WO2024080683A1 - 모듈 내부의 온도 안정성이 개선된 이차전지 모듈 - Google Patents

모듈 내부의 온도 안정성이 개선된 이차전지 모듈 Download PDF

Info

Publication number
WO2024080683A1
WO2024080683A1 PCT/KR2023/015476 KR2023015476W WO2024080683A1 WO 2024080683 A1 WO2024080683 A1 WO 2024080683A1 KR 2023015476 W KR2023015476 W KR 2023015476W WO 2024080683 A1 WO2024080683 A1 WO 2024080683A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
secondary battery
pack
heat absorbing
module
Prior art date
Application number
PCT/KR2023/015476
Other languages
English (en)
French (fr)
Inventor
황원필
이용호
이진규
윤두한
손창근
김선재
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Publication of WO2024080683A1 publication Critical patent/WO2024080683A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/659Means for temperature control structurally associated with the cells by heat storage or buffering, e.g. heat capacity or liquid-solid phase changes or transition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention provides a heat absorbing pack for a secondary battery module that can uniformly absorb heat energy and control the internal temperature change so that when the temperature inside the secondary battery module rises, and a secondary battery module including the same, which has improved stability against temperature changes inside the module. It concerns battery modules.
  • secondary batteries have been widely applied not only to small devices such as portable electronic devices, but also to medium-to-large devices such as battery packs of hybrid vehicles or electric vehicles or power storage devices.
  • a secondary battery includes an electrode assembly including an anode, a cathode, and a separator, an electrolyte, and a multilayer exterior material that protects them as a body. Additionally, the secondary battery may be used in the form of a battery module equipped with a plurality of cells.
  • an electrode assembly provided in a secondary battery generates heat while going through a charging and discharging process.
  • This heat generation not only reduces the performance of the secondary battery cell, but also increases the temperature of the secondary battery cell itself, which can lead to the cell exploding.
  • the explosion of a cell can cause problems by providing high temperature and pressure to other secondary battery cells around it, leading to a series of explosions of secondary battery cells.
  • thermal runaway prevention sheet In order to suppress heat conduction to adjacent cells in a thermal runaway situation of a secondary battery, technology for a thermal runaway prevention sheet has been developed. As an example, a technology has been developed to improve heat transfer efficiency by providing a cartridge containing a thermally conductive additive in a battery module.
  • this prior art is intended to cool the heat generated during battery operation, and has a problem in that it cannot function in a thermal runaway situation such as a cell explosion.
  • technology has been developed that includes a cooling member that absorbs heat generated inside the secondary battery module and lowers the surrounding temperature.
  • actual thermal runaway often occurs due to heat generation from specific cells mounted on the module. In this case, since it is difficult for the cooling member to uniformly absorb the heat generated in the cell, damage to the cooling member is induced during the heat absorption process, and as a result, there is a limitation in that it cannot sufficiently absorb internal heat.
  • a secondary battery module containing a secondary battery when the temperature inside the module, that is, the surrounding temperature of the secondary battery, is a high temperature/heat generation condition that induces thermal runaway of the battery, the surrounding temperature is effectively and uniformly absorbed to increase the temperature inside the module.
  • the surrounding temperature is effectively and uniformly absorbed to increase the temperature inside the module.
  • the purpose of the present invention is to provide a technology that can suppress rapid temperature changes inside the module by uniformly absorbing the heat generated when heat is generated inside the secondary battery module.
  • the present invention in one embodiment, the present invention
  • thermoelectric substrate disposed on at least one side of the superabsorbent matrix
  • It includes a pouch into which the high-absorbency matrix in which the heat dissipation substrate is disposed is inserted,
  • the highly absorbent matrix is impregnated with water
  • the heat dissipation substrate provides a heat absorbing pack for a secondary battery module including a metal sheet that satisfies the following equation 1 from 10 to 500:
  • T pack represents the average thickness of the heat absorbing pack (unit: ⁇ m),
  • T sheet represents the average thickness of the metal sheet (unit: ⁇ m).
  • the metal sheet may have an average thickness of 5 ⁇ m to 30 ⁇ m and may include a metal having a thermal conductivity of 50 kcal/°C or more.
  • the heat dissipation substrate can cover more than 70% of the surface of the highly absorbent matrix.
  • the superabsorbent matrix may have a heat dissipation substrate disposed on its surface, so that the area in direct contact with the pouch may be less than 30% of the total area of the superabsorbent matrix.
  • the superabsorbent matrix may be in the form of superabsorbent polymer (SAP) or superabsorbent fiber (SAF).
  • SAP superabsorbent polymer
  • SAF superabsorbent fiber
  • the highly absorbent matrix includes polyacrylic acid, polyacrylate, polyacrylate graft polymer, starch, cross-linked carboxymethylated cellulose, acrylic acid copolymer, hydrolyzed starch-acrylnitrile graft copolymer, starch-acrylic acid graft copolymer.
  • saponified vinyl acetate-acrylic acid ester copolymer hydrolyzed acrylonitrile copolymer, hydrolyzed acrylamide copolymer, ethylene-maleic anhydride copolymer, isobutylene-maleic anhydride copolymer, polyvinylsulfonic acid, poly Vinylphosphonic acid, polyvinyl phosphoric acid, polyvinyl sulfate, sulfonated polystyrene, polyvinylamine, polydialkylaminoalkyl (meth)acrylamide, polyethyleneimine, polyallylamine, polyallylguanidine, polydimethyldiallylammonium hydroxide. , polystyrene derivatives, guanidine-modified polystyrene, poly(meth)acrylamide, polyvinylguanidine, and mixtures thereof.
  • the highly absorbent matrix may further include a thermally conductive filler therein along with the resin.
  • This highly absorbent matrix may contain from 10 g/g to 500 g/g of water.
  • a secondary battery module including a heat absorbing pack according to the present invention that absorbs heat generated from the plurality of battery cells is provided.
  • the plurality of battery cells may be arranged in n rows (where n ⁇ 2), and in this case, the heat absorbing pack may be placed between the rows formed by the arranged battery cells, and/or the arranged batteries It may be placed in the space between the outer surface of the row of cells and the housing member.
  • the heat absorbing pack for a secondary battery module includes a high-absorbent mat impregnated with water inside a pouch and has a structure in which a heat dissipation material is inserted between the high-absorbent mat and the pouch, thereby preventing heat generation inside the module. In this case, it can absorb a lot of heat from the surroundings. Therefore, when this is provided in a secondary battery module, the surrounding temperature of the secondary battery can be prevented from rapidly changing.
  • the highly absorbent matrix can prevent damage to the heat absorbing pack due to heat generation inside the module by being uniformly exposed to surrounding heat energy. Therefore, the heat absorbing pack containing this can more stably control the internal temperature of the module, and through this, the performance and stability of the secondary battery can be improved according to the surrounding temperature.
  • Figure 1 is a perspective view showing the structure of a secondary battery module according to the present invention.
  • Figure 2 is an image taken of the heat absorbing pack of the example disassembled after internal heating of the secondary battery module.
  • Figure 3 is an image taken of the heat absorbing pack of the comparative example disassembled after internal heating of the secondary battery module.
  • the present invention in one embodiment, the present invention
  • thermoelectric substrate disposed on at least one side of the superabsorbent matrix
  • a heat absorbing pack for a secondary battery module including a pouch into which a high-absorbent matrix in which the heat dissipation substrate is disposed is inserted.
  • the heat absorbing pack according to the present invention is a component inserted into the interior of a secondary battery module and has a structure in which a highly absorbent matrix impregnated with water is inserted into a pouch.
  • the highly absorbent matrix since the highly absorbent matrix is impregnated with water, it can absorb a large amount of heat energy depending on the temperature conditions around the heat absorption pack, that is, the internal temperature conditions of the secondary battery module on which the heat absorption pack is mounted. Specifically, the water is impregnated inside the superabsorbent matrix, and when the temperature outside the pouch increases, it is vaporized and separated from the superabsorbent matrix. At this time, the water requires a large amount of heat to be evaporated, and in order to meet this requirement, it absorbs the amount of heat around the pouch, thereby preventing the internal temperature from rapidly rising when heat is generated inside the module.
  • a heat dissipation substrate may be disposed on at least one side of the superabsorbent matrix so that water impregnated in the superabsorbent matrix can uniformly absorb heat.
  • the heat dissipation substrate can play a role in preventing damage to the heat absorbing pack by uniformly transferring heat outside the pouch to the highly absorbent matrix, thereby concentrating the generated heat on a portion of the heat absorbing pack.
  • the heat dissipation substrate may include a metal sheet with high thermal conductivity, and the metal sheet may include a metal with a thermal conductivity of 50 kcal/°C or higher. More specifically, the metal sheet has a temperature of 70 kcal/°C or higher, 80 kcal/°C or higher, 90 kcal/°C or higher, 100 kcal/°C or higher, 50 kcal/°C to 400 kcal/°C, 70 kcal/°C to 370 kcal/°C.
  • °C 70 kcal/°C to 150 kcal/°C, 100 kcal/°C to 370 kcal/°C, 150 kcal/°C to 200 kcal/°C, or 250 kcal/°C to 350 kcal/°C. can do.
  • the metal sheet is aluminum with a thermal conductivity of 196 ⁇ 3 kcal/°C; Tungsten with a thermal conductivity of 170 ⁇ 3 kcal/°C; Copper with a thermal conductivity of 320 ⁇ 3 kcal/°C; Nickel, etc., which has a thermal conductivity of 77 ⁇ 3 kcal/°C, may be included alone or used in combination.
  • the heat dissipation substrate includes a metal sheet with high thermal conductivity, but the heat transferred to the superabsorbent matrix through the actual metal sheet must be distributed and transferred throughout the surface of the superabsorbent matrix, so it will be highly dependent on the thickness of the metal sheet. You can.
  • the heat dissipation substrate is a highly absorbent matrix that transfers heat around the pouch (i.e., outside the pouch) with high efficiency, but may have a predetermined thickness in order to distribute and transfer heat more evenly, and may have a predetermined thickness, and the secondary battery due to the heat absorbing pack Considering the reduction of the energy density of the module and the heat conduction efficiency of the metal sheet itself included in the heat dissipation substrate, the heat absorbing pack and constant thickness conditions can be satisfied.
  • the heat dissipation substrate may have an average thickness of 5 ⁇ m to 100 ⁇ m, and the following equation 1, which represents the thickness ratio of the average thickness of the heat absorption pack including the heat dissipation substrate, may be satisfied as 10 to 500. :
  • T pack represents the average thickness of the heat absorbing pack (unit: ⁇ m),
  • T sheet represents the average thickness of the metal sheet (unit: ⁇ m).
  • Equation 1 refers to the ratio of the average thickness of the heat absorbing pack and the average thickness of the heat dissipation substrate.
  • the present invention prevents the energy density of the secondary battery module from being reduced by ensuring that the ratio satisfies a predetermined range, and can efficiently disperse and absorb heat energy into the heat absorbing pack without damaging the heat absorbing pack when internal high temperature occurs.
  • the heat dissipation substrate may satisfy Equation 1 as 10 to 500, specifically 10 to 400; 10 to 300; 10 to 200; 10 to 100; 10 to 50; 100 to 300; Alternatively, you may be satisfied with 100 to 200.
  • the heat dissipation base satisfies Equation 1 at 10 or more, thereby preventing heat absorption efficiency from being reduced due to a reduction in the content of the high-absorbency matrix, while satisfying Equation 1 at 500 or less, the thin thickness of the heat dissipation base material prevents heat absorption around the pouch. It can prevent heat from being distributed uniformly in the highly absorbent matrix and damaging the heat absorbing pack.
  • the heat dissipation substrate may have an average thickness of 5 ⁇ m to 100 ⁇ m, more specifically 5 ⁇ m to 75 ⁇ m; 5 ⁇ m to 50 ⁇ m; 5 ⁇ m to 30 ⁇ m; 10 ⁇ m to 30 ⁇ m; Alternatively, it may have an average thickness of 15 ⁇ m to 25 ⁇ m.
  • the present invention adjusts the average thickness of the heat dissipation substrate to the above range to prevent the heat absorbing pack from being damaged during heat absorption due to the heat around the pouch not being uniformly transferred to the high-absorbency matrix due to the thin thickness of less than 5 ⁇ m, while preventing 100 It is possible to prevent the thermal conductivity of the heat dissipation substrate from being reduced due to excessive thickness exceeding ⁇ m.
  • the highly absorbent matrix can have a heat dissipation substrate placed on the surface in direct contact with the pouch to satisfy a predetermined area ratio.
  • the heat dissipation substrate may be arranged to cover more than 70% of the entire surface of the superabsorbent matrix, and more specifically, more than 75%, 80%, 85%, or 90% of the entire surface of the superabsorbent matrix. It can be arranged to cover more than one.
  • the heat dissipation substrate may be disposed in front of the high-absorbent matrix, so that the area in direct contact between the high-absorbent matrix and the pouch may be 0%.
  • the present invention can allow heat around the pouch to be more uniformly distributed to the superabsorbent matrix by adjusting the area ratio that the heat dissipation substrate covers the surface of the superabsorbent matrix to the above range.
  • the superabsorbent matrix when the heat absorbing pack is exposed to high temperature conditions, the superabsorbent matrix may have a separated form due to vaporization of the water impregnated therein. Accordingly, the pouch into which the superabsorbent matrix is inserted is expanded. It can have a shape.
  • the super absorbent matrix may include super absorbent polymer (SAP) or super absorbent fiber (SAF) to absorb water with high efficiency.
  • SAP super absorbent polymer
  • SAF super absorbent fiber
  • the super absorbent polymer (SAP) and super absorbent fiber (SAF) can be distinguished by their shape.
  • superabsorbent polymer (SAP) may have a powder shape
  • the superabsorbent fiber (SAF) may have a linear shape.
  • the components constituting the superabsorbent polymer (SAP) and superabsorbent fiber (SAF) may be the same or different.
  • the highly absorbent matrix is polyacrylic acid, polyacrylate, polyacrylate graft polymer, starch, cross-linked carboxymethylated cellulose, acrylic acid copolymer, hydrolyzed starch-acrylnitrile graft copolymer, starch-acrylic acid graft copolymer.
  • saponified vinyl acetate-acrylic acid ester copolymer hydrolyzed acrylonitrile copolymer, hydrolyzed acrylamide copolymer, ethylene-maleic anhydride copolymer, isobutylene-maleic anhydride copolymer, polyvinylsulfonic acid, poly Vinylphosphonic acid, polyvinyl phosphoric acid, polyvinyl sulfate, sulfonated polystyrene, polyvinylamine, polydialkylaminoalkyl (meth)acrylamide, polyethyleneimine, polyallylamine, polyallylguanidine, polydimethyldiallylammonium hydroxide. , polystyrene derivatives, guanidine-modified polystyrene, poly(meth)acrylamide, polyvinylguanidine, and mixtures thereof.
  • the superabsorbent matrix may include, but is not limited to, one or more selected from the group consisting of crosslinked polyacrylic acid salts, crosslinked polyacrylic acid, and crosslinked acrylic acid copolymers.
  • the type of acrylic acid copolymer used as the superabsorbent matrix in the present invention is not particularly limited, but is preferably acrylic acid monomer and maleic acid, itaconic acid, acrylamide, 2-acrylamide-2-methylpropanesulfonic acid, 2-( It may be a copolymer containing at least one comonomer selected from meth)acryloylethanesulfonic acid, 2-hydroxyethyl (meth)acrylate, and styrenesulfonic acid.
  • the above ingredients are substances having a network structure with a hydrophilic functional group and can absorb water with high efficiency, so the effect of the heat absorbing pack absorbing or generating heat can be uniformly implemented.
  • the highly absorbent matrix can satisfy a certain range in water absorption.
  • the highly absorbent matrix may have a water absorption of 10 g/g to 500 g/g, specifically 50 g/g to 200 g/g, but is not limited thereto. This means that 10 g to 500 g of water, preferably 50 g to 200 g, can be absorbed per 1 g of the superabsorbent matrix. The greater the amount of water absorbed by the superabsorbent matrix, the longer the cooling effect lasts. can be improved, but if it exceeds 500 g/g, the fluidity of the superabsorbent matrix increases and it is difficult to maintain its shape, making effective cooling impossible.
  • the water absorption amount of the highly absorbent matrix is less than 10 g/g, the amount of heat absorbed significantly decreases depending on the external temperature of the pouch, so the effect of suppressing rapid changes in the internal temperature of the module may be low and may be inefficient.
  • the highly absorbent matrix may further include a heat conductive filler therein to better transfer heat to the water impregnated within the matrix.
  • the thermally conductive filler may be used without limitation as long as it has excellent heat transfer properties. Specifically, one or more selected from inorganic oxide filler, metal hydroxide filler, inorganic carbide filler, nitride filler, metal filler, and carbon filler may be used.
  • examples of the inorganic oxide filler include aluminum oxide, magnesium oxide, zinc oxide, or silicon oxide;
  • examples of the metal hydroxide filler include aluminum hydroxide or magnesium hydroxide;
  • examples of the inorganic carbide filler include silicon carbide;
  • examples of the nitride filler include aluminum nitride, boron nitride, or silicon nitride;
  • Examples of the metal filler include silver, copper, zinc, iron, aluminum, nickel, tin, and alloys thereof;
  • Examples of the carbon filler include carbon or graphite.
  • the thermally conductive filler is not particularly limited in shape, but has a spherical shape with a high specific surface area to effectively transfer heat inside the highly absorbent matrix, or to form a thermal network with adjacent thermally conductive fillers. It may have a needle-like or fibrous form.
  • the pouch can be applied without particular restrictions as long as it can well transfer external heat to the highly absorbent matrix inserted inside.
  • the pouch may be composed of a metal layer, and the inner surface of the metal layer may include an inner layer containing a crosslinked polyolefin-based resin.
  • the metal layer may include an aluminum layer that can well transfer heat from the outside of the heat absorbing pack to the inside and has a strength above a certain level to resist external force.
  • the inner layer is located on the inner side of the metal layer and can function to prevent the metal layer of the pouch from reacting with the water impregnated in the highly absorbent matrix.
  • the inner layer may include a crosslinked polyolefin-based resin.
  • the cross-linked polyolefin resin has low hygroscopicity and can suppress the intrusion of water impregnated into the highly absorbent matrix, thereby preventing expansion or erosion of the inner layer.
  • the polyolefin-based resin may have a crosslinking degree of 10 to 70%, and specifically, may have a crosslinking degree of 30 to 50%.
  • the polyolefin-based resin may be any one or more selected from polypropylene (PP) and polyethylene (PE), and the cross-linked polyolefin-based resin is specifically cross-linked polyethylene, cross-linked polypropylene, or these. It may include a mixture, and more specifically, it may be crosslinked polypropylene.
  • PP polypropylene
  • PE polyethylene
  • the heat absorbing pack can satisfy certain thickness conditions in order to effectively control changes in module internal temperature.
  • the heat absorbing pack may have a thickness of 0.1 mm to 50 mm, more specifically 0.1 mm to 30 mm; 0.1 mm to 15 mm; 0.1 mm to 10 mm; 1 mm to 20 mm; 5 mm to 10 mm; 10 mm to 20 mm; Alternatively, it may have a thickness of 1 mm to 5 mm.
  • the present invention adjusts the thickness of the heat absorbing pack to the above range, so that if it is less than 0.1 mm, the temperature inside the module may change rapidly due to insufficient heat energy entering and exiting around the heat absorbing pack due to the excessively thin thickness of the heat absorbing pack. If it exceeds this, the thickness of the battery module may increase and the energy density may be significantly reduced.
  • the heat absorbing pack according to the present invention has the above-described configuration, so that when heat is generated inside the module, it can not only absorb a large amount of heat from the surrounding area, but also supply the heat amount uniformly to the high-absorbency matrix, thereby eliminating the heat generated inside the module. Damage to the heat absorbing pack can be prevented. Therefore, when this is provided in a secondary battery module, the surrounding temperature of the secondary battery can be prevented from rapidly changing, and through this, the performance and stability of the secondary battery according to the surrounding temperature can be improved.
  • a secondary battery module including a secondary battery and a heat absorbing pack for a secondary battery according to the above-described present invention is provided.
  • Figure 3 is a perspective view showing the structure of the secondary battery module 1 according to the present invention, which will be described in more detail with reference to Figure 3.
  • the secondary battery module 1 includes a housing member 10; a plurality of battery cells 20 inserted into the housing member; and a heat absorbing pack 30 that absorbs heat generated from the plurality of battery cells.
  • the secondary battery module 1 includes a plurality of battery cells 20, and is provided with the heat absorbing pack 30 of the present invention described above along with these battery cells, so that the temperature inside the module rises rapidly. Since this can be prevented, there is an advantage in that the temperature stability of the battery cell 20 is excellent.
  • the housing member 10 serves as the body of the battery module in which the plurality of secondary battery cells 20 are accommodated.
  • the housing member 10 is a member that accommodates a plurality of battery cells 20, and protects the battery cells 20 while transmitting electrical energy generated by the battery cells 20 to the outside.
  • the housing member 10 may be composed of a bottom member 11 and a side wall member 12.
  • the bottom member 11 supports the plurality of battery cells 20 on which the plurality of battery cells 20 are seated.
  • a heat sink 40 may be disposed between the bottom member 11 and the battery cell 20, and the heat sink 40 transfers heat generated from the battery cell 20 to the bottom member 11.
  • the floor member 11 may be configured to cool the heat received from the heat sink 40 by transferring it to the outside.
  • the side wall member 12 forms a side part of the housing member 10 and may discharge heat generated in the battery cell 20 to the outside.
  • the housing member 10 may further include a cover member 13 provided on the top of the side wall member 12 to protect the upper end of the battery cell 20.
  • a gas venting member 17 is included between the cover member 13 and the upper end of the battery cell 20, so that gases generated from the battery cell 20 during charging and discharging can be discharged to the outside.
  • the housing member 10 may include a front member 14 and a rear member 15 adjacent to the side wall member 12, thereby surrounding the sides of the plurality of battery cells 20. It can be configured in the form
  • the housing member 10 may be provided with additional components such as a bus bar member (not shown) that electrically connects the battery cell 20 to the outside.
  • the type of the battery cell 20 is not particularly limited as long as it can be applied as a lithium secondary battery, but specifically, it may have a shape such as a square shape, a pouch shape, or a cylindrical shape.
  • the battery cell 20 may be a prismatic or pouch-type lithium secondary battery.
  • the battery cells 20 may be inserted into the housing member 10 and arranged in n rows (where n ⁇ 2) to face the side members 12 of the housing member 10. Specifically, the battery cells 20 may be arranged in two or more rows, three or more rows, or two to four rows to face the side members 12.
  • the battery cells 20 arranged in this way can have heat absorbing packs 30 placed adjacent to them.
  • the heat absorbing pack 30a may be placed on the outer surface of the aligned battery cells 20, that is, in the space between the housing member 10 and the battery cells 20.
  • a heat absorbing pack 30b may be inserted between the battery cells 20.
  • the heat absorption pack 30b may be disposed between individual battery cells 20 constituting one row, and in some cases, the first row 21a composed of battery cells aligned as shown in FIG. 1. ) and the second row (21b).
  • an aluminum pouch with a width of 10 cm and a length of 35 cm containing an aluminum layer and a polyethylene (PE) layer with a cross-linking degree of 40 ⁇ 2% was prepared on the inside of the aluminum layer, and prior to the prepared aluminum pouch, aluminum (Al) A heat absorbing pack was manufactured by inserting a highly absorbent matrix with sheets placed on both sides, turning the inside into a vacuum state, and sealing the inlet of the pouch.
  • PE polyethylene
  • Example 1 Average thickness [ ⁇ m] 2 T pack /T sheet 3 Area ratio Example 1 20 150 100% Example 2 20 150 80% Example 3 20 150 50% Example 4 100 30 100% Comparative Example 1 - - - Comparative Example 2 One 3000 100% Comparative Example 3 20 5 100%
  • the secondary battery module is inserted into the housing member in two rows, 10 secondary battery cells per row, as shown in FIG. 1, and the heat absorbing packs manufactured in the Examples and Comparative Examples are placed between the outer surface of the battery cells and each row. was placed.
  • the secondary battery module introduced a heating pad as a heating means instead of a heat sink at the bottom of any one of the two rows where the secondary battery cells were inserted, and a heating pad as a heating means was installed on the side of the module. Temperature sensors were installed on the first and top surfaces, respectively.
  • each of the anode and cathode were prepared, and 120 porous polyethylene separators (width 9.5 cm ⁇ length 34.5 cm, average thickness: about 20 ⁇ m) wider than the anode and cathode were prepared as separators.
  • 40 unit cells for the separator-cathode-separator-anode-separator stack were stacked and manufactured into a square shape measuring 10 cm wide x 35 cm long x 1.6 cm thick.
  • the electrolyte solution injected into each battery cell is an organic solvent mixed with ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 3:7, and LiPF 6 as a lithium salt is contained at a concentration of 1M.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • the internal temperature was raised for 30 minutes at a rate of 5°C/min using a heating pad mounted on the secondary battery module. a After heating the inside of the module for 30 minutes, the internal temperature was measured using two temperature sensors mounted inside the module, and their average temperature was calculated as the module internal temperature. In addition, once the b temperature measurement was completed, the operation of the heating pad was stopped and the inside of the module was cooled to room temperature, and then the heat absorbing pack mounted on the module was disassembled to visually evaluate whether the superabsorbent fiber inserted into the pouch was damaged. Each result is shown in Table 2 and Figures 2 and 3 below, and damage to the superabsorbent fiber was indicated by ⁇ if there was damage, and X if there was no damage.
  • Example 1 Average temperature inside the module Damage to the highly absorbent fiber
  • Example 2 110 ⁇ 1°C X
  • Example 3 125 ⁇ 1°C X
  • Example 4 115 ⁇ 1°C X Comparative Example 1 150 ⁇ 1°C ⁇ Comparative Example 2 140 ⁇ 1°C ⁇ Comparative Example 3 145 ⁇ 1°C X
  • the heat absorbing pack of the example absorbs the amount of heat when internal heating is performed by a heating pad mounted inside the module and maintains the temperature inside the module below about 130°C.
  • the superabsorbent fibers inserted inside the pouch uniformly absorbed heat around the pouch, causing no internal damage to the superabsorbent fibers.
  • the heat absorbing pack of the comparative example not only does not sufficiently absorb the heat energy inside the module because the metal sheet, that is, the aluminum (Al) sheet, is not disposed between the pouch and the high-absorbent fiber or does not meet the thickness conditions of the present invention.
  • the metal sheet that is, the aluminum (Al) sheet
  • the high-absorbency fiber and the internal damage of the pouch were damaged, showing that the heat absorbing pack was not able to absorb heat stably.
  • the heat absorption pack according to the present invention can prevent the temperature inside the module from rapidly changing by absorbing a large amount of heat inside the module under high temperature conditions, and the heat absorption pack is uniformly absorbed inside the heat absorption pack, so during the heat absorption process. Since damage to the heat absorbing pack can be prevented, the temperature inside the module can be controlled more stably.
  • Battery cell 21 Column with battery cells sorted

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

본 발명은 이차전지 모듈용 흡열팩 및 이를 포함하는 이차전지 모듈에 관한 것이다. 상기 흡열팩은 파우치 내부에 물이 함침된 고흡수성 매트를 포함하고 상기 고흡수성 매트와 파우치 사이에 열분산 기재가 삽입된 구조를 갖는다. 이에 따라, 상기 흡열팩은 모듈 내부에서 발열이 발생하는 경우 주변의 많은 열량을 흡수할 수 있으므로, 이를 이차전지 모듈에 구비하는 경우 이차전지의 주변 온도가 급격하게 변화되는 것을 방지할 수 있다. 또한, 상기 고흡수성 매트릭스는 주변의 열 에너지에 균일하게 노출되어 모듈 내부의 발열로 인한 흡열팩의 손상을 방지할 수 있다. 따라서, 이를 포함하는 흡열팩은 모듈 내부 온도 제어를 보다 안정적으로 수행할 수 있으며, 이를 통해 주변 온도에 따른 이차전지의 성능 및 안정성을 개선할 수 있다.

Description

모듈 내부의 온도 안정성이 개선된 이차전지 모듈
본 출원은 2022. 10. 14일자 대한민국 특허 출원 제10-2022-0132265호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 이차전지 모듈 내부의 온도가 상승하는 경우 열 에너지를 균일하게 흡수하여 내부 온도 변화가 크지 않도록 조절할 수 있는 이차전지 모듈용 흡열팩 및 이를 포함하여 모듈 내부의 온도 변화에 대한 안정성이 향상된 이차전지 모듈에 관한 것이다.
최근에는 휴대형 전자기기와 같은 소형 장치뿐 아니라, 하이브리드 자동차나 전기 자동차의 배터리 팩 또는 전력저장장치와 같은 중대형 장치에도 이차전지가 널리 적용되고 있다.
이차전지는 양극, 음극, 분리막을 포함하는 전극 조립체와 전해액을 포함하고, 이들을 보호하는 다층 외장재를 몸체로 포함한다. 또한, 상기 이차전지는 복수의 셀을 장착한 전지 모듈 형태로 사용될 수 있다.
그러나, 이러한 이차전지는 주변의 온도 변화에 민감하여 전기적 성능과 안전성이 많이 좌우될 수 있다.
하나의 예로서, 이차전지에 구비된 전극 조립체는 충전 및 방전의 과정을 거치면서 발열이 발생하게 된다. 이러한 발열은 이차전지 셀의 성능을 저하시킬 뿐만 아니라, 이차전지 셀 자체의 온도를 상승시켜 셀의 폭발을 유도할 수 있다. 셀의 폭발은 주변의 다른 이차전지 셀에 높은 온도와 압력을 제공하여 연쇄적인 이차전지 셀의 폭발로 이어지는 문제가 야기시킬 수 있다.
이차전지의 열 폭주 상황에서 인접 셀로의 열전도를 억제하기 위하여 종래 열 폭주 방지시트에 대한 기술이 개발되었다. 그 예로서, 열 전도성 첨가제를 포함하는 카트리지를 배터리 모듈 내에 구비함으로써 열 전달 효율을 향상시키는 기술이 개발된 바 있다. 그러나, 이와 같은 종래기술은 전지 구동 시에 발생되는 열의 냉각을 위한 것으로서, 셀 폭발과 같은 열 폭주 상황에서는 기능하지 못하는 문제가 있다. 또한, 이차전지 모듈 내부에서 발생된 열을 흡수하여 주변 온도는 낮추는 냉각 부재를 포함하는 기술이 개발된 바 있다. 그러나, 실제 열 폭주는 모듈에 장착된 특정 셀의 발열로 인해 발생하는 경우가 많다. 이 경우 상기 냉각 부재는 셀에서 발생된 열을 균일하게 흡수하지 어려우므로, 열 흡수 과정에서 냉각 부재의 손상이 유도되고, 이에 따라 내부 열을 충분히 흡열하지 못하는 한계가 있다.
따라서, 이차전지를 포함하는 이차전지 모듈에 있어서, 모듈 내부의 온도, 즉 이차전지의 주변 온도가 전지의 열 폭주를 유도하는 고온/발열 조건일 때는 주변 온도가 효과적으로 균일하게 흡수하여 모듈 내부의 온도가 급격하게 상승하는 것을 방지할 수 있는 기술의 개발이 요구되고 있다.
[선행기술문헌]
[특허문헌]
대한민국 공개특허공보 제10-2015-0000725호
이에, 본 발명의 목적은 이차전지 모듈 내부의 발열 발생 시 발생된 열을 균일하게 흡수함으로써 모듈 내부의 급격한 온도 변화를 억제할 수 있는 기술을 제공하는데 있다.
상술된 문제를 해결하기 위하여,
본 발명은 일실시예에서,
고흡수성 매트릭스;
상기 고흡수성 매트릭스의 적어도 1면에 배치되는 열분산 기재; 및
상기 열분산 기재가 배치된 고흡수성 매트릭스가 삽입되는 파우치를 포함하고,
상기 고흡수성 매트릭스는 물에 함침된 상태이며,
상기 열분산 기재는 하기 식 1을 10 내지 500으로 만족하는 금속 시트를 포함하는 이차전지 모듈용 흡열팩을 제공한다:
[식 1]
Tpack/Tsheet
상기 식 1에서,
Tpack는 흡열팩의 평균 두께(단위: ㎛)를 나타내고,
Tsheet는 금속 시트의 평균 두께(단위: ㎛)를 나타낸다.
이때, 상기 금속 시트는 5㎛ 내지 30㎛의 평균 두께를 가질 수 있으며, 50 kcal/℃ 이상의 열 전도율을 갖는 금속을 포함할 수 있다.
또한, 상기 열분산 기재는 고흡수성 매트릭스의 표면을 70% 이상 커버할 수 있다.
아울러, 상기 고흡수성 매트릭스는 표면에 열분산 기재가 배치되어 파우치와 직접 맞닿는 면적이 고흡수성 매트릭스 전체 면적의 30% 이하일 수 있다.
또한, 상기 고흡수성 매트릭스는 고흡수성 수지(SAP) 또는 고흡수성 섬유(SAF)의 형태를 가질 수 있다.
이와 더불어, 상기 고흡수성 매트릭스는 폴리아크릴산, 폴리아크릴산염, 폴리아크릴산염 그래프트 중합체, 전분, 가교된 카르복시메틸화 셀룰로오스, 아크릴산 공중합체, 가수분해된 전분-아크릴니트릴 그래프트 공중합체, 전분-아크릴산 그래프트 공중합체, 비누화 비닐 아세테이트-아크릴산 에스테르 공중합체, 가수분해된 아크릴로니트릴 공중합체, 가수분해된 아크릴아미드 공중합체, 에틸렌-말레산 무수물 공중합체, 이소부틸렌-말레산 무수물 공중합체, 폴리비닐술폰산, 폴리비닐포스폰산, 폴리비닐인산, 폴리비닐황산, 술폰화 폴리스티렌, 폴리비닐아민, 폴리디알킬아미노알킬(메타)아크릴아미드, 폴리에틸렌이민, 폴리알릴아민, 폴리알릴구아니딘, 폴리디메틸디알릴암모늄 히드록시드, 폴리스티렌 유도체, 구아니딘-변성 폴리스티렌, 폴리(메타)아크릴아미드, 폴리비닐구아니딘 및 이들의 혼합물 중에서 선택되는 하나 이상의 수지를 포함할 수 있다.
또한, 상기 고흡수성 매트릭스는 경우에 따라서 상기 수지와 함께 내부에 열 전도성 필러를 더 포함할 수 있다.
이러한 고흡수성 매트릭스는 10 g/g 내지 500 g/g의 물을 포함할 수 있다.
나아가, 본 발명은 일실시예에서,
하우징 부재;
상기 하우징 부재 내에 삽입되는 복수의 전지 셀; 및
상기 복수의 전지 셀에서 발생되는 열을 흡수하는 본 발명에 따른 흡열팩을 포함하는 이차전지 모듈을 제공한다.
여기서, 상기 복수의 전지 셀은 n열(단, n≥2)로 정렬 배치될 수 있으며, 이 경우, 흡열팩은 배치된 전지 셀들이 이루는 열들 사이에 배치될 수 있고, 및/또는 배치된 전지 셀들이 구성하는 열의 외측면과 하우징 부재 사이 공간에 배치될 수 있다.
본 발명에 따른 이차전지 모듈용 흡열팩은 파우치 내부에 물이 함침된 고흡수성 매트를 포함하고 상기 고흡수성 매트와 파우치 사이에 열분산 기재가 삽입된 구조를 가짐으로써, 모듈 내부에서 발열이 발생하는 경우 주변의 많은 열량을 흡수할 수 있다. 따라서, 이를 이차전지 모듈에 구비하는 경우 이차전지의 주변 온도가 급격하게 변화되는 것을 방지할 수 있다. 또한, 상기 고흡수성 매트릭스는 주변의 열 에너지에 균일하게 노출되어 모듈 내부의 발열로 인한 흡열팩의 손상을 방지할 수 있다. 따라서, 이를 포함하는 상기 흡열팩은 모듈 내부 온도 제어를 보다 안정적으로 수행할 수 있으며, 이를 통해 주변 온도에 따른 이차전지의 성능 및 안정성을 개선할 수 있다.
도 1은 본 발명에 따른 이차전지 모듈의 구조를 도시한 사시도이다.
도 2는 이차전지 모듈의 내부 가열 후 분해된 실시예의 흡열팩을 촬영한 이미지이다.
도 3은 이차전지 모듈의 내부 가열 후 분해된 비교예의 흡열팩을 촬영한 이미지이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 상세한 설명에 상세하게 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명에서, "포함한다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 본 발명에서, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 기재된 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "하에" 있다고 기재된 경우, 이는 다른 부분 "바로 아래에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 또한, 본 출원에서 "상에" 배치된다고 하는 것은 상부 뿐만 아니라 하부에 배치되는 경우도 포함하는 것일 수 있다.
이하, 본 발명을 보다 상세하게 설명한다.
이차전지용 흡열팩
본 발명은 일실시예에서,
고흡수성 매트릭스;
상기 고흡수성 매트릭스의 적어도 1면에 배치되는 열분산 기재; 및
상기 열분산 기재가 배치된 고흡수성 매트릭스가 삽입되는 파우치를 포함하는 이차전지 모듈용 흡열팩을 제공한다.
본 발명에 따른 흡열팩은 이차전지 모듈의 내부에 삽입되는 부품으로써 물이 내부에 함침된 고흡수 매트릭스가 파우치에 삽입된 구조를 갖는다.
이때, 상기 고흡수성 매트릭스는 물이 함침된 상태를 가짐으로써 흡열팩 주변의 온도 조건, 즉 흡열팩이 장착되는 이차전지 모듈의 내부 온도 조건에 따라 다량의 열 에너지를 흡수할 수 있다. 구체적으로, 상기 물은 고흡수성 매트릭스 내부에 함침되어 있다가 파우치 외부 온도가 상승하면, 기화되면서 고흡수성 매트릭스와 분리된다. 이때, 상기 물은 기화되기 위하여 많은 열량이 요구되는데, 이를 충족시키기 위하여 파우치 주변의 열량을 흡수하게 되고, 이에 따라 모듈 내부의 발열 발생 시 내부 온도가 급격하게 상승하는 것을 방지할 수 있다.
여기서, 본 발명에 따른 흡열팩은 고흡수성 매트릭스에 함침된 물이 균일하게 열량을 흡수할 수 있도록 고흡수성 매트릭스의 적어도 1면에 열분산 기재가 배치될 수 있다.
상기 열분산 기재는 파우치 외부의 열을 고흡수성 매트릭스로 균일하게 전달함으로써 발생된 열이 흡열팩의 일부분에 집중되어 흡열팩이 손상되는 것을 방지하는 역할을 수행할 수 있다.
이를 위하여, 상기 열분산 기재는 열 전도율이 높은 금속 시트를 포함할 수 있으며, 상기 금속 시트는 50 kcal/℃ 이상의 열 전도율을 갖는 금속을 포함할 수 있다. 보다 구체적으로는 상기 금속 시트는 70 kcal/℃ 이상, 80 kcal/℃ 이상, 90 kcal/℃ 이상, 100 kcal/℃ 이상, 50 kcal/℃ 내지 400 kcal/℃, 70 kcal/℃ 내지 370 kcal/℃, 70 kcal/℃ 내지 150 kcal/℃, 100 kcal/℃ 내지 370 kcal/℃, 150 kcal/℃ 내지 200 kcal/℃, 또는 250 kcal/℃ 내지 350 kcal/℃의 열 전도율을 갖는 금속을 포함할 수 있다.
하나의 예로서, 상기 금속 시트는 196±3 kcal/℃의 열 전도율을 갖는 알루미늄; 170±3 kcal/℃의 열 전도율을 갖는 텅스텐; 320±3 kcal/℃의 열전도율을 갖는 구리; 77±3 kcal/℃의 열 전도율을 갖는 니켈 등을 단독으로 포함하거나 병용할 수 있다.
또한, 상기 열분산 기재는 열 전도율이 높은 금속 시트를 포함하나, 실제 금속 시트를 통해 고흡수성 매트릭스에 전달되는 열은 고흡수성 매트릭스 표면 전반에 분산되어 전달되어야 하므로 금속 시트의 두께에 높은 의존성을 가질 수 있다. 따라서, 상기 열분산 기재는 고흡수성 매트릭스로 파우치 주변(즉, 파우치 외부)의 열을 높은 효율로 전달하되, 보다 균일하게 분산시켜 전달하기 위하여 소정의 두께를 가질 수 있으며, 흡열팩으로 인한 이차전지 모듈의 에너지 밀도 저감과 열분산 기재에 포함된 금속 시트 자체의 열 전도 효율을 고려할 때 흡열팩과 일정한 두께 조건을 만족할 수 있다.
그 예로서, 상기 열분산 기재는 5㎛ 내지 100㎛의 평균 두께를 가질 수 있으며, 열분산 기재를 포함하는 흡열팩의 평균 두께와의 두께 비율을 나타내는 하기 식 1을 10 내지 500으로 만족할 수 있다:
[식 1]
Tpack/Tsheet
상기 식 1에서,
Tpack는 흡열팩의 평균 두께(단위: ㎛)를 나타내고,
Tsheet는 금속 시트의 평균 두께(단위: ㎛)를 나타낸다.
구체적으로, 상기 식 1은 흡열팩의 평균 두께와 열분산 기재의 평균 두께의 비율을 의미한다. 본 발명은 상기 비율을 소정의 범위를 만족하도록 함으로써 이차전지 모듈의 에너지 밀도가 저감되는 것을 방지하면서 내부의 고온 발생 시 흡열팩의 손상없이 효율적으로 열 에너지를 흡열팩으로 분산 및 흡수할 수 있다. 이를 위하여, 상기 열분산 기재는 상기 식 1을 10 내지 500으로 만족할 수 있으며, 구체적으로는 10 내지 400; 10 내지 300; 10 내지 200; 10 내지 100; 10 내지 50; 100 내지 300; 또는 100 내지 200으로 만족할 수 있다. 상기 열분산 기재는 식 1을 10 이상으로 만족함으로써 고흡수성 매트릭스의 함량이 저감되어 열 흡수 효율이 저감되는 것을 방지하는 한편, 식 1을 500 이하로 만족함으로써 열분산 기재의 얇은 두께로 인해 파우치 주변의 열이 고흡수성 매트릭스에 균일하게 분산되지 않고 흡열팩이 손상되는 것을 방지할 수 있다.
아울러, 상기 열분산 기재는 5㎛ 내지 100㎛의 평균 두께를 가질 수 있으며, 보다 구체적으로는 5㎛ 내지 75㎛; 5㎛ 내지 50㎛; 5㎛ 내지 30㎛; 10㎛ 내지 30㎛; 또는 15㎛ 내지 25㎛의 평균 두께를 가질 수 있다.
본 발명은 열분산 기재의 평균 두께를 상기 범위로 조절함으로써 5㎛ 미만의 얇은 두께로 인해 파우치 주변의 열을 고흡수성 매트릭스에 균일하게 전달하지 못하여 흡열팩이 흡열 도중에 손상되는 것을 방지하는 한편, 100 ㎛를 초과하는 과도한 두께로 인해 열분산 기재의 열 전도율이 저감되는 것을 예방할 수 있다.
나아가, 상기 고흡수성 매트릭스는 파우치 주변의 열을 보다 균일하게 흡수하기 위하여 파우치와 직접 맞닿는 표면에 소정의 면적률을 만족하도록 열분산 기재를 배치할 수 있다.
구체적으로, 상기 열분산 기재는 고흡수성 매트릭스의 전체 표면을 70% 이상 커버하도록 배치될 수 있으며, 보다 구체적으로, 고흡수성 매트릭스의 전체 표면을 75% 이상, 80% 이상, 85% 이상 또는 90% 이상 커버하도록 배치될 수 있다. 경우에 따라서, 상기 열분산 기재는 고흡수성 매트릭스 전면에 배치되어 고흡수성 매트릭스와 파우치가 직접 맞닿는 면적이 0%일 수 있다. 본 발명은 열분산 기재가 고흡수성 매트릭스의 표면을 커버하는 면적률을 상기 범위로 조절함으로써 파우치 주변 열이 고흡수성 매트릭스로 보다 균일하게 분산되게 할 수 있다.
한편, 앞서 언급된 바와 같이 상기 고흡수성 매트릭스는 흡열팩이 고온 조건에 노출되는 경우 내부에 함침된 물이 기화되어 분리된 형태를 가질 수 있으며, 이에 따라 상기 고흡수성 매트릭스가 삽입된 파우치는 팽창된 형태를 가질 수 있다.
이때, 상기 고흡수성 매트릭스는 물을 높은 효율로 흡수하기 위해 고흡수성 수지(super absorbent polymer, SAP) 또는 고흡수성 섬유(super absorbent fiber, SAF)를 포함할 수 있다. 여기서, 상기 고흡수성 수지(SAP)와 고흡수성 섬유(SAF)는 그 형태에 의해 구분될 수 있다. 예컨대, 고흡수성 수지(SAP)는 분말 형상을 가지며, 상기 고흡수성 섬유(SAF)는 선형을 가질 수 있다.
아울러, 상기 고흡수성 수지(SAP)와 고흡수성 섬유(SAF)는 이들을 구성하는 성분을 동일하거나 상이할 수 있다. 구체적으로, 상기 고흡수성 매트릭스는 폴리아크릴산, 폴리아크릴산염, 폴리아크릴산염 그래프트 중합체, 전분, 가교된 카르복시메틸화 셀룰로오스, 아크릴산 공중합체, 가수분해된 전분-아크릴니트릴 그래프트 공중합체, 전분-아크릴산 그래프트 공중합체, 비누화 비닐 아세테이트-아크릴산 에스테르 공중합체, 가수분해된 아크릴로니트릴 공중합체, 가수분해된 아크릴아미드 공중합체, 에틸렌-말레산 무수물 공중합체, 이소부틸렌-말레산 무수물 공중합체, 폴리비닐술폰산, 폴리비닐포스폰산, 폴리비닐인산, 폴리비닐황산, 술폰화 폴리스티렌, 폴리비닐아민, 폴리디알킬아미노알킬(메타)아크릴아미드, 폴리에틸렌이민, 폴리알릴아민, 폴리알릴구아니딘, 폴리디메틸디알릴암모늄 히드록시드, 폴리스티렌 유도체, 구아니딘-변성 폴리스티렌, 폴리(메타)아크릴아미드, 폴리비닐구아니딘 및 이들의 혼합물 중에서 선택되는 적어도 하나 이상을 들 수 있다.
하나의 예로서, 상기 고흡수성 매트릭스는 가교화된 폴리아크릴산 염, 가교화된 폴리아크릴산 및 가교화된 아크릴산 공중합체로 이루어진 군으로부터 선택되는 하나 이상을 들 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 상기 고흡수성 매트릭스로 사용되는 아크릴산 공중합체의 종류는 특별히 제한되지 않지만, 바람직하게는 아크릴산 단량체와 말레산, 이타콘산, 아크릴아미드, 2-아크릴아미드-2-메틸프로판술폰산, 2-(메타)아크릴로일에탄술폰산, 2-히드록시에틸(메타)아크릴레이트 및 스티렌술폰산 중에서 선택되는 적어도 하나 이상의 공단량체를 포함하는 공중합체일 수 있다.
상기 성분은 친수성 관능기를 갖는 망상 구조를 갖는 물질들로서 물을 높은 효율로 흡수할 수 있으므로, 흡열팩이 흡열 또는 발열하는 효과가 균일하게 구현될 수 있다.
아울러, 상기 고흡수성 매트릭스는 물에 대한 흡수력이 일정 범위를 만족할 수 있다. 구체적으로, 상기 고흡수성 매트릭스는 물에 대한 흡수량이 10 g/g 내지 500 g/g, 구체적으로는 50 g/g 내지 200 g/g일 수 있으나, 이에 제한되는 것은 아니다. 이는, 상기 고흡수성 매트릭스 1 g당 물 10 g 내지 500 g, 바람직하게는 50 g 내지 200 g을 흡수할 수 있음을 의미하는 것으로서, 상기 고흡수성 매트릭스는 물에 대한 흡수량이 많을수록 냉각 효과의 지속 시간을 향상시킬 수 있으나, 500 g/g을 초과하면, 고흡수성 매트릭스의 유동성이 증가하여 형태를 유지하기 어려워 효과적인 냉각을 발휘할 수 없다. 또한, 상기 고흡수성 매트릭스의 물에 대한 흡수량이 10 g/g 미만이면, 파우치 외부 온도에 따라 흡수하는 열량이 현저히 낮아지므로 모듈 내부 온도가 급격히 변화하는 것을 억제하는 효과가 낮아 비효율적일 수 있다.
이와 더불어, 상기 고흡수성 매트릭스는 매트릭스 내부에 함침된 물에 열을 보다 잘 전달하기 위하여 내부에 열 전도성 필러를 더 포함할 수 있다.
상기 열 전도성 필러는 열 전달 특성이 우수한 것이라면 제한 없이 사용할 수 있으나, 구체적으로는 무기 산화물 필러, 금속 수산화물 필러, 무기 탄화물 필러, 질화물 필러, 금속 필러 및 탄소 필러 중에서 선택되는 하나 이상을 사용할 수 있다.
여기서, 상기 무기 산화물 필러의 예로는 산화 알루미늄, 산화 마그네슘, 산화 아연 또는 산화 규소 등을 들 수 있고; 상기 금속 수산화물 필러의 예로는 수산화 알루미늄 또는 수산화 마그네슘 등을 들 수 있으며; 상기 무기 탄화물 필러의 예로는 탄화 규소 등을 들 수 있고; 상기 질화물 필러의 예로는 질화알루미늄, 질화붕소 또는 질화규소 등을 들 수 있으며; 상기 금속 필러의 예로는 은, 구리, 아연, 철, 알루미늄, 니켈, 주석 또는 이들의 합금 등을 들 수 있고; 상기 탄소 필러의 예로는 카본 또는 그라파이트 등을 들 수 있다.
아울러, 상기 열전도성 필러는 그 형상이 특별히 제한되는 것은 아니나 고흡수성 매트릭스 내부에 열을 효과적으로 전달하기 위하여 비표면적이 높은 구상의 형태를 갖거나, 인접한 열 전도성 필러들과 열 네트워크를 형성할 수 있도록 침상 또는 섬유상의 형태를 가질 수 있다.
나아가, 상기 파우치는 내부에 삽입된 고흡수성 매트릭스로 외부 열을 잘 전달할 수 있는 것이라면 특별히 제한되지 않고 적용될 수 있다. 예를 들어, 상기 파우치는 금속층으로 구성될 수 있고, 금속층 내측면에는 가교된 폴리올레핀계 수지를 포함하는 내부층을 포함할 수 있다.
상기 금속층은 흡열팩 외부의 열을 내부로 잘 전달할 수 있으면서 일정 이상의 강도를 가져 외력에 대한 저항성을 가질 수 있는 알루미늄 층 등을 포함할 수 있다.
또한, 상기 내부층은 금속층 내측면에 위치하여 고흡수성 매트릭스에 함침된 물과 파우치의 금속층이 반응하는 것을 방지하는 기능을 수행할 수 있다. 이를 위하여, 상기 내부층은 가교된 폴리올레핀계 수지를 포함할 수 있다. 가교된 폴리올레핀계 수지는 낮은 흡습성을 가져 고흡수성 매트릭스에 함침된 물의 침입을 억제할 수 있으므로 이로 인한 내부층의 팽창이나 침식이 발생되지 않을 수 있다. 여기서, 상기 폴리올레핀계 수지는 10~70%의 가교도를 가질 수 있으며, 구체적으로는 30~50%의 가교도를 가질 수 있다. 아울러, 상기 폴리올레핀계 수지는 폴리프로필렌(Polypropylene, PP) 및 폴리에틸렌 (Polyethylene, PE) 중에서 선택된 어느 하나 이상일 수 있고, 상기 가교된 폴리올레핀계 수지는 구체적으로 가교된 폴리에틸렌, 가교된 폴리프로필렌, 또는 이들의 혼합물을 포함할 수 있으며, 더욱 구체적으로는 가교된 폴리프로필렌일 수 있다.
나아가, 상기 흡열팩은 모듈 내부 온도가 변화하는 것을 효과적으로 제어하기 위하여 일정한 두께 조건을 만족할 수 있다. 구체적으로, 상기 흡열팩은 0.1 mm 내지 50 mm의 두께를 가질 수 있으며, 보다 구체적으로는 0.1 mm 내지 30 mm; 0.1 mm 내지 15 mm; 0.1 mm 내지 10 mm; 1 mm 내지 20 mm; 5 mm 내지 10 mm; 10 mm 내지 20 mm; 또는 1 mm 내지 5 mm의 두께를 가질 수 있다.
본 발명은 흡열팩의 두께를 상기 범위로 조절함으로써 0.1mm 미만인 경우에는 지나치게 얇은 흡열팩의 두께로 인해 흡열팩 주변의 열 에너지 출입이 충분하지 않아 모듈 내부 온도가 급격히 변화될 수 있으며, 50 mm를 초과하는 경우에는 전지 모듈의 두께가 증가하여 에너지 밀도가 현저히 저감될 수 있다.
본 발명에 따른 흡열팩은 상술된 구성을 가짐으로써 모듈 내부에서 발열이 발생하는 경우 주변의 많은 열량을 흡수할 수 있을 뿐만 아니라, 상기 열량을 고흡수성 매트릭스에 균일하게 공급할 수 있으므로 모듈 내부의 발열로 인한 흡열팩의 손상을 방지할 수 있다. 따라서, 이를 이차전지 모듈에 구비하는 경우 이차전지의 주변 온도가 급격하게 변화되는 것을 방지할 수 있으며, 이를 통해 주변 온도에 따른 이차전지의 성능 및 안정성을 개선할 수 있다.
이차전지 모듈
나아가, 본 발명은 일실시예에서,
이차전지와 상술된 본 발명에 따른 이차전지용 흡열팩을 포함하는 이차전지 모듈을 제공한다.
도 3은 본 발명에 따른 이차전지 모듈(1)의 구조를 나타낸 사시도로서, 도 3을 참고하여 보다 상세히 설명한다.
본 발명에 따른 이차전지 모듈(1)은 하우징 부재(10); 상기 하우징 부재 내에 삽입되는 복수의 전지 셀(20); 및 상기 복수의 전지 셀에서 발생되는 열을 흡수하는 흡열팩(30)을 포함한다.
본 발명에 따른 이차전지 모듈(1)은 복수의 전지 셀(20)을 포함하고, 이들 전지 셀과 함께 앞서 설명된 본 발명의 흡열팩(30)을 구비하여, 모듈 내부의 온도가 급격히 상승하는 것을 방지할 수 있으므로 전지 셀(20)의 온도에 대한 안정성이 우수한 이점이 있다.
여기서, 상기 하우징 부재(10)는 복수의 상기 이차전지 셀(20)이 수용되는 배터리 모듈의 바디 역할을 수행하는 것이다. 또한, 상기 하우징 부재(10)는 복수의 전지 셀(20)이 수용되는 부재로서, 상기 전지 셀(20)을 보호하면서도 전지 셀(20)이 생성한 전기 에너지를 외부로 전달한다.
이를 위해서, 상기 하우징 부재(10)는 바닥부재(11) 및 측벽부재(12) 등으로 구성될 수 있다. 상기 바닥부재(11)는 상기 복수의 전지 셀(20)이 안착되며, 이렇게 안착된 상기 복수의 전지 셀(20)을 지지한다. 또한, 상기 바닥부재(11)와 전지 셀(20) 사이에는 히트 싱크(40)가 배치될 수 있으며, 상기 히트 싱크(40)는 전지 셀(20)에서 발생한 열을 바닥부재(11)로 전달하고, 바닥부재(11)는 히트 싱크(40)로부터 전달받은 열을 외부로 전달하여 냉각시키도록 구성될 수 있다.
아울러, 상기 측벽부재(12)는 상기 하우징 부재(10)의 측부를 형성하는 것으로서, 상기 전지 셀(20)에서 발생한 열을 외부로 배출할 수도 있다.
상기 하우징 부재(10)는 추가로 상기 측벽부재(12)의 상단에 구비되는 커버부재(13)를 포함하여 전지 셀(20)의 상단부를 보호하게 구성될 수 있다. 또한, 상기 커버부재(13)와 전지 셀(20) 상단부 사이에는 가스 벤팅 부재(17)를 포함하여 충방전 시 전지 셀(20)로부터 발생된 가스들을 외부로 배출시킬 수 있다.
이와 더불어, 상기 하우징 부재(10)는 상기 측벽부재(12)와 이웃한 전방부재(14) 및 후방부재(15)를 포함할 수 있으며, 이에 따라 상기 복수의 전지 셀(20)의 측면을 감싸는 형태로 구성될 수 있다.
나아가, 상기 하우징 부재(10)는 전지 셀(20)을 외부와 전기적으로 연결하는 버스바 부재(미도시) 등의 부가 구성을 구비할 수도 있다.
한편, 전지 셀(20)은 리튬 이차전지로서 적용될 수 있는 형태라면 그 종류가 특별히 제한되는 것은 아니나, 구체적으로는 각형, 파우치형, 원통형 등의 형태를 가질 수 있다. 하나의 예로서, 상기 전지 셀(20)은 각형 또는 파우치형 리튬 이차전지일 수 있다.
또한, 상기 전지 셀(20)은 하우징 부재(10) 내에 삽입되되, 하우징 부재(10)의 측변 부재(12)와 대향하도록 n열(단, n≥2)로 정렬 배치될 수 있다. 구체적으로, 상기 전지 셀(20)은 측변 부재(12)와 대향하도록 2열 이상, 3열 이상 또는 2~4열로 정렬 배치될 수 있다.
이렇게 정렬 배치된 전지 셀(20)은 인접한 위치에 흡열팩(30)이 배칭될 수 있다. 하나의 예로서, 상기 흡열팩(30a)은 정렬 배치된 전지 셀(20)들의 외측면, 즉 하우징 부재(10)와 전지 셀(20)의 사이 공간에 배치될 수 있다.
다른 하나의 예로서, 전지 셀(20)들 사이에는 흡열팩(30b)이 삽입될 수 있다. 구체적으로, 상기 흡열팩(30b)은 하나의 열을 구성하는 개별 전지 셀(20)들 사이에 배치될 수 있으며, 경우에 따라서는 도 1에 나타낸 바와 같이 정렬된 전지 셀로 구성된 제1열(21a)과 제2열(21b)의 사이에 배치될 수 있다.
이와 같이, 전지 셀(20)에 인접한 위치에 흡열팩(30)이 배치됨으로써, 전지 셀(20)에 열이 발생하는 경우, 즉각적으로 열을 흡수할 수 있으므로 모듈 내부의 급격한 온도 변화를 방지할 수 있다.
이하, 본 발명을 실시예 및 실험예에 의해 보다 상세히 설명한다.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 한정되는 것은 아니다.
실시예 1~4 및 비교예 1~3. 흡열팩의 제조
물을 고흡수성 섬유(성분: 아크릴산 공중합체) 1g 당 10g씩 함침시켰다. 그 후, 고흡수성 섬유의 양면에 열분산 시트로서 알루미늄 시트를 배치시켰다.
이와 별도로, 알루미늄층 및 상기 알루미늄층의 내측에 가교도 40±2%의 폴리에틸렌(PE)층을 포함하는 가로 10㎝ 및 세로 35㎝인 알루미늄 파우치를 준비하고, 준비된 알루미늄 파우치에 앞서 알루미늄(Al) 시트가 양면에 배치된 고흡수성 매트릭스를 삽입하고, 내부를 진공 상태로 바꾼 후 파우치의 투입구를 실링하여 흡열팩을 제작하였다.
이때, 금속 시트의 ① 평균 두께, ② 흡열팩의 평균 두께와 금속 시트의 평균 두께의 비율(Tpack/Tsheet) 및 ③ 금속 시트가 고흡수성 섬유의 전체 면적을 커버하는 비율(즉, 면적률)을 하기 표 1에 나타내었다.
① 평균 두께 [㎛] ② Tpack/Tsheet ③ 면적률
실시예 1 20 150 100%
실시예 2 20 150 80%
실시예 3 20 150 50%
실시예 4 100 30 100%
비교예 1 - - -
비교예 2 1 3000 100%
비교예 3 20 5 100%
실험예.
본 발명에 따른 흡열팩에 따른 이차전지 모듈 내부의 온도 조절 효과를 평가하기 위하여 하기와 같은 실험을 수행하였다.
가) 이차전지 모듈의 제작
이때, 상기 이차전지 모듈은 도 1에 나타낸 바와 같이 각 열당 10개의 이차전지 셀이 2열로 하우징 부재에 삽입하고, 전지 셀의 외측면과 각 열들 사이에 실시예 및 비교예에서 제조된 각각 흡열팩을 배치하였다.
또한, 상기 이차전지 모듈은 실험을 위한 모듈 내부의 온도를 조절하기 위하여, 이차전지 셀이 삽입된 2열 중 임의의 1열 하부에 히트 싱크 대신에 가열 수단인 히팅 패드를 도입하였으며, 모듈 측면 중 1면과 상면에 각각 온도 센서를 장착시켰다.
아울러, 모듈에 삽입되는 전지 셀은 양극 및 음극을 각각 40개씩 준비하고, 분리막으로서 상기 양극 및 음극보다 넓은 다공성 폴리에틸렌 분리막(가로 9.5㎝ Х 세로 34.5㎝, 평균 두께: 약 20㎛)을 120개 준비한 다음, 분리막-음극-분리막-양극-분리막의 스택용 단위셀을 40개 적층하여 가로 10㎝ × 세로 35㎝ × 두께 1.6㎝의 각형 형태로 제작하였다. 이때, 각 전지 셀에 주입된 전해액은 에틸렌 카보네이트(Ethylene Carbonate, EC)와 에틸메틸 카보네이트(Ethyl Methyl Carbonate, EMC)가 3:7의 부피비로 혼합된 유기 용매에 리튬 염으로서 LiPF6가 1M 농도로 첨가된 액상 전해질을 사용하였으며, 제작된 각 전지 셀은 만충된 상태로 하우징 부재에 삽입되었다.
나) 고온 조건에서의 안전성 평가
고온 조건에서의 안전성을 평가하기 위하여, 이차전지 모듈에 장착된 히팅 패드를 이용하여 5℃/min의 속도로 30분 동안 내부 온도를 상승시켰다. ⓐ 30분 동안 모듈 내부를 가열한 후 모듈 내부에 장착된 2개의 온도 센서를 이용하여 내부 온도를 측정하여 이들의 평균 온도를 모듈 내부 온도로 산출하였다. 또한, ⓑ 온도 측정이 완료되면 히팅 패드의 작동을 멈추고 모듈 내부를 상온으로 냉각시킨 다음, 모듈에 장착되었던 흡열팩을 분해하여 파우치에 삽입되었던 고흡수성 섬유의 손상 여부를 육안으로 평가하였다. 각 결과는 하기 표 2와 도 2 및 도 3에 나타내었으며, 고흡수성 섬유의 손상 여부는 손상이 있는 경우는 ○, 손상이 없는 경우는 X로 표시하였다.
모듈 내부 평균 온도 고흡수성 섬유의 손상여부
실시예 1 105±1℃ X
실시예 2 110±1℃ X
실시예 3 125±1℃ X
실시예 4 115±1℃ X
비교예 1 150±1℃
비교예 2 140±1℃
비교예 3 145±1℃ X
상기 표 2에 나타낸 바와 같이, 본 발명에 따른 실시예의 흡열팩은 전지 모듈 내부의 급격한 온도 상승을 안정적으로 억제하는 것을 알 수 있다.
구체적으로, 실시예의 흡열팩은 모듈 내부에 장착된 히팅 패드에 의한 내부 가열이 진행되면 그 열량을 흡수하여 모듈 내부의 온도가 약 130℃ 미만으로 유지시키는 것으로 확인되었다. 또한, 도 2에 나타낸 바와 같이, 실시예의 흡열팩은 파우치 내부에 삽입된 고흡수성 섬유가 파우치 주변의 열량을 균일하게 흡수하여 고흡수성 섬유의 내부 손상이 발생되지 않는 것으로 확인되었다.
이에 반해, 비교예의 흡열팩은 파우치와 고흡수성 섬유 사이에 금속 시트, 즉 알루미늄(Al) 시트가 배치되지 않거나 본 발명의 두께 조건을 만족하지 않아 모듈 내부의 열 에너지를 충분히 흡수하지 못할 뿐만 아니라, 도 3에 나타낸 바와 같이 열량 흡수 시 고흡수성 섬유와 파우치의 내부 손상이 모두 발생되어 흡열팩의 열 흡수가 안정적으로 수행되지 못하는 것으로 나타났다.
이러한 결과로부터 본 발명에 따른 흡열팩은 고온 조건에서 모듈 내부의 열량을 다량 흡수하여 모듈 내부의 온도가 급격하게 변화하는 것을 방지할 수 있으며, 상기 열량을 흡열팩 내부에 균일하게 흡수하므로 흡열 과정에서 흡열팩 손상을 방지할 수 있으므로 보다 안정적으로 모듈 내부의 온도를 제어할 수 있음을 알 수 있다.
이상에서는 본 발명 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술 분야에 통상의 지식을 갖는 자라면, 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정해져야만 할 것이다.
[부호의 설명]
1: 이차전지 모듈
10: 하우징 부재 11: 바닥부재
12: 측벽부재 13: 커버부재
14: 전방부재 15: 후방부재
16: 격벽부재 17: 가스 벤팅 부재
20: 전지 셀 21: 전지셀이 정렬된 열
21a: 전지 셀이 정렬된 제1열
21b: 전지 셀이 정렬된 제2열
30: 흡열팩
30a: 전지 셀의 외측면에 배치된 흡열팩
30b: 전지 셀이 정렬된 복수의 열 사이에 배치된 흡열팩
40: 히트 싱크

Claims (11)

  1. 고흡수성 매트릭스;
    상기 고흡수성 매트릭스의 적어도 1면에 배치되는 열분산 기재; 및
    상기 열분산 기재가 배치된 고흡수성 매트릭스가 삽입되는 파우치를 포함하고,
    상기 고흡수성 매트릭스는 물에 함침된 상태이며,
    상기 열분산 기재는 하기 식 1을 10 내지 500으로 만족하는 금속 시트를 포함하는 이차전지 모듈용 흡열팩:
    [식 1]
    Tpack/Tsheet
    상기 식 1에서,
    Tpack는 흡열팩의 평균 두께(단위: ㎛)를 나타내고,
    Tsheet는 금속 시트의 평균 두께(단위: ㎛)를 나타낸다.
  2. 제1항에 있어서,
    금속 시트는 5㎛ 내지 100㎛의 평균 두께를 갖는 이차전지 모듈용 흡열팩.
  3. 제1항에 있어서,
    금속 시트는 50 kcal/℃ 이상의 열 전도율을 갖는 금속을 포함하는 이차전지 모듈용 흡열팩.
  4. 제1항에 있어서,
    열분산 기재는 고흡수성 매트릭스의 표면을 70% 이상 커버하는 이차전지 모듈용 흡열팩.
  5. 제1항에 있어서,
    고흡수성 매트릭스는 고흡수성 수지(SAP) 또는 고흡수성 섬유(SAF)인 이차전지 모듈용 흡열팩.
  6. 제1항에 있어서,
    고흡수성 매트릭스는 폴리아크릴산, 폴리아크릴산염, 폴리아크릴산염 그래프트 중합체, 전분, 가교된 카르복시메틸화 셀룰로오스, 아크릴산 공중합체, 가수분해된 전분-아크릴니트릴 그래프트 공중합체, 전분-아크릴산 그래프트 공중합체, 비누화 비닐 아세테이트-아크릴산 에스테르 공중합체, 가수분해된 아크릴로니트릴 공중합체, 가수분해된 아크릴아미드 공중합체, 에틸렌-말레산 무수물 공중합체, 이소부틸렌-말레산 무수물 공중합체, 폴리비닐술폰산, 폴리비닐포스폰산, 폴리비닐인산, 폴리비닐황산, 술폰화 폴리스티렌, 폴리비닐아민, 폴리디알킬아미노알킬(메타)아크릴아미드, 폴리에틸렌이민, 폴리알릴아민, 폴리알릴구아니딘, 폴리디메틸디알릴암모늄 히드록시드, 4차화 폴리스티렌 유도체, 구아니딘-변성 폴리스티렌, 4차화 폴리(메타)아크릴아미드, 폴리비닐구아니딘 및 이들의 혼합물 중에서 하나 이상의 수지를 포함하는 이차전지 모듈용 흡열팩.
  7. 제1항에 있어서,
    고흡수성 매트릭스는 내부에 열 전도성 필러를 더 포함하는 이차전지 모듈용 흡열팩.
  8. 제1항에 있어서,
    고흡수성 매트릭스는 10 g/g 내지 500 g/g의 물을 포함하는 이차전지 모듈용 흡열팩.
  9. 하우징 부재;
    상기 하우징 부재 내에 삽입되는 복수의 전지 셀; 및
    상기 복수의 전지 셀에서 발생되는 열을 흡수하는 제1항에 따른 흡열팩을 포함하는 이차전지 모듈.
  10. 제9항에 있어서,
    복수의 전지 셀은 n열(단, n≥2)로 정렬 배치되고, 배치된 전지 셀들이 이루는 열들 사이에 흡열팩이 배치되는 이차전지 모듈.
  11. 제9항에 있어서,
    복수의 전지 셀은 n열(단, n≥2)로 정렬 배치되고, 배치된 전지 셀들이 구성하는 열의 외측면과 하우징 부재 사이 공간에 흡열팩이 배치되는 이차전지 모듈.
PCT/KR2023/015476 2022-10-14 2023-10-10 모듈 내부의 온도 안정성이 개선된 이차전지 모듈 WO2024080683A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0132265 2022-10-14
KR1020220132265A KR20240052339A (ko) 2022-10-14 2022-10-14 모듈 내부의 온도 안정성이 개선된 이차전지 모듈

Publications (1)

Publication Number Publication Date
WO2024080683A1 true WO2024080683A1 (ko) 2024-04-18

Family

ID=90669884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/015476 WO2024080683A1 (ko) 2022-10-14 2023-10-10 모듈 내부의 온도 안정성이 개선된 이차전지 모듈

Country Status (2)

Country Link
KR (1) KR20240052339A (ko)
WO (1) WO2024080683A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185205A (ja) * 1999-12-24 2001-07-06 Shin Kobe Electric Mach Co Ltd 密閉形鉛蓄電池
KR20110070199A (ko) * 2009-12-18 2011-06-24 에스비리모티브 주식회사 배터리 팩
KR20150000725A (ko) 2013-06-25 2015-01-05 주식회사 엘지화학 방열부가 형성되어 있는 전지셀 케이스를 포함하는 전지모듈
JP2016092810A (ja) * 2014-11-07 2016-05-23 岩井 一夫 スマートフォンの放熱防止マット
US20190093958A1 (en) * 2016-03-16 2019-03-28 Autonetworks Technologies, Ltd. Cooling member and power storage module
KR20210109316A (ko) * 2020-02-27 2021-09-06 주식회사 엘지에너지솔루션 초 흡수성 시트를 구비하는 ess
KR20220132265A (ko) 2021-03-23 2022-09-30 삼성전자주식회사 방수 구조를 가지는 전자 장치 및 그 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185205A (ja) * 1999-12-24 2001-07-06 Shin Kobe Electric Mach Co Ltd 密閉形鉛蓄電池
KR20110070199A (ko) * 2009-12-18 2011-06-24 에스비리모티브 주식회사 배터리 팩
KR20150000725A (ko) 2013-06-25 2015-01-05 주식회사 엘지화학 방열부가 형성되어 있는 전지셀 케이스를 포함하는 전지모듈
JP2016092810A (ja) * 2014-11-07 2016-05-23 岩井 一夫 スマートフォンの放熱防止マット
US20190093958A1 (en) * 2016-03-16 2019-03-28 Autonetworks Technologies, Ltd. Cooling member and power storage module
KR20210109316A (ko) * 2020-02-27 2021-09-06 주식회사 엘지에너지솔루션 초 흡수성 시트를 구비하는 ess
KR20220132265A (ko) 2021-03-23 2022-09-30 삼성전자주식회사 방수 구조를 가지는 전자 장치 및 그 제조 방법

Also Published As

Publication number Publication date
KR20240052339A (ko) 2024-04-23

Similar Documents

Publication Publication Date Title
WO2016080696A1 (ko) 이차전지용 냉각 플레이트 및 이를 포함하는 이차전지 모듈
WO2017204458A1 (ko) 전지 팩
WO2020060310A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2021206381A1 (ko) 이차전지용 스웰링 테이프 및 이를 포함하는 원통형 이차전지
WO2021145605A1 (ko) 흡수 부재를 포함한 배터리 모듈, 이를 포함하는 배터리 랙, 및 전력 저장 시스템
WO2020111469A1 (ko) 이차 전지 및 이를 포함하는 디바이스
WO2024080683A1 (ko) 모듈 내부의 온도 안정성이 개선된 이차전지 모듈
WO2022220651A1 (ko) 이차전지
WO2024106893A1 (ko) 모듈 내부의 온도 안정성이 개선된 이차전지 모듈
WO2021020887A1 (ko) 전기화학소자용 복합 분리막 및 이를 포함하는 전기화학소자
WO2022220627A1 (ko) 이차전지
WO2022220653A1 (ko) 이차전지
WO2019088795A2 (ko) 안전성이 향상된 이차전지용 전극과 이의 제조방법, 및 이 전극을 포함하는 이차전지
WO2024049009A1 (ko) 안전성이 향상된 배터리 팩
WO2023171917A1 (ko) 배터리 팩 및 이를 포함하는 전력 저장 장치
WO2022220656A1 (ko) 이차전지
WO2023211033A1 (ko) 냉각성능이 강화된 배터리 팩
WO2023204523A1 (ko) 배터리 팩
WO2023101515A1 (ko) 이차전지의 안전성 평가용 지그
WO2022220626A1 (ko) 이차전지
WO2024085575A1 (ko) 패널 어셈블리, 이를 포함하는 전지셀 블록, 배터리 모듈 및 배터리 팩
WO2023132504A1 (ko) 이차전지
WO2023054993A1 (ko) 이차전지용 리드 필름 및 이를 구비하는 이차전지
WO2024076135A1 (ko) 열 전파 방지 전지 셀
WO2024136435A1 (ko) 파우치 필름 적층체 및 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23877611

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023877611

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023877611

Country of ref document: EP

Effective date: 20240710