、实验测试等方式,确定辐射组件17出现散热效率过低的环境气压,存储为阈值。
若低于阈值,则降低辐射组件17的运行功率。
干燥设备10运行过程中,当气压模块13检测到的环境气压低于阈值时,主控模块14对应减少辐射组件17当前的运行功率。如此,一方面避免了辐射组件17过热、干燥设备10整体发烫,另一方面也能使辐射组件17保持在适合工作温度区间,从而保证辐射组件17的发出预设波长的红外辐射。
容易理解的是,与上述的辐射组件17类似,在其他实施方式中干燥设备10还可设有其他耗电组件,例如负离子组件、护发精油组件等,这些耗电组件本身运行时也必然伴随发热,从而提高整个干燥设备10的发热量。由于在环境气压较低时,干燥设备10散热效率会下降。因此,主控模块14需要根据环境气压调整干燥设备10上所有耗电组件的功率,以保证整个干燥设备10的散热效率,避免壳体16过热。
本申请的某些实施方式中还提供一种可读存储介质,可读存储介质存储有程序,程序被处理器执行时实现前述控制方法的各个步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计 算机程序来指令相关的硬件来完成,的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
尽管上面已经示出和描述了本申请的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施方式进行变化、修改、替换和变型。

Claims (18)

  1. 一种干燥设备,其特征在于,包括:
    风力组件,用于产生气流;
    加热组件,用于加热所述气流;
    气压模块,用于获取环境气压
    主控模块,与所述加热组件、所述气压模块连接,且所述主控模块被配置为,能够根据所述环境气压控制所述风力组件和/或所述加热组件的运行。
  2. 根据权利要求1所述的干燥设备,其特征在于,所述加热组件包括多组发热结构,所述主控模块能够控制各所述发热结构的启闭和/或功率值。
  3. 根据权利要求1所述的干燥设备,其特征在于,还包括壳体,所述壳体内设有气流通道,所述风力组件被配置为在所述气流通道中产生气流。
  4. 根据权利要求3所述的干燥设备,其特征在于,所述气压模块设置于所述气流通道中。
  5. 根据权利要求3所述的干燥设备,其特征在于,所述加热组件包括:
    第一组件,位于所述气流通道中,且在所述风力组件上游;
    第二组件,位于所述气流通道中,且在所述风力组件下游。
  6. 根据权利要求3所述的干燥设备,其特征在于,所述壳体具有第一进风口、第二进风口、出风口,所述气流通道包括:
    第一风道,所述第一风道连接在所述第一进风口、所述出风口之间;
    第二风道,所述第二风道上游连接至所述第二进风口,下游连接至所述第一风道或所述出风口;
    所述风力组件设置在所述第一风道内;
    所述气压模块设置在所述第一风道内或所述第二风道内。
  7. 根据权利要求6所述的干燥设备,其特征在于,还包括控制电路,所述控制电路设置在所述第二风道中,且所述气压模块、所述主控模块均设置在所述控制电路上,所述控制电路电连接于所述风力组件、所述加热组件。
  8. 根据权利要求1至7任一项所述的干燥设备,其特征在于,还包括能够输出红外辐射的辐射组件,所述辐射组件与所述主控模块连接,且所述主控模块被配置为能够根据所述环境气压调整所述辐射组件的运行功率。
  9. 一种控制方法,用于控制权利要求1至8任一项所述的干燥设备,其特征在于,包括以下步骤:
    通过气压模块获取环境气压;
    根据所述环境气压控制风力组件和/或加热组件的运行。
  10. 根据权利要求9所述的控制方法,其特征在于,所述根据所述环境气压控制加热组件和/所述风力组件的运行,包括:
    确定工作模式;
    获取预设功率,所述预设功率为所述干燥设备在预设气压中以所述工作模式运行时,所述加热组件的功率值;
    根据所述环境气压和所述预设气压的关系,基于所述预设功率得到控制功率;
    根据所述控制功率控制所述加热组件的运行。
  11. 根据权利要求10所述的控制方法,其特征在于,不同所述工作模式具有不同的风温,所述风温用于表征所述干燥设备输出气流的温度;
    所述基于所述预设功率得到控制功率,包括:
    若所述环境气压大于所述预设气压,则基于所述预设功率增加以得到所述控制功率;
    若所述环境气压小于所述预设气压,则基于所述预设功率减少以得到所述控制功率。
  12. 根据权利要求10所述的控制方法,其特征在于,不同所述工作模式具有不同的干燥时间,所述干燥时间用于表征所述干燥设备将目标物从第一含水量干燥至第二含水量的耗时;
    所述基于所述预设功率得到控制功率,包括:
    若所述环境气压大于所述预设气压,则基于所述预设功率减少以得到所述控制功率;
    若所述环境气压小于所述预设气压,则基于所述预设功率增加以得到所述控制功率。
  13. 根据权利要求10至12任一项所述的控制方法,其特征在于,所述根据所述环境气压控制风力组件和/或加热组件的运行,还包括:
    若所述控制功率大于所述加热组件的功率上限;
    获取预设转速,所述预设转速为所述干燥设备在预设气压中以所述工作模式运行时,所述风力组件的转速;
    基于所述预设转速减少以得到控制转速;
    以所述功率上限控制所述加热组件的运行,以所述控制转速控制所述风力组件的运行。
  14. 根据权利要求10至12任一项所述的控制方法,其特征在于,所述预设气压的数量为多个;
    所述获取预设功率,包括:
    计算所述环境气压与各个所述预设气压差值的绝对值;
    选取所述绝对值最小的所述预设气压,以其对应的所述预设功率为所述控制功率。
  15. 根据权利要求10至12任一项所述的控制方法,其特征在于,所述预设气压的数量 为多个;
    所述获取预设功率,包括:
    根据多个所述预设气压与对应所述预设功率获得拟合函数;
    根据所述拟合函数,获取所述环境气压的对应所述控制功率。
  16. 根据权利要求9所述的控制方法,其特征在于,所述干燥设备包括辐射组件,所述控制方法还包括以下步骤:
    确定所述环境气压是否低于阈值;
    若低于所述阈值,则降低所述辐射组件的运行功率。
  17. 根据权利要求9所述的控制方法,其特征在于,所述气压模块位于所述风力组件形成的气流路径中,在所述通过气压模块获取环境气压之前,还包括:
    在所述风力组件未运行或运行时间小于预设值的状态下,通过所述气压模块获取所述环境气压。
  18. 一种可读存储介质,所述可读存储介质存储有程序,其特征在于,所述程序被处理器执行时实现如权利要求9至17任一项所述控制方法的步骤。
PCT/CN2022/125835 2022-10-18 2022-10-18 一种干燥设备和控制方法 WO2024082120A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/125835 WO2024082120A1 (zh) 2022-10-18 2022-10-18 一种干燥设备和控制方法
CN202280010159.4A CN116801765A (zh) 2022-10-18 2022-10-18 一种干燥设备和控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/125835 WO2024082120A1 (zh) 2022-10-18 2022-10-18 一种干燥设备和控制方法

Publications (1)

Publication Number Publication Date
WO2024082120A1 true WO2024082120A1 (zh) 2024-04-25

Family

ID=88037216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125835 WO2024082120A1 (zh) 2022-10-18 2022-10-18 一种干燥设备和控制方法

Country Status (2)

Country Link
CN (1) CN116801765A (zh)
WO (1) WO2024082120A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103565078A (zh) * 2012-08-09 2014-02-12 皇家飞利浦有限公司 具有出气口装置的吹风机
CN104061685A (zh) * 2013-03-21 2014-09-24 美的集团股份有限公司 一种开水器及其控制方法
CN106211721A (zh) * 2016-08-30 2016-12-07 北京思博康科技有限公司 一种机柜智能气流优化系统及基于该系统的数据中心
DE102016220284A1 (de) * 2015-10-20 2017-04-20 Hangzhou Sanhua Home Appliance Thermal Management System Co., Ltd. Trocknungsvorrichtung, steuerungsverfahren und steuersystem für die trocknungsvorrichtung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103565078A (zh) * 2012-08-09 2014-02-12 皇家飞利浦有限公司 具有出气口装置的吹风机
CN104061685A (zh) * 2013-03-21 2014-09-24 美的集团股份有限公司 一种开水器及其控制方法
DE102016220284A1 (de) * 2015-10-20 2017-04-20 Hangzhou Sanhua Home Appliance Thermal Management System Co., Ltd. Trocknungsvorrichtung, steuerungsverfahren und steuersystem für die trocknungsvorrichtung
CN106211721A (zh) * 2016-08-30 2016-12-07 北京思博康科技有限公司 一种机柜智能气流优化系统及基于该系统的数据中心

Also Published As

Publication number Publication date
CN116801765A (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
US11454996B2 (en) Electronic cigarette temperature control system and method, and electronic cigarette with the same
CN110736249B (zh) 压缩机的运行频率控制方法及装置、存储介质和处理器
CN108444066A (zh) 空调器的控制方法、空调器以及计算机可读存储介质
WO2018233147A1 (zh) 新风机及其的控制方法和装置
WO2020038249A1 (zh) 一种电子烟功率控制方法及电子烟
CN108561962A (zh) 空调器及其凝露判断方法和计算机可读存储介质
CN106225164A (zh) 空调器运行控制方法及装置
CN110207336A (zh) 多联机的控制方法、控制装置及可读存储介质
CN110567137B (zh) 空调器及其送风控制方法
CN111237999A (zh) 一种空调器控制方法
CN106225162B (zh) 基于冷热感值的风速调节方法及装置
CN106196483B (zh) 空调器运行控制方法及装置
WO2017206708A1 (zh) 空调器的控制方法、控制系统及控制装置
CN104633838B (zh) 防止空调内机开机时滴水的控制方法
CN109579237B (zh) 空调温度控制方法、存储介质及空调
CN107894077A (zh) 空调器及其控制方法、控制装置和计算机可读存储介质
CN109297152A (zh) 空调器控制装置、空调器及其控制方法和可读存储介质
WO2024082120A1 (zh) 一种干燥设备和控制方法
WO2020000839A1 (zh) 空气调节设备及其控制方法和装置
CN108317671A (zh) 空调及其空调负荷控制方法和装置
CN114909787B (zh) 一种空调器的控制方法、装置及空调器
WO2020107827A1 (zh) 空调器的控制方法、空调器及计算机可读存储介质
WO2024082784A1 (zh) 一种空调控制方法及控制器
WO2018171037A1 (zh) 体重检测装置及其加热方法
FR2999682A1 (fr) Appareil de chauffage comprenant un bloc ventilo-convecteur et un dispositif de chauffage electrique, et procede correspondant