WO2024079829A1 - Method for controlling electric vehicle and device for controlling electric vehicle - Google Patents

Method for controlling electric vehicle and device for controlling electric vehicle Download PDF

Info

Publication number
WO2024079829A1
WO2024079829A1 PCT/JP2022/038125 JP2022038125W WO2024079829A1 WO 2024079829 A1 WO2024079829 A1 WO 2024079829A1 JP 2022038125 W JP2022038125 W JP 2022038125W WO 2024079829 A1 WO2024079829 A1 WO 2024079829A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric vehicle
head
movement
driving force
center
Prior art date
Application number
PCT/JP2022/038125
Other languages
French (fr)
Japanese (ja)
Inventor
良太 鈴木
海太 木村
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2022/038125 priority Critical patent/WO2024079829A1/en
Publication of WO2024079829A1 publication Critical patent/WO2024079829A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed

Definitions

  • the present invention relates to a method for controlling an electric vehicle and a control device for an electric vehicle.
  • JP2017-71370A discloses an occupant posture control device for a vehicle that, when the vehicle has a seat that can change the support state for the body of a seated occupant, predicts acceleration in the longitudinal direction and width direction of the vehicle based on the vehicle's driving plan, and changes the support state of the occupant's body by the seat in accordance with the predicted acceleration, thereby suppressing the occurrence of car sickness for an occupant seated in the seat.
  • reducing body movement indirectly reduces head movement, but because the head can move relative to the body, simply reducing body movement does not adequately suppress car sickness. For this reason, in order to more reliably suppress car sickness, it is desirable to more directly reduce head movement, regardless of whether or not body movement is reduced.
  • the present invention aims to provide a method for controlling an electric vehicle that can directly reduce head movement of occupants and suppress car sickness, and a control device for the electric vehicle.
  • One aspect of the present invention is a method for controlling an electric vehicle that controls the posture of the vehicle body in the longitudinal direction by adjusting the distribution of driving force between the front and rear wheels, which are the driving wheels.
  • this method for controlling an electric vehicle the selection of one of a number of seats is accepted, and a reference position is set according to the selected seat. Then, the center of rotation of the vehicle body is moved to the reference position by adjusting the distribution of driving force.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of an electric vehicle.
  • FIG. 2 is an explanatory diagram showing a schematic configuration of a chassis system.
  • FIG. 3 is an explanatory diagram showing the center of rotation of the vehicle body and its change.
  • FIG. 4 is an explanatory diagram showing a reference position that is set for the center of rotation in head movement suppression control.
  • FIG. 5 is an explanatory diagram showing the relationship between the position of the rotation center and the direction and amount of movement of the occupant's head.
  • FIG. 6 is a block diagram showing the configuration of a controller for attitude control.
  • FIG. 7 is a block diagram showing the configuration of the attitude control calculation unit.
  • FIG. 8 is an explanatory diagram showing the correction position.
  • FIG. 9 is a flowchart relating to the head movement suppression control.
  • FIG. 10 is a graph that shows a schematic diagram of changes in the head position, pitch angle, and torque of a subject occupant.
  • FIG. 11 is an explanatory diagram showing the range of movement of the center of rotation when adjustment of the drive force distribution and adjustment of the suspension are performed together.
  • FIG. 12 is a flowchart relating to head movement suppression control when the movement of the center of rotation is assisted by adjusting the suspension.
  • FIG. 13 is a flowchart relating to head movement suppression control in a case where suppression of occurrence and variation of pitch angle is assisted by adjustment of the suspension.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of an electric vehicle 100.
  • the electric vehicle 100 is, for example, an electric car or a hybrid vehicle, and is a vehicle capable of driving or braking one or more drive wheels by an electric motor.
  • the electric vehicle 100 is a so-called four-wheel drive (4WD) vehicle, and is capable of controlling (adjusting) the driving force generated in each of the multiple drive wheels.
  • the electric vehicle 100 includes a front-wheel drive system 10, a rear-wheel drive system 11, and a controller 12.
  • the front-wheel drive system 10 is a system that controls the front wheels 21, which are the first drive wheels.
  • the front-wheel drive system 10 includes a front inverter 22 and a front motor 23.
  • the front inverter 22 converts DC power output by a battery (not shown) into AC power and supplies it to the front motor 23, thereby driving the front motor 23.
  • the front inverter 22 converts the regenerative AC power generated by the front motor 23 into DC power and inputs it to the battery, thereby charging the battery.
  • the front motor 23 is an electric motor that drives the front wheels 21.
  • the front motor 23 is, for example, a three-phase AC synchronous motor. Torque generated by the front motor 23 is transmitted to the front wheels 21 via a front drive shaft 24, generating a driving force on the front wheels 21 (hereinafter referred to as a front wheel driving force F 2 F ).
  • the rear-wheel drive system 11 is a system that controls the rear wheels 26, which are the second drive wheels.
  • the rear-wheel drive system 11 includes a rear inverter 27 and a rear motor 28.
  • the rear inverter 27 converts the DC power output by the battery into AC power and supplies it to the rear motor 28, thereby driving the rear motor 28. Also, when the rear motor 28 rotates along with the rear wheels 26, the rear inverter 27 converts the regenerative AC power generated by the rear motor 28 into DC power and inputs it to the battery, thereby charging the battery.
  • the rear motor 28 is an electric motor that drives the rear wheels 26.
  • the rear motor 28 is, for example, configured by a three-phase AC synchronous motor similar to the front motor 23. Torque generated by the rear motor 28 is transmitted to the rear wheels 26 via a rear drive shaft 29, generating a driving force on the rear wheels 26 (hereinafter referred to as rear wheel driving force FR ).
  • the controller 12 is composed of one or more computers that control the operation of the electric vehicle 100.
  • the controller 12 is programmed to control the operation of the electric vehicle 100 at a predetermined control period.
  • the controller 12 is a control device for the electric vehicle 100 that performs posture control to control the posture in the fore-and-aft direction by adjusting the distribution of driving force between the front wheels 21 and the rear wheels 26, which are the driving wheels.
  • the controller 12 distributes a driving force (hereinafter referred to as a total driving force TQ) requested by, for example, the operation of an accelerator pedal (not shown) to the driving wheels, that is, the front wheels 21 and the rear wheels 26. Then, the controller 12 drives the front wheels 21 and the rear wheels 26 by the front-wheel drive system 10 and the rear-wheel drive system 11, respectively, so that a front-wheel driving force F F and a rear-wheel driving force F R according to the distribution are generated. Furthermore, in this embodiment, the controller 12 is programmed to execute attitude control for controlling the longitudinal attitude of the electric vehicle 100 by adjusting the distribution of driving force between the front wheels 21 and the rear wheels 26 as necessary.
  • a driving force hereinafter referred to as a total driving force TQ
  • the controller 12 can appropriately acquire various parameters that indicate the operating state of the electric vehicle 100 by a sensor (not shown) or by calculation.
  • the electric vehicle 100 is equipped with an accelerator opening sensor (not shown) that detects an accelerator opening APO . Therefore, the controller 12 can appropriately acquire the accelerator opening APO .
  • the accelerator opening APO is a parameter that indicates the amount of operation of the accelerator pedal.
  • the controller 12 appropriately acquires the vehicle speed VSP of the electric vehicle 100 by a sensor (not shown) or by calculation.
  • the electric vehicle 100 is equipped with a seat selector 13 and an object detector 14.
  • the seat selector 13 is a user interface that accepts the selection of one of the multiple seats that the electric vehicle 100 has.
  • the seat selector 13 is configured, for example, by a mechanical switch or a selection menu displayed on a screen.
  • the seat selector 13 is used by the driver or other passengers to select a seat in which a passenger who may suffer from car sickness is located.
  • the seat selector 13 is selected by the driver or the like, and inputs a signal or setting information indicating a seat (hereinafter referred to as a target seat S- S ) in which a passenger who is a target for suppressing car sickness is located to the controller 12. Therefore, the controller 12 can control the operation of the electric vehicle 100 according to the target seat S- S .
  • the controller 12 controls the operation of the electric vehicle 100 in particular so as to directly suppress movement of the head of the passenger in the target seat S- S .
  • car sickness of the passenger in the target seat S -S is suppressed in the electric vehicle 100.
  • the "movement" of the passenger's head it is assumed that this refers to shaking or other movement caused by the operation of the electric vehicle 100, such as acceleration or deceleration.
  • the electric vehicle 100 has seats, for example, a driver's seat, a passenger seat, and one or more rear seats 34 (see FIG. 4).
  • the driver's seat and passenger seat are seats located in the front of the electric vehicle 100 relative to the rear seats 34.
  • the driver's seat and passenger seat are collectively referred to as the front seats 33 (see FIG. 4).
  • the object detector 14 detects an occupant in the target seat S S , i.e., a specific occupant (hereinafter referred to as a target occupant) who is a target for suppressing car sickness.
  • the object detector 14 inputs a detection signal or the like (hereinafter referred to as a target detection signal S D ) for the target occupant to the controller 12. Therefore, by using the target detection signal S D , the controller 12 can control the operation of the electric vehicle 100 according to the actual movement of the target occupant.
  • the controller 12 feeds back the actual movement of the head of the target occupant to the operation control of the electric vehicle 100 based on the target detection signal S D. This allows the movement of the head of the target occupant to be suppressed particularly precisely.
  • the object detector 14 is, for example, a camera that captures an image of the occupant including all or part of the head, or a sensor that detects the position of the occupant's head relative to each seat, etc.
  • the object detector 14 is a camera that captures an image of the target occupant
  • the object detection signal S D is an image or video captured of the target occupant.
  • FIG. 2 is an explanatory diagram showing a schematic structure of the chassis system.
  • the front wheels 21 are connected to a vehicle upper part (hereinafter referred to as a vehicle body 101) in which a vehicle interior and the like are formed, via a front suspension 31.
  • the rear wheels 26 are connected to the vehicle body 101 via a rear suspension 32.
  • the load moves rearward (negative side in the X direction) of the electric vehicle 100.
  • a moment acting in a direction that increases the pitch angle ⁇ P is generated in the vehicle body 101, centered on the center of rotation C.
  • the electric vehicle 100 assumes a posture in which the front portion, which is the portion on the positive side in the X direction, is lifted up (so-called nose-up posture).
  • the torque of the front motor 23 (hereinafter referred to as the front torque T F ) which generates the front wheel driving force F F acts on the vehicle body 101 via the front suspension 31.
  • the front torque T F generates a moment acting in a direction to reduce the pitch angle ⁇ P around the virtual center of rotation O F of the vehicle body 101 by the front wheels 21. That is, when the electric vehicle 100 accelerates, the front torque T F suppresses the nose-up.
  • the torque of the rear motor 28 (hereinafter referred to as the rear torque T R ) which generates the rear wheel driving force F R acts on the vehicle body 101 via the rear suspension 32 and generates a moment acting in a direction to reduce the pitch angle ⁇ P around the virtual center of rotation O R of the vehicle body 101 by the rear wheels 26. Therefore, when the electric vehicle 100 accelerates, the rear torque T R suppresses the nose-up.
  • the magnitude of the effect of the front torque T F to suppress nose-up during acceleration depends on the magnitude of the anti-scut angle ⁇ F.
  • the magnitude of the effect of the rear torque T R to suppress nose-up during acceleration depends on the magnitude of the anti-scut angle ⁇ R.
  • the virtual center of rotation O F is an instantaneous and virtual center of rotation generated in the vehicle body 101 by the transmission of the front torque T F , and is determined in advance by the specific configuration of the front suspension 31, etc.
  • the virtual center of rotation O R of the rear part is an instantaneous and virtual center of rotation generated in the vehicle body 101 by the transmission of the rear torque T R , and is determined in advance by the specific configuration of the rear suspension 32, etc.
  • the center of rotation C is an actual center of rotation of the vehicle body 101 determined by the virtual centers of rotation O F and O R determined by the suspension geometry as described above, and the distribution of the front torque T F and the rear torque T R.
  • the anti-scat angle ⁇ F is an angle formed by a line connecting the center of rotation of the front wheel 21 and the virtual center of rotation O F and a line parallel to the road surface on the XZ plane.
  • the anti-scat angle ⁇ R is an angle formed by a line connecting the center of rotation of the rear wheel 26 and the virtual center of rotation O R and a line parallel to the road surface on the XZ plane.
  • FIG. 3 is an explanatory diagram showing the rotation center C of the vehicle body 101 and its change.
  • the rotation center C STD When the front wheel driving force F F increases, the rotation center C of the vehicle body 101 moves from the position of the rotation center C STD in the standard state to the front of the electric vehicle 100.
  • the controller 12 selectively executes two different types of attitude control by distributing the driving force between the front wheels 21 and the rear wheels 26 as described above.
  • the first attitude control is "pitch angle suppression control.”
  • the second attitude control is "head movement suppression control.”
  • the vehicle body 101 is the target for controlling the attitude. That is, in the pitch angle suppression control, the occurrence and variation of the pitch angle ⁇ P are suppressed. More specifically, the pitch angle suppression control is a posture control that makes the attitude of the vehicle body 101 approach a predetermined target posture and maintains it.
  • the anti-squat angle ⁇ R of the rear suspension 32 is larger than the anti-squat angle ⁇ F of the front suspension 31 (see FIG. 2). For this reason, when the increase of the pitch angle ⁇ P is suppressed or reduced during acceleration, for example, by the pitch angle suppression control, the controller 12 relatively increases the drive force distribution to the rear wheels 26.
  • the controller 12 executes pitch angle suppression control by adjusting the drive force distribution to the front wheels 21 and the rear wheels 26.
  • the electric vehicle 100 assumes a posture in which the front part sinks (a so-called nose dive posture), which is the opposite of the above, and the controller 12 adjusts the drive force distribution to the front wheels 21 and the rear wheels 26 accordingly.
  • the head movement suppression control the head of the target occupant in the target seat S S is the target for controlling the posture. That is, in the head movement suppression control, the movement of the head of the target occupant is suppressed, and as a result, car sickness of the target occupant is suppressed. More specifically, the head movement suppression control is posture control that moves the center of rotation C of the vehicle body 101 so as to suppress the movement of the head of the target occupant. For this reason, the head movement suppression control may increase the fluctuation of the pitch angle ⁇ P caused by the acceleration or deceleration of the electric vehicle 100.
  • Fig. 4 is an explanatory diagram showing a reference position ( C ⁇ or C ⁇ ) set for the center of rotation C in head movement suppression.
  • a reference position C ⁇ or C ⁇
  • FIG. 4 it is assumed that an occupant P1 is seated in the front seat 33, and an occupant P2 is seated in the rear seat 34.
  • the head H1 of the occupant P1 is generally located at a position L1 in the front-rear direction of the electric vehicle 100.
  • the head H2 of the occupant P2 is generally located at a position L2 in the front-rear direction of the electric vehicle 100. That is, the positions of the heads H1 , H2 of the occupants P1 , P2 are generally determined by sitting in the seats.
  • the controller 12 sets a rough reference position (hereinafter referred to as the reference position) for the position to which the center of rotation C should be moved by adjusting the distribution of driving force between the front wheels 21 and the rear wheels 26 in accordance with the selection of the target seat S S.
  • the reference position a rough reference position for the position to which the center of rotation C should be moved by adjusting the distribution of driving force between the front wheels 21 and the rear wheels 26 in accordance with the selection of the target seat S S.
  • the controller 12 sets the position L 1 where the head H 1 of the occupant P 1 seated in the front seat 33 is located as the reference position. Then, the controller 12 adjusts the distribution of driving force to the front wheels 21 and the rear wheels 26 so that the center of rotation C of the vehicle body 101 moves from the standard center of rotation C STD to the center of rotation C ⁇ on the position L 1 set as the reference position. Similarly, when the rear seat 34 is selected as the target seat S S , the controller 12 sets the reference position to the position L 2 where the head H 2 of the occupant P 2 seated in the rear seat 34 is located.
  • the controller 12 adjusts the distribution of driving force to the front wheels 21 and the rear wheels 26 so that the center of rotation C of the vehicle body 101 moves from the standard center of rotation C STD to the center of rotation C ⁇ on the position L 2 set as the reference position.
  • the center of rotation C of the vehicle body 101 is normally located below (in the direction toward the road surface) the heads H1 , H2 of the occupants P1 , P2 , and moves in the front-to-rear direction depending on the distribution of driving force between the front wheels 21 and the rear wheels 26. For this reason, when position L1 is taken as the reference position, the center of rotation C ⁇ after adjustment by the head movement suppression control does not coincide with the head H1 of the occupant P1 , but is located around the body B1 . Similarly, when position L2 is taken as the reference position, the center of rotation C ⁇ after adjustment does not coincide with the head H2 of the occupant P2 , but is located around the body B2 .
  • FIG. 5 is an explanatory diagram showing the relationship between the position of the rotation center C and the direction and amount of movement of the head H1 of the occupant P1 .
  • the occupant P1 in the front seat 33 is the target occupant, and the head movement suppression control is used to move the rotation center C of the vehicle body 101 from the standard rotation center C STD to the rotation center C ⁇ on the position L1 .
  • the center of rotation C of the vehicle body 101 When the center of rotation C of the vehicle body 101 is at the standard center of rotation C STD , if the vehicle body 101 rotates at a pitch angle ⁇ P , the head H 1 of the occupant P 1 moves along an arc centered on the standard center of rotation C STD . Therefore, the amount of movement of the head H 1 when the center of rotation C of the vehicle body 101 is at the standard center of rotation C STD can be roughly calculated using the pitch angle ⁇ P and the distance r STD from the standard center of rotation C STD to the head H 1 , and is approximately r STD ⁇ ⁇ P.
  • the center of rotation C of the vehicle body 101 moves to the center of rotation C ⁇ on the position L1 and the vehicle body 101 rotates at a pitch angle ⁇ P
  • the head H1 of the occupant P1 moves along an arc centered on the center of rotation C ⁇ after the movement. Therefore, the amount of movement of the head H1 when the center of rotation C of the vehicle body 101 is at the center of rotation C ⁇ after the movement due to the head movement suppression control can be roughly calculated using the pitch angle ⁇ P and the distance r ⁇ from the center of rotation C ⁇ to the head H1 , and is approximately r ⁇ ⁇ ⁇ P .
  • the distance r ⁇ from the center of rotation C ⁇ to the head H 1 after the movement is shorter than the distance r STD from the standard center of rotation C STD to the head H 1 .
  • the center of rotation C of the vehicle body 101 is moved to the reference position ( L1 ) or a center of rotation ( C ⁇ ) nearby the reference position ( L1 ) by the head movement suppression control, and is maintained at the reference position (L1) or nearby, thereby reducing the amount of movement of the head H1.
  • the occurrence or onset of car sickness in the occupant P1 is suppressed.
  • the direction of movement of the head H1 is inclined with respect to a direction parallel to the road surface (here, the horizontal direction).
  • the center of rotation C of the vehicle body 101 is moved to the center of rotation (C ⁇ ) of the standard position (L 1 ) by the head movement suppression control, the direction of movement of the head H1 becomes approximately parallel to the road surface (horizontal direction).
  • the reference position may be set by a range, not a pinpoint.
  • a range not a pinpoint.
  • a point that coincides with the position L 1 or a predetermined range including the position L 1 may be set as the reference position.
  • the predetermined range including the position L 1 is determined in advance by an experiment, a simulation, or the like. This is also true when the target seat S S is the rear seat 34. That is, when the target seat S S is the rear seat 34, a point that coincides with the position L 2 or a predetermined range including the position L 2 may be set as the reference position.
  • moving the rotation center C to the reference position means moving the rotation center C closer to the positions L 1 and L 2 where the heads H 1 and H 2 are located so that the amount of movement of the heads H 1 and H 2 when the pitch angle ⁇ P occurs is substantially reduced.
  • Fig. 6 is a block diagram showing the configuration of the controller 12 for posture control.
  • the controller 12 includes a total driving force calculation unit 41, a basic distribution calculation unit 42, a posture control calculation unit 43, a head movement detection unit 44, a driving force setting unit 45, a front motor control unit 46, and a rear motor control unit 47.
  • the total driving force calculation unit 41 calculates the total driving force TQ based on the operation of the accelerator pedal.
  • the total driving force TQ is a driving force required for the electric vehicle 100.
  • the total driving force calculation unit 41 has a map that associates the accelerator opening APO with the total driving force TQ, and calculates the total driving force TQ corresponding to the accelerator opening APO by referring to this map.
  • the total driving force calculation unit 41 can calculate the total driving force TQ based on commands from an ADAS (Advanced Drive Assistance System) or an AD (Autonomous Driving) system, etc. These systems are systems that substitute for the operation of the accelerator pedal by the driver, so the calculation of the total driving force TQ that the total driving force calculation unit 41 performs based on commands from these systems is substantially a calculation based on the operation of the accelerator pedal.
  • ADAS Advanced Drive Assistance System
  • AD Autonomous Driving
  • the basic distribution calculation unit 42 distributes the total driving force TQ to the front wheels 21 and rear wheels 26 according to the basic distribution.
  • the basic distribution is a driving force distribution that is determined so as to optimize the electricity consumption within a range in which driving stability can be ensured, and is determined in advance by experiments, simulations, etc.
  • the basic distribution may change depending on the specific driving state of the electric vehicle 100 (steering state, etc.).
  • the basic distribution calculation unit 42 calculates a first front torque target value T F1 * and a first rear torque target value T R1 * based on the basic distribution and the total driving force TQ.
  • the first front torque target value T F1 * is a target value for the front motor torque that generates a front wheel driving force F F corresponding to the basic distribution at the front wheels 21.
  • the first rear torque target value T R1 * is a target value for the rear torque that generates a rear wheel driving force F R corresponding to the basic distribution at the rear wheels 26.
  • the combination of the first front torque target value T F1 * and the first rear torque target value T R1 * is referred to as the basic driving force distribution (T F1 * , T R1 * ).
  • the attitude control calculation unit 43 calculates a corrected driving force distribution (T F2 * , T R2 * ), which is a driving force distribution for controlling the attitude of the electric vehicle 100.
  • the corrected driving force distribution (T F2 * , T R2 * ) is a combination of a final front torque target value (hereinafter referred to as a second front torque target value T F2 * ) and a rear torque target value (hereinafter referred to as a second rear torque target value T R2 * ) for controlling the attitude of the electric vehicle 100, i.e., the pitch angle ⁇ P of the vehicle body 101.
  • the posture control calculation unit 43 calculates a corrective driving force distribution (T F2 * , T R2 * ) that suppresses the occurrence or variation of the pitch angle ⁇ P. In other words, when the target seat S S is not selected and there is no occupant who is prone to car sickness, the posture control calculation unit 43 calculates a corrective driving force distribution (T F2 * , T R2 * ) that realizes pitch angle suppression control.
  • the posture control calculation unit 43 calculates a corrected driving force distribution (T F2 * , T R2 * ) that suppresses head movement of the target occupant seated in the target seat S S. That is, when the target seat S S is selected and there is an occupant who is prone to car sickness, the posture control calculation unit 43 calculates a corrected driving force distribution (T F2 * , T R2 *) that realizes head movement suppression control for the target occupant. Therefore, the corrected driving force distribution (T F2 * , T R2 * ) for controlling the posture of the electric vehicle 100 has a different effect on the electric vehicle 100 depending on whether pitch angle suppression control is executed or head movement suppression control is executed.
  • the posture control calculation unit 43 calculates the corrected driving force distribution (T F2 * , T R2 *) based on at least the selection of the target seat S S.
  • the posture control calculation unit 43 obtains detection results regarding the movement of the head of the target occupant from the head movement detection unit 44. Then, the posture control calculation unit 43 calculates the corrected driving force distribution (T F2 * , T R2 * ) based on the target seat S S and the detection results regarding the movement of the head of the target occupant.
  • the head movement detection unit 44 detects head movement of the target occupant in the target seat S S based on the target detection signal S D at least when the target seat S S is selected. Specifically, the head movement detection unit 44 detects the amount of movement and the direction of movement (the direction of the force acting on the head) of the target occupant's head by calculating the position, speed, acceleration, etc., or all or a part of these parameters, for the target occupant's head.
  • the detection result of the movement of the target occupant's head (hereinafter referred to as the head movement detection result) is used by the attitude control calculation unit 43 to calculate the corrected drive force distribution ( TF2 * , TR2 * ) for head movement suppression control, as described above.
  • the head movement detection unit 44 detects the position of the head relative to position L1 or position L2 depending on the target seat S as the amount of movement of the target occupant's head. In addition, the head movement detection unit 44 detects the direction of movement of the target occupant's head based on the acceleration of the head.
  • the head movement detection unit 44 detects the movement of the head of the target occupant by analyzing the image or video.
  • the driving force setting unit 45 sets the distribution of the driving force generated by the front wheels 21 and the rear wheels 26 to either the basic driving force distribution ( TF1 * , TR1 * ) or the corrected driving force distribution ( TF2 * , TR2 * ). For example, when the posture control is turned on by the settings or the like, or when the execution of the posture control is permitted, the driving force setting unit 45 sets the driving force distribution of the front wheels 21 and the rear wheels 26 to the corrected driving force distribution ( TF2 * , TR2 * ).
  • the driving force setting unit 45 sets the driving force distribution of the front wheels 21 and the rear wheels 26 to the basic driving force distribution ( TF1 * , TR1 * ).
  • the posture control is turned on by the settings or the execution of the posture control is permitted. That is, in the following, it is assumed that the driving force setting unit 45 sets the driving force distribution between the front wheels 21 and the rear wheels 26 to the corrected driving force distribution ( TF2 * , TR2 * ).
  • the driving force setting unit 45 actually adjusts (sets) the driving force distribution to move the center of rotation C of the vehicle body 101. That is, the driving force setting unit 45 is an execution unit of posture control, and when performing pitch angle suppression control, it moves the center of rotation C of the vehicle body 101 in accordance with the generated pitch angle ⁇ P , and when performing head movement suppression control, it moves the center of rotation C of the vehicle body 101 to a reference position.
  • the front motor control unit 46 controls the front motor 23 via the front inverter 22 so that the driving force set by the driving force setting unit 45 is generated at the front wheels 21.
  • the front motor control unit 46 causes the front motor 23 to generate a front torque T F corresponding to the first front torque target value T F1 * .
  • the front motor control unit 46 causes the front motor 23 to generate a front torque T F corresponding to the second front torque target value T F2 * .
  • the front wheel driving force F F is controlled to the basic driving force or the corrective driving force.
  • the rear motor control unit 47 controls the rear motor 28 via the rear inverter 27 so that the driving force set by the driving force setting unit 45 is generated at the rear wheels 26.
  • a first rear torque target value TR1 * commanding a basic driving force is input
  • the rear motor control unit 47 causes the rear motor 28 to generate a rear torque TR corresponding to the first rear torque target value TR1 * .
  • a second rear torque target value TR2 * commanding a corrective driving force for posture control is input
  • the rear motor control unit 47 causes the rear motor 28 to generate a rear torque TR corresponding to the second rear torque target value TR2 * .
  • the rear wheel driving force FR is controlled to the basic driving force or the corrective driving force.
  • the front motor control unit 46 and the rear motor control unit 47 constitute a driving wheel control unit that controls (drives) the front wheels 21 and the rear wheels 26 in accordance with the basic driving force distribution ( TF1 * , TR1 * ) or the corrected driving force distribution ( TF2 * , TR2 * ).
  • FIG. 7 is a block diagram showing the configuration of the attitude control calculation unit 43.
  • the attitude control calculation unit 43 includes a reference position setting unit 51, a correction position calculation unit 52, and a correction allocation calculation unit 53.
  • the reference position setting unit 51 sets a reference position in the front-rear direction of the electric vehicle 100 according to the selected target seat S S. For example, when the front seat 33 is the target seat S S , the reference position setting unit 51 sets "position L 1 " where the head H 1 of the occupant P 1 in the front seat 33 is located, as the reference position. Similarly, when the rear seat 34 is the target seat S S , the reference position setting unit 51 sets "position L 2 " where the head H 2 of the occupant P 2 in the rear seat 34 is located, as the reference position. Information on the reference position set by the reference position setting unit 51 is input to the correction position calculation unit 52.
  • the correction position calculation unit 52 calculates a correction position that moves around the reference position in accordance with the actual movement of the target occupant's head, based on the set reference position and the head movement detection result by the head movement detection unit 44.
  • the correction position is the target movement position of the rotation center C that has been fine-tuned in accordance with the actual movement of the target occupant's head.
  • Fig. 8 is an explanatory diagram showing the corrected position.
  • Fig. 8(A) shows the movement of the head of the target occupant when the rotation center C of the vehicle body 101 is maintained at the rotation center on the reference position.
  • Fig. 8(B) shows the movement of the head of the target occupant when the rotation center C of the vehicle body 101 is moved to follow the corrected position with the reference position as the center.
  • the reference position is position L1
  • the target occupant is occupant P1 .
  • the corrected position calculated by the corrected position calculation unit 52 is the target position of the center of rotation C corrected by feeding back the movement of the head H1 of the individual occupant P1 .
  • the correction distribution calculation unit 53 calculates the corrected driving force distribution (T F2 * , T R2 * ) by redistributing the total driving force TQ or by correcting the basic driving force distribution (T F1 * , T R1 * ).
  • the correction allocation calculation unit 53 calculates a correction drive force allocation ( TF2 * , TR2 * ) for head movement suppression control that causes the rotation center C of the vehicle body 101 to follow the correction position.
  • the front motor 23 and the rear motor 28 are driven in accordance with this correction drive force allocation ( TF2 * , TR2 * ) for head movement suppression control, thereby suppressing movement of the head of the target occupant.
  • the correction allocation calculation unit 53 calculates a correction driving force allocation (T F2 * , T R2 * ) for pitch angle suppression control based on, for example, a vehicle model of the electric vehicle 100.
  • the front motor 23 and the rear motor 28 are driven in accordance with this correction driving force allocation (T F2 * , T R2 * ) for pitch angle suppression control, whereby the pitch angle ⁇ P is controlled to a preset target pitch angle.
  • the correction position calculation unit 52 may be omitted.
  • the correction allocation calculation unit 53 acquires the reference position from the reference position setting unit 51, and calculates a correction drive force allocation ( TF2 * , TR2 * ) for head movement suppression control so that the center of rotation C of the vehicle body 101 becomes the reference position.
  • the correction position calculation unit 52 calculates the correction position, and calculates a correction drive force allocation ( TF2 * , TR2 * ) for head movement suppression control that causes the center of rotation C of the vehicle body 101 to follow the correction position.
  • step S10 when the seat selector 13 accepts the selection of the target seat S 1 S in which the target occupant who should be suppressed from car sickness sits in step S10, the reference position setting unit 51 checks in step S11 whether the target seat S 1 S is the driver's seat or the passenger seat. In step S11, if the target seat S 1 S is the driver's seat or the passenger seat, that is, if the target seat S 1 S is the front seat 33, the process proceeds to step S12, where the reference position setting unit 51 sets the reference position to the position L 1 of the head H 1 of the occupant P 1 sitting in the front seat 33.
  • step S11 if the target seat S 1 S is the rear seat 34, the process proceeds to step S13, where the reference position setting unit 51 sets the reference position to the position L 2 of the head H 2 of the occupant P 2 sitting in the rear seat 34.
  • step S14 the head movement detection unit 44 detects the movement of the head of the target occupant in the target seat S S , i.e., the amount and direction of movement of the head of the target occupant. Then, in step S15, the corrected position calculation unit 52 calculates a corrected position based on the reference position and the head movement detection result by the head movement detection unit 44.
  • step S16 the correction distribution calculation unit 53 calculates a corrected driving force distribution ( TF2*, TR2*) for head movement suppression control that causes the center of rotation C of the vehicle body 101 to follow the corrected position. Then, in step S17, the driving force setting unit 45 sets the corrected driving force distribution (TF2 * , TR2 * ) for head movement suppression control, and the front wheels 21 and rear wheels 26 are driven in accordance with the corrected driving force distribution (TF2 * , TR2 * ).
  • Fig. 10 is a graph showing a schematic transition of the head position XH , pitch angle ⁇ P , and torques T F and T R of a target occupant.
  • Fig. 10 shows an example of a driving scene in which the electric vehicle 100 is stopped and the accelerator is operated at time t0 to start moving.
  • Figs. 10(A) to 10(C) show parameters in a comparative example in which head movement suppression control is not performed and pitch angle suppression control is continued.
  • Figs. 10(D) to 10(D) show parameters in this embodiment in which head movement suppression control is performed according to this embodiment. Note that the dashed lines in Fig. 10 show parameters in a reference example in which posture control is not performed, i.e., neither head movement suppression control nor pitch angle suppression control is performed.
  • the head of the target occupant moves, for example, back and forth in a vibrational manner and then approaches the reference position (zero position) in response to the fluctuation of the pitch angle ⁇ P.
  • the pitch angle suppression control reduces the pitch angle ⁇ P , and compared to the reference example (broken line) in which no attitude control is performed, the pitch angle suppression control suppresses the movement of the head of the target occupant.
  • the head movement suppression control of this embodiment is performed, when the electric vehicle 100 starts, the vehicle body 101 still has the nose up and generates the pitch angle ⁇ P , as shown in FIG. 10(E).
  • the center of rotation C of the vehicle body 101 is generally moved to a reference position corresponding to the target seat S S. Therefore, as shown in FIG. 10(F), the head movement suppression control has a different distribution of driving force between the front wheels 21 and the rear wheels 26 from the pitch angle suppression control. Therefore, as shown in FIG. 10(E), for example, near time t1 , the pitch angle ⁇ P may be larger than the reference example (broken line) in which the attitude control is not performed.
  • FIG. 10(E) for example, near time t1 , the pitch angle ⁇ P may be larger than the reference example (broken line) in which the attitude control is not performed.
  • the movement of the head of the target occupant is reduced compared to the case where the pitch angle suppression control is performed.
  • the head position XH of the target occupant is compared after time t2 when the front torque T F and the rear torque T R converge, the difference is clear. Therefore, according to the head movement suppression control of this embodiment, the movement of the head of the target occupant is suppressed particularly effectively, thereby suppressing car sickness in the target occupant.
  • the position to which the rotation center C of the vehicle body 101 is moved is adjusted oscillatorily around the reference position so as to follow the corrected position obtained by feeding back the detection result of the movement of the head of the target occupant.
  • the front torque T F and the rear torque T R change oscillatorily more than in the case of performing the pitch angle suppression control.
  • the inclination (pitch angle ⁇ P ) of the vehicle body 101 in the front-rear direction increases more than in the case of maintaining the rotation center C of the vehicle body 101 at the reference position.
  • the head movement suppression control of this embodiment can suppress the movement (particularly the amount of movement) of the target occupant's head more directly and effectively than pitch angle suppression control by moving the center of rotation C of the vehicle body 101 to a reference position. Furthermore, the head movement suppression control of this embodiment can suppress the swing back (vibration) that occurs in the target occupant's head by making the center of rotation C of the vehicle body 101 follow the corrected position. Therefore, the head movement suppression control of this embodiment suppresses car sickness in the target occupant better than ever before.
  • the front suspension 31 and the rear suspension 32 have a predetermined height and damping force.
  • the front suspension 31 and the rear suspension 32 are so-called active suspensions and their heights and damping forces are adjustable, it is preferable to adjust the front suspension 31 and the rear suspension 32 in the head movement suppression control.
  • the length (height) and damping force of the front suspension 31 and the rear suspension 32 are adjustable, and the front suspension 31 and the rear suspension 32 are adjusted in the head movement suppression control.
  • FIG. 11 is an explanatory diagram showing the range of movement of the center of rotation C when adjusting the drive force distribution and the suspension at the same time.
  • adjusting the suspension to lower the vehicle height at the front of the electric vehicle 100 has substantially the same effect as adjusting the driving force distribution to suppress nose-up.
  • adjusting the suspension to lower the vehicle height at the front of the electric vehicle 100 corresponds to adjusting the driving force distribution to increase the driving force distribution to the rear wheels 26 during acceleration. This is substantially the same effect as moving the center of rotation C of the vehicle body 101 rearward. Therefore, by adjusting the suspension to lower the vehicle height at the front of the electric vehicle 100, the range of variation of the center of rotation C due to the adjustment of the driving force distribution is substantially changed (shifted or expanded) rearward.
  • adjusting the suspension to lower the vehicle height at the rear of the electric vehicle 100 has substantially the same effect as adjusting the driving force distribution to suppress nose dive.
  • adjusting the suspension to lower the vehicle height at the rear of the electric vehicle 100 corresponds to adjusting to increase the driving force distribution to the front wheels 21 during deceleration. This is substantially the same effect as moving the center of rotation C of the vehicle body 101 forward. Therefore, by adjusting the suspension to lower the vehicle height at the rear of the electric vehicle 100, the range of variation of the center of rotation C due to the adjustment of the driving force distribution is substantially shifted forward or expanded.
  • the range of variation of the center of rotation C caused by adjusting the drive force distribution is substantially shifted or expanded, just as when adjusting the vehicle height as described above.
  • the range of variation of the center of rotation C becomes wider than the range of variation R0 achieved only by adjusting the drive force distribution, and the center of rotation C can be adjusted substantially within the range of variation R EX .
  • the damping forces of both the front suspension 31 and the rear suspension 32 are increased, the change in posture of the electric vehicle 100 is suppressed. In other words, the occurrence and fluctuation of the pitch angle ⁇ P is suppressed. Therefore, in the head movement suppression control, when the damping forces of both the front suspension 31 and the rear suspension 32 are increased, the pitch angle ⁇ P becomes smaller, and the amount of head movement (r ⁇ ⁇ ⁇ P ) of the target occupant is reduced. As a result, car sickness of the target occupant is easily suppressed.
  • step S20 when the seat selector 13 accepts the selection of the target seat S 1 S in which the target occupant who should be suppressed from car sickness sits, in step S21, the reference position setting unit 51 checks whether the target seat S 1 S is the driver's seat or the passenger seat (front seat 33). In step S21, if the target seat S 1 S is the driver's seat or the passenger seat, the process proceeds to step S22, where the reference position setting unit 51 sets the reference position to the position L 1 of the head H 1 of the occupant P 1 sitting in the front seat 33.
  • step S11 if the target seat S 1 S is the rear seat 34, the process proceeds to step S23, where the reference position setting unit 51 sets the reference position to the position L 2 of the head H 2 of the occupant P 2 sitting in the rear seat 34.
  • step S24 the controller 12 checks whether or not it is possible to move the center of rotation C of the vehicle body 101 to the set reference position simply by adjusting the drive force distribution.
  • the range (R 0 ) within which the center of rotation C can be moved by adjusting the drive force distribution can be calculated. Therefore, the controller 12 checks whether or not it is possible to move the center of rotation C of the vehicle body 101 to the set reference position by calculating the range (R 0 ) within which the center of rotation C can be moved by adjusting the drive force distribution according to the suspension setting state.
  • the controller 12 functions as a rotation center movement range calculation unit that calculates the range (R 0 ) within which the center of rotation C can be moved by adjusting the drive force distribution.
  • step S24 If it is determined in step S24 that the set reference position is within the range (R 0 ) in which the center of rotation C can be moved by adjusting the drive force distribution, the process proceeds to step S26, where the amount and direction of movement of the target occupant's head are detected, and in step S27, a corrected position according to the specific amount and direction of movement of the target occupant's head is calculated. Then, in step S28, a corrected drive force distribution ( TF2 * , TR2 * ) for head movement suppression control that causes the center of rotation C of the vehicle body 101 to follow the corrected position is calculated, and in step S29, the front wheels 21 and the rear wheels 26 are driven according to this corrected drive force distribution ( TF2 * , TR2 * ) for head movement suppression control.
  • step S26 the amount and direction of movement of the target occupant's head are detected
  • step S27 a corrected position according to the specific amount and direction of movement of the target occupant's head is calculated.
  • step S28 a corrected drive force distribution
  • step S24 determines whether the set reference position is within the range (R 0 ) in which the center of rotation C can be moved by adjusting the driving force distribution. If it is determined in step S24 that the set reference position is not within the range (R 0 ) in which the center of rotation C can be moved by adjusting the driving force distribution, the process proceeds to step S25.
  • step S25 the controller 12 adjusts the front suspension 31 or the rear suspension 32. This changes the balance of the vehicle height of the electric vehicle 100, the damping force of the suspension, or both, and the range in which the center of rotation C can be moved by adjusting the driving force distribution is transitioned or expanded to a range (R EX ) that includes the reference position with a margin that can include fluctuations in the corrected position. Then, the process proceeds to step S26. Steps from S26 onwards are as described above.
  • the head movement suppression control when the movement of the center of rotation C is assisted by adjusting the suspension, the movement of the head of the target occupant is suppressed even if the reference position is not within the range (R 0 ) in which the center of rotation C can be moved by adjusting the drive force distribution. As a result, car sickness of the target occupant can be more reliably suppressed.
  • step S10 selection of the target seat SS (step S10) to driving of the front wheels 21 and the rear wheels 26 (step S17) is the same as that in the first embodiment. Then, when the front wheels 21 and the rear wheels 26 are driven according to the corrected driving force distribution ( TF2 * , TR2 * ) in step S17, the process proceeds to step S31, where the controller 12 checks whether or not the movement of the head of the target occupant has been suppressed.
  • the controller 12 monitors the head movement detection result by the head movement detection unit 44, and checks whether or not the movement of the head of the target occupant has been suppressed.
  • the controller 12 sets a movement amount threshold value for the movement amount (displacement relative to the reference position) of the head of the target occupant, and sets an acceleration threshold value for the acceleration of the head of the target occupant.
  • the controller 12 determines that the movement of the head of the target occupant has been suppressed when the detected amount of movement is equal to or less than the movement amount threshold and the detected acceleration is equal to or less than the acceleration threshold.
  • the controller 12 functions as a head movement suppression determination unit.
  • step S31 If it is determined in step S31 that the head movement of the target occupant has been suppressed, there is no need to adjust the suspension, and the calculation for this control cycle ends. On the other hand, if it is determined in step S31 that the head movement of the target occupant has not been suppressed, the process proceeds to step S32. Then, in step S32, the controller 12 increases the damping forces of the front suspension 31 and the rear suspension 32 to suppress the occurrence and variation of the pitch angle ⁇ P . This increases the probability that the head movement of the target occupant will be suppressed in the next control cycle.
  • the generation and variation of the pitch angle ⁇ P is assisted by adjusting the suspension, so that the head movement of the target occupant is more reliably suppressed.
  • car sickness of the target occupant can be more reliably suppressed.
  • the adjustments of the front suspension 31 and the rear suspension 32 that change the vehicle height or the damping force can also be used to adjust the movement direction of the target occupant's head.
  • the head movement that is easier to suppress by adjusting the drive force distribution is movement in the forward and backward direction of the electric vehicle 100. Therefore, the more the movement direction of the target occupant's head is along the forward and backward direction of the electric vehicle 100, the more accurately and reliably the head movement of the target occupant is suppressed by adjusting the drive force distribution.
  • the head movement of the target occupant is accurately and reliably suppressed by the head movement suppression control. Therefore, car sickness of the target occupant is more reliably suppressed.
  • the control method (head movement suppression control) for an electric vehicle is a control method for an electric vehicle 100 that controls the attitude of the vehicle body 101 in the fore-and-aft direction by adjusting the drive force distribution between the front wheels 21 and the rear wheels 26, which are the drive wheels.
  • the selection of one seat (target seat S S ) out of a plurality of seats is accepted, and a reference position (e.g., L 1 ) corresponding to the selected seat (target seat S S ) is set. Then, the drive force distribution is adjusted to move the center of rotation C of the vehicle body 101 to the reference position.
  • a corrected position e.g., position from C ⁇ + to C ⁇ -
  • a reference position e.g., L 1
  • this control can absorb differences in physique, muscle mass, etc., which differ depending on the occupant. That is, when a certain pitch angle ⁇ P occurs, the specific amount of head movement, etc. usually differs depending on the specific physique, muscle mass, etc., of the target occupant.
  • the above control can accurately suppress the movement of the head depending on the target occupant, regardless of the individual differences in the physique, muscle mass, etc., of the target occupant.
  • the above control can reduce such a rocking back. Therefore, car sickness of the target occupant can be particularly suppressed.
  • the direction and amount of head movement of the target occupant's head (e.g., H 1 ) are detected, and the correction position (e.g., position from C ⁇ + to C ⁇ ⁇ ) moves in the opposite direction to the head movement direction according to the amount of head movement (r ⁇ ⁇ P ).
  • the effect of suppressing head movement is particularly improved.
  • the effect of suppressing head movement according to the target occupant and the effect of reducing swing-back are also improved.
  • the inclination ( ⁇ P ) of the vehicle body 101 in the fore-and-aft direction may be increased compared to when the center of rotation C of the vehicle body 101 is maintained at the reference position (for example, L 1 ).
  • the suspension of the front wheels 21 or the rear wheels 26 is adjusted.
  • the range in which the center of rotation C of the vehicle body 101 can move due to the adjustment of the drive force distribution is shifted or expanded, or the pitch angle ⁇ P is reduced, which makes it easier to suppress the movement of the head of the target occupant.
  • the range (R 0 ) within which the center of rotation C of the vehicle body 101 can move is shifted or expanded to include a reference position (e.g., L 1 ) by adjusting the damping force of the suspension of the front wheels 21 or the rear wheels 26, or by adjusting the vehicle height using the suspension of the front wheels 21 or the rear wheels 26 , thereby adjusting the distribution of driving force.
  • a reference position e.g., L 1
  • the range in which center of rotation C of vehicle body 101 can move by adjusting the drive force distribution is shifted or expanded. Therefore, even if the reference position is not within the range (R 0 ) in which center of rotation C can be moved by adjusting the drive force distribution, movement of the head of the target occupant can be suppressed. Therefore, car sickness of the target occupant can be more reliably suppressed.
  • the damping force in the suspension of both the front wheels 21 and the rear wheels 26 is increased.
  • the direction of movement of the head of the occupant in the selected seat is made to coincide with the fore-and-aft direction of the electric vehicle 100 by adjusting the damping force of the suspension of the front wheels 21 or the rear wheels 26, or by adjusting the vehicle height using the suspension of the front wheels 21 or the rear wheels 26.
  • the head movement suppression control more accurately and reliably suppresses the head movement of the target occupant.
  • car sickness of the target occupant can be more reliably suppressed.
  • the control device for an electric vehicle is a control device for an electric vehicle 100 that controls the posture of a vehicle body 101 in the longitudinal direction by adjusting the drive force distribution to the drive wheels, that is, the front wheels 21 and the rear wheels 26.
  • This control device includes a seat selector 13 that accepts the selection of one seat (target seat S S ) out of a plurality of seats, a reference position setting unit 51 that sets a reference position (e.g., L 1 ) according to the selected seat (target seat S S ), and a drive force setting unit 45 that moves the center of rotation C of the vehicle body 101 to the reference position (e.g., L 1 ) by adjusting the drive force distribution.
  • a seat selector 13 that accepts the selection of one seat (target seat S S ) out of a plurality of seats
  • a reference position setting unit 51 that sets a reference position (e.g., L 1 ) according to the selected seat (target seat S S )
  • a drive force setting unit 45 that moves the center of rotation C of
  • This control device for an electric vehicle moves the center of rotation C of the vehicle body 101 to a reference position corresponding to the target seat S S in which the target occupant who should be suppressed from experiencing car sickness sits. This suppresses movement of the head of the target occupant in the target seat S S. In particular, the amount of movement of the target occupant's head, i.e., the amount of displacement from the reference position, is suppressed. This suppression action is more direct and effective than the case where head movement is indirectly suppressed by suppressing the pitch angle ⁇ P. Therefore, according to the control device for an electric vehicle according to the first and second embodiments, car sickness of the target occupant is more easily suppressed than in the past.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

One aspect of the present invention is a method for controlling an electric vehicle, the method adjusting a driving force distribution between front wheels and rear wheels, which are drive wheels, to control the posture of a vehicle body in a front-rear direction. This method for controlling the electric vehicle receives a selection of one seat of a plurality of seats and sets a reference position corresponding to the selected seat. After that, a rotation center of the vehicle body is moved to the reference position by adjusting the driving force distribution.

Description

電動車両の制御方法、及び、電動車両の制御装置Control method for electric vehicle and control device for electric vehicle
 本発明は、電動車両の制御方法、及び、電動車両の制御装置に関する。 The present invention relates to a method for controlling an electric vehicle and a control device for an electric vehicle.
 JP2017-71370Aは、車両が、着座した乗員の身体に対する支持状態を変更可能な座席を有する場合に、車両の走行計画に基づいて車両前後方向及び車幅方向の加速度を予測し、予測した加速度に合わせて、座席による乗員身体の支持状態を変更することにより、その座席に着座した乗員について、車酔いの発生を抑制する車両用乗員姿勢制御装置が開示されている。 JP2017-71370A discloses an occupant posture control device for a vehicle that, when the vehicle has a seat that can change the support state for the body of a seated occupant, predicts acceleration in the longitudinal direction and width direction of the vehicle based on the vehicle's driving plan, and changes the support state of the occupant's body by the seat in accordance with the predicted acceleration, thereby suppressing the occurrence of car sickness for an occupant seated in the seat.
 加速や減速等によって生じる車両の揺れは、乗員に車酔いを引き起こす場合がある。そして、近年、乗員の頭部の移動が、車酔いの主な要因であることが分かってきている。したがって、車酔いを抑制するためには、乗員の頭部の移動を低減する必要がある。 Vehicle shaking caused by acceleration and deceleration can cause car sickness in passengers. In recent years, it has become clear that the movement of the passenger's head is the main cause of car sickness. Therefore, in order to prevent car sickness, it is necessary to reduce the movement of the passenger's head.
 特に、身体の移動を低減すれば間接的に頭部の移動も低減されるが、頭部は身体に対して移動し得るので、身体の移動を低減させるだけでは、車酔いを十分に抑制し得ない。このため、より確実に車酔いを抑制するためには、身体の移動を低減するか否かに関わらず、より直接的に頭部の移動を低減することが望ましい。 In particular, reducing body movement indirectly reduces head movement, but because the head can move relative to the body, simply reducing body movement does not adequately suppress car sickness. For this reason, in order to more reliably suppress car sickness, it is desirable to more directly reduce head movement, regardless of whether or not body movement is reduced.
 本発明は、乗員の頭部の移動を直接的に低減し、車酔いを抑制することができる電動車両の制御方法、及び、電動車両の制御装置を提供することを目的とする。 The present invention aims to provide a method for controlling an electric vehicle that can directly reduce head movement of occupants and suppress car sickness, and a control device for the electric vehicle.
 本発明のある態様は、駆動輪である前輪及び後輪の駆動力配分を調整することによって、前後方向における車体の姿勢を制御する電動車両の制御方法である。この電動車両の制御方法では、複数の座席のうち1つの座席の選択を受け付け、選択された座席に応じた基準位置が設定される。そして、駆動力配分を調整することにより、車体の回転中心が基準位置に移動される。 One aspect of the present invention is a method for controlling an electric vehicle that controls the posture of the vehicle body in the longitudinal direction by adjusting the distribution of driving force between the front and rear wheels, which are the driving wheels. In this method for controlling an electric vehicle, the selection of one of a number of seats is accepted, and a reference position is set according to the selected seat. Then, the center of rotation of the vehicle body is moved to the reference position by adjusting the distribution of driving force.
図1は、電動車両の概略構成を示す説明図である。FIG. 1 is an explanatory diagram showing a schematic configuration of an electric vehicle. 図2は、シャシー系の概略構成を示す説明図である。FIG. 2 is an explanatory diagram showing a schematic configuration of a chassis system. 図3は、車体の回転中心及びその変化を示す説明図である。FIG. 3 is an explanatory diagram showing the center of rotation of the vehicle body and its change. 図4は、頭部移動抑制制御において回転中心について設定される基準位置を示す説明図である。FIG. 4 is an explanatory diagram showing a reference position that is set for the center of rotation in head movement suppression control. 図5は、回転中心の位置と乗員の頭部の移動方向及び移動量の関係を示す説明図である。FIG. 5 is an explanatory diagram showing the relationship between the position of the rotation center and the direction and amount of movement of the occupant's head. 図6は、姿勢制御のためのコントローラの構成を示すブロック図である。FIG. 6 is a block diagram showing the configuration of a controller for attitude control. 図7は、姿勢制御演算部の構成を示すブロック図である。FIG. 7 is a block diagram showing the configuration of the attitude control calculation unit. 図8は、補正位置を示す説明図である。FIG. 8 is an explanatory diagram showing the correction position. 図9は、頭部移動抑制制御に係るフローチャートである。FIG. 9 is a flowchart relating to the head movement suppression control. 図10は、対象乗員の頭部の位置、ピッチ角、及び、トルクの推移を模式的に示すグラフである。FIG. 10 is a graph that shows a schematic diagram of changes in the head position, pitch angle, and torque of a subject occupant. 図11は、駆動力配分の調整とサスペンションの調整を併せて行う場合における回転中心の移動範囲を示す説明図である。FIG. 11 is an explanatory diagram showing the range of movement of the center of rotation when adjustment of the drive force distribution and adjustment of the suspension are performed together. 図12は、サスペンションの調整によって回転中心の移動を補助する場合の頭部移動抑制制御に係るフローチャートである。FIG. 12 is a flowchart relating to head movement suppression control when the movement of the center of rotation is assisted by adjusting the suspension. 図13は、ピッチ角の発生及び変動の抑制を、サスペンションの調整によって補助する場合の頭部移動抑制制御に係るフローチャートである。FIG. 13 is a flowchart relating to head movement suppression control in a case where suppression of occurrence and variation of pitch angle is assisted by adjustment of the suspension.
 以下、図面を参照しながら本発明の実施形態について説明する。 Below, an embodiment of the present invention will be explained with reference to the drawings.
 [第1実施形態]
 <電動車両の構成>
 図1は、電動車両100の概略構成を示す説明図である。電動車両100は、例えば電気自動車やハイブリッド車両等であって、電動機によって1または複数の駆動輪を駆動または制動することができる車両である。特に、本実施形態では、電動車両100は、いわゆる4WD(four wheel drive)車両であり、複数の駆動輪に生じさせる駆動力をそれぞれに制御(調整)することができる。具体的には、図1に示すように、電動車両100は、前輪駆動システム10、後輪駆動システム11、及び、コントローラ12を備える。
[First embodiment]
<Configuration of electric vehicle>
FIG. 1 is an explanatory diagram showing a schematic configuration of an electric vehicle 100. The electric vehicle 100 is, for example, an electric car or a hybrid vehicle, and is a vehicle capable of driving or braking one or more drive wheels by an electric motor. In particular, in this embodiment, the electric vehicle 100 is a so-called four-wheel drive (4WD) vehicle, and is capable of controlling (adjusting) the driving force generated in each of the multiple drive wheels. Specifically, as shown in FIG. 1, the electric vehicle 100 includes a front-wheel drive system 10, a rear-wheel drive system 11, and a controller 12.
 前輪駆動システム10は、第1の駆動輪である前輪21を制御するシステムである。前輪駆動システム10は、フロントインバータ22及びフロントモータ23を含む。 The front-wheel drive system 10 is a system that controls the front wheels 21, which are the first drive wheels. The front-wheel drive system 10 includes a front inverter 22 and a front motor 23.
 フロントインバータ22は、図示しないバッテリが出力する直流電力を交流電力に変換してフロントモータ23に供給することにより、フロントモータ23を駆動する。また、フロントモータ23が前輪21に連れ回されて回転するときには、フロントインバータ22は、フロントモータ23で生じる交流の回生電力を、直流電力に変換してバッテリに入力することにより、バッテリを充電する。 The front inverter 22 converts DC power output by a battery (not shown) into AC power and supplies it to the front motor 23, thereby driving the front motor 23. In addition, when the front motor 23 rotates along with the front wheels 21, the front inverter 22 converts the regenerative AC power generated by the front motor 23 into DC power and inputs it to the battery, thereby charging the battery.
 フロントモータ23は、前輪21を駆動する電動機である。フロントモータ23は、例えば、三相交流同期電動機である。フロントモータ23が生じさせるトルクは、フロントドライブシャフト24を介して前輪21に伝達され、前輪21に駆動力(以下、前輪駆動力Fという)を発生させる。 The front motor 23 is an electric motor that drives the front wheels 21. The front motor 23 is, for example, a three-phase AC synchronous motor. Torque generated by the front motor 23 is transmitted to the front wheels 21 via a front drive shaft 24, generating a driving force on the front wheels 21 (hereinafter referred to as a front wheel driving force F 2 F ).
 後輪駆動システム11は、第2の駆動輪である後輪26を制御するシステムである。後輪駆動システム11は、リアインバータ27及びリアモータ28を含む。 The rear-wheel drive system 11 is a system that controls the rear wheels 26, which are the second drive wheels. The rear-wheel drive system 11 includes a rear inverter 27 and a rear motor 28.
 リアインバータ27は、バッテリが出力する直流電力を交流電力に変換してリアモータ28に供給することにより、リアモータ28を駆動する。また、リアモータ28が後輪26に連れ回されて回転するときには、リアインバータ27は、リアモータ28で生じる交流の回生電力を、直流電力に変換してバッテリに入力することにより、バッテリを充電する。 The rear inverter 27 converts the DC power output by the battery into AC power and supplies it to the rear motor 28, thereby driving the rear motor 28. Also, when the rear motor 28 rotates along with the rear wheels 26, the rear inverter 27 converts the regenerative AC power generated by the rear motor 28 into DC power and inputs it to the battery, thereby charging the battery.
 リアモータ28は、後輪26を駆動する電動機である。リアモータ28は、例えば、フロントモータ23と同様の三相交流同期電動機によって構成される。リアモータ28が生じさせるトルクは、リアドライブシャフト29を介して後輪26に伝達され、後輪26に駆動力(以下、後輪駆動力Fという)を発生させる。 The rear motor 28 is an electric motor that drives the rear wheels 26. The rear motor 28 is, for example, configured by a three-phase AC synchronous motor similar to the front motor 23. Torque generated by the rear motor 28 is transmitted to the rear wheels 26 via a rear drive shaft 29, generating a driving force on the rear wheels 26 (hereinafter referred to as rear wheel driving force FR ).
 コントローラ12は、電動車両100の動作を制御する1または複数のコンピュータによって構成される。コントローラ12は、電動車両100の動作を予め定める制御周期で制御するようにプログラムされている。本実施形態では、コントローラ12は、駆動輪である前輪21及び後輪26の駆動力配分を調整することにより、前後方向の姿勢を制御する姿勢制御を実行する電動車両100の制御装置である。 The controller 12 is composed of one or more computers that control the operation of the electric vehicle 100. The controller 12 is programmed to control the operation of the electric vehicle 100 at a predetermined control period. In this embodiment, the controller 12 is a control device for the electric vehicle 100 that performs posture control to control the posture in the fore-and-aft direction by adjusting the distribution of driving force between the front wheels 21 and the rear wheels 26, which are the driving wheels.
 コントローラ12は、例えば、アクセルペダル(図示しない)の操作等によって要求された駆動力(以下、総駆動力TQという)を、駆動輪である前輪21と後輪26に配分する。そして、コントローラ12は、その配分に応じた前輪駆動力F及び後輪駆動力Fが生じるように、前輪駆動システム10及び後輪駆動システム11によって前輪21及び後輪26をそれぞれ駆動する。さらに、本実施形態では、コントローラ12は、必要に応じて前輪21及び後輪26の駆動力配分を調整することにより、電動車両100の前後方向の姿勢を制御する姿勢制御を実行するようにプログラムされている。 The controller 12 distributes a driving force (hereinafter referred to as a total driving force TQ) requested by, for example, the operation of an accelerator pedal (not shown) to the driving wheels, that is, the front wheels 21 and the rear wheels 26. Then, the controller 12 drives the front wheels 21 and the rear wheels 26 by the front-wheel drive system 10 and the rear-wheel drive system 11, respectively, so that a front-wheel driving force F F and a rear-wheel driving force F R according to the distribution are generated. Furthermore, in this embodiment, the controller 12 is programmed to execute attitude control for controlling the longitudinal attitude of the electric vehicle 100 by adjusting the distribution of driving force between the front wheels 21 and the rear wheels 26 as necessary.
 コントローラ12は、電動車両100の動作を制御するときに、電動車両100の動作状態等を表す各種のパラメータ等を、図示しないセンサにより、または、演算により、適宜に取得することができる。例えば、電動車両100は、アクセル開度APOを検出するアクセル開度センサ(図示しない)を備える。このため、コントローラ12は、アクセル開度APOを適宜に取得することができる。アクセル開度APOは、アクセルペダルの操作量を表すパラメータである。また、コントローラ12は、電動車両100の車速VSPを、図示しないセンサにより、または、演算により、適宜に取得する。 When controlling the operation of the electric vehicle 100, the controller 12 can appropriately acquire various parameters that indicate the operating state of the electric vehicle 100 by a sensor (not shown) or by calculation. For example, the electric vehicle 100 is equipped with an accelerator opening sensor (not shown) that detects an accelerator opening APO . Therefore, the controller 12 can appropriately acquire the accelerator opening APO . The accelerator opening APO is a parameter that indicates the amount of operation of the accelerator pedal. In addition, the controller 12 appropriately acquires the vehicle speed VSP of the electric vehicle 100 by a sensor (not shown) or by calculation.
 この他、本実施形態では、電動車両100は、座席選択器13、及び、対象検出器14を備える。 In addition, in this embodiment, the electric vehicle 100 is equipped with a seat selector 13 and an object detector 14.
 座席選択器13は、電動車両100が有する複数の座席のうち1つの座席の選択を受け付けるユーザインターフェースである。座席選択器13は、例えば、機械的なスイッチ、または、画面に表示される選択メニュー等によって構成される。座席選択器13は、運転者またはその他の乗員によって、車酔いをする可能性がある乗員がいる座席を選択するために用いられる。 The seat selector 13 is a user interface that accepts the selection of one of the multiple seats that the electric vehicle 100 has. The seat selector 13 is configured, for example, by a mechanical switch or a selection menu displayed on a screen. The seat selector 13 is used by the driver or other passengers to select a seat in which a passenger who may suffer from car sickness is located.
 座席選択器13は、運転者等によって選択され、車酔いを抑制すべき対象となる乗員がいる座席(以下、対象座席Sという)を表す信号または設定情報をコントローラ12に入力する。このため、コントローラ12は、対象座席Sに応じて、電動車両100の動作を制御することができる。本実施形態では、コントローラ12は、特に、対象座席Sにいる乗員の頭部の移動を直接的に抑制するように、電動車両100の動作を制御する。これにより、電動車両100では、対象座席Sにいる乗員の車酔いが抑制される。乗員の頭部について「移動」とは、加速または減速等の電動車両100の動作に起因して生じる揺れその他の動きをいうものとする。 The seat selector 13 is selected by the driver or the like, and inputs a signal or setting information indicating a seat (hereinafter referred to as a target seat S- S ) in which a passenger who is a target for suppressing car sickness is located to the controller 12. Therefore, the controller 12 can control the operation of the electric vehicle 100 according to the target seat S- S . In this embodiment, the controller 12 controls the operation of the electric vehicle 100 in particular so as to directly suppress movement of the head of the passenger in the target seat S- S . As a result, car sickness of the passenger in the target seat S -S is suppressed in the electric vehicle 100. With regard to the "movement" of the passenger's head, it is assumed that this refers to shaking or other movement caused by the operation of the electric vehicle 100, such as acceleration or deceleration.
 なお、電動車両100は、座席として、例えば、運転席、助手席、及び、1または複数の後部座席34(図4参照)を有する。運転席及び助手席は、後部座席34に対して電動車両100の前部にある座席である。以下の説明において、特に区別する必要がないときには、運転席及び助手席をまとめて前部座席33(図4参照)という。 The electric vehicle 100 has seats, for example, a driver's seat, a passenger seat, and one or more rear seats 34 (see FIG. 4). The driver's seat and passenger seat are seats located in the front of the electric vehicle 100 relative to the rear seats 34. In the following description, when there is no particular need to distinguish between them, the driver's seat and passenger seat are collectively referred to as the front seats 33 (see FIG. 4).
 対象検出器14は、対象座席Sにいる乗員、すなわち、車酔いを抑制すべき対象となる特定の乗員(以下、対象乗員という)を検出する。対象検出器14は、対象乗員についての検出信号等(以下、対象検出信号Sという)をコントローラ12に入力する。このため、コントローラ12は、対象検出信号Sを用いることで、対象乗員の実際的な動きに応じて、電動車両100の動作を制御することができる。本実施形態では、コントローラ12は、対象検出信号Sに基づいて対象乗員の頭部の実際的な移動を電動車両100の動作制御にフィードバックする。これにより、特に精密に、対象乗員の頭部の移動が抑制される。 The object detector 14 detects an occupant in the target seat S S , i.e., a specific occupant (hereinafter referred to as a target occupant) who is a target for suppressing car sickness. The object detector 14 inputs a detection signal or the like (hereinafter referred to as a target detection signal S D ) for the target occupant to the controller 12. Therefore, by using the target detection signal S D , the controller 12 can control the operation of the electric vehicle 100 according to the actual movement of the target occupant. In this embodiment, the controller 12 feeds back the actual movement of the head of the target occupant to the operation control of the electric vehicle 100 based on the target detection signal S D. This allows the movement of the head of the target occupant to be suppressed particularly precisely.
 対象検出器14は、例えば、頭部の全部または一部を含むように乗員を撮影するカメラ、または、各座席に対する乗員の頭部の位置を検出するセンサ等によって構成される。本実施形態においては、対象乗員を撮影するカメラであり、対象検出信号Sは、対象乗員を撮影した画像または映像である。 The object detector 14 is, for example, a camera that captures an image of the occupant including all or part of the head, or a sensor that detects the position of the occupant's head relative to each seat, etc. In this embodiment, the object detector 14 is a camera that captures an image of the target occupant, and the object detection signal S D is an image or video captured of the target occupant.
 なお、座席選択器13及び対象検出器14は、コントローラ12とともに、電動車両100の制御装置を構成する。 The seat selector 13 and the object detector 14, together with the controller 12, constitute a control device for the electric vehicle 100.
 <駆動力配分による姿勢制御の原理>
 図2は、シャシー系の概略構造を示す説明図である。図2に示すように、前輪21は、フロントサスペンション31を介して、車室等が形成される部分である車両上屋(以下、車体101という)に接続される。同様に、後輪26は、リアサスペンション32を介して、車体101に接続される。
<Principle of attitude control by driving force distribution>
Fig. 2 is an explanatory diagram showing a schematic structure of the chassis system. As shown in Fig. 2, the front wheels 21 are connected to a vehicle upper part (hereinafter referred to as a vehicle body 101) in which a vehicle interior and the like are formed, via a front suspension 31. Similarly, the rear wheels 26 are connected to the vehicle body 101 via a rear suspension 32.
 例えば、前輪駆動力F、後輪駆動力F、または、これらの両方によって電動車両100が加速する場合、荷重は電動車両100の後方(X方向負側)に移動する。その結果、車体101には、回転中心Cを中心として、ピッチ角θを増大させる方向に作用するモーメントが発生する。このため、電動車両100が加速する場合、原則として、電動車両100は、X方向正側の部分である前方部分が浮き上がる姿勢(いわゆるノーズアップの姿勢)となる。 For example, when the electric vehicle 100 is accelerated by the front wheel driving force F F , the rear wheel driving force F R , or both, the load moves rearward (negative side in the X direction) of the electric vehicle 100. As a result, a moment acting in a direction that increases the pitch angle θ P is generated in the vehicle body 101, centered on the center of rotation C. For this reason, when the electric vehicle 100 accelerates, in principle, the electric vehicle 100 assumes a posture in which the front portion, which is the portion on the positive side in the X direction, is lifted up (so-called nose-up posture).
 一方、前輪駆動力Fを発生させるフロントモータ23のトルク(以下、フロントトルクTという)は、フロントサスペンション31を介して車体101に作用する。具体的には、フロントトルクTは、前輪21による車体101の仮想回転中心Oの周りに、ピッチ角θを減少させる方向に作用するモーメントを生じさせる。すなわち、電動車両100が加速する場合、フロントトルクTはノーズアップを抑制する。同様に、後輪駆動力Fを発生させるリアモータ28のトルク(以下、リアトルクTという)は、リアサスペンション32を介して車体101に作用し、後輪26による車体101の仮想回転中心Oの周りに、ピッチ角θを減少させる方向に作用するモーメントを生じさせる。このため、電動車両100が加速する場合、リアトルクTはノーズアップを抑制する。 On the other hand, the torque of the front motor 23 (hereinafter referred to as the front torque T F ) which generates the front wheel driving force F F acts on the vehicle body 101 via the front suspension 31. Specifically, the front torque T F generates a moment acting in a direction to reduce the pitch angle θ P around the virtual center of rotation O F of the vehicle body 101 by the front wheels 21. That is, when the electric vehicle 100 accelerates, the front torque T F suppresses the nose-up. Similarly, the torque of the rear motor 28 (hereinafter referred to as the rear torque T R ) which generates the rear wheel driving force F R acts on the vehicle body 101 via the rear suspension 32 and generates a moment acting in a direction to reduce the pitch angle θ P around the virtual center of rotation O R of the vehicle body 101 by the rear wheels 26. Therefore, when the electric vehicle 100 accelerates, the rear torque T R suppresses the nose-up.
 そして、加速時にフロントトルクTがノーズアップを抑制する作用の大きさは、アンチスカット角θの大きさに依存する。同様に、加速時にリアトルクTがノーズアップを抑制する作用の大きさは、アンチスカット角θの大きさに依存する。このため、アンチスカット角が相対的に大きい駆動輪への配分が大きくなるように、前輪21及び後輪26の駆動力配分を調整すると、総駆動力TQを維持したまま、ノーズアップを抑制する作用が大きくなる。したがって、コントローラ12は、前輪21及び後輪26の駆動力配分を調整することにより、電動車両100の前後方向の姿勢を制御する姿勢制御を実行することができる。 The magnitude of the effect of the front torque T F to suppress nose-up during acceleration depends on the magnitude of the anti-scut angle θ F. Similarly, the magnitude of the effect of the rear torque T R to suppress nose-up during acceleration depends on the magnitude of the anti-scut angle θ R. For this reason, if the drive force distribution to the front wheels 21 and the rear wheels 26 is adjusted so that the distribution to the drive wheels having relatively large anti-scut angles is increased, the effect of suppressing nose-up becomes greater while maintaining the total drive force TQ. Therefore, the controller 12 can execute posture control that controls the posture of the electric vehicle 100 in the fore-and-aft direction by adjusting the drive force distribution to the front wheels 21 and the rear wheels 26.
 なお、仮想回転中心Oは、フロントトルクTの伝達によって車体101に生じる回転の瞬間的かつ仮想的な中心であり、フロントサスペンション31等の具体的な構成によって予め定まる。同様に、後方部の仮想回転中心Oは、リアトルクTの伝達によって車体101に生じる回転の瞬間的かつ仮想的な中心であり、リアサスペンション32等の具体的な構成によって予め定まる。回転中心Cは、上記のようにサスペンションジオメトリによって定まる仮想回転中心O,Oと、フロントトルクT及びリアトルクTの配分と、によって定まる車体101の実際的な回転中心である。また、アンチスカット角θは、XZ面において、前輪21の回転中心と仮想回転中心Oを結ぶ線と、路面と平行な線と、がなす角である。同様に、アンチスカット角θは、XZ面において、後輪26の回転中心と仮想回転中心Oを結ぶ線と、路面と平行な線と、がなす角である。 The virtual center of rotation O F is an instantaneous and virtual center of rotation generated in the vehicle body 101 by the transmission of the front torque T F , and is determined in advance by the specific configuration of the front suspension 31, etc. Similarly, the virtual center of rotation O R of the rear part is an instantaneous and virtual center of rotation generated in the vehicle body 101 by the transmission of the rear torque T R , and is determined in advance by the specific configuration of the rear suspension 32, etc. The center of rotation C is an actual center of rotation of the vehicle body 101 determined by the virtual centers of rotation O F and O R determined by the suspension geometry as described above, and the distribution of the front torque T F and the rear torque T R. The anti-scat angle θ F is an angle formed by a line connecting the center of rotation of the front wheel 21 and the virtual center of rotation O F and a line parallel to the road surface on the XZ plane. Similarly, the anti-scat angle θ R is an angle formed by a line connecting the center of rotation of the rear wheel 26 and the virtual center of rotation O R and a line parallel to the road surface on the XZ plane.
 図3は、車体101の回転中心C及びその変化を示す説明図である。図3に示すように、前輪21及び後輪26の駆動力配分が電費等に応じて予め定める標準の状態(例えば、前輪駆動力F:後輪駆動力F=50:50の状態)であるときの回転中心Cを回転中心CSTDとする。前輪駆動力Fが増加すると、車体101の回転中心Cは、標準状態の回転中心CSTDの位置から電動車両100の前方に移動する。そして、総駆動力TQを前輪21のみで生じさせる場合、すなわちF:F=100:0の場合、車体101の回転中心Cは、最前方の回転中心C100:0に到達する。一方、後輪駆動力Fが増加すると、車体101の回転中心Cは、標準状態の回転中心CSTDの位置から電動車両100の後方に移動する。そして、総駆動力TQを後輪26のみで生じさせる場合、すなわちF:F=0:100の場合、車体101の回転中心Cは、最後方の回転中心C0:100に到達する。したがって、電動車両100において、車体101の回転中心Cは、前輪21及び後輪26の駆動力配分により、最前方の回転中心C100:0から最後方の回転中心C0:100の範囲で調整可能である。 FIG. 3 is an explanatory diagram showing the rotation center C of the vehicle body 101 and its change. As shown in FIG. 3, the rotation center C when the driving force distribution between the front wheels 21 and the rear wheels 26 is in a standard state (for example, a state in which the front wheel driving force F F : the rear wheel driving force F R = 50:50) that is predetermined according to the electric power consumption, etc., is defined as the rotation center C STD . When the front wheel driving force F F increases, the rotation center C of the vehicle body 101 moves from the position of the rotation center C STD in the standard state to the front of the electric vehicle 100. When the total driving force TQ is generated only by the front wheels 21, that is, when F F : F R = 100:0, the rotation center C of the vehicle body 101 reaches the foremost rotation center C 100:0 . On the other hand, when the rear wheel driving force F R increases, the rotation center C of the vehicle body 101 moves from the position of the rotation center C STD in the standard state to the rear of the electric vehicle 100. When the total driving force TQ is generated only by the rear wheels 26, that is, when F F :F R = 0:100, the center of rotation C of the body 101 reaches the rearmost center of rotation C 0:100 . Therefore, in the electric vehicle 100, the center of rotation C of the body 101 can be adjusted within a range from the foremost center of rotation C 100:0 to the rearmost center of rotation C 0:100 by distributing the driving force between the front wheels 21 and the rear wheels 26.
 本実施形態では、コントローラ12は、上記のように前輪21及び後輪26の駆動力配分によって、2種類の異なる姿勢制御を選択的に実行する。第1の姿勢制御は、「ピッチ角抑制制御」である。第2の姿勢制御は、「頭部移動抑制制御」である。 In this embodiment, the controller 12 selectively executes two different types of attitude control by distributing the driving force between the front wheels 21 and the rear wheels 26 as described above. The first attitude control is "pitch angle suppression control." The second attitude control is "head movement suppression control."
 <ピッチ角抑制制御>
 ピッチ角抑制制御は、車体101が、姿勢を制御する対象である。すなわち、ピッチ角抑制制御では、ピッチ角θの発生及び変動が抑制される。より具体的には、ピッチ角抑制制御は、車体101の姿勢を、予め定める目標となる姿勢に漸近させ、これを維持する姿勢制御である。本実施形態では、リアサスペンション32のアンチスカット角θは、フロントサスペンション31のアンチスカット角θよりも大きい(図2参照)。このため、ピッチ角抑制制御によって、例えば加速時にピッチ角θの増大を抑制し、または、低減させるときには、コントローラ12は、相対的に後輪26への駆動力配分を増加させる。
<Pitch angle suppression control>
In the pitch angle suppression control, the vehicle body 101 is the target for controlling the attitude. That is, in the pitch angle suppression control, the occurrence and variation of the pitch angle θ P are suppressed. More specifically, the pitch angle suppression control is a posture control that makes the attitude of the vehicle body 101 approach a predetermined target posture and maintains it. In this embodiment, the anti-squat angle θ R of the rear suspension 32 is larger than the anti-squat angle θ F of the front suspension 31 (see FIG. 2). For this reason, when the increase of the pitch angle θ P is suppressed or reduced during acceleration, for example, by the pitch angle suppression control, the controller 12 relatively increases the drive force distribution to the rear wheels 26.
 ここでは、シャシー系の構成と、加速時におけるピッチ角抑制制御の関係について説明したが、コントローラ12は、減速時においても、前輪21及び後輪26の駆動力配分の調整によるピッチ角抑制制御を実行する。但し、減速時には、上記とは逆に、電動車両100は、前方部分が沈み込む姿勢(いわゆるノーズダイブの姿勢)となるので、コントローラ12は、これに応じて、前輪21及び後輪26の駆動力配分を調整する。 Here, we have explained the relationship between the configuration of the chassis system and the pitch angle suppression control during acceleration, but even during deceleration, the controller 12 executes pitch angle suppression control by adjusting the drive force distribution to the front wheels 21 and the rear wheels 26. However, during deceleration, the electric vehicle 100 assumes a posture in which the front part sinks (a so-called nose dive posture), which is the opposite of the above, and the controller 12 adjusts the drive force distribution to the front wheels 21 and the rear wheels 26 accordingly.
 <頭部移動抑制制御>
 頭部移動抑制制御は、対象座席Sにいる対象乗員の頭部が、姿勢を制御する対象である。すなわち、頭部移動抑制制御では、対象乗員の頭部の移動が抑制され、その結果、対象乗員の車酔いが抑制される。より具体的には、頭部移動抑制制御は、対象乗員の頭部の移動が抑制されるように、車体101の回転中心Cを移動させる姿勢制御である。このため、頭部移動抑制制御は、電動車両100の加速や減速によって生じるピッチ角θの変動を増長させる場合がある。
<Head movement suppression control>
In the head movement suppression control, the head of the target occupant in the target seat S S is the target for controlling the posture. That is, in the head movement suppression control, the movement of the head of the target occupant is suppressed, and as a result, car sickness of the target occupant is suppressed. More specifically, the head movement suppression control is posture control that moves the center of rotation C of the vehicle body 101 so as to suppress the movement of the head of the target occupant. For this reason, the head movement suppression control may increase the fluctuation of the pitch angle θP caused by the acceleration or deceleration of the electric vehicle 100.
 図4は、頭部移動抑制において回転中心Cについて設定される基準位置(CαまたはCβ)を示す説明図である。図4に示すように、本実施形態では、前部座席33には乗員Pが着座し、後部座席34には乗員Pが着座しているとする。乗員Pが前部座席33に着座すると、乗員Pの頭部Hは、概ね、電動車両100の前後方向における位置Lに位置する。同様に、乗員Pが後部座席34に着座すると、乗員Pの頭部Hは、概ね、電動車両100の前後方向における位置Lに位置する。すなわち、各乗員P,Pの頭部H,Hの位置は、座席に着座することによって概ね定まる。 Fig. 4 is an explanatory diagram showing a reference position ( or ) set for the center of rotation C in head movement suppression. As shown in Fig. 4, in this embodiment, it is assumed that an occupant P1 is seated in the front seat 33, and an occupant P2 is seated in the rear seat 34. When the occupant P1 is seated in the front seat 33, the head H1 of the occupant P1 is generally located at a position L1 in the front-rear direction of the electric vehicle 100. Similarly, when the occupant P2 is seated in the rear seat 34, the head H2 of the occupant P2 is generally located at a position L2 in the front-rear direction of the electric vehicle 100. That is, the positions of the heads H1 , H2 of the occupants P1 , P2 are generally determined by sitting in the seats.
 このため、頭部移動抑制制御を実行する場合、コントローラ12は、前輪21及び後輪26の駆動力配分の調整によって、回転中心Cを移動させるべき位置についての概略的な基準となる位置(以下、基準位置という)を、対象座席Sの選択に応じて設定する。 Therefore, when executing head movement suppression control, the controller 12 sets a rough reference position (hereinafter referred to as the reference position) for the position to which the center of rotation C should be moved by adjusting the distribution of driving force between the front wheels 21 and the rear wheels 26 in accordance with the selection of the target seat S S.
 対象座席Sとして前部座席33が選択された場合、コントローラ12は、前部座席33に着座した乗員Pの頭部Hがある位置Lを基準位置に設定する。そして、コントローラ12は、車体101の回転中心Cが、標準の回転中心CSTDから、基準位置に設定した位置L上の回転中心Cαに移動するように、前輪21及び後輪26の駆動力配分を調整する。同様に、対象座席Sとして後部座席34が選択され場合、コントローラ12は、後部座席34に着座した乗員Pの頭部Hがある位置Lに基準位置を設定する。そして、コントローラ12は、車体101の回転中心Cが、標準の回転中心CSTDから、基準位置に設定した位置L上の回転中心Cβに移動するように、前輪21及び後輪26の駆動力配分を調整する。 When the front seat 33 is selected as the target seat S S , the controller 12 sets the position L 1 where the head H 1 of the occupant P 1 seated in the front seat 33 is located as the reference position. Then, the controller 12 adjusts the distribution of driving force to the front wheels 21 and the rear wheels 26 so that the center of rotation C of the vehicle body 101 moves from the standard center of rotation C STD to the center of rotation C α on the position L 1 set as the reference position. Similarly, when the rear seat 34 is selected as the target seat S S , the controller 12 sets the reference position to the position L 2 where the head H 2 of the occupant P 2 seated in the rear seat 34 is located. Then, the controller 12 adjusts the distribution of driving force to the front wheels 21 and the rear wheels 26 so that the center of rotation C of the vehicle body 101 moves from the standard center of rotation C STD to the center of rotation C β on the position L 2 set as the reference position.
 なお、車体101の回転中心Cは、通常、乗員P,Pの頭部H,Hよりも下方(路面がある方向)にあり、前輪21及び後輪26の駆動力配分によって前後方向に移動する。このため、位置Lを基準位置とした場合、頭部移動抑制制御による調整後の回転中心Cαは、乗員Pの頭部Hに一致するわけではなく、その身体Bのあたりに位置する。同様に、位置Lを基準位置とした場合、調整後の回転中心Cβは、乗員Pの頭部Hに一致するわけではなく、その身体Bのあたりに位置する。 The center of rotation C of the vehicle body 101 is normally located below (in the direction toward the road surface) the heads H1 , H2 of the occupants P1 , P2 , and moves in the front-to-rear direction depending on the distribution of driving force between the front wheels 21 and the rear wheels 26. For this reason, when position L1 is taken as the reference position, the center of rotation after adjustment by the head movement suppression control does not coincide with the head H1 of the occupant P1 , but is located around the body B1 . Similarly, when position L2 is taken as the reference position, the center of rotation after adjustment does not coincide with the head H2 of the occupant P2 , but is located around the body B2 .
 図5は、回転中心Cの位置と乗員Pの頭部Hの移動方向及び移動量の関係を示す説明図である。図5に示すように、ここでは、前部座席33の乗員Pが対象乗員であり、頭部移動抑制制御によって、車体101の回転中心Cを、標準の回転中心CSTDから、位置L上の回転中心Cαに移動させる。 5 is an explanatory diagram showing the relationship between the position of the rotation center C and the direction and amount of movement of the head H1 of the occupant P1 . As shown in Fig. 5, the occupant P1 in the front seat 33 is the target occupant, and the head movement suppression control is used to move the rotation center C of the vehicle body 101 from the standard rotation center C STD to the rotation center on the position L1 .
 車体101の回転中心Cが標準の回転中心CSTDにあるときに、車体101にピッチ角θの回転が生じた場合、乗員Pの頭部Hは、標準の回転中心CSTDを中心とした円弧に沿って移動する。このため、車体101の回転中心Cが標準の回転中心CSTDにあるときの頭部Hの移動量は、ピッチ角θと、標準の回転中心CSTDから頭部Hまでの距離rSTDと、を用いて概算可能であり、概ねrSTD・θの程度である。 When the center of rotation C of the vehicle body 101 is at the standard center of rotation C STD , if the vehicle body 101 rotates at a pitch angle θ P , the head H 1 of the occupant P 1 moves along an arc centered on the standard center of rotation C STD . Therefore, the amount of movement of the head H 1 when the center of rotation C of the vehicle body 101 is at the standard center of rotation C STD can be roughly calculated using the pitch angle θ P and the distance r STD from the standard center of rotation C STD to the head H 1 , and is approximately r STD · θ P.
 同様に、車体101の回転中心Cが位置L上の回転中心Cαに移動した状態で、車体101にピッチ角θの回転が生じた場合、乗員P1の頭部H1は、移動後の回転中心Cαを中心とした円弧に沿って移動する。このため、車体101の回転中心Cが、頭部移動抑制制御による移動後の回転中心Cαにあるときの頭部Hの移動量は、ピッチ角θと、回転中心Cαから頭部Hまでの距離rαと、を用いて概算可能であり、概ねrα・θの程度である。 Similarly, when the center of rotation C of the vehicle body 101 moves to the center of rotation on the position L1 and the vehicle body 101 rotates at a pitch angle θP , the head H1 of the occupant P1 moves along an arc centered on the center of rotation after the movement. Therefore, the amount of movement of the head H1 when the center of rotation C of the vehicle body 101 is at the center of rotation after the movement due to the head movement suppression control can be roughly calculated using the pitch angle θP and the distance from the center of rotation to the head H1 , and is approximately · θP .
 そして、移動後の回転中心Cαから頭部Hまでの距離rαは、標準の回転中心CSTDから頭部Hまでの距離rSTDよりも短い。 Then, the distance r α from the center of rotation C α to the head H 1 after the movement is shorter than the distance r STD from the standard center of rotation C STD to the head H 1 .
 したがって、あるピッチ角θを生じさせる回転が車体101に生じるときには、車体101の回転中心Cが、頭部移動抑制制御によって、基準位置(L)またはその近傍の回転中心(Cα)に移動され、基準位置(L)またはその近傍に維持されることにより、頭部Hの移動量が低減される。その結果、乗員Pの車酔いまたはその発生が抑制される。 Therefore, when a rotation that generates a certain pitch angle θP occurs in the vehicle body 101, the center of rotation C of the vehicle body 101 is moved to the reference position ( L1 ) or a center of rotation ( ) nearby the reference position ( L1 ) by the head movement suppression control, and is maintained at the reference position (L1) or nearby, thereby reducing the amount of movement of the head H1. As a result, the occurrence or onset of car sickness in the occupant P1 is suppressed.
 車体101の回転中心Cが標準の回転中心CSTDにあるときの頭部Hの移動方向は、路面に平行な方向(ここでは水平方向)に対して傾斜した方向となる。これに対し、頭部移動抑制制御によって、車体101の回転中心Cが基準位置(L)の回転中心(Cα)に移動されると、頭部Hの移動方向は、概ね路面に平行な方向(水平方向)となる。 When the center of rotation C of the vehicle body 101 is at the standard center of rotation C STD , the direction of movement of the head H1 is inclined with respect to a direction parallel to the road surface (here, the horizontal direction). In contrast, when the center of rotation C of the vehicle body 101 is moved to the center of rotation (C α ) of the standard position (L 1 ) by the head movement suppression control, the direction of movement of the head H1 becomes approximately parallel to the road surface (horizontal direction).
 なお、基準位置は、ピンポイントな1点ではなく、範囲によって設定される場合がある。例えば、対象座席Sが前部座席33である場合、位置Lに一致する点、または、位置Lを含む所定の範囲が、基準位置に設定され得る。位置Lを含む所定の範囲は、実験またはシミュレーション等によって予め定められる。これは、対象座席Sが後部座席34である場合も同様である。すなわち、対象座席Sが後部座席34である場合、位置Lに一致する点、または、位置Lを含む所定の範囲が、基準位置に設定され得る。したがって、本実施形態において、回転中心Cの基準位置への移動とは、ピッチ角θが生じたときの頭部H,Hの移動量が実質的に低減するように、回転中心Cを、頭部H,Hがある位置L,Lに近づけることをいう。 The reference position may be set by a range, not a pinpoint. For example, when the target seat S S is the front seat 33, a point that coincides with the position L 1 or a predetermined range including the position L 1 may be set as the reference position. The predetermined range including the position L 1 is determined in advance by an experiment, a simulation, or the like. This is also true when the target seat S S is the rear seat 34. That is, when the target seat S S is the rear seat 34, a point that coincides with the position L 2 or a predetermined range including the position L 2 may be set as the reference position. Therefore, in this embodiment, moving the rotation center C to the reference position means moving the rotation center C closer to the positions L 1 and L 2 where the heads H 1 and H 2 are located so that the amount of movement of the heads H 1 and H 2 when the pitch angle θ P occurs is substantially reduced.
 <姿勢制御のための構成>
 図6は、姿勢制御のためのコントローラ12の構成を示すブロック図である。図6に示すように、コントローラ12は、総駆動力演算部41、基本配分演算部42、姿勢制御演算部43、頭部移動検出部44、駆動力設定部45、フロントモータ制御部46、及び、リアモータ制御部47を備える。
<Configuration for attitude control>
Fig. 6 is a block diagram showing the configuration of the controller 12 for posture control. As shown in Fig. 6, the controller 12 includes a total driving force calculation unit 41, a basic distribution calculation unit 42, a posture control calculation unit 43, a head movement detection unit 44, a driving force setting unit 45, a front motor control unit 46, and a rear motor control unit 47.
 総駆動力演算部41は、アクセルペダルの操作に基づいて、総駆動力TQを演算する。総駆動力TQは、電動車両100に対する要求駆動力である。例えば、総駆動力演算部41は、アクセル開度APOと総駆動力TQを対応付けるマップを有し、このマップを参照することにより、アクセル開度APOに対応する総駆動力TQを演算する。 The total driving force calculation unit 41 calculates the total driving force TQ based on the operation of the accelerator pedal. The total driving force TQ is a driving force required for the electric vehicle 100. For example, the total driving force calculation unit 41 has a map that associates the accelerator opening APO with the total driving force TQ, and calculates the total driving force TQ corresponding to the accelerator opening APO by referring to this map.
 なお、総駆動力演算部41は、上記のようにアクセル開度APOに基づいて総駆動力TQを演算する代わりに、ADAS(Advanced Drive Assistance System)またはAD(Autonomous Driving)システム等からの指令に基づいて、総駆動力TQを演算することができる。これらのシステムは、運転者によるアクセルペダルの操作を代替するシステムであるから、総駆動力演算部41がこれらのシステムの指令に基づいて行う総駆動力TQの演算は、実質的にアクセルペダルの操作に基づく演算である。 Incidentally, instead of calculating the total driving force TQ based on the accelerator pedal opening APO as described above, the total driving force calculation unit 41 can calculate the total driving force TQ based on commands from an ADAS (Advanced Drive Assistance System) or an AD (Autonomous Driving) system, etc. These systems are systems that substitute for the operation of the accelerator pedal by the driver, so the calculation of the total driving force TQ that the total driving force calculation unit 41 performs based on commands from these systems is substantially a calculation based on the operation of the accelerator pedal.
 基本配分演算部42は、基本配分にしたがって、総駆動力TQを、前輪21及び後輪26に配分する。基本配分は、走行安定性を確保し得る範囲内で電費が最良となるように決定される駆動力配分であり、実験またはシミュレーション等によって予め定められる。例えば、フロントモータ23とリアモータ28が同型であって、電動車両100が平坦路を一定の速度で走行する場合、基本配分は前輪:後輪=50:50である。基本配分は、電動車両100の具体的な走行状態(操舵の状態等)によって変化する場合がある。 The basic distribution calculation unit 42 distributes the total driving force TQ to the front wheels 21 and rear wheels 26 according to the basic distribution. The basic distribution is a driving force distribution that is determined so as to optimize the electricity consumption within a range in which driving stability can be ensured, and is determined in advance by experiments, simulations, etc. For example, when the front motor 23 and the rear motor 28 are the same type and the electric vehicle 100 runs on a flat road at a constant speed, the basic distribution is front wheels:rear wheels=50:50. The basic distribution may change depending on the specific driving state of the electric vehicle 100 (steering state, etc.).
 本実施形態では、基本配分演算部42は、基本配分及び総駆動力TQに基づいて、第1フロントトルク目標値TF1 、及び、第1リアトルク目標値TR1 を演算する。第1フロントトルク目標値TF1 は、基本配分に応じた前輪駆動力Fを前輪21に生じさせるフロントモータトルクについての目標値である。第1リアトルク目標値TR1 は、基本配分に応じた後輪駆動力Fを後輪26に生じさせるリアトルクについての目標値である。以下では、第1フロントトルク目標値TF1 と第1リアトルク目標値TR1 の組み合わせを基本駆動力配分(TF1 ,TR1 )という。 In this embodiment, the basic distribution calculation unit 42 calculates a first front torque target value T F1 * and a first rear torque target value T R1 * based on the basic distribution and the total driving force TQ. The first front torque target value T F1 * is a target value for the front motor torque that generates a front wheel driving force F F corresponding to the basic distribution at the front wheels 21. The first rear torque target value T R1 * is a target value for the rear torque that generates a rear wheel driving force F R corresponding to the basic distribution at the rear wheels 26. Hereinafter, the combination of the first front torque target value T F1 * and the first rear torque target value T R1 * is referred to as the basic driving force distribution (T F1 * , T R1 * ).
 姿勢制御演算部43は、電動車両100の姿勢を制御するための駆動力配分である補正駆動力配分(TF2 ,TR2 )を演算する。補正駆動力配分(TF2 ,TR2 )は、電動車両100の姿勢、すなわち車体101のピッチ角θ、を制御するための最終的なフロントトルク目標値(以下、第2フロントトルク目標値TF2 という)及びリアトルク目標値(以下、第2リアトルク目標値TR2 という)の組み合わせである。 The attitude control calculation unit 43 calculates a corrected driving force distribution (T F2 * , T R2 * ), which is a driving force distribution for controlling the attitude of the electric vehicle 100. The corrected driving force distribution (T F2 * , T R2 * ) is a combination of a final front torque target value (hereinafter referred to as a second front torque target value T F2 * ) and a rear torque target value (hereinafter referred to as a second rear torque target value T R2 * ) for controlling the attitude of the electric vehicle 100, i.e., the pitch angle θ P of the vehicle body 101.
 対象座席Sが選択されていない場合、姿勢制御演算部43は、ピッチ角θの発生またはその変動を抑制する補正駆動力配分(TF2 ,TR2 )を演算する。すなわち、対象座席Sが選択されておらず、車酔いしやすい乗員がいないときには、姿勢制御演算部43は、ピッチ角抑制制御を実現する補正駆動力配分(TF2 ,TR2 )を演算する。 When the target seat S S is not selected, the posture control calculation unit 43 calculates a corrective driving force distribution (T F2 * , T R2 * ) that suppresses the occurrence or variation of the pitch angle θ P. In other words, when the target seat S S is not selected and there is no occupant who is prone to car sickness, the posture control calculation unit 43 calculates a corrective driving force distribution (T F2 * , T R2 * ) that realizes pitch angle suppression control.
 一方、対象座席Sが選択されている場合、姿勢制御演算部43は、対象座席Sに着座した対象乗員の頭部の移動を抑制する補正駆動力配分(TF2 ,TR2 )を演算する。すなわち、対象座席Sが選択され、車酔いしやすい乗員がいるときには、姿勢制御演算部43は、対象乗員について頭部移動抑制制御を実現する補正駆動力配分(TF2 ,TR2 )を演算する。したがって、電動車両100の姿勢を制御するための補正駆動力配分(TF2 ,TR2 )は、ピッチ角抑制制御を実行する場合と頭部移動抑制制御を実行する場合で、電動車両100に対する作用は異なる。 On the other hand, when the target seat S S is selected, the posture control calculation unit 43 calculates a corrected driving force distribution (T F2 * , T R2 * ) that suppresses head movement of the target occupant seated in the target seat S S. That is, when the target seat S S is selected and there is an occupant who is prone to car sickness, the posture control calculation unit 43 calculates a corrected driving force distribution (T F2 * , T R2 *) that realizes head movement suppression control for the target occupant. Therefore, the corrected driving force distribution (T F2 * , T R2 * ) for controlling the posture of the electric vehicle 100 has a different effect on the electric vehicle 100 depending on whether pitch angle suppression control is executed or head movement suppression control is executed.
 また、頭部移動抑制制御を実現する補正駆動力配分(TF2 ,TR2 )を演算するときには、姿勢制御演算部43は、少なくとも対象座席Sの選択に基づいて、補正駆動力配分(TF2 ,TR2 )を演算する。特に、本実施形態では、頭部移動抑制制御を実現する補正駆動力配分(TF2 ,TR2 )を演算する場合、姿勢制御演算部43は、頭部移動検出部44から、対象乗員の頭部の移動についての検出結果を取得する。そして、姿勢制御演算部43は、対象座席Sと、対象乗員の頭部の移動についての検出結果と、に基づいて、補正駆動力配分(TF2 ,TR2 )を演算する。 Furthermore, when calculating the corrected driving force distribution (T F2 * , T R2 * ) that realizes head movement suppression control, the posture control calculation unit 43 calculates the corrected driving force distribution (T F2 * , T R2 *) based on at least the selection of the target seat S S. In particular, in this embodiment, when calculating the corrected driving force distribution (T F2 * , T R2 * ) that realizes head movement suppression control, the posture control calculation unit 43 obtains detection results regarding the movement of the head of the target occupant from the head movement detection unit 44. Then, the posture control calculation unit 43 calculates the corrected driving force distribution (T F2 * , T R2 * ) based on the target seat S S and the detection results regarding the movement of the head of the target occupant.
 頭部移動検出部44は、少なくとも対象座席Sが選択されているときに、対象検出信号Sに基づいて、対象座席Sにいる対象乗員の頭部の移動を検出する。具体的には、頭部移動検出部44は、対象乗員の頭部について、位置、速度、加速度等、または、これらのパラメータの全部または一部を演算することにより、対象乗員の頭部の移動量、及び、移動方向(頭部にかかる力の向き)を検出する。対象乗員の頭部の移動についての検出結果(以下、頭部移動検出結果という)は、前述のとおり、姿勢制御演算部43において、頭部移動抑制制御のための補正駆動力配分(TF2 ,TR2 )の演算に用いられる。 The head movement detection unit 44 detects head movement of the target occupant in the target seat S S based on the target detection signal S D at least when the target seat S S is selected. Specifically, the head movement detection unit 44 detects the amount of movement and the direction of movement (the direction of the force acting on the head) of the target occupant's head by calculating the position, speed, acceleration, etc., or all or a part of these parameters, for the target occupant's head. The detection result of the movement of the target occupant's head (hereinafter referred to as the head movement detection result) is used by the attitude control calculation unit 43 to calculate the corrected drive force distribution ( TF2 * , TR2 * ) for head movement suppression control, as described above.
 本実施形態では、頭部移動検出部44は、対象座席Sに応じて位置Lまたは位置Lに対する頭部の位置を、対象乗員の頭部の移動量として検出する。また、頭部移動検出部44は、対象乗員の頭部の加速度によって、その移動方向を検出する。 In this embodiment, the head movement detection unit 44 detects the position of the head relative to position L1 or position L2 depending on the target seat S as the amount of movement of the target occupant's head. In addition, the head movement detection unit 44 detects the direction of movement of the target occupant's head based on the acceleration of the head.
 また、本実施形態では、対象検出信号Sは対象乗員を撮影した画像または映像であるから、頭部移動検出部44は、その画像または映像を解析することにより、対象乗員の頭部の移動を検出する。 In addition, in this embodiment, since the target detection signal SD is an image or video of the target occupant, the head movement detection unit 44 detects the movement of the head of the target occupant by analyzing the image or video.
 駆動力設定部45は、前輪21及び後輪26で生じさせる駆動力の配分を、基本駆動力配分(TF1 ,TR1 )または補正駆動力配分(TF2 ,TR2 )のいずれかに設定する。例えば、駆動力設定部45は、設定等により姿勢制御がオンとなっているとき、または、姿勢制御の実行が許可されているときに、前輪21及び後輪26の駆動力配分を補正駆動力配分(TF2 ,TR2 )に設定する。一方、駆動力設定部45は、設定等により姿勢制御がオフとなっているとき、または、姿勢制御の実行が許可されていないときに、前輪21及び後輪26の駆動力配分を基本駆動力配分(TF1 ,TR1 )に設定する。本実施形態では、簡単のため、設定等により姿勢制御がオンとなっているか、または、姿勢制御の実行が許可されているものとする。すなわち、以下では、駆動力設定部45は、前輪21及び後輪26の駆動力配分を補正駆動力配分(TF2 ,TR2 )に設定するものとする。 The driving force setting unit 45 sets the distribution of the driving force generated by the front wheels 21 and the rear wheels 26 to either the basic driving force distribution ( TF1 * , TR1 * ) or the corrected driving force distribution ( TF2 * , TR2 * ). For example, when the posture control is turned on by the settings or the like, or when the execution of the posture control is permitted, the driving force setting unit 45 sets the driving force distribution of the front wheels 21 and the rear wheels 26 to the corrected driving force distribution ( TF2 * , TR2 * ). On the other hand, when the posture control is turned off by the settings or the execution of the posture control is not permitted, the driving force setting unit 45 sets the driving force distribution of the front wheels 21 and the rear wheels 26 to the basic driving force distribution ( TF1 * , TR1 * ). In this embodiment, for simplicity, it is assumed that the posture control is turned on by the settings or the execution of the posture control is permitted. That is, in the following, it is assumed that the driving force setting unit 45 sets the driving force distribution between the front wheels 21 and the rear wheels 26 to the corrected driving force distribution ( TF2 * , TR2 * ).
 なお、駆動力設定部45は、実際に駆動力配分を調整(設定)することにより、車体101の回転中心Cを移動させる。すなわち、駆動力設定部45は、姿勢制御の実行部であって、ピッチ角抑制制御を行うときには車体101の回転中心Cを、発生するピッチ角θに応じて移動させ、頭部移動抑制制御を行うときには、車体101の回転中心Cを基準位置に移動させる。 The driving force setting unit 45 actually adjusts (sets) the driving force distribution to move the center of rotation C of the vehicle body 101. That is, the driving force setting unit 45 is an execution unit of posture control, and when performing pitch angle suppression control, it moves the center of rotation C of the vehicle body 101 in accordance with the generated pitch angle θP , and when performing head movement suppression control, it moves the center of rotation C of the vehicle body 101 to a reference position.
 フロントモータ制御部46は、駆動力設定部45によって設定された駆動力が前輪21で生じるように、フロントインバータ22を介してフロントモータ23を制御する。基本駆動力を指令する第1フロントトルク目標値TF1 が入力されたときには、フロントモータ制御部46は、フロントモータ23によって、第1フロントトルク目標値TF1 に対応するフロントトルクTを発生させる。一方、姿勢制御のための補正駆動力を指令する第2フロントトルク目標値TF2 が入力されたときには、フロントモータ制御部46は、フロントモータ23によって、第2フロントトルク目標値TF2 に対応するフロントトルクTを発生させる。これにより、前輪駆動力Fは、基本駆動力または補正駆動力に制御される。 The front motor control unit 46 controls the front motor 23 via the front inverter 22 so that the driving force set by the driving force setting unit 45 is generated at the front wheels 21. When a first front torque target value T F1 * commanding a basic driving force is input, the front motor control unit 46 causes the front motor 23 to generate a front torque T F corresponding to the first front torque target value T F1 * . On the other hand, when a second front torque target value T F2 * commanding a corrective driving force for posture control is input, the front motor control unit 46 causes the front motor 23 to generate a front torque T F corresponding to the second front torque target value T F2 * . As a result, the front wheel driving force F F is controlled to the basic driving force or the corrective driving force.
 リアモータ制御部47は、駆動力設定部45によって設定された駆動力が後輪26で生じるように、リアインバータ27を介してリアモータ28を制御する。基本駆動力を指令する第1リアトルク目標値TR1 が入力されたときには、リアモータ制御部47は、リアモータ28によって、第1リアトルク目標値TR1 に対応するリアトルクTを発生させる。一方、姿勢制御のための補正駆動力を指令する第2リアトルク目標値TR2 が入力されたときには、リアモータ制御部47は、リアモータ28によって、第2リアトルク目標値TR2 に対応するリアトルクTを発生させる。これにより、後輪駆動力Fは、基本駆動力または補正駆動力に制御される。 The rear motor control unit 47 controls the rear motor 28 via the rear inverter 27 so that the driving force set by the driving force setting unit 45 is generated at the rear wheels 26. When a first rear torque target value TR1 * commanding a basic driving force is input, the rear motor control unit 47 causes the rear motor 28 to generate a rear torque TR corresponding to the first rear torque target value TR1 * . On the other hand, when a second rear torque target value TR2 * commanding a corrective driving force for posture control is input, the rear motor control unit 47 causes the rear motor 28 to generate a rear torque TR corresponding to the second rear torque target value TR2 * . As a result, the rear wheel driving force FR is controlled to the basic driving force or the corrective driving force.
 なお、フロントモータ制御部46及びリアモータ制御部47は、基本駆動力配分(TF1 ,TR1 )または補正駆動力配分(TF2 ,TR2 )にしたがって、前輪21及び後輪26を制御(駆動)する駆動輪制御部を構成する。 The front motor control unit 46 and the rear motor control unit 47 constitute a driving wheel control unit that controls (drives) the front wheels 21 and the rear wheels 26 in accordance with the basic driving force distribution ( TF1 * , TR1 * ) or the corrected driving force distribution ( TF2 * , TR2 * ).
 図7は、姿勢制御演算部43の構成を示すブロック図である。図7に示すように、姿勢制御演算部43は、基準位置設定部51、補正位置演算部52、及び、補正配分演算部53を備える。 FIG. 7 is a block diagram showing the configuration of the attitude control calculation unit 43. As shown in FIG. 7, the attitude control calculation unit 43 includes a reference position setting unit 51, a correction position calculation unit 52, and a correction allocation calculation unit 53.
 基準位置設定部51は、対象座席Sが選択されているときに、電動車両100の前後方向において、選択された対象座席Sに応じた基準位置を設定する。例えば、前部座席33が対象座席Sであるときには、基準位置設定部51は、前部座席33にいる乗員Pの頭部Hがある「位置L」を、基準位置に設定する。同様に、後部座席34が対象座席Sであるときには、基準位置設定部51は、後部座席34にいる乗員Pの頭部Hがある「位置L」を、基準位置に設定する。基準位置設定部51によって設定された基準位置の情報は、補正位置演算部52に入力される。 When the target seat S S is selected, the reference position setting unit 51 sets a reference position in the front-rear direction of the electric vehicle 100 according to the selected target seat S S. For example, when the front seat 33 is the target seat S S , the reference position setting unit 51 sets "position L 1 " where the head H 1 of the occupant P 1 in the front seat 33 is located, as the reference position. Similarly, when the rear seat 34 is the target seat S S , the reference position setting unit 51 sets "position L 2 " where the head H 2 of the occupant P 2 in the rear seat 34 is located, as the reference position. Information on the reference position set by the reference position setting unit 51 is input to the correction position calculation unit 52.
 補正位置演算部52は、設定された基準位置と、頭部移動検出部44による頭部移動検出結果と、に基づき、対象乗員の頭部の実際的な移動に応じて基準位置を中心に移動する補正位置を演算する。すなわち、補正位置は、対象乗員の頭部の実際的な移動に応じて微調整された回転中心Cの移動目標位置である。 The correction position calculation unit 52 calculates a correction position that moves around the reference position in accordance with the actual movement of the target occupant's head, based on the set reference position and the head movement detection result by the head movement detection unit 44. In other words, the correction position is the target movement position of the rotation center C that has been fine-tuned in accordance with the actual movement of the target occupant's head.
 図8は、補正位置を示す説明図である。図8(A)は、車体101の回転中心Cが基準位置上の回転中心に維持されている場合における対象乗員の頭部移動を示す。図8(B)は、車体101の回転中心Cが、基準位置を中心として、補正位置に追従して移動させる場合における対象乗員の頭部の移動を示す。なお、図8では、基準位置は位置Lであり、対象乗員は乗員Pである。 Fig. 8 is an explanatory diagram showing the corrected position. Fig. 8(A) shows the movement of the head of the target occupant when the rotation center C of the vehicle body 101 is maintained at the rotation center on the reference position. Fig. 8(B) shows the movement of the head of the target occupant when the rotation center C of the vehicle body 101 is moved to follow the corrected position with the reference position as the center. In Fig. 8, the reference position is position L1 , and the target occupant is occupant P1 .
 図8(A)に示すように、車体101の回転中心Cが、位置L上の回転中心Cαである場合、車体101にピッチ角θを生じさせる回転が生じると、乗員Pの頭部Hは、概ね前後方向に移動し、その移動量はrα・θの程度である。ここで、図8(B)に示すように、車体101の回転中心Cを、基準位置である位置Lを中心に、ピッチ角θに対応する幅(頭部の移動量(rα・θ)程度の範囲)で、頭部Hの移動方向とは逆向きに移動させると、頭部Hの移動量はさらに低減され、実質的にゼロに維持され得る。 As shown in Fig. 8(A), when the center of rotation C of the vehicle body 101 is a center of rotation on position L1 , when a rotation that generates a pitch angle θP occurs in the vehicle body 101, the head H1 of the occupant P1 moves generally in the front-rear direction, and the amount of movement is approximately · θP . Here, as shown in Fig. 8(B), if the center of rotation C of the vehicle body 101 is moved in the opposite direction to the movement direction of the head H1 by a width corresponding to the pitch angle θP (a range of approximately the amount of head movement ( · θP )) around position L1 , which is the reference position, the amount of movement of the head H1 can be further reduced and maintained at substantially zero.
 このように、位置Lを中心に車体101の回転中心Cを移動させる場合において、電動車両100の最も前方にきたときの回転中心Cが「Cα 」であり、最も後方にきたときの回転中心Cが「Cα 」である。そして、位置L上の回転中心Cαを中心として、前端の回転中心Cα と後端の回転中心Cα を移動する過程の各時刻における回転中心Cの位置が、補正位置である。したがって、補正位置演算部52が演算する補正位置は、個別具体的な乗員Pの頭部Hの移動をフィードバックすることによって、補正された回転中心Cの目標位置である。 In this way, when the center of rotation C of the vehicle body 101 is moved about the position L1 , the center of rotation C when it is at the frontmost position of the electric vehicle 100 is "C α + ", and the center of rotation C when it is at the rearmost position is "C α - ". The position of the center of rotation C at each time in the process of moving the center of rotation C α + at the front end and the center of rotation C α - at the rear end about the center of rotation C α at the position L1 is the corrected position. Therefore, the corrected position calculated by the corrected position calculation unit 52 is the target position of the center of rotation C corrected by feeding back the movement of the head H1 of the individual occupant P1 .
 補正配分演算部53(図7参照)は、総駆動力TQを再配分することにより、または、基本駆動力配分(TF1 ,TR1 )を補正することにより、補正駆動力配分(TF2 ,TR2 )を演算する。 The correction distribution calculation unit 53 (see FIG. 7) calculates the corrected driving force distribution (T F2 * , T R2 * ) by redistributing the total driving force TQ or by correcting the basic driving force distribution (T F1 * , T R1 * ).
 対象座席Sが選択されており、補正位置演算部52が補正位置を補正配分演算部53に入力する場合、補正配分演算部53は、車体101の回転中心Cを補正位置に追従させる頭部移動抑制制御用の補正駆動力配分(TF2 、TR2 )を演算する。この頭部移動抑制制御用の補正駆動力配分(TF2 、TR2 )にしたがってフロントモータ23及びリアモータ28が駆動されることにより、対象乗員の頭部の移動が抑制される。 When the target seat S 2 S is selected and the correction position calculation unit 52 inputs the correction position to the correction allocation calculation unit 53, the correction allocation calculation unit 53 calculates a correction drive force allocation ( TF2 * , TR2 * ) for head movement suppression control that causes the rotation center C of the vehicle body 101 to follow the correction position. The front motor 23 and the rear motor 28 are driven in accordance with this correction drive force allocation ( TF2 * , TR2 * ) for head movement suppression control, thereby suppressing movement of the head of the target occupant.
 一方、対象座席Sが選択されておらず、補正位置演算部52が補正位置を補正配分演算部53に入力しない場合、補正配分演算部53は、例えば電動車両100の車両モデルに基づいて、ピッチ角抑制制御用の補正駆動力配分(TF2 、TR2 )を演算する。このピッチ角抑制制御用の補正駆動力配分(TF2 、TR2 )にしたがってフロントモータ23及びリアモータ28が駆動されることにより、ピッチ角θは、予め設定される目標とするピッチ角に制御される。 On the other hand, when the target seat S 2 S is not selected and the correction position calculation unit 52 does not input the correction position to the correction allocation calculation unit 53, the correction allocation calculation unit 53 calculates a correction driving force allocation (T F2 * , T R2 * ) for pitch angle suppression control based on, for example, a vehicle model of the electric vehicle 100. The front motor 23 and the rear motor 28 are driven in accordance with this correction driving force allocation (T F2 * , T R2 * ) for pitch angle suppression control, whereby the pitch angle θ P is controlled to a preset target pitch angle.
 なお、補正位置演算部52は省略され得る。この場合、補正配分演算部53は、基準位置設定部51から基準位置を取得し、車体101の回転中心Cが基準位置となるように、頭部移動抑制制御用の補正駆動力配分(TF2 、TR2 )を演算する。本実施形態では、上記のとおり、補正位置演算部52が補正位置を演算し、車体101の回転中心Cを補正位置に追従させる頭部移動抑制制御用の補正駆動力配分(TF2 、TR2 )を演算する。 It should be noted that the correction position calculation unit 52 may be omitted. In this case, the correction allocation calculation unit 53 acquires the reference position from the reference position setting unit 51, and calculates a correction drive force allocation ( TF2 * , TR2 * ) for head movement suppression control so that the center of rotation C of the vehicle body 101 becomes the reference position. In this embodiment, as described above, the correction position calculation unit 52 calculates the correction position, and calculates a correction drive force allocation ( TF2 * , TR2 * ) for head movement suppression control that causes the center of rotation C of the vehicle body 101 to follow the correction position.
 <作用>
 以下、上記のように構成される電動車両100の頭部移動抑制制御に係る作用を説明する。
<Action>
Hereinafter, the operation of the head movement suppression control of the electric vehicle 100 configured as above will be described.
 図9は、頭部移動抑制制御に係るフローチャートである。図9に示すように、ステップS10において、座席選択器13が、車酔いを抑制すべき対象乗員が座る対象座席Sの選択を受け付けると、ステップS11において、基準位置設定部51は、対象座席Sが運転席または助手席であるか否かを確認する。ステップS11において、対象座席Sが運転席または助手席である場合、すなわち対象座席Sが前部座席33である場合、ステップS12に進み、基準位置設定部51は、基準位置を前部座席33に座る乗員Pの頭部Hの位置Lに設定する。一方、ステップS11において、対象座席Sが後部座席34である場合、ステップS13に進み、基準位置設定部51は、基準位置を後部座席34に座る乗員Pの頭部Hの位置Lに設定する。 9 is a flow chart relating to the head movement suppression control. As shown in FIG. 9, when the seat selector 13 accepts the selection of the target seat S 1 S in which the target occupant who should be suppressed from car sickness sits in step S10, the reference position setting unit 51 checks in step S11 whether the target seat S 1 S is the driver's seat or the passenger seat. In step S11, if the target seat S 1 S is the driver's seat or the passenger seat, that is, if the target seat S 1 S is the front seat 33, the process proceeds to step S12, where the reference position setting unit 51 sets the reference position to the position L 1 of the head H 1 of the occupant P 1 sitting in the front seat 33. On the other hand, in step S11, if the target seat S 1 S is the rear seat 34, the process proceeds to step S13, where the reference position setting unit 51 sets the reference position to the position L 2 of the head H 2 of the occupant P 2 sitting in the rear seat 34.
 また、ステップS14では、頭部移動検出部44が、対象座席Sにいる対象乗員の頭部の移動、すなわち対象乗員の頭部の移動量及び移動方向を検出する。そして、ステップS15では、補正位置演算部52が、基準位置と、頭部移動検出部44による頭部移動検出結果と、に基づき、補正位置を演算する。 In step S14, the head movement detection unit 44 detects the movement of the head of the target occupant in the target seat S S , i.e., the amount and direction of movement of the head of the target occupant. Then, in step S15, the corrected position calculation unit 52 calculates a corrected position based on the reference position and the head movement detection result by the head movement detection unit 44.
 ステップS16では、補正配分演算部53が、車体101の回転中心Cを補正位置に追従させる頭部移動抑制制御用の補正駆動力配分(TF2 、TR2 )を演算する。そして、ステップS17では、駆動力設定部45が、この頭部移動抑制制御用の補正駆動力配分(TF2 、TR2 )を設定することにより、補正駆動力配分(TF2 、TR2 )にしたがって前輪21及び後輪26が駆動される。 In step S16, the correction distribution calculation unit 53 calculates a corrected driving force distribution ( TF2*, TR2*) for head movement suppression control that causes the center of rotation C of the vehicle body 101 to follow the corrected position. Then, in step S17, the driving force setting unit 45 sets the corrected driving force distribution (TF2 * , TR2 * ) for head movement suppression control, and the front wheels 21 and rear wheels 26 are driven in accordance with the corrected driving force distribution (TF2 * , TR2 * ).
 図10は、対象乗員の頭部の位置X、ピッチ角θ、及び、トルクT,Tの推移を模式的に示すグラフである。図10では、電動車両100が停車した状態から、時刻tにおいてアクセルが操作され、発進する走行シーンを例にしている。図10(A)から図10(C)は、頭部移動抑制制御を行わず、ピッチ角抑制制御を継続する比較例における各パラメータを示す。図10(D)から図10(D)は、本実施形態によって頭部移動抑制制御を行う本実施形態における各パラメータを示す。なお、図10における破線は、姿勢制御を行わない場合、すなわち頭部移動抑制制御もピッチ角抑制制御も行わない参考例の各パラメータを示す。 Fig. 10 is a graph showing a schematic transition of the head position XH , pitch angle θP , and torques T F and T R of a target occupant. Fig. 10 shows an example of a driving scene in which the electric vehicle 100 is stopped and the accelerator is operated at time t0 to start moving. Figs. 10(A) to 10(C) show parameters in a comparative example in which head movement suppression control is not performed and pitch angle suppression control is continued. Figs. 10(D) to 10(D) show parameters in this embodiment in which head movement suppression control is performed according to this embodiment. Note that the dashed lines in Fig. 10 show parameters in a reference example in which posture control is not performed, i.e., neither head movement suppression control nor pitch angle suppression control is performed.
 ピッチ角抑制制御を行う比較例の場合、電動車両100が発進すると、図10(B)に示すように、車体101がノーズアップしてピッチ角θが生じると、ノーズアップを抑制するように補正駆動力配分(TF2 、TR2 )が設定されることにより、図10(C)に示すように、フロントトルクT及びリアトルクTが調整される。その結果、図10(B)に示すように、姿勢制御を行わない参考例(破線)よりも、ピッチ角θが低減される。 In the comparative example in which pitch angle suppression control is performed, when the electric vehicle 100 starts moving, the vehicle body 101 turns nose-up and a pitch angle θP occurs as shown in Fig. 10(B), and the corrective driving force distribution ( TF2 * , TR2 * ) is set so as to suppress the nose-up, thereby adjusting the front torque TF and the rear torque TR as shown in Fig. 10(C). As a result, as shown in Fig. 10(B), the pitch angle θP is reduced more than in the reference example (dashed line) in which attitude control is not performed.
 このとき、図10(A)に示すように、対象乗員の頭部はピッチ角θの変動に応じて、例えば前後に振動的に移動した後、基準位置(ゼロの位置)に漸近する。また、ピッチ角抑制制御によって、ピッチ角θが低減され、姿勢制御を行わない参考例(破線)と比較すれば、ピッチ角抑制制御は、対象乗員の頭部の移動が抑制される。 10A, the head of the target occupant moves, for example, back and forth in a vibrational manner and then approaches the reference position (zero position) in response to the fluctuation of the pitch angle θ P. In addition, the pitch angle suppression control reduces the pitch angle θ P , and compared to the reference example (broken line) in which no attitude control is performed, the pitch angle suppression control suppresses the movement of the head of the target occupant.
 本実施形態の頭部移動抑制制御を行う場合においても、電動車両100が発進すれば、図10(E)に示すように、車体101がノーズアップしてピッチ角θが生じることに変わりはない。しかし、本実施形態の頭部移動抑制制御では、車体101の回転中心Cが、概ね、対象座席Sに応じた基準位置に移動される。このため、図10(F)に示すように、頭部移動抑制制御では、ピッチ角抑制制御とは前輪21及び後輪26の駆動力配分が異なる。このため、図10(E)に示すとおり、例えば時刻tの近傍のように、姿勢制御を行わない参考例(破線)よりもピッチ角θが大きくなる場合がある。一方で、図10(D)に示すように、ピッチ角抑制制御を実行する場合よりも、対象乗員の頭部の移動が低減される。特に、フロントトルクT及びリアトルクTが収束した時刻t以降について、対象乗員の頭部の位置Xを比較すれば、その差は明らかである。したがって、本実施形態の頭部移動抑制制御によれば、対象乗員の頭部の移動が特に良く抑制されるので、対象乗員の車酔いが抑制される。 Even when the head movement suppression control of this embodiment is performed, when the electric vehicle 100 starts, the vehicle body 101 still has the nose up and generates the pitch angle θP , as shown in FIG. 10(E). However, in the head movement suppression control of this embodiment, the center of rotation C of the vehicle body 101 is generally moved to a reference position corresponding to the target seat S S. Therefore, as shown in FIG. 10(F), the head movement suppression control has a different distribution of driving force between the front wheels 21 and the rear wheels 26 from the pitch angle suppression control. Therefore, as shown in FIG. 10(E), for example, near time t1 , the pitch angle θP may be larger than the reference example (broken line) in which the attitude control is not performed. On the other hand, as shown in FIG. 10(D), the movement of the head of the target occupant is reduced compared to the case where the pitch angle suppression control is performed. In particular, if the head position XH of the target occupant is compared after time t2 when the front torque T F and the rear torque T R converge, the difference is clear. Therefore, according to the head movement suppression control of this embodiment, the movement of the head of the target occupant is suppressed particularly effectively, thereby suppressing car sickness in the target occupant.
 さらに、本実施形態の頭部移動抑制制御では、対象乗員の頭部の移動についての検出結果をフィードバックした補正位置に追従するように、基準位置の周りで、車体101の回転中心Cを移動させる位置が振動的に調整される。これにより、図10(F)に示すように、ピッチ角抑制制御を行う場合よりも、フロントトルクT及びリアトルクTが振動的に変化する。また、特に、時刻tの近傍においては、図10(E)に示すように、車体101の回転中心Cを基準位置に維持した場合よりも、前後方向における車体101の傾斜(ピッチ角θ)が増大する。その結果、図10(D)に示すように、頭部移動抑制制御では、時刻tの近傍における対象乗員の頭部の揺り戻しが低減される。ピッチ角抑制制御では、図10(A)に示すように、時刻tの近傍において対象乗員の頭部に大きな揺り戻しが生じることと比較すれば、本実施形態の頭部移動抑制制御によるこの揺り戻し低減効果は明らかである。 Furthermore, in the head movement suppression control of this embodiment, the position to which the rotation center C of the vehicle body 101 is moved is adjusted oscillatorily around the reference position so as to follow the corrected position obtained by feeding back the detection result of the movement of the head of the target occupant. As a result, as shown in FIG. 10(F), the front torque T F and the rear torque T R change oscillatorily more than in the case of performing the pitch angle suppression control. In particular, in the vicinity of time t 1 , as shown in FIG. 10(E), the inclination (pitch angle θ P ) of the vehicle body 101 in the front-rear direction increases more than in the case of maintaining the rotation center C of the vehicle body 101 at the reference position. As a result, as shown in FIG. 10(D), in the head movement suppression control, the swing back of the head of the target occupant is reduced in the vicinity of time t 1. In comparison with the pitch angle suppression control, in which the head of the target occupant experiences a large swing back in the vicinity of time t 1 as shown in FIG. 10(A), the swing back reduction effect of the head movement suppression control of this embodiment is clear.
 このように、本実施形態の頭部移動抑制制御では、車体101の回転中心Cを基準位置に移動させることによって、ピッチ角抑制制御よりも直接的かつ効果的に、対象乗員の頭部の移動(特に移動量)を抑制できる。さらに、本実施形態の頭部移動抑制制御では、車体101の回転中心Cを補正位置に追従させることによって、対象乗員の頭部に生じる揺り戻し(振動)を抑制することができる。したがって、本実施形態の頭部移動抑制制御では、対象乗員の車酔いが、従来よりも良く抑制される。 In this way, the head movement suppression control of this embodiment can suppress the movement (particularly the amount of movement) of the target occupant's head more directly and effectively than pitch angle suppression control by moving the center of rotation C of the vehicle body 101 to a reference position. Furthermore, the head movement suppression control of this embodiment can suppress the swing back (vibration) that occurs in the target occupant's head by making the center of rotation C of the vehicle body 101 follow the corrected position. Therefore, the head movement suppression control of this embodiment suppresses car sickness in the target occupant better than ever before.
 [第2実施形態]
 上記第1実施形態では、フロントサスペンション31及びリアサスペンション32は予め定められた高さ及び減衰力を有する。しかし、フロントサスペンション31及びリアサスペンション32がいわゆるアクティブサスペンションであり、これらの高さや減衰力を調整可能であるときには、頭部移動抑制制御において、フロントサスペンション31及びリアサスペンション32の調整を併せて行うことが好ましい。以下に説明する第2実施形態は、フロントサスペンション31及びリアサスペンション32は、その長さ(高さ)及び減衰力が調整可能であり、頭部移動抑制制御において、フロントサスペンション31及びリアサスペンション32の調整が併せて行われる。
[Second embodiment]
In the first embodiment, the front suspension 31 and the rear suspension 32 have a predetermined height and damping force. However, when the front suspension 31 and the rear suspension 32 are so-called active suspensions and their heights and damping forces are adjustable, it is preferable to adjust the front suspension 31 and the rear suspension 32 in the head movement suppression control. In the second embodiment described below, the length (height) and damping force of the front suspension 31 and the rear suspension 32 are adjustable, and the front suspension 31 and the rear suspension 32 are adjusted in the head movement suppression control.
 図11は、駆動力配分の調整とサスペンションの調整を併せて行う場合における回転中心Cの移動範囲を示す説明図である。 FIG. 11 is an explanatory diagram showing the range of movement of the center of rotation C when adjusting the drive force distribution and the suspension at the same time.
 例えば、フロントサスペンション31またはリアサスペンション32の長さ(高さ)を調整し、電動車両100の前方における車高を、後方における車高に対して相対的に下げると、車体101は初めからノーズダイブしているのと同様の姿勢となる。このため、電動車両100の前方における車高を下げるサスペンションの調整は、ノーズアップを抑制する駆動力配分の調整と実質的に同様の効果がある。本実施形態の電動車両100においては、電動車両100の前方における車高を下げるサスペンションの調整は、加速時に後輪26への駆動力配分を増大させる調整に相当する。これは、車体101の回転中心Cを後方に移動させるのと実質的に同じ作用である。したがって、電動車両100の前方における車高を下げるサスペンションの調整により、駆動力配分の調整による回転中心Cの変動範囲は、実質的に後方に変更(遷移または拡張)される。 For example, if the length (height) of the front suspension 31 or the rear suspension 32 is adjusted to lower the vehicle height at the front of the electric vehicle 100 relative to the vehicle height at the rear, the vehicle body 101 will assume a posture similar to that of a nose dive from the beginning. Therefore, adjusting the suspension to lower the vehicle height at the front of the electric vehicle 100 has substantially the same effect as adjusting the driving force distribution to suppress nose-up. In the electric vehicle 100 of this embodiment, adjusting the suspension to lower the vehicle height at the front of the electric vehicle 100 corresponds to adjusting the driving force distribution to increase the driving force distribution to the rear wheels 26 during acceleration. This is substantially the same effect as moving the center of rotation C of the vehicle body 101 rearward. Therefore, by adjusting the suspension to lower the vehicle height at the front of the electric vehicle 100, the range of variation of the center of rotation C due to the adjustment of the driving force distribution is substantially changed (shifted or expanded) rearward.
 一方、フロントサスペンション31及びリアサスペンション32の長さ(高さ)を調整し、電動車両100の後方における車高を、前方における車高に対して相対的に下げると、車体101は初めからノーズアップしているのと同様の姿勢となる。このため、電動車両100の後方における車高を下げるサスペンションの調整は、ノーズダイブを抑制する駆動力配分の調整と実質的に同様の効果がある。本実施形態の電動車両100においては、電動車両100の後方における車高を下げるサスペンションの調整は、減速時に前輪21への駆動力配分を増大させる調整に相当する。これは、車体101の回転中心Cを前方に移動させるのと実質的に同じ作用である。したがって、電動車両100の後方における車高を下げるサスペンションの調整により、駆動力配分の調整による回転中心Cの変動範囲は、実質的に前方遷移または拡張される。 On the other hand, if the length (height) of the front suspension 31 and the rear suspension 32 is adjusted to lower the vehicle height at the rear of the electric vehicle 100 relative to the vehicle height at the front, the vehicle body 101 assumes a posture similar to that of a nose-up vehicle from the beginning. Therefore, adjusting the suspension to lower the vehicle height at the rear of the electric vehicle 100 has substantially the same effect as adjusting the driving force distribution to suppress nose dive. In the electric vehicle 100 of this embodiment, adjusting the suspension to lower the vehicle height at the rear of the electric vehicle 100 corresponds to adjusting to increase the driving force distribution to the front wheels 21 during deceleration. This is substantially the same effect as moving the center of rotation C of the vehicle body 101 forward. Therefore, by adjusting the suspension to lower the vehicle height at the rear of the electric vehicle 100, the range of variation of the center of rotation C due to the adjustment of the driving force distribution is substantially shifted forward or expanded.
 また、フロントサスペンション31またはリアサスペンション32の減衰力(硬さ)を調整する場合も、上記のように車高を調整する場合と同様に、駆動力配分の調整による回転中心Cの変動範囲は、実質的に遷移または拡張される。 Also, when adjusting the damping force (stiffness) of the front suspension 31 or rear suspension 32, the range of variation of the center of rotation C caused by adjusting the drive force distribution is substantially shifted or expanded, just as when adjusting the vehicle height as described above.
 したがって、図11に示すように、サスペンションの調整を併せて行うことによって、回転中心Cの変動範囲は駆動力配分の調整のみによる変動範囲Rよりも広くなり、回転中心Cは、実質的に変動範囲REXの範囲で調整可能となる。 Therefore, as shown in FIG. 11, by also adjusting the suspension, the range of variation of the center of rotation C becomes wider than the range of variation R0 achieved only by adjusting the drive force distribution, and the center of rotation C can be adjusted substantially within the range of variation R EX .
 なお、フロントサスペンション31及びリアサスペンション32の減衰力をともに大きくすると、電動車両100の姿勢変化が抑制される。すなわち、ピッチ角θの発生及び変動が抑制される。したがって、頭部移動抑制制御において、フロントサスペンション31及びリアサスペンション32の減衰力をともに大きくすると、ピッチ角θが小さくなるので、対象乗員の頭部の移動量(rα・θ)が低減される。その結果、対象乗員の車酔いが抑制されやすい。 In addition, when the damping forces of both the front suspension 31 and the rear suspension 32 are increased, the change in posture of the electric vehicle 100 is suppressed. In other words, the occurrence and fluctuation of the pitch angle θP is suppressed. Therefore, in the head movement suppression control, when the damping forces of both the front suspension 31 and the rear suspension 32 are increased, the pitch angle θP becomes smaller, and the amount of head movement (r α · θP ) of the target occupant is reduced. As a result, car sickness of the target occupant is easily suppressed.
 図12は、サスペンションの調整によって回転中心Cの移動を補助する場合の頭部移動抑制制御に係るフローチャートである。図12に示すように、ステップS20において、座席選択器13が、車酔いを抑制すべき対象乗員が座る対象座席Sの選択を受け付けると、ステップS21において、基準位置設定部51は、対象座席Sが運転席または助手席(前部座席33)であるか否かを確認する。ステップS21において、対象座席Sが運転席または助手席である場合、ステップS22に進み、基準位置設定部51は、基準位置を前部座席33に座る乗員Pの頭部Hの位置Lに設定する。一方、ステップS11において、対象座席Sが後部座席34である場合、ステップS23に進み、基準位置設定部51は、基準位置を後部座席34に座る乗員Pの頭部Hの位置Lに設定する。これらのステップは、第1実施形態と同様である。 12 is a flow chart relating to the head movement suppression control in the case where the movement of the rotation center C is assisted by adjusting the suspension. As shown in FIG. 12, in step S20, when the seat selector 13 accepts the selection of the target seat S 1 S in which the target occupant who should be suppressed from car sickness sits, in step S21, the reference position setting unit 51 checks whether the target seat S 1 S is the driver's seat or the passenger seat (front seat 33). In step S21, if the target seat S 1 S is the driver's seat or the passenger seat, the process proceeds to step S22, where the reference position setting unit 51 sets the reference position to the position L 1 of the head H 1 of the occupant P 1 sitting in the front seat 33. On the other hand, in step S11, if the target seat S 1 S is the rear seat 34, the process proceeds to step S23, where the reference position setting unit 51 sets the reference position to the position L 2 of the head H 2 of the occupant P 2 sitting in the rear seat 34. These steps are the same as those in the first embodiment.
 その後、ステップS24では、コントローラ12は、駆動力配分の調整だけで、車体101の回転中心Cを、設定された基準位置に移動させることが可能か否かを確認する。サスペンションの設定状態ごとに、駆動力配分の調整によって回転中心Cを移動させ得る範囲(R)は演算可能である。このため、コントローラ12は、サスペンションの設定状態に応じて、駆動力配分の調整によって回転中心Cを移動させ得る範囲(R)を演算することにより、車体101の回転中心Cを、設定された基準位置に移動させることが可能か否かを確認する。この場合、コントローラ12は、駆動力配分の調整によって回転中心Cを移動させ得る範囲(R)を演算する回転中心移動範囲演算部として機能する。 Thereafter, in step S24, the controller 12 checks whether or not it is possible to move the center of rotation C of the vehicle body 101 to the set reference position simply by adjusting the drive force distribution. For each suspension setting state, the range (R 0 ) within which the center of rotation C can be moved by adjusting the drive force distribution can be calculated. Therefore, the controller 12 checks whether or not it is possible to move the center of rotation C of the vehicle body 101 to the set reference position by calculating the range (R 0 ) within which the center of rotation C can be moved by adjusting the drive force distribution according to the suspension setting state. In this case, the controller 12 functions as a rotation center movement range calculation unit that calculates the range (R 0 ) within which the center of rotation C can be moved by adjusting the drive force distribution.
 ステップS24において、設定された基準位置が、駆動力配分の調整によって回転中心Cを移動させ得る範囲(R)にあると判定された場合、ステップS26に進み、対象乗員の頭部の移動量及び移動方向が検出され、ステップS27では、対象乗員の頭部の具体的な移動量及び移動方向に応じた補正位置が演算される。そして、ステップS28では、車体101の回転中心Cを補正位置に追従させる頭部移動抑制制御用の補正駆動力配分(TF2 、TR2 )が演算され、ステップS29では、この頭部移動抑制制御用の補正駆動力配分(TF2 、TR2 )にしたがって前輪21及び後輪26が駆動される。これらの各ステップは第1実施形態と同様である。 If it is determined in step S24 that the set reference position is within the range (R 0 ) in which the center of rotation C can be moved by adjusting the drive force distribution, the process proceeds to step S26, where the amount and direction of movement of the target occupant's head are detected, and in step S27, a corrected position according to the specific amount and direction of movement of the target occupant's head is calculated. Then, in step S28, a corrected drive force distribution ( TF2 * , TR2 * ) for head movement suppression control that causes the center of rotation C of the vehicle body 101 to follow the corrected position is calculated, and in step S29, the front wheels 21 and the rear wheels 26 are driven according to this corrected drive force distribution ( TF2 * , TR2 * ) for head movement suppression control. Each of these steps is the same as in the first embodiment.
 一方、ステップS24において、設定された基準位置が、駆動力配分の調整によって回転中心Cを移動させ得る範囲(R)にないと判定された場合、ステップS25に進む。ステップS25では、コントローラ12が、フロントサスペンション31またはリアサスペンション32を調整する。これにより、電動車両100の車高のバランス、サスペンションの減衰力、または、これらの両方が変更され、駆動力配分の調整によって回転中心Cを移動させ得る範囲が、補正位置の変動を含み得る程度に余裕をもって基準位置を含む範囲(REX)に遷移または拡張される。その上で、ステップS26に進む。ステップS26以降は、上述のとおりである。 On the other hand, if it is determined in step S24 that the set reference position is not within the range (R 0 ) in which the center of rotation C can be moved by adjusting the driving force distribution, the process proceeds to step S25. In step S25, the controller 12 adjusts the front suspension 31 or the rear suspension 32. This changes the balance of the vehicle height of the electric vehicle 100, the damping force of the suspension, or both, and the range in which the center of rotation C can be moved by adjusting the driving force distribution is transitioned or expanded to a range (R EX ) that includes the reference position with a margin that can include fluctuations in the corrected position. Then, the process proceeds to step S26. Steps from S26 onwards are as described above.
 このように、頭部移動抑制制御において、サスペンションの調整によって回転中心Cの移動を補助すると、基準位置が、駆動力配分の調整によって回転中心Cを移動させ得る範囲(R)にない場合でも、対象乗員の頭部の移動が抑制される。その結果、対象乗員の車酔いが、より確実に抑制され得る。 In this way, in the head movement suppression control, when the movement of the center of rotation C is assisted by adjusting the suspension, the movement of the head of the target occupant is suppressed even if the reference position is not within the range (R 0 ) in which the center of rotation C can be moved by adjusting the drive force distribution. As a result, car sickness of the target occupant can be more reliably suppressed.
 図13は、ピッチ角θの発生及び変動の抑制を、サスペンションの調整によって補助する場合の頭部移動抑制制御に係るフローチャートである。図13に示すように、ピッチ角θの発生及び変動の抑制を、サスペンションの調整によって補助する場合、対象座席SSの選択(ステップS10)から、前輪21及び後輪26の駆動(ステップS17)までの各ステップは、第1実施形態と同様である。そして、ステップS17において、補正駆動力配分(TF2 、TR2 )にしたがって前輪21及び後輪26が駆動されると、ステップS31に進み、コントローラ12は、対象乗員の頭部の移動が抑制されたか否かを確認する。例えば、コントローラ12は、頭部移動検出部44による頭部移動検出結果を監視し、対象乗員の頭部の移動が抑制されたか否かを確認する。本実施形態では、コントローラ12は、対象乗員の頭部の移動量(基準位置に対する変位)について移動量閾値を設定し、対象乗員の頭部の加速度について加速度閾値を設定する。そして、コントローラ12は、検出された移動量が移動量閾値以下であり、かつ、検出された加速度が加速度閾値以下となったときに、対象乗員の頭部の移動が抑制されたと判定する。この場合、コントローラ12は、頭部移動抑制判定部として機能する。 13 is a flow chart relating to head movement suppression control in the case where suppression of occurrence and variation of pitch angle θ P is assisted by adjusting the suspension. As shown in FIG. 13, in the case where suppression of occurrence and variation of pitch angle θ P is assisted by adjusting the suspension, each step from selection of the target seat SS (step S10) to driving of the front wheels 21 and the rear wheels 26 (step S17) is the same as that in the first embodiment. Then, when the front wheels 21 and the rear wheels 26 are driven according to the corrected driving force distribution ( TF2 * , TR2 * ) in step S17, the process proceeds to step S31, where the controller 12 checks whether or not the movement of the head of the target occupant has been suppressed. For example, the controller 12 monitors the head movement detection result by the head movement detection unit 44, and checks whether or not the movement of the head of the target occupant has been suppressed. In this embodiment, the controller 12 sets a movement amount threshold value for the movement amount (displacement relative to the reference position) of the head of the target occupant, and sets an acceleration threshold value for the acceleration of the head of the target occupant. The controller 12 determines that the movement of the head of the target occupant has been suppressed when the detected amount of movement is equal to or less than the movement amount threshold and the detected acceleration is equal to or less than the acceleration threshold. In this case, the controller 12 functions as a head movement suppression determination unit.
 ステップS31において、対象乗員の頭部の移動が抑制されたと判定されたときには、サスペンションの調整を併用するまでもないので、この制御周期の演算は終了する。一方、ステップS31において、対象乗員の頭部の移動が抑制されていないと判定されたときには、ステップS32に進む。そして、ステップS32では、コントローラ12は、フロントサスペンション31及びリアサスペンション32の減衰力を増大させることにより、ピッチ角θの発生及び変動を抑制する。これにより、次の制御周期において、対象乗員の頭部の移動が抑制される確率が高まる。 If it is determined in step S31 that the head movement of the target occupant has been suppressed, there is no need to adjust the suspension, and the calculation for this control cycle ends. On the other hand, if it is determined in step S31 that the head movement of the target occupant has not been suppressed, the process proceeds to step S32. Then, in step S32, the controller 12 increases the damping forces of the front suspension 31 and the rear suspension 32 to suppress the occurrence and variation of the pitch angle θP . This increases the probability that the head movement of the target occupant will be suppressed in the next control cycle.
 このように、頭部移動抑制制御において、ピッチ角θの発生及び変動の抑制を、サスペンションの調整によって補助することにより、より確実に、対象乗員の頭部の移動が抑制される。その結果、対象乗員の車酔いは、より確実に抑制され得る。 In this way, in the head movement suppression control, the generation and variation of the pitch angle θ P is assisted by adjusting the suspension, so that the head movement of the target occupant is more reliably suppressed. As a result, car sickness of the target occupant can be more reliably suppressed.
 なお、上記第2実施形態におけるサスペンションの調整のうち、車高または減衰力を変更するフロントサスペンション31及びリアサスペンション32の調整は、対象乗員の頭部の移動方向を調整するために利用することもできる。例えば、車体101の回転中心Cは、駆動力配分の調整によって、電動車両100の前後に移動するので、駆動力配分の調整によって抑制しやすい頭部の移動は、電動車両100の前後方向への移動である。このため、対象乗員の頭部の移動方向が、電動車両100の前後方向に沿っているほど、駆動力配分の調整によって、対象乗員の頭部の移動が正確かつ確実に抑制される。したがって、サスペンションの調整(車高または減衰力の調整)によって、対象乗員の頭部の移動方向を、電動車両100の前後方向に一致させることにより、頭部移動抑制制御によって、対象乗員の頭部の移動が正確かつ確実に抑制される。このため、対象乗員の車酔いが、より確実に抑制される。 In addition, among the suspension adjustments in the second embodiment, the adjustments of the front suspension 31 and the rear suspension 32 that change the vehicle height or the damping force can also be used to adjust the movement direction of the target occupant's head. For example, since the center of rotation C of the vehicle body 101 moves forward and backward in the electric vehicle 100 by adjusting the drive force distribution, the head movement that is easier to suppress by adjusting the drive force distribution is movement in the forward and backward direction of the electric vehicle 100. Therefore, the more the movement direction of the target occupant's head is along the forward and backward direction of the electric vehicle 100, the more accurately and reliably the head movement of the target occupant is suppressed by adjusting the drive force distribution. Therefore, by aligning the movement direction of the target occupant's head with the forward and backward direction of the electric vehicle 100 by adjusting the suspension (adjusting the vehicle height or the damping force), the head movement of the target occupant is accurately and reliably suppressed by the head movement suppression control. Therefore, car sickness of the target occupant is more reliably suppressed.
 以上のように、上記第1実施形態及び第2実施形態に係る電動車両の制御方法(頭部移動抑制制御)は、駆動輪である前輪21及び後輪26の駆動力配分を調整することによって、前後方向における車体101の姿勢を制御する電動車両100の制御方法である。この電動車両の制御方法では、複数の座席のうち1つの座席(対象座席S)の選択を受け付け、選択された座席(対象座席S)に応じた基準位置(例えばL)が設定される。そして、駆動力配分を調整することにより、車体101の回転中心Cが基準位置に移動される。 As described above, the control method (head movement suppression control) for an electric vehicle according to the first and second embodiments is a control method for an electric vehicle 100 that controls the attitude of the vehicle body 101 in the fore-and-aft direction by adjusting the drive force distribution between the front wheels 21 and the rear wheels 26, which are the drive wheels. In this control method for an electric vehicle, the selection of one seat (target seat S S ) out of a plurality of seats is accepted, and a reference position (e.g., L 1 ) corresponding to the selected seat (target seat S S ) is set. Then, the drive force distribution is adjusted to move the center of rotation C of the vehicle body 101 to the reference position.
 このように、車体101の回転中心Cを、車酔いを抑制すべき対象の乗員が座る対象座席Sに応じた基準位置に移動させると、その対象乗員の頭部の移動が抑制される。特に、対象乗員の頭部の移動量、すなわち基準位置に対する変位量が抑制される。また、この抑制作用は、ピッチ角θを抑制することによって間接的に頭部の移動を抑制する場合と比較して、より直接的かつ効果的である。したがって、上記第1実施形態及び第2実施形態に係る電動車両の制御方法(頭部移動抑制制御)によれば、従来よりも、対象乗員の車酔いが抑制されやすい。 In this way, when the center of rotation C of the vehicle body 101 is moved to a reference position corresponding to the target seat S S in which the target occupant whose car sickness should be suppressed sits, the movement of the head of the target occupant is suppressed. In particular, the amount of movement of the head of the target occupant, i.e., the amount of displacement from the reference position, is suppressed. Furthermore, this suppression action is more direct and effective than the case where the head movement is indirectly suppressed by suppressing the pitch angle θ P. Therefore, according to the control method (head movement suppression control) for the electric vehicle according to the first and second embodiments, car sickness of the target occupant is more easily suppressed than in the past.
 上記第1実施形態及び第2実施形態では、特に、選択された座席(対象座席S)に乗車する乗員(対象乗員)の頭部(例えばH)の移動が検出され、その頭部の移動に応じて、基準位置(例えばL)を中心に移動する補正位置(例えばCα からCα の位置)が演算される。そして、駆動力配分を調整することにより、車体101の回転中心Cが、基準位置を中心として補正位置に追従して移動される。 In particular, in the first and second embodiments, movement of the head (e.g., H 1 ) of an occupant (target occupant) sitting in a selected seat (target seat S S ) is detected, and a corrected position (e.g., position from C α + to C α - ) moving around a reference position (e.g., L 1 ) is calculated in accordance with the movement of the head. Then, by adjusting the drive force distribution, the center of rotation C of the vehicle body 101 moves around the reference position to follow the corrected position.
 このように、車体101の回転中心Cを、対象乗員の頭部の実際的な移動に応じて、基準位置の周りで微調整することで、さらに頭部の移動を確実に抑制することができる。特に、この制御は、乗員によって異なる体格や筋肉量等の差異を吸収し得る。すなわち、あるピッチ角θが生じた場合、通常は、対象乗員の具体的な体格や筋肉量等によって、頭部の具体的な移動量等が異なる。しかし、上記の制御は、対象乗員の体格や筋肉量等の個体差によらず、その対象乗員に応じて、的確に、頭部の移動を抑制することができる。さらに、あるピッチ角θの発生によって頭部が移動したときには揺り戻しが発生するが、上記の制御は、このような揺り戻しを低減することができる。したがって、対象乗員の車酔いを特に抑制することができる。 In this way, by finely adjusting the center of rotation C of the vehicle body 101 around the reference position in response to the actual movement of the head of the target occupant, the movement of the head can be further reliably suppressed. In particular, this control can absorb differences in physique, muscle mass, etc., which differ depending on the occupant. That is, when a certain pitch angle θ P occurs, the specific amount of head movement, etc. usually differs depending on the specific physique, muscle mass, etc., of the target occupant. However, the above control can accurately suppress the movement of the head depending on the target occupant, regardless of the individual differences in the physique, muscle mass, etc., of the target occupant. Furthermore, when the head moves due to the occurrence of a certain pitch angle θ P , a rocking back occurs, but the above control can reduce such a rocking back. Therefore, car sickness of the target occupant can be particularly suppressed.
 上記第1実施形態及び第2実施形態では、対象乗員の頭部(例えばH)の移動として、頭部の移動方向、及び、頭部の移動量が検出される。そして、補正位置(例えばCα からCα の位置)は、頭部の移動方向とは逆向きに、頭部の移動量(rα・θ)に応じて移動する。 In the first and second embodiments, the direction and amount of head movement of the target occupant's head (e.g., H 1 ) are detected, and the correction position (e.g., position from C α + to C α ) moves in the opposite direction to the head movement direction according to the amount of head movement (r α ·θ P ).
 このように、対象乗員の頭部の移動に対して正反対に移動する補正位置に回転中心Cを追従させることによって、頭部の移動の抑制効果が特に向上する。また、対象乗員に応じた頭部の移動の抑制効果、及び、揺り戻し低減効果も向上する。 In this way, by making the center of rotation C follow a corrected position that moves in the exact opposite direction to the movement of the target occupant's head, the effect of suppressing head movement is particularly improved. In addition, the effect of suppressing head movement according to the target occupant and the effect of reducing swing-back are also improved.
 上記第1実施形態及び第2実施形態では、車体101の回転中心Cを補正位置(例えばCα からCα の位置)に移動させることによって、車体101の回転中心Cを基準位置(例えばL)に維持した場合よりも、前後方向における車体101の傾斜(θ)を増大させる場合がある。 In the first and second embodiments described above, by moving the center of rotation C of the vehicle body 101 to a correction position (for example, from C α + to C α - position), the inclination (θ P ) of the vehicle body 101 in the fore-and-aft direction may be increased compared to when the center of rotation C of the vehicle body 101 is maintained at the reference position (for example, L 1 ).
 このように、ピッチ角θが増大する方向にも車体101の回転中心Cを移動させると、特に揺り戻しが低減されやすい。 In this way, if the center of rotation C of the vehicle body 101 is also moved in the direction in which the pitch angle θ P increases, the swing back is particularly likely to be reduced.
 上記第2実施形態では、駆動力配分の調整に加えて、前輪21または後輪26のサスペンションが調整される。 In the second embodiment, in addition to adjusting the drive force distribution, the suspension of the front wheels 21 or the rear wheels 26 is adjusted.
 このように、頭部移動抑制制御においてサスペンションを調整すると、車体101の回転中心Cが駆動力配分の調整によって変動し得る範囲が遷移または拡張され、もしくは、ピッチ角θが低減される。このため、対象乗員の頭部の移動がさらに抑制されやすくなる。 In this way, when the suspension is adjusted in the head movement suppression control, the range in which the center of rotation C of the vehicle body 101 can move due to the adjustment of the drive force distribution is shifted or expanded, or the pitch angle θ P is reduced, which makes it easier to suppress the movement of the head of the target occupant.
 上記第2実施形態では、前輪21または後輪26のサスペンションの減衰力を調整することによって、または、前輪21または後輪26のサスペンションを用いて車高を調整することによって、駆動力配分の調整によって車体101の回転中心Cが移動し得る範囲(R)を、基準位置(例えばL)を含むように遷移または拡張させる。 In the above second embodiment, the range (R 0 ) within which the center of rotation C of the vehicle body 101 can move is shifted or expanded to include a reference position (e.g., L 1 ) by adjusting the damping force of the suspension of the front wheels 21 or the rear wheels 26, or by adjusting the vehicle height using the suspension of the front wheels 21 or the rear wheels 26 , thereby adjusting the distribution of driving force.
 このように、頭部移動抑制制御において、サスペンションの調整によって電動車両100の車高を調整し、または、サスペンションの減衰力を調整すると、車体101の回転中心Cが駆動力配分の調整によって変動し得る範囲が遷移または拡張される。このため、基準位置が、駆動力配分の調整によって回転中心Cを移動させ得る範囲(R)にない場合でも、対象乗員の頭部の移動が抑制され得る。したがって、対象乗員の車酔いが、より確実に抑制され得る。 In this way, in the head movement suppression control, when the vehicle height of electric vehicle 100 is adjusted by adjusting the suspension or the damping force of the suspension is adjusted, the range in which center of rotation C of vehicle body 101 can move by adjusting the drive force distribution is shifted or expanded. Therefore, even if the reference position is not within the range (R 0 ) in which center of rotation C can be moved by adjusting the drive force distribution, movement of the head of the target occupant can be suppressed. Therefore, car sickness of the target occupant can be more reliably suppressed.
 上記第2実施形態では、前輪21及び後輪26のサスペンションにおける減衰力をともに大きくする。 In the second embodiment, the damping force in the suspension of both the front wheels 21 and the rear wheels 26 is increased.
 このように、頭部移動抑制制御においてフロントサスペンション31及びリアサスペンション32の減衰力をともに大きくすると、車体101の姿勢(θ)の変化がさらに抑制される。このため、ピッチ角θが生じた場合でも、これによる対象乗員の頭部の移動量が抑制される。したがって、対象乗員の車酔いが、より確実に抑制され得る。 In this way, by increasing the damping forces of both the front suspension 31 and the rear suspension 32 in the head movement suppression control, the change in the attitude (θ P ) of the vehicle body 101 is further suppressed. Therefore, even if a pitch angle θ P occurs, the amount of head movement of the target occupant due to this is suppressed. Therefore, car sickness of the target occupant can be more reliably suppressed.
 上記第2実施形態では、前輪21または後輪26のサスペンションの減衰力を調整することによって、または、前輪21または後輪26のサスペンションを用いて車高を調整することによって、選択された座席(対象座席S)にいる乗員の頭部の移動方向を、電動車両100の前後方向に一致させる。 In the above second embodiment, the direction of movement of the head of the occupant in the selected seat (target seat S S ) is made to coincide with the fore-and-aft direction of the electric vehicle 100 by adjusting the damping force of the suspension of the front wheels 21 or the rear wheels 26, or by adjusting the vehicle height using the suspension of the front wheels 21 or the rear wheels 26.
 このように、サスペンションの調整によって、対象座席Sにいる対象乗員の頭部の移動方向を、電動車両100の前後方向に一致させると、頭部移動抑制制御によって、対象乗員の頭部の移動を、より正確かつ確実に抑制される。その結果、対象乗員の車酔いが、より確実に抑制され得る。 In this way, by adjusting the suspension to align the head movement direction of the target occupant in the target seat S with the front-rear direction of the electric vehicle 100, the head movement suppression control more accurately and reliably suppresses the head movement of the target occupant. As a result, car sickness of the target occupant can be more reliably suppressed.
 上記第1実施形態及び第2実施形態に係る電動車両の制御装置は、駆動輪である前輪21及び後輪26の駆動力配分を調整することによって、前後方向における車体101の姿勢を制御する電動車両100の制御装置である。この制御装置は、複数の座席のうち1つの座席(対象座席S)の選択を受け付ける座席選択器13と、選択された座席(対象座席S)に応じた基準位置(例えばL)を設定する基準位置設定部51と、駆動力配分を調整することにより、車体101の回転中心Cを基準位置(例えばL)に移動させる駆動力設定部45と、を備える。 The control device for an electric vehicle according to the first and second embodiments is a control device for an electric vehicle 100 that controls the posture of a vehicle body 101 in the longitudinal direction by adjusting the drive force distribution to the drive wheels, that is, the front wheels 21 and the rear wheels 26. This control device includes a seat selector 13 that accepts the selection of one seat (target seat S S ) out of a plurality of seats, a reference position setting unit 51 that sets a reference position (e.g., L 1 ) according to the selected seat (target seat S S ), and a drive force setting unit 45 that moves the center of rotation C of the vehicle body 101 to the reference position (e.g., L 1 ) by adjusting the drive force distribution.
 この電動車両の制御装置は、車体101の回転中心Cを、車酔いを抑制すべき対象の乗員が座る対象座席Sに応じた基準位置に移動させる。これにより、対象座席Sにいる対象乗員の頭部の移動が抑制される。特に、対象乗員の頭部の移動量、すなわち基準位置に対する変位量が抑制される。また、この抑制作用は、ピッチ角θを抑制することによって間接的に頭部の移動を抑制する場合と比較して、より直接的かつ効果的である。したがって、上記第1実施形態及び第2実施形態に係る電動車両の制御装置によれば、従来よりも、対象乗員の車酔いが抑制されやすい。 This control device for an electric vehicle moves the center of rotation C of the vehicle body 101 to a reference position corresponding to the target seat S S in which the target occupant who should be suppressed from experiencing car sickness sits. This suppresses movement of the head of the target occupant in the target seat S S. In particular, the amount of movement of the target occupant's head, i.e., the amount of displacement from the reference position, is suppressed. This suppression action is more direct and effective than the case where head movement is indirectly suppressed by suppressing the pitch angle θ P. Therefore, according to the control device for an electric vehicle according to the first and second embodiments, car sickness of the target occupant is more easily suppressed than in the past.
 以上、本発明の実施形態について説明したが、上記実施形態で説明した構成は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を限定する趣旨ではない。 The above describes an embodiment of the present invention, but the configurations described in the above embodiment merely show some of the application examples of the present invention and are not intended to limit the technical scope of the present invention.

Claims (9)

  1.  駆動輪である前輪及び後輪の駆動力配分を調整することによって、前後方向における車体の姿勢を制御する電動車両の制御方法であって、
     複数の座席のうち1つの前記座席の選択を受け付け、
     選択された前記座席に応じた基準位置を設定し、
     前記駆動力配分を調整することにより、前記車体の回転中心を前記基準位置に移動させる、
    電動車両の制御方法。
    A method for controlling an electric vehicle, which controls a vehicle body attitude in a longitudinal direction by adjusting a driving force distribution between front and rear drive wheels, comprising:
    Accepting a selection of one of a plurality of seats;
    Setting a reference position according to the selected seat;
    By adjusting the drive force distribution, the rotation center of the vehicle body is moved to the reference position.
    A method for controlling an electric vehicle.
  2.  請求項1に記載の電動車両の制御方法であって、
     選択された前記座席に乗車する乗員の頭部の移動を検出し、
     前記頭部の移動に応じて、前記基準位置を中心に移動する補正位置を演算し、
     前記駆動力配分を調整することにより、前記車体の回転中心を、前記基準位置を中心として前記補正位置に追従して移動させる、
    電動車両の制御方法。
    A method for controlling an electric vehicle according to claim 1,
    Detecting head movement of an occupant in the selected seat;
    Calculating a correction position that moves around the reference position in response to the movement of the head;
    By adjusting the drive force distribution, the rotation center of the vehicle body is moved so as to follow the corrected position with the reference position as a center.
    A method for controlling an electric vehicle.
  3.  請求項2に記載の電動車両の制御方法であって、
     前記頭部の移動として、前記頭部の移動方向、及び、前記頭部の移動量を検出し、
     前記補正位置は、前記頭部の移動方向とは逆向きに、前記頭部の移動量に応じて移動する、
    電動車両の制御方法。
    A method for controlling an electric vehicle according to claim 2, comprising:
    Detecting a direction of movement of the head and an amount of movement of the head as the movement of the head;
    the correction position moves in a direction opposite to the movement direction of the head in accordance with the amount of movement of the head.
    A method for controlling an electric vehicle.
  4.  請求項2に記載の電動車両の制御方法であって、
     前記車体の回転中心を前記補正位置に移動させることによって、前記車体の回転中心を前記基準位置に維持した場合よりも、前記前後方向における前記車体の傾斜を増大させる、
    電動車両の制御方法。
    A method for controlling an electric vehicle according to claim 2, comprising:
    By moving the rotation center of the vehicle body to the correction position, the inclination of the vehicle body in the front-rear direction is increased compared to a case in which the rotation center of the vehicle body is maintained at the reference position.
    A method for controlling an electric vehicle.
  5.  請求項1から4のいずれか1項に記載の電動車両の制御方法であって、
     前記駆動力配分の調整に加えて、前記前輪または前記後輪のサスペンションを調整する、
    電動車両の制御方法。
    A method for controlling an electric vehicle according to any one of claims 1 to 4, comprising:
    In addition to adjusting the drive force distribution, a suspension of the front wheels or the rear wheels is adjusted.
    A method for controlling an electric vehicle.
  6.  請求項5に記載の電動車両の制御方法であって、
     前記前輪または前記後輪のサスペンションの減衰力を調整することによって、または、前記前輪または前記後輪のサスペンションを用いて車高を調整することによって、前記駆動力配分の調整によって前記車体の回転中心が移動し得る範囲を、前記基準位置を含むように遷移または拡張させる、
    電動車両の制御方法。
    A method for controlling an electric vehicle according to claim 5,
    by adjusting the damping force of the suspension of the front wheels or the rear wheels, or by adjusting the vehicle height using the suspension of the front wheels or the rear wheels, the range in which the center of rotation of the vehicle body can move due to the adjustment of the driving force distribution is shifted or expanded to include the reference position.
    A method for controlling an electric vehicle.
  7.  請求項5に記載の電動車両の制御方法であって、
     前記前輪及び前記後輪のサスペンションにおける減衰力をともに大きくする、
    電動車両の制御方法。
    A method for controlling an electric vehicle according to claim 5,
    Increasing the damping forces in both the front and rear wheel suspensions;
    A method for controlling an electric vehicle.
  8.  請求項5に記載の電動車両の制御方法であって、
     前記前輪または前記後輪のサスペンションの減衰力を調整することによって、または、前記前輪または前記後輪のサスペンションを用いて車高を調整することによって、選択された前記座席にいる乗員の前記頭部の移動方向を、前記電動車両の前記前後方向に一致させる、
    電動車両の制御方法。
    A method for controlling an electric vehicle according to claim 5,
    By adjusting a damping force of a suspension of the front wheels or the rear wheels, or by adjusting a vehicle height using a suspension of the front wheels or the rear wheels, a moving direction of the head of the occupant in the selected seat is made to coincide with the front-rear direction of the electric vehicle.
    A method for controlling an electric vehicle.
  9.  駆動輪である前輪及び後輪の駆動力配分を調整することによって、前後方向における車体の姿勢を制御する電動車両の制御装置であって、
     複数の座席のうち1つの前記座席の選択を受け付ける座席選択器と、
     選択された前記座席に応じた基準位置を設定する基準位置設定部と、
     前記駆動力配分を調整することにより、前記車体の回転中心を前記基準位置に移動させる駆動力設定部と、
    を備える、電動車両の制御装置。
    A control device for an electric vehicle that controls a vehicle body posture in a longitudinal direction by adjusting a driving force distribution between front wheels and rear wheels, which are driving wheels,
    a seat selector for accepting a selection of one of a plurality of seats;
    a reference position setting unit that sets a reference position according to the selected seat;
    a driving force setting unit that adjusts the driving force distribution to move the rotation center of the vehicle body to the reference position;
    A control device for an electric vehicle comprising:
PCT/JP2022/038125 2022-10-12 2022-10-12 Method for controlling electric vehicle and device for controlling electric vehicle WO2024079829A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038125 WO2024079829A1 (en) 2022-10-12 2022-10-12 Method for controlling electric vehicle and device for controlling electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038125 WO2024079829A1 (en) 2022-10-12 2022-10-12 Method for controlling electric vehicle and device for controlling electric vehicle

Publications (1)

Publication Number Publication Date
WO2024079829A1 true WO2024079829A1 (en) 2024-04-18

Family

ID=90669032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038125 WO2024079829A1 (en) 2022-10-12 2022-10-12 Method for controlling electric vehicle and device for controlling electric vehicle

Country Status (1)

Country Link
WO (1) WO2024079829A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131212A (en) * 2005-11-11 2007-05-31 Toyota Motor Corp Controller for vehicle
JP2013126821A (en) * 2011-12-19 2013-06-27 Toyota Motor Corp Vehicle behavior control device
JP2017071370A (en) * 2015-10-09 2017-04-13 トヨタ自動車株式会社 Vehicular passenger posture control apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131212A (en) * 2005-11-11 2007-05-31 Toyota Motor Corp Controller for vehicle
JP2013126821A (en) * 2011-12-19 2013-06-27 Toyota Motor Corp Vehicle behavior control device
JP2017071370A (en) * 2015-10-09 2017-04-13 トヨタ自動車株式会社 Vehicular passenger posture control apparatus

Similar Documents

Publication Publication Date Title
CN109624947B (en) Braking force control device for vehicle
CN104024076B (en) The control device of vehicle
JP6261154B2 (en) Vehicle control method using in-wheel motor
JP4887771B2 (en) Traveling device
JP5696405B2 (en) Vehicle system vibration control device
JP5540894B2 (en) Vehicle vibration suppression control device
US20060041353A1 (en) Vehicle stability control system
US20090157246A1 (en) Vehicle motion control device
US9139107B2 (en) Device for improving vehicle behavior when steering
CN111976713B (en) Vehicle control device
JP6350003B2 (en) Vehicle control device
JP2007099181A (en) Vehicle combining roll angle control with roll rigidity fore-and-aft distribution ratio control
RU2526310C2 (en) Device for improving vehicle behaviour during steering
JP7107716B2 (en) Vehicle control device and vehicle
US9126593B2 (en) Vibration damping control device
WO2024079829A1 (en) Method for controlling electric vehicle and device for controlling electric vehicle
CN117377606A (en) Vehicle integrated control device and vehicle integrated control method
WO2024057465A1 (en) Electric vehicle control method and electric vehicle control device
JP2009177994A (en) Device for controlling a plurality of drive sources
WO2024057466A1 (en) Electric vehicle control method and electric vehicle control device
JP2021041896A (en) vehicle
WO2023032220A1 (en) Drive force control method and drive force control device
JP2000213404A (en) Driving force control apparatus for vehicle
EP4400354A1 (en) Driving force control method and driving force control device
JP2024038582A (en) Vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962049

Country of ref document: EP

Kind code of ref document: A1