WO2024080182A1 - Powder recovery device and method for controlling powder recovery device - Google Patents

Powder recovery device and method for controlling powder recovery device Download PDF

Info

Publication number
WO2024080182A1
WO2024080182A1 PCT/JP2023/035973 JP2023035973W WO2024080182A1 WO 2024080182 A1 WO2024080182 A1 WO 2024080182A1 JP 2023035973 W JP2023035973 W JP 2023035973W WO 2024080182 A1 WO2024080182 A1 WO 2024080182A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
unit
pressurizing
gas
valve
Prior art date
Application number
PCT/JP2023/035973
Other languages
French (fr)
Japanese (ja)
Inventor
康弘 山内
克彦 篠田
篤 藤井
Original Assignee
三菱重工業株式会社
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱パワー株式会社 filed Critical 三菱重工業株式会社
Publication of WO2024080182A1 publication Critical patent/WO2024080182A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/10Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of field or garden waste or biomasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes

Definitions

  • This disclosure relates to a powder recovery device and a method for controlling the powder recovery device.
  • Patent Document 1 there is known an ash treatment device that reduces the temperature of ash collected from combustion gas by an ash collector and discharges it outside the system (see, for example, Patent Document 1).
  • the ash treatment device disclosed in Patent Document 1 cools the ash collected from the high-pressure, high-temperature combustion gas containing ash in an ash cooler and transports it to a high-pressure ash storage tank.
  • the ash that accumulates at the bottom of the high-pressure ash storage tank is discharged into a vacuum hopper, and after being depressurized to atmospheric pressure, it is sent to an ash silo.
  • Patent Document 1 an ash cooler is required as equipment for reducing the temperature of the ash collected by the ash collector, which increases the installation cost of the ash collector and requires installation space for the ash cooler.
  • the ash containing unburned matter discharged from the ash collector may oxidize and generate heat (spontaneous heating), or the flammable gas may desorb from the ash and pollute the outside air.
  • the present disclosure has been made in consideration of these circumstances, and aims to provide a powder recovery device and a control method for a powder recovery device that can separate and cool powder from a heated gas to be treated while suppressing increases in installation costs and installation space, spontaneous heating of the powder, and pollution of the outside air.
  • a powder recovery device is a powder recovery device that separates and recovers powder from a heated gas to be treated, and includes a powder separation section to which the gas to be treated is introduced and which separates the powder from the gas to be treated, an introduction section to which the powder separated by the powder separation section is introduced, a recovery container that temporarily recovers the powder introduced from the introduction section, and a discharge section that discharges the powder recovered in the recovery container, the powder recovery device including a first recovery section having a first on-off valve provided in the introduction section, a second on-off valve provided in the discharge section, and a pressurizing gas supply section provided in the recovery container.
  • the pressurizing unit performs a pressurizing operation to pressurize the collection container by discharging the pressurizing gas from the collection container to the outside, and a control unit controls the first on-off valve, the second on-off valve, the pressurizing unit, and the decompression unit, and the control unit controls the first on-off valve and the second on-off valve to be in a closed state so as to alternately repeat the pressurizing operation by the pressurizing unit and the decompression operation by the decompression unit, and then controls the second on-off valve to be in an open state so as to discharge the powder collected in the collection container from the discharge unit.
  • the control method of a powder recovery device is a control method of a powder recovery device that separates and recovers powder from a heated gas to be treated, the powder recovery device comprising a first recovery section having a powder separation section into which the gas to be treated is introduced and which separates the powder from the gas to be treated, an introduction section into which the powder separated by the powder separation section is introduced, a recovery container that temporarily recovers the powder introduced from the introduction section, and a discharge section that discharges the powder recovered in the recovery container, a first opening/closing valve installed in the introduction section, a second opening/closing valve installed in the discharge section, and a valve for discharging the powder recovered in the recovery container.
  • the apparatus includes a pressurizing unit that supplies a pressurizing gas to perform a pressurizing operation to pressurize the collection container, and a depressurizing unit that performs a depressurizing operation to depressurize the collection container by discharging the pressurizing gas from the collection container to the outside, and includes a pressurizing step in which the pressurizing operation is performed with the first and second opening/closing valves in a closed state, a depressurizing step in which the depressurizing operation is performed by the depressurizing unit with the first and second opening/closing valves in a closed state, and a discharging step in which the pressurizing step and the depressurizing step are alternately repeated, and then the second opening/closing valve is opened and the powder collected in the collection container is discharged from the discharging unit.
  • the present disclosure provides a powder recovery device and a method for controlling the powder recovery device that can separate and cool powder from a heated gas to be treated while minimizing increases in installation costs and installation space, spontaneous heating of the powder, and pollution of the outside air.
  • FIG. 1 is a schematic configuration diagram showing a biomass gasification facility according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram showing a system configuration of the dust collection facility shown in FIG. 1 .
  • 4 is a flowchart showing a method for controlling the dust collection equipment of the present embodiment.
  • 1 is a graph showing a relationship between the time for repeatedly performing pressurizing and depressurizing operations and the temperature of char in a cooling hopper.
  • 10 is a graph showing the relationship between the time required to repeatedly perform pressurizing and depressurizing operations and the dilution rate of gas in a cooling hopper.
  • 1 is a graph showing a relationship between a pressure ratio of a first internal pressure to a second internal pressure and a cooling time of char inside a cooling hopper.
  • the biomass gasification facility 10 is a device that generates combustible biomass gas by partially burning and gasifying biomass fuel.
  • Biomass fuel is a renewable organic resource derived from living organisms, and examples include thinned wood, waste wood, driftwood, grass, waste, sludge, and recycled fuels (pellets and chips) made from these raw materials, but is not limited to those presented here.
  • Biomass fuel is carbon neutral, meaning that it does not emit carbon dioxide, a greenhouse gas, because it captures carbon dioxide during the biomass growth process, and various uses of biomass fuel are being considered.
  • the biomass gasification equipment 10 includes a biomass gasification furnace 11 that generates biomass gas, a high-temperature synthesis gas cooler 12 (high-temperature SGC: synthesis gas cooler) to which the biomass gas discharged from the biomass gasification furnace 11 is guided, a char recovery equipment 30 that recovers char (mainly unburned carbon and ash) contained in the biomass gas, a char cooler (heat exchange unit) 16 that cools the recovered char, a low-temperature synthesis gas cooler 14 (low-temperature SGC) to which the biomass gas from which the char has been removed is guided, a feedwater preheating unit 17 that preheats the gasification agent that is guided to the low-temperature synthesis gas cooler 14, a scrubber 18 that removes impurities from the biomass gas, and a control unit 90.
  • a biomass gasification furnace 11 that generates biomass gas
  • a high-temperature synthesis gas cooler 12 high-temperature SGC: synthesis gas cooler
  • a char recovery equipment 30 that recovers char (mainly
  • the biomass gasifier 11 generates biomass gas by gasifying the biomass fuel supplied by the biomass supply unit 19.
  • the biomass supply unit 19 transports the biomass fuel to the biomass gasifier 11 and has a feeder (not shown) that feeds the biomass fuel into the biomass gasifier 11.
  • the biomass gas generated in the biomass gasifier 11 is guided to the high-temperature synthesis gas cooler 12 via the first biomass gas line L1.
  • An oxygen line L17 is connected to the biomass gasifier 11. Oxygen supplied from an oxygen supply device (not shown) flows through the oxygen line L17.
  • the high-temperature syngas cooler 12 and the low-temperature syngas cooler 14 exchange heat between the biomass gas and the feed water or steam (gasification agent).
  • the high-temperature syngas cooler 12 and the low-temperature syngas cooler 14 use the heat of the biomass gas generated in the biomass gasifier 11 to heat the steam that is led to the biomass gasifier 11 as a gasification agent, and to cool the biomass gas.
  • the biomass gas discharged from the high-temperature syngas cooler 12 is led to the dust collection equipment 31 of the char recovery equipment 30 via the second biomass gas line L2.
  • the biomass gas discharged from the low-temperature syngas cooler 14 is led to the scrubber 18 via the fourth biomass gas line L4.
  • the char recovery equipment 30 passes biomass gas and recovers char contained in the passing biomass gas.
  • the char recovery equipment 30 includes a dust collection equipment (powder recovery device) 31 and a supply hopper 32.
  • the dust collection equipment 31 can separate the char contained in the product gas generated in the biomass gasification furnace 11.
  • the biomass gas (product gas) from which the char has been separated is then sent to the low-temperature synthesis gas cooler 14 via the third biomass gas line L3. Details of the char recovery equipment 30 will be described later.
  • the char separated in the dust collection equipment 31 is guided to the supply hopper 32 via the first char line L6.
  • the char stored in the supply hopper 32 is discharged from the outlet of the supply hopper 32 at a predetermined timing and guided to the char cooler 16 via the second char line L7.
  • the char cooler 16 cools the char with make-up water.
  • Make-up water gasification agent
  • the cooled char is discharged outside the system via a third char line L8.
  • Make-up water at room temperature is supplied to the char cooler 16 from a make-up water supply device (not shown).
  • the make-up water is heated by multiple devices including the char cooler 16 and then guided to the biomass supply unit 19 via a second make-up water line L10.
  • the make-up water heated in the biomass supply unit 19 is guided to the first feed water line L12 via a third make-up water line L11 that connects the biomass supply unit 19 to the feed water line.
  • the feedwater preheating section 17 heats the feedwater using a heat medium.
  • the feedwater preheating section 17 is supplied with room temperature feedwater from a feedwater supply device (not shown). In the feedwater preheating section 17, the feedwater is heated by heat exchange with the heat medium, and some or all of the feedwater becomes steam.
  • the feedwater is heated in the low-temperature synthesis gas cooler 14 to a temperature that does not cause problems in terms of condensation or precipitation of impurities.
  • the steam discharged from the feedwater preheating section 17 is guided to the low-temperature synthesis gas cooler 14 via the first steam line L13.
  • the steam heated in the low-temperature synthesis gas cooler 14 is guided to the high-temperature synthesis gas cooler 12 via the second steam line L14.
  • the scrubber 18 removes impurities (e.g., tar, ammonia, etc.) contained in the biomass gas.
  • the impurities and excess water vapor removed by the scrubber 18 are discharged as wastewater together with scrubber water to the outside of the system via the drainage line L18.
  • the biomass gas from which the impurities and excess water vapor have been removed is discharged from the scrubber 18 and guided to the downstream equipment via the fifth biomass gas line L5.
  • the downstream equipment is a liquid fuel synthesis equipment for biojet fuel, etc.
  • the control unit 90 is a device that controls each part of the biomass gasification equipment 10, including the char recovery equipment 30.
  • FIG. 2 is a schematic diagram showing the system configuration of the dust collection equipment 31 shown in FIG. 1.
  • the dust collection equipment 31 includes a generated gas filter (powder separation section) 31A, a cooling hopper (first recovery section) 31B, a discharge hopper 31C, a first discharge valve (first opening/closing valve) 31D, a second discharge valve (second opening/closing valve) 31E, a pressurizing section 31F, a decompressing section 31G, a temperature sensor (detection section) 31H, a first level sensor 31I, and a second level sensor 31J.
  • the generated gas filter 31A, the cooling hopper 31B, and the discharge hopper 31C are arranged in this order from the top in the vertical direction.
  • the generated gas filter 31A is a device that receives generated gas (gas to be treated) from the high-temperature synthesis gas cooler 12 via the second biomass gas line L2, and separates and recovers char (powder containing unreacted biomass fuel and ash) from the generated gas.
  • the generated gas supplied to the generated gas filter 31A has a temperature in the range of, for example, 300°C or higher and 500°C or lower.
  • the product gas filter 31A includes a filter 31Ab in a container 31Aa.
  • the filter 31Ab is a filter with many pores and is made of, for example, ceramics or sintered metal.
  • the filters 31Ab are, for example, cylindrical, and a plurality of filters are provided in parallel with an axis in the vertical direction.
  • the filter 31Ab divides the space in the container 31Aa into upper and lower spaces, with the lower space 31Ac being the pre-filtration space into which the product gas containing char flows, and the upper space 31Ad being the post-filtration space.
  • a second biomass gas line L2 that guides the generated gas containing char is connected to the lower space 31Ac of the generated gas filter 31A.
  • a third biomass gas line L3 that guides the generated gas after char separation to the low-temperature synthesis gas cooler 14 is connected to the upper space 31Ad of the generated gas filter 31A.
  • the product gas filter 31A is provided with a backwashing device 31Ae.
  • the backwashing device 31Ae backwashes the filter 31Ab and sprays backwashing gas in a pulsed manner (e.g., at intervals of 0.5 seconds) from the upper space 31Ad side toward the lower space 31Ac side to brush off char adhering to the surface of the filter 31Ab on the lower space 31Ac side.
  • An inert gas such as nitrogen is used as the backwashing gas.
  • the cooling hopper 31B is a device that temporarily collects and cools the char discharged from the product gas filter 31A and discharges it to the discharge hopper 31C.
  • the cooling hopper 31B has an inlet line (inlet section) 31Ba, a recovery container 31Bb, and a discharge line (discharge section) 31Bc.
  • the inlet line 31Ba is a pipe that introduces the char separated from the product gas by the product gas filter 31A into the recovery container 31Bb.
  • the recovery container 31Bb is a container that temporarily collects the char introduced from the inlet line 31Ba.
  • the discharge line 31Bc is a pipe that discharges the char collected in the recovery container 31Bb to the discharge hopper 31C.
  • the discharge hopper 31C is a device that temporarily collects the char discharged from the cooling hopper 31B and supplies it to the supply hopper 32.
  • the discharge hopper 31C has a collection container 31Ca, a rotary feeder 31Cb, and a discharge line 31Cc.
  • the collection container 31Ca is a container that temporarily collects the char introduced from the discharge line 31Bc.
  • the rotary feeder 31Cb is a device that guides the char from the collection container 31Ca to the discharge line 31Cc by rotating with the driving force of a motor.
  • the discharge line 31Cc is a pipe that supplies the char collected in the collection container 31Ca to the supply hopper 32.
  • the first discharge valve 31D is disposed in the inlet line 31Ba and is an on-off valve that switches between an open state that connects the internal space of the container 31Aa of the product gas filter 31A to the internal space of the collection container 31Bb of the cooling hopper 31B, and a closed state that does not connect the internal space of the container 31Aa of the product gas filter 31A to the internal space of the collection container 31Bb of the cooling hopper 31B.
  • the second discharge valve 31E is disposed in the discharge line 31Bc, and is an on-off valve that switches between an open state that connects the internal space of the collection container 31Bb of the cooling hopper 31B to the internal space of the collection container 31Ca of the discharge hopper 31C, and a closed state that does not connect the internal space of the collection container 31Bb of the cooling hopper 31B to the internal space of the collection container 31Ca of the discharge hopper 31C.
  • the pressurizing unit 31F is a device that performs a pressurizing operation to supply pressurizing gas to the collection container 31Bb of the cooling hopper 31B to pressurize the internal space of the collection container 31Bb.
  • the pressurizing unit 31F has a pressurizing gas supply source 31Fa and an on-off valve 31Fb.
  • the on-off valve 31Fb switches between an open state in which pressurizing gas is supplied from the pressurizing gas supply source 31Fa to the collection container 31Bb, and a closed state in which pressurizing gas is not supplied from the pressurizing gas supply source 31Fa to the collection container 31Bb.
  • the pressurizing gas is, for example, nitrogen gas, but other inert gases may be used.
  • a gas with an oxygen concentration of 10% or less that will not oxidize the char and generate heat when it comes into contact with the char can be used.
  • the pressurizing unit 31F introduces the pressurizing gas into the recovery area 31Bd where the char is recovered below the recovery container 31Bb of the cooling hopper 31B, and agitates the char present in the recovery area 31Bd.
  • the decompression unit 31G is a device that performs a decompression operation to discharge the pressurization gas from the collection container 31Bb of the cooling hopper 31B to the outside and decompress the internal space of the collection container 31Bb.
  • the decompression unit 31G has a filter 31Ga, a discharge line 31Gb, an on-off valve 31Gc, and an orifice 31Gd.
  • the decompression unit 31G discharges the pressurization gas from the collection container 31Bb via the discharge line 31Gb by switching the on-off valve 31Gc from a closed state to an open state when the internal space of the collection container 31Bb is in a pressurized state higher than atmospheric pressure.
  • the pores of the char collected in the collection vessel 31Bb may contain generated gas (flammable gas).
  • the pressurization gas discharged from the collection vessel 31Bb to the outside will contain flammable gas, but since the pressurization gas has diluted the flammable gas to below the environmental standard value and below the flammable range, pollution of the surrounding environment is suppressed.
  • the discharge line 31Gb may be connected to a treatment device such as a ground flare or a flare stack (not shown) and the flammable gas may be combusted.
  • the filter 31Ga is a filter having many pores, and is made of, for example, ceramics or sintered metal.
  • the filter 31Ga is, for example, cylindrical.
  • the pressure reducing section 31G shown in FIG. 2 has a single filter 31Ga, but may have multiple filters 31Ga.
  • the discharge line 31Gb is a pipe that guides the pressurized gas, from which char has been removed as it passes through the filter 31Ga, to the outside.
  • An on-off valve 31Gc and an orifice 31Gd are installed in the discharge line 31Gb.
  • the on-off valve 31Gc is a device that switches between an open state in which the internal space of the collection container 31Bb is connected to the outside via the discharge line 31Gb, and a closed state in which the internal space of the collection container 31Bb is not connected to the outside via the discharge line 31Gb.
  • the orifice 31Gd is a device for limiting the flow rate of the pressurizing gas that flows through the exhaust line 31Gb per unit time when the on-off valve 31Gc is open.
  • the orifice 31Gd determines the maximum flow rate of the pressurizing gas that flows through the exhaust line 31Gb per unit time by setting the flow path cross-sectional area to a predetermined value.
  • the temperature sensor 31H is a device that detects the temperature of the char collected in the collection area 31Bd of the collection container 31Bb of the cooling hopper 31B.
  • the temperature sensor 31H transmits the detected char temperature to the control unit 90.
  • the first level sensor 31I is a sensor that detects whether the pile height of the char collected in the collection container 31Bb of the cooling hopper 31B has reached a first predetermined height.
  • the second level sensor 31J is a sensor that detects whether the pile height of the char collected in the collection container 31Bb of the cooling hopper 31B has reached a second predetermined height that is higher than the first predetermined height. In the state shown in FIG. 2, the first level sensor 31I detects that the pile height of the char has reached the first predetermined height, but the second level sensor 31J does not detect that the pile height of the char has reached the second predetermined height.
  • FIG. 3 is a flowchart showing a method for controlling the dust collection equipment 31 of this embodiment.
  • Each process of the flowchart in FIG. 3 is executed by the control unit 90 using a control program stored in a storage unit (not shown).
  • the control unit 90 controls the first discharge valve 31D, the second discharge valve 31E, the pressurizing unit 31F, and the depressurizing unit 31G.
  • step S101 the control unit 90 controls the second discharge valve 31E installed in the discharge line 31Bc to close the second discharge valve 31E.
  • the cooling hopper 31B and the discharge hopper 31C are not in communication with each other.
  • step S102 the control unit 90 controls the first discharge valve 31D installed in the inlet line 31Ba to open the first discharge valve 31D.
  • the first discharge valve 31D When the first discharge valve 31D is open, the product gas filter 31A and the cooling hopper 31B are in communication with each other, and char is supplied from the product gas filter 31A to the cooling hopper 31B.
  • step S103 the control unit 90 controls the first discharge valve 31D installed in the inlet line 31Ba to close the first discharge valve 31D in response to the lapse of a predetermined time since the first discharge valve 31D was opened in step S102.
  • the first discharge valve 31D is closed, the product gas filter 31A and the cooling hopper 31B are not in communication with each other, and the supply of char from the product gas filter 31A to the cooling hopper 31B is stopped.
  • step S104 the control unit 90 determines whether the height of the char collected in the cooling hopper 31B accumulated in the collection container 31Bb is equal to or greater than a second predetermined height, and proceeds to step S105 if the height is equal to or greater than the second predetermined height. If the second level sensor 31J detects that the height of the char has reached the second predetermined height, the control unit 90 determines YES in step S104. If the control unit 90 determines NO in step S104, it repeats the processes of steps S102 and S103 until it determines YES in step S104.
  • step S105 the control unit 90 closes the first exhaust valve 31D and the second exhaust valve 31E to form a closed space in the collection container 31Bb, and executes a pressurizing operation to supply pressurizing gas to the collection container 31Bb to pressurize the internal space of the collection container 31Bb.
  • the control unit 90 keeps the on-off valve 31Fb open until the pressure in the internal space of the collection container 31Bb reaches a first internal pressure that is higher than atmospheric pressure, and closes the on-off valve 31Fb when the pressure in the internal space of the collection container 31Bb reaches the first internal pressure.
  • the control unit 90 detects the pressure in the internal space of the collection container 31Bb, for example, with a pressure sensor (not shown), and determines whether the pressure in the internal space of the collection container 31Bb has reached the first internal pressure.
  • the control unit 90 may preset a set time for which the on-off valve 31Fb should be open until the pressure in the internal space of the collection container 31Bb reaches the first internal pressure from atmospheric pressure, and determine that the pressure in the internal space of the collection container 31Bb has reached the first internal pressure when the set time has elapsed since the on-off valve 31Fb was opened.
  • step S106 the control unit 90 closes the first exhaust valve 31D and the second exhaust valve 31E to form a closed space in the collection container 31Bb, and performs a decompression operation to exhaust the pressurizing gas from the collection container 31Bb and decompress the internal space of the collection container 31Bb.
  • the control unit 90 keeps the on-off valve 31Gc open until the pressure in the internal space of the collection container 31Bb reaches a second internal pressure (e.g., atmospheric pressure) lower than the first internal pressure from the first internal pressure, and closes the on-off valve 31Gc when the pressure in the internal space of the collection container 31Bb reaches the second internal pressure.
  • a second internal pressure e.g., atmospheric pressure
  • the control unit 90 detects the pressure in the internal space of the collection container 31Bb using a pressure sensor (not shown) and determines whether the pressure in the internal space of the collection container 31Bb has reached the second internal pressure.
  • the control unit 90 may preset a set time for which the on-off valve 31Gc should be open until the pressure in the internal space of the collection container 31Bb reaches the second internal pressure from the first internal pressure, and determine that the pressure in the internal space of the collection container 31Bb has reached the second internal pressure when the set time has elapsed since the on-off valve 31Gc was opened.
  • step S107 the control unit 90 determines whether the pressurizing operation in step S105 and the depressurizing operation in step S106 have each been performed N times (N is an integer equal to or greater than 2), and if YES, the process proceeds to step S108, and if NO, the pressurizing operation in step S105 and the depressurizing operation in step S106 are repeated until step S107 returns YES. In other words, the control unit 90 alternately performs the pressurizing operation and the depressurizing operation N times each, and then proceeds to step S108.
  • Figure 4 is a graph showing the relationship between the time it takes to perform repeated pressurization and depressurization operations and the temperature of the char in the cooling hopper.
  • Figure 5 is a graph showing the relationship between the time it takes to perform repeated pressurization and depressurization operations and the dilution rate of the gas in the cooling hopper.
  • the example shown in Fig. 4 shows a case where the initial temperature of the char recovered in the cooling hopper 31B is 420°C, the volume of the internal space of the cooling hopper 31B is 2 m2, and the weight of the char that has reached the second predetermined height in the cooling hopper 31B is 50 kg, in which the pressurization operation is repeated for 40 seconds and the depressurization operation is repeated for 120 seconds.
  • the plots shown in Fig. 4 show the timing at which the pressurization operation is started, and the interval between the plots is 160 seconds, which is the execution time of the pressurization operation and the depressurization operation.
  • the pressurization gas to which the heat of the char has been transferred is discharged to the outside, and the temperature of the char gradually drops.
  • the temperature of the char drops from 420°C to below the natural oxidation temperature (e.g., 150°C).
  • N is set to 21 in step S107.
  • the control unit 90 alternately repeats the pressurizing operation by the pressurizing unit 31F and the depressurizing operation by the depressurizing unit 31G N times so that the temperature of the char in the cooling hopper 31B becomes less than 150°C, and then discharges the char from the cooling hopper 31B to the discharge hopper 31C.
  • step S107 the pressurization and depressurization operations are repeated N times to determine that the temperature of the char in the cooling hopper 31B has fallen below 150°C, but other configurations are also possible.
  • the control unit 90 may stop the pressurization and depressurization operations, proceed to step S108, and open the second discharge valve 31E to discharge the char collected in the collection container 31Bb of the cooling hopper 31B from the discharge line 31Bc.
  • the pressurization gas remaining in cooling hopper 31B after depressurization is diluted by new pressurization gas introduced from pressurization section 31F, so the dilution rate gradually decreases (the dilution factor gradually increases) by repeating the pressurization and depressurization operations. Therefore, after repeating the pressurization and depressurization operations N times, the concentration of the flammable gas present in cooling hopper 31B is below the flammable range and below the environmental standard value, and is a concentration that will not cause ignition or pollution even if it is discharged to the outside.
  • step S108 the control unit 90 controls the second discharge valve 31E to be open after alternately repeating the pressurizing operation by the pressurizing unit 31F and the depressurizing operation by the depressurizing unit 31G N times, and then discharges the char collected in the collection container 31Bb of the cooling hopper 31B from the discharge line 31Bc to the discharge hopper 31C.
  • step S109 the control unit 90 determines whether the height of the char collected in the cooling hopper 31B accumulated in the collection container 31Bb is less than a first predetermined height, and proceeds to step S110 if the height is less than the first predetermined height. If the first level sensor 31I detects that the height of the char is less than the first predetermined height, the control unit 90 determines YES in step S109. If the control unit 90 determines NO in step S109, it repeats the process of step S109 until it determines YES in step S109.
  • step S110 the control unit 90 controls the second discharge valve 31E to be closed to stop the discharge of char from the collection container 31Bb of the cooling hopper 31B to the discharge hopper 31C because the height of the char collected in the cooling hopper 31B and accumulated in the collection container 31Bb is less than the first predetermined height.
  • step S110 the control unit 90 ends the processing of this flowchart.
  • the first internal pressure in the pressurizing operation of step S105 will be described.
  • the first internal pressure is preferably set to 20 times or less the second internal pressure.
  • Figure 6 is a graph showing the relationship between the pressure ratio (first internal pressure/second internal pressure), which is the ratio of the first internal pressure to the second internal pressure, and the cooling time of the char inside the cooling hopper 31B.
  • the cooling time is the time required for the char inside the cooling hopper 31B to drop from its initial temperature of 420°C to 150°C.
  • the first internal pressure is set to 20 times or less than the second internal pressure.
  • the pressurization operation by the pressurization unit 31F and the depressurization operation by the depressurization unit 31G are repeated, and the char is cooled by heat transfer from the char to the pressurization gas and by discharging the pressurization gas to which the heat has been transferred. If the temperature of the char before one pressurization operation and one depressurization operation is T1, and the temperature of the char after one pressurization operation and one depressurization operation is T2, T1 and T2 satisfy the following formula (1).
  • the pressurization gas is nitrogen gas.
  • a T2 2 + b T2 + c (1)
  • a, b, and c are coefficients shown in the following expressions (2), (3), and (4).
  • Cpm is the specific heat of char [kJ/kg ⁇ K]
  • G is the weight of char [kg]
  • CpN2 is the specific heat of nitrogen gas [kJ/kg ⁇ K]
  • ⁇ N2 is the specific gravity of nitrogen gas [kg/m 3 ]
  • V is the volume of the internal space of cooling hopper 31B [m 3 ]
  • P1 is the first internal pressure [kPa]
  • P2 is the second internal pressure [kPa].
  • Ts is the standard temperature of 273.14 [K]
  • T0 is the temperature [K] of the nitrogen gas supplied to cooling hopper 31B.
  • a powder recovery device is a powder recovery device (31) that separates and recovers powder from a heated gas to be treated, the powder recovery device including a powder separation section (31A) into which the gas to be treated is introduced and which separates the powder from the gas to be treated, an introduction section (31Ba) into which the powder separated by the powder separation section is introduced, a recovery container (31Bb) that temporarily recovers the powder introduced from the introduction section, and a discharge section (31Bc) that discharges the powder recovered in the recovery container, a first recovery section (31B), a first opening/closing valve (31D) provided in the introduction section, and a second opening/closing valve (31E) provided in the discharge section.
  • a pressurizing section 31F that performs a pressurizing operation of supplying a pressurizing gas to the collection container to pressurize the collection container
  • a depressurizing section 31G that performs a depressurizing operation of discharging the pressurizing gas from the collection container to the outside to depressurize the collection container
  • a control section 90 that controls the first on-off valve, the second on-off valve, the pressurizing section, and the depressurizing section, wherein the control section controls the first on-off valve and the second on-off valve to be in a closed state so as to alternately repeat the pressurizing operation by the pressurizing section and the depressurizing operation by the depressurizing section, and then controls the second on-off valve to be in an open state so as to discharge the powder collected in the collection container from the discharge section.
  • powder is separated from the gas to be treated that has been heated in the powder separation section and introduced into the inlet section of the first recovery section, temporarily stored in the recovery container, and then discharged from the outlet section.
  • a first on-off valve is provided in the inlet section, and a second on-off valve is provided in the outlet section, and a closed space is formed in the recovery container of the first recovery section by closing the first on-off valve and the second on-off valve.
  • the recovery container is pressurized with the pressurizing gas by the pressurizing section performing a pressurizing operation, and is depressurized by the depressurizing section performing a depressurizing operation to discharge the pressurizing gas.
  • the control unit controls the first and second opening/closing valves to be in a closed state, and alternately repeats the pressurizing operation by the pressurizing unit and the depressurizing operation by the depressurizing unit.
  • the pressurizing operation and the depressurizing operation By repeating the pressurizing operation and the depressurizing operation, the pressurizing gas to which heat has been transferred from the powder in the recovery container is replaced multiple times, and the powder is gradually cooled.
  • the powder recovery device of the first aspect of the present disclosure the powder can be cooled without providing a separate cooler, which prevents an increase in the installation cost and installation space of the powder recovery device.
  • the pressurizing gas in the recovery container is replaced multiple times, flammable gases adsorbed on the powder are discharged to the outside in a diluted state with the pressurizing gas, which prevents fire and pollution of the outside air.
  • the powder recovery device is the first aspect, and further includes the following configuration. That is, the control unit controls the pressurizing unit and the decompression unit so that the first internal pressure of the recovery container pressurized by the pressurizing operation is 20 times or less than the second internal pressure of the recovery container decompressed by the decompression operation.
  • the powder recovery device by pressurizing the recovery container by a pressurizing operation, it is possible to reliably cool the powder recovered in the recovery container and dilute the flammable gas adsorbed to the powder.
  • the first internal pressure of the recovery container pressurized by the pressurizing operation 20 times or less the second internal pressure of the recovery container depressurized by the depressurizing operation it is possible to prevent the first internal pressure of the recovery container from being excessively high, which is unnecessary for cooling the powder or diluting the flammable gas adsorbed to the powder.
  • the powder recovery device is the first or second aspect, and further includes the following configuration: That is, the control unit controls the second on-off valve to be in an open state so that the powder recovered in the recovery container is discharged from the discharge unit after alternately repeating the pressurizing operation by the pressurizing unit and the depressurizing operation by the depressurizing unit so that the temperature of the powder becomes lower than a natural oxidation temperature.
  • the powder recovered in the recovery container is discharged only after its temperature becomes lower than the natural oxidation temperature, thereby appropriately preventing the powder discharged at or above the natural oxidation temperature from naturally oxidizing in the atmosphere.
  • the powder recovery device is the third aspect, and further includes the following configuration: A detection unit (31H) that detects the temperature of the powder recovered in the powder recovery device, and the control unit controls the second on-off valve to be opened so that the powder recovered in the recovery container is discharged from the discharge unit in response to the temperature of the powder detected by the detection unit becoming lower than the natural oxidation temperature.
  • the powder recovery device of the fourth aspect of the present disclosure the powder can be discharged from the recovery container in response to the detection unit detecting that the temperature of the powder has fallen below the natural oxidation temperature.
  • the powder recovery device is the third aspect, and further includes the following configuration: That is, the control unit controls the second on-off valve to be in an open state so as to discharge the powder recovered in the recovery container from the discharge unit after the pressurizing operation by the pressurizing unit and the depressurizing operation by the depressurizing unit have been performed a predetermined number of times.
  • the number of repeated pressurization and depressurization operations required to reduce the temperature of the powder below the natural oxidation temperature is set to a predetermined number, and the powder that has reached a temperature below the natural oxidation temperature after the pressurization and depressurization operations have been performed a predetermined number of times can be discharged from the recovery container.
  • a powder recovery device is the first or second aspect, wherein the pressurizing gas has an oxygen concentration of 10% or less.
  • the powder recovery device of the sixth aspect of the present disclosure by introducing gas having an oxygen concentration of 10% or less into the recovery container, it is possible to reliably prevent natural oxidation of high-temperature powder that comes into contact with the gas inside the recovery container.
  • a powder recovery device is the sixth aspect, wherein the pressurizing gas is nitrogen gas.
  • the powder recovery device of the seventh aspect of the present disclosure by introducing nitrogen gas into the recovery container, it is possible to reliably prevent natural oxidation of high-temperature powder that comes into contact with the gas inside the recovery container.
  • the powder recovery device is the first or second aspect, further comprising the following configuration: That is, the pressurizing unit introduces the pressurizing gas into a recovery area (31Bd) in which the powder is recovered on the lower side of the recovery container.
  • a pressurizing gas is introduced into the recovery area where the powder on the lower side of the recovery container is recovered, so that the powder is agitated by the pressurizing gas and the heat of the powder can be efficiently transferred to the pressurizing gas.
  • a control method for a powder recovery device is a control method for a powder recovery device that separates and recovers powder from a heated gas to be treated, the powder recovery device comprising a first recovery section having a powder separation section into which the gas to be treated is introduced and which separates the powder from the gas to be treated, an introduction section into which the powder separated by the powder separation section is introduced, a recovery container that temporarily recovers the powder introduced from the introduction section, and a discharge section that discharges the powder recovered in the recovery container, a first opening/closing valve installed in the introduction section, a second opening/closing valve installed in the discharge section, and a pressurizing gas supply to the recovery container.
  • the system includes a pressurizing unit that supplies gas to the collection container to perform a pressurizing operation and a depressurizing unit that discharges the pressurizing gas from the collection container to the outside to perform a depressurizing operation of the collection container, and includes a pressurizing step (S105) that closes the first and second opening/closing valves to perform the pressurizing operation, a depressurizing step (S106) that closes the first and second opening/closing valves to perform the depressurizing operation by the depressurizing unit, and a discharging step (S108) that alternately repeats the pressurizing step and the depressurizing step, and then opens the second opening/closing valve to discharge the powder collected in the collection container from the discharging unit.
  • a pressurizing step that closes the first and second opening/closing valves to perform the pressurizing operation
  • S106 depressurizing step
  • S108 discharging step
  • powder is separated from the gas to be treated that has been heated in the powder separation section and introduced into the inlet section of the first recovery section, temporarily stored in the recovery container, and then discharged from the outlet section.
  • a first on-off valve is provided in the inlet section, and a second on-off valve is provided in the outlet section, and a closed space is formed in the recovery container of the first recovery section by closing the first on-off valve and the second on-off valve.
  • the recovery container is pressurized with the pressurizing gas by the pressurizing section performing a pressurizing operation, and is depressurized by the depressurizing section performing a depressurizing operation to discharge the pressurizing gas.
  • the first and second on-off valves are closed and the pressurization step and the depressurization step are alternately repeated.
  • the pressurizing gas to which heat has been transferred from the powder in the recovery container is replaced multiple times, and the powder is gradually cooled.
  • the powder can be cooled without providing a separate cooler, which prevents an increase in the installation cost and installation space of the powder recovery device.
  • the pressurizing gas in the recovery container is replaced multiple times, flammable gases adsorbed on the powder are discharged to the outside in a diluted state with the pressurizing gas, which prevents fire and pollution of the outside air.

Abstract

The present invention provides a dust collector (31) comprising: a generated gas filter (31A); a cooling hopper (31B); a first discharge valve (31D) disposed on an introduction line (31Ba) of the cooling hopper (31B); a second discharge valve (31E) disposed on a discharge line (31Bc) of the cooling hopper (31B); a pressurizing part (31F) that executes a pressurizing operation to pressurize a recovery container (31Bb) of the cooling hopper (31B); a depressurizing part (31G) that executes a depressurizing operation to depressurize the recovery container (31Bb); and a control unit. The control unit provides control such that the pressurizing operation executed by the pressurizing part (31F) and the depressurizing operation executed by the depressurizing part (31G) are alternately repeatedly with the first discharge valve (31D) and the second discharge valve (31E) placed in a closed state, and then char recovered into the recovery container (31Bb) is discharged from the discharge line (31Bc) with the second discharge valve (31E) placed in an open state.

Description

粉体回収装置および粉体回収装置の制御方法Powder recovery device and method for controlling the powder recovery device
 本開示は、粉体回収装置および粉体回収装置の制御方法に関する。 This disclosure relates to a powder recovery device and a method for controlling the powder recovery device.
 従来、燃焼ガス中から灰捕集装置よって回収された灰を減温して系外へ排出する灰処理装置が知られている(例えば、特許文献1参照)。特許文献1に開示される灰処理装置は、灰を含む高圧高温燃焼ガスから捕集された灰を灰冷却器で冷却して高圧灰貯槽へ搬送する。高圧灰貯槽の下部に堆積した灰は減圧ホッパへ払い出され、大気圧まで減圧した後に灰サイロへ送られる。  Conventionally, there is known an ash treatment device that reduces the temperature of ash collected from combustion gas by an ash collector and discharges it outside the system (see, for example, Patent Document 1). The ash treatment device disclosed in Patent Document 1 cools the ash collected from the high-pressure, high-temperature combustion gas containing ash in an ash cooler and transports it to a high-pressure ash storage tank. The ash that accumulates at the bottom of the high-pressure ash storage tank is discharged into a vacuum hopper, and after being depressurized to atmospheric pressure, it is sent to an ash silo.
特開平7-42910号公報Japanese Patent Application Laid-Open No. 7-42910
 しかしながら、特許文献1では、灰捕集装置よって回収された灰を減温するための設備として灰冷却器が必要であるため、灰捕集装置の設置コストが増大するとともに灰冷却器を設置するための設置スペースが必要となる。また、灰捕集装置が捕集する灰の粒子の細孔に可燃性ガスが吸着している場合には、灰捕集装置から排出される未燃分を含む灰が酸化して発熱(自然発熱)したり、灰から可燃性ガスが脱離して外気を汚染させる可能性がある。 However, in Patent Document 1, an ash cooler is required as equipment for reducing the temperature of the ash collected by the ash collector, which increases the installation cost of the ash collector and requires installation space for the ash cooler. In addition, if flammable gas is adsorbed into the pores of the ash particles collected by the ash collector, the ash containing unburned matter discharged from the ash collector may oxidize and generate heat (spontaneous heating), or the flammable gas may desorb from the ash and pollute the outside air.
 本開示は、このような事情に鑑みてなされたものであって、設置コストおよび設置スペースの増大や粉体の自然発熱、及び外気の汚染を抑制しつつ加熱された処理対象ガスから粉体を分離して冷却することが可能な粉体回収装置および粉体回収装置の制御方法を提供することを目的とする。 The present disclosure has been made in consideration of these circumstances, and aims to provide a powder recovery device and a control method for a powder recovery device that can separate and cool powder from a heated gas to be treated while suppressing increases in installation costs and installation space, spontaneous heating of the powder, and pollution of the outside air.
 上記課題を解決するために、本開示は以下の手段を採用する。
 本開示に係る粉体回収装置は、加熱された処理対象ガスから粉体を分離して回収する粉体回収装置であって、前記処理対象ガスが導入されるとともに前記処理対象ガスから前記粉体を分離する粉体分離部と、前記粉体分離部により分離された前記粉体が導入される導入部と、前記導入部から導入される前記粉体を一時的に回収する回収容器と、前記回収容器に回収された前記粉体を排出する排出部と、を有する第1回収部と、前記導入部に設置される第1開閉弁と、前記排出部に設置される第2開閉弁と、前記回収容器へ加圧用ガスを供給して前記回収容器を加圧する加圧動作を実行する加圧部と、前記回収容器から前記加圧用ガスを外部へ排出して前記回収容器を減圧する減圧動作を実行する減圧部と、前記第1開閉弁と、前記第2開閉弁と、前記加圧部と、前記減圧部とを制御する制御部と、を備え、前記制御部は、前記第1開閉弁および前記第2開閉弁を閉状態にして前記加圧部による前記加圧動作と前記減圧部による前記減圧動作とを交互に繰り返した後に、前記第2開閉弁を開状態にして前記回収容器に回収された前記粉体を前記排出部から排出するよう制御する。
In order to solve the above problems, the present disclosure employs the following solutions.
A powder recovery device according to the present disclosure is a powder recovery device that separates and recovers powder from a heated gas to be treated, and includes a powder separation section to which the gas to be treated is introduced and which separates the powder from the gas to be treated, an introduction section to which the powder separated by the powder separation section is introduced, a recovery container that temporarily recovers the powder introduced from the introduction section, and a discharge section that discharges the powder recovered in the recovery container, the powder recovery device including a first recovery section having a first on-off valve provided in the introduction section, a second on-off valve provided in the discharge section, and a pressurizing gas supply section provided in the recovery container. the pressurizing unit performs a pressurizing operation to pressurize the collection container by discharging the pressurizing gas from the collection container to the outside, and a control unit controls the first on-off valve, the second on-off valve, the pressurizing unit, and the decompression unit, and the control unit controls the first on-off valve and the second on-off valve to be in a closed state so as to alternately repeat the pressurizing operation by the pressurizing unit and the decompression operation by the decompression unit, and then controls the second on-off valve to be in an open state so as to discharge the powder collected in the collection container from the discharge unit.
 本開示に係る粉体回収装置の制御方法は、加熱された処理対象ガスから粉体を分離して回収する粉体回収装置の制御方法であって、前記粉体回収装置は、前記処理対象ガスが導入されるとともに前記処理対象ガスから前記粉体を分離する粉体分離部と、前記粉体分離部により分離された前記粉体が導入される導入部と、前記導入部から導入される前記粉体を一時的に回収する回収容器と、前記回収容器に回収された前記粉体を排出する排出部と、を有する第1回収部と、前記導入部に設置される第1開閉弁と、前記排出部に設置される第2開閉弁と、前記回収容器へ加圧用ガスを供給して前記回収容器を加圧する加圧動作を実行する加圧部と、前記回収容器から前記加圧用ガスを外部へ排出して前記回収容器を減圧する減圧動作を実行する減圧部と、を備え、前記第1開閉弁および前記第2開閉弁を閉状態にして前記加圧動作を実行する加圧工程と、前記第1開閉弁および前記第2開閉弁を閉状態にして前記減圧部による前記減圧動作を実行する減圧工程と、前記加圧工程と前記減圧工程とを交互に繰り返した後に、前記第2開閉弁を開状態にして前記回収容器に回収された前記粉体を前記排出部から排出する排出工程と、を備える。 The control method of a powder recovery device according to the present disclosure is a control method of a powder recovery device that separates and recovers powder from a heated gas to be treated, the powder recovery device comprising a first recovery section having a powder separation section into which the gas to be treated is introduced and which separates the powder from the gas to be treated, an introduction section into which the powder separated by the powder separation section is introduced, a recovery container that temporarily recovers the powder introduced from the introduction section, and a discharge section that discharges the powder recovered in the recovery container, a first opening/closing valve installed in the introduction section, a second opening/closing valve installed in the discharge section, and a valve for discharging the powder recovered in the recovery container. The apparatus includes a pressurizing unit that supplies a pressurizing gas to perform a pressurizing operation to pressurize the collection container, and a depressurizing unit that performs a depressurizing operation to depressurize the collection container by discharging the pressurizing gas from the collection container to the outside, and includes a pressurizing step in which the pressurizing operation is performed with the first and second opening/closing valves in a closed state, a depressurizing step in which the depressurizing operation is performed by the depressurizing unit with the first and second opening/closing valves in a closed state, and a discharging step in which the pressurizing step and the depressurizing step are alternately repeated, and then the second opening/closing valve is opened and the powder collected in the collection container is discharged from the discharging unit.
 本開示によれば、設置コストおよび設置スペースの増大や粉体の自然発熱、及び外気の汚染を抑制しつつ加熱された処理対象ガスから粉体を分離して冷却することが可能な粉体回収装置および粉体回収装置の制御方法を提供することができる。 The present disclosure provides a powder recovery device and a method for controlling the powder recovery device that can separate and cool powder from a heated gas to be treated while minimizing increases in installation costs and installation space, spontaneous heating of the powder, and pollution of the outside air.
本開示の一実施形態に係るバイオマスガス化設備を示した概略構成図である。1 is a schematic configuration diagram showing a biomass gasification facility according to an embodiment of the present disclosure. 図1に示す集塵設備の系統構成を示した概略構成図である。FIG. 2 is a schematic diagram showing a system configuration of the dust collection facility shown in FIG. 1 . 本実施形態の集塵設備の制御方法を示すフローチャートである。4 is a flowchart showing a method for controlling the dust collection equipment of the present embodiment. 加圧動作および減圧動作の繰り返しを実行する時間と冷却ホッパ内のチャーの温度の関係を示すグラフである。1 is a graph showing a relationship between the time for repeatedly performing pressurizing and depressurizing operations and the temperature of char in a cooling hopper. 加圧動作および減圧動作の繰り返しを実行する時間と冷却ホッパ内のガスの希釈率との関係を示すグラフである。10 is a graph showing the relationship between the time required to repeatedly perform pressurizing and depressurizing operations and the dilution rate of gas in a cooling hopper. 第2内部圧力に対する第1内部圧力の圧力比と、冷却ホッパの内部のチャーの冷却時間との関係を示すグラフである。1 is a graph showing a relationship between a pressure ratio of a first internal pressure to a second internal pressure and a cooling time of char inside a cooling hopper.
 以下に、本開示の一実施形態に係るバイオマスガス化設備10について、図1を用いて説明する。本実施形態に係るバイオマスガス化設備10は、バイオマス燃料を部分燃焼させてガス化することで、可燃性のバイオマスガスを生成する装置である。バイオマス燃料とは、再生可能な生物由来の有機性資源であり、例えば、間伐材、廃木材、流木、草類、廃棄物、汚泥及びこれらを原料としたリサイクル燃料(ペレットやチップ)などであり、ここに提示したものに限定されることはない。バイオマス燃料は、バイオマスの成育過程において二酸化炭素を取り込むことから、地球温暖化ガスとなる二酸化炭素を排出しないカーボンニュートラルとされるため、その利用が種々検討されている。 Below, a biomass gasification facility 10 according to an embodiment of the present disclosure will be described with reference to FIG. 1. The biomass gasification facility 10 according to this embodiment is a device that generates combustible biomass gas by partially burning and gasifying biomass fuel. Biomass fuel is a renewable organic resource derived from living organisms, and examples include thinned wood, waste wood, driftwood, grass, waste, sludge, and recycled fuels (pellets and chips) made from these raw materials, but is not limited to those presented here. Biomass fuel is carbon neutral, meaning that it does not emit carbon dioxide, a greenhouse gas, because it captures carbon dioxide during the biomass growth process, and various uses of biomass fuel are being considered.
 図1に示すように、バイオマスガス化設備10は、バイオマスガスを生成するバイオマスガス化炉11と、バイオマスガス化炉11から排出されたバイオマスガスが導かれる高温合成ガスクーラー12(高温SGC:Synthesis Gas Cooler)と、バイオマスガスに含まれるチャー(未燃炭素及び灰が主成分)を回収するチャー回収設備30と、回収されたチャーを冷却するチャークーラー(熱交換部)16と、チャーが除去されたバイオマスガスが導かれる低温合成ガスクーラー14(低温SGC)と、低温合成ガスクーラー14へ導かれるガス化剤を予熱する給水予熱部17と、バイオマスガスから不純物を取り除くスクラバ18と、制御部90と、を備えている。 As shown in FIG. 1, the biomass gasification equipment 10 includes a biomass gasification furnace 11 that generates biomass gas, a high-temperature synthesis gas cooler 12 (high-temperature SGC: synthesis gas cooler) to which the biomass gas discharged from the biomass gasification furnace 11 is guided, a char recovery equipment 30 that recovers char (mainly unburned carbon and ash) contained in the biomass gas, a char cooler (heat exchange unit) 16 that cools the recovered char, a low-temperature synthesis gas cooler 14 (low-temperature SGC) to which the biomass gas from which the char has been removed is guided, a feedwater preheating unit 17 that preheats the gasification agent that is guided to the low-temperature synthesis gas cooler 14, a scrubber 18 that removes impurities from the biomass gas, and a control unit 90.
 バイオマスガス化炉11は、バイオマス供給部19によって供給されるバイオマス燃料をガス化することで、バイオマスガスを生成する。バイオマス供給部19は、バイオマス燃料をバイオマスガス化炉11まで搬送するとともに、バイオマス燃料をバイオマスガス化炉11へ投入するフィーダ(図示省略)を有している。 The biomass gasifier 11 generates biomass gas by gasifying the biomass fuel supplied by the biomass supply unit 19. The biomass supply unit 19 transports the biomass fuel to the biomass gasifier 11 and has a feeder (not shown) that feeds the biomass fuel into the biomass gasifier 11.
 バイオマスガス化炉11で生成されたバイオマスガスは、第1バイオマスガスラインL1を介して高温合成ガスクーラー12へ導かれる。バイオマスガス化炉11には、酸素ラインL17が接続されている。酸素ラインL17は、酸素供給装置(図示省略)から供給される酸素が流通している。 The biomass gas generated in the biomass gasifier 11 is guided to the high-temperature synthesis gas cooler 12 via the first biomass gas line L1. An oxygen line L17 is connected to the biomass gasifier 11. Oxygen supplied from an oxygen supply device (not shown) flows through the oxygen line L17.
 高温合成ガスクーラー12及び低温合成ガスクーラー14は、バイオマスガスと給水又は蒸気(ガス化剤)とを熱交換する。高温合成ガスクーラー12及び低温合成ガスクーラー14は、バイオマスガス化炉11で生成されたバイオマスガスの熱を利用して、バイオマスガス化炉11へガス化剤として導かれる蒸気を加熱するとともに、バイオマスガスを冷却する。高温合成ガスクーラー12から排出されたバイオマスガスは、第2バイオマスガスラインL2を介して、チャー回収設備30の集塵設備31に導かれる。低温合成ガスクーラー14から排出されたバイオマスガスは、第4バイオマスガスラインL4を介して、スクラバ18へ導かれる。 The high-temperature syngas cooler 12 and the low-temperature syngas cooler 14 exchange heat between the biomass gas and the feed water or steam (gasification agent). The high-temperature syngas cooler 12 and the low-temperature syngas cooler 14 use the heat of the biomass gas generated in the biomass gasifier 11 to heat the steam that is led to the biomass gasifier 11 as a gasification agent, and to cool the biomass gas. The biomass gas discharged from the high-temperature syngas cooler 12 is led to the dust collection equipment 31 of the char recovery equipment 30 via the second biomass gas line L2. The biomass gas discharged from the low-temperature syngas cooler 14 is led to the scrubber 18 via the fourth biomass gas line L4.
 チャー回収設備30は、バイオマスガスを通過させるとともに、通過するバイオマスガスに含まれるチャーを回収する。チャー回収設備30は、集塵設備(粉体回収装置)31と供給ホッパ32とを備える。集塵設備31は、バイオマスガス化炉11で生成された生成ガスに含有するチャーを分離することができる。そして、チャーが分離されたバイオマスガス(生成ガス)は、第3バイオマスガスラインL3を介して、低温合成ガスクーラー14に送られる。チャー回収設備30の詳細については後述する。 The char recovery equipment 30 passes biomass gas and recovers char contained in the passing biomass gas. The char recovery equipment 30 includes a dust collection equipment (powder recovery device) 31 and a supply hopper 32. The dust collection equipment 31 can separate the char contained in the product gas generated in the biomass gasification furnace 11. The biomass gas (product gas) from which the char has been separated is then sent to the low-temperature synthesis gas cooler 14 via the third biomass gas line L3. Details of the char recovery equipment 30 will be described later.
 集塵設備31で分離されたチャーは、第1チャーラインL6を介して、供給ホッパ32へ導かれる。供給ホッパ32に貯留されたチャーは、所定のタイミングで供給ホッパ32の出口から排出され、第2チャーラインL7を介して、チャークーラー16へ導かれる。 The char separated in the dust collection equipment 31 is guided to the supply hopper 32 via the first char line L6. The char stored in the supply hopper 32 is discharged from the outlet of the supply hopper 32 at a predetermined timing and guided to the char cooler 16 via the second char line L7.
 チャークーラー16は、補給水によってチャーを冷却する。補給水供給装置(図示省略)から第1補給水ラインL9を介してチャークーラー16へ補給水(ガス化剤)が導かれる。冷却されたチャーは、第3チャーラインL8を介して、系外へ排出される。チャークーラー16には、補給水供給装置(図示省略)から常温の補給水が供給される。補給水は、チャークーラー16を含む複数の機器で加熱された後に、第2補給水ラインL10を介して、バイオマス供給部19へ導かれる。バイオマス供給部19で加熱された補給水は、バイオマス供給部19と給水ラインとを接続する第3補給水ラインL11を介して、第1給水ラインL12へ導かれる。 The char cooler 16 cools the char with make-up water. Make-up water (gasification agent) is guided to the char cooler 16 from a make-up water supply device (not shown) via a first make-up water line L9. The cooled char is discharged outside the system via a third char line L8. Make-up water at room temperature is supplied to the char cooler 16 from a make-up water supply device (not shown). The make-up water is heated by multiple devices including the char cooler 16 and then guided to the biomass supply unit 19 via a second make-up water line L10. The make-up water heated in the biomass supply unit 19 is guided to the first feed water line L12 via a third make-up water line L11 that connects the biomass supply unit 19 to the feed water line.
 給水予熱部17は、熱媒体によって給水を加熱する。給水予熱部17には、給水供給装置(図示省略)から常温の給水が供給される。給水予熱部17において給水は、熱媒体との熱交換で加熱され一部又は全部が蒸気となる。給水は、低温合成ガスクーラー14にて結露や不純物の析出の観点から支障が無い温度まで加熱される。給水予熱部17から排出された蒸気は、第1蒸気ラインL13を介して、低温合成ガスクーラー14へ導かれる。低温合成ガスクーラー14で加熱された蒸気は、第2蒸気ラインL14を介して、高温合成ガスクーラー12へ導かれる。 The feedwater preheating section 17 heats the feedwater using a heat medium. The feedwater preheating section 17 is supplied with room temperature feedwater from a feedwater supply device (not shown). In the feedwater preheating section 17, the feedwater is heated by heat exchange with the heat medium, and some or all of the feedwater becomes steam. The feedwater is heated in the low-temperature synthesis gas cooler 14 to a temperature that does not cause problems in terms of condensation or precipitation of impurities. The steam discharged from the feedwater preheating section 17 is guided to the low-temperature synthesis gas cooler 14 via the first steam line L13. The steam heated in the low-temperature synthesis gas cooler 14 is guided to the high-temperature synthesis gas cooler 12 via the second steam line L14.
 スクラバ18は、バイオマスガスに含まれる不純物(例えば、タール分やアンモニア等)を除去する。スクラバ18で除去された不純物と余剰水蒸気は、スクラバ水とともに排水として排水ラインL18を介して系外へ排出される。不純物と余剰水蒸気が除去されたバイオマスガスは、スクラバ18から排出され、第5バイオマスガスラインL5を介して後流設備へ導かれる。後流設備とは、一例として、バイオジェット燃料などの液体燃料合成設備等が挙げられる。 The scrubber 18 removes impurities (e.g., tar, ammonia, etc.) contained in the biomass gas. The impurities and excess water vapor removed by the scrubber 18 are discharged as wastewater together with scrubber water to the outside of the system via the drainage line L18. The biomass gas from which the impurities and excess water vapor have been removed is discharged from the scrubber 18 and guided to the downstream equipment via the fifth biomass gas line L5. One example of the downstream equipment is a liquid fuel synthesis equipment for biojet fuel, etc.
 制御部90は、チャー回収設備30を含むバイオマスガス化設備10の各部を制御する装置である。 The control unit 90 is a device that controls each part of the biomass gasification equipment 10, including the char recovery equipment 30.
 次に、本実施形態の集塵設備31について詳細に説明する。図2は、図1に示す集塵設備31の系統構成を示した概略構成図である。図2に示すように集塵設備31は、生成ガスフィルタ(粉体分離部)31Aと、冷却ホッパ(第1回収部)31Bと、排出ホッパ31Cと、第1排出弁(第1開閉弁)31Dと、第2排出弁(第2開閉弁)31Eと、加圧部31Fと、減圧部31Gと、温度センサ(検出部)31Hと、第1レベルセンサ31Iと、第2レベルセンサ31Jと、を備える。図2に示すように、鉛直方向の上方から順に、生成ガスフィルタ31Aと、冷却ホッパ31Bと、排出ホッパ31Cとが配置される。 Next, the dust collection equipment 31 of this embodiment will be described in detail. FIG. 2 is a schematic diagram showing the system configuration of the dust collection equipment 31 shown in FIG. 1. As shown in FIG. 2, the dust collection equipment 31 includes a generated gas filter (powder separation section) 31A, a cooling hopper (first recovery section) 31B, a discharge hopper 31C, a first discharge valve (first opening/closing valve) 31D, a second discharge valve (second opening/closing valve) 31E, a pressurizing section 31F, a decompressing section 31G, a temperature sensor (detection section) 31H, a first level sensor 31I, and a second level sensor 31J. As shown in FIG. 2, the generated gas filter 31A, the cooling hopper 31B, and the discharge hopper 31C are arranged in this order from the top in the vertical direction.
 生成ガスフィルタ31Aは、高温合成ガスクーラー12から第2バイオマスガスラインL2を介して生成ガス(処理対象ガス)が導入され、生成ガスからチャー(バイオマス燃料の未反応分と灰分を含む粉体)を分離して回収する装置である。生成ガスフィルタ31Aに供給される生成ガスは、例えば、300℃以上かつ500℃以下の範囲の温度である。 The generated gas filter 31A is a device that receives generated gas (gas to be treated) from the high-temperature synthesis gas cooler 12 via the second biomass gas line L2, and separates and recovers char (powder containing unreacted biomass fuel and ash) from the generated gas. The generated gas supplied to the generated gas filter 31A has a temperature in the range of, for example, 300°C or higher and 500°C or lower.
 生成ガスフィルタ31Aは、容器31Aa内にフィルタ31Abを備えている。フィルタ31Abは、細孔を多数有するフィルタであり、例えばセラミックス製や焼結金属製である。フィルタ31Abは、例えば円筒形状であり、鉛直方向に軸線を有して並列に複数設けられている。フィルタ31Abによって容器31Aa内の空間が上下に仕切られており、下方空間31Acがチャーを含む生成ガスが流入する濾過前の空間となり、上方空間31Adが濾過後の空間となる。 The product gas filter 31A includes a filter 31Ab in a container 31Aa. The filter 31Ab is a filter with many pores and is made of, for example, ceramics or sintered metal. The filters 31Ab are, for example, cylindrical, and a plurality of filters are provided in parallel with an axis in the vertical direction. The filter 31Ab divides the space in the container 31Aa into upper and lower spaces, with the lower space 31Ac being the pre-filtration space into which the product gas containing char flows, and the upper space 31Ad being the post-filtration space.
 生成ガスフィルタ31Aの下方空間31Acには、チャーを含む生成ガスを導く第2バイオマスガスラインL2が接続されている。生成ガスフィルタ31Aの上方空間31Adには、チャーを分離した後の生成ガスを低温合成ガスクーラー14へと導く第3バイオマスガスラインL3が接続されている。 A second biomass gas line L2 that guides the generated gas containing char is connected to the lower space 31Ac of the generated gas filter 31A. A third biomass gas line L3 that guides the generated gas after char separation to the low-temperature synthesis gas cooler 14 is connected to the upper space 31Ad of the generated gas filter 31A.
 生成ガスフィルタ31Aには、逆洗装置31Aeが設けられている。逆洗装置31Aeは、フィルタ31Abを逆洗して、フィルタ31Abの下方空間31Ac側の表面などに付着したチャーを下部へ払い落とすための逆洗ガスをパルス的(例えば0.5秒間隔)に上方空間31Ad側から下方空間31Ac側に向けて噴射する。逆洗ガスとしては、窒素などの不活性ガスが用いられる。 The product gas filter 31A is provided with a backwashing device 31Ae. The backwashing device 31Ae backwashes the filter 31Ab and sprays backwashing gas in a pulsed manner (e.g., at intervals of 0.5 seconds) from the upper space 31Ad side toward the lower space 31Ac side to brush off char adhering to the surface of the filter 31Ab on the lower space 31Ac side. An inert gas such as nitrogen is used as the backwashing gas.
 冷却ホッパ31Bは、生成ガスフィルタ31Aから排出されるチャーを一時的に回収するとともに冷却し、排出ホッパ31Cへ排出する装置である。冷却ホッパ31Bは、導入ライン(導入部)31Baと、回収容器31Bbと、排出ライン(排出部)31Bcと、を有する。導入ライン31Baは、生成ガスフィルタ31Aにより生成ガスから分離されたチャーを回収容器31Bbへ導入する配管である。回収容器31Bbは、導入ライン31Baから導入されるチャーを一時的に回収する容器である。排出ライン31Bcは、回収容器31Bbに回収されたチャーを排出ホッパ31Cへ排出する配管である。 The cooling hopper 31B is a device that temporarily collects and cools the char discharged from the product gas filter 31A and discharges it to the discharge hopper 31C. The cooling hopper 31B has an inlet line (inlet section) 31Ba, a recovery container 31Bb, and a discharge line (discharge section) 31Bc. The inlet line 31Ba is a pipe that introduces the char separated from the product gas by the product gas filter 31A into the recovery container 31Bb. The recovery container 31Bb is a container that temporarily collects the char introduced from the inlet line 31Ba. The discharge line 31Bc is a pipe that discharges the char collected in the recovery container 31Bb to the discharge hopper 31C.
 排出ホッパ31Cは、冷却ホッパ31Bから排出されるチャーを一時的に回収し、供給ホッパ32へ供給する装置である。排出ホッパ31Cは、回収容器31Caと、ロータリフィーダ31Cbと、排出ライン31Ccと、を有する。回収容器31Caは、排出ライン31Bcから導入されるチャーを一時的に回収する容器である。ロータリフィーダ31Cbは、モータの駆動力により回転することにより回収容器31Caから排出ライン31Ccへチャーを導く装置である。排出ライン31Ccは、回収容器31Caに回収されたチャーを供給ホッパ32へ供給する配管である。 The discharge hopper 31C is a device that temporarily collects the char discharged from the cooling hopper 31B and supplies it to the supply hopper 32. The discharge hopper 31C has a collection container 31Ca, a rotary feeder 31Cb, and a discharge line 31Cc. The collection container 31Ca is a container that temporarily collects the char introduced from the discharge line 31Bc. The rotary feeder 31Cb is a device that guides the char from the collection container 31Ca to the discharge line 31Cc by rotating with the driving force of a motor. The discharge line 31Cc is a pipe that supplies the char collected in the collection container 31Ca to the supply hopper 32.
 第1排出弁31Dは、導入ライン31Baに配置され、生成ガスフィルタ31Aの容器31Aaの内部空間と冷却ホッパ31Bの回収容器31Bbの内部空間とを連通させる開状態と、生成ガスフィルタ31Aの容器31Aaの内部空間と冷却ホッパ31Bの回収容器31Bbの内部空間とを連通させない閉状態とを切り替える開閉弁である。 The first discharge valve 31D is disposed in the inlet line 31Ba and is an on-off valve that switches between an open state that connects the internal space of the container 31Aa of the product gas filter 31A to the internal space of the collection container 31Bb of the cooling hopper 31B, and a closed state that does not connect the internal space of the container 31Aa of the product gas filter 31A to the internal space of the collection container 31Bb of the cooling hopper 31B.
 第2排出弁31Eは、排出ライン31Bcに配置され、冷却ホッパ31Bの回収容器31Bbの内部空間と排出ホッパ31Cの回収容器31Caの内部空間とを連通させる開状態と、冷却ホッパ31Bの回収容器31Bbの内部空間と排出ホッパ31Cの回収容器31Caの内部空間とを連通させない閉状態とを切り替える開閉弁である。 The second discharge valve 31E is disposed in the discharge line 31Bc, and is an on-off valve that switches between an open state that connects the internal space of the collection container 31Bb of the cooling hopper 31B to the internal space of the collection container 31Ca of the discharge hopper 31C, and a closed state that does not connect the internal space of the collection container 31Bb of the cooling hopper 31B to the internal space of the collection container 31Ca of the discharge hopper 31C.
 加圧部31Fは、冷却ホッパ31Bの回収容器31Bbへ加圧用ガスを供給して回収容器31Bbの内部空間を加圧する加圧動作を実行する装置である。加圧部31Fは、加圧用ガス供給源31Faと、開閉弁31Fbと、を有する。開閉弁31Fbは、加圧用ガス供給源31Faから回収容器31Bbに加圧用ガスを供給する開状態と加圧用ガス供給源31Faから回収容器31Bbに加圧用ガスを供給しない閉状態とを切り替える。 The pressurizing unit 31F is a device that performs a pressurizing operation to supply pressurizing gas to the collection container 31Bb of the cooling hopper 31B to pressurize the internal space of the collection container 31Bb. The pressurizing unit 31F has a pressurizing gas supply source 31Fa and an on-off valve 31Fb. The on-off valve 31Fb switches between an open state in which pressurizing gas is supplied from the pressurizing gas supply source 31Fa to the collection container 31Bb, and a closed state in which pressurizing gas is not supplied from the pressurizing gas supply source 31Fa to the collection container 31Bb.
 加圧用ガスは、例えば、窒素ガスであるが、他の不活性ガスを用いてもよい。例えば、酸素濃度が10%以下でチャーとの接触によりチャーが酸化して発熱することのないガスを用いることができる。図2に示すように、加圧部31Fは、冷却ホッパ31Bの回収容器31Bbの下方側のチャーが回収される回収領域31Bdに加圧用ガスを導入し、回収領域31Bdに存在するチャーを攪拌する。 The pressurizing gas is, for example, nitrogen gas, but other inert gases may be used. For example, a gas with an oxygen concentration of 10% or less that will not oxidize the char and generate heat when it comes into contact with the char can be used. As shown in FIG. 2, the pressurizing unit 31F introduces the pressurizing gas into the recovery area 31Bd where the char is recovered below the recovery container 31Bb of the cooling hopper 31B, and agitates the char present in the recovery area 31Bd.
 減圧部31Gは、冷却ホッパ31Bの回収容器31Bbから加圧用ガスを外部へ排出して回収容器31Bbの内部空間を減圧する減圧動作を実行する装置である。減圧部31Gは、フィルタ31Gaと、排出ライン31Gbと、開閉弁31Gcと、オリフィス31Gdと、を有する。減圧部31Gは、回収容器31Bbの内部空間が大気圧より高く加圧された加圧状態で開閉弁31Gcを閉状態から開状態へ切り替えることにより、回収容器31Bbから排出ライン31Gbを介して加圧用ガスを排出する。 The decompression unit 31G is a device that performs a decompression operation to discharge the pressurization gas from the collection container 31Bb of the cooling hopper 31B to the outside and decompress the internal space of the collection container 31Bb. The decompression unit 31G has a filter 31Ga, a discharge line 31Gb, an on-off valve 31Gc, and an orifice 31Gd. The decompression unit 31G discharges the pressurization gas from the collection container 31Bb via the discharge line 31Gb by switching the on-off valve 31Gc from a closed state to an open state when the internal space of the collection container 31Bb is in a pressurized state higher than atmospheric pressure.
 なお、回収容器31Bbに回収されたチャーの細孔内部には、生成ガス(可燃性ガス)が含まれている場合がある。このような場合には、回収容器31Bbから外部(例えば、大気中)へ排出される加圧用ガスが可燃性ガスを含んだものとなるが、加圧用ガスにより環境基準値以下且つ可燃範囲以下にまで希釈されているため、周辺環境を汚染させることが抑制される。また、加圧用ガスに含まれる可燃性ガスを処理するために、排出ライン31Gbをグランドフレアやフレアスタック等の処理装置(図示略)に接続し、可燃性ガスを燃焼させるようにしてもよい。 Note that the pores of the char collected in the collection vessel 31Bb may contain generated gas (flammable gas). In such a case, the pressurization gas discharged from the collection vessel 31Bb to the outside (e.g., into the atmosphere) will contain flammable gas, but since the pressurization gas has diluted the flammable gas to below the environmental standard value and below the flammable range, pollution of the surrounding environment is suppressed. In addition, in order to treat the flammable gas contained in the pressurization gas, the discharge line 31Gb may be connected to a treatment device such as a ground flare or a flare stack (not shown) and the flammable gas may be combusted.
 フィルタ31Gaは、細孔を多数有するフィルタであり、例えばセラミックス製や焼結金属製である。フィルタ31Gaは、例えば円筒形状である。図2に示す減圧部31Gは単一のフィルタ31Gaを有するものであるが、複数のフィルタ31Gaを有するものとしてもよい。 The filter 31Ga is a filter having many pores, and is made of, for example, ceramics or sintered metal. The filter 31Ga is, for example, cylindrical. The pressure reducing section 31G shown in FIG. 2 has a single filter 31Ga, but may have multiple filters 31Ga.
 排出ライン31Gbは、フィルタ31Gaを通過する際にチャーが除去された加圧用ガスを外部へ導く配管である。排出ライン31Gbには、開閉弁31Gcと、オリフィス31Gdとが設置されている。 The discharge line 31Gb is a pipe that guides the pressurized gas, from which char has been removed as it passes through the filter 31Ga, to the outside. An on-off valve 31Gc and an orifice 31Gd are installed in the discharge line 31Gb.
 開閉弁31Gcは、回収容器31Bbの内部空間と外部とを排出ライン31Gbを介して連通させる開状態と、回収容器31Bbの内部空間と外部とを排出ライン31Gbを介して連通させない閉状態とを切り替える装置である。 The on-off valve 31Gc is a device that switches between an open state in which the internal space of the collection container 31Bb is connected to the outside via the discharge line 31Gb, and a closed state in which the internal space of the collection container 31Bb is not connected to the outside via the discharge line 31Gb.
 オリフィス31Gdは、開閉弁31Gcを開状態とした場合に排出ライン31Gbを単位時間当たりに流通する加圧用ガスの流量を制限するための装置である。オリフィス31Gdは、流路断面積を予め設定された所定値とすることにより、排出ライン31Gbを単位時間当たりに流通する加圧用ガスの流量の最大値を規定する。 The orifice 31Gd is a device for limiting the flow rate of the pressurizing gas that flows through the exhaust line 31Gb per unit time when the on-off valve 31Gc is open. The orifice 31Gd determines the maximum flow rate of the pressurizing gas that flows through the exhaust line 31Gb per unit time by setting the flow path cross-sectional area to a predetermined value.
 温度センサ31Hは、冷却ホッパ31Bの回収容器31Bbの回収領域31Bdに回収されるチャーの温度を検出する装置である。温度センサ31Hは、検出したチャーの温度を制御部90に伝達する。 The temperature sensor 31H is a device that detects the temperature of the char collected in the collection area 31Bd of the collection container 31Bb of the cooling hopper 31B. The temperature sensor 31H transmits the detected char temperature to the control unit 90.
 第1レベルセンサ31Iは、冷却ホッパ31Bの回収容器31Bbに回収されるチャーの堆積高さが第1所定高さまで到達しているかどうかを検出するセンサである。第2レベルセンサ31Jは、冷却ホッパ31Bの回収容器31Bbに回収されるチャーの堆積高さが第1所定高さよりも高い第2所定高さまで到達しているかどうかを検出するセンサである。図2に示す状態では、第1レベルセンサ31Iがチャーの堆積高さが第1所定高さまで到達していることを検出し、第2レベルセンサ31Jがチャーの堆積高さが第2所定高さまで到達していることを検出しない。 The first level sensor 31I is a sensor that detects whether the pile height of the char collected in the collection container 31Bb of the cooling hopper 31B has reached a first predetermined height. The second level sensor 31J is a sensor that detects whether the pile height of the char collected in the collection container 31Bb of the cooling hopper 31B has reached a second predetermined height that is higher than the first predetermined height. In the state shown in FIG. 2, the first level sensor 31I detects that the pile height of the char has reached the first predetermined height, but the second level sensor 31J does not detect that the pile height of the char has reached the second predetermined height.
 次に、本実施形態の集塵設備31の制御方法について、図3を参照して説明する。図3は、本実施形態の集塵設備31の制御方法を示すフローチャートである。図3のフローチャートの各処理は、制御部90が記憶部(図示略)に記憶された制御プログラムにより実行される。制御部90は、図3に示すフローチャートの各処理において、第1排出弁31Dと、第2排出弁31Eと、加圧部31Fと、減圧部31Gとを制御する。 Next, a method for controlling the dust collection equipment 31 of this embodiment will be described with reference to FIG. 3. FIG. 3 is a flowchart showing a method for controlling the dust collection equipment 31 of this embodiment. Each process of the flowchart in FIG. 3 is executed by the control unit 90 using a control program stored in a storage unit (not shown). In each process of the flowchart shown in FIG. 3, the control unit 90 controls the first discharge valve 31D, the second discharge valve 31E, the pressurizing unit 31F, and the depressurizing unit 31G.
 ステップS101で、制御部90は、排出ライン31Bcに設置された第2排出弁31Eを閉状態とするよう第2排出弁31Eを制御する。第2排出弁31Eが閉状態である場合、冷却ホッパ31Bと排出ホッパ31Cとが連通しない状態となる。 In step S101, the control unit 90 controls the second discharge valve 31E installed in the discharge line 31Bc to close the second discharge valve 31E. When the second discharge valve 31E is closed, the cooling hopper 31B and the discharge hopper 31C are not in communication with each other.
 ステップS102で、制御部90は、導入ライン31Baに設置された第1排出弁31Dを開状態とするよう第1排出弁31Dを制御する。第1排出弁31Dが開状態である場合、生成ガスフィルタ31Aと冷却ホッパ31Bとが連通する状態となり、生成ガスフィルタ31Aから冷却ホッパ31Bにチャーが供給される。 In step S102, the control unit 90 controls the first discharge valve 31D installed in the inlet line 31Ba to open the first discharge valve 31D. When the first discharge valve 31D is open, the product gas filter 31A and the cooling hopper 31B are in communication with each other, and char is supplied from the product gas filter 31A to the cooling hopper 31B.
 ステップS103で、制御部90は、ステップS102で第1排出弁31Dを開状態としてから所定時間が経過したことに応じて、導入ライン31Baに設置された第1排出弁31Dを閉状態とするよう第1排出弁31Dを制御する。第1排出弁31Dが閉状態である場合、生成ガスフィルタ31Aと冷却ホッパ31Bとが連通しない状態となり、生成ガスフィルタ31Aから冷却ホッパ31Bへのチャーの供給が停止される。 In step S103, the control unit 90 controls the first discharge valve 31D installed in the inlet line 31Ba to close the first discharge valve 31D in response to the lapse of a predetermined time since the first discharge valve 31D was opened in step S102. When the first discharge valve 31D is closed, the product gas filter 31A and the cooling hopper 31B are not in communication with each other, and the supply of char from the product gas filter 31A to the cooling hopper 31B is stopped.
 ステップS104で、制御部90は、冷却ホッパ31Bに回収されるチャーが回収容器31Bbに堆積する堆積高さが第2所定高さ以上であるかどうかを判定し、堆積高さが第2所定高さ以上である場合はステップS105に処理を進める。制御部90は、第2レベルセンサ31Jがチャーの堆積高さが第2所定高さまで到達していることを検出する場合に、ステップS104でYESと判定する。制御部90は、ステップS104でNOと判定した場合はステップS104でYESと判定されるまでステップS102およびステップS103の処理を繰り返す。 In step S104, the control unit 90 determines whether the height of the char collected in the cooling hopper 31B accumulated in the collection container 31Bb is equal to or greater than a second predetermined height, and proceeds to step S105 if the height is equal to or greater than the second predetermined height. If the second level sensor 31J detects that the height of the char has reached the second predetermined height, the control unit 90 determines YES in step S104. If the control unit 90 determines NO in step S104, it repeats the processes of steps S102 and S103 until it determines YES in step S104.
 ステップS105で、制御部90は、第1排出弁31Dおよび第2排出弁31Eを閉状態にして回収容器31Bbに閉空間を形成し、回収容器31Bbへ加圧用ガスを供給して回収容器31Bbの内部空間を加圧する加圧動作を実行する。制御部90は、回収容器31Bbの内部空間の圧力が大気圧よりも高い第1内部圧力に到達するまで開閉弁31Fbを開状態とし、回収容器31Bbの内部空間の圧力が第1内部圧力に到達したことに応じて開閉弁31Fbを閉状態とする。 In step S105, the control unit 90 closes the first exhaust valve 31D and the second exhaust valve 31E to form a closed space in the collection container 31Bb, and executes a pressurizing operation to supply pressurizing gas to the collection container 31Bb to pressurize the internal space of the collection container 31Bb. The control unit 90 keeps the on-off valve 31Fb open until the pressure in the internal space of the collection container 31Bb reaches a first internal pressure that is higher than atmospheric pressure, and closes the on-off valve 31Fb when the pressure in the internal space of the collection container 31Bb reaches the first internal pressure.
 制御部90は、例えば、圧力センサ(図示略)で回収容器31Bbの内部空間の圧力を検出して回収容器31Bbの内部空間の圧力が第1内部圧力に到達したかどうかを判定する。制御部90は、回収容器31Bbの内部空間の圧力が大気圧から第1内部圧力に到達するまでに開閉弁31Fbを開状態とすべき設定時間を予め設定しておき、開閉弁31Fbを開状態としてから設定時間が経過したことにより回収容器31Bbの内部空間の圧力が第1内部圧力に到達したと判定してもよい。 The control unit 90 detects the pressure in the internal space of the collection container 31Bb, for example, with a pressure sensor (not shown), and determines whether the pressure in the internal space of the collection container 31Bb has reached the first internal pressure. The control unit 90 may preset a set time for which the on-off valve 31Fb should be open until the pressure in the internal space of the collection container 31Bb reaches the first internal pressure from atmospheric pressure, and determine that the pressure in the internal space of the collection container 31Bb has reached the first internal pressure when the set time has elapsed since the on-off valve 31Fb was opened.
 ステップS106で、制御部90は、第1排出弁31Dおよび第2排出弁31Eを閉状態にして回収容器31Bbに閉空間を形成し、回収容器31Bbから加圧用ガスを排出して回収容器31Bbの内部空間を減圧する減圧動作を実行する。制御部90は、回収容器31Bbの内部空間の圧力が第1内部圧力から第1内部圧力よりも低い第2内部圧力(例えば、大気圧)に到達するまで開閉弁31Gcを開状態とし、回収容器31Bbの内部空間の圧力が第2内部圧力に到達したことに応じて開閉弁31Gcを閉状態とする。 In step S106, the control unit 90 closes the first exhaust valve 31D and the second exhaust valve 31E to form a closed space in the collection container 31Bb, and performs a decompression operation to exhaust the pressurizing gas from the collection container 31Bb and decompress the internal space of the collection container 31Bb. The control unit 90 keeps the on-off valve 31Gc open until the pressure in the internal space of the collection container 31Bb reaches a second internal pressure (e.g., atmospheric pressure) lower than the first internal pressure from the first internal pressure, and closes the on-off valve 31Gc when the pressure in the internal space of the collection container 31Bb reaches the second internal pressure.
 制御部90は、例えば、圧力センサ(図示略)で回収容器31Bbの内部空間の圧力を検出して回収容器31Bbの内部空間の圧力が第2内部圧力に到達したかどうかを判定する。制御部90は、回収容器31Bbの内部空間の圧力が第1内部圧力から第2内部圧力に到達するまでに開閉弁31Gcを開状態とすべき設定時間を予め設定しておき、開閉弁31Gcを開状態としてから設定時間が経過したことにより回収容器31Bbの内部空間の圧力が第2内部圧力に到達したと判定してもよい。 The control unit 90, for example, detects the pressure in the internal space of the collection container 31Bb using a pressure sensor (not shown) and determines whether the pressure in the internal space of the collection container 31Bb has reached the second internal pressure. The control unit 90 may preset a set time for which the on-off valve 31Gc should be open until the pressure in the internal space of the collection container 31Bb reaches the second internal pressure from the first internal pressure, and determine that the pressure in the internal space of the collection container 31Bb has reached the second internal pressure when the set time has elapsed since the on-off valve 31Gc was opened.
 ステップS107で、制御部90は、ステップS105の加圧動作およびステップS106の減圧動作をそれぞれN回(Nは2以上の整数)実行したかどうかを判定し、YESであればステップS108に処理を進め、NOであればステップS107でYESと判定されるまでステップS105の加圧動作およびステップS106の減圧動作を繰り返す。すなわち、制御部90は、加圧動作および減圧動作を交互にN回ずつ繰り返して実行した後に、ステップS108へ処理を進める。 In step S107, the control unit 90 determines whether the pressurizing operation in step S105 and the depressurizing operation in step S106 have each been performed N times (N is an integer equal to or greater than 2), and if YES, the process proceeds to step S108, and if NO, the pressurizing operation in step S105 and the depressurizing operation in step S106 are repeated until step S107 returns YES. In other words, the control unit 90 alternately performs the pressurizing operation and the depressurizing operation N times each, and then proceeds to step S108.
 ここで、図4および図5を参照して、加圧動作および減圧動作を交互にN回ずつ繰り返す理由について説明する。図4は、加圧動作および減圧動作の繰り返しを実行する時間と冷却ホッパ内のチャーの温度の関係を示すグラフである。図5は、加圧動作および減圧動作の繰り返しを実行する時間と冷却ホッパ内のガスの希釈率との関係を示すグラフである。 Now, with reference to Figures 4 and 5, we will explain why the pressurization and depressurization operations are repeated alternately N times. Figure 4 is a graph showing the relationship between the time it takes to perform repeated pressurization and depressurization operations and the temperature of the char in the cooling hopper. Figure 5 is a graph showing the relationship between the time it takes to perform repeated pressurization and depressurization operations and the dilution rate of the gas in the cooling hopper.
 図4に示す例は、冷却ホッパ31Bで回収されたチャーの初期温度が420℃であり、冷却ホッパ31Bの内部空間の容積が2mであり、冷却ホッパ31Bで第2所定高さに到達したチャーの重量が50Kgである場合に、加圧動作を40秒間、減圧動作を120秒間で繰り返した例を示す。図4に示すプロットは、加圧動作を開始するタイミングを示し、プロットの間隔は加圧動作と減圧動作の実行時間である160秒である。 The example shown in Fig. 4 shows a case where the initial temperature of the char recovered in the cooling hopper 31B is 420°C, the volume of the internal space of the cooling hopper 31B is 2 m2, and the weight of the char that has reached the second predetermined height in the cooling hopper 31B is 50 kg, in which the pressurization operation is repeated for 40 seconds and the depressurization operation is repeated for 120 seconds. The plots shown in Fig. 4 show the timing at which the pressurization operation is started, and the interval between the plots is 160 seconds, which is the execution time of the pressurization operation and the depressurization operation.
 図4に示すように、加圧動作と減圧動作を繰り返すことにより、チャーの熱が伝達された加圧用ガスが外部に排出されるため、チャーの温度が漸次降下する。図4に示す例では、加圧動作と減圧動作を1セットとした動作を21回繰り返すことにより、チャーの温度が420℃から自然酸化温度(例えば、150℃)未満に降下する。 As shown in Figure 4, by repeating the pressurization and depressurization operations, the pressurization gas to which the heat of the char has been transferred is discharged to the outside, and the temperature of the char gradually drops. In the example shown in Figure 4, by repeating one set of pressurization and depressurization operations 21 times, the temperature of the char drops from 420°C to below the natural oxidation temperature (e.g., 150°C).
 例えば、冷却ホッパ31B内のチャーの冷却後の目標温度を150℃未満とする場合、ステップS107におけるNとして21を設定する。制御部90は、ステップS105からステップS107で、冷却ホッパ31B内のチャーの温度が150℃未満となるように加圧部31Fによる加圧動作と減圧部31Gによる減圧動作とを交互にN回繰り返した後に、チャーを冷却ホッパ31Bから排出ホッパ31Cへ排出する。 For example, if the target temperature of the char in the cooling hopper 31B after cooling is to be less than 150°C, N is set to 21 in step S107. In steps S105 to S107, the control unit 90 alternately repeats the pressurizing operation by the pressurizing unit 31F and the depressurizing operation by the depressurizing unit 31G N times so that the temperature of the char in the cooling hopper 31B becomes less than 150°C, and then discharges the char from the cooling hopper 31B to the discharge hopper 31C.
 なお、ステップS107では、加圧動作および減圧動作をN回繰り返すことにより冷却ホッパ31B内のチャーの温度を150℃未満となったと判定するものとしたが、他の態様であってもよい。例えば、制御部90は、温度センサ31Hが検出するチャーの温度が150℃未満となったことに応じて、加減圧動作を停止してステップS108に移行し、第2排出弁31Eを開状態にして冷却ホッパ31Bの回収容器31Bbに回収されたチャーを排出ライン31Bcから排出するようにしてもよい。 In step S107, the pressurization and depressurization operations are repeated N times to determine that the temperature of the char in the cooling hopper 31B has fallen below 150°C, but other configurations are also possible. For example, when the char temperature detected by the temperature sensor 31H falls below 150°C, the control unit 90 may stop the pressurization and depressurization operations, proceed to step S108, and open the second discharge valve 31E to discharge the char collected in the collection container 31Bb of the cooling hopper 31B from the discharge line 31Bc.
 図5に示すように、減圧後に冷却ホッパ31B内に残留している加圧用ガスは、新たに加圧部31Fから導入される加圧用ガスにより希釈されるため、加圧動作と減圧動作を繰り返すことにより、希釈率が漸次減少(希釈倍率が漸次増加)する。そのため、加圧動作および減圧動作をN回繰り返した後に冷却ホッパ31B内に存在する可燃性ガスの濃度は、可燃範囲以下且つ環境基準値以下となり、外部に排出しても発火や汚染を生じさせない程度の濃度となる。 As shown in FIG. 5, the pressurization gas remaining in cooling hopper 31B after depressurization is diluted by new pressurization gas introduced from pressurization section 31F, so the dilution rate gradually decreases (the dilution factor gradually increases) by repeating the pressurization and depressurization operations. Therefore, after repeating the pressurization and depressurization operations N times, the concentration of the flammable gas present in cooling hopper 31B is below the flammable range and below the environmental standard value, and is a concentration that will not cause ignition or pollution even if it is discharged to the outside.
 ステップS108で、制御部90は、加圧部31Fによる加圧動作と減圧部31Gによる減圧動作とを交互にN回繰り返した後に、第2排出弁31Eを開状態にして冷却ホッパ31Bの回収容器31Bbに回収されたチャーを排出ライン31Bcから排出ホッパ31Cに排出するよう制御する。 In step S108, the control unit 90 controls the second discharge valve 31E to be open after alternately repeating the pressurizing operation by the pressurizing unit 31F and the depressurizing operation by the depressurizing unit 31G N times, and then discharges the char collected in the collection container 31Bb of the cooling hopper 31B from the discharge line 31Bc to the discharge hopper 31C.
 ステップS109で、制御部90は、冷却ホッパ31Bに回収されるチャーが回収容器31Bbに堆積する堆積高さが第1所定高さ未満であるかどうかを判定し、堆積高さが第1所定高さ未満である場合はステップS110に処理を進める。制御部90は、第1レベルセンサ31Iがチャーの堆積高さが第1所定高さ未満となっていることを検出する場合に、ステップS109でYESと判定する。制御部90は、ステップS109でNOと判定した場合はステップS109でYESと判定されるまでステップS109の処理を繰り返す。 In step S109, the control unit 90 determines whether the height of the char collected in the cooling hopper 31B accumulated in the collection container 31Bb is less than a first predetermined height, and proceeds to step S110 if the height is less than the first predetermined height. If the first level sensor 31I detects that the height of the char is less than the first predetermined height, the control unit 90 determines YES in step S109. If the control unit 90 determines NO in step S109, it repeats the process of step S109 until it determines YES in step S109.
 ステップS110で、制御部90は、冷却ホッパ31Bに回収されるチャーが回収容器31Bbに堆積する堆積高さが第1所定高さ未満となったため、第2排出弁31Eを閉状態にして冷却ホッパ31Bの回収容器31Bbから排出ホッパ31Cへのチャーの排出を停止するよう制御する。制御部90は、ステップS110の実行後に本フローチャートの処理を終了させる。 In step S110, the control unit 90 controls the second discharge valve 31E to be closed to stop the discharge of char from the collection container 31Bb of the cooling hopper 31B to the discharge hopper 31C because the height of the char collected in the cooling hopper 31B and accumulated in the collection container 31Bb is less than the first predetermined height. After executing step S110, the control unit 90 ends the processing of this flowchart.
 ここで、ステップS105の加圧動作における第1内部圧力について説明する。第1内部圧力は、第2内部圧力の20倍以下に設定するのが好ましい。図6は、第2内部圧力に対する第1内部圧力の比である圧力比(第1内部圧力/第2内部圧力)と、冷却ホッパ31Bの内部のチャーの冷却時間との関係を示すグラフである。冷却時間とは、冷却ホッパ31Bの内部のチャーが初期温度である420℃から150℃まで降下するのに要する時間である。 Here, the first internal pressure in the pressurizing operation of step S105 will be described. The first internal pressure is preferably set to 20 times or less the second internal pressure. Figure 6 is a graph showing the relationship between the pressure ratio (first internal pressure/second internal pressure), which is the ratio of the first internal pressure to the second internal pressure, and the cooling time of the char inside the cooling hopper 31B. The cooling time is the time required for the char inside the cooling hopper 31B to drop from its initial temperature of 420°C to 150°C.
 図6に示すように、圧力比が20を超える領域では、圧力比を上昇させたとしても冷却時間に殆ど変化がない。したがって、圧力比を20より大きくすることは、冷却時間を短縮することへの影響が殆ど無い。そのため、本実施形態において、第1内部圧力は、第2内部圧力の20倍以下に設定する。 As shown in FIG. 6, in the region where the pressure ratio exceeds 20, there is almost no change in the cooling time even if the pressure ratio is increased. Therefore, increasing the pressure ratio beyond 20 has almost no effect on shortening the cooling time. Therefore, in this embodiment, the first internal pressure is set to 20 times or less than the second internal pressure.
 本実施形態では、加圧部31Fによる加圧動作と減圧部31Gによる減圧動作に繰り返しにより、チャーから加圧用ガスへの熱伝達と、熱伝達された加圧用ガスの排出によりチャーを冷却している。1回の加圧動作と1回の減圧動作を実行する前のチャーの温度をT1とし、1回の加圧動作と1回の減圧動作を実行した後のチャーの温度をT2とすると、T1とT2は以下の式(1)を満たす。加圧用ガスは、窒素ガスとする。 In this embodiment, the pressurization operation by the pressurization unit 31F and the depressurization operation by the depressurization unit 31G are repeated, and the char is cooled by heat transfer from the char to the pressurization gas and by discharging the pressurization gas to which the heat has been transferred. If the temperature of the char before one pressurization operation and one depressurization operation is T1, and the temperature of the char after one pressurization operation and one depressurization operation is T2, T1 and T2 satisfy the following formula (1). The pressurization gas is nitrogen gas.
 a・T2+b・T2+c         (1)
 ここで、a、b、cは、以下の式(2),(3),(4)に示す係数である。
a T2 2 + b T2 + c (1)
Here, a, b, and c are coefficients shown in the following expressions (2), (3), and (4).
 a=Cpm・G              (2)
 b=CpN・ρN・V・[(P1-P2)/P0]・Ts-T1・Cpm・G
                                   (3)
 c=-T0・CpN・ρN・V・[(P1-P2)/P0]・Ts    (4)
a = Cpm G (2)
b = CpN2 ρN2 V [(P1-P2)/P0] Ts-T1 Cpm G
(3)
c = -T0 CpN2 ρN2 V [(P1-P2)/P0] Ts (4)
 ここで、Cpmはチャーの比熱[kJ/kg・K]であり、Gはチャーの重量[kg]である。また、CpNは窒素ガスの比熱[kJ/kg・K]であり、ρNは窒素ガスの比重[kg/m]であり、Vは冷却ホッパ31Bの内部空間の容積[m]であり、P1は第1内部圧力[kPa]であり、P2は第2内部圧力[kPa]である。また、Tsは標準温度である273.14[K]であり、T0は冷却ホッパ31Bに供給される窒素ガスの温度[K]である。 Here, Cpm is the specific heat of char [kJ/kg·K], G is the weight of char [kg], CpN2 is the specific heat of nitrogen gas [kJ/kg·K], ρN2 is the specific gravity of nitrogen gas [kg/m 3 ], V is the volume of the internal space of cooling hopper 31B [m 3 ], P1 is the first internal pressure [kPa], and P2 is the second internal pressure [kPa]. Ts is the standard temperature of 273.14 [K], and T0 is the temperature [K] of the nitrogen gas supplied to cooling hopper 31B.
 以上説明した各実施形態に記載の粉体回収装置および粉体回収装置の制御方法は例えば以下のように把握される。
 本開示の第1態様に係る粉体回収装置は、加熱された処理対象ガスから粉体を分離して回収する粉体回収装置(31)であって、前記処理対象ガスが導入されるとともに前記処理対象ガスから前記粉体を分離する粉体分離部(31A)と、前記粉体分離部により分離された前記粉体が導入される導入部(31Ba)と、前記導入部から導入される前記粉体を一時的に回収する回収容器(31Bb)と、前記回収容器に回収された前記粉体を排出する排出部(31Bc)と、を有する第1回収部(31B)と、前記導入部に設置される第1開閉弁(31D)と、前記排出部に設置される第2開閉弁(31E)と、前記回収容器へ加圧用ガスを供給して前記回収容器を加圧する加圧動作を実行する加圧部(31F)と、前記回収容器から前記加圧用ガスを外部へ排出して前記回収容器を減圧する減圧動作を実行する減圧部(31G)と、前記第1開閉弁と、前記第2開閉弁と、前記加圧部と、前記減圧部とを制御する制御部(90)と、を備え、前記制御部は、前記第1開閉弁および前記第2開閉弁を閉状態にして前記加圧部による前記加圧動作と前記減圧部による前記減圧動作とを交互に繰り返した後に、前記第2開閉弁を開状態にして前記回収容器に回収された前記粉体を前記排出部から排出するよう制御する。
The powder recovery device and the control method for the powder recovery device described in each of the above-described embodiments can be understood, for example, as follows.
A powder recovery device according to a first aspect of the present disclosure is a powder recovery device (31) that separates and recovers powder from a heated gas to be treated, the powder recovery device including a powder separation section (31A) into which the gas to be treated is introduced and which separates the powder from the gas to be treated, an introduction section (31Ba) into which the powder separated by the powder separation section is introduced, a recovery container (31Bb) that temporarily recovers the powder introduced from the introduction section, and a discharge section (31Bc) that discharges the powder recovered in the recovery container, a first recovery section (31B), a first opening/closing valve (31D) provided in the introduction section, and a second opening/closing valve (31E) provided in the discharge section. a pressurizing section (31F) that performs a pressurizing operation of supplying a pressurizing gas to the collection container to pressurize the collection container, a depressurizing section (31G) that performs a depressurizing operation of discharging the pressurizing gas from the collection container to the outside to depressurize the collection container, and a control section (90) that controls the first on-off valve, the second on-off valve, the pressurizing section, and the depressurizing section, wherein the control section controls the first on-off valve and the second on-off valve to be in a closed state so as to alternately repeat the pressurizing operation by the pressurizing section and the depressurizing operation by the depressurizing section, and then controls the second on-off valve to be in an open state so as to discharge the powder collected in the collection container from the discharge section.
 本開示の第1態様に係る粉体回収装置によれば、粉体分離部で加熱された処理対象ガスから粉体が分離されて第1回収部の導入部に導入され、回収容器に一時的に貯留された後に排出部から排出される。導入部には第1開閉弁が設置され、排出部には第2開閉弁が設置され、第1開閉弁および第2開閉弁を閉状態にすることにより、第1回収部の回収容器に閉空間が形成される。回収容器は、加圧部が加圧動作を実行することにより加圧用ガスで加圧され、減圧部が減圧動作を実行して加圧用ガスを排出することにより減圧される。 In the powder recovery device according to the first aspect of the present disclosure, powder is separated from the gas to be treated that has been heated in the powder separation section and introduced into the inlet section of the first recovery section, temporarily stored in the recovery container, and then discharged from the outlet section. A first on-off valve is provided in the inlet section, and a second on-off valve is provided in the outlet section, and a closed space is formed in the recovery container of the first recovery section by closing the first on-off valve and the second on-off valve. The recovery container is pressurized with the pressurizing gas by the pressurizing section performing a pressurizing operation, and is depressurized by the depressurizing section performing a depressurizing operation to discharge the pressurizing gas.
 本開示の第1態様に係る粉体回収装置によれば、制御部は、第1開閉弁および第2開閉弁を閉状態にして加圧部による加圧動作と減圧部による減圧動作とを交互に繰り返すよう制御する。加圧動作と減圧動作の繰り返しにより、回収容器内で粉体から熱が伝達された加圧用ガスが複数回に渡って置換されて粉体が漸次冷却される。 In the powder recovery device according to the first aspect of the present disclosure, the control unit controls the first and second opening/closing valves to be in a closed state, and alternately repeats the pressurizing operation by the pressurizing unit and the depressurizing operation by the depressurizing unit. By repeating the pressurizing operation and the depressurizing operation, the pressurizing gas to which heat has been transferred from the powder in the recovery container is replaced multiple times, and the powder is gradually cooled.
 このように、本開示の第1態様に係る粉体回収装置によれば、別途の冷却器を設けることなく粉体を冷却することができるため、粉体回収装置の設置コストおよび設置スペースの増大を防止することができる。また、回収容器内の加圧用ガスが複数回に渡って置換される際に粉体に吸着した可燃性ガス等が加圧用ガスで希釈化した状態で外部へ排出されるため、発火や外気の汚染を防止することができる。 In this way, according to the powder recovery device of the first aspect of the present disclosure, the powder can be cooled without providing a separate cooler, which prevents an increase in the installation cost and installation space of the powder recovery device. In addition, when the pressurizing gas in the recovery container is replaced multiple times, flammable gases adsorbed on the powder are discharged to the outside in a diluted state with the pressurizing gas, which prevents fire and pollution of the outside air.
 本開示の第2態様に係る粉体回収装置は、第1態様において、更に以下の構成を備える。すなわち、前記制御部は、前記加圧動作により加圧された前記回収容器の第1内部圧力が前記減圧動作により減圧された前記回収容器の第2内部圧力の20倍以下となるように前記加圧部および前記減圧部を制御する。 The powder recovery device according to the second aspect of the present disclosure is the first aspect, and further includes the following configuration. That is, the control unit controls the pressurizing unit and the decompression unit so that the first internal pressure of the recovery container pressurized by the pressurizing operation is 20 times or less than the second internal pressure of the recovery container decompressed by the decompression operation.
 本開示の第2態様に係る粉体回収装置によれば、加圧動作により回収容器を加圧することで、回収容器に回収される粉体の冷却と粉体に吸着した可燃性ガス等の希釈化を確実に行うことができる。また、加圧動作により加圧された回収容器の第1内部圧力を減圧動作により減圧された回収容器の第2内部圧力の20倍以下とすることで、回収容器の第1内部圧力を粉体の冷却や粉体に吸着した可燃性ガス等の希釈化に不要なほど過度に高めないようにすることができる。 According to the powder recovery device according to the second aspect of the present disclosure, by pressurizing the recovery container by a pressurizing operation, it is possible to reliably cool the powder recovered in the recovery container and dilute the flammable gas adsorbed to the powder. In addition, by making the first internal pressure of the recovery container pressurized by the pressurizing operation 20 times or less the second internal pressure of the recovery container depressurized by the depressurizing operation, it is possible to prevent the first internal pressure of the recovery container from being excessively high, which is unnecessary for cooling the powder or diluting the flammable gas adsorbed to the powder.
 本開示の第3態様に係る粉体回収装置は、第1態様または2態様において、更に以下の構成を備える。すなわち、前記制御部は、前記粉体の温度が自然酸化温度未満となるように前記加圧部による前記加圧動作と前記減圧部による前記減圧動作とを交互に繰り返した後に、前記第2開閉弁を開状態にして前記回収容器に回収された前記粉体を前記排出部から排出するよう制御する。
 本開示の第3態様に係る粉体回収装置によれば、回収容器に回収された粉体の温度が自然酸化温度未満となってから排出されるため、自然酸化温度以上で排出された粉体が大気中で自然酸化することを適切に防止することができる。
The powder recovery device according to the third aspect of the present disclosure is the first or second aspect, and further includes the following configuration: That is, the control unit controls the second on-off valve to be in an open state so that the powder recovered in the recovery container is discharged from the discharge unit after alternately repeating the pressurizing operation by the pressurizing unit and the depressurizing operation by the depressurizing unit so that the temperature of the powder becomes lower than a natural oxidation temperature.
According to the powder recovery device of the third aspect of the present disclosure, the powder recovered in the recovery container is discharged only after its temperature becomes lower than the natural oxidation temperature, thereby appropriately preventing the powder discharged at or above the natural oxidation temperature from naturally oxidizing in the atmosphere.
 本開示の第4態様に係る粉体回収装置は、第3態様において、更に以下の構成を備える。すなわち、前記粉体回収装置に回収される前記粉体の温度を検出する検出部(31H)を備え、前記制御部は、前記検出部が検出する前記粉体の温度が自然酸化温度未満となったことに応じて、前記第2開閉弁を開状態にして前記回収容器に回収された前記粉体を前記排出部から排出するよう制御する。
 本開示の第4態様に係る粉体回収装置によれば、粉体の温度が自然酸化温度未満となったことを検出部で検出したことに応じて、粉体を回収容器から排出することができる。
The powder recovery device according to the fourth aspect of the present disclosure is the third aspect, and further includes the following configuration: A detection unit (31H) that detects the temperature of the powder recovered in the powder recovery device, and the control unit controls the second on-off valve to be opened so that the powder recovered in the recovery container is discharged from the discharge unit in response to the temperature of the powder detected by the detection unit becoming lower than the natural oxidation temperature.
According to the powder recovery device of the fourth aspect of the present disclosure, the powder can be discharged from the recovery container in response to the detection unit detecting that the temperature of the powder has fallen below the natural oxidation temperature.
 本開示の第5態様に係る粉体回収装置は、第3態様において、更に以下の構成を備える。すなわち、前記制御部は、前記加圧部による前記加圧動作と前記減圧部による前記減圧動作とをそれぞれ所定回数実行した後に、前記第2開閉弁を開状態にして前記回収容器に回収された前記粉体を前記排出部から排出するよう制御する。
 本開示の第5態様に係る粉体回収装置によれば、粉体の温度が自然酸化温度未満とするのに必要な加圧動作と減圧動作の繰り返し回数を所定回数とし、加圧動作と減圧動作を所定回数実行した後に自然酸化温度未満となった粉体を回収容器から排出させることができる。
The powder recovery device according to the fifth aspect of the present disclosure is the third aspect, and further includes the following configuration: That is, the control unit controls the second on-off valve to be in an open state so as to discharge the powder recovered in the recovery container from the discharge unit after the pressurizing operation by the pressurizing unit and the depressurizing operation by the depressurizing unit have been performed a predetermined number of times.
According to the powder recovery device of the fifth aspect of the present disclosure, the number of repeated pressurization and depressurization operations required to reduce the temperature of the powder below the natural oxidation temperature is set to a predetermined number, and the powder that has reached a temperature below the natural oxidation temperature after the pressurization and depressurization operations have been performed a predetermined number of times can be discharged from the recovery container.
 本開示の第6態様に係る粉体回収装置は、第1態様または第2態様において、前記加圧用ガスは、酸素濃度が10%以下のガスである。
 本開示の第6態様に係る粉体回収装置によれば、酸素濃度が10%以下のガスを回収容器に導入することで、回収容器内でガスと接触した高温の粉体が自然酸化することを確実に防止することができる。
A powder recovery device according to a sixth aspect of the present disclosure is the first or second aspect, wherein the pressurizing gas has an oxygen concentration of 10% or less.
According to the powder recovery device of the sixth aspect of the present disclosure, by introducing gas having an oxygen concentration of 10% or less into the recovery container, it is possible to reliably prevent natural oxidation of high-temperature powder that comes into contact with the gas inside the recovery container.
 本開示の第7態様に係る粉体回収装置は、第6態様において、前記加圧用ガスは、窒素ガスである。
 本開示の第7態様に係る粉体回収装置によれば、窒素ガスを回収容器に導入することで、回収容器内でガスと接触した高温の粉体が自然酸化することを確実に防止することができる。
A powder recovery device according to a seventh aspect of the present disclosure is the sixth aspect, wherein the pressurizing gas is nitrogen gas.
According to the powder recovery device of the seventh aspect of the present disclosure, by introducing nitrogen gas into the recovery container, it is possible to reliably prevent natural oxidation of high-temperature powder that comes into contact with the gas inside the recovery container.
 本開示の第8態様に係る粉体回収装置は、第1態様または第2態様において、更に以下の構成を備える。すなわち、前記加圧部は、前記回収容器の下方側の前記粉体が回収される回収領域(31Bd)に前記加圧用ガスを導入する。
 本開示の第8態様に係る粉体回収装置によれば、回収容器の下方側の粉体が回収される回収領域に加圧用ガスが導入されるため、加圧用ガスにより粉体が攪拌されて粉体の熱を加圧用ガスに効率的に伝達することができる。
The powder recovery device according to the eighth aspect of the present disclosure is the first or second aspect, further comprising the following configuration: That is, the pressurizing unit introduces the pressurizing gas into a recovery area (31Bd) in which the powder is recovered on the lower side of the recovery container.
According to the powder recovery device of the eighth aspect of the present disclosure, a pressurizing gas is introduced into the recovery area where the powder on the lower side of the recovery container is recovered, so that the powder is agitated by the pressurizing gas and the heat of the powder can be efficiently transferred to the pressurizing gas.
 本開示の第9態様に係る粉体回収装置の制御方法は、加熱された処理対象ガスから粉体を分離して回収する粉体回収装置の制御方法であって、前記粉体回収装置は、前記処理対象ガスが導入されるとともに前記処理対象ガスから前記粉体を分離する粉体分離部と、前記粉体分離部により分離された前記粉体が導入される導入部と、前記導入部から導入される前記粉体を一時的に回収する回収容器と、前記回収容器に回収された前記粉体を排出する排出部と、を有する第1回収部と、前記導入部に設置される第1開閉弁と、前記排出部に設置される第2開閉弁と、前記回収容器へ加圧用ガスを供給して前記回収容器を加圧する加圧動作を実行する加圧部と、前記回収容器から前記加圧用ガスを外部へ排出して前記回収容器を減圧する減圧動作を実行する減圧部と、を備え、前記第1開閉弁および前記第2開閉弁を閉状態にして前記加圧動作を実行する加圧工程(S105)と、前記第1開閉弁および前記第2開閉弁を閉状態にして前記減圧部による前記減圧動作を実行する減圧工程(S106)と、前記加圧工程と前記減圧工程とを交互に繰り返した後に、前記第2開閉弁を開状態にして前記回収容器に回収された前記粉体を前記排出部から排出する排出工程(S108)と、を備える。 A control method for a powder recovery device according to a ninth aspect of the present disclosure is a control method for a powder recovery device that separates and recovers powder from a heated gas to be treated, the powder recovery device comprising a first recovery section having a powder separation section into which the gas to be treated is introduced and which separates the powder from the gas to be treated, an introduction section into which the powder separated by the powder separation section is introduced, a recovery container that temporarily recovers the powder introduced from the introduction section, and a discharge section that discharges the powder recovered in the recovery container, a first opening/closing valve installed in the introduction section, a second opening/closing valve installed in the discharge section, and a pressurizing gas supply to the recovery container. The system includes a pressurizing unit that supplies gas to the collection container to perform a pressurizing operation and a depressurizing unit that discharges the pressurizing gas from the collection container to the outside to perform a depressurizing operation of the collection container, and includes a pressurizing step (S105) that closes the first and second opening/closing valves to perform the pressurizing operation, a depressurizing step (S106) that closes the first and second opening/closing valves to perform the depressurizing operation by the depressurizing unit, and a discharging step (S108) that alternately repeats the pressurizing step and the depressurizing step, and then opens the second opening/closing valve to discharge the powder collected in the collection container from the discharging unit.
 本開示の第9態様に係る粉体回収装置の制御方法によれば、粉体分離部で加熱された処理対象ガスから粉体が分離されて第1回収部の導入部に導入され、回収容器に一時的に貯留された後に排出部から排出される。導入部には第1開閉弁が設置され、排出部には第2開閉弁が設置され、第1開閉弁および第2開閉弁を閉状態にすることにより、第1回収部の回収容器に閉空間が形成される。回収容器は、加圧部が加圧動作を実行することにより加圧用ガスで加圧され、減圧部が減圧動作を実行して加圧用ガスを排出することにより減圧される。 According to the control method for a powder recovery device according to the ninth aspect of the present disclosure, powder is separated from the gas to be treated that has been heated in the powder separation section and introduced into the inlet section of the first recovery section, temporarily stored in the recovery container, and then discharged from the outlet section. A first on-off valve is provided in the inlet section, and a second on-off valve is provided in the outlet section, and a closed space is formed in the recovery container of the first recovery section by closing the first on-off valve and the second on-off valve. The recovery container is pressurized with the pressurizing gas by the pressurizing section performing a pressurizing operation, and is depressurized by the depressurizing section performing a depressurizing operation to discharge the pressurizing gas.
 本開示の第9態様に係る粉体回収装置の制御方法によれば、排出工程で、第1開閉弁および第2開閉弁を閉状態にして加圧工程と減圧工程とを交互に繰り返される。加圧動作と減圧動作の繰り返しにより、回収容器内で粉体から熱が伝達された加圧用ガスが複数回に渡って置換されて粉体が漸次冷却される。 According to the control method for a powder recovery device according to the ninth aspect of the present disclosure, in the discharge step, the first and second on-off valves are closed and the pressurization step and the depressurization step are alternately repeated. By repeating the pressurization and depressurization steps, the pressurizing gas to which heat has been transferred from the powder in the recovery container is replaced multiple times, and the powder is gradually cooled.
 このように、本開示の第9態様に係る粉体回収装置の制御方法によれば、別途の冷却器を設けることなく粉体を冷却することができるため、粉体回収装置の設置コストおよび設置スペースの増大を防止することができる。また、回収容器内の加圧用ガスが複数回に渡って置換される際に粉体に吸着した可燃性ガス等が加圧用ガスで希釈化した状態で外部へ排出されるため、発火や外気の汚染を防止することができる。 In this way, according to the control method for a powder recovery device according to the ninth aspect of the present disclosure, the powder can be cooled without providing a separate cooler, which prevents an increase in the installation cost and installation space of the powder recovery device. In addition, when the pressurizing gas in the recovery container is replaced multiple times, flammable gases adsorbed on the powder are discharged to the outside in a diluted state with the pressurizing gas, which prevents fire and pollution of the outside air.
10   バイオマスガス化設備
11   バイオマスガス化炉
12   高温合成ガスクーラー
14   低温合成ガスクーラー
16   チャークーラー
17   給水予熱部
18   スクラバ
30   チャー回収設備
31   集塵設備(粉体回収装置)
31A  生成ガスフィルタ(粉体分離部)
31Aa 容器
31Ab フィルタ
31Ac 下方空間
31Ad 上方空間
31Ae 逆洗装置
31B  冷却ホッパ(第1回収部)
31Ba 導入ライン(導入部)
31Bb 回収容器
31Bc 排出ライン(排出部)
31Bd 回収領域
31C  排出ホッパ(第2回収部)
31Ca 回収容器
31Cb ロータリフィーダ
31Cc 排出ライン
31D  第1排出弁(第1開閉弁)
31E  第2排出弁(第2開閉弁)
31F  加圧部
31Fa 加圧用ガス供給源
31Fb 開閉弁
31G  減圧部
31Ga フィルタ
31Gb 排出ライン
31Gc 開閉弁
31Gd オリフィス
31H  温度センサ(検出部)
31I  第1レベルセンサ
31J  第2レベルセンサ
32   供給ホッパ
90   制御部
10 Biomass gasification equipment 11 Biomass gasification furnace 12 High temperature synthesis gas cooler 14 Low temperature synthesis gas cooler 16 Char cooler 17 Feed water preheating section 18 Scrubber 30 Char recovery equipment 31 Dust collection equipment (powder recovery device)
31A Produced gas filter (powder separation section)
31Aa container 31Ab filter 31Ac lower space 31Ad upper space 31Ae backwash device 31B cooling hopper (first collection section)
31Ba introduction line (introduction section)
31Bb Collection container 31Bc Discharge line (discharge section)
31Bd Collection area 31C Discharge hopper (second collection section)
31Ca: collection container 31Cb: rotary feeder 31Cc: discharge line 31D: first discharge valve (first opening/closing valve)
31E Second exhaust valve (second opening/closing valve)
31F Pressurizing section 31Fa Pressurizing gas supply source 31Fb On-off valve 31G Pressure reducing section 31Ga Filter 31Gb Discharge line 31Gc On-off valve 31Gd Orifice 31H Temperature sensor (detection section)
31I First level sensor 31J Second level sensor 32 Supply hopper 90 Control unit

Claims (9)

  1.  加熱された処理対象ガスから粉体を分離して回収する粉体回収装置であって、
     前記処理対象ガスが導入されるとともに前記処理対象ガスから前記粉体を分離する粉体分離部と、
     前記粉体分離部により分離された前記粉体が導入される導入部と、前記導入部から導入される前記粉体を一時的に回収する回収容器と、前記回収容器に回収された前記粉体を排出する排出部と、を有する第1回収部と、
     前記導入部に設置される第1開閉弁と、
     前記排出部に設置される第2開閉弁と、
     前記回収容器へ加圧用ガスを供給して前記回収容器を加圧する加圧動作を実行する加圧部と、
     前記回収容器から前記加圧用ガスを外部へ排出して前記回収容器を減圧する減圧動作を実行する減圧部と、
     前記第1開閉弁と、前記第2開閉弁と、前記加圧部と、前記減圧部とを制御する制御部と、を備え、
     前記制御部は、前記第1開閉弁および前記第2開閉弁を閉状態にして前記加圧部による前記加圧動作と前記減圧部による前記減圧動作とを交互に繰り返した後に、前記第2開閉弁を開状態にして前記回収容器に回収された前記粉体を前記排出部から排出するよう制御する粉体回収装置。
    A powder recovery device that separates and recovers powder from a heated gas to be treated,
    a powder separation section into which the gas to be treated is introduced and which separates the powder from the gas to be treated;
    a first collection unit including an introduction unit into which the powder separated by the powder separation unit is introduced, a collection container that temporarily collects the powder introduced from the introduction unit, and a discharge unit that discharges the powder collected in the collection container;
    A first on-off valve installed in the introduction portion;
    A second on-off valve installed in the discharge portion;
    a pressurizing unit that performs a pressurizing operation of pressurizing the collection container by supplying a pressurizing gas to the collection container;
    a pressure reducing unit that performs a pressure reducing operation of reducing the pressure of the collection container by discharging the pressurizing gas from the collection container to the outside;
    a control unit that controls the first on-off valve, the second on-off valve, the pressurizing unit, and the depressurizing unit,
    The control unit controls the powder recovery device so that the first opening/closing valve and the second opening/closing valve are closed to alternately repeat the pressurizing operation by the pressurizing unit and the depressurizing operation by the depressurizing unit, and then the second opening/closing valve is opened to discharge the powder recovered in the recovery container from the discharge unit.
  2.  前記制御部は、前記加圧動作により加圧された前記回収容器の第1内部圧力が前記減圧動作により減圧された前記回収容器の第2内部圧力の20倍以下となるように前記加圧部および前記減圧部を制御する請求項1に記載の粉体回収装置。 The powder recovery device according to claim 1, wherein the control unit controls the pressurizing unit and the decompression unit so that the first internal pressure of the recovery container pressurized by the pressurizing operation is 20 times or less than the second internal pressure of the recovery container decompressed by the decompression operation.
  3.  前記制御部は、前記粉体の温度が自然酸化温度未満となるように前記加圧部による前記加圧動作と前記減圧部による前記減圧動作とを交互に繰り返した後に、前記第2開閉弁を開状態にして前記回収容器に回収された前記粉体を前記排出部から排出するよう制御する請求項1または請求項2に記載の粉体回収装置。 The powder recovery device according to claim 1 or claim 2, wherein the control unit alternately repeats the pressurizing operation by the pressurizing unit and the depressurizing operation by the depressurizing unit so that the temperature of the powder becomes less than the natural oxidation temperature, and then controls the second opening/closing valve to be in an open state so that the powder recovered in the recovery container is discharged from the discharge unit.
  4.  前記回収容器に回収される前記粉体の温度を検出する検出部を備え、
     前記制御部は、前記検出部が検出する前記粉体の温度が自然酸化温度未満となったことに応じて、前記第2開閉弁を開状態にして前記回収容器に回収された前記粉体を前記排出部から排出するよう制御する請求項3に記載の粉体回収装置。
    a detection unit for detecting a temperature of the powder collected in the collection container,
    The powder recovery device according to claim 3, wherein the control unit controls the second opening/closing valve to an open state so as to discharge the powder recovered in the recovery container from the discharge unit when the temperature of the powder detected by the detection unit becomes lower than the natural oxidation temperature.
  5.  前記制御部は、前記加圧部による前記加圧動作と前記減圧部による前記減圧動作とをそれぞれ所定回数実行した後に、前記第2開閉弁を開状態にして前記回収容器に回収された前記粉体を前記排出部から排出するよう制御する請求項3に記載の粉体回収装置。 The powder recovery device according to claim 3, wherein the control unit controls the second opening/closing valve to be open and the powder recovered in the recovery container to be discharged from the discharge unit after the pressurizing operation by the pressurizing unit and the depressurizing operation by the depressurizing unit are each performed a predetermined number of times.
  6.  前記加圧用ガスは、酸素濃度が10%以下のガスである請求項1または請求項2に記載の粉体回収装置。 The powder recovery device according to claim 1 or 2, wherein the pressurizing gas has an oxygen concentration of 10% or less.
  7.  前記加圧用ガスは、窒素ガスである請求項6に記載の粉体回収装置。 The powder recovery device according to claim 6, wherein the pressurizing gas is nitrogen gas.
  8.  前記加圧部は、前記回収容器の下方側の前記粉体が回収される回収領域に前記加圧用ガスを導入する請求項1または請求項2に記載の粉体回収装置。 The powder recovery device according to claim 1 or 2, wherein the pressurizing unit introduces the pressurizing gas into a recovery area below the recovery container where the powder is recovered.
  9.  加熱された処理対象ガスから粉体を分離して回収する粉体回収装置の制御方法であって、
     前記粉体回収装置は、
     前記処理対象ガスが導入されるとともに前記処理対象ガスから前記粉体を分離する粉体分離部と、
     前記粉体分離部により分離された前記粉体が導入される導入部と、前記導入部から導入される前記粉体を一時的に回収する回収容器と、前記回収容器に回収された前記粉体を排出する排出部と、を有する第1回収部と、
     前記導入部に設置される第1開閉弁と、
     前記排出部に設置される第2開閉弁と、
     前記回収容器へ加圧用ガスを供給して前記回収容器を加圧する加圧動作を実行する加圧部と、
     前記回収容器から前記加圧用ガスを外部へ排出して前記回収容器を減圧する減圧動作を実行する減圧部と、を備え、
     前記第1開閉弁および前記第2開閉弁を閉状態にして前記加圧動作を実行する加圧工程と、
     前記第1開閉弁および前記第2開閉弁を閉状態にして前記減圧部による前記減圧動作を実行する減圧工程と、
     前記加圧工程と前記減圧工程とを交互に繰り返した後に、前記第2開閉弁を開状態にして前記回収容器に回収された前記粉体を前記排出部から排出する排出工程と、を備える粉体回収装置の制御方法。
     
    A method for controlling a powder recovery device that separates and recovers powder from a heated gas to be treated, comprising the steps of:
    The powder recovery device includes:
    a powder separation section into which the gas to be treated is introduced and which separates the powder from the gas to be treated;
    a first collection unit including an introduction unit into which the powder separated by the powder separation unit is introduced, a collection container that temporarily collects the powder introduced from the introduction unit, and a discharge unit that discharges the powder collected in the collection container;
    A first on-off valve installed in the introduction portion;
    A second on-off valve installed in the discharge portion;
    a pressurizing unit that performs a pressurizing operation of supplying a pressurizing gas to the collection container to pressurize the collection container;
    a pressure reducing unit that performs a pressure reducing operation of reducing the pressure of the collection container by discharging the pressurizing gas from the collection container to the outside,
    a pressurizing step of performing the pressurizing operation with the first on-off valve and the second on-off valve in a closed state;
    a depressurizing step of performing the depressurizing operation by the depressurizing unit with the first on-off valve and the second on-off valve in a closed state;
    a discharge step of opening the second opening/closing valve and discharging the powder recovered in the recovery container from the discharge section after alternately repeating the pressurization step and the depressurization step.
PCT/JP2023/035973 2022-10-11 2023-10-02 Powder recovery device and method for controlling powder recovery device WO2024080182A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-163179 2022-10-11
JP2022163179A JP2024056360A (en) 2022-10-11 2022-10-11 Powder recovery device and method for controlling the powder recovery device

Publications (1)

Publication Number Publication Date
WO2024080182A1 true WO2024080182A1 (en) 2024-04-18

Family

ID=90669173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035973 WO2024080182A1 (en) 2022-10-11 2023-10-02 Powder recovery device and method for controlling powder recovery device

Country Status (2)

Country Link
JP (1) JP2024056360A (en)
WO (1) WO2024080182A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742910A (en) * 1993-07-29 1995-02-10 Mitsubishi Heavy Ind Ltd Ash treating device for boiler of pressurized fluidized bed type
JPH07126664A (en) * 1993-10-29 1995-05-16 Mitsubishi Heavy Ind Ltd Coal gasification furnace
JP2000119666A (en) * 1998-10-16 2000-04-25 Mitsubishi Heavy Ind Ltd Supplying system for pulverized coal for coal gasification furnace
JP2010254382A (en) * 2009-04-21 2010-11-11 Electric Power Dev Co Ltd Lock hopper apparatus, coal gasification hybrid power generating system and methods for operating therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742910A (en) * 1993-07-29 1995-02-10 Mitsubishi Heavy Ind Ltd Ash treating device for boiler of pressurized fluidized bed type
JPH07126664A (en) * 1993-10-29 1995-05-16 Mitsubishi Heavy Ind Ltd Coal gasification furnace
JP2000119666A (en) * 1998-10-16 2000-04-25 Mitsubishi Heavy Ind Ltd Supplying system for pulverized coal for coal gasification furnace
JP2010254382A (en) * 2009-04-21 2010-11-11 Electric Power Dev Co Ltd Lock hopper apparatus, coal gasification hybrid power generating system and methods for operating therefor

Also Published As

Publication number Publication date
JP2024056360A (en) 2024-04-23

Similar Documents

Publication Publication Date Title
RU2126489C1 (en) Method of incomplete oxidation with production of energy
JP4243295B2 (en) Low-temperature catalytic gasification apparatus and method for biomass refined fuel
RU2433341C1 (en) Method to burn carbon-containing fuel using hard oxygen carrier
US7819070B2 (en) Method and apparatus for generating combustible synthesis gas
US9011575B2 (en) Gas treatment
CN102317414A (en) The Integrated gasification combined cycle of not having discharging
CZ266794A3 (en) Gasification process of particulate solid carbonaceous fuel with a high content of moisture, apparatus for making such process and integrated process for producing electric power
JP5938788B2 (en) Method for thermochemical carbonization and gasification of wet biomass
WO2006064320A1 (en) Method of co-producing activated carbon in a circulating fluidized bed gasification process
CN102124082A (en) Minimal sour gas emission for an integrated gasification combined cycle complex
UA124159C2 (en) Process and apparatus for gasifying biomass
CN104487550A (en) Improvements in waste processing
WO2024080182A1 (en) Powder recovery device and method for controlling powder recovery device
US20030089038A1 (en) Pulverized coal pressurized gasifier system
JP2004051745A (en) System of gasifying biomass
EP3950606A1 (en) Biomass treatment process and plant
JP2004002552A (en) Waste gasification method, waste gasification device, and waste treatment apparatus using the same
JP2011246525A (en) Gasification treatment system and method of gasification treatment by using the same
CN112368236B (en) Method for producing hydrogen using biomass as raw material
JP2002159817A (en) Apparatus for collecting fine particles in dry distillated gas
KR102459294B1 (en) Gasfication system for organic sludge
RU2749063C1 (en) Installation for catalytic combustion of fuel in form of sewage sludge from municipal treatment plants and method for its combustion
Robertson Development of foster wheeler's vision 21 partial gasification module
JP2023017690A (en) Exhaust gas treatment facility and exhaust gas treatment method
CN116251575A (en) Active dehumidification type active carbon regeneration device and regeneration method