WO2024080294A1 - Electric motor control device - Google Patents

Electric motor control device Download PDF

Info

Publication number
WO2024080294A1
WO2024080294A1 PCT/JP2023/036839 JP2023036839W WO2024080294A1 WO 2024080294 A1 WO2024080294 A1 WO 2024080294A1 JP 2023036839 W JP2023036839 W JP 2023036839W WO 2024080294 A1 WO2024080294 A1 WO 2024080294A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
axis
electric motor
voltage
command
Prior art date
Application number
PCT/JP2023/036839
Other languages
French (fr)
Japanese (ja)
Inventor
翔輔 兼子
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2024080294A1 publication Critical patent/WO2024080294A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting

Definitions

  • the present invention relates to an electric motor control device that controls an electric motor.
  • Patent Document 1 discloses a motor control device that drives a synchronous motor having coils of three phases (U-phase, V-phase, and W-phase).
  • the control device converts the voltage command value of the d-axis and the voltage command value of the q-axis of the vector control rotation coordinate system into a voltage command value of the U-phase, a voltage command value of the V-phase, and a voltage command value of the W-phase based on the rotational position of the synchronous motor.
  • the synchronous motor is then driven by an inverter operating based on the voltage command values of each phase.
  • Known methods for obtaining the rotational position of a synchronous motor include detecting the rotational position based on the detection signal of a rotational angle sensor that detects the rotational position of the synchronous motor, and estimating the rotational position using the extended induced voltage method.
  • the detection accuracy of the rotation angle sensor is low, the detected value of the rotation position may deviate from the actual value. Also, when the extended induced voltage method is used to estimate the rotation position, the estimation accuracy of the rotation position may deteriorate if the synchronous motor is driven at a low speed. If the detected value of the rotation position deviates from the actual value or the estimation accuracy of the rotation position deteriorates in this way, the low accuracy of the detected and estimated values of the rotation position will affect the voltage command values of each phase, and the control accuracy of the synchronous motor may deteriorate.
  • An electric motor control device for solving the above problem is a device that generates command values for the coils of multiple phases of the electric motor based on a required value for the output of the electric motor and a current supplied from an inverter to the coils of the multiple phases of the electric motor, and controls the electric motor by operating the inverter based on the command values.
  • This electric motor control device includes a target speed derivation unit that derives a target speed that is a target for the rotational speed of the electric motor according to the required value within a range that the electric motor can output, a command value conversion unit that performs a conversion process to convert a first axis component voltage command value that is a command value for the voltage of a first axis component of a voltage vector of a rotating coordinate system of vector control, and a second axis component voltage command value that is a command value for the voltage of a second axis component orthogonal to the first axis, into command values for the coils of the multiple phases based on the rotational position of the electric motor, and a rotational position correction unit that performs correction of a deviation in the rotational position of the electric motor caused by a time difference between the execution timing of the conversion process and the timing at which the inverter operates based on the command value derived by the conversion process, based on the target speed.
  • the command value conversion unit performs the conversion process using the rotational
  • the command value for the voltage of the first axis component and the command value for the voltage of the second axis component are converted into command values corresponding to the coils of the multiple phases of the electric motor based on the rotational position of the electric motor.
  • the electric motor is driven by the inverter operating based on the command values derived by the conversion process. Therefore, a certain time difference occurs between the timing at which the conversion process is executed and the timing at which the inverter operates based on the command values derived by the conversion process. In the conversion process, it is preferable to convert the command values using the rotational position of the electric motor corrected to take into account this time difference.
  • the rotational position of the electric motor can be corrected according to the time difference using the rotational speed of the electric motor.
  • the rotational speed is determined by time-differentiating the detection value of a sensor that detects the rotational position of the electric motor, or by using the extended induced voltage method to estimate the rotational speed.
  • the detection value or estimate is not accurate, there is a risk that the detection value or estimate of the rotational speed may deviate from the actual rotational speed of the electric motor. Therefore, even if the rotational position of the electric motor is corrected using such a rotational speed, it is difficult to say that the correction is highly accurate.
  • the electric motor control device uses the target speed when correcting the rotational position of the electric motor in accordance with the time difference.
  • the target speed is derived in accordance with the required value for the output of the electric motor. Therefore, even if the accuracy of the detected or estimated value of the rotational position is poor, the target speed is not affected. As a result, the target speed is less likely to deviate from the actual value of the rotational speed of the electric motor. This makes it possible to perform the correction with high accuracy by correcting the rotational position of the electric motor using the target speed.
  • the electric motor control device can improve the control accuracy of the electric motor.
  • the electric motor control device for solving the above problem generates command values for coils of multiple phases of the electric motor based on a required value for the output of the electric motor and currents supplied from an inverter to the coils of the multiple phases of the electric motor, and controls the electric motor by operating the inverter based on the command values.
  • the electric motor control device includes a target speed derivation unit that derives a target speed, which is a target for the rotational speed of the electric motor, within a range that the electric motor can output, according to the required value, and a non-interference voltage derivation unit that derives, based on the target speed, a second-axis interference voltage compensation value for canceling an interference voltage on a second axis orthogonal to the first axis that is generated by a current of a first-axis component that is a current of a first-axis component of a current vector of a rotating coordinate system of vector control, and a first-axis interference voltage compensation value for canceling an interference voltage on the first axis that is generated by a current of a second-axis component that is a current of the second-axis component.
  • the electric motor control device controls the electric motor based on the first-axis interference voltage compensation value and the second-axis interference voltage compensation value.
  • the first axis interference voltage compensation value and the second axis interference voltage compensation value are derived using the detected value of the rotation speed, which is the time-differentiated value of the detection value of a sensor that detects the rotation position of the electric motor, or an estimated value of the rotation speed derived using the extended induced voltage method.
  • the detected value or estimated value is poor in accuracy, the detected value or estimated value of the rotation speed may deviate from the actual value of the rotation speed of the electric motor. Therefore, if the first axis interference voltage compensation value and the second axis interference voltage compensation value are derived using the detected value or estimated value of the rotation speed, it is difficult to say that the accuracy of the derivation is high.
  • the electric motor control device uses the above target speed when deriving the first axis interference voltage compensation value and the second axis interference voltage compensation value.
  • the target speed is derived according to the required value for the electric motor. Therefore, even if the accuracy of the detected value or estimated value of the rotational position is poor, the target speed is not affected. As a result, the target speed is less likely to deviate from the actual value of the rotational speed of the electric motor. This makes it possible to improve the accuracy of the derivation by deriving the first axis interference voltage compensation value and the second axis interference voltage compensation value using the target speed.
  • the electric motor control device described above can improve the control accuracy of the electric motor.
  • FIG. 1 is a schematic diagram showing an electric motor control device according to an embodiment and an electric motor that is an object of control by the electric motor control device.
  • FIG. 2 is a block diagram showing the functional configuration of a voltage command value derivation unit of the electric motor control device.
  • FIG. 3 is a block diagram showing the functional configuration of a two-phase/three-phase conversion unit of the electric motor control device.
  • FIG. 1 illustrates an electric motor controller 10 , an electric motor 100 , and a motor power supply 110 .
  • the electric motor 100 includes a rotor 101 provided with a permanent magnet.
  • the electric motor 100 is an embedded magnet type synchronous motor in which the permanent magnet is embedded inside the rotor 101.
  • the electric motor 100 includes a U-phase coil 105, a V-phase coil 106, and a W-phase coil 107 as three-phase coils.
  • the electric motor 100 is used, for example, as a power source for an electric cylinder that discharges brake fluid in an on-vehicle brake device.
  • control device 10 ⁇ Electric motor control device> A description will now be given of the electric motor control device 10.
  • the electric motor control device 10 will be referred to simply as the "control device 10".
  • the control device 10 drives the electric motor 100 by drive control that controls the current of the d-axis component and the current of the q-axis component.
  • the d-axis and q-axis are control axes of the rotating coordinates of the vector control.
  • the d-axis and q-axis are control axes of the current vector and also the control axes of the voltage vector.
  • the d-axis is a control axis that extends in the direction of the magnetic flux axis of the permanent magnet.
  • the q-axis is a control axis that extends in the direction of the torque and is perpendicular to the d-axis.
  • the d-axis corresponds to the "first axis” and the q-axis corresponds to the "second axis”. Furthermore, the d-axis component corresponds to the "first axis component” and the q-axis component corresponds to the "second axis component”.
  • the control device 10 controls the electric motor 100 by inputting signals based on the command values of the d-axis component current and the q-axis component current to the three-phase coils 105 to 107 .
  • the control device 10 includes an inverter 11 and an electronic control device 20 .
  • the inverter 11 has a number of switching elements that operate with power supplied from the motor power supply 110.
  • the inverter 11 generates a U-phase signal, a V-phase signal, and a W-phase signal by turning on/off the switching elements based on commands from the electronic control device 20 (U-phase command voltage VU*, V-phase command voltage VV*, and W-phase command voltage VW*, which will be described later).
  • the inverter 11 generates a U-phase signal based on the U-phase command voltage VU*, and inputs the U-phase signal to the U-phase coil 105 of the electric motor 100.
  • the inverter 11 generates a V-phase signal based on the V-phase command voltage VV*, and inputs the V-phase signal to the V-phase coil 106 of the electric motor 100.
  • the inverter 11 generates a W-phase signal based on the W-phase command voltage VW*, and inputs the W-phase signal to the W-phase coil 107 of the electric motor 100. This drives the electric motor 100.
  • the electronic control device 20 has an execution unit and a memory unit, not shown.
  • the execution unit is a CPU.
  • the memory unit stores a control program that is executed by the execution unit.
  • the electronic control device 20 functions as a response model 21, a target speed derivation unit 22, a command torque derivation unit 23, a current command value derivation unit 24, a voltage command value derivation unit 25, a two-phase/three-phase conversion unit 26, a three-phase/two-phase conversion unit 27, a rotational speed estimation unit 28, and a rotational position estimation unit 29, as a result of the execution unit executing the control program.
  • These are functional units for driving the electric motor 100.
  • the rotational position of the electric motor 100 corresponding to the required hydraulic pressure Prq which is the required value of the hydraulic pressure to be generated in the electric cylinder, is derived as a target position ⁇ r.
  • the rotational position of the electric motor 100 is the rotational angle of the rotor 101, and the target position ⁇ r is a target for the rotational position of the electric motor 100.
  • the required hydraulic pressure Prq corresponds to the "required value for the output of the electric motor.”
  • the response model 21 is a model designed based on the characteristics of the electric motor 100. Therefore, the response model 21 derives the rotational position that can be achieved by driving the electric motor 100 as the target position ⁇ r. In other words, the response model 21 derives the target position ⁇ r within the range that the electric motor 100 can output at that time.
  • the target speed derivation unit 22 derives a target speed ⁇ r, which is a target for the rotational speed of the rotor 101 of the electric motor 100, based on the target position ⁇ r. For example, the target speed derivation unit 22 derives the target speed ⁇ r by time-differentiating the target position ⁇ r. As described above, the target position ⁇ r is a value that corresponds to the required hydraulic pressure Prq. The target speed derivation unit 22 then derives the target speed ⁇ r based on this target position ⁇ r. Furthermore, the target position ⁇ r is a value that can be achieved by driving the electric motor 100. Therefore, the target speed derivation unit 22 derives the target speed ⁇ r according to the required hydraulic pressure Prq within the range that the electric motor 100 can output.
  • the command torque derivation unit 23 derives a torque command value TR*, which is a command value for the torque of the electric motor 100, based on the target position ⁇ r and the estimated rotational position ⁇ e, which is an estimate of the rotational position of the rotor 101 derived by the rotational position estimation unit 29. For example, the command torque derivation unit 23 derives the torque command value TR* by feedback control using the deviation between the target position ⁇ r and the estimated rotational position ⁇ e as an input.
  • the current command value derivation unit 24 derives a d-axis current command value Idc, which is the command value for the current of the d-axis component, and a q-axis current command value Iqc, which is the command value for the current of the q-axis component, based on the torque command value TR*.
  • the current command value derivation unit 24 obtains the d-axis current command value Idc, which is the current of the d-axis component according to the torque command value TR*, and the q-axis current command value Iqc, which is the current of the q-axis component.
  • the voltage command value derivation unit 25 derives a d-axis voltage command value Vdc, which is a command value for the voltage of the d-axis component, and a q-axis voltage command value Vqc, which is a command value for the voltage of the q-axis component.
  • the voltage command value derivation unit 25 derives the d-axis voltage command value Vdc and the q-axis voltage command value Vqc based on the d-axis current command value Idc and the q-axis current command value Iqc, the d-axis current Id and the q-axis current Iq, and the estimated rotational speed (estimated value of electrical angular velocity) ⁇ e, which is an estimated value of the rotational speed of the electric motor 100.
  • the d-axis voltage command value Vdc corresponds to the "first axis voltage command value”
  • the q-axis voltage command value Vqc corresponds to the "second axis voltage command value”.
  • the detailed functional configuration of the voltage command value derivation unit 25 will be described later.
  • the two-phase/three-phase converter 26 converts the d-axis voltage command value Vdc and the q-axis voltage command value Vqc into a U-phase command voltage VU*, a V-phase command voltage VV*, and a W-phase command voltage VW* based on the estimated rotational position (estimated value of electrical angle) ⁇ e.
  • the U-phase command voltage VU* is a command value for the voltage applied to the U-phase coil 105.
  • the V-phase command voltage VV* is a command value for the voltage applied to the V-phase coil 106.
  • the W-phase command voltage VW* is a command value for the voltage applied to the W-phase coil 107.
  • the U-phase command voltage VU*, the V-phase command voltage VV*, and the W-phase command voltage VW* correspond to the command values for the three-phase coils 105, 106, and 107 of the electric motor 100.
  • the detailed functional configuration of the two-phase/three-phase converter 26 will be described later.
  • the three-phase/two-phase conversion unit 27 receives as input the U-phase current IU, which is the current flowing through the U-phase coil 105, the V-phase current IV, which is the current flowing through the V-phase coil 106, and the W-phase current IW, which is the current flowing through the W-phase coil 107. Based on the estimated rotation position (estimated electrical angle) ⁇ e, the three-phase/two-phase conversion unit 27 converts the U-phase current IU, V-phase current IV, and W-phase current IW into a d-axis current Id, which is the d-axis component of the current, and a q-axis current Iq, which is the q-axis component of the current.
  • the rotational speed estimation unit 28 derives the axis phase deviation d ⁇ between the direction of the actual d-axis and the direction of the estimated d-axis.
  • the d-axis current Id and q-axis current Iq derived by the three-phase/two-phase conversion unit 27 are input to the rotational speed estimation unit 28.
  • the d-axis voltage command value Vdc and q-axis voltage command value Vqc derived by the voltage command value derivation unit 25 are input to the rotational speed estimation unit 28.
  • the rotational speed estimation unit 28 derives the axis phase deviation d ⁇ , for example, by the extended induced voltage method.
  • the rotational speed estimation unit 28 derives the axis phase deviation d ⁇ based on the d-axis current Id and q-axis current Iq, and the d-axis voltage command value Vdc and q-axis voltage command value Vqc.
  • the rotational speed estimation unit 28 derives an estimated rotational speed (estimated value of electrical angular velocity) ⁇ e, which is an estimate of the rotational speed of the electric motor 100.
  • the rotational speed estimation unit 28 derives the estimated rotational speed ⁇ e, for example, by performing proportional-integral control so that the axial phase deviation d ⁇ becomes the target value "0".
  • the rotational speed estimation unit 28 corresponds to an "acquisition unit” that acquires the rotational speed estimate of the electric motor 100.
  • the rotational position estimation unit 29 acquires an estimated rotational position (estimated electrical angle) ⁇ e, which is an estimate of the rotational position of the electric motor 100.
  • the rotational position estimation unit 29 derives the estimated rotational position ⁇ e, for example, by integrating the estimated rotational speed ⁇ e derived by the rotational speed estimation unit 28.
  • the voltage command value derivation unit 25 has a first d-axis calculator 51, a second d-axis calculator 52, a d-axis integrator 53, a d-axis resistance value integrator 54, a d-axis inductance integrator 55, a third d-axis calculator 56, and a fourth d-axis calculator 57.
  • the first d-axis calculator 51 derives the d-axis current deviation ⁇ Id, which is the deviation between the d-axis current command value Idc and the d-axis current Id. Specifically, the first d-axis calculator 51 derives the value obtained by subtracting the d-axis current Id from the d-axis current command value Idc as the d-axis current deviation ⁇ Id.
  • the second d-axis calculator 52 derives the product of the d-axis current deviation ⁇ Id and the response frequency ⁇ c of the electric motor 100 as a derived value ⁇ IdA.
  • the d-axis integrator 53 derives the d-axis integrated value Inpd by integrating the derived value ⁇ IdA of the second d-axis calculator 52. Specifically, the d-axis integrator 53 derives the sum of the previous value of the d-axis integrated value Inpd and the derived value ⁇ IdA as the latest value of the d-axis integrated value Inpd.
  • the d-axis resistance value integrator 54 derives the product of the resistance value R of the electric motor 100 and the d-axis integrated value Inpd as the d-axis reference voltage Vdb.
  • the d-axis inductance integrator 55 derives the product of the derived value ⁇ IdA of the second d-axis calculator 52 and the d-axis inductance Ld of the electric motor 100 as a calculated value Vde.
  • the third d-axis calculator 56 derives the sum of the d-axis reference voltage Vdb and the calculated value Vde as a virtual d-axis command voltage value VdA.
  • the fourth d-axis calculator 57 derives the d-axis voltage command value Vdc based on the d-axis command voltage virtual value VdA.
  • the fourth d-axis calculator 57 derives the sum of the d-axis interference voltage compensation value Vdi derived by a non-interference voltage derivation unit 70 (described later) and the d-axis command voltage virtual value VdA as the d-axis voltage command value Vdc. That is, the fourth d-axis calculator 57 constitutes an example of a "command value correction unit.”
  • the voltage command value derivation unit 25 has a first q-axis calculator 61, a second q-axis calculator 62, a q-axis integrator 63, a q-axis resistance value integrator 64, a q-axis inductance integrator 65, a third q-axis calculator 66, and a fourth q-axis calculator 67.
  • the first q-axis calculator 61 derives the q-axis current deviation ⁇ Iq, which is the deviation between the q-axis current command value Iqc and the q-axis current Iq. Specifically, the first q-axis calculator 61 derives the q-axis current deviation ⁇ Iq by subtracting the q-axis current Iq from the q-axis current command value Iqc.
  • the second q-axis calculator 62 derives the product of the q-axis current deviation ⁇ Iq and the response frequency ⁇ c of the electric motor 100 as a derived value ⁇ IqA.
  • the q-axis integrator 63 derives the q-axis integrated value Inpq by integrating the derived value ⁇ IqA of the second q-axis calculator 62. Specifically, the q-axis integrator 63 derives the sum of the previous value of the q-axis integrated value Inpq and the derived value ⁇ IqA as the latest value of the q-axis integrated value Inpq.
  • the q-axis resistance value integrator 64 derives the product of the resistance value R of the electric motor 100 and the q-axis integrated value Inpq as the q-axis reference voltage Vqb.
  • the q-axis inductance integrator 65 derives the product of the derived value ⁇ IqA of the second q-axis calculator 62 and the q-axis inductance Lq of the electric motor 100 as a calculated value Vqe.
  • the third q-axis calculator 66 derives the sum of the q-axis reference voltage Vqb and the calculated value Vqe as a virtual q-axis command voltage value VqA.
  • the fourth q-axis calculator 67 derives a q-axis voltage command value Vqc based on the q-axis command voltage provisional value VqA.
  • the fourth q-axis calculator 67 derives the sum of a q-axis interference voltage compensation value Vqi derived by a non-interference voltage derivation unit 70 (described later) and the q-axis command voltage provisional value VqA as the q-axis voltage command value Vqc. That is, the fourth q-axis calculator 67 constitutes an example of a "command value correction unit.”
  • the voltage command value derivation unit 25 has a non-interference voltage derivation unit 70.
  • the non-interference voltage derivation unit 70 includes a first non-interference voltage derivation unit 71 and a second non-interference voltage derivation unit 72.
  • the first non-interference voltage derivation unit 71 derives a d-axis interference voltage compensation value Vdi for canceling the interference voltage on the d-axis generated by the current of the q-axis component.
  • the second non-interference voltage derivation unit 72 derives a q-axis interference voltage compensation value Vqi for canceling the interference voltage on the q-axis generated by the current of the d-axis component.
  • the d-axis interference voltage compensation value Vdi corresponds to the "first axis interference voltage compensation value”
  • the q-axis interference voltage compensation value Vqi corresponds to the "second axis interference voltage compensation value.”
  • the first non-interference voltage derivation unit 71 derives the product of the q-axis current Iq, the q-axis inductance Lq of the electric motor 100, and the rotation speed of the electric motor 100 as the d-axis interference voltage compensation value Vdi. At this time, the first non-interference voltage derivation unit 71 uses the target speed ⁇ r or the estimated rotation speed ⁇ e as the rotation speed of the electric motor 100. For example, when the rate of change of the required hydraulic pressure Prq is less than a predetermined rate of change judgment value, the first non-interference voltage derivation unit 71 derives the d-axis interference voltage compensation value Vdi using the target speed ⁇ r.
  • the first non-interference voltage derivation unit 71 derives the d-axis interference voltage compensation value Vdi using the estimated rotation speed ⁇ e. Specifically, when the rate of change of the required hydraulic pressure Prq is less than the rate of change judgment value, the first non-interference voltage derivation unit 71 derives the product of the q-axis current Iq, the q-axis inductance Lq, and the target speed ⁇ r as the d-axis interference voltage compensation value Vdi.
  • the first non-interference voltage derivation unit 71 derives the product of the q-axis current Iq, the q-axis inductance Lq, and the estimated rotation speed ⁇ e as the d-axis interference voltage compensation value Vdi.
  • the second non-interference voltage derivation unit 72 derives the product of the d-axis current Id, the d-axis inductance Ld of the electric motor 100, and the rotation speed of the electric motor 100 as the q-axis interference voltage compensation value Vqi. At this time, the second non-interference voltage derivation unit 72 uses the target speed ⁇ r or the estimated rotation speed ⁇ e as the rotation speed of the electric motor 100. For example, when the rate of change of the required hydraulic pressure Prq is less than the above-mentioned rate of change judgment value, the second non-interference voltage derivation unit 72 derives the q-axis interference voltage compensation value Vqi using the target speed ⁇ r.
  • the second non-interference voltage derivation unit 72 derives the q-axis interference voltage compensation value Vqi using the estimated rotation speed ⁇ e. Specifically, when the rate of change of the required hydraulic pressure Prq is less than the rate of change judgment value, the second non-interference voltage derivation unit 72 derives the product of the d-axis current Id, the d-axis inductance Ld, and the target speed ⁇ r as the q-axis interference voltage compensation value Vqi.
  • the second non-interference voltage derivation unit 72 derives the product of the d-axis current Id, the d-axis inductance Ld, and the estimated rotation speed ⁇ e as the q-axis interference voltage compensation value Vqi.
  • a change rate judgment value is set as a criterion for judging whether or not high-speed rotation of the electric motor 100 is required.
  • the target speed ⁇ r is less likely to deviate from the actual value of the rotation speed of the electric motor 100 than when the electric motor 100 is driven at low speed. Therefore, in this embodiment, when the rate of change of the required hydraulic pressure Prq is less than the change rate judgment value, it can be judged that high-speed rotation of the electric motor 100 is not required, and it can be estimated that there is no deviation between the target speed ⁇ r and the actual value of the rotation speed of the electric motor 100.
  • the non-interference voltage derivation unit 70 derives the d-axis interference voltage compensation value Vdi and the q-axis interference voltage compensation value Vqi based on the target speed ⁇ r.
  • the rate of change of the required hydraulic pressure Prq is equal to or greater than the rate of change judgment value, it can be determined that high speed rotation of the electric motor 100 is required, and it can be estimated that there is a deviation between the target speed ⁇ r and the actual value of the rotation speed of the electric motor 100. Therefore, the non-interference voltage derivation unit 70 derives the d-axis interference voltage compensation value Vdi and the q-axis interference voltage compensation value Vqi based on the estimated rotation speed ⁇ e.
  • the two-phase/three-phase conversion unit 26 includes a rotational position correction unit 81 and a command value conversion unit 85 .
  • the rotational position correction unit 81 includes a correction amount derivation unit 82 and a calculator 83 .
  • the correction amount derivation unit 82 derives the product of the rotation speed of the electric motor 100 and the time difference TL as the rotation position correction amount ⁇ .
  • the time difference TL is the time difference between the execution timing of the conversion process by the command value conversion unit 85 and the timing at which the inverter 11 operates based on the U-phase command voltage VU*, the V-phase command voltage VV*, and the W-phase command voltage VW* derived by the conversion process.
  • the conversion process by the command value conversion unit 85 is a process of converting the d-axis voltage command value Vdc and the q-axis voltage command value Vqc into the U-phase command voltage VU*, the V-phase command voltage VV*, and the W-phase command voltage VW*.
  • the time difference TL is based on the response speed of the inverter 11, etc. Therefore, the time difference TL can be set by experiments, simulations, etc.
  • the correction amount deriver 82 uses the target speed ⁇ r or the estimated rotational speed ⁇ e as the rotational speed of the electric motor 100. For example, when the rate of change of the required hydraulic pressure Prq is less than the rate of change judgment value, the correction amount deriver 82 uses the target speed ⁇ r to derive the rotational position correction amount ⁇ . On the other hand, when the rate of change of the required hydraulic pressure Prq is equal to or greater than the rate of change judgment value, the correction amount deriver 82 uses the estimated rotational speed ⁇ e to derive the rotational position correction amount ⁇ .
  • the correction amount deriver 82 derives the product of the target speed ⁇ r and the time difference TL as the rotational position correction amount ⁇ .
  • the correction amount deriver 82 derives the product of the estimated rotational speed ⁇ e and the time difference TL as the rotational position correction amount ⁇ .
  • the change rate judgment value is set as a criterion for judging whether or not high-speed rotation of the electric motor 100 is required. Therefore, in this embodiment, if the change rate of the required hydraulic pressure Prq is less than the change rate judgment value, it can be judged that high-speed rotation of the electric motor 100 is not required, and it can be estimated that there is no deviation between the target speed ⁇ r and the actual value of the rotation speed of the electric motor 100. Therefore, the correction amount derivation unit 82 derives the rotation position correction amount ⁇ based on the target speed ⁇ r.
  • the correction amount derivation unit 82 derives the rotation position correction amount ⁇ based on the estimated rotation speed ⁇ e.
  • the calculator 83 derives the sum of the current estimated rotational position ⁇ e(n) and the rotational position correction amount ⁇ as the corrected estimated rotational position ⁇ e(n+1).
  • the estimated rotational position ⁇ e(n+1) is the rotational position of the electric motor 100 taking into account the time difference between the execution timing of the conversion process and the timing at which the inverter 11 operates based on the command values VU*, VV*, VW* derived by the conversion process.
  • the rotational position correction unit 81 can correct the deviation amount of the rotational position of the electric motor 100 caused by the time difference between the execution timing of the conversion process and the timing at which the inverter 11 operates based on the command values VU*, VV*, VW* derived by the conversion process, based on the target speed.
  • the command value converter 85 performs a conversion process to convert the d-axis voltage command value Vdc and the q-axis voltage command value Vqc into a U-phase command voltage VU*, a V-phase command voltage VV*, and a W-phase command voltage VW* based on the estimated rotational position ⁇ e(n+1).
  • the d-axis voltage command value Vdc and the q-axis voltage command value Vqc are converted into a U-phase command voltage VU*, a V-phase command voltage VV*, and a W-phase command voltage VW* based on the rotational position of the electric motor 100.
  • a predetermined time difference occurs between the execution timing of the conversion process and the timing at which the inverter 11 operates based on the command values VU*, VV*, and VW* derived by the conversion process. Therefore, in the conversion process, the command values are converted using the rotational position of the electric motor 100 corrected in consideration of the time difference.
  • the rotational position of the electric motor 100 can be corrected according to the time difference using the rotational speed of the electric motor 100.
  • the rotational speed used is the time-differentiated value of the detection value of the sensor that detects the rotational position of the electric motor 100, or the time-differentiated value of the estimated rotational position ⁇ e, which is an estimate of the rotational position derived using the extended induced voltage method. In this case, if the accuracy of the detection value or estimate is poor, the detection value or estimate of the rotational speed may deviate from the actual value of the rotational speed of the electric motor 100.
  • the control device 10 corrects the rotational position of the electric motor 100 in accordance with the time difference.
  • the target speed ⁇ r is derived in accordance with the required hydraulic pressure Prq, which is a required value for the electric motor 100. Therefore, even if the accuracy of the detected value or estimated value of the rotational position is poor, the target speed ⁇ r is not affected. As a result, the target speed ⁇ r is unlikely to deviate from the actual value of the rotational speed of the electric motor 100. This makes it possible to perform the correction with high accuracy by correcting the rotational position of the electric motor 100 using the target speed ⁇ r.
  • the control device 10 corrects the rotational position of the electric motor 100 using the estimated rotational speed ⁇ e instead of the target speed ⁇ r.
  • the rotational position of the electric motor 100 can be corrected with high accuracy.
  • the control device 10 therefore uses the target speed ⁇ r when deriving the d-axis interference voltage compensation value Vdi and the q-axis interference voltage compensation value Vqi. As described above, even if the accuracy of the detected value or estimated value of the rotational position is poor, the target speed ⁇ r is not affected. Therefore, by deriving the d-axis interference voltage compensation value Vdi and the q-axis interference voltage compensation value Vqi using the target speed ⁇ r, the derivation accuracy can be increased. Therefore, the control device 10 can increase the control accuracy of the electric motor 100.
  • the control device 10 uses the estimated rotation speed ⁇ e instead of the target speed ⁇ r to derive the d-axis interference voltage compensation value Vdi and the q-axis interference voltage compensation value Vqi. Therefore, by selectively using the target speed ⁇ r and the estimated rotation speed ⁇ e, the accuracy of deriving the d-axis interference voltage compensation value Vdi and the q-axis interference voltage compensation value Vqi can be improved.
  • the target speed ⁇ r and the estimated rotation speed ⁇ e were used to derive the d-axis interference voltage compensation value Vdi and the q-axis interference voltage compensation value Vqi, but this is not limited to the above.
  • the d-axis interference voltage compensation value Vdi and the q-axis interference voltage compensation value Vqi may be derived using the target speed ⁇ r regardless of the rate of change of the required hydraulic pressure Prq.
  • the command value conversion unit 85 performs the conversion process using the corrected estimated rotation speed ⁇ e(n+1), it is not necessary to use the d-axis interference voltage compensation value Vdi and the q-axis interference voltage compensation value Vqi when deriving the d-axis voltage command value Vdc and the q-axis voltage command value Vqc.
  • the target speed ⁇ r and the estimated rotational speed ⁇ e are used interchangeably, but this is not limited to the above.
  • the estimated rotational speed ⁇ e(n+1) may be derived using the target speed ⁇ r regardless of the rate of change of the required hydraulic pressure Prq.
  • the command value conversion unit 85 may perform the conversion process using the current estimated rotational position ⁇ e.
  • the q-axis may be the first axis
  • the d-axis may be the second axis
  • the voltage command values Vqc and Vdc may be derived, and the electric motor 100 may be driven by operating the inverter 11 based on the voltage command values Vqc and Vdc.
  • the electric motor 100 may be provided with a rotation angle sensor 200 that detects the rotational position of the electric motor 100.
  • the control device 10 has an acquisition unit that acquires the detected value of the rotational speed of the electric motor 100. Therefore, the control device 10 can use the detected value of the rotational position of the electric motor 100 based on the detected value of the rotation angle sensor instead of the estimated rotational position ⁇ e.
  • the control device 10 can also use the value obtained by time-differentiating the detected value of the rotational position (i.e., the detected value of the rotational speed) instead of the estimated rotational speed ⁇ e.
  • the target speed ⁇ r and the estimated rotation speed ⁇ e are differentiated using the rate of change of the required hydraulic pressure Prq, but this is not limited to the above.
  • the target speed ⁇ r and the estimated rotation speed ⁇ e may be differentiated by comparing the target speed ⁇ r with a target speed determination value.
  • the required hydraulic pressure Prq is input to the control device 10 as the required value for the output of the electric motor 100, but this is not limited to the above.
  • the required value for the rotational position of the electric motor 100 may be input to the control device as the required value for the electric motor 100, or the required value for torque may be input to the control device as the required value for the electric motor 100.
  • the control device 10 is provided with a response model 21 that derives a rotational position that can be realized by driving the electric motor 100 as the target position ⁇ r, but the control device may not be provided with the response model 21.
  • the control device may be provided with a conversion unit that converts the required hydraulic pressure Prq (required value for the electric motor 100) into a target position.
  • the conversion unit derives the target position regardless of whether it is possible to realize it by driving the electric motor 100.
  • the target speed derivation unit derives a provisional value of the target speed by time differentiating the target position. Then, the target speed derivation unit determines whether the provisional value of the target speed is a value within a range that the electric motor 100 can output.
  • the target speed derivation unit derives the provisional value as the target speed ⁇ r.
  • the target speed derivation unit derives the target speed ⁇ r by correcting the provisional value so that it becomes a value within the range that the electric motor 100 can output. This allows for the same effects and benefits as the above embodiment to be achieved.
  • the electric motor may be a synchronous motor having coils of four or more phases as long as the electric motor is a synchronous motor having coils of multiple phases.
  • the control device may be configured as a circuit including one or more processors operating according to a computer program, one or more dedicated hardware circuits such as dedicated hardware for performing at least some of the various processes, or a combination of these.
  • Dedicated hardware may include, for example, an ASIC, which is an application specific integrated circuit.
  • the processor includes a CPU and memory such as RAM and ROM, and the memory stores program code or instructions configured to cause the CPU to perform the process.
  • the memory i.e., the storage medium, includes any available medium accessible by a general-purpose or dedicated computer.
  • the expression “at least one” used in this specification means “one or more” of the desired options.
  • the expression “at least one” used in this specification means “only one option” or “both of two options” if the number of options is two.
  • the expression “at least one” used in this specification means “only one option” or “any combination of two or more options” if the number of options is three or more.

Abstract

This control device comprises: a target speed derivation unit that derives a target speed ωr of an electric motor, within an available output range of the electric motor, in accordance with a required value; a command value conversion unit 85 that executes a conversion process for converting a d-axis voltage command value Vdc and a q-axis voltage command value Vqc into a U-phase command voltage VU*, a V-phase command voltage VV*, and a W-phase command voltage VW*; and a rotational position correction unit 81 that corrects, on the basis of the target speed ωr, a deviation amount of a rotational position caused by a time difference between a timing at which the conversion process is executed and a timing at which an inverter operates on the basis of the command values VU*, VV*, VW* derived by the conversion process. The command value conversion unit 85 executes the conversion process using a rotational position θe(n+1) corrected by the rotational position correction unit 81.

Description

電気モータ制御装置Electric Motor Control Unit
 本発明は、電気モータを制御する電気モータ制御装置に関する。 The present invention relates to an electric motor control device that controls an electric motor.
 特許文献1は、3相(U相、V相、W相)のコイルを有する同期モータを駆動させるモータ制御装置を開示している。当該制御装置は、ベクトル制御の回転座標のd軸の電圧の指令値およびq軸の電圧の指令値を、同期モータの回転位置に基づいて、U相の電圧指令値、V相の電圧指令値およびW相の電圧指令値に変換する。そして、各相の電圧指令値に基づいてインバータが動作することにより、同期モータが駆動する。 Patent Document 1 discloses a motor control device that drives a synchronous motor having coils of three phases (U-phase, V-phase, and W-phase). The control device converts the voltage command value of the d-axis and the voltage command value of the q-axis of the vector control rotation coordinate system into a voltage command value of the U-phase, a voltage command value of the V-phase, and a voltage command value of the W-phase based on the rotational position of the synchronous motor. The synchronous motor is then driven by an inverter operating based on the voltage command values of each phase.
特開2009-254117号公報JP 2009-254117 A
 同期モータの回転位置を取得する手法としては、同期モータの回転位置を検出する回転角センサの検出信号に基づいて回転位置を検出する手法、および、拡張誘起電圧方式を利用して回転位置を推定する手法などが知られている。 Known methods for obtaining the rotational position of a synchronous motor include detecting the rotational position based on the detection signal of a rotational angle sensor that detects the rotational position of the synchronous motor, and estimating the rotational position using the extended induced voltage method.
 しかしながら、回転角センサの検出精度が低い場合では、回転位置の検出値が実値と乖離するおそれがある。また、拡張誘起電圧方式を利用して回転位置を推定する場合も、同期モータを低速で駆動させていると、回転位置の推定精度が悪化するおそれがある。このように回転位置の検出値が実値と乖離したり、回転位置の推定精度が悪化したりすると、回転位置の検出値や推定値の精度が低いことが各相の電圧指令値に影響するため、同期モータの制御精度が悪化するおそれがある。 However, if the detection accuracy of the rotation angle sensor is low, the detected value of the rotation position may deviate from the actual value. Also, when the extended induced voltage method is used to estimate the rotation position, the estimation accuracy of the rotation position may deteriorate if the synchronous motor is driven at a low speed. If the detected value of the rotation position deviates from the actual value or the estimation accuracy of the rotation position deteriorates in this way, the low accuracy of the detected and estimated values of the rotation position will affect the voltage command values of each phase, and the control accuracy of the synchronous motor may deteriorate.
 上記課題を解決するための電気モータ制御装置は、電気モータの出力に対する要求値および当該電気モータの複数相のコイルにインバータから供給された電流に基づいて、当該複数相のコイルに対する指令値を生成し、当該指令値に基づいて前記インバータを動作させることにより、前記電気モータを制御する装置である。この電気モータ制御装置は、前記電気モータの回転速度の目標である目標速度を、前記電気モータが出力可能な範囲内で前記要求値に応じて導出する目標速度導出部と、ベクトル制御の回転座標の電圧ベクトルの第1軸の成分の電圧の指令値である第1軸成分の電圧の指令値、および、前記第1軸と直交する第2軸の成分の電圧の指令値である第2軸成分の電圧の指令値を、前記電気モータの回転位置に基づいて、前記複数相のコイルに対する前記指令値に変換する変換処理を実行する指令値変換部と、前記変換処理の実行タイミングと、当該変換処理によって導出された前記指令値に基づいて前記インバータが動作するタイミングと、の時差に起因した前記電気モータの回転位置のずれ量の補正を、前記目標速度に基づいて行う回転位置補正部と、を備えている。前記指令値変換部は、前記回転位置補正部によって補正された前記回転位置を用いて前記変換処理を実行する。 An electric motor control device for solving the above problem is a device that generates command values for the coils of multiple phases of the electric motor based on a required value for the output of the electric motor and a current supplied from an inverter to the coils of the multiple phases of the electric motor, and controls the electric motor by operating the inverter based on the command values. This electric motor control device includes a target speed derivation unit that derives a target speed that is a target for the rotational speed of the electric motor according to the required value within a range that the electric motor can output, a command value conversion unit that performs a conversion process to convert a first axis component voltage command value that is a command value for the voltage of a first axis component of a voltage vector of a rotating coordinate system of vector control, and a second axis component voltage command value that is a command value for the voltage of a second axis component orthogonal to the first axis, into command values for the coils of the multiple phases based on the rotational position of the electric motor, and a rotational position correction unit that performs correction of a deviation in the rotational position of the electric motor caused by a time difference between the execution timing of the conversion process and the timing at which the inverter operates based on the command value derived by the conversion process, based on the target speed. The command value conversion unit performs the conversion process using the rotational position corrected by the rotational position correction unit.
 変換処理では、電気モータの回転位置に基づいて、第1軸成分の電圧の指令値および第2軸成分の電圧の指令値が、電気モータの複数相のコイルに対応する指令値に変換される。変換処理によって導出された指令値に基づいてインバータが動作することにより、電気モータが駆動する。そのため、変換処理の実行タイミングと、変換処理によって導出された指令値に基づいてインバータが動作するタイミングとの間に所定の時差が発生する。変換処理においては、当該時差を考慮して補正された電気モータの回転位置を用いて、指令値の変換を行うことが好ましい。 In the conversion process, the command value for the voltage of the first axis component and the command value for the voltage of the second axis component are converted into command values corresponding to the coils of the multiple phases of the electric motor based on the rotational position of the electric motor. The electric motor is driven by the inverter operating based on the command values derived by the conversion process. Therefore, a certain time difference occurs between the timing at which the conversion process is executed and the timing at which the inverter operates based on the command values derived by the conversion process. In the conversion process, it is preferable to convert the command values using the rotational position of the electric motor corrected to take into account this time difference.
 ここで、時差に応じた電気モータの回転位置の補正は、電気モータの回転速度を用いて行うことができる。一般的に、当該回転速度として、電気モータの回転位置を検出するセンサの検出値を時間微分した値、または、拡張誘起電圧方式を利用して導出した回転速度の推定値を用いる。この場合、当該検出値や推定値の精度が悪いと、当該回転速度の検出値や推定値が、電気モータの回転速度の実値から乖離しているおそれがある。したがって、このような回転速度を用いて電気モータの回転位置を補正しても、その補正の精度が高いとは言いがたい。 The rotational position of the electric motor can be corrected according to the time difference using the rotational speed of the electric motor. Generally, the rotational speed is determined by time-differentiating the detection value of a sensor that detects the rotational position of the electric motor, or by using the extended induced voltage method to estimate the rotational speed. In this case, if the detection value or estimate is not accurate, there is a risk that the detection value or estimate of the rotational speed may deviate from the actual rotational speed of the electric motor. Therefore, even if the rotational position of the electric motor is corrected using such a rotational speed, it is difficult to say that the correction is highly accurate.
 そこで、上記電気モータ制御装置は、時差に応じて電気モータの回転位置を補正する場合、上記の目標速度が用いられる。当該目標速度は、電気モータの出力に対する要求値に応じて導出されたものである。そのため、回転位置の検出値や推定値の精度が悪い場合であっても、当該目標速度はそうした影響を受けない。その結果、当該目標速度は、電気モータの回転速度の実値から乖離しにくい。これにより、当該目標速度を用いて電気モータの回転位置を補正することにより、その補正を精度良く行うことができる。 The electric motor control device uses the target speed when correcting the rotational position of the electric motor in accordance with the time difference. The target speed is derived in accordance with the required value for the output of the electric motor. Therefore, even if the accuracy of the detected or estimated value of the rotational position is poor, the target speed is not affected. As a result, the target speed is less likely to deviate from the actual value of the rotational speed of the electric motor. This makes it possible to perform the correction with high accuracy by correcting the rotational position of the electric motor using the target speed.
 したがって、上記電気モータ制御装置によれば、電気モータの制御精度を高くできる。
 上記課題を解決するための電気モータ制御装置は、電気モータの出力に対する要求値および当該電気モータの複数相のコイルにインバータから供給された電流に基づいて、当該複数相のコイルに対する指令値を生成し、当該指令値に基づいて前記インバータを動作させることにより、前記電気モータを制御する装置である。この電気モータ制御装置は、前記電気モータの回転速度の目標である目標速度を、前記電気モータが出力可能な範囲内で前記要求値に応じて導出する目標速度導出部と、ベクトル制御の回転座標の電流ベクトルの第1軸の成分の電流である第1軸成分の電流によって発生する前記第1軸と直交する第2軸上の干渉電圧を相殺するための第2軸干渉電圧補償値と、前記第2軸の成分の電流である第2軸成分の電流によって発生する前記第1軸上の干渉電圧を相殺するための第1軸干渉電圧補償値とを、前記目標速度に基づいて導出する非干渉電圧導出部と、を備えている。そして、電気モータ制御装置は、前記第1軸干渉電圧補償値および前記第2軸干渉電圧補償値に基づいて、前記電気モータを制御する。
Therefore, the electric motor control device can improve the control accuracy of the electric motor.
The electric motor control device for solving the above problem generates command values for coils of multiple phases of the electric motor based on a required value for the output of the electric motor and currents supplied from an inverter to the coils of the multiple phases of the electric motor, and controls the electric motor by operating the inverter based on the command values. The electric motor control device includes a target speed derivation unit that derives a target speed, which is a target for the rotational speed of the electric motor, within a range that the electric motor can output, according to the required value, and a non-interference voltage derivation unit that derives, based on the target speed, a second-axis interference voltage compensation value for canceling an interference voltage on a second axis orthogonal to the first axis that is generated by a current of a first-axis component that is a current of a first-axis component of a current vector of a rotating coordinate system of vector control, and a first-axis interference voltage compensation value for canceling an interference voltage on the first axis that is generated by a current of a second-axis component that is a current of the second-axis component. The electric motor control device controls the electric motor based on the first-axis interference voltage compensation value and the second-axis interference voltage compensation value.
 一般的に、第1軸干渉電圧補償値および第2軸干渉電圧補償値は、電気モータの回転位置を検出するセンサの検出値を時間微分した値である回転速度の検出値、または、拡張誘起電圧方式を利用して導出した回転速度の推定値を用いて導出される。この場合、当該検出値や推定値の精度が悪い場合、当該回転速度の検出値や推定値が、電気モータの回転速度の実値から乖離しているおそれがある。したがって、回転速度の検出値や推定値を用いて第1軸干渉電圧補償値および第2軸干渉電圧補償値を導出した場合、その導出の精度が高いとは言いがたい。 Generally, the first axis interference voltage compensation value and the second axis interference voltage compensation value are derived using the detected value of the rotation speed, which is the time-differentiated value of the detection value of a sensor that detects the rotation position of the electric motor, or an estimated value of the rotation speed derived using the extended induced voltage method. In this case, if the detected value or estimated value is poor in accuracy, the detected value or estimated value of the rotation speed may deviate from the actual value of the rotation speed of the electric motor. Therefore, if the first axis interference voltage compensation value and the second axis interference voltage compensation value are derived using the detected value or estimated value of the rotation speed, it is difficult to say that the accuracy of the derivation is high.
 そこで、上記電気モータ制御装置では、第1軸干渉電圧補償値および第2軸干渉電圧補償値を導出する場合、上記の目標速度が用いられる。当該目標速度は、電気モータに対する要求値に応じて導出されたものである。そのため、回転位置の検出値や推定値の精度が悪い場合であっても、当該目標速度はそうした影響を受けない。その結果、当該目標速度は、電気モータの回転速度の実値から乖離しにくい。これにより、当該目標速度を用いて第1軸干渉電圧補償値および第2軸干渉電圧補償値を導出することにより、その導出精度を高くできる。 The electric motor control device uses the above target speed when deriving the first axis interference voltage compensation value and the second axis interference voltage compensation value. The target speed is derived according to the required value for the electric motor. Therefore, even if the accuracy of the detected value or estimated value of the rotational position is poor, the target speed is not affected. As a result, the target speed is less likely to deviate from the actual value of the rotational speed of the electric motor. This makes it possible to improve the accuracy of the derivation by deriving the first axis interference voltage compensation value and the second axis interference voltage compensation value using the target speed.
 したがって、上記電気モータ制御装置によれば、電気モータの制御精度を高くできる。 Therefore, the electric motor control device described above can improve the control accuracy of the electric motor.
図1は、実施形態の電気モータ制御装置と、同電気モータ制御装置の制御対象である電気モータとを示す概略構成図である。FIG. 1 is a schematic diagram showing an electric motor control device according to an embodiment and an electric motor that is an object of control by the electric motor control device. 図2は、同電気モータ制御装置の電圧指令値導出部の機能構成を示すブロック図である。FIG. 2 is a block diagram showing the functional configuration of a voltage command value derivation unit of the electric motor control device. 図3は、同電気モータ制御装置の2相/3相変換部の機能構成を示すブロック図である。FIG. 3 is a block diagram showing the functional configuration of a two-phase/three-phase conversion unit of the electric motor control device.
 以下、電気モータ制御装置の一実施形態を図1~図3に従って説明する。
 図1は、電気モータ制御装置10と、電気モータ100と、モータ電源110とを図示している。
An embodiment of an electric motor control device will be described below with reference to FIGS.
FIG. 1 illustrates an electric motor controller 10 , an electric motor 100 , and a motor power supply 110 .
 <電気モータ>
 電気モータ100は、永久磁石が設けられているロータ101を備えている。電気モータ100は、永久磁石がロータ101の内部に埋め込まれている埋込磁石型の同期モータである。電気モータ100は、三相コイルとして、U相コイル105、V相コイル106およびW相コイル107を備えている。電気モータ100は、例えば、車載のブレーキ装置においてブレーキ液を吐出する電動シリンダの動力源として用いられる。
<Electric motor>
The electric motor 100 includes a rotor 101 provided with a permanent magnet. The electric motor 100 is an embedded magnet type synchronous motor in which the permanent magnet is embedded inside the rotor 101. The electric motor 100 includes a U-phase coil 105, a V-phase coil 106, and a W-phase coil 107 as three-phase coils. The electric motor 100 is used, for example, as a power source for an electric cylinder that discharges brake fluid in an on-vehicle brake device.
 <電気モータ制御装置>
 電気モータ制御装置10について説明する。本明細書では、電気モータ制御装置10を単に「制御装置10」と記載する。
<Electric motor control device>
A description will now be given of the electric motor control device 10. In this specification, the electric motor control device 10 will be referred to simply as the "control device 10".
 制御装置10は、d軸の成分の電流およびq軸の成分の電流を制御する駆動制御によって電気モータ100を駆動させる。d軸およびq軸とは、ベクトル制御の回転座標の制御軸である。すなわち、d軸およびq軸は、電流ベクトルの制御軸であり、電圧ベクトルの制御軸でもある。d軸は、永久磁石の磁束軸の方向に延びる制御軸である。q軸は、トルクの方向に延びる制御軸であって、d軸とは直交している。本実施形態では、d軸が「第1軸」に対応し、q軸が「第2軸」に対応する。また、d軸の成分が「第1軸成分」に対応し、q軸の成分が「第2軸成分」に対応する。 The control device 10 drives the electric motor 100 by drive control that controls the current of the d-axis component and the current of the q-axis component. The d-axis and q-axis are control axes of the rotating coordinates of the vector control. In other words, the d-axis and q-axis are control axes of the current vector and also the control axes of the voltage vector. The d-axis is a control axis that extends in the direction of the magnetic flux axis of the permanent magnet. The q-axis is a control axis that extends in the direction of the torque and is perpendicular to the d-axis. In this embodiment, the d-axis corresponds to the "first axis" and the q-axis corresponds to the "second axis". Furthermore, the d-axis component corresponds to the "first axis component" and the q-axis component corresponds to the "second axis component".
 制御装置10は、d軸の成分の電流の指令値とq軸の成分の電流の指令値とに基づいた信号を三相コイル105~107に入力することによって電気モータ100を制御する。
 制御装置10は、インバータ11と、電子制御装置20とを備えている。
The control device 10 controls the electric motor 100 by inputting signals based on the command values of the d-axis component current and the q-axis component current to the three-phase coils 105 to 107 .
The control device 10 includes an inverter 11 and an electronic control device 20 .
 インバータ11は、モータ電源110から供給される電力によって動作する複数のスイッチング素子を有している。インバータ11は、電子制御装置20からの指令(後述するU相指令電圧VU*、V相指令電圧VV*およびW相指令電圧VW*)に基づいたスイッチング素子のオン/オフ動作によって、U相信号、V相信号およびW相信号を生成する。具体的には、インバータ11は、U相指令電圧VU*に基づいてU相信号を生成し、U相信号を電気モータ100のU相コイル105に入力する。インバータ11は、V相指令電圧VV*に基づいてV相信号を生成し、V相信号を電気モータ100のV相コイル106に入力する。インバータ11は、W相指令電圧VW*に基づいてW相信号を生成し、W相信号を電気モータ100のW相コイル107に入力する。これにより、電気モータ100が駆動する。 The inverter 11 has a number of switching elements that operate with power supplied from the motor power supply 110. The inverter 11 generates a U-phase signal, a V-phase signal, and a W-phase signal by turning on/off the switching elements based on commands from the electronic control device 20 (U-phase command voltage VU*, V-phase command voltage VV*, and W-phase command voltage VW*, which will be described later). Specifically, the inverter 11 generates a U-phase signal based on the U-phase command voltage VU*, and inputs the U-phase signal to the U-phase coil 105 of the electric motor 100. The inverter 11 generates a V-phase signal based on the V-phase command voltage VV*, and inputs the V-phase signal to the V-phase coil 106 of the electric motor 100. The inverter 11 generates a W-phase signal based on the W-phase command voltage VW*, and inputs the W-phase signal to the W-phase coil 107 of the electric motor 100. This drives the electric motor 100.
 電子制御装置20は、図示しない実行部および記憶部を有している。例えば、実行部はCPUである。記憶部には、実行部によって実行される制御プログラムが記憶されている。 The electronic control device 20 has an execution unit and a memory unit, not shown. For example, the execution unit is a CPU. The memory unit stores a control program that is executed by the execution unit.
 電子制御装置20は、実行部が制御プログラムを実行することにより、応答モデル21、目標速度導出部22、指令トルク導出部23、電流指令値導出部24、電圧指令値導出部25、2相/3相変換部26、3相/2相変換部27、回転速度推定部28および回転位置推定部29として機能する。これらは、電気モータ100を駆動させるための機能部である。 The electronic control device 20 functions as a response model 21, a target speed derivation unit 22, a command torque derivation unit 23, a current command value derivation unit 24, a voltage command value derivation unit 25, a two-phase/three-phase conversion unit 26, a three-phase/two-phase conversion unit 27, a rotational speed estimation unit 28, and a rotational position estimation unit 29, as a result of the execution unit executing the control program. These are functional units for driving the electric motor 100.
 <機能部>
 応答モデル21には、上記電動シリンダに発生させる液圧の要求値である要求液圧Prqに応じた電気モータ100の回転位置を、目標位置θrとして導出する。電気モータ100の回転位置とはロータ101の回転角であり、目標位置θrは、電気モータ100の回転位置の目標である。制御装置10では、要求液圧Prqが「電気モータの出力に対する要求値」に対応する。
<Functional department>
In the response model 21, the rotational position of the electric motor 100 corresponding to the required hydraulic pressure Prq, which is the required value of the hydraulic pressure to be generated in the electric cylinder, is derived as a target position θr. The rotational position of the electric motor 100 is the rotational angle of the rotor 101, and the target position θr is a target for the rotational position of the electric motor 100. In the control device 10, the required hydraulic pressure Prq corresponds to the "required value for the output of the electric motor."
 応答モデル21は、電気モータ100の特性に基づいて設計されたモデルである。そのため、応答モデル21は、電気モータ100の駆動によって実現可能な回転位置を、目標位置θrとして導出する。すなわち、応答モデル21は、電気モータ100がそのときに出力可能な範囲内で目標位置θrを導出する。 The response model 21 is a model designed based on the characteristics of the electric motor 100. Therefore, the response model 21 derives the rotational position that can be achieved by driving the electric motor 100 as the target position θr. In other words, the response model 21 derives the target position θr within the range that the electric motor 100 can output at that time.
 目標速度導出部22は、目標位置θrに基づいて、電気モータ100のロータ101の回転速度の目標である目標速度ωrを導出する。例えば、目標速度導出部22は、目標位置θrを時間微分することによって目標速度ωrを導出する。上述したように目標位置θrは要求液圧Prqに応じた値である。そして、目標速度導出部22は、こうした目標位置θrに基づいて目標速度ωrを導出する。さらに、目標位置θrは、電気モータ100の駆動によって実現可能な値である。したがって、目標速度導出部22は、目標速度ωrを、電気モータ100が出力可能な範囲内で要求液圧Prqに応じて導出する。 The target speed derivation unit 22 derives a target speed ωr, which is a target for the rotational speed of the rotor 101 of the electric motor 100, based on the target position θr. For example, the target speed derivation unit 22 derives the target speed ωr by time-differentiating the target position θr. As described above, the target position θr is a value that corresponds to the required hydraulic pressure Prq. The target speed derivation unit 22 then derives the target speed ωr based on this target position θr. Furthermore, the target position θr is a value that can be achieved by driving the electric motor 100. Therefore, the target speed derivation unit 22 derives the target speed ωr according to the required hydraulic pressure Prq within the range that the electric motor 100 can output.
 指令トルク導出部23は、目標位置θrと、回転位置推定部29によって導出されたロータ101の回転位置の推定値である推定回転位置θeとを基に、電気モータ100のトルクの指令値であるトルク指令値TR*を導出する。例えば、指令トルク導出部23は、目標位置θrと推定回転位置θeとの偏差を入力とするフィードバック制御によってトルク指令値TR*を導出する。 The command torque derivation unit 23 derives a torque command value TR*, which is a command value for the torque of the electric motor 100, based on the target position θr and the estimated rotational position θe, which is an estimate of the rotational position of the rotor 101 derived by the rotational position estimation unit 29. For example, the command torque derivation unit 23 derives the torque command value TR* by feedback control using the deviation between the target position θr and the estimated rotational position θe as an input.
 電流指令値導出部24は、トルク指令値TR*を基に、d軸の成分の電流の指令値であるd軸電流指令値Idcと、q軸の成分の電流の指令値であるq軸電流指令値Iqcとを導出する。すなわち、電流指令値導出部24は、トルク指令値TR*に応じたd軸の成分の電流であるd軸電流指令値Idcおよびq軸の成分の電流であるq軸電流指令値Iqcを取得する。 The current command value derivation unit 24 derives a d-axis current command value Idc, which is the command value for the current of the d-axis component, and a q-axis current command value Iqc, which is the command value for the current of the q-axis component, based on the torque command value TR*. In other words, the current command value derivation unit 24 obtains the d-axis current command value Idc, which is the current of the d-axis component according to the torque command value TR*, and the q-axis current command value Iqc, which is the current of the q-axis component.
 電圧指令値導出部25は、d軸の成分の電圧の指令値であるd軸電圧指令値Vdcと、q軸の成分の電圧の指令値であるq軸電圧指令値Vqcとを導出する。例えば、電圧指令値導出部25は、d軸電流指令値Idcおよびq軸電流指令値Iqcと、d軸電流Idおよびq軸電流Iqと、電気モータ100の回転速度の推定値である推定回転速度(電気角速度の推定値)ωeとを基に、d軸電圧指令値Vdcおよびq軸電圧指令値Vqcを導出する。本実施形態では、d軸電圧指令値Vdcが「第1軸電圧指令値」に相当し、q軸電圧指令値Vqcが「第2軸電圧指令値」に相当する。なお、電圧指令値導出部25の詳細な機能構成については後述する。 The voltage command value derivation unit 25 derives a d-axis voltage command value Vdc, which is a command value for the voltage of the d-axis component, and a q-axis voltage command value Vqc, which is a command value for the voltage of the q-axis component. For example, the voltage command value derivation unit 25 derives the d-axis voltage command value Vdc and the q-axis voltage command value Vqc based on the d-axis current command value Idc and the q-axis current command value Iqc, the d-axis current Id and the q-axis current Iq, and the estimated rotational speed (estimated value of electrical angular velocity) ωe, which is an estimated value of the rotational speed of the electric motor 100. In this embodiment, the d-axis voltage command value Vdc corresponds to the "first axis voltage command value", and the q-axis voltage command value Vqc corresponds to the "second axis voltage command value". The detailed functional configuration of the voltage command value derivation unit 25 will be described later.
 2相/3相変換部26は、推定回転位置(電気角の推定値)θeに基づいて、d軸電圧指令値Vdcおよびq軸電圧指令値Vqcを、U相指令電圧VU*、V相指令電圧VV*およびW相指令電圧VW*に変換する。U相指令電圧VU*は、U相コイル105に印加する電圧の指令値である。V相指令電圧VV*は、V相コイル106に印加する電圧の指令値である。W相指令電圧VW*は、W相コイル107に印加する電圧の指令値である。U相指令電圧VU*、V相指令電圧VV*およびW相指令電圧VW*が、電気モータ100の3相のコイル105,106,107に対する指令値に対応する。なお、2相/3相変換部26の詳細な機能構成については後述する。 The two-phase/three-phase converter 26 converts the d-axis voltage command value Vdc and the q-axis voltage command value Vqc into a U-phase command voltage VU*, a V-phase command voltage VV*, and a W-phase command voltage VW* based on the estimated rotational position (estimated value of electrical angle) θe. The U-phase command voltage VU* is a command value for the voltage applied to the U-phase coil 105. The V-phase command voltage VV* is a command value for the voltage applied to the V-phase coil 106. The W-phase command voltage VW* is a command value for the voltage applied to the W-phase coil 107. The U-phase command voltage VU*, the V-phase command voltage VV*, and the W-phase command voltage VW* correspond to the command values for the three- phase coils 105, 106, and 107 of the electric motor 100. The detailed functional configuration of the two-phase/three-phase converter 26 will be described later.
 3相/2相変換部27には、U相コイル105に流れた電流であるU相電流IUが入力され、V相コイル106に流れた電流であるV相電流IVが入力され、W相コイル107に流れた電流であるW相電流IWが入力される。そして、3相/2相変換部27は、上記推定回転位置(電気角の推定値)θeを基に、U相電流IU、V相電流IVおよびW相電流IWを、d軸の成分の電流であるd軸電流Idおよびq軸の成分の電流であるq軸電流Iqに変換する。 The three-phase/two-phase conversion unit 27 receives as input the U-phase current IU, which is the current flowing through the U-phase coil 105, the V-phase current IV, which is the current flowing through the V-phase coil 106, and the W-phase current IW, which is the current flowing through the W-phase coil 107. Based on the estimated rotation position (estimated electrical angle) θe, the three-phase/two-phase conversion unit 27 converts the U-phase current IU, V-phase current IV, and W-phase current IW into a d-axis current Id, which is the d-axis component of the current, and a q-axis current Iq, which is the q-axis component of the current.
 回転速度推定部28は、実d軸の方向と推定d軸の方向との軸位相偏差dθを導出する。回転速度推定部28には、3相/2相変換部27によって導出されたd軸電流Idおよびq軸電流Iqが入力される。さらに、回転速度推定部28には、電圧指令値導出部25によって導出されたd軸電圧指令値Vdcおよびq軸電圧指令値Vqcが入力される。回転速度推定部28は、例えば拡張誘起電圧方式によって軸位相偏差dθを導出する。この場合、回転速度推定部28は、d軸電流Idおよびq軸電流Iqと、d軸電圧指令値Vdcおよびq軸電圧指令値Vqcとを基に軸位相偏差dθを導出する。 The rotational speed estimation unit 28 derives the axis phase deviation dθ between the direction of the actual d-axis and the direction of the estimated d-axis. The d-axis current Id and q-axis current Iq derived by the three-phase/two-phase conversion unit 27 are input to the rotational speed estimation unit 28. Furthermore, the d-axis voltage command value Vdc and q-axis voltage command value Vqc derived by the voltage command value derivation unit 25 are input to the rotational speed estimation unit 28. The rotational speed estimation unit 28 derives the axis phase deviation dθ, for example, by the extended induced voltage method. In this case, the rotational speed estimation unit 28 derives the axis phase deviation dθ based on the d-axis current Id and q-axis current Iq, and the d-axis voltage command value Vdc and q-axis voltage command value Vqc.
 回転速度推定部28は、電気モータ100の回転速度の推定値である推定回転速度(電気角速度の推定値)ωeを導出する。回転速度推定部28は、例えば、軸位相偏差dθを目標値「0」とすべく比例積分制御することによって推定回転速度ωeを導出する。本実施形態では、回転速度推定部28が、電気モータ100の回転速度推定値を取得する「取得部」に対応する。 The rotational speed estimation unit 28 derives an estimated rotational speed (estimated value of electrical angular velocity) ωe, which is an estimate of the rotational speed of the electric motor 100. The rotational speed estimation unit 28 derives the estimated rotational speed ωe, for example, by performing proportional-integral control so that the axial phase deviation dθ becomes the target value "0". In this embodiment, the rotational speed estimation unit 28 corresponds to an "acquisition unit" that acquires the rotational speed estimate of the electric motor 100.
 回転位置推定部29は、電気モータ100の回転位置の推定値である推定回転位置(電気角の推定値)θeを取得する。回転位置推定部29は、例えば、回転速度推定部28によって導出された推定回転速度ωeを積分することによって、推定回転位置θeを導出する。 The rotational position estimation unit 29 acquires an estimated rotational position (estimated electrical angle) θe, which is an estimate of the rotational position of the electric motor 100. The rotational position estimation unit 29 derives the estimated rotational position θe, for example, by integrating the estimated rotational speed ωe derived by the rotational speed estimation unit 28.
 <電圧指令値導出部>
 図2を参照し、電圧指令値導出部25について詳述する。
 電圧指令値導出部25は、第1d軸演算器51と、第2d軸演算器52と、d軸積算器53と、d軸抵抗値積算器54と、d軸インダクタンス積算器55と、第3d軸演算器56と、第4d軸演算器57とを有している。
<Voltage command value derivation section>
The voltage command value derivation unit 25 will be described in detail with reference to FIG.
The voltage command value derivation unit 25 has a first d-axis calculator 51, a second d-axis calculator 52, a d-axis integrator 53, a d-axis resistance value integrator 54, a d-axis inductance integrator 55, a third d-axis calculator 56, and a fourth d-axis calculator 57.
 第1d軸演算器51は、d軸電流指令値Idcとd軸電流Idとの偏差であるd軸電流偏差ΔIdを導出する。具体的には、第1d軸演算器51は、d軸電流指令値Idcからd軸電流Idを引いた値をd軸電流偏差ΔIdとして導出する。 The first d-axis calculator 51 derives the d-axis current deviation ΔId, which is the deviation between the d-axis current command value Idc and the d-axis current Id. Specifically, the first d-axis calculator 51 derives the value obtained by subtracting the d-axis current Id from the d-axis current command value Idc as the d-axis current deviation ΔId.
 第2d軸演算器52は、d軸電流偏差ΔIdと電気モータ100の応答周波数ωcとの積を導出値ΔIdAとして導出する。
 d軸積算器53は、第2d軸演算器52の導出値ΔIdAを積算することによって、d軸積算値Inpdを導出する。具体的には、d軸積算器53は、d軸積算値Inpdの前回値と導出値ΔIdAとの和をd軸積算値Inpdの最新値として導出する。
The second d-axis calculator 52 derives the product of the d-axis current deviation ΔId and the response frequency ωc of the electric motor 100 as a derived value ΔIdA.
The d-axis integrator 53 derives the d-axis integrated value Inpd by integrating the derived value ΔIdA of the second d-axis calculator 52. Specifically, the d-axis integrator 53 derives the sum of the previous value of the d-axis integrated value Inpd and the derived value ΔIdA as the latest value of the d-axis integrated value Inpd.
 d軸抵抗値積算器54は、電気モータ100の抵抗値Rとd軸積算値Inpdとの積をd軸基準電圧Vdbとして導出する。
 d軸インダクタンス積算器55は、第2d軸演算器52の導出値ΔIdAと電気モータ100のd軸インダクタンスLdとの積を、演算値Vdeとして導出する。
The d-axis resistance value integrator 54 derives the product of the resistance value R of the electric motor 100 and the d-axis integrated value Inpd as the d-axis reference voltage Vdb.
The d-axis inductance integrator 55 derives the product of the derived value ΔIdA of the second d-axis calculator 52 and the d-axis inductance Ld of the electric motor 100 as a calculated value Vde.
 第3d軸演算器56は、d軸基準電圧Vdbと演算値Vdeとの和を、d軸指令電圧仮値VdAとして導出する。
 第4d軸演算器57は、d軸指令電圧仮値VdAに基づいてd軸電圧指令値Vdcを導出する。具体的には、第4d軸演算器57は、後述する非干渉電圧導出部70で導出されたd軸干渉電圧補償値Vdiとd軸指令電圧仮値VdAとの和を、d軸電圧指令値Vdcとして導出する。すなわち、第4d軸演算器57が「指令値補正部」の一例を構成する。
The third d-axis calculator 56 derives the sum of the d-axis reference voltage Vdb and the calculated value Vde as a virtual d-axis command voltage value VdA.
The fourth d-axis calculator 57 derives the d-axis voltage command value Vdc based on the d-axis command voltage virtual value VdA. Specifically, the fourth d-axis calculator 57 derives the sum of the d-axis interference voltage compensation value Vdi derived by a non-interference voltage derivation unit 70 (described later) and the d-axis command voltage virtual value VdA as the d-axis voltage command value Vdc. That is, the fourth d-axis calculator 57 constitutes an example of a "command value correction unit."
 電圧指令値導出部25は、第1q軸演算器61と、第2q軸演算器62と、q軸積算器63と、q軸抵抗値積算器64と、q軸インダクタンス積算器65と、第3q軸演算器66と、第4q軸演算器67とを有している。 The voltage command value derivation unit 25 has a first q-axis calculator 61, a second q-axis calculator 62, a q-axis integrator 63, a q-axis resistance value integrator 64, a q-axis inductance integrator 65, a third q-axis calculator 66, and a fourth q-axis calculator 67.
 第1q軸演算器61は、q軸電流指令値Iqcとq軸電流Iqとの偏差であるq軸電流偏差ΔIqを導出する。具体的には、第1q軸演算器61は、q軸電流指令値Iqcからq軸電流Iqを引いた値をq軸電流偏差ΔIqとして導出する。 The first q-axis calculator 61 derives the q-axis current deviation ΔIq, which is the deviation between the q-axis current command value Iqc and the q-axis current Iq. Specifically, the first q-axis calculator 61 derives the q-axis current deviation ΔIq by subtracting the q-axis current Iq from the q-axis current command value Iqc.
 第2q軸演算器62は、q軸電流偏差ΔIqと電気モータ100の応答周波数ωcとの積を導出値ΔIqAとして導出する。
 q軸積算器63は、第2q軸演算器62の導出値ΔIqAを積算することによって、q軸積算値Inpqを導出する。具体的には、q軸積算器63は、q軸積算値Inpqの前回値と導出値ΔIqAとの和をq軸積算値Inpqの最新値として導出する。
The second q-axis calculator 62 derives the product of the q-axis current deviation ΔIq and the response frequency ωc of the electric motor 100 as a derived value ΔIqA.
The q-axis integrator 63 derives the q-axis integrated value Inpq by integrating the derived value ΔIqA of the second q-axis calculator 62. Specifically, the q-axis integrator 63 derives the sum of the previous value of the q-axis integrated value Inpq and the derived value ΔIqA as the latest value of the q-axis integrated value Inpq.
 q軸抵抗値積算器64は、電気モータ100の抵抗値Rとq軸積算値Inpqとの積をq軸基準電圧Vqbとして導出する。
 q軸インダクタンス積算器65は、第2q軸演算器62の導出値ΔIqAと電気モータ100のq軸インダクタンスLqとの積を、演算値Vqeとして導出する。
The q-axis resistance value integrator 64 derives the product of the resistance value R of the electric motor 100 and the q-axis integrated value Inpq as the q-axis reference voltage Vqb.
The q-axis inductance integrator 65 derives the product of the derived value ΔIqA of the second q-axis calculator 62 and the q-axis inductance Lq of the electric motor 100 as a calculated value Vqe.
 第3q軸演算器66は、q軸基準電圧Vqbと演算値Vqeとの和を、q軸指令電圧仮値VqAとして導出する。
 第4q軸演算器67は、q軸指令電圧仮値VqAに基づいてq軸電圧指令値Vqcを導出する。具体的には、第4q軸演算器67は、後述する非干渉電圧導出部70で導出されたq軸干渉電圧補償値Vqiとq軸指令電圧仮値VqAとの和を、q軸電圧指令値Vqcとして導出する。すなわち、第4q軸演算器67が「指令値補正部」の一例を構成する。
The third q-axis calculator 66 derives the sum of the q-axis reference voltage Vqb and the calculated value Vqe as a virtual q-axis command voltage value VqA.
The fourth q-axis calculator 67 derives a q-axis voltage command value Vqc based on the q-axis command voltage provisional value VqA. Specifically, the fourth q-axis calculator 67 derives the sum of a q-axis interference voltage compensation value Vqi derived by a non-interference voltage derivation unit 70 (described later) and the q-axis command voltage provisional value VqA as the q-axis voltage command value Vqc. That is, the fourth q-axis calculator 67 constitutes an example of a "command value correction unit."
 電圧指令値導出部25は、非干渉電圧導出部70を有している。非干渉電圧導出部70は、第1非干渉電圧導出部71と第2非干渉電圧導出部72とを含んでいる。第1非干渉電圧導出部71は、q軸の成分の電流によって発生するd軸上の干渉電圧を相殺するためのd軸干渉電圧補償値Vdiを導出する。第2非干渉電圧導出部72は、d軸の成分の電流によって発生するq軸上の干渉電圧を相殺するためのq軸干渉電圧補償値Vqiを導出する。本実施形態では、d軸干渉電圧補償値Vdiが「第1軸干渉電圧補償値」に対応し、q軸干渉電圧補償値Vqiが「第2軸干渉電圧補償値」に対応する。 The voltage command value derivation unit 25 has a non-interference voltage derivation unit 70. The non-interference voltage derivation unit 70 includes a first non-interference voltage derivation unit 71 and a second non-interference voltage derivation unit 72. The first non-interference voltage derivation unit 71 derives a d-axis interference voltage compensation value Vdi for canceling the interference voltage on the d-axis generated by the current of the q-axis component. The second non-interference voltage derivation unit 72 derives a q-axis interference voltage compensation value Vqi for canceling the interference voltage on the q-axis generated by the current of the d-axis component. In this embodiment, the d-axis interference voltage compensation value Vdi corresponds to the "first axis interference voltage compensation value" and the q-axis interference voltage compensation value Vqi corresponds to the "second axis interference voltage compensation value."
 第1非干渉電圧導出部71は、q軸電流Iqと電気モータ100のq軸インダクタンスLqと電気モータ100の回転速度との積を、d軸干渉電圧補償値Vdiとして導出する。このとき、第1非干渉電圧導出部71は、目標速度ωrまたは推定回転速度ωeを、電気モータ100の回転速度として用いる。例えば、第1非干渉電圧導出部71は、要求液圧Prqの変化速度が所定の変化速度判定値未満である場合には目標速度ωrを用いてd軸干渉電圧補償値Vdiを導出する。一方、第1非干渉電圧導出部71は、要求液圧Prqの変化速度が変化速度判定値以上である場合には推定回転速度ωeを用いてd軸干渉電圧補償値Vdiを導出する。具体的には、第1非干渉電圧導出部71は、要求液圧Prqの変化速度が変化速度判定値未満である場合、q軸電流Iqとq軸インダクタンスLqと目標速度ωrとの積をd軸干渉電圧補償値Vdiとして導出する。一方、第1非干渉電圧導出部71は、要求液圧Prqの変化速度が変化速度判定値以上である場合、q軸電流Iqとq軸インダクタンスLqと推定回転速度ωeとの積をd軸干渉電圧補償値Vdiとして導出する。 The first non-interference voltage derivation unit 71 derives the product of the q-axis current Iq, the q-axis inductance Lq of the electric motor 100, and the rotation speed of the electric motor 100 as the d-axis interference voltage compensation value Vdi. At this time, the first non-interference voltage derivation unit 71 uses the target speed ωr or the estimated rotation speed ωe as the rotation speed of the electric motor 100. For example, when the rate of change of the required hydraulic pressure Prq is less than a predetermined rate of change judgment value, the first non-interference voltage derivation unit 71 derives the d-axis interference voltage compensation value Vdi using the target speed ωr. On the other hand, when the rate of change of the required hydraulic pressure Prq is equal to or greater than the rate of change judgment value, the first non-interference voltage derivation unit 71 derives the d-axis interference voltage compensation value Vdi using the estimated rotation speed ωe. Specifically, when the rate of change of the required hydraulic pressure Prq is less than the rate of change judgment value, the first non-interference voltage derivation unit 71 derives the product of the q-axis current Iq, the q-axis inductance Lq, and the target speed ωr as the d-axis interference voltage compensation value Vdi. On the other hand, when the rate of change of the required hydraulic pressure Prq is equal to or greater than the rate of change judgment value, the first non-interference voltage derivation unit 71 derives the product of the q-axis current Iq, the q-axis inductance Lq, and the estimated rotation speed ωe as the d-axis interference voltage compensation value Vdi.
 第2非干渉電圧導出部72は、d軸電流Idと電気モータ100のd軸インダクタンスLdと電気モータ100の回転速度との積を、q軸干渉電圧補償値Vqiとして導出する。このとき、第2非干渉電圧導出部72は、目標速度ωrまたは推定回転速度ωeを、電気モータ100の回転速度として用いる。例えば、第2非干渉電圧導出部72は、要求液圧Prqの変化速度が上記変化速度判定値未満である場合には目標速度ωrを用いてq軸干渉電圧補償値Vqiを導出する。一方、第2非干渉電圧導出部72は、要求液圧Prqの変化速度が変化速度判定値以上である場合には推定回転速度ωeを用いてq軸干渉電圧補償値Vqiを導出する。具体的には、第2非干渉電圧導出部72は、要求液圧Prqの変化速度が変化速度判定値未満である場合、d軸電流Idとd軸インダクタンスLdと目標速度ωrとの積をq軸干渉電圧補償値Vqiとして導出する。一方、第2非干渉電圧導出部72は、要求液圧Prqの変化速度が変化速度判定値以上である場合、d軸電流Idとd軸インダクタンスLdと推定回転速度ωeとの積をq軸干渉電圧補償値Vqiとして導出する。 The second non-interference voltage derivation unit 72 derives the product of the d-axis current Id, the d-axis inductance Ld of the electric motor 100, and the rotation speed of the electric motor 100 as the q-axis interference voltage compensation value Vqi. At this time, the second non-interference voltage derivation unit 72 uses the target speed ωr or the estimated rotation speed ωe as the rotation speed of the electric motor 100. For example, when the rate of change of the required hydraulic pressure Prq is less than the above-mentioned rate of change judgment value, the second non-interference voltage derivation unit 72 derives the q-axis interference voltage compensation value Vqi using the target speed ωr. On the other hand, when the rate of change of the required hydraulic pressure Prq is equal to or greater than the rate of change judgment value, the second non-interference voltage derivation unit 72 derives the q-axis interference voltage compensation value Vqi using the estimated rotation speed ωe. Specifically, when the rate of change of the required hydraulic pressure Prq is less than the rate of change judgment value, the second non-interference voltage derivation unit 72 derives the product of the d-axis current Id, the d-axis inductance Ld, and the target speed ωr as the q-axis interference voltage compensation value Vqi. On the other hand, when the rate of change of the required hydraulic pressure Prq is equal to or greater than the rate of change judgment value, the second non-interference voltage derivation unit 72 derives the product of the d-axis current Id, the d-axis inductance Ld, and the estimated rotation speed ωe as the q-axis interference voltage compensation value Vqi.
 なお、要求液圧Prqの変化速度が大きいほど、電気モータ100の回転が速くなりやすい。そこで、電気モータ100の高速回転が要求されているか否かの判断基準として、変化速度判定値が設定されている。電気モータ100が高速で駆動している場合には、電気モータ100が低速で駆動している場合と比較して、目標速度ωrと電気モータ100の回転速度の実値との乖離が生じにくい。したがって、本実施形態において、要求液圧Prqの変化速度が変化速度判定値未満である場合には、電気モータ100の高速回転が要求されていないと判断できるとともに、目標速度ωrと電気モータ100の回転速度の実値との乖離が生じていないと推定できる。そのため、非干渉電圧導出部70は、目標速度ωrに基づいてd軸干渉電圧補償値Vdiおよびq軸干渉電圧補償値Vqiを導出する。一方、要求液圧Prqの変化速度が変化速度判定値以上である場合には、電気モータ100の高速回転が要求されていると判断できるとともに、目標速度ωrと電気モータ100の回転速度の実値との乖離が生じていると推定できる。そのため、非干渉電圧導出部70は、推定回転速度ωeに基づいてd軸干渉電圧補償値Vdiおよびq軸干渉電圧補償値Vqiを導出する。 Note that the greater the rate of change of the required hydraulic pressure Prq, the faster the electric motor 100 rotates. Therefore, a change rate judgment value is set as a criterion for judging whether or not high-speed rotation of the electric motor 100 is required. When the electric motor 100 is driven at high speed, the target speed ωr is less likely to deviate from the actual value of the rotation speed of the electric motor 100 than when the electric motor 100 is driven at low speed. Therefore, in this embodiment, when the rate of change of the required hydraulic pressure Prq is less than the change rate judgment value, it can be judged that high-speed rotation of the electric motor 100 is not required, and it can be estimated that there is no deviation between the target speed ωr and the actual value of the rotation speed of the electric motor 100. Therefore, the non-interference voltage derivation unit 70 derives the d-axis interference voltage compensation value Vdi and the q-axis interference voltage compensation value Vqi based on the target speed ωr. On the other hand, if the rate of change of the required hydraulic pressure Prq is equal to or greater than the rate of change judgment value, it can be determined that high speed rotation of the electric motor 100 is required, and it can be estimated that there is a deviation between the target speed ωr and the actual value of the rotation speed of the electric motor 100. Therefore, the non-interference voltage derivation unit 70 derives the d-axis interference voltage compensation value Vdi and the q-axis interference voltage compensation value Vqi based on the estimated rotation speed ωe.
 <2相/3相変換部>
 図3を参照し、2相/3相変換部26について詳述する。
 2相/3相変換部26は、回転位置補正部81と指令値変換部85とを有している。
<2-phase/3-phase conversion unit>
The two-phase/three-phase conversion unit 26 will now be described in detail with reference to FIG.
The two-phase/three-phase conversion unit 26 includes a rotational position correction unit 81 and a command value conversion unit 85 .
 回転位置補正部81は、補正量導出器82と演算器83とを含んでいる。
 補正量導出器82は、電気モータ100の回転速度と時差TLとの積を、回転位置補正量Δθとして導出する。時差TLとは、指令値変換部85による変換処理の実行タイミングと、変換処理によって導出されたU相指令電圧VU*、V相指令電圧VV*およびW相指令電圧VW*に基づいてインバータ11が動作するタイミングとの時差である。指令値変換部85による変換処理とは、d軸電圧指令値Vdcおよびq軸電圧指令値Vqcを、U相指令電圧VU*、V相指令電圧VV*およびW相指令電圧VW*に変換する処理である。時差TLは、インバータ11の応答速度などに基づいたものである。そのため、実験やシミュレーションなどによって時差TLを設定できる。
The rotational position correction unit 81 includes a correction amount derivation unit 82 and a calculator 83 .
The correction amount derivation unit 82 derives the product of the rotation speed of the electric motor 100 and the time difference TL as the rotation position correction amount Δθ. The time difference TL is the time difference between the execution timing of the conversion process by the command value conversion unit 85 and the timing at which the inverter 11 operates based on the U-phase command voltage VU*, the V-phase command voltage VV*, and the W-phase command voltage VW* derived by the conversion process. The conversion process by the command value conversion unit 85 is a process of converting the d-axis voltage command value Vdc and the q-axis voltage command value Vqc into the U-phase command voltage VU*, the V-phase command voltage VV*, and the W-phase command voltage VW*. The time difference TL is based on the response speed of the inverter 11, etc. Therefore, the time difference TL can be set by experiments, simulations, etc.
 補正量導出器82は、目標速度ωrまたは推定回転速度ωeを、電気モータ100の回転速度として用いる。例えば、補正量導出器82は、要求液圧Prqの変化速度が上記変化速度判定値未満である場合には目標速度ωrを用いて回転位置補正量Δθを導出する。一方、補正量導出器82は、要求液圧Prqの変化速度が変化速度判定値以上である場合には推定回転速度ωeを用いて回転位置補正量Δθを導出する。具体的には、補正量導出器82は、要求液圧Prqの変化速度が変化速度判定値未満である場合、目標速度ωrと時差TLとの積を回転位置補正量Δθとして導出する。一方、補正量導出器82は、要求液圧Prqの変化速度が変化速度判定値以上である場合、推定回転速度ωeと時差TLとの積を回転位置補正量Δθとして導出する。 The correction amount deriver 82 uses the target speed ωr or the estimated rotational speed ωe as the rotational speed of the electric motor 100. For example, when the rate of change of the required hydraulic pressure Prq is less than the rate of change judgment value, the correction amount deriver 82 uses the target speed ωr to derive the rotational position correction amount Δθ. On the other hand, when the rate of change of the required hydraulic pressure Prq is equal to or greater than the rate of change judgment value, the correction amount deriver 82 uses the estimated rotational speed ωe to derive the rotational position correction amount Δθ. Specifically, when the rate of change of the required hydraulic pressure Prq is less than the rate of change judgment value, the correction amount deriver 82 derives the product of the target speed ωr and the time difference TL as the rotational position correction amount Δθ. On the other hand, when the rate of change of the required hydraulic pressure Prq is equal to or greater than the rate of change judgment value, the correction amount deriver 82 derives the product of the estimated rotational speed ωe and the time difference TL as the rotational position correction amount Δθ.
 上述したように、電気モータ100の高速回転が要求されているか否かの判断基準として、変化速度判定値が設定されている。したがって、本実施形態において、要求液圧Prqの変化速度が変化速度判定値未満である場合には、電気モータ100の高速回転が要求されていないと判断できるとともに、目標速度ωrと電気モータ100の回転速度の実値との乖離が生じていないと推定できる。そのため、補正量導出器82は、目標速度ωrに基づいて回転位置補正量Δθを導出する。一方、要求液圧Prqの変化速度が変化速度判定値以上である場合には、電気モータ100の高速回転が要求されていると判断できるとともに、目標速度ωrと電気モータ100の回転速度の実値との乖離が生じていると推定できる。そのため、補正量導出器82は、推定回転速度ωeに基づいて回転位置補正量Δθを導出する。 As described above, the change rate judgment value is set as a criterion for judging whether or not high-speed rotation of the electric motor 100 is required. Therefore, in this embodiment, if the change rate of the required hydraulic pressure Prq is less than the change rate judgment value, it can be judged that high-speed rotation of the electric motor 100 is not required, and it can be estimated that there is no deviation between the target speed ωr and the actual value of the rotation speed of the electric motor 100. Therefore, the correction amount derivation unit 82 derives the rotation position correction amount Δθ based on the target speed ωr. On the other hand, if the change rate of the required hydraulic pressure Prq is equal to or greater than the change rate judgment value, it can be judged that high-speed rotation of the electric motor 100 is required, and it can be estimated that there is a deviation between the target speed ωr and the actual value of the rotation speed of the electric motor 100. Therefore, the correction amount derivation unit 82 derives the rotation position correction amount Δθ based on the estimated rotation speed ωe.
 演算器83は、現在の推定回転位置θe(n)と回転位置補正量Δθとの和を、補正後の推定回転位置θe(n+1)として導出する。推定回転位置θe(n+1)は、変換処理の実行タイミングと、変換処理によって導出された指令値VU*,VV*,VW*に基づいてインバータ11が動作するタイミングとの時差を考慮した電気モータ100の回転位置である。すなわち、回転位置補正部81は、変換処理の実行タイミングと、変換処理によって導出された指令値VU*,VV*,VW*に基づいてインバータ11が動作するタイミングと、の時差に起因した電気モータ100の回転位置のずれ量の補正を、目標速度に基づいて行うことができる。 The calculator 83 derives the sum of the current estimated rotational position θe(n) and the rotational position correction amount Δθ as the corrected estimated rotational position θe(n+1). The estimated rotational position θe(n+1) is the rotational position of the electric motor 100 taking into account the time difference between the execution timing of the conversion process and the timing at which the inverter 11 operates based on the command values VU*, VV*, VW* derived by the conversion process. In other words, the rotational position correction unit 81 can correct the deviation amount of the rotational position of the electric motor 100 caused by the time difference between the execution timing of the conversion process and the timing at which the inverter 11 operates based on the command values VU*, VV*, VW* derived by the conversion process, based on the target speed.
 指令値変換部85は、d軸電圧指令値Vdcおよびq軸電圧指令値Vqcを、推定回転位置θe(n+1)に基づいて、U相指令電圧VU*、V相指令電圧VV*およびW相指令電圧VW*に変換する変換処理を実行する。 The command value converter 85 performs a conversion process to convert the d-axis voltage command value Vdc and the q-axis voltage command value Vqc into a U-phase command voltage VU*, a V-phase command voltage VV*, and a W-phase command voltage VW* based on the estimated rotational position θe(n+1).
 <本実施形態の作用および効果>
 (1)変換処理では、電気モータ100の回転位置に基づいて、d軸電圧指令値Vdcおよびq軸電圧指令値Vqcが、U相指令電圧VU*、V相指令電圧VV*およびW相指令電圧VW*に変換される。このとき、変換処理の実行タイミングと、変換処理によって導出された指令値VU*,VV*,VW*に基づいてインバータ11が動作するタイミングとの間に所定の時差が発生する。そのため、変換処理においては、当該時差を考慮して補正された電気モータ100の回転位置を用いて、指令値の変換が行われる。
<Actions and Effects of the Present Embodiment>
(1) In the conversion process, the d-axis voltage command value Vdc and the q-axis voltage command value Vqc are converted into a U-phase command voltage VU*, a V-phase command voltage VV*, and a W-phase command voltage VW* based on the rotational position of the electric motor 100. At this time, a predetermined time difference occurs between the execution timing of the conversion process and the timing at which the inverter 11 operates based on the command values VU*, VV*, and VW* derived by the conversion process. Therefore, in the conversion process, the command values are converted using the rotational position of the electric motor 100 corrected in consideration of the time difference.
 ここで、時差に応じた電気モータ100の回転位置の補正は、電気モータ100の回転速度を用いて行うことができる。当該回転速度として、電気モータ100の回転位置を検出するセンサの検出値を時間微分した値、または、拡張誘起電圧方式を利用して導出した回転位置の推定値である推定回転位置θeを時間微分した値を用いるとする。この場合、当該検出値や推定値の精度が悪いと、当該回転速度の検出値や推定値が、電気モータ100の回転速度の実値から乖離しているおそれがある。 The rotational position of the electric motor 100 can be corrected according to the time difference using the rotational speed of the electric motor 100. The rotational speed used is the time-differentiated value of the detection value of the sensor that detects the rotational position of the electric motor 100, or the time-differentiated value of the estimated rotational position θe, which is an estimate of the rotational position derived using the extended induced voltage method. In this case, if the accuracy of the detection value or estimate is poor, the detection value or estimate of the rotational speed may deviate from the actual value of the rotational speed of the electric motor 100.
 そこで、制御装置10は、上記の時差に応じて電気モータ100の回転位置を補正する場合、上記の目標速度ωrが用いられる。当該目標速度ωrは、電気モータ100に対する要求値である要求液圧Prqに応じて導出されたものである。そのため、回転位置の検出値や推定値の精度が悪い場合であっても、目標速度ωrはそうした影響を受けない。その結果、目標速度ωrは、電気モータ100の回転速度の実値から乖離しにくい。これにより、目標速度ωrを用いて電気モータ100の回転位置を補正することにより、その補正を精度良く行うことができる。 Then, when the control device 10 corrects the rotational position of the electric motor 100 in accordance with the time difference, the above target speed ωr is used. The target speed ωr is derived in accordance with the required hydraulic pressure Prq, which is a required value for the electric motor 100. Therefore, even if the accuracy of the detected value or estimated value of the rotational position is poor, the target speed ωr is not affected. As a result, the target speed ωr is unlikely to deviate from the actual value of the rotational speed of the electric motor 100. This makes it possible to perform the correction with high accuracy by correcting the rotational position of the electric motor 100 using the target speed ωr.
 (2)電気モータ100の出力の要求値の変化速度が所定の変化速度判定値よりも大きいと、要求値に応じて変化する目標速度ωrと電気モータ100の回転速度の実値との乖離が大きくなりやすい。 (2) If the rate of change of the required value of the output of the electric motor 100 is greater than a predetermined rate of change judgment value, the deviation between the target speed ωr, which changes according to the required value, and the actual value of the rotation speed of the electric motor 100 is likely to become large.
 そこで、制御装置10は、電気モータ100に対する出力の要求値の変化速度が所定の変化速度判定値よりも大きい場合には、目標速度ωrではなく推定回転速度ωeを用いて電気モータ100の回転位置を補正する。目標速度ωrと推定回転速度ωeとを使い分けることにより、電気モータ100の回転位置を精度良く補正できる。 Therefore, when the rate of change of the required value of the output for the electric motor 100 is greater than a predetermined rate of change judgment value, the control device 10 corrects the rotational position of the electric motor 100 using the estimated rotational speed ωe instead of the target speed ωr. By selectively using the target speed ωr and the estimated rotational speed ωe, the rotational position of the electric motor 100 can be corrected with high accuracy.
 (3)電気モータ100の回転位置の検出値や推定値に基づいて導出した回転速度を用いてd軸干渉電圧補償値Vdiおよびq軸干渉電圧補償値Vqiを導出する場合を考える。この場合、電気モータ100の回転位置の検出値や推定値の精度が悪いと、d軸干渉電圧補償値Vdiおよびq軸干渉電圧補償値Vqiの導出精度が高いとは言いがたい。 (3) Consider the case where the d-axis interference voltage compensation value Vdi and the q-axis interference voltage compensation value Vqi are derived using a rotation speed derived based on a detected value or an estimated value of the rotation position of the electric motor 100. In this case, if the accuracy of the detected value or the estimated value of the rotation position of the electric motor 100 is poor, it is difficult to say that the accuracy of the derivation of the d-axis interference voltage compensation value Vdi and the q-axis interference voltage compensation value Vqi is high.
 そこで、制御装置10は、d軸干渉電圧補償値Vdiおよびq軸干渉電圧補償値Vqiを導出する場合、目標速度ωrを用いる。上述したように回転位置の検出値や推定値の精度が悪い場合であっても、目標速度ωrはそうした影響を受けない。そのため、目標速度ωrを用いてd軸干渉電圧補償値Vdiおよびq軸干渉電圧補償値Vqiを導出することにより、その導出精度を高くできる。したがって、制御装置10は、電気モータ100の制御精度を高くできる。 The control device 10 therefore uses the target speed ωr when deriving the d-axis interference voltage compensation value Vdi and the q-axis interference voltage compensation value Vqi. As described above, even if the accuracy of the detected value or estimated value of the rotational position is poor, the target speed ωr is not affected. Therefore, by deriving the d-axis interference voltage compensation value Vdi and the q-axis interference voltage compensation value Vqi using the target speed ωr, the derivation accuracy can be increased. Therefore, the control device 10 can increase the control accuracy of the electric motor 100.
 (4)電気モータ100の出力の要求値の変化速度が所定の変化速度判定値よりも大きいと、要求値に応じて変化する目標速度ωrと電気モータ100の回転速度の実値との乖離が大きくなりやすい。 (4) If the rate of change of the required value of the output of the electric motor 100 is greater than a predetermined rate of change judgment value, the deviation between the target speed ωr, which changes according to the required value, and the actual value of the rotation speed of the electric motor 100 is likely to become large.
 そこで、制御装置10は、電気モータ100に対する出力の要求値の変化速度が所定の変化速度判定値よりも大きい場合には、目標速度ωrではなく推定回転速度ωeを用いてd軸干渉電圧補償値Vdiおよびq軸干渉電圧補償値Vqiを導出する。そのため、目標速度ωrと推定回転速度ωeとを使い分けることにより、d軸干渉電圧補償値Vdiおよびq軸干渉電圧補償値Vqiの導出精度を高くできる。 Then, when the rate of change of the required value of the output for the electric motor 100 is greater than a predetermined rate of change judgment value, the control device 10 uses the estimated rotation speed ωe instead of the target speed ωr to derive the d-axis interference voltage compensation value Vdi and the q-axis interference voltage compensation value Vqi. Therefore, by selectively using the target speed ωr and the estimated rotation speed ωe, the accuracy of deriving the d-axis interference voltage compensation value Vdi and the q-axis interference voltage compensation value Vqi can be improved.
 <変更例>
 上記実施形態は、以下のように変更して実施することができる。上記実施形態および以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
<Example of change>
The above embodiment can be modified as follows: The above embodiment and the following modifications can be combined with each other to the extent that no technical contradiction occurs.
 ・上記実施形態では、d軸干渉電圧補償値Vdiおよびq軸干渉電圧補償値Vqiを導出する場合には、目標速度ωrと推定回転速度ωeとを使い分けていたが、これに限らない。例えば、要求液圧Prqの変化速度に拘わらず、目標速度ωrを用いてd軸干渉電圧補償値Vdiおよびq軸干渉電圧補償値Vqiを導出してもよい。 - In the above embodiment, the target speed ωr and the estimated rotation speed ωe were used to derive the d-axis interference voltage compensation value Vdi and the q-axis interference voltage compensation value Vqi, but this is not limited to the above. For example, the d-axis interference voltage compensation value Vdi and the q-axis interference voltage compensation value Vqi may be derived using the target speed ωr regardless of the rate of change of the required hydraulic pressure Prq.
 ・指令値変換部85が、補正後の推定回転速度ωe(n+1)を用いて変換処理を実行するのであれば、d軸電圧指令値Vdcおよびq軸電圧指令値Vqcを導出する際にd軸干渉電圧補償値Vdiおよびq軸干渉電圧補償値Vqiを用いなくてもよい。 - If the command value conversion unit 85 performs the conversion process using the corrected estimated rotation speed ωe(n+1), it is not necessary to use the d-axis interference voltage compensation value Vdi and the q-axis interference voltage compensation value Vqi when deriving the d-axis voltage command value Vdc and the q-axis voltage command value Vqc.
 ・上記実施形態では、推定回転速度ωe(n)を補正して推定回転速度ωe(n+1)を導出する場合には、目標速度ωrと推定回転速度ωeとを使い分けていたが、これに限らない。例えば、要求液圧Prqの変化速度に拘わらず、目標速度ωrを用いて推定回転速度ωe(n+1)を導出してもよい。 In the above embodiment, when the estimated rotational speed ωe(n) is corrected to derive the estimated rotational speed ωe(n+1), the target speed ωr and the estimated rotational speed ωe are used interchangeably, but this is not limited to the above. For example, the estimated rotational speed ωe(n+1) may be derived using the target speed ωr regardless of the rate of change of the required hydraulic pressure Prq.
 ・d軸干渉電圧補償値Vdiおよびq軸干渉電圧補償値Vqiを用いてd軸電圧指令値Vdcおよびq軸電圧指令値Vqcを導出するのであれば、指令値変換部85は、現在の推定回転位置θeを用いて変換処理を実行してもよい。 - If the d-axis voltage command value Vdc and the q-axis voltage command value Vqc are derived using the d-axis interference voltage compensation value Vdi and the q-axis interference voltage compensation value Vqi, the command value conversion unit 85 may perform the conversion process using the current estimated rotational position θe.
 ・q軸を第1軸とし、d軸を第2軸として、各電圧指令値Vqc,Vdcを導出し、当該各電圧指令値Vqc,Vdcを基にインバータ11を動作させることによって電気モータ100を駆動させてもよい。 - The q-axis may be the first axis, the d-axis may be the second axis, and the voltage command values Vqc and Vdc may be derived, and the electric motor 100 may be driven by operating the inverter 11 based on the voltage command values Vqc and Vdc.
 ・図1に二点鎖線で示すように電気モータ100の回転位置を検出する回転角センサ200が電気モータ100に設けられていることがある。この場合、制御装置10は、電気モータ100の回転速度の検出値を取得する取得部を備えている。そのため、制御装置10は、推定回転位置θeの代わりに、回転角センサの検出値に基づいた電気モータ100の回転位置の検出値を用いることができる。また、制御装置10は、推定回転速度ωeの代わりに、上記回転位置の検出値を時間微分した値(すなわち、回転速度の検出値)を用いることもできる。 - As shown by the two-dot chain line in FIG. 1, the electric motor 100 may be provided with a rotation angle sensor 200 that detects the rotational position of the electric motor 100. In this case, the control device 10 has an acquisition unit that acquires the detected value of the rotational speed of the electric motor 100. Therefore, the control device 10 can use the detected value of the rotational position of the electric motor 100 based on the detected value of the rotation angle sensor instead of the estimated rotational position θe. The control device 10 can also use the value obtained by time-differentiating the detected value of the rotational position (i.e., the detected value of the rotational speed) instead of the estimated rotational speed ωe.
 ・上記実施形態では、目標速度ωrと推定回転速度ωeとの使い分けを、要求液圧Prqの変化速度を用いて行っていたが、これに限らない。例えば、目標速度ωrと目標速度の判定値との比較によって、目標速度ωrと推定回転速度ωeとの使い分けを行ってもよい。 In the above embodiment, the target speed ωr and the estimated rotation speed ωe are differentiated using the rate of change of the required hydraulic pressure Prq, but this is not limited to the above. For example, the target speed ωr and the estimated rotation speed ωe may be differentiated by comparing the target speed ωr with a target speed determination value.
 ・上記実施形態では、要求液圧Prqが電気モータ100の出力に対する要求値として制御装置10に入力されていたが、これに限らない。例えば、制御装置には、電気モータ100の回転位置の要求値が電気モータ100に対する要求値として入力されてもよいし、トルクの要求値が電気モータ100に対する要求値として入力されてもよい。 - In the above embodiment, the required hydraulic pressure Prq is input to the control device 10 as the required value for the output of the electric motor 100, but this is not limited to the above. For example, the required value for the rotational position of the electric motor 100 may be input to the control device as the required value for the electric motor 100, or the required value for torque may be input to the control device as the required value for the electric motor 100.
 ・上記実施形態では、制御装置10が、電気モータ100の駆動によって実現可能な回転位置を目標位置θrとして導出する応答モデル21を備えているが、当該応答モデル21を備えていなくてもよい。例えば、制御装置は、要求液圧Prq(電気モータ100に対する要求値)を目標位置に変換する変換部を備えてもよい。当該変換部は、電気モータ100の駆動によって実現可能であるか否かに無関係に、目標位置を導出する。この場合、目標速度導出部は、目標位置を時間微分することによって目標速度の仮値を導出する。そして、目標速度導出部は、目標速度の仮値が、電気モータ100が出力可能な範囲内の値であるか否かを判定する。目標速度導出部は、目標速度の仮値が、電気モータ100が出力可能な範囲内の値である場合には当該仮値を目標速度ωrとして導出する。一方、目標速度導出部は、目標速度の仮値が、電気モータ100が出力可能な範囲内の値ではない場合には、出力可能な範囲内の値となるように当該仮値を補正することにより、目標速度ωrを導出する。これにより、上記実施形態と同等の作用および効果を得ることができる。 In the above embodiment, the control device 10 is provided with a response model 21 that derives a rotational position that can be realized by driving the electric motor 100 as the target position θr, but the control device may not be provided with the response model 21. For example, the control device may be provided with a conversion unit that converts the required hydraulic pressure Prq (required value for the electric motor 100) into a target position. The conversion unit derives the target position regardless of whether it is possible to realize it by driving the electric motor 100. In this case, the target speed derivation unit derives a provisional value of the target speed by time differentiating the target position. Then, the target speed derivation unit determines whether the provisional value of the target speed is a value within a range that the electric motor 100 can output. If the provisional value of the target speed is a value within a range that the electric motor 100 can output, the target speed derivation unit derives the provisional value as the target speed ωr. On the other hand, if the provisional value of the target speed is not a value within a range that the electric motor 100 can output, the target speed derivation unit derives the target speed ωr by correcting the provisional value so that it becomes a value within the range that the electric motor 100 can output. This allows for the same effects and benefits as the above embodiment to be achieved.
 ・電気モータは、複数相のコイルを有する同期モータであれば、4相以上のコイルを有する同期モータであってもよい。
 ・制御装置は、コンピュータプログラムに従って動作する1つ以上のプロセッサ、各種処理のうち少なくとも一部の処理を実行する専用のハードウェアなどの1つ以上の専用のハードウェア回路またはこれらの組み合わせを含む回路として構成し得る。専用のハードウェアとしては、例えば、特定用途向け集積回路であるASICを挙げることができる。プロセッサは、CPU並びに、RAMおよびROMなどのメモリを含み、メモリは、処理をCPUに実行させるように構成されたプログラムコードまたは指令を格納している。メモリ、すなわち記憶媒体は、汎用または専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。
The electric motor may be a synchronous motor having coils of four or more phases as long as the electric motor is a synchronous motor having coils of multiple phases.
The control device may be configured as a circuit including one or more processors operating according to a computer program, one or more dedicated hardware circuits such as dedicated hardware for performing at least some of the various processes, or a combination of these. Dedicated hardware may include, for example, an ASIC, which is an application specific integrated circuit. The processor includes a CPU and memory such as RAM and ROM, and the memory stores program code or instructions configured to cause the CPU to perform the process. The memory, i.e., the storage medium, includes any available medium accessible by a general-purpose or dedicated computer.
 なお、本明細書において使用される「少なくとも1つ」という表現は、所望の選択肢の「1つ以上」を意味する。一例として、本明細書において使用される「少なくとも1つ」という表現は、選択肢の数が2つであれば「1つの選択肢のみ」または「2つの選択肢の双方」を意味する。他の例として、本明細書において使用される「少なくとも1つ」という表現は、選択肢の数が3つ以上であれば「1つの選択肢のみ」または「2つ以上の任意の選択肢の組み合わせ」を意味する。 The expression "at least one" used in this specification means "one or more" of the desired options. As an example, the expression "at least one" used in this specification means "only one option" or "both of two options" if the number of options is two. As another example, the expression "at least one" used in this specification means "only one option" or "any combination of two or more options" if the number of options is three or more.

Claims (5)

  1.  電気モータの出力に対する要求値および当該電気モータの複数相のコイルにインバータから供給された電流に基づいて、当該複数相のコイルに対する指令値を生成し、当該指令値に基づいて前記インバータを動作させることにより、前記電気モータを制御する電気モータ制御装置であって、
     前記電気モータの回転速度の目標である目標速度を、前記電気モータが出力可能な範囲内で前記要求値に応じて導出する目標速度導出部と、
     ベクトル制御の回転座標の電圧ベクトルの第1軸の成分の電圧の指令値である第1軸成分の電圧の指令値、および、前記第1軸と直交する第2軸の成分の電圧の指令値である第2軸成分の電圧の指令値を、前記電気モータの回転位置に基づいて、前記複数相のコイルに対する前記指令値に変換する変換処理を実行する指令値変換部と、
     前記変換処理の実行タイミングと、当該変換処理によって導出された前記指令値に基づいて前記インバータが動作するタイミングと、の時差に起因した前記電気モータの回転位置のずれ量の補正を、前記目標速度に基づいて行う回転位置補正部と、を備え、
     前記指令値変換部は、前記回転位置補正部によって補正された前記回転位置を用いて前記変換処理を実行する
     電気モータ制御装置。
    1. An electric motor control device that generates command values for coils of multiple phases of an electric motor based on a required value for an output of the electric motor and currents supplied from an inverter to the coils of multiple phases of the electric motor, and controls the electric motor by operating the inverter based on the command values,
    a target speed derivation unit that derives a target speed that is a target for a rotation speed of the electric motor in accordance with the required value within a range that the electric motor can output;
    a command value conversion unit that converts a first-axis component voltage command value, which is a first-axis component voltage command value of a voltage vector of a rotating coordinate system of vector control, and a second-axis component voltage command value, which is a second-axis component voltage command value orthogonal to the first axis, into command values for the coils of the multiple phases, based on a rotational position of the electric motor;
    a rotational position correction unit that corrects, based on the target speed, a deviation amount of a rotational position of the electric motor caused by a time difference between a timing at which the conversion process is executed and a timing at which the inverter operates based on the command value derived by the conversion process;
    The electric motor control device, wherein the command value conversion unit performs the conversion process by using the rotational position corrected by the rotational position correction unit.
  2.  前記電気モータの回転速度の検出値または推定値を取得する取得部を備え、
     前記回転位置補正部は、
     前記要求値の変化速度が所定の変化速度判定値未満である場合には、前記時差に起因した前記電気モータの回転位置のずれ量の補正を、前記目標速度を用いて行い、
     前記要求値の変化速度が前記変化速度判定値以上である場合には、前記時差に起因した前記電気モータの回転位置のずれ量の補正を、前記取得部によって取得された前記検出値または前記推定値を用いて行う
     請求項1に記載の電気モータ制御装置。
    an acquisition unit that acquires a detected value or an estimated value of a rotation speed of the electric motor;
    The rotational position correction unit
    when the rate of change of the required value is less than a predetermined rate of change judgment value, a deviation amount of the rotational position of the electric motor caused by the time difference is corrected by using the target speed;
    2. The electric motor control device according to claim 1, wherein, when the rate of change of the required value is equal to or greater than the rate of change judgment value, a deviation in the rotational position of the electric motor caused by the time difference is corrected using the detected value or the estimated value acquired by the acquisition unit.
  3.  前記第1軸成分の電流によって発生する前記第2軸上の干渉電圧を相殺するための第2軸干渉電圧補償値および前記第2軸成分の電流によって発生する前記第1軸上の干渉電圧を相殺するための第1軸干渉電圧補償値を、前記目標速度に基づいて導出する非干渉電圧導出部と、
     前記要求値に基づいた前記第1軸成分の電圧の指令値を前記第1軸干渉電圧補償値で補正することによって第1軸電圧指令値を導出し、前記要求値に基づいた前記第2軸成分の電圧の指令値を前記第2軸干渉電圧補償値で補正することによって第2軸電圧指令値を導出する指令値補正部と、を備え、
     前記指令値変換部は、前記変換処理において、前記指令値補正部によって導出された前記第1軸電圧指令値および前記第2軸電圧指令値を、前記電気モータの回転位置に基づいて、前記複数相のコイルに対する前記指令値に変換する
     請求項1に記載の電気モータ制御装置。
    a non-interference voltage derivation unit that derives a second-axis interference voltage compensation value for canceling an interference voltage on the second axis generated by a current of the first axis component and a first-axis interference voltage compensation value for canceling an interference voltage on the first axis generated by a current of the second axis component based on the target speed;
    a command value correction unit that derives a first axis voltage command value by correcting a command value of a voltage of the first axis component based on the required value with the first axis interference voltage compensation value, and that derives a second axis voltage command value by correcting a command value of a voltage of the second axis component based on the required value with the second axis interference voltage compensation value,
    2. The electric motor control device according to claim 1, wherein the command value conversion unit converts the first shaft voltage command value and the second shaft voltage command value derived by the command value correction unit into the command values for the coils of the multiple phases based on a rotational position of the electric motor in the conversion process.
  4.  電気モータの出力に対する要求値および当該電気モータの複数相のコイルにインバータから供給された電流に基づいて、当該複数相のコイルに対する指令値を生成し、当該指令値に基づいて前記インバータを動作させることにより、前記電気モータを制御する電気モータ制御装置であって、
     前記電気モータの回転速度の目標である目標速度を、前記電気モータが出力可能な範囲内で前記要求値に応じて導出する目標速度導出部と、
     ベクトル制御の回転座標の電流ベクトルの第1軸の成分の電流である第1軸成分の電流によって発生する前記第1軸と直交する第2軸上の干渉電圧を相殺するための第2軸干渉電圧補償値と、前記第2軸の成分の電流である第2軸成分の電流によって発生する前記第1軸上の干渉電圧を相殺するための第1軸干渉電圧補償値とを、前記目標速度に基づいて導出する非干渉電圧導出部と、を備え、
     前記第1軸干渉電圧補償値および前記第2軸干渉電圧補償値に基づいて、前記電気モータを制御する
     電気モータ制御装置。
    1. An electric motor control device that generates command values for coils of multiple phases of an electric motor based on a required value for an output of the electric motor and currents supplied from an inverter to the coils of multiple phases of the electric motor, and controls the electric motor by operating the inverter based on the command values,
    a target speed derivation unit that derives a target speed that is a target for a rotation speed of the electric motor in accordance with the required value within a range that the electric motor can output;
    a non-interference voltage derivation unit that derives, based on the target speed, a second-axis interference voltage compensation value for canceling an interference voltage on a second axis orthogonal to the first axis that is generated by a current of a first-axis component that is a current of a first-axis component of a current vector of a rotating coordinate system of vector control, and a first-axis interference voltage compensation value for canceling an interference voltage on the first axis that is generated by a current of a second-axis component that is a current of the second-axis component,
    an electric motor control device that controls the electric motor based on the first axis interference voltage compensation value and the second axis interference voltage compensation value.
  5.  前記電気モータの回転速度の検出値または推定値を取得する取得部を備え、
     前記非干渉電圧導出部は、
     前記要求値の変化速度が所定の変化速度判定値未満である場合には、前記第1軸干渉電圧補償値および前記第2軸干渉電圧補償値を前記目標速度に基づいて導出し、
     前記要求値の変化速度が前記変化速度判定値以上である場合には、前記第1軸干渉電圧補償値および前記第2軸干渉電圧補償値を、前記取得部によって取得された前記検出値または前記推定値に基づいて導出する
     請求項3または請求項4に記載の電気モータ制御装置。
    an acquisition unit that acquires a detected value or an estimated value of a rotation speed of the electric motor;
    The non-interfering voltage derivation unit includes:
    When the change rate of the required value is less than a predetermined change rate judgment value, the first axis interference voltage compensation value and the second axis interference voltage compensation value are derived based on the target speed;
    5. The electric motor control device according to claim 3, wherein when a rate of change of the required value is equal to or greater than the rate of change determination value, the first-axis interference voltage compensation value and the second-axis interference voltage compensation value are derived based on the detected value or the estimated value acquired by the acquisition unit.
PCT/JP2023/036839 2022-10-11 2023-10-11 Electric motor control device WO2024080294A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-163095 2022-10-11
JP2022163095A JP2024056305A (en) 2022-10-11 2022-10-11 Electric Motor Control Unit

Publications (1)

Publication Number Publication Date
WO2024080294A1 true WO2024080294A1 (en) 2024-04-18

Family

ID=90669658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036839 WO2024080294A1 (en) 2022-10-11 2023-10-11 Electric motor control device

Country Status (2)

Country Link
JP (1) JP2024056305A (en)
WO (1) WO2024080294A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009207323A (en) * 2008-02-29 2009-09-10 Mitsubishi Heavy Ind Ltd Motor controller
JP2011017346A (en) * 2004-06-29 2011-01-27 Ebara Corp Pump device
JP2019106768A (en) * 2017-12-11 2019-06-27 株式会社富士通ゼネラル Motor control device
WO2019151200A1 (en) * 2018-01-31 2019-08-08 日本精工株式会社 Motor control device and electric power steering device equipped with same
JP2021118625A (en) * 2020-01-27 2021-08-10 株式会社富士通ゼネラル Sensorless motor control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017346A (en) * 2004-06-29 2011-01-27 Ebara Corp Pump device
JP2009207323A (en) * 2008-02-29 2009-09-10 Mitsubishi Heavy Ind Ltd Motor controller
JP2019106768A (en) * 2017-12-11 2019-06-27 株式会社富士通ゼネラル Motor control device
WO2019151200A1 (en) * 2018-01-31 2019-08-08 日本精工株式会社 Motor control device and electric power steering device equipped with same
JP2021118625A (en) * 2020-01-27 2021-08-10 株式会社富士通ゼネラル Sensorless motor control device

Also Published As

Publication number Publication date
JP2024056305A (en) 2024-04-23

Similar Documents

Publication Publication Date Title
JP5155344B2 (en) Electric motor magnetic pole position estimation device
JP4168730B2 (en) Control device for three-phase AC motor
JP4674525B2 (en) Magnetic pole position estimation method and motor control apparatus
JP5741966B2 (en) AC motor control device
WO2010116787A1 (en) Electric motor control device
JP5502126B2 (en) Drive device for multi-winding rotating machine
US9112436B2 (en) System for controlling controlled variable of rotary machine
US9077278B2 (en) AC motor control apparatus
JP5772843B2 (en) AC motor control device
JP4926492B2 (en) Motor control device
JP3783695B2 (en) Motor control device
JP5330652B2 (en) Permanent magnet motor control device
JP5910583B2 (en) AC motor control device
JP5737123B2 (en) Rotating machine control device and rotation angle calculation device
JP5812021B2 (en) AC motor control device
WO2020045568A1 (en) Motor control device
WO2024080294A1 (en) Electric motor control device
WO2018159104A1 (en) Motor control method, motor control system, and electric power steering system
WO2018159103A1 (en) Motor control method, motor control system, and electric power steering system
JP2001197778A (en) Controller for ac motor
WO2018159099A1 (en) Motor control method, motor control system, and electric power steering system
JP2021023042A (en) Motor control device
WO2018159100A1 (en) Motor control method, motor control system, and electric power steering system
JP7472397B2 (en) Power conversion device, estimator, and estimation method
JP2010136585A (en) Controller for electric motor