WO2024057465A1 - Electric vehicle control method and electric vehicle control device - Google Patents

Electric vehicle control method and electric vehicle control device Download PDF

Info

Publication number
WO2024057465A1
WO2024057465A1 PCT/JP2022/034487 JP2022034487W WO2024057465A1 WO 2024057465 A1 WO2024057465 A1 WO 2024057465A1 JP 2022034487 W JP2022034487 W JP 2022034487W WO 2024057465 A1 WO2024057465 A1 WO 2024057465A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
electric vehicle
estimated
attitude control
jerk
Prior art date
Application number
PCT/JP2022/034487
Other languages
French (fr)
Japanese (ja)
Inventor
匡史 岩本
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2022/034487 priority Critical patent/WO2024057465A1/en
Publication of WO2024057465A1 publication Critical patent/WO2024057465A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an electric vehicle control method and an electric vehicle control device.
  • JP4876534B2 discloses a technique for reducing the pitch rate of a vehicle when the vehicle passes over a bump in the road surface, etc., regarding an in-wheel motor type vehicle in which the effect of the suspension is not sufficiently obtained. More specifically, different braking and driving forces are applied to the front and rear wheels, and if a change in pitch rate is detected, different braking and driving forces are applied to the left and right wheels at a predetermined period. It is disclosed that it will be granted.
  • attitude control works to follow and, for example, cancel out attitude fluctuations that have already occurred, so attitude control may not be substantially in time.
  • the driving force distribution is adjustable, the driving force distribution is usually determined in consideration of running stability so as to optimize electricity consumption. Therefore, when attitude control using driving force distribution is executed, the driving force distribution is changed from the driving force distribution that provides the best electric power consumption to the driving force distribution for controlling the attitude, and thus the electric power consumption deteriorates. For this reason, it is desirable to keep the attitude control by adjusting the driving force distribution off (non-execution state) as much as possible, and turn it on (execution state) only when necessary, even if it is a trade-off with electricity consumption.
  • attitude control when turning on/off attitude control by adjusting driving force distribution as necessary, if the start of attitude control is determined using detected values such as pitch rate, changes in attitude that have already occurred Since the determination to start attitude control is made based on this, there is a delay in the determination to start attitude control itself. As a result, the delay in attitude control is exacerbated, and the number of cases in which attitude control is not substantially completed in time increases. This is noticeable when posture control is performed by feedback control, but the same is true when posture control is performed by feedforward control. In other words, when attitude control is turned on and off as necessary, even if attitude control is performed by feedforward control, when the start judgment is made using a detected value such as pitch rate, the attitude control is delayed due to a delay in the start judgment. may not actually be completed in time.
  • the present invention provides an electric vehicle that can reduce the delay in determining the start of attitude control and timely implement attitude control when attitude control by adjusting driving force distribution is turned on/off as necessary.
  • the present invention aims to provide a control method for an electric vehicle and a control device for an electric vehicle.
  • An aspect of the present invention is a control method for an electric vehicle that executes attitude control that controls the attitude in the longitudinal direction by adjusting the driving force distribution between the front wheels and the rear wheels, which are drive wheels.
  • the total driving force which is the required driving force for the electric vehicle
  • the total driving force is calculated based on the operation of the accelerator pedal.
  • there is an estimated acceleration which is an estimated value of the acceleration that occurs when the electric vehicle is driven by the total driving force
  • an estimated value which is an estimated value of jerk, which is the time rate of change in acceleration. Jerk is calculated.
  • an attitude control execution determination is made to turn on/off the attitude control.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of an electric vehicle.
  • FIG. 2 is an explanatory diagram showing a schematic structure of the chassis system.
  • FIG. 3 is a graph showing the lower limit value of the pitch angle that an occupant of an electric vehicle can experience during acceleration.
  • FIG. 4 is a block diagram showing the configuration of the controller 12 for attitude control.
  • FIG. 5 is a block diagram showing the configuration of the attitude control execution determination section.
  • FIG. 6 is a flowchart showing an operation related to turning on/off posture control in an electric vehicle.
  • FIG. 7 is a time chart showing changes in parameters when posture control is switched from off to on.
  • FIG. 8 is a block diagram showing the configuration of an attitude control execution determination section in the second embodiment.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of an electric vehicle.
  • FIG. 2 is an explanatory diagram showing a schematic structure of the chassis system.
  • FIG. 3 is a graph showing the lower limit value of the pitch angle that an occupant of
  • FIG. 9 is a flowchart showing the operation related to turning on/off posture control for the electric vehicle of the second embodiment.
  • FIG. 10 is a block diagram showing a configuration for updating the coefficients of the approximation equation used to calculate running resistance.
  • FIG. 11 is an explanatory diagram showing a specific mode of updating the coefficients of the approximation formula used to calculate running resistance.
  • FIG. 12 is a flowchart showing the operation related to updating the coefficients of the approximation formula used to calculate running resistance.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of an electric vehicle 100.
  • the electric vehicle 100 is, for example, an electric vehicle, a hybrid vehicle, or the like, and is a vehicle that can drive or brake one or more drive wheels using an electric motor.
  • the electric vehicle 100 is a so-called 4WD (four wheel drive) vehicle, and the driving force generated in a plurality of drive wheels can be individually controlled (adjusted).
  • electric vehicle 100 includes a front wheel drive system 10, a rear wheel drive system 11, and a controller 12.
  • the front wheel drive system 10 is a system that controls the front wheel 21, which is the first drive wheel.
  • Front wheel drive system 10 includes a front inverter 22 and a front motor 23.
  • the front inverter 22 drives the front motor 23 by converting DC power output by a battery (not shown) into AC power and supplying the AC power to the front motor 23. Furthermore, when the front motor 23 is rotated by the front wheels 21, the front inverter 22 converts the AC regenerative power generated by the front motor 23 into DC power and inputs the DC power to the battery, thereby charging the battery. .
  • the front motor 23 is an electric motor that drives the front wheels 21.
  • the front motor 23 is, for example, a three-phase AC synchronous motor.
  • the torque generated by the front motor 23 is transmitted to the front wheels 21 via the front drive shaft 24, and generates a driving force (hereinafter referred to as front wheel driving force FF ) at the front wheels 21.
  • the rear wheel drive system 11 is a system that controls the rear wheel 26, which is the second drive wheel.
  • Rear wheel drive system 11 includes a rear inverter 27 and a rear motor 28.
  • the rear inverter 27 drives the rear motor 28 by converting the DC power output by the battery into AC power and supplying the AC power to the rear motor 28. Further, when the rear motor 28 is rotated by the rear wheels 26, the rear inverter 27 converts the AC regenerated power generated by the rear motor 28 into DC power and inputs the DC power to the battery, thereby charging the battery.
  • the rear motor 28 is an electric motor that drives the rear wheels 26.
  • the rear motor 28 is configured by, for example, a three-phase AC synchronous motor similar to the front motor 23.
  • the torque generated by the rear motor 28 is transmitted to the rear wheels 26 via the rear drive shaft 29, and generates a driving force (hereinafter referred to as rear wheel driving force FR ) at the rear wheels 26.
  • the controller 12 is configured by one or more computers that control the operation of the electric vehicle 100. Controller 12 is programmed to control the operation of electric vehicle 100 at a predetermined control cycle. In the present embodiment, the controller 12 is a control device for the electric vehicle 100 that executes posture control to control the posture in the longitudinal direction by adjusting the distribution of driving force between the front wheels 21 and the rear wheels 26 that are drive wheels.
  • the controller 12 distributes the driving force (hereinafter referred to as the total driving force TQ) requested by, for example, the operation of an accelerator pedal (not shown) to the front wheels 21 and the rear wheels 26 that are driving wheels. Then, the controller 12 drives the front wheels 21 and the rear wheels 26 using the front wheel drive system 10 and the rear wheel drive system 11, respectively, so that a front wheel drive force F F and a rear wheel drive force F R are generated according to the distribution. Furthermore, in the present embodiment, the controller 12 is programmed to execute attitude control to control the longitudinal attitude of the electric vehicle 100 by adjusting the driving force distribution between the front wheels 21 and the rear wheels 26 as necessary. has been done.
  • the controller 12 can appropriately obtain various parameters representing the operating state of the electric vehicle 100, etc., using a sensor (not shown) or by calculation.
  • electric vehicle 100 includes an accelerator opening sensor (not shown) that detects accelerator opening APO . Therefore, the controller 12 can appropriately acquire the accelerator opening degree APO .
  • the accelerator opening degree APO is a parameter representing the amount of operation of the accelerator pedal. Further, the controller 12 appropriately acquires the vehicle speed VSP of the electric vehicle 100 using a sensor (not shown) or by calculation.
  • the electric vehicle 100 includes an acceleration sensor (not shown) that measures acceleration generated in the electric vehicle 100 (hereinafter referred to as actual acceleration Gact ). Therefore, the controller 12 can appropriately acquire the actual acceleration Gact . In addition, the controller 12 can appropriately obtain jerk (hereinafter referred to as actual jerk J act ), which is the time rate of change in acceleration generated in electric vehicle 100, by differentiating the actual acceleration G act .
  • the controller 12 can appropriately acquire the current location of the electric vehicle 100 and the slope of the road surface on which the electric vehicle 100 travels (hereinafter referred to as road surface slope ⁇ LS ) from a car navigation system (not shown).
  • the road surface slope ⁇ LS can be obtained by calculation based on the vehicle speed VSP and acceleration G of the electric vehicle 100, or changes thereof.
  • the road surface slope ⁇ LS is obtained from the car navigation system.
  • FIG. 2 is an explanatory diagram showing a schematic structure of the chassis system.
  • the front wheels 21 are connected via a front suspension 31 to a vehicle shed 101, which is a portion of the vehicle body where a passenger compartment and the like are formed.
  • the rear wheels 26 are connected to the vehicle shed 101 via a rear suspension 32.
  • the torque of the front motor 23 that generates the front wheel drive force FF acts on the vehicle shed 101 via the front suspension 31.
  • the front torque generates a moment around the virtual center of rotation O F that acts in a direction that reduces the pitch angle ⁇ P. That is, when electric vehicle 100 accelerates, the front torque suppresses nose up.
  • the torque of the rear motor 28 that generates the rear wheel drive force F R acts on the vehicle shed 101 via the rear suspension 32, and causes a pitch angle ⁇ around the virtual center of rotation O R. A moment is generated that acts in the direction of decreasing P. Therefore, when electric vehicle 100 accelerates, rear torque suppresses nose up.
  • the magnitude of the effect of the front torque on suppressing nose-up during acceleration depends on the magnitude of the anti-scut angle ⁇ F .
  • the magnitude of the effect of the rear torque to suppress nose-up during acceleration depends on the magnitude of the anti-scut angle ⁇ R. Therefore, by adjusting the drive force distribution between the front wheels 21 and the rear wheels 26 so that the distribution to the drive wheels with a relatively large anti-scut angle is increased, the nose-up can be suppressed while maintaining the total drive force. becomes larger. Therefore, in the present embodiment, the controller 12 performs attitude control that controls the attitude of the electric vehicle 100 in the longitudinal direction (i.e., the pitch angle ⁇ P or its variation) by adjusting the driving force distribution between the front wheels 21 and the rear wheels 26. Execute.
  • the virtual center of rotation OF is an instantaneous and virtual center of rotation that occurs in the vehicle body (in particular, the vehicle shed 101) due to the transmission of front torque, and is determined in advance by the specific configuration of the front suspension 31 and the like.
  • the virtual center of rotation OR in the rear section is an instantaneous and virtual center of rotation that occurs in the vehicle body (particularly the vehicle shed 101) due to the transmission of rear torque, and is determined in advance by the specific configuration of the rear suspension 32, etc. Determined.
  • the anti-scut angle ⁇ F is the angle formed by a line connecting the rotation center of the front wheel 21 and the virtual rotation center OF and a line parallel to the road surface in the XZ plane.
  • the anti-scut angle ⁇ R is the angle formed by a line connecting the rotation center of the rear wheel 26 and the virtual rotation center OR and a line parallel to the road surface in the XZ plane.
  • the anti-scut angle ⁇ R of the rear suspension 32 is larger than the anti-scut angle ⁇ F of the front suspension 31. Therefore, for example, when suppressing or reducing the pitch angle ⁇ P from increasing during acceleration, the controller 12 relatively increases the driving force distribution to the rear wheels 26 .
  • the controller 12 executes attitude control by adjusting the driving force distribution between the front wheels 21 and the rear wheels 26 even during deceleration.
  • the electric vehicle 100 assumes a position where the front portion sinks (a so-called nose dive position), so the controller 12 controls the driving of the front wheels 21 and the rear wheels 26 accordingly. Adjust force distribution.
  • the attitude of electric vehicle 100 refers to the attitude in the front-rear direction, that is, the pitch angle ⁇ P.
  • posture control by adjusting the driving force distribution is control of pitch angle ⁇ P , control of pitch rate ⁇ P , or control of pitch angle ⁇ P and pitch rate ⁇ P.
  • the pitch rate ⁇ P is the time rate of change of the pitch angle ⁇ P.
  • FIG. 3 is a graph showing the lower limit value LL of the pitch angle ⁇ P that the occupant of the electric vehicle 100 can experience during acceleration. As shown in FIG. 3, there is a lower limit value LL for the pitch angle ⁇ P that the occupant can experience during acceleration. That is, when the pitch angle ⁇ P is a small value that is about the lower limit value LL or less, the occupant has difficulty sensing the occurrence and fluctuation of the pitch angle ⁇ P.
  • This lower limit value LL depends on the pitch rate ⁇ P . Specifically, the larger the pitch rate ⁇ P is, the smaller the lower limit value LL of the perceivable pitch angle ⁇ P is. That is, when the pitch rate ⁇ P is large and the pitch angle ⁇ P changes sharply, the occupant senses the change in the pitch angle ⁇ P even if the pitch angle ⁇ P is small. On the other hand, when the pitch rate ⁇ P is small and the pitch angle ⁇ P changes slowly, the occupant has difficulty perceiving the change in the pitch angle ⁇ P even if the pitch angle ⁇ P is relatively large.
  • the occurrence or variation of the pitch angle ⁇ P usually causes little problem in stable running (running stability) of the electric vehicle 100, but may worsen the ride comfort of the electric vehicle 100. Therefore, the controller 12 executes posture control by adjusting the driving force distribution so that the pitch angle ⁇ P is approximately equal to or less than the lower limit value LL.
  • an upper limit value UL that is predetermined through experiments, simulations, etc. is set for the pitch angle ⁇ P to be controlled by attitude control.
  • the upper limit value UL is, for example, a constant value that does not depend on the pitch rate ⁇ P .
  • the controller 12 executes posture control by adjusting the driving force distribution when the pitch angle ⁇ P reaches a value in a range of not less than the lower limit value LL and not more than the upper limit value UL (a value within the region E 2a ). Thereby, the controller 12 controls the posture of the electric vehicle 100 in the longitudinal direction so that the pitch angle ⁇ P becomes a value within the range below the lower limit value LL (a value within the region E 1 ).
  • the target attitude of electric vehicle 100 is one in which pitch angle ⁇ P is zero.
  • the controller 12 controls the pitch angle in the longitudinal direction so that the pitch angle ⁇ P is maintained at substantially zero or other predetermined angle (hereinafter referred to as target pitch angle ⁇ P * ). Control your posture.
  • the predetermined angle for pitch angle ⁇ P may change depending on the specific running state of electric vehicle 100.
  • the controller 12 does not perform attitude control by adjusting the driving force distribution.
  • the controller 12 does not always execute attitude control, but performs an attitude control execution determination to turn attitude control on/off as necessary. Specifically, when it is determined as a result of the attitude control execution determination that attitude control needs to be executed, the controller 12 turns on attitude control. As a result, attitude control is started, or a state in which attitude control is being performed is maintained. On the other hand, when it is determined as a result of the attitude control execution determination that there is no need to execute attitude control, the controller 12 turns off attitude control. As a result, attitude control is stopped, or the state in which attitude control is stopped is maintained.
  • the controller 12 determines that attitude control is necessary and turns on the attitude control.
  • the controller 12 determines that there is no need to perform attitude control and turns off the attitude control.
  • the pitch angle ⁇ P has a positive correlation with the acceleration G generated in the electric vehicle 100
  • the pitch rate ⁇ P has a positive correlation with the jerk J, which is the time rate of change of the acceleration G generated in the electric vehicle 100.
  • the controller 12 can specify the lower limit value LL of the pitch angle ⁇ P that can be felt by the occupant based on the acceleration G, the jerk J, or both of these. Therefore, the controller 12 can determine whether to perform attitude control based on the acceleration G, the jerk J, or both.
  • the controller 12 Since the controller 12 acquires the actual acceleration G act and the actual jerk J act , it can determine whether to perform attitude control based on the actual acceleration G act and/or the actual jerk J act . However, in this embodiment, the controller 12 performs attitude control execution determination based on the estimated acceleration G est and/or the estimated jerk J est instead of the actual acceleration G act and/or the actual jerk J act . This is for the purpose of starting attitude control without delay when it is necessary to perform attitude control.
  • Estimated acceleration G est is an estimated value of acceleration G that will occur in electric vehicle 100 from now on.
  • estimated jerk J est is an estimated value of jerk J that will occur in electric vehicle 100 from now on.
  • the controller 12 can perform attitude control execution determination based not only on the estimated acceleration G est and/or the estimated jerk J est but also on the road surface gradient ⁇ LS .
  • the road surface gradient ⁇ LS is greater than a predetermined threshold value TH LS (predetermined gradient), the road surface on which the electric vehicle 100 runs is steep, and the occupant can feel the pitch angle ⁇ P and its change.
  • the controller 12 determines that there is no need to perform attitude control and turns off attitude control. That is, when the road surface slope ⁇ LS is less than or equal to the threshold TH LS and it is determined that attitude control is necessary based on the estimated acceleration G est and/or the estimated jerk J est , the controller 12 turns on the attitude control. Make it.
  • FIG. 4 is a block diagram showing the configuration of the controller 12 for attitude control.
  • the controller 12 includes a total driving force calculation section 41, a basic distribution calculation section 42, an attitude control calculation section 43, a driving force setting section 44, a front motor control section 45, and a rear motor control section 46. .
  • the total driving force calculating section 41 calculates the total driving force TQ based on the operation of the accelerator pedal.
  • Total driving force TQ is the required driving force for electric vehicle 100.
  • the total driving force calculation unit 41 has a map that associates the accelerator opening degree A PO with the total driving force TQ, and calculates the total driving force TQ corresponding to the accelerator opening degree A PO by referring to this map. .
  • the total driving force calculation unit 41 calculates the total driving force TQ based on the accelerator opening degree A PO as described above. Based on this, the total driving force TQ can be calculated. Since these systems are systems that replace the operation of the accelerator pedal by the driver, the calculation of the total driving force TQ performed by the total driving force calculation unit 41 based on the commands of these systems substantially does not require the operation of the accelerator pedal. It is a calculation based on operations.
  • the basic distribution calculation unit 42 distributes the total driving force TQ to the front wheels 21 and the rear wheels 26 according to the basic distribution.
  • the basic distribution is a driving force distribution that is determined so as to maximize electric power consumption within a range that can ensure running stability, and is determined in advance through experiments, simulations, or the like.
  • the basic distribution may change depending on the specific running state (steering state, etc.) of electric vehicle 100.
  • the basic distribution calculation unit 42 calculates the first front torque target value T F1 * and the first rear torque target value T R1 * based on the basic distribution and the total driving force TQ.
  • the first front torque target value T F1 * represents the front motor torque that causes the front wheels 21 to generate the front wheel driving force F F according to the basic distribution.
  • the first rear torque target value T R1 * represents the rear torque that causes the rear wheels 26 to generate the rear wheel drive force F R according to the basic distribution.
  • the attitude control calculation unit 43 determines whether or not attitude control is necessary, and calculates a correction distribution that is a driving force distribution for attitude control that should be set when attitude control is necessary.
  • the correction distribution is determined so that the attitude of electric vehicle 100 asymptotically approaches or maintains the target attitude. Therefore, by distributing the driving force to the front wheels 21 and the rear wheels 26 according to the corrected driving force distribution, the attitude of the electric vehicle 100 is controlled to be the target attitude.
  • the attitude control calculation unit 43 of this embodiment includes an attitude control execution determination unit 47 and a correction unit 48.
  • the attitude control execution determination unit 47 performs an attitude control execution determination for switching on/off of attitude control by adjusting the driving force distribution using feedforward control based on the total driving force TQ and the vehicle speed VSP.
  • the attitude control execution determination unit 47 makes the attitude control execution determination based on the road surface slope ⁇ LS in addition to the total driving force TQ and the vehicle speed VSP.
  • the result of the attitude control execution determination is represented by an attitude control flag FLG.
  • the attitude control flag FLG is, for example, a flag that becomes "1" (on) when execution of attitude control is necessary, and becomes "0" (off) when execution of attitude control is unnecessary.
  • the correction unit 48 corrects the driving forces of the front wheels 21 and rear wheels 26 (hereinafter referred to as basic driving forces) distributed according to the basic distribution, thereby increasing the driving forces of the front wheels 21 and rear wheels 26 for attitude control ( (hereinafter referred to as corrected driving force).
  • the correction unit 48 determines the second front torque target value corresponding to the corrected driving force based on the first front torque target value T F1 * corresponding to the basic driving force and the first rear torque target value T R1 *.
  • T F2 * and second rear torque target value T R2 * are calculated.
  • the correction unit 48 calculates the corrected driving force by feedforward control based on, for example, a predetermined vehicle model of the electric vehicle 100. In this embodiment, the corrected distribution is determined by calculating a specific corrected driving force.
  • the driving force setting unit 44 sets the driving force generated by the front wheels 21 and the rear wheels 26 to either the basic driving force or the corrected driving force according to the attitude control flag FLG.
  • the driving force setting unit 44 sets the driving force to be generated by the front wheels 21 and the rear wheels 26. is set as the basic driving force. That is, when the attitude control flag FLG is "0", the driving force setting unit 44 inputs the first front torque target value T F1 * to the front motor control unit 45, and inputs the first rear torque target value T R1 * to the rear motor control unit 45. Input to the control unit 46. This turns off attitude control.
  • the driving force setting unit 44 adjusts the driving force generated by the front wheels 21 and the rear wheels 26 to correct the driving force. Set to power. That is, when the attitude control flag FLG is "1", the driving force setting unit 44 inputs the second front torque target value T F2 * to the front motor control unit 45, and inputs the second rear torque target value T R2 * to the rear motor control unit 45. Input to the control unit 46. This turns on attitude control.
  • the front motor control unit 45 controls the front motor 23 via the front inverter 22 so that the driving force set by the driving force setting unit 44 is generated at the front wheels 21.
  • the front motor control unit 45 causes the front motor 23 to generate a front torque corresponding to the first front torque target value T F1 *.
  • the front motor control unit 45 causes the front motor 23 to adjust the second front torque target value T F2 * to the second front torque target value T F2 * .
  • the front wheel drive force FF is controlled to the basic drive force or the corrected drive force.
  • the rear motor control unit 46 controls the rear motor 28 via the rear inverter 27 so that the driving force set by the driving force setting unit 44 is generated at the rear wheel 26.
  • the rear motor control unit 46 causes the rear motor 28 to generate a rear torque corresponding to the first rear torque target value T R1 * .
  • the rear motor control unit 46 causes the rear motor 28 to generate a rear torque corresponding to the second rear torque target value T R2 *. generate.
  • the rear wheel drive force FR is controlled to the basic drive force or the corrected drive force.
  • front motor control section 45 and the rear motor control section 46 constitute a driving force control section that controls the driving force of the front motor 23 and the rear motor 28 according to the basic distribution or the corrected distribution.
  • FIG. 5 is a block diagram showing the configuration of the attitude control execution determination section 47.
  • the attitude control execution determination unit 47 includes a running resistance calculation unit 51, an acceleration estimation unit 52, a jerk estimation unit 53, a slope determination unit 54, a pitch state determination unit 55, and a flag setting unit 56. .
  • Running resistance calculating section 51 calculates running resistance RL [N] of electric vehicle 100 based on vehicle speed VSP [m/s].
  • Running resistance RL is composed of air resistance, rolling resistance, acceleration resistance, etc., and can be approximated by a quadratic function of vehicle speed VSP as shown in equation (1) below.
  • the coefficient A 0 of the second-order term, the coefficient A 1 of the first-order term, and the coefficient A 2 representing a term (constant term) that does not depend on the vehicle speed VSP may be determined in advance by, for example, experiments or simulations. can. Therefore, the running resistance calculation unit 51 calculates the running resistance RL according to the vehicle speed VSP using the coefficients A 0 , A 1 , and A 2 of each order.
  • the acceleration estimation unit 52 calculates the estimated acceleration G est [m/sec 2 ] based on the total driving force TQ [Nm] and the running resistance RL.
  • the acceleration estimation unit 52 calculates the estimated acceleration G est according to the equation of motion. That is, the acceleration estimating unit 52 calculates the estimated acceleration Gest based on the total driving force TQ, the running resistance RL, and the known weight of the electric vehicle 100 (hereinafter referred to as vehicle weight M), as shown in the following formula (2).
  • Estimated acceleration G est is calculated using [kg], gravitational acceleration g [m/sec 2 ], and road surface gradient ⁇ LS [deg]. Note that the estimated acceleration G est calculated by the acceleration estimation unit 52 is an estimated value of the acceleration G that occurs when the electric vehicle 100 is driven with the total driving force TQ.
  • the jerk estimation unit 53 calculates the estimated jerk J est [m/sec 3 ] based on the estimated acceleration G est . Specifically, the jerk estimating unit 53 calculates the estimated jerk J est by differentiating the estimated acceleration G est with respect to time, as shown in Equation (3) below. Note that the estimated jerk J est calculated by the jerk estimating unit 53 is an estimated value of the temporal change rate (jerk J) of the acceleration G that occurs when the electric vehicle 100 is driven with the total driving force TQ.
  • the slope determination unit 54 determines whether attitude control is possible based on the road surface slope ⁇ LS . Specifically, the slope determination unit 54 compares the road surface slope ⁇ LS with a predetermined threshold value THLS . Then, when the road surface slope ⁇ LS is less than or equal to the threshold value TH LS , the slope determination unit 54 determines that attitude control can be executed. On the other hand, when the road surface slope ⁇ LS is larger than the threshold value TH LS , the slope determination unit 54 determines that execution of attitude control is unnecessary.
  • the threshold value TH LS determined for the road surface slope ⁇ LS is determined by adaptation through experiment, simulation, or the like.
  • Pitch state determination unit 55 determines whether attitude control is necessary based on the state of pitch angle ⁇ P or its fluctuation that occurs when electric vehicle 100 is driven with total driving force TQ.
  • the pitch state determining unit 55 determines whether attitude control is necessary based on the estimated acceleration G est that has a positive correlation with the pitch angle ⁇ P , the estimated jerk J est that has a positive correlation with the pitch rate ⁇ P , or both of these. can be determined.
  • the pitch state determination unit 55 determines whether attitude control is necessary based on the estimated acceleration G est and the estimated jerk J est .
  • the pitch state determination unit 55 determines that the combination of pitch angle ⁇ P and pitch rate ⁇ P (hereinafter referred to as pitch state) corresponding to estimated acceleration G est and estimated jerk J est is such that the occupant can experience it. It is determined whether or not it is within a range that requires control. That is, the pitch state determination unit 55 determines whether the pitch state that occurs is within the range E 2a (see FIG. 3). Then, when the pitch state that occurs is within the range E2a , the pitch state determination unit 55 determines that attitude control needs to be executed (turned on). On the other hand, when the pitch state that occurs is not within the range E2a , the pitch state determination unit 55 determines that execution of attitude control is not required.
  • pitch state the combination of pitch angle ⁇ P and pitch rate ⁇ P (hereinafter referred to as pitch state) corresponding to estimated acceleration G est and estimated jerk J est is such that the occupant can experience it. It is determined whether or not it is within a range that requires control. That is, the pitch state
  • the above determination by the pitch state determining unit 55 is synonymous with determining whether the pitch angle ⁇ P is greater than or equal to the lower limit value LL and less than or equal to the upper limit value UL. Therefore, the pitch state determination unit 55, for example, compares the pitch angle ⁇ P corresponding to the estimated acceleration G est with the lower limit value LL that is preset according to the pitch rate ⁇ P corresponding to the estimated jerk J est . , it is possible to determine whether or not attitude control is necessary.
  • the pitch state determining unit 55 determines whether or not posture control is necessary, particularly in a simple or approximate manner as follows. That is, the pitch state determination unit 55 sets a predetermined threshold TH G (acceleration threshold) for the estimated acceleration G est , and sets a predetermined threshold TH J (jerk threshold) for the estimated jerk J est . , determine areas where there is a particularly high need for postural control. Then, when the estimated acceleration G est is equal to or greater than the threshold value TH G (and equal to or less than the upper limit value UL), and the estimated jerk J est is equal to or greater than the threshold value TH J , the pitch state determination unit 55 executes attitude control (on ) is determined to be necessary. On the other hand, when the estimated acceleration G est is smaller than the threshold TH G or when the estimated jerk J est is smaller than the threshold TH J , the pitch state determination unit 55 determines that execution of attitude control is not required.
  • TH G acceleration threshold
  • TH J jerk threshold
  • the threshold value TH J set for the estimated jerk J est can be a variable threshold value that changes depending on the estimated acceleration G est .
  • the threshold value TH G set for the estimated acceleration G est can be a variable threshold value that changes depending on the estimated jerk J est .
  • the pitch state determination unit 55 performs attitude control when the estimated acceleration G est satisfies either the threshold value TH G (and the upper limit value UL or less) or the estimated jerk J est satisfies the threshold value TH J or more. It may be determined that it is necessary to execute (turn on). In this case, when the estimated acceleration G est is smaller than the threshold TH G and the estimated jerk J est is smaller than the threshold TH J , the pitch state determination unit 55 determines that execution of attitude control is not required.
  • the flag setting unit 56 sets the attitude control flag FLG based on the determination results by the slope determining unit 54 and the pitch state determining unit 55. Specifically, when the gradient determining unit 54 determines that attitude control is not required to be executed, the flag setting unit 56 sets the attitude control flag FLG to “0” (off) regardless of the determination result by the pitch state determining unit 55. Set. When the slope determining unit 54 determines that attitude control is executable, the flag setting unit 56 sets the attitude control flag FLG based on the determination result by the pitch state determining unit 55. That is, when the gradient determining unit 54 determines that attitude control can be executed and the pitch state determining unit 55 determines that attitude control needs to be executed (turned on), the flag setting unit 56 sets the attitude control flag.
  • FIG. 6 is a flowchart showing operations related to turning on/off posture control in electric vehicle 100.
  • the total driving force calculation unit 41 calculates the total driving force TQ based on the acquired accelerator opening degree APO in step S11.
  • running resistance calculating section 51 calculates running resistance RL of electric vehicle 100 based on total driving force TQ and vehicle speed VSP.
  • the acceleration estimating unit 52 calculates the estimated acceleration G est based on the running resistance RL
  • the jerk estimating unit 53 calculates the estimated jerk J est using the estimated acceleration G est . do.
  • step S15 the slope determination unit 54 acquires the road surface slope ⁇ LS , and determines whether attitude control is possible based on the acquired road surface slope ⁇ LS .
  • the process proceeds to step S19, and the attitude control is stopped or the attitude control is stopped. The stopped state is maintained.
  • step S16 the process proceeds to step S16.
  • the necessity of attitude control is determined based on the pitch state ( ⁇ P , ⁇ P ).
  • step S16 the pitch state determination unit 55 compares the estimated acceleration G est with the threshold value TH G.
  • the process proceeds to step S17, and the pitch state determination unit 55 further compares the estimated jerk J est with the threshold TH J. Then, when the estimated jerk J est is greater than or equal to the threshold TH J , that is, when the estimated acceleration G est and the estimated jerk J est are both greater than or equal to the respective thresholds TH G and TH J , execution (on) of attitude control is performed. It is determined that it is necessary. Therefore, the process advances to step S18, and attitude control is executed, or execution of attitude control is maintained.
  • step S16 when the estimated acceleration G est is smaller than the threshold TH G in step S16, or when the estimated jerk J est is smaller than the threshold TH J in step S17, it is determined that attitude control does not need to be executed. Therefore, the process proceeds to step S19, and the attitude control is stopped or the stopped state is maintained.
  • FIG. 7 is a time chart showing changes in parameters when posture control is switched from off to on.
  • FIG. 7(A) shows changes in vehicle speed VSP.
  • FIG. 7(B) shows the transition of the accelerator opening degree APO .
  • FIG. 7(C) shows the transition of the total driving force TQ.
  • FIG. 7(D) shows a change in acceleration G of electric vehicle 100.
  • the solid line indicates the estimated acceleration G est
  • the one-dot chain line indicates the actual acceleration G act .
  • FIG. 7(E) shows changes in jerk J of electric vehicle 100.
  • the solid line indicates the estimated jerk J est
  • the dashed line indicates the actual jerk J act .
  • FIG. 7(F) shows the transition of the attitude control flag FLG.
  • the solid line indicates the attitude control flag FLG in this embodiment, in which the attitude control execution determination is performed by feedforward control based on the estimated acceleration G est and the estimated jerk J est .
  • the dashed-dotted line indicates the comparative example in which the attitude control execution determination is performed by feedback control based on the actual acceleration G act and actual jerk J act , or the pitch angle ⁇ P and pitch rate ⁇ P that actually occurred. Indicates the attitude control flag FLG. Note that in both the present embodiment and the comparative example, attitude control is performed by feedforward control.
  • FIG. 7(G) shows the transition of the pitch angle ⁇ P .
  • FIG. 7(G) shows the transition of the pitch angle ⁇ P .
  • the solid line indicates the pitch angle ⁇ P when performing attitude control execution determination in this embodiment.
  • the dashed line indicates the pitch angle ⁇ P of the comparative example. Note that the horizontal axis of each time chart in FIG. 7 is time [sec].
  • electric vehicle 100 is initially in a stopped state. Then, as shown in FIG. 7(B), when the accelerator pedal is depressed from time t1 and the accelerator opening degree APO increases in steps, the total driving force is increased accordingly, as shown in FIG. 7(C). TQ occurs and increases. As a result, as shown in FIG. 7A, the vehicle speed VSP of the electric vehicle 100 increases from time t4 , which is delayed by a predetermined amount from time t1 due to the control delay.
  • the control delay is a control delay due to communication delay, torque reaction delay of the front motor 23 and rear motor 28, and the like.
  • the estimated acceleration G est begins to rise from time t 1 without substantial delay. Therefore, as shown in FIG. 7(E), the estimated jerk J est also occurs from time t 1 without substantial delay. Further, here, as shown in FIG. 7(D), the estimated acceleration G est is assumed to be equal to or greater than the threshold value TH G at time t 2 between time t 1 and time t 4 . As shown in FIG. 7E, the estimated jerk J est assumes a value greater than or equal to the threshold value TH J at time t 3 between time t 2 and time t 4 .
  • both the estimated acceleration G est and the estimated jerk J est become equal to or greater than the threshold values TH G and TH J. Therefore, as shown in FIG. 7(F), in this embodiment (solid line), the attitude control flag FLG transitions from "0" (off) to "1" (on) at time t3 , and is started.
  • the actual acceleration Gact starts to increase from time t4 due to the control delay. Therefore, as shown in FIG. 7E, the actual jerk J act also occurs from time t4 due to the control delay. Further, as shown in FIG. 7(D), the time t5 at which the actual acceleration Gact becomes equal to or greater than the threshold value THG is after the time t4 . Then, as shown in FIG. 7(E), the actual jerk J act exceeds the threshold value TH J and is further delayed. Therefore, at time t6 , both the actual acceleration G act and the actual jerk J act become equal to or greater than the respective threshold values TH G and TH J. Therefore, as shown in FIG. 7(F), in the comparative example (dotted chain line), the attitude control flag FLG changes from "0" (off) to "1" (on) at least at time t6 after time t4 . ) and attitude control is started.
  • the attitude control execution determination is completed at time t3 before acceleration G etc. actually occur in the electric vehicle 100, and the electric vehicle 100 is actually accelerated.
  • G or the like occurs, attitude control has started.
  • the attitude control execution determination cannot be completed before time t4 when electric vehicle 100 actually experiences acceleration G or the like. Therefore, in the comparative example, after acceleration G etc. actually occur in electric vehicle 100, it is inevitable that a delay equivalent to at least a control delay will occur before attitude control is started.
  • the attitude control execution determination unit 47 determines whether or not attitude control is necessary based on the estimated acceleration G est and the estimated jerk J est . It is also possible to determine whether or not posture control is necessary based on either. However, the specific configuration of the attitude control execution determination unit 47 for determining whether or not attitude control is necessary is not limited to this. The attitude control execution determination unit 47 determines whether or not attitude control is necessary based on the actual acceleration G act , the actual jerk J act , or both of these in addition to the estimated acceleration G est and/or the estimated jerk J est be able to.
  • the attitude control execution determination unit 47 determines whether or not attitude control is necessary based on the estimated acceleration G est and the estimated jerk J est , and the attitude control execution determination unit 47 based on the actual acceleration G act and the actual jerk J act .
  • An embodiment will be described in which the necessity of attitude control is determined comprehensively by combining the determination of necessity of control.
  • FIG. 8 is a block diagram showing the configuration of the attitude control execution determination unit 47 in the second embodiment.
  • the attitude control execution determination unit 47 of the second embodiment includes a running resistance calculation unit 51, an acceleration estimation unit 52, a jerk estimation unit 53, and a gradient determination unit 54, which are similar to those of the first embodiment. Be prepared.
  • the attitude control execution determination section 47 of the second embodiment includes a first pitch state determination section 201 and a second pitch state determination section 202 instead of the pitch state determination section 55 of the first embodiment.
  • the attitude control execution determination section 47 of the second embodiment includes a flag setting section 203 instead of the flag setting section 56 of the first embodiment.
  • the first pitch state determining unit 201 determines the pitch state ( ⁇ P , ⁇ P ) that is predicted to occur based on the estimated acceleration G est and the estimated jerk J est . Accordingly, it is determined whether or not attitude control needs to be executed.
  • the first pitch state determination unit 201 determines whether or not attitude control is necessary using a simple or approximate method as in the first embodiment. Specifically, the first pitch state determination unit 201 presets threshold values TH G and TH J for the estimated acceleration G est and the estimated jerk J est , respectively.
  • the first pitch state determination unit 201 executes attitude control. (On) is determined to be necessary.
  • the first pitch state determination unit 201 determines that execution of attitude control is not required.
  • the second pitch state determination unit 202 acquires the actual acceleration G act and the actual jerk J act , and determines based on these whether or not attitude control needs to be executed. That is, the second pitch state determination unit 202 determines whether or not attitude control is necessary, depending on the pitch state ( ⁇ P , ⁇ P ) that actually occurs. Except for using the actual acceleration G act and the actual jerk J act instead of the estimated acceleration G est and the estimated jerk J est , the second pitch state determination unit 202 performs the determination of the necessity of attitude control in the same manner as in the first embodiment. This can be performed using a method similar to that used by the pitch state determining section 55 or the first pitch state determining section 201 described above.
  • the second pitch state determining section 202 uses the same simple or approximate method as the specific necessity determining method executed by the first pitch state determining section 201 to determine the actual acceleration G act and the actual jerk J act . Based on this, it is determined whether attitude control is necessary. That is, the second pitch state determination unit 202 sets threshold values TH G and TH J for the actual acceleration G act and the actual jerk J act , respectively.
  • the threshold values TH G and TH J set for the actual acceleration G act and the actual jerk J act can be different values from the threshold values TH G and TH J set for the estimated acceleration G est and the estimated jerk J est . However, here, for simplicity, the thresholds TH G and TH J are set to have the same value.
  • the second pitch state determination unit 202 executes attitude control. (On) is determined to be necessary.
  • the second pitch state determination unit 202 determines that attitude control does not need to be executed.
  • the flag setting unit 203 sets the attitude control flag FLG based on the determination results of the slope determining unit 54, the first pitch state determining unit 201, and the second pitch state determining unit 202.
  • the flag setting unit 203 determines that the attitude control is not necessary, regardless of the determination results of the first pitch state determining unit 201 and the second pitch state determining unit 202.
  • Set control flag FLG to "0" (off).
  • the flag setting unit 203 sets the attitude control flag FLG based on the determination results by the first pitch state determining unit 201 and the second pitch state determining unit 202. Set. Specifically, when the gradient determining unit 54 determines that attitude control is executable and the first pitch state determining unit 201 determines that attitude control needs to be executed (turned on), the flag setting unit 203 , the attitude control flag FLG is set to "1" (on) regardless of the determination result of the second pitch state determination unit 202.
  • the flag setting unit 203 determines that the second pitch state determining unit 202 When it is determined that attitude control needs to be executed (on), the attitude control flag FLG is set to "1" (on). Then, when the gradient determining unit 54 determines that attitude control is executable, but both the first pitch state determining unit 201 and the second pitch state determining unit 202 determine that attitude control does not need to be executed, the flag setting unit 203 sets the attitude control flag FLG to "0" (off).
  • the flag setting unit 203 determines whether either the first pitch state determining unit 201 or the second pitch state determining unit 202 executes attitude control (on). When it is determined that this is necessary, the attitude control flag FLG is set to "1" (on). Then, when the gradient determining unit 54 determines that attitude control is executable, and both the first pitch state determining unit 201 and the second pitch state determining unit 202 determine that attitude control does not need to be executed, , set the attitude control flag FLG to "0" (off).
  • FIG. 9 is a flowchart illustrating an operation related to turning on/off posture control for electric vehicle 100 according to the second embodiment.
  • the total driving force calculation unit 41 acquires the accelerator opening degree A PO
  • the second pitch state determination unit 202 acquires the actual acceleration G act and the actual jerk J act .
  • the total driving force calculating section 41 calculates the total driving force TQ based on the accelerator opening degree APO
  • the running resistance calculating section 51 calculates the driving force of the electric vehicle 100 based on the total driving force TQ and the vehicle speed VSP.
  • Calculate resistance RL
  • the acceleration estimating section 52 calculates the estimated acceleration G est based on the running resistance RL
  • the jerk estimating section 53 calculates the estimated jerk J est using the estimated acceleration G est .
  • step S22 the slope determination unit 54 determines whether attitude control is possible based on the road surface slope ⁇ LS .
  • the process proceeds to step S28, and the attitude control is stopped or the attitude control is stopped. The stopped state is maintained.
  • the process proceeds to step S23, and the process proceeds to step S23.
  • the necessity of attitude control is determined based on the pitch state ( ⁇ P , ⁇ P ) that is predicted to occur or the pitch state ( ⁇ P , ⁇ P ) that actually occurred.
  • step S23 the first pitch state determination unit 201 compares the estimated acceleration G est with the threshold value TH G.
  • the process proceeds to step S24, and the first pitch state determination unit 201 further compares the estimated jerk J est with the threshold TH J. Then, when the estimated jerk J est is greater than or equal to the threshold TH J , that is, when the estimated acceleration G est and the estimated jerk J est are both greater than or equal to the respective thresholds TH G and TH J , execution (on) of attitude control is performed. It is determined that it is necessary. Therefore, the process advances to step S27, and attitude control is executed, or execution of attitude control is maintained.
  • step S23 when the estimated acceleration G est is smaller than the threshold TH G in step S23, or when the estimated jerk J est is smaller than the threshold TH J in step S24, the process advances to step S25, and the second pitch state determination unit 202 The actual acceleration Gact is compared with a threshold value THG . Then, when the actual acceleration G act is equal to or greater than the threshold value TH G , the process proceeds to step S26, and the second pitch state determination unit 202 further compares the actual jerk J act with the threshold value TH J.
  • attitude control When the actual acceleration G act is equal to or greater than the threshold value TH G in step S25, and the actual jerk J act is equal to or greater than the threshold value TH J in step S26, it is determined that attitude control needs to be executed (on). Therefore, the process advances to step S27, and attitude control is executed, or execution of attitude control is maintained. In other words, even if it is determined as a result of the determination based on the estimated acceleration G est and the estimated jerk J est that it is not necessary to execute attitude control, as a result of the determination based on the actual acceleration G act and the actual jerk J act , the execution of attitude control is not necessary. When it is determined that (on) is necessary, attitude control is turned on.
  • step S25 when the actual acceleration G act is smaller than the threshold value TH G in step S25, or when the actual jerk J act is smaller than the threshold value TH J in step S26, it is determined that attitude control does not need to be executed. Therefore, the process proceeds to step S28, and the attitude control is stopped, or the stopped state of the attitude control is maintained. That is, as a result of the determination based on the estimated acceleration G est and the estimated jerk J est , it is determined that the execution of attitude control is not required, and as a result of the determination based on the actual acceleration G act and the actual jerk J act , it is determined that the execution of attitude control is not required. If it is determined that it is not required, attitude control is turned off.
  • attitude control functions reliably. For example, there is a change in the vehicle weight M or a change in air resistance due to the installation of aftermarket parts, which causes a non-negligible calculation error in the running resistance RL required to calculate the estimated acceleration G est and estimated jerk J est . . Then, the pitch angle ⁇ P and its fluctuation may occur before it is determined that it is necessary to execute (turn on) attitude control based on the estimated acceleration G est and the estimated jerk J est .
  • the pitch angle ⁇ P is such that it is necessary to execute (turn on) the attitude control. Attitude control can be activated when this change actually occurs.
  • the estimated acceleration G est and the estimated jerk J est are calculated based on the running resistance RL, and the running resistance RL is approximated by a quadratic function of the vehicle speed VSP.
  • the coefficients A 0 , A 1 , and A 2 of each order in the approximate expression used to calculate the running resistance RL are determined in advance by experiment, simulation, or the like.
  • running resistance RL may change depending on the specific usage state of electric vehicle 100. For example, when vehicle weight M changes, or when air resistance changes due to installation of aftermarket parts, etc., running resistance RL of electric vehicle 100 changes.
  • the predetermined coefficients A 0 and A 1 are , A2 , and accurately calculate running resistance RL according to the specific usage state of electric vehicle 100.
  • coefficients A 0 , A 1 , and A 2 used for calculating running resistance RL are updated according to a specific usage state of electric vehicle 100.
  • FIG. 10 is a block diagram showing a configuration for updating coefficients A 0 , A 1 , and A 2 of the approximate expression used to calculate running resistance RL.
  • the controller 12 can include a coefficient update section 301 in addition to the configuration of the first embodiment and/or the second embodiment.
  • the coefficient update section 301 includes a flat road determination section 311 , a steady running determination section 312 , a first error calculation section 313 , a running resistance storage section 314 , a second error calculation section 315 , and a coefficient update section 316 .
  • the flat road determination unit 311 determines whether the electric vehicle 100 is traveling on a flat road based on the road surface slope ⁇ LS . That is, flat road determining section 311 determines whether electric vehicle 100 is traveling in a state where running resistance RL does not include gradient resistance. Specifically, the flat road determination unit 311 determines that the electric vehicle 100 runs on a flat road when the road surface gradient ⁇ LS is close to zero with a predetermined error of ⁇ 0 or less ( ⁇ 0 ⁇ LS ⁇ + ⁇ 0 ). It is determined that the
  • Steady running determination unit 312 determines whether electric vehicle 100 is running at a constant speed (so-called road running) without accelerating or decelerating. That is, steady running determination section 312 determines whether electric vehicle 100 is running in a state where running resistance RL does not include resistance due to acceleration or deceleration. In this embodiment, the steady running determination unit 312 acquires the actual acceleration Gact , and determines whether or not steady running is continuing based on the actual acceleration Gact . Specifically, when the actual acceleration G act is less than or equal to a predetermined error of ⁇ G 0 (-G 0 ⁇ G act ⁇ +G 0 ), it is determined that the electric vehicle 100 is running steadily.
  • the first error calculation unit 313 calculates a first error G err (acceleration estimation error) which is an error between the estimated acceleration G est and the actual acceleration G act .
  • the first error calculation unit 313 obtains the estimated acceleration Gest from the acceleration estimation unit 52.
  • the first error calculation unit 313 may calculate the estimated acceleration G est using the same method as the acceleration estimation unit 52.
  • the first error calculation unit 313 calculates the first error G err by subtracting the actual acceleration G at from the estimated acceleration G est .
  • the first error calculation unit 313 counts a period (hereinafter referred to as duration ⁇ err ) during which a significant error continues to occur in the estimated acceleration G est based on the calculated first error G err . Specifically, the first error calculation unit 313 compares the calculated first error G err with a predetermined threshold TH err1 , and calculates the time period during which the first error G err is equal to or greater than the threshold TH err1 as a duration ⁇ . Set to err .
  • the running resistance storage unit 314 at least temporarily stores the running resistance RL when the electric vehicle 100 is steadily running on a flat road in association with the vehicle speed VSP at that time. Specifically, the running resistance storage unit 314 stores the information that, during steady running on a flat road, the duration ⁇ err during which the first error G err is equal to or greater than the threshold value TH err1 becomes equal to or greater than the threshold value ⁇ 0 predetermined by adaptation. In this case, the total driving force TQ at that time is obtained. The running resistance storage unit 314 then stores the acquired total driving force TQ as the actual running resistance RL during steady running on a flat road (hereinafter referred to as actual running resistance RL act ) in association with the vehicle speed VSP.
  • actual running resistance RL act the actual running resistance RL act
  • the second error calculation unit 315 calculates a second error RL err (running resistance error) which is an error between the actual running resistance RL act stored in the running resistance storage unit 314 and the running resistance RL calculated by the running resistance calculation unit 51. Calculate. The calculation of the second error RL err is performed for each vehicle speed VSP. Further, the second error calculation unit 315 evaluates the dispersion of the second error RL err by calculating the variance of the second error RL err and other statistical values.
  • a second error RL err running resistance error
  • the coefficient update unit 316 updates (calculates) all or part of the coefficients A 0 , A 1 , and A 2 that the running resistance calculation unit 51 uses to calculate the running resistance RL, based on the actual running resistance RL act . Further, the coefficient updating unit 316 corrects the pre-stored coefficients A 0 , A 1 , A 2 or calculates new coefficients A 0 , A 1 , A 2 , and updates the pre-stored coefficients. By replacing A 0 , A 1 , and A 2 , the coefficients A 0 , A 1 , and A 2 used for calculating the running resistance RL are updated.
  • the coefficient update unit 316 is configured to update the coefficient when the running resistance storage unit 314 stores at least three or more actual running resistances RL act and the variation in the second error RL err is less than or equal to a predetermined threshold TH err2 . Then, the coefficient update unit 316 updates the coefficient A2 of the constant term. Specifically, the coefficient update unit 316 updates the coefficient A 2 of the constant term by correcting the coefficient A 2 of the constant term based on the second error RL err . For example, the coefficient updating unit 316 corrects the coefficient A 2 of the constant term by adding the average value of the second error RL err to the coefficient A 2 of the previous constant term.
  • the coefficient updating unit 316 updates the coefficients A 0 and A 1 of the quadratic and first order terms. Specifically, the coefficient updating unit 316 updates the coefficients A 0 and A 1 of the quadratic and primary terms by newly calculating them based on the actual running resistance RL act . For example, the coefficient updating unit 316 uses the previous value as the coefficient A 2 of the constant term, and calculates a quadratic regression curve based on the actual running resistance RL act , thereby updating the coefficient A 0 of the new quadratic and first-order terms. , A 1 is calculated.
  • FIG. 11 is an explanatory diagram showing a specific manner of updating the coefficients A 0 , A 1 , and A 2 of the approximate expression used to calculate the running resistance RL.
  • a data set indicated by a legend circle ( ⁇ ) indicates running resistance RL calculated using coefficients A 0 , A 1 , and A 2 stored in advance in the initial state of electric vehicle 100.
  • each data set indicated by a triangle ( ⁇ ) and a square ( ⁇ ) legend represents the running resistance RL stored in the running resistance storage unit 314 in independent running scenes in which the specific usage conditions of the electric vehicle 100 are different. show.
  • the second errors RL err at each data point are E 1A , E 1B , and E It is 1C .
  • the second error RL err at each data point is E 2A , E 2B , and E 2C .
  • FIG. 12 is a flowchart showing the operation related to updating the coefficients A 0 , A 1 , and A 2 of the approximate expression used to calculate the running resistance RL.
  • the flat road determination unit 311 determines whether the electric vehicle 100 is traveling on a flat road based on the road surface slope ⁇ LS . If it is determined that the electric vehicle 100 is traveling on a flat road, the process proceeds to step S31, and the steady running determining unit 312 determines that the electric vehicle 100 is traveling steadily without accelerating or decelerating. Determine whether or not there is. If it is determined that the electric vehicle 100 is traveling steadily, the process advances to step S32.
  • step S32 the first error calculation unit 313 calculates the first error G err based on the estimated acceleration G est and the actual acceleration G act , and also calculates the duration during which the first error G err is a significant error. Count ⁇ err . Then, in step S33, if the duration time ⁇ err becomes equal to or greater than the threshold value ⁇ 0 , the process further advances to step S34, where the running resistance storage unit 314 sets the total driving force TQ at that time as the actual running resistance RL act , and sets the vehicle speed It is stored in association with the VSP.
  • step S35 when the number of actual running resistances RL act becomes three or more, in step S36, the second error calculation unit 315 calculates the second error RL err and evaluates its dispersion.
  • step S37 the coefficient update unit 316 determines whether the variation in the second error RL err is less than or equal to the threshold TH err2 . Then, when the variation in the second error RL err is equal to or less than the threshold value TH err2 , the process proceeds to step S38, and the coefficient updating unit 316 updates the coefficient A 2 of the constant term in the approximate expression used to calculate the running resistance RL. On the other hand, when the variation in the second error RL err is larger than the threshold TH err2 , the process proceeds to step S39, and the coefficient updating unit 316 updates the coefficient A 0 of the quadratic and first-order terms in the approximate equation used to calculate the running resistance RL, Update A1 .
  • attitude control execution determination using the estimated acceleration G est and/or the estimated jerk J est is accurately performed before the actual pitch angle ⁇ P and its fluctuation occur. Therefore, attitude control is started in a timely manner without delay in the occurrence of the actual pitch angle ⁇ P and its fluctuation.
  • the third embodiment described above can be implemented in combination with either the first embodiment or the second embodiment.
  • the first error calculation unit 313 calculates the first error G err representing the estimation error of the acceleration G, but the first error calculation unit 313 is not limited to this.
  • the first error (J err ) representing the estimation error of the jerk J can be calculated in a similar manner.
  • the subsequent processing can be performed in the same manner as in the third embodiment using the first error (J err ) representing the jerk J estimation error.
  • the first error calculation unit 313 can calculate both the error (G err ) representing the estimation error of acceleration G and the error (J err ) representing the estimation error of jerk J as the first error.
  • the subsequent processing can be performed using both the error (G err ) representing the estimation error of the acceleration G and the error (J err ) representing the estimation error of the jerk J.
  • the error (G err ) representing the estimation error of the acceleration G continues to be equal to or greater than the threshold value ⁇ 0
  • the error (J err ) representing the estimation error of the jerk J continues to be equal to or greater than the threshold value ⁇ 0
  • the running resistance The storage unit 314 can be configured to store the actual running resistance RL act .
  • the attitude control execution determination is performed using both the estimated acceleration G est and the estimated jerk J est .
  • the estimated jerk J est may be used to determine whether to perform attitude control.
  • the attitude control execution determination is performed using both the actual acceleration G act and the actual jerk J act , but only one of the actual acceleration G act and the actual jerk J act It may be used for control execution determination. This also applies when the third embodiment is combined with the second embodiment.
  • the correction unit 48 performs attitude control using feedforward control, but the present invention is not limited to this. Even when posture control is performed by feedback control that feeds back the pitch angle ⁇ P or pitch rate ⁇ P that actually occurred, as in the first embodiment, second embodiment, and third embodiment, It is preferable to perform attitude control execution determination using feedforward control.
  • the electric vehicle control methods according to the first embodiment, the second embodiment, and the third embodiment adjust the driving force distribution between the front wheels 21 and the rear wheels 26, which are the driving wheels.
  • This is a control method for electric vehicle 100 that executes attitude control to control the attitude in the longitudinal direction.
  • total driving force TQ which is the required driving force for electric vehicle 100
  • total driving force TQ electric vehicle 100 is controlled by total driving force TQ.
  • An estimated acceleration G est that is an estimated value for the acceleration G that occurs when driving with , or an estimated jerk J est that is an estimated value for the jerk J that is the time change rate of the acceleration G is calculated. Then, based on the estimated acceleration G est or the estimated jerk J est , an attitude control execution determination is made to turn on/off the attitude control.
  • the pitch angle ⁇ P Attitude control can be started without delay before this change actually occurs. That is, when turning on/off attitude control based on adjustment of driving force distribution as necessary, the delay in determining the start of attitude control can be reduced and attitude control can be implemented in a timely manner.
  • the attitude control when the attitude control is performed by feedforward control, the attitude control functions before the pitch angle ⁇ P and its fluctuation actually occur. Furthermore, even when attitude control is performed by feedback control, control delays caused in attitude control execution determination are reduced. Therefore, the delay in starting attitude control can be minimized.
  • attitude control is determined to be on/off by feedforward control based on estimated acceleration G est or estimated jerk J est , attitude control by adjusting driving force distribution can be performed while suppressing deterioration of electricity consumption. can do. That is, the deterioration in electricity consumption due to attitude control is minimized, and the ride comfort of electric vehicle 100 is improved.
  • the estimated acceleration G est and the estimated jerk J est are calculated based on the total driving force TQ, and the estimated Posture control is switched on/off based on the acceleration G est and the estimated jerk J est .
  • the accuracy of the attitude control execution determination is improved.
  • attitude control can be turned on at an appropriate timing according to the pitch state ( ⁇ P , ⁇ P ) that can be felt by the occupant.
  • the estimated acceleration G est is an acceleration threshold (TH G ) that is a predetermined threshold value predetermined for the acceleration G.
  • TH G acceleration threshold
  • the estimated jerk J est is equal to or greater than the jerk threshold (TH J ), which is a predetermined threshold for the jerk J
  • attitude control can be turned on at an appropriate timing according to the pitch state ( ⁇ P , ⁇ P ) that can be felt by the occupant.
  • attitude control is performed particularly by feedforward control that corrects driving force distribution based on a vehicle model.
  • attitude control is executed by feedforward control
  • controlling on/off of attitude control based on the attitude control execution determination of feedforward control based on the estimated acceleration G est or the estimated jerk J est is particularly effective.
  • the attitude control functions before the pitch angle ⁇ P and its variations actually occur. In other words, it is particularly easy to achieve both suppression of deterioration in electricity consumption and improvement of ride comfort through posture control.
  • the slope ( ⁇ LS ) of the road surface on which the electric vehicle 100 runs is acquired, and the slope ( ⁇ LS ) and Attitude control is switched on/off based on the estimated acceleration G est or the estimated jerk J est .
  • posture control execution determination that further takes into account the road surface gradient ⁇ LS , posture control can be kept off in a driving scene on a sloped road surface where it is difficult for the occupant to experience the pitch angle ⁇ P and its fluctuations. As a result, deterioration in electricity consumption due to execution of unnecessary attitude control can be suppressed.
  • the electric vehicle control method when the gradient ( ⁇ LS ) is equal to or less than a predetermined gradient (TH LS ), the estimated Based on the acceleration G est or the estimated jerk J est , it is determined whether attitude control is necessary, and if the gradient ( ⁇ LS ) is larger than the predetermined gradient (TH LS ), the attitude control is turned off. That is, when the vehicle is traveling on a steeply sloped road surface where it is difficult for the occupant to experience the pitch angle ⁇ P and its fluctuations, it is possible to maintain the attitude control off particularly reliably. Therefore, deterioration in electricity consumption due to execution of unnecessary posture control is particularly likely to be suppressed.
  • TH LS predetermined gradient
  • the actual acceleration G act is the actual acceleration G generated in the electric vehicle 100, or the actual acceleration G act is the time change rate of the actual acceleration G generated in the electric vehicle 100.
  • a jerk J act is obtained. Then, when it is determined that attitude control is necessary based on either the judgment based on the estimated acceleration G est or the estimated jerk J est , or the judgment based on the actual acceleration G act or actual jerk J act , the attitude control is performed. turned on.
  • the running resistance RL includes a significant error depending on the specific usage situation of the electric vehicle 100, and the estimated acceleration G est or the estimated jerk Even if the determination by J est becomes inaccurate, attitude control is executed when the pitch angle ⁇ P actually occurs or its fluctuation occurs. That is, if the pitch angle ⁇ P and its fluctuation actually occur, attitude control will function reliably.
  • the running resistance RL of the electric vehicle 100 is calculated based on the vehicle speed VSP, and the running resistance RL of the electric vehicle 100 is calculated based on the total driving force TQ and the running resistance. Based on RL, estimated acceleration G est or estimated jerk J est is calculated. In this way, by calculating the estimated acceleration G est or the estimated jerk J est based on the running resistance RL, it is possible to accurately calculate the estimated acceleration G est or the estimated jerk J est before the acceleration G actually occurs. As a result, the accuracy of attitude control execution determination is improved.
  • the electric vehicle control method it is determined whether the road surface on which the electric vehicle 100 is traveling is a flat road, and whether the electric vehicle 100 is traveling steadily without accelerating or decelerating. It is determined whether or not. Further, the total driving force TQ when the electric vehicle 100 is steadily traveling on a flat road is stored as the actual traveling resistance RL act , which is the actual traveling resistance. Based on the actual running resistance RL act , the coefficients A 0 , A 1 , and A 2 used for calculating the running resistance RL are updated.
  • the electric vehicle control method when the electric vehicle 100 is traveling steadily on a flat road, the estimated acceleration G est and the actual acceleration G that is generated in the electric vehicle 100 are calculated.
  • An acceleration estimation error (G err ) which is an error between the acceleration G act and the acceleration G act, is calculated. Then, it is used to calculate the running resistance RL based on the actual running resistance RL act when the acceleration estimation error (G err ) greater than or equal to a predetermined error ( ⁇ G 0 ) continues for a predetermined time ( ⁇ 0 ) or more.
  • Coefficients A 0 , A 1 , A 2 are updated.
  • a running resistance error which is an error between the calculated running resistance RL and the actual running resistance RL act , is calculated, and this running resistance error ( RL err ) is less than or equal to a predetermined threshold TH err2 , among the coefficients A 0 , A 1 , and A 2 used to calculate the running resistance RL, the coefficient A 2 that constitutes a constant term is updated.
  • a running resistance error which is an error between the calculated running resistance RL and the actual running resistance RL act , is calculated, and the running resistance error (RL err ) is calculated.
  • err is larger than a predetermined threshold TH err2 , among the coefficients A 0 , A 1 , and A 2 used to calculate the running resistance RL, the coefficients A 0 and A 1 constituting the term including the vehicle speed VSP are Updated.
  • the control device for an electric vehicle adjusts the driving force distribution of the front wheels 21 and the rear wheels 26, which are the driving wheels, to control the posture in the longitudinal direction.
  • This is a control device (controller 12) for electric vehicle 100 that executes attitude control to control.
  • This control device includes a total driving force calculation unit 41 that calculates a total driving force TQ that is a required driving force for the electric vehicle 100 based on the operation of the accelerator pedal, and a total driving force calculation unit 41 that calculates the total driving force TQ that is the required driving force for the electric vehicle 100, and
  • the estimated acceleration G est is an estimated value of the acceleration G that occurs when the vehicle 100 is driven with the total driving force TQ, or the estimated jerk J est is an estimated value of the jerk J that is the time rate of change of the acceleration G.
  • attitude control execution determination unit 47 makes an attitude control execution determination for switching on/off of attitude control based on the estimated acceleration G est or the estimated jerk J est .
  • control program for the electric vehicle 100 controls the control device (controller 12) of the electric vehicle 100 to Total driving force calculation unit 41 that calculates total driving force TQ that is the required driving force for vehicle 100; Based on total driving force TQ, estimated value of acceleration G that occurs when electric vehicle 100 is driven with total driving force TQ.
  • Estimating unit (52, 53) that calculates the estimated acceleration G est which is the estimated acceleration G est or the estimated jerk J est which is the estimated value of the jerk J which is the time rate of change of the acceleration G; the estimated acceleration G est or the estimated jerk J est It functions as an attitude control execution determination unit 47 that makes an attitude control execution determination for switching on/off of attitude control based on the following.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

An aspect of the present invention pertains to an electric vehicle control method for performing attitude control that controls the attitude in the front‐back direction, by adjusting driving force distribution between a front wheel and a rear wheel which are driving wheels. In this control method, the total driving force, which is a required driving force for an electric vehicle, is calculated on the basis of operation of an accelerator pedal. In addition, on the basis of this total driving force, estimated acceleration which is an estimated value for acceleration generated when an electric vehicle is driven with the total driving force, or estimated jerk which is an estimated value for jerk that is the time change rate of acceleration, is calculated. On the basis of the estimated acceleration or the estimated jerk, attitude control execution determination for switching the attitude control on or off is performed.

Description

電動車両の制御方法、及び、電動車両の制御装置Electric vehicle control method and electric vehicle control device
 本発明は、電動車両の制御方法、及び、電動車両の制御装置に関する。 The present invention relates to an electric vehicle control method and an electric vehicle control device.
 JP4876534B2は、サスペンションの効果が十分に得られないインホイールモータ型の車両に関し、車両が路面の段差等を通過するときに、車両のピッチレートを低減する技術を開示している。より具体的には、前後の車輪に異なる制駆動力を付与し、その上で、ピッチレートの変動が検出された場合にはさらに左右の車輪に対してそれぞれ異なる制駆動力を所定の周期で付与することが開示されている。 JP4876534B2 discloses a technique for reducing the pitch rate of a vehicle when the vehicle passes over a bump in the road surface, etc., regarding an in-wheel motor type vehicle in which the effect of the suspension is not sufficiently obtained. More specifically, different braking and driving forces are applied to the front and rear wheels, and if a change in pitch rate is detected, different braking and driving forces are applied to the left and right wheels at a predetermined period. It is disclosed that it will be granted.
 従来、複数の駆動輪に対する駆動力の配分を調整することによって姿勢制御を行う電動車両が知られている。このような電動車両では、一般に、ピッチレート等の検出値をフィードバックするフィードバック制御によって駆動力配分を調整することにより、姿勢を制御する。すなわち、従来の電動車両では、既に発生した姿勢の変動に追従して、例えばこれを打ち消すように姿勢制御が働くので、姿勢制御が実質的に間に合わないことがある。 Conventionally, electric vehicles are known that perform posture control by adjusting the distribution of driving force to a plurality of drive wheels. In such electric vehicles, the attitude is generally controlled by adjusting driving force distribution through feedback control that feeds back detected values such as pitch rate. That is, in conventional electric vehicles, attitude control works to follow and, for example, cancel out attitude fluctuations that have already occurred, so attitude control may not be substantially in time.
 また、駆動力配分が調整可能である場合、駆動力配分は、通常、走行安定性を考慮して、電費が最良となるように決定される。したがって、駆動力配分による姿勢制御を実行すると、電費が最良となる駆動力配分から、姿勢を制御するための駆動力配分に、駆動力配分を遷移させることになるので、電費が悪化する。このため、駆動力配分の調整による姿勢制御は、できる限りオフ(非実行状態)にしておき、電費とトレードオフとなっても必要な場合に限ってオン(実行状態)とすることが望ましい。 Furthermore, when the driving force distribution is adjustable, the driving force distribution is usually determined in consideration of running stability so as to optimize electricity consumption. Therefore, when attitude control using driving force distribution is executed, the driving force distribution is changed from the driving force distribution that provides the best electric power consumption to the driving force distribution for controlling the attitude, and thus the electric power consumption deteriorates. For this reason, it is desirable to keep the attitude control by adjusting the driving force distribution off (non-execution state) as much as possible, and turn it on (execution state) only when necessary, even if it is a trade-off with electricity consumption.
 しかし、上記のように、駆動力配分の調整による姿勢制御を必要に応じてオン/オフする場合、ピッチレート等の検出値を用いて、姿勢制御の開始を判断すると、既に発生した姿勢の変動に基づいて姿勢制御の開始判断が行われるので、姿勢制御の開始判断自体に遅れが生じる。その結果、姿勢制御の遅れが助長され、姿勢制御が実質的に間に合わないケースが増える。これは、姿勢制御をフィードバック制御によって行う場合に顕著であるが、姿勢制御をフィードフォワード制御によって行う場合についても同様である。すなわち、姿勢制御を必要に応じてオン/オフする場合、姿勢制御をフィードフォワード制御によって行うとしても、その開始判断を、ピッチレート等の検出値を用いて行うときには、開始判断の遅れによって姿勢制御が実質的に間に合わないことがある。 However, as described above, when turning on/off attitude control by adjusting driving force distribution as necessary, if the start of attitude control is determined using detected values such as pitch rate, changes in attitude that have already occurred Since the determination to start attitude control is made based on this, there is a delay in the determination to start attitude control itself. As a result, the delay in attitude control is exacerbated, and the number of cases in which attitude control is not substantially completed in time increases. This is noticeable when posture control is performed by feedback control, but the same is true when posture control is performed by feedforward control. In other words, when attitude control is turned on and off as necessary, even if attitude control is performed by feedforward control, when the start judgment is made using a detected value such as pitch rate, the attitude control is delayed due to a delay in the start judgment. may not actually be completed in time.
 そこで、本発明は、駆動力配分の調整による姿勢制御を必要に応じてオン/オフする場合に、姿勢制御の開始判断についての遅れを低減し、姿勢制御を適時に実施することができる電動車両の制御方法、及び、電動車両の制御装置を提供することを目的とする。 Therefore, the present invention provides an electric vehicle that can reduce the delay in determining the start of attitude control and timely implement attitude control when attitude control by adjusting driving force distribution is turned on/off as necessary. The present invention aims to provide a control method for an electric vehicle and a control device for an electric vehicle.
 本発明のある態様は、駆動輪である前輪及び後輪の駆動力配分を調整することにより、前後方向の姿勢を制御する姿勢制御を実行する電動車両の制御方法である。この制御方法では、アクセルペダルの操作に基づいて、電動車両に対する要求駆動力である総駆動力が演算される。また、この総駆動力に基づいて、電動車両がその総駆動力で駆動するときに生じる加速度についての推定値である推定加速度、または、加速度の時間変化率であるジャークについての推定値である推定ジャーク、が演算される。そして、推定加速度または推定ジャークに基づいて、姿勢制御のオン/オフを切り替える姿勢制御実行判定が行われる。 An aspect of the present invention is a control method for an electric vehicle that executes attitude control that controls the attitude in the longitudinal direction by adjusting the driving force distribution between the front wheels and the rear wheels, which are drive wheels. In this control method, the total driving force, which is the required driving force for the electric vehicle, is calculated based on the operation of the accelerator pedal. Also, based on this total driving force, there is an estimated acceleration, which is an estimated value of the acceleration that occurs when the electric vehicle is driven by the total driving force, or an estimated value, which is an estimated value of jerk, which is the time rate of change in acceleration. Jerk is calculated. Then, based on the estimated acceleration or the estimated jerk, an attitude control execution determination is made to turn on/off the attitude control.
図1は、電動車両の概略構成を示す説明図である。FIG. 1 is an explanatory diagram showing a schematic configuration of an electric vehicle. 図2は、シャシー系の概略構造を示す説明図である。FIG. 2 is an explanatory diagram showing a schematic structure of the chassis system. 図3は、電動車両の乗員が加速時に体感し得るピッチ角の下限値を示すグラフである。FIG. 3 is a graph showing the lower limit value of the pitch angle that an occupant of an electric vehicle can experience during acceleration. 図4は、姿勢制御のためのコントローラ12の構成を示すブロック図である。FIG. 4 is a block diagram showing the configuration of the controller 12 for attitude control. 図5は、姿勢制御実行判定部の構成を示すブロック図である。FIG. 5 is a block diagram showing the configuration of the attitude control execution determination section. 図6は、電動車両における姿勢制御のオン/オフに係る作用を示すフローチャートである。FIG. 6 is a flowchart showing an operation related to turning on/off posture control in an electric vehicle. 図7は、姿勢制御がオフからオンに切り替わるときのパラメータの推移を示すタイムチャートである。FIG. 7 is a time chart showing changes in parameters when posture control is switched from off to on. 図8は、第2実施形態における姿勢制御実行判定部の構成を示すブロック図である。FIG. 8 is a block diagram showing the configuration of an attitude control execution determination section in the second embodiment. 図9は、第2実施形態の電動車両について、姿勢制御のオン/オフに係る作用を示すフローチャートである。FIG. 9 is a flowchart showing the operation related to turning on/off posture control for the electric vehicle of the second embodiment. 図10は、走行抵抗の演算に用いる近似式の係数を更新するための構成を示すブロック図である。FIG. 10 is a block diagram showing a configuration for updating the coefficients of the approximation equation used to calculate running resistance. 図11は、走行抵抗の演算に用いる近似式の係数を更新する具体的態様を示す説明図である。FIG. 11 is an explanatory diagram showing a specific mode of updating the coefficients of the approximation formula used to calculate running resistance. 図12は、走行抵抗の演算に用いる近似式の係数の更新に係る作用を示すフローチャートである。FIG. 12 is a flowchart showing the operation related to updating the coefficients of the approximation formula used to calculate running resistance.
 以下、図面を参照しながら本発明の実施形態について説明する。 Embodiments of the present invention will be described below with reference to the drawings.
 [第1実施形態]
 <電動車両の構成>
 図1は、電動車両100の概略構成を示す説明図である。電動車両100は、例えば電気自動車やハイブリッド車両等であって、電動機によって1または複数の駆動輪を駆動または制動することができる車両である。特に、本実施形態では、電動車両100は、いわゆる4WD(four wheel drive)車両であり、複数の駆動輪に生じさせる駆動力をそれぞれに制御(調整)することができる。具体的には、図1に示すように、電動車両100は、前輪駆動システム10、後輪駆動システム11、及び、コントローラ12を備える。
[First embodiment]
<Configuration of electric vehicle>
FIG. 1 is an explanatory diagram showing a schematic configuration of an electric vehicle 100. The electric vehicle 100 is, for example, an electric vehicle, a hybrid vehicle, or the like, and is a vehicle that can drive or brake one or more drive wheels using an electric motor. In particular, in this embodiment, the electric vehicle 100 is a so-called 4WD (four wheel drive) vehicle, and the driving force generated in a plurality of drive wheels can be individually controlled (adjusted). Specifically, as shown in FIG. 1, electric vehicle 100 includes a front wheel drive system 10, a rear wheel drive system 11, and a controller 12.
 前輪駆動システム10は、第1の駆動輪である前輪21を制御するシステムである。前輪駆動システム10は、フロントインバータ22及びフロントモータ23を含む。 The front wheel drive system 10 is a system that controls the front wheel 21, which is the first drive wheel. Front wheel drive system 10 includes a front inverter 22 and a front motor 23.
 フロントインバータ22は、図示しないバッテリが出力する直流電力を交流電力に変換してフロントモータ23に供給することにより、フロントモータ23を駆動する。また、フロントモータ23が前輪21に連れ回されて回転するときには、フロントインバータ22は、フロントモータ23で生じる交流の回生電力を、直流電力に変換してバッテリに入力することにより、バッテリを充電する。 The front inverter 22 drives the front motor 23 by converting DC power output by a battery (not shown) into AC power and supplying the AC power to the front motor 23. Furthermore, when the front motor 23 is rotated by the front wheels 21, the front inverter 22 converts the AC regenerative power generated by the front motor 23 into DC power and inputs the DC power to the battery, thereby charging the battery. .
 フロントモータ23は、前輪21を駆動する電動機である。フロントモータ23は、例えば、三相交流同期電動機である。フロントモータ23が生じさせるトルクは、フロントドライブシャフト24を介して前輪21に伝達され、前輪21に駆動力(以下、前輪駆動力Fという)を発生させる。 The front motor 23 is an electric motor that drives the front wheels 21. The front motor 23 is, for example, a three-phase AC synchronous motor. The torque generated by the front motor 23 is transmitted to the front wheels 21 via the front drive shaft 24, and generates a driving force (hereinafter referred to as front wheel driving force FF ) at the front wheels 21.
 後輪駆動システム11は、第2の駆動輪である後輪26を制御するシステムである。後輪駆動システム11は、リアインバータ27及びリアモータ28を含む。 The rear wheel drive system 11 is a system that controls the rear wheel 26, which is the second drive wheel. Rear wheel drive system 11 includes a rear inverter 27 and a rear motor 28.
 リアインバータ27は、バッテリが出力する直流電力を交流電力に変換してリアモータ28に供給することにより、リアモータ28を駆動する。また、リアモータ28が後輪26に連れ回されて回転するときには、リアインバータ27は、リアモータ28で生じる交流の回生電力を、直流電力に変換してバッテリに入力することにより、バッテリを充電する。 The rear inverter 27 drives the rear motor 28 by converting the DC power output by the battery into AC power and supplying the AC power to the rear motor 28. Further, when the rear motor 28 is rotated by the rear wheels 26, the rear inverter 27 converts the AC regenerated power generated by the rear motor 28 into DC power and inputs the DC power to the battery, thereby charging the battery.
 リアモータ28は、後輪26を駆動する電動機である。リアモータ28は、例えば、フロントモータ23と同様の三相交流同期電動機によって構成される。リアモータ28が生じさせるトルクは、リアドライブシャフト29を介して後輪26に伝達され、後輪26に駆動力(以下、後輪駆動力Fという)を発生させる。 The rear motor 28 is an electric motor that drives the rear wheels 26. The rear motor 28 is configured by, for example, a three-phase AC synchronous motor similar to the front motor 23. The torque generated by the rear motor 28 is transmitted to the rear wheels 26 via the rear drive shaft 29, and generates a driving force (hereinafter referred to as rear wheel driving force FR ) at the rear wheels 26.
 コントローラ12は、電動車両100の動作を制御する1または複数のコンピュータによって構成される。コントローラ12は、電動車両100の動作を予め定める制御周期で制御するようにプログラムされている。本実施形態では、コントローラ12は、駆動輪である前輪21及び後輪26の駆動力配分を調整することにより、前後方向の姿勢を制御する姿勢制御を実行する電動車両100の制御装置である。 The controller 12 is configured by one or more computers that control the operation of the electric vehicle 100. Controller 12 is programmed to control the operation of electric vehicle 100 at a predetermined control cycle. In the present embodiment, the controller 12 is a control device for the electric vehicle 100 that executes posture control to control the posture in the longitudinal direction by adjusting the distribution of driving force between the front wheels 21 and the rear wheels 26 that are drive wheels.
 コントローラ12は、例えば、アクセルペダル(図示しない)の操作等によって要求された駆動力(以下、総駆動力TQという)を、駆動輪である前輪21と後輪26に配分する。そして、コントローラ12は、その配分に応じた前輪駆動力F及び後輪駆動力Fが生じるように、前輪駆動システム10及び後輪駆動システム11によって前輪21及び後輪26をそれぞれ駆動する。さらに、本実施形態では、コントローラ12は、必要に応じて前輪21及び後輪26の駆動力配分を調整することにより、電動車両100の前後方向の姿勢を制御する姿勢制御を実行するようにプログラムされている。 The controller 12 distributes the driving force (hereinafter referred to as the total driving force TQ) requested by, for example, the operation of an accelerator pedal (not shown) to the front wheels 21 and the rear wheels 26 that are driving wheels. Then, the controller 12 drives the front wheels 21 and the rear wheels 26 using the front wheel drive system 10 and the rear wheel drive system 11, respectively, so that a front wheel drive force F F and a rear wheel drive force F R are generated according to the distribution. Furthermore, in the present embodiment, the controller 12 is programmed to execute attitude control to control the longitudinal attitude of the electric vehicle 100 by adjusting the driving force distribution between the front wheels 21 and the rear wheels 26 as necessary. has been done.
 コントローラ12は、電動車両100の動作を制御するときに、電動車両100の動作状態等を表す各種のパラメータ等を、図示しないセンサにより、または、演算により、適宜に取得することができる。例えば、電動車両100は、アクセル開度APOを検出するアクセル開度センサ(図示しない)を備える。このため、コントローラ12は、アクセル開度APOを適宜に取得することができる。アクセル開度APOは、アクセルペダルの操作量を表すパラメータである。また、コントローラ12は、電動車両100の車速VSPを、図示しないセンサにより、または、演算により、適宜に取得する。 When controlling the operation of the electric vehicle 100, the controller 12 can appropriately obtain various parameters representing the operating state of the electric vehicle 100, etc., using a sensor (not shown) or by calculation. For example, electric vehicle 100 includes an accelerator opening sensor (not shown) that detects accelerator opening APO . Therefore, the controller 12 can appropriately acquire the accelerator opening degree APO . The accelerator opening degree APO is a parameter representing the amount of operation of the accelerator pedal. Further, the controller 12 appropriately acquires the vehicle speed VSP of the electric vehicle 100 using a sensor (not shown) or by calculation.
 さらに、本実施形態では、電動車両100は、電動車両100に生じた加速度(以下、実加速度Gactという)を計測する加速度センサ(図示しない)を備える。このため、コントローラ12は、実加速度Gactを適宜に取得することができる。また、コントローラ12は、実加速度Gactを微分することにより、電動車両100に生じた加速度の時間変化率であるジャーク(以下、実ジャークJactという)を適宜に取得することができる。 Further, in the present embodiment, the electric vehicle 100 includes an acceleration sensor (not shown) that measures acceleration generated in the electric vehicle 100 (hereinafter referred to as actual acceleration Gact ). Therefore, the controller 12 can appropriately acquire the actual acceleration Gact . In addition, the controller 12 can appropriately obtain jerk (hereinafter referred to as actual jerk J act ), which is the time rate of change in acceleration generated in electric vehicle 100, by differentiating the actual acceleration G act .
 この他、コントローラ12は、図示しないカーナビゲーションシステムから、電動車両100の現在地や電動車両100が走行等する路面の勾配(以下、路面勾配φLSという)を適宜に取得することができる。なお、路面勾配φLSは、電動車両100の車速VSPや加速度G、またはこれらの変化等に基づいて、演算により取得され得る。本実施形態では、路面勾配φLSは、カーナビゲーションシステムから取得される。 In addition, the controller 12 can appropriately acquire the current location of the electric vehicle 100 and the slope of the road surface on which the electric vehicle 100 travels (hereinafter referred to as road surface slope φ LS ) from a car navigation system (not shown). Note that the road surface slope φLS can be obtained by calculation based on the vehicle speed VSP and acceleration G of the electric vehicle 100, or changes thereof. In this embodiment, the road surface slope φLS is obtained from the car navigation system.
 <駆動力配分による姿勢制御の原理>
 図2は、シャシー系の概略構造を示す説明図である。図2に示すように、前輪21は、フロントサスペンション31を介して、車体のうち車室等が形成される部分である車両上屋101に接続される。同様に、後輪26は、リアサスペンション32を介して、車両上屋101に接続される。
<Principle of attitude control using driving force distribution>
FIG. 2 is an explanatory diagram showing a schematic structure of the chassis system. As shown in FIG. 2, the front wheels 21 are connected via a front suspension 31 to a vehicle shed 101, which is a portion of the vehicle body where a passenger compartment and the like are formed. Similarly, the rear wheels 26 are connected to the vehicle shed 101 via a rear suspension 32.
 例えば、前輪駆動力F、後輪駆動力F、または、これらの両方によって電動車両100が加速する場合、荷重は電動車両100の後方(X方向負側)に移動する。その結果、車両上屋101には、重心Oを中心として、ピッチ角θを増大させる方向に作用するモーメントが発生する。このため、電動車両100が加速する場合、原則として、電動車両100は、X方向正側の部分である前方部分が浮き上がる姿勢(いわゆるノーズアップの姿勢)となる。 For example, when electric vehicle 100 is accelerated by front wheel driving force F F , rear wheel driving force F R , or both thereof, the load moves to the rear of electric vehicle 100 (to the negative side in the X direction). As a result, a moment is generated in the vehicle shed 101 around the center of gravity OG that acts in a direction that increases the pitch angle θP . Therefore, when electric vehicle 100 accelerates, in principle, electric vehicle 100 assumes a posture in which the front portion, which is the portion on the positive side in the X direction, rises (so-called nose-up posture).
 一方、前輪駆動力Fを発生させるフロントモータ23のトルク(以下、フロントトルクという)は、フロントサスペンション31を介して車両上屋101に作用する。具体的には、フロントトルクは、仮想回転中心Oの周りに、ピッチ角θを減少させる方向に作用するモーメントを生じさせる。すなわち、電動車両100が加速する場合、フロントトルクはノーズアップを抑制する。同様に、後輪駆動力Fを発生させるリアモータ28のトルク(以下、リアトルクという)は、リアサスペンション32を介して車両上屋101に作用し、仮想回転中心Oの周りに、ピッチ角θを減少させる方向に作用するモーメントを生じさせる。このため、電動車両100が加速する場合、リアトルクはノーズアップを抑制する。 On the other hand, the torque of the front motor 23 that generates the front wheel drive force FF (hereinafter referred to as front torque) acts on the vehicle shed 101 via the front suspension 31. Specifically, the front torque generates a moment around the virtual center of rotation O F that acts in a direction that reduces the pitch angle θ P. That is, when electric vehicle 100 accelerates, the front torque suppresses nose up. Similarly, the torque of the rear motor 28 that generates the rear wheel drive force F R (hereinafter referred to as rear torque) acts on the vehicle shed 101 via the rear suspension 32, and causes a pitch angle θ around the virtual center of rotation O R. A moment is generated that acts in the direction of decreasing P. Therefore, when electric vehicle 100 accelerates, rear torque suppresses nose up.
 そして、加速時にフロントトルクがノーズアップを抑制する作用の大きさは、アンチスカット角θの大きさに依存する。同様に、加速時にリアトルクがノーズアップを抑制する作用の大きさは、アンチスカット角θの大きさに依存する。このため、アンチスカット角が相対的に大きい駆動輪への配分が大きくなるように、前輪21及び後輪26の駆動力配分を調整すると、総駆動力を維持したまま、ノーズアップを抑制する作用は大きくなる。したがって、本実施形態では、コントローラ12は、前輪21及び後輪26の駆動力配分を調整することにより、電動車両100の前後方向の姿勢(すなわちピッチ角θまたはその変動)を制御する姿勢制御を実行する。 The magnitude of the effect of the front torque on suppressing nose-up during acceleration depends on the magnitude of the anti-scut angle θF . Similarly, the magnitude of the effect of the rear torque to suppress nose-up during acceleration depends on the magnitude of the anti-scut angle θ R. Therefore, by adjusting the drive force distribution between the front wheels 21 and the rear wheels 26 so that the distribution to the drive wheels with a relatively large anti-scut angle is increased, the nose-up can be suppressed while maintaining the total drive force. becomes larger. Therefore, in the present embodiment, the controller 12 performs attitude control that controls the attitude of the electric vehicle 100 in the longitudinal direction (i.e., the pitch angle θ P or its variation) by adjusting the driving force distribution between the front wheels 21 and the rear wheels 26. Execute.
 なお、仮想回転中心Oは、フロントトルクの伝達によって車体(特に車両上屋101)に生じる回転の瞬間的かつ仮想的な中心であり、フロントサスペンション31等の具体的な構成によって予め定まる。同様に、後方部の仮想回転中心Oは、リアトルクの伝達によって車体(特に車両上屋101)に生じる回転の瞬間的かつ仮想的な中心であり、リアサスペンション32等の具体的な構成によって予め定まる。また、アンチスカット角θは、XZ面において、前輪21の回転中心と仮想回転中心Oを結ぶ線と、路面と平行な線と、がなす角である。同様に、アンチスカット角θは、XZ面において、後輪26の回転中心と仮想回転中心Oを結ぶ線と、路面と平行な線と、がなす角である。 Note that the virtual center of rotation OF is an instantaneous and virtual center of rotation that occurs in the vehicle body (in particular, the vehicle shed 101) due to the transmission of front torque, and is determined in advance by the specific configuration of the front suspension 31 and the like. Similarly, the virtual center of rotation OR in the rear section is an instantaneous and virtual center of rotation that occurs in the vehicle body (particularly the vehicle shed 101) due to the transmission of rear torque, and is determined in advance by the specific configuration of the rear suspension 32, etc. Determined. Further, the anti-scut angle θ F is the angle formed by a line connecting the rotation center of the front wheel 21 and the virtual rotation center OF and a line parallel to the road surface in the XZ plane. Similarly, the anti-scut angle θ R is the angle formed by a line connecting the rotation center of the rear wheel 26 and the virtual rotation center OR and a line parallel to the road surface in the XZ plane.
 本実施形態では、図2に示すように、リアサスペンション32のアンチスカット角θは、フロントサスペンション31のアンチスカット角θよりも大きい。このため、例えば加速時にピッチ角θの増大を抑制し、または、低減させるときには、コントローラ12は、相対的に後輪26への駆動力配分を増加させる。 In this embodiment, as shown in FIG. 2, the anti-scut angle θ R of the rear suspension 32 is larger than the anti-scut angle θ F of the front suspension 31. Therefore, for example, when suppressing or reducing the pitch angle θ P from increasing during acceleration, the controller 12 relatively increases the driving force distribution to the rear wheels 26 .
 ここでは、シャシー系の構成と、加速時における姿勢制御の関係について説明したが、コントローラ12は、減速時においても、前輪21及び後輪26の駆動力配分の調整による姿勢制御を実行する。但し、減速時には、上記とは逆に、電動車両100は、前方部分が沈み込む姿勢(いわゆるノーズダイブの姿勢)となるので、コントローラ12は、これに応じて、前輪21及び後輪26の駆動力配分を調整する。また、以下では、特に断りのない限り、電動車両100の姿勢とは、前後方向の姿勢、すなわちピッチ角θをいうものとする。すなわち、駆動力配分の調整による姿勢制御は、ピッチ角θの制御、ピッチレートΔの制御、または、ピッチ角θ及びピッチレートΔの制御である。ピッチレートΔは、ピッチ角θの時間変化率である。 Although the relationship between the configuration of the chassis system and attitude control during acceleration has been described here, the controller 12 executes attitude control by adjusting the driving force distribution between the front wheels 21 and the rear wheels 26 even during deceleration. However, during deceleration, contrary to the above, the electric vehicle 100 assumes a position where the front portion sinks (a so-called nose dive position), so the controller 12 controls the driving of the front wheels 21 and the rear wheels 26 accordingly. Adjust force distribution. Furthermore, hereinafter, unless otherwise specified, the attitude of electric vehicle 100 refers to the attitude in the front-rear direction, that is, the pitch angle θ P. That is, posture control by adjusting the driving force distribution is control of pitch angle θ P , control of pitch rate Δ P , or control of pitch angle θ P and pitch rate Δ P. The pitch rate Δ P is the time rate of change of the pitch angle θ P.
 <目標とする姿勢>
 図3は、電動車両100の乗員が加速時に体感し得るピッチ角θの下限値LLを示すグラフである。図3に示すように、加速時に乗員が体感し得るピッチ角θには下限値LLがある。すなわち、ピッチ角θが下限値LL程度かそれ以下の小さい値であるときには、乗員は、ピッチ角θの発生及び変動を感じ取り難い。
<Target posture>
FIG. 3 is a graph showing the lower limit value LL of the pitch angle θP that the occupant of the electric vehicle 100 can experience during acceleration. As shown in FIG. 3, there is a lower limit value LL for the pitch angle θP that the occupant can experience during acceleration. That is, when the pitch angle θ P is a small value that is about the lower limit value LL or less, the occupant has difficulty sensing the occurrence and fluctuation of the pitch angle θ P.
 そして、この下限値LLは、ピッチレートΔに依存する。具体的には、ピッチレートΔが大きいほど、体感し得るピッチ角θの下限値LLは小さくなる。すなわち、ピッチレートΔが大きく、ピッチ角θが急峻に変動するときには、ピッチ角θが小さくても、乗員はピッチ角θの変動を感じ取る。逆に、ピッチレートΔが小さく、ピッチ角θが緩やかに変動するときには、ピッチ角θが比較的大きくても、乗員はピッチ角θの変動を感じ取り難い。 This lower limit value LL depends on the pitch rate ΔP . Specifically, the larger the pitch rate ΔP is, the smaller the lower limit value LL of the perceivable pitch angle θP is. That is, when the pitch rate Δ P is large and the pitch angle θ P changes sharply, the occupant senses the change in the pitch angle θ P even if the pitch angle θ P is small. On the other hand, when the pitch rate ΔP is small and the pitch angle θP changes slowly, the occupant has difficulty perceiving the change in the pitch angle θP even if the pitch angle θP is relatively large.
 ピッチ角θの発生またはその変動は、通常、電動車両100の安定した走行(走行安定性)には殆ど問題を生じさせないが、電動車両100の乗り心地を悪化させる場合がある。このため、コントローラ12は、ピッチ角θが概ね下限値LL以下となるように、駆動力配分の調整による姿勢制御を実行する。 The occurrence or variation of the pitch angle θ P usually causes little problem in stable running (running stability) of the electric vehicle 100, but may worsen the ride comfort of the electric vehicle 100. Therefore, the controller 12 executes posture control by adjusting the driving force distribution so that the pitch angle θ P is approximately equal to or less than the lower limit value LL.
 但し、本実施形態では、姿勢制御によって制御すべきピッチ角θについて、実験またはシミュレーション等によって予め定める上限値ULを設定する。上限値ULは、例えば、ピッチレートΔに依存しない一定値である。 However, in this embodiment, an upper limit value UL that is predetermined through experiments, simulations, etc. is set for the pitch angle θ P to be controlled by attitude control. The upper limit value UL is, for example, a constant value that does not depend on the pitch rate ΔP .
 そして、コントローラ12は、ピッチ角θが下限値LL以上、上限値UL以下の範囲の値(領域E2a内の値)となるときに、駆動力配分の調整による姿勢制御を実行する。これにより、コントローラ12は、ピッチ角θが下限値LL以下の範囲内の値(領域E内の値)となるように、電動車両100の前後方向の姿勢を制御する。典型的には、目標とする電動車両100の姿勢はピッチ角θがゼロとなる姿勢である。本実施形態では、コントローラ12は、姿勢制御を実行するときには、ピッチ角θが実質的にゼロその他予め定める角度(以下、目標ピッチ角θ という)に維持されるように、前後方向の姿勢を制御する。ピッチ角θについて予め定める角度は、具体的な電動車両100の走行状態に応じて変化する場合がある。 Then, the controller 12 executes posture control by adjusting the driving force distribution when the pitch angle θ P reaches a value in a range of not less than the lower limit value LL and not more than the upper limit value UL (a value within the region E 2a ). Thereby, the controller 12 controls the posture of the electric vehicle 100 in the longitudinal direction so that the pitch angle θ P becomes a value within the range below the lower limit value LL (a value within the region E 1 ). Typically, the target attitude of electric vehicle 100 is one in which pitch angle θ P is zero. In the present embodiment, when performing attitude control, the controller 12 controls the pitch angle in the longitudinal direction so that the pitch angle θ P is maintained at substantially zero or other predetermined angle (hereinafter referred to as target pitch angle θ P * ). Control your posture. The predetermined angle for pitch angle θ P may change depending on the specific running state of electric vehicle 100.
 一方、ピッチ角θがはじめから下限値LL以下の範囲の値(領域E内の値)となるとき、または、ピッチ角θが上限値ULを超える範囲の値(領域E2b内の値)となるときには、コントローラ12は、駆動力配分の調整による姿勢制御を実行しない。 On the other hand, when the pitch angle θ P is from the beginning a value in the range below the lower limit LL (a value in the area E 1 ), or when the pitch angle θ P is a value in the range exceeding the upper limit UL (a value in the area E 2b ) value), the controller 12 does not perform attitude control by adjusting the driving force distribution.
 すなわち、コントローラ12は、姿勢制御を常時実行するのではなく、必要に応じて姿勢制御のオン/オフを切り替える姿勢制御実行判定を行う。具体的には、姿勢制御実行判定の結果、姿勢制御を実行する必要であると判定したときに、コントローラ12は姿勢制御をオンにする。これにより、姿勢制御は開始され、または、姿勢制御を実行している状態が維持される。一方、姿勢制御実行判定の結果、姿勢制御を実行する必要がないと判定したときには、コントローラ12は、姿勢制御をオフにする。これにより、姿勢制御は停止され、または、姿勢制御が停止している状態が維持される。 In other words, the controller 12 does not always execute attitude control, but performs an attitude control execution determination to turn attitude control on/off as necessary. Specifically, when it is determined as a result of the attitude control execution determination that attitude control needs to be executed, the controller 12 turns on attitude control. As a result, attitude control is started, or a state in which attitude control is being performed is maintained. On the other hand, when it is determined as a result of the attitude control execution determination that there is no need to execute attitude control, the controller 12 turns off attitude control. As a result, attitude control is stopped, or the state in which attitude control is stopped is maintained.
 より詳細には、コントローラ12は、ピッチ角θが領域E2aの範囲内の値となるときに、姿勢制御が必要であると判定し、姿勢制御をオンにする。一方、ピッチ角θが領域Eまたは領域E2bの値となるときには、コントローラ12は、姿勢制御を実行する必要がないと判定し、姿勢制御をオフにする。 More specifically, when the pitch angle θ P falls within the range of the region E 2a , the controller 12 determines that attitude control is necessary and turns on the attitude control. On the other hand, when the pitch angle θ P reaches the value in the region E 1 or the region E 2b , the controller 12 determines that there is no need to perform attitude control and turns off the attitude control.
 図3に示すとおり、ピッチ角θは、電動車両100に生じる加速度Gと正相関があり、ピッチレートΔは、電動車両100に生じる加速度Gの時間変化率であるジャークJと正相関がある。このため、コントローラ12は、加速度G、ジャークJ、または、これらの両方に基づいて、乗員が体感し得るピッチ角θの下限値LL等を特定できる。したがって、コントローラ12は、加速度G、ジャークJ、または、これらの両方に基づいて、姿勢制御実行判定を行うことができる。 As shown in FIG. 3, the pitch angle θ P has a positive correlation with the acceleration G generated in the electric vehicle 100, and the pitch rate ΔP has a positive correlation with the jerk J, which is the time rate of change of the acceleration G generated in the electric vehicle 100. be. Therefore, the controller 12 can specify the lower limit value LL of the pitch angle θ P that can be felt by the occupant based on the acceleration G, the jerk J, or both of these. Therefore, the controller 12 can determine whether to perform attitude control based on the acceleration G, the jerk J, or both.
 コントローラ12は、実加速度Gact及び実ジャークJactを取得するので、実加速度Gact及び/または実ジャークJactに基づいて姿勢制御実行判定を行うことができる。但し、本実施形態では、コントローラ12は、実加速度Gact及び/または実ジャークJactの代わりに、推定加速度Gest及び/または推定ジャークJestに基づいて、姿勢制御実行判定を行う。これは、姿勢制御を行う必要があるときに姿勢制御を遅滞なく開始するためである。推定加速度Gestは、これから電動車両100に生じる加速度Gについての推定値である。同様に、推定ジャークJestは、これから電動車両100に生じるジャークJについての推定値である。 Since the controller 12 acquires the actual acceleration G act and the actual jerk J act , it can determine whether to perform attitude control based on the actual acceleration G act and/or the actual jerk J act . However, in this embodiment, the controller 12 performs attitude control execution determination based on the estimated acceleration G est and/or the estimated jerk J est instead of the actual acceleration G act and/or the actual jerk J act . This is for the purpose of starting attitude control without delay when it is necessary to perform attitude control. Estimated acceleration G est is an estimated value of acceleration G that will occur in electric vehicle 100 from now on. Similarly, estimated jerk J est is an estimated value of jerk J that will occur in electric vehicle 100 from now on.
 なお、電動車両100の乗員が、加速または減速時に体感し得るピッチ角θの下限値は、路面勾配φLSによっても変化する。具体的には、路面勾配φLSが大きいときには、乗員はピッチ角θ及びその変動を感じ取り難くなる。したがって、コントローラ12は、推定加速度Gest及び/または推定ジャークJestだけでなく、さらに路面勾配φLSに基づいて、姿勢制御実行判定を行うことができる。具体的には、路面勾配φLSが、予め定める閾値THLS(所定勾配)よりも大きく、電動車両100が走行等する路面が急勾配であって、乗員がピッチ角θ及びその変化を感じ取り難いときには、コントローラ12は、姿勢制御を実行する必要がないと判定し、姿勢制御をオフにする。すなわち、路面勾配φLSが閾値THLS以下であり、かつ、推定加速度Gest及び/または推定ジャークJestに基づいて姿勢制御が必要であると判定したときに、コントローラ12は、姿勢制御をオンにする。 Note that the lower limit value of the pitch angle θ P that the occupant of the electric vehicle 100 can experience during acceleration or deceleration also changes depending on the road surface slope φ LS . Specifically, when the road surface gradient φ LS is large, it becomes difficult for the occupant to sense the pitch angle θ P and its fluctuations. Therefore, the controller 12 can perform attitude control execution determination based not only on the estimated acceleration G est and/or the estimated jerk J est but also on the road surface gradient φ LS . Specifically, the road surface gradient φ LS is greater than a predetermined threshold value TH LS (predetermined gradient), the road surface on which the electric vehicle 100 runs is steep, and the occupant can feel the pitch angle θ P and its change. If it is difficult, the controller 12 determines that there is no need to perform attitude control and turns off attitude control. That is, when the road surface slope φ LS is less than or equal to the threshold TH LS and it is determined that attitude control is necessary based on the estimated acceleration G est and/or the estimated jerk J est , the controller 12 turns on the attitude control. Make it.
 <姿勢制御のための構成>
 図4は、姿勢制御のためのコントローラ12の構成を示すブロック図である。図4に示すように、コントローラ12は、総駆動力演算部41、基本配分演算部42、姿勢制御演算部43、駆動力設定部44、フロントモータ制御部45、及び、リアモータ制御部46を備える。
<Configuration for posture control>
FIG. 4 is a block diagram showing the configuration of the controller 12 for attitude control. As shown in FIG. 4, the controller 12 includes a total driving force calculation section 41, a basic distribution calculation section 42, an attitude control calculation section 43, a driving force setting section 44, a front motor control section 45, and a rear motor control section 46. .
 総駆動力演算部41は、アクセルペダルの操作に基づいて、総駆動力TQを演算する。総駆動力TQは、電動車両100に対する要求駆動力である。例えば、総駆動力演算部41は、アクセル開度APOと総駆動力TQを対応付けるマップを有し、このマップを参照することにより、アクセル開度APOに対応する総駆動力TQを演算する。 The total driving force calculating section 41 calculates the total driving force TQ based on the operation of the accelerator pedal. Total driving force TQ is the required driving force for electric vehicle 100. For example, the total driving force calculation unit 41 has a map that associates the accelerator opening degree A PO with the total driving force TQ, and calculates the total driving force TQ corresponding to the accelerator opening degree A PO by referring to this map. .
 なお、総駆動力演算部41は、上記のようにアクセル開度APOに基づいて総駆動力TQを演算する代わりに、ADAS(Advanced Drive Assistance System)またはAD(Autonomous Driving)システム等からの指令に基づいて、総駆動力TQを演算することができる。これらのシステムは、運転者によるアクセルペダルの操作を代替するシステムであるから、総駆動力演算部41がこれらのシステムの指令に基づいて行う総駆動力TQの演算は、実質的にアクセルペダルの操作に基づく演算である。 Note that instead of calculating the total driving force TQ based on the accelerator opening degree A PO as described above, the total driving force calculation unit 41 calculates the total driving force TQ based on the accelerator opening degree A PO as described above. Based on this, the total driving force TQ can be calculated. Since these systems are systems that replace the operation of the accelerator pedal by the driver, the calculation of the total driving force TQ performed by the total driving force calculation unit 41 based on the commands of these systems substantially does not require the operation of the accelerator pedal. It is a calculation based on operations.
 基本配分演算部42は、基本配分にしたがって、総駆動力TQを、前輪21及び後輪26に配分する。基本配分は、走行安定性を確保し得る範囲内で電費が最良となるように決定される駆動力配分であり、実験またはシミュレーション等によって予め定められる。例えば、フロントモータ23とリアモータ28が同型であって、電動車両100が平坦路を一定の速度で走行する場合、基本配分は前輪:後輪=50:50である。基本配分は、電動車両100の具体的な走行状態(操舵の状態等)によって変化する場合がある。 The basic distribution calculation unit 42 distributes the total driving force TQ to the front wheels 21 and the rear wheels 26 according to the basic distribution. The basic distribution is a driving force distribution that is determined so as to maximize electric power consumption within a range that can ensure running stability, and is determined in advance through experiments, simulations, or the like. For example, when the front motor 23 and the rear motor 28 are of the same type and the electric vehicle 100 travels at a constant speed on a flat road, the basic distribution is front wheels: rear wheels = 50:50. The basic distribution may change depending on the specific running state (steering state, etc.) of electric vehicle 100.
 本実施形態では、基本配分演算部42は、基本配分及び総駆動力TQに基づいて、第1フロントトルク目標値TF1 、及び、第1リアトルク目標値TR1 を演算する。第1フロントトルク目標値TF1 は、基本配分に応じた前輪駆動力Fを前輪21に生じさせるフロントモータトルクを表す。第1リアトルク目標値TR1 は、基本配分に応じた後輪駆動力Fを後輪26に生じさせるリアトルクを表す。 In this embodiment, the basic distribution calculation unit 42 calculates the first front torque target value T F1 * and the first rear torque target value T R1 * based on the basic distribution and the total driving force TQ. The first front torque target value T F1 * represents the front motor torque that causes the front wheels 21 to generate the front wheel driving force F F according to the basic distribution. The first rear torque target value T R1 * represents the rear torque that causes the rear wheels 26 to generate the rear wheel drive force F R according to the basic distribution.
 姿勢制御演算部43は、姿勢制御の要否を判定するとともに、姿勢制御が必要であるときに設定すべき姿勢制御のための駆動力配分である補正配分を演算する。補正配分は、電動車両100の姿勢を目標とする姿勢に漸近させ、または、維持するように決定される。したがって、補正駆動力配分に応じて前輪21及び後輪26に駆動力を配分することにより、電動車両100の姿勢は、目標とする姿勢となるように、制御される。 The attitude control calculation unit 43 determines whether or not attitude control is necessary, and calculates a correction distribution that is a driving force distribution for attitude control that should be set when attitude control is necessary. The correction distribution is determined so that the attitude of electric vehicle 100 asymptotically approaches or maintains the target attitude. Therefore, by distributing the driving force to the front wheels 21 and the rear wheels 26 according to the corrected driving force distribution, the attitude of the electric vehicle 100 is controlled to be the target attitude.
 より具体的には、本実施形態の姿勢制御演算部43は、姿勢制御実行判定部47と、補正部48と、を備える。 More specifically, the attitude control calculation unit 43 of this embodiment includes an attitude control execution determination unit 47 and a correction unit 48.
 姿勢制御実行判定部47は、総駆動力TQ及び車速VSPに基づいて、フィードフォワード制御により、駆動力配分の調整による姿勢制御のオン/オフを切り替える姿勢制御実行判定を行う。本実施形態では、姿勢制御実行判定部47は、総駆動力TQ及び車速VSPの他、路面勾配φLSに基づいて姿勢制御実行判定を行う。姿勢制御実行判定の結果は、姿勢制御フラグFLGによって表される。姿勢制御フラグFLGは、例えば、姿勢制御の実行が必要な場合に「1」(オン)となり、姿勢制御の実行が不要な場合に「0」(オフ)となるフラグである。 The attitude control execution determination unit 47 performs an attitude control execution determination for switching on/off of attitude control by adjusting the driving force distribution using feedforward control based on the total driving force TQ and the vehicle speed VSP. In the present embodiment, the attitude control execution determination unit 47 makes the attitude control execution determination based on the road surface slope φLS in addition to the total driving force TQ and the vehicle speed VSP. The result of the attitude control execution determination is represented by an attitude control flag FLG. The attitude control flag FLG is, for example, a flag that becomes "1" (on) when execution of attitude control is necessary, and becomes "0" (off) when execution of attitude control is unnecessary.
 補正部48は、基本配分にしたがって配分された前輪21及び後輪26の駆動力(以下、基本駆動力という)を補正することにより、姿勢制御のための前輪21及び後輪26の駆動力(以下、補正駆動力という)を演算する。本実施形態では、補正部48は、基本駆動力に対応する第1フロントトルク目標値TF1 及び第1リアトルク目標値TR1 に基づいて、補正駆動力に対応する第2フロントトルク目標値TF2 及び第2リアトルク目標値TR2 を演算する。補正部48は、例えば予め定まる電動車両100の車両モデルに基づいて、フィードフォワード制御により、補正駆動力を演算する。本実施形態では、補正配分は、具体的な補正駆動力を演算することにより、その結果として決定される。 The correction unit 48 corrects the driving forces of the front wheels 21 and rear wheels 26 (hereinafter referred to as basic driving forces) distributed according to the basic distribution, thereby increasing the driving forces of the front wheels 21 and rear wheels 26 for attitude control ( (hereinafter referred to as corrected driving force). In the present embodiment, the correction unit 48 determines the second front torque target value corresponding to the corrected driving force based on the first front torque target value T F1 * corresponding to the basic driving force and the first rear torque target value T R1 *. T F2 * and second rear torque target value T R2 * are calculated. The correction unit 48 calculates the corrected driving force by feedforward control based on, for example, a predetermined vehicle model of the electric vehicle 100. In this embodiment, the corrected distribution is determined by calculating a specific corrected driving force.
 駆動力設定部44は、姿勢制御フラグFLGにしたがって、前輪21及び後輪26で生じさせる駆動力を、基本駆動力または補正駆動力のいずれかに設定する。 The driving force setting unit 44 sets the driving force generated by the front wheels 21 and the rear wheels 26 to either the basic driving force or the corrected driving force according to the attitude control flag FLG.
 具体的には、姿勢制御実行判定によって姿勢制御が不要であると判定され、姿勢制御フラグFLGが「0」であるときには、駆動力設定部44は、前輪21及び後輪26で生じさせる駆動力を基本駆動力に設定する。すなわち、姿勢制御フラグFLGが「0」であるときには、駆動力設定部44は、第1フロントトルク目標値TF1 をフロントモータ制御部45に入力し、第1リアトルク目標値TR1 をリアモータ制御部46に入力する。これにより、姿勢制御はオフとなる。 Specifically, when the attitude control execution determination determines that attitude control is not necessary and the attitude control flag FLG is "0", the driving force setting unit 44 sets the driving force to be generated by the front wheels 21 and the rear wheels 26. is set as the basic driving force. That is, when the attitude control flag FLG is "0", the driving force setting unit 44 inputs the first front torque target value T F1 * to the front motor control unit 45, and inputs the first rear torque target value T R1 * to the rear motor control unit 45. Input to the control unit 46. This turns off attitude control.
 一方、姿勢制御実行判定によって姿勢制御が必要であると判定され、姿勢制御フラグFLGが「1」であるときには、駆動力設定部44は、前輪21及び後輪26で生じさせる駆動力を補正駆動力に設定する。すなわち、姿勢制御フラグFLGが「1」であるときには、駆動力設定部44は、第2フロントトルク目標値TF2 をフロントモータ制御部45に入力し、第2リアトルク目標値TR2 をリアモータ制御部46に入力する。これにより、姿勢制御がオンとなる。 On the other hand, when it is determined by the attitude control execution determination that attitude control is necessary and the attitude control flag FLG is "1", the driving force setting unit 44 adjusts the driving force generated by the front wheels 21 and the rear wheels 26 to correct the driving force. Set to power. That is, when the attitude control flag FLG is "1", the driving force setting unit 44 inputs the second front torque target value T F2 * to the front motor control unit 45, and inputs the second rear torque target value T R2 * to the rear motor control unit 45. Input to the control unit 46. This turns on attitude control.
 フロントモータ制御部45は、駆動力設定部44によって設定された駆動力が前輪21で生じるように、フロントインバータ22を介してフロントモータ23を制御する。基本駆動力を指令する第1フロントトルク目標値TF1 が入力されたときには、フロントモータ制御部45は、フロントモータ23によって、第1フロントトルク目標値TF1 に対応するフロントトルクを発生させる。一方、姿勢制御のための補正駆動力を指令する第2フロントトルク目標値TF2 が入力されたときには、フロントモータ制御部45は、フロントモータ23によって、第2フロントトルク目標値TF2 に対応するフロントトルクを発生させる。これにより、前輪駆動力Fは、基本駆動力または補正駆動力に制御される。 The front motor control unit 45 controls the front motor 23 via the front inverter 22 so that the driving force set by the driving force setting unit 44 is generated at the front wheels 21. When the first front torque target value T F1 * that commands the basic driving force is input, the front motor control unit 45 causes the front motor 23 to generate a front torque corresponding to the first front torque target value T F1 *. . On the other hand, when the second front torque target value T F2 * that commands the corrected driving force for attitude control is input, the front motor control unit 45 causes the front motor 23 to adjust the second front torque target value T F2 * to the second front torque target value T F2 * . Generates the corresponding front torque. Thereby, the front wheel drive force FF is controlled to the basic drive force or the corrected drive force.
 リアモータ制御部46は、駆動力設定部44によって設定された駆動力が後輪26で生じるように、リアインバータ27を介してリアモータ28を制御する。基本駆動力を指令する第1リアトルク目標値TR1 が入力されたときには、リアモータ制御部46は、リアモータ28によって、第1リアトルク目標値TR1 に対応するリアトルクを発生させる。一方、姿勢制御のための補正駆動力を指令する第2リアトルク目標値TR2 が入力されたときには、リアモータ制御部46は、リアモータ28によって、第2リアトルク目標値TR2 に対応するリアトルクを発生させる。これにより、後輪駆動力Fは、基本駆動力または補正駆動力に制御される。 The rear motor control unit 46 controls the rear motor 28 via the rear inverter 27 so that the driving force set by the driving force setting unit 44 is generated at the rear wheel 26. When the first rear torque target value T R1 * that commands the basic driving force is input, the rear motor control unit 46 causes the rear motor 28 to generate a rear torque corresponding to the first rear torque target value T R1 * . On the other hand, when the second rear torque target value T R2 * that commands the corrected driving force for posture control is input, the rear motor control unit 46 causes the rear motor 28 to generate a rear torque corresponding to the second rear torque target value T R2 *. generate. Thereby, the rear wheel drive force FR is controlled to the basic drive force or the corrected drive force.
 なお、フロントモータ制御部45及びリアモータ制御部46は、基本配分または補正配分にしたがって、フロントモータ23及びリアモータ28の駆動力を制御する駆動力制御部を構成する。 Note that the front motor control section 45 and the rear motor control section 46 constitute a driving force control section that controls the driving force of the front motor 23 and the rear motor 28 according to the basic distribution or the corrected distribution.
 図5は、姿勢制御実行判定部47の構成を示すブロック図である。図5に示すように、姿勢制御実行判定部47は、走行抵抗演算部51、加速度推定部52、ジャーク推定部53、勾配判定部54、ピッチ状態判定部55、及び、フラグ設定部56を備える。 FIG. 5 is a block diagram showing the configuration of the attitude control execution determination section 47. As shown in FIG. 5, the attitude control execution determination unit 47 includes a running resistance calculation unit 51, an acceleration estimation unit 52, a jerk estimation unit 53, a slope determination unit 54, a pitch state determination unit 55, and a flag setting unit 56. .
 走行抵抗演算部51は、車速VSP[m/s]に基づいて、電動車両100の走行抵抗RL[N]を演算する。走行抵抗RLは、空気抵抗、転がり抵抗、及び、加速抵抗等によって構成され、下記の数式(1)のように車速VSPの二次関数で近似できる。二次の項の係数A、一次の項の係数A、及び、車速VSPに依存しない項(定数項)を表す係数Aは、例えば、実験またはシミュレーション等によって予め決定しておくことができる。このため、走行抵抗演算部51は、各次の係数A,A,Aを用いて、車速VSPに応じた走行抵抗RLを演算する。 Running resistance calculating section 51 calculates running resistance RL [N] of electric vehicle 100 based on vehicle speed VSP [m/s]. Running resistance RL is composed of air resistance, rolling resistance, acceleration resistance, etc., and can be approximated by a quadratic function of vehicle speed VSP as shown in equation (1) below. The coefficient A 0 of the second-order term, the coefficient A 1 of the first-order term, and the coefficient A 2 representing a term (constant term) that does not depend on the vehicle speed VSP may be determined in advance by, for example, experiments or simulations. can. Therefore, the running resistance calculation unit 51 calculates the running resistance RL according to the vehicle speed VSP using the coefficients A 0 , A 1 , and A 2 of each order.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 加速度推定部52は、総駆動力TQ[Nm]及び走行抵抗RLに基づいて、推定加速度Gest[m/sec]を演算する。加速度推定部52は、運動方程式にしたがって、推定加速度Gestを演算する。すなわち、加速度推定部52は、下記の数式(2)に示すように、推定加速度Gestは、総駆動力TQ、走行抵抗RL、既知である電動車両100の重量(以下、車両重量Mという)[kg]、重力加速度g[m/sec]、及び、路面勾配φLS[deg]を用いて、推定加速度Gestを演算する。なお、加速度推定部52が演算する推定加速度Gestは、電動車両100が総駆動力TQで駆動するときに生じる加速度Gについての推定値である。 The acceleration estimation unit 52 calculates the estimated acceleration G est [m/sec 2 ] based on the total driving force TQ [Nm] and the running resistance RL. The acceleration estimation unit 52 calculates the estimated acceleration G est according to the equation of motion. That is, the acceleration estimating unit 52 calculates the estimated acceleration Gest based on the total driving force TQ, the running resistance RL, and the known weight of the electric vehicle 100 (hereinafter referred to as vehicle weight M), as shown in the following formula (2). Estimated acceleration G est is calculated using [kg], gravitational acceleration g [m/sec 2 ], and road surface gradient φ LS [deg]. Note that the estimated acceleration G est calculated by the acceleration estimation unit 52 is an estimated value of the acceleration G that occurs when the electric vehicle 100 is driven with the total driving force TQ.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ジャーク推定部53は、推定加速度Gestに基づいて、推定ジャークJest[m/sec]を演算する。具体的には、ジャーク推定部53は、下記の数式(3)に示すとおり、推定加速度Gestを時間微分することによって、推定ジャークJestを演算する。なお、ジャーク推定部53が演算する推定ジャークJestは、電動車両100が総駆動力TQで駆動するときに生じる加速度Gの時間変化率(ジャークJ)についての推定値である。 The jerk estimation unit 53 calculates the estimated jerk J est [m/sec 3 ] based on the estimated acceleration G est . Specifically, the jerk estimating unit 53 calculates the estimated jerk J est by differentiating the estimated acceleration G est with respect to time, as shown in Equation (3) below. Note that the estimated jerk J est calculated by the jerk estimating unit 53 is an estimated value of the temporal change rate (jerk J) of the acceleration G that occurs when the electric vehicle 100 is driven with the total driving force TQ.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 勾配判定部54は、路面勾配φLSに基づいて、姿勢制御の可否を判定する。具体的には、勾配判定部54は、路面勾配φLSと所定の閾値THLSと比較する。そして、路面勾配φLSが閾値THLS以下であるときに、勾配判定部54は、姿勢制御を実行可と判定する。一方、路面勾配φLSが閾値THLSよりも大きいときに、勾配判定部54は、姿勢制御の実行不要と判定する。路面勾配φLSについて定める閾値THLSは、実験またはシミュレーション等によって適合により定められる。 The slope determination unit 54 determines whether attitude control is possible based on the road surface slope φLS . Specifically, the slope determination unit 54 compares the road surface slope φLS with a predetermined threshold value THLS . Then, when the road surface slope φ LS is less than or equal to the threshold value TH LS , the slope determination unit 54 determines that attitude control can be executed. On the other hand, when the road surface slope φ LS is larger than the threshold value TH LS , the slope determination unit 54 determines that execution of attitude control is unnecessary. The threshold value TH LS determined for the road surface slope φ LS is determined by adaptation through experiment, simulation, or the like.
 ピッチ状態判定部55は、電動車両100が総駆動力TQで駆動するときに生じるピッチ角θまたはその変動の状態に基づいて、姿勢制御の要否を判定する。ピッチ状態判定部55は、ピッチ角θと正相関がある推定加速度Gest、ピッチレートΔと正相関がある推定ジャークJest、または、これらの両方に基づいて、姿勢制御の要否を判定することができる。本実施形態では、ピッチ状態判定部55は、推定加速度Gest及び推定ジャークJestに基づいて、姿勢制御の要否を判定する。 Pitch state determination unit 55 determines whether attitude control is necessary based on the state of pitch angle θ P or its fluctuation that occurs when electric vehicle 100 is driven with total driving force TQ. The pitch state determining unit 55 determines whether attitude control is necessary based on the estimated acceleration G est that has a positive correlation with the pitch angle θ P , the estimated jerk J est that has a positive correlation with the pitch rate Δ P , or both of these. can be determined. In this embodiment, the pitch state determination unit 55 determines whether attitude control is necessary based on the estimated acceleration G est and the estimated jerk J est .
 具体的には、ピッチ状態判定部55は、推定加速度Gest及び推定ジャークJestに対応するピッチ角θ及びピッチレートΔの組み合わせ(以下、ピッチ状態という)が、乗員が体感し得えるもので、かつ、制御を要する範囲内のものであるか否か、を判定する。すなわち、ピッチ状態判定部55は、発生するピッチ状態が領域E2a(図3参照)の範囲内にあるか否を判定する。そして、発生するピッチ状態が領域E2aの範囲内にあるときには、ピッチ状態判定部55は、姿勢制御の実行(オン)が必要であると判定する。一方、発生するピッチ状態が領域E2aの範囲内にないときには、ピッチ状態判定部55は、姿勢制御の実行を要しないと判定する。 Specifically, the pitch state determination unit 55 determines that the combination of pitch angle θ P and pitch rate Δ P (hereinafter referred to as pitch state) corresponding to estimated acceleration G est and estimated jerk J est is such that the occupant can experience it. It is determined whether or not it is within a range that requires control. That is, the pitch state determination unit 55 determines whether the pitch state that occurs is within the range E 2a (see FIG. 3). Then, when the pitch state that occurs is within the range E2a , the pitch state determination unit 55 determines that attitude control needs to be executed (turned on). On the other hand, when the pitch state that occurs is not within the range E2a , the pitch state determination unit 55 determines that execution of attitude control is not required.
 ピッチ状態判定部55による上記の判定は、ピッチ角θが、下限値LL以上かつ上限値UL以下であるか否かの判定と同義である。したがって、ピッチ状態判定部55は、例えば、推定加速度Gestに対応するピッチ角θを、推定ジャークJestに対応するピッチレートΔに応じて予め設定される下限値LLと比較することにより、姿勢制御の要否を判定することができる。 The above determination by the pitch state determining unit 55 is synonymous with determining whether the pitch angle θ P is greater than or equal to the lower limit value LL and less than or equal to the upper limit value UL. Therefore, the pitch state determination unit 55, for example, compares the pitch angle θ P corresponding to the estimated acceleration G est with the lower limit value LL that is preset according to the pitch rate Δ P corresponding to the estimated jerk J est . , it is possible to determine whether or not attitude control is necessary.
 本実施形態では、ピッチ状態判定部55は、姿勢制御の要否判定を、次のとおり、特に簡易的あるいは近似的な方法で行う。すなわち、ピッチ状態判定部55は、推定加速度Gestに対して予め定める閾値TH(加速度閾値)を設定し、推定ジャークJestに対して予め定める閾値TH(ジャーク閾値)を設定することにより、特に姿勢制御を行う必要性が高い領域を定める。そして、推定加速度Gestが閾値TH以上(かつ上限値UL以下)であり、かつ、推定ジャークJestが閾値TH以上であるときに、ピッチ状態判定部55は、姿勢制御の実行(オン)が必要であると判定する。これに対し、推定加速度Gestが閾値THよりも小さいとき、または、推定ジャークJestが閾値THよりも小さいときには、ピッチ状態判定部55は、姿勢制御の実行を要しないと判定する。 In this embodiment, the pitch state determining unit 55 determines whether or not posture control is necessary, particularly in a simple or approximate manner as follows. That is, the pitch state determination unit 55 sets a predetermined threshold TH G (acceleration threshold) for the estimated acceleration G est , and sets a predetermined threshold TH J (jerk threshold) for the estimated jerk J est . , determine areas where there is a particularly high need for postural control. Then, when the estimated acceleration G est is equal to or greater than the threshold value TH G (and equal to or less than the upper limit value UL), and the estimated jerk J est is equal to or greater than the threshold value TH J , the pitch state determination unit 55 executes attitude control (on ) is determined to be necessary. On the other hand, when the estimated acceleration G est is smaller than the threshold TH G or when the estimated jerk J est is smaller than the threshold TH J , the pitch state determination unit 55 determines that execution of attitude control is not required.
 なお、推定ジャークJestに対して設定する閾値THは、推定加速度Gestに応じて変化する可変の閾値とすることができる。同様に、推定加速度Gestに対して設定する閾値THは、推定ジャークJestに応じて変化する可変の閾値とすることができる。 Note that the threshold value TH J set for the estimated jerk J est can be a variable threshold value that changes depending on the estimated acceleration G est . Similarly, the threshold value TH G set for the estimated acceleration G est can be a variable threshold value that changes depending on the estimated jerk J est .
 また、ピッチ状態判定部55が、姿勢制御の実行(オン)が必要であると判定するピッチ角θ等の範囲は、実質的に任意に設定することができる。したがって、ピッチ状態判定部55は、推定加速度Gestが閾値TH以上(かつ上限値UL以下)、または、推定ジャークJestが閾値TH以上、のいずれかの条件を満たすときに、姿勢制御の実行(オン)が必要であると判定してもよい。この場合、推定加速度Gestが閾値THよりも小さく、かつ、推定ジャークJestが閾値THよりも小さいときに、ピッチ状態判定部55は、姿勢制御の実行を要しないと判定する。 Furthermore, the range of the pitch angle θ P and the like in which the pitch state determination unit 55 determines that execution (on) of posture control is necessary can be set substantially arbitrarily. Therefore, the pitch state determination unit 55 performs attitude control when the estimated acceleration G est satisfies either the threshold value TH G (and the upper limit value UL or less) or the estimated jerk J est satisfies the threshold value TH J or more. It may be determined that it is necessary to execute (turn on). In this case, when the estimated acceleration G est is smaller than the threshold TH G and the estimated jerk J est is smaller than the threshold TH J , the pitch state determination unit 55 determines that execution of attitude control is not required.
 フラグ設定部56は、勾配判定部54、及び、ピッチ状態判定部55による各判定結果に基づいて、姿勢制御フラグFLGを設定する。具体的には、勾配判定部54が姿勢制御を実行不要と判定したときには、フラグ設定部56は、ピッチ状態判定部55による判定結果に関わらず、姿勢制御フラグFLGを「0」(オフ)に設定する。勾配判定部54が姿勢制御を実行可と判定したときには、フラグ設定部56は、ピッチ状態判定部55による判定結果に基づいて、姿勢制御フラグFLGを設定する。すなわち、勾配判定部54が姿勢制御を実行可と判定し、かつ、ピッチ状態判定部55が姿勢制御の実行(オン)が必要であると判定したときに、フラグ設定部56は、姿勢制御フラグFLGを「1」(オン)に設定する。一方、勾配判定部54が姿勢制御を実行可と判定したものの、ピッチ状態判定部55が姿勢制御の実行を要しないと判定したときには、フラグ設定部56は、姿勢制御フラグFLGを「0」(オフ)に設定する。 The flag setting unit 56 sets the attitude control flag FLG based on the determination results by the slope determining unit 54 and the pitch state determining unit 55. Specifically, when the gradient determining unit 54 determines that attitude control is not required to be executed, the flag setting unit 56 sets the attitude control flag FLG to “0” (off) regardless of the determination result by the pitch state determining unit 55. Set. When the slope determining unit 54 determines that attitude control is executable, the flag setting unit 56 sets the attitude control flag FLG based on the determination result by the pitch state determining unit 55. That is, when the gradient determining unit 54 determines that attitude control can be executed and the pitch state determining unit 55 determines that attitude control needs to be executed (turned on), the flag setting unit 56 sets the attitude control flag. Set FLG to "1" (on). On the other hand, when the slope determining section 54 determines that attitude control is executable, but the pitch state determining section 55 determines that attitude control does not need to be executed, the flag setting section 56 sets the attitude control flag FLG to "0" ( Off).
 <作用>
 以下、上記のように構成される電動車両100の姿勢制御、特に姿勢制御のオン/オフに係る作用を説明する。
<Effect>
Hereinafter, the attitude control of the electric vehicle 100 configured as described above, particularly the operation related to turning on/off the attitude control, will be explained.
 図6は、電動車両100における姿勢制御のオン/オフに係る作用を示すフローチャートである。図6に示すように、総駆動力演算部41は、ステップS10においてアクセル開度APOを取得すると、ステップS11において、取得したアクセル開度APOに基づき、総駆動力TQを演算する。次いで、ステップS12では、走行抵抗演算部51が、総駆動力TQ及び車速VSPに基づいて、電動車両100の走行抵抗RLを演算する。そして、ステップS13では、加速度推定部52が、走行抵抗RLに基づいて推定加速度Gestを演算し、ステップS14では、ジャーク推定部53が、推定加速度Gestを用いて、推定ジャークJestを演算する。 FIG. 6 is a flowchart showing operations related to turning on/off posture control in electric vehicle 100. As shown in FIG. 6, upon acquiring the accelerator opening degree APO in step S10, the total driving force calculation unit 41 calculates the total driving force TQ based on the acquired accelerator opening degree APO in step S11. Next, in step S12, running resistance calculating section 51 calculates running resistance RL of electric vehicle 100 based on total driving force TQ and vehicle speed VSP. Then, in step S13, the acceleration estimating unit 52 calculates the estimated acceleration G est based on the running resistance RL, and in step S14, the jerk estimating unit 53 calculates the estimated jerk J est using the estimated acceleration G est . do.
 その後、ステップS15では、勾配判定部54が路面勾配φLSを取得し、取得した路面勾配φLSに基づいて、姿勢制御の可否を判定する。路面勾配φLSが閾値THLSよりも大きく、路面勾配φLSのために乗員がピッチ角θ及びその変動を体感し得ないときには、ステップS19に進み、姿勢制御は停止され、または、姿勢制御の停止状態が維持される。一方、路面勾配φLSが閾値THLS以下であり、乗員がピッチ角θ及びその変動を体感でき、それによって電動車両100の乗り心地が悪くなる可能性があるときには、ステップS16に進み、発生するピッチ状態(θ,Δ)に基づいて、姿勢制御の要否が判定される。 Thereafter, in step S15, the slope determination unit 54 acquires the road surface slope φ LS , and determines whether attitude control is possible based on the acquired road surface slope φ LS . When the road surface gradient φ LS is larger than the threshold value TH LS and the occupant cannot experience the pitch angle θ P and its fluctuations due to the road surface gradient φ LS , the process proceeds to step S19, and the attitude control is stopped or the attitude control is stopped. The stopped state is maintained. On the other hand, if the road surface gradient φ LS is less than or equal to the threshold TH LS and the occupant can experience the pitch angle θ P and its fluctuations, which may worsen the ride comfort of the electric vehicle 100, the process proceeds to step S16, and the process proceeds to step S16. The necessity of attitude control is determined based on the pitch state (θ P , Δ P ).
 ステップS16では、ピッチ状態判定部55が、推定加速度Gestを閾値THと比較する。推定加速度Gestが閾値TH以上であるときには、ステップS17に進み、ピッチ状態判定部55は、さらに推定ジャークJestを閾値THと比較する。そして、推定ジャークJestが閾値TH以上である場合、すなわち推定加速度Gest及び推定ジャークJestがいずれも各閾値TH,TH以上である場合には、姿勢制御の実行(オン)が必要であると判定される。このため、ステップS18に進み、姿勢制御が実行され、または、姿勢制御の実行が維持される。 In step S16, the pitch state determination unit 55 compares the estimated acceleration G est with the threshold value TH G. When the estimated acceleration G est is equal to or greater than the threshold TH G , the process proceeds to step S17, and the pitch state determination unit 55 further compares the estimated jerk J est with the threshold TH J. Then, when the estimated jerk J est is greater than or equal to the threshold TH J , that is, when the estimated acceleration G est and the estimated jerk J est are both greater than or equal to the respective thresholds TH G and TH J , execution (on) of attitude control is performed. It is determined that it is necessary. Therefore, the process advances to step S18, and attitude control is executed, or execution of attitude control is maintained.
 一方、ステップS16において推定加速度Gestが閾値THよりも小さいとき、または、ステップS17において推定ジャークJestが閾値THよりも小さいときには、姿勢制御は実行を要しないと判断される。このため、ステップS19に進み、姿勢制御は停止され、または、停止状態が維持される。 On the other hand, when the estimated acceleration G est is smaller than the threshold TH G in step S16, or when the estimated jerk J est is smaller than the threshold TH J in step S17, it is determined that attitude control does not need to be executed. Therefore, the process proceeds to step S19, and the attitude control is stopped or the stopped state is maintained.
 図7は、姿勢制御がオフからオンに切り替わるときのパラメータの推移を示すタイムチャートである。図7(A)は、車速VSPの推移を示す。図7(B)は、アクセル開度APOの推移を示す。図7(C)は、総駆動力TQの推移を示す。図7(D)は、電動車両100の加速度Gの推移を示す。図7(D)において、実線は推定加速度Gestを示し、一点鎖線は実加速度Gactを示す。図7(E)は、電動車両100のジャークJの推移を示す。図7(E)において、実線は推定ジャークJestを示し、一点鎖線は実ジャークJactを示す。 FIG. 7 is a time chart showing changes in parameters when posture control is switched from off to on. FIG. 7(A) shows changes in vehicle speed VSP. FIG. 7(B) shows the transition of the accelerator opening degree APO . FIG. 7(C) shows the transition of the total driving force TQ. FIG. 7(D) shows a change in acceleration G of electric vehicle 100. In FIG. 7(D), the solid line indicates the estimated acceleration G est , and the one-dot chain line indicates the actual acceleration G act . FIG. 7(E) shows changes in jerk J of electric vehicle 100. In FIG. 7(E), the solid line indicates the estimated jerk J est , and the dashed line indicates the actual jerk J act .
 図7(F)は、姿勢制御フラグFLGの推移を示す。図7(F)において、実線は、推定加速度Gest及び推定ジャークJestに基づくフィードフォワード制御によって姿勢制御実行判定を行う本実施形態における姿勢制御フラグFLGを示す。図7(F)において、一点鎖線は、実加速度Gact及び実ジャークJact、または、実際に発生したピッチ角θ及びピッチレートΔに基づくフィードバック制御によって姿勢制御実行判定を行う比較例における姿勢制御フラグFLGを示す。なお、本実施形態及び比較例のいずれにおいても、姿勢制御はフィードフォワード制御によって行われる。図7(G)は、ピッチ角θの推移を示す。図7(G)において、実線は、本実施形態の姿勢制御実行判定を行う場合のピッチ角θを示す。図7(G)において、一点鎖線は、比較例のピッチ角θを示す。なお、図7の各タイムチャートの横軸は時間[sec]である。 FIG. 7(F) shows the transition of the attitude control flag FLG. In FIG. 7(F), the solid line indicates the attitude control flag FLG in this embodiment, in which the attitude control execution determination is performed by feedforward control based on the estimated acceleration G est and the estimated jerk J est . In FIG. 7(F), the dashed-dotted line indicates the comparative example in which the attitude control execution determination is performed by feedback control based on the actual acceleration G act and actual jerk J act , or the pitch angle θ P and pitch rate Δ P that actually occurred. Indicates the attitude control flag FLG. Note that in both the present embodiment and the comparative example, attitude control is performed by feedforward control. FIG. 7(G) shows the transition of the pitch angle θP . In FIG. 7(G), the solid line indicates the pitch angle θ P when performing attitude control execution determination in this embodiment. In FIG. 7(G), the dashed line indicates the pitch angle θ P of the comparative example. Note that the horizontal axis of each time chart in FIG. 7 is time [sec].
 図7(A)に示すように、電動車両100は、最初、停車した状態にある。そして、図7(B)に示すように、時刻tからアクセルペダルが踏み込まれ、アクセル開度APOがステップで上昇すると、図7(C)に示すように、これに応じて総駆動力TQが発生及び上昇する。その結果、図7(A)に示すように、制御遅延によって時刻tから所定程度遅れた時刻tから、電動車両100の車速VSPが上昇する。制御遅延とは、通信遅れやフロントモータ23及びリアモータ28のトルク反応遅れ等による制御上の遅延である。 As shown in FIG. 7(A), electric vehicle 100 is initially in a stopped state. Then, as shown in FIG. 7(B), when the accelerator pedal is depressed from time t1 and the accelerator opening degree APO increases in steps, the total driving force is increased accordingly, as shown in FIG. 7(C). TQ occurs and increases. As a result, as shown in FIG. 7A, the vehicle speed VSP of the electric vehicle 100 increases from time t4 , which is delayed by a predetermined amount from time t1 due to the control delay. The control delay is a control delay due to communication delay, torque reaction delay of the front motor 23 and rear motor 28, and the like.
 このとき、図7(D)に示すように、推定加速度Gestは、実質的に遅滞なく、時刻tから上昇を始める。このため、図7(E)に示すように、推定ジャークJestも、実質的に遅滞なく、時刻tから生じる。また、ここでは、図7(D)に示すように、推定加速度Gestは、時刻tと時刻tの間の時刻tにおいて閾値TH以上になるものとする。そして、図7(E)に示すように、推定ジャークJestは、時刻tと時刻tの間の時刻tにおいて、閾値TH以上の値となるものとする。したがって、時刻tにおいて、推定加速度Gest及び推定ジャークJestがいずれも各閾値TH,TH以上となる。このため、図7(F)に示すように、本実施形態(実線)では、姿勢制御フラグFLGは、時刻tに「0」(オフ)から「1」(オン)に遷移し、姿勢制御が開始される。 At this time, as shown in FIG. 7(D), the estimated acceleration G est begins to rise from time t 1 without substantial delay. Therefore, as shown in FIG. 7(E), the estimated jerk J est also occurs from time t 1 without substantial delay. Further, here, as shown in FIG. 7(D), the estimated acceleration G est is assumed to be equal to or greater than the threshold value TH G at time t 2 between time t 1 and time t 4 . As shown in FIG. 7E, the estimated jerk J est assumes a value greater than or equal to the threshold value TH J at time t 3 between time t 2 and time t 4 . Therefore, at time t3 , both the estimated acceleration G est and the estimated jerk J est become equal to or greater than the threshold values TH G and TH J. Therefore, as shown in FIG. 7(F), in this embodiment (solid line), the attitude control flag FLG transitions from "0" (off) to "1" (on) at time t3 , and is started.
 一方、図7(D)に示すように、実加速度Gactは、制御遅延により、時刻tから上昇を始める。このため、図7(E)に示すように、実ジャークJactも、制御遅延により、時刻tから生じる。また、図7(D)に示すように、実加速度Gactが閾値TH以上となる時刻tは、時刻tよりも後になる。そして、ここでは、図7(E)に示すように、実ジャークJactが閾値TH以上となり、さらに遅れる。このため、時刻tにおいて、実加速度Gact及び実ジャークJactがいずれも各閾値TH,TH以上となる。したがって、図7(F)に示すように、比較例(一点鎖線)では、姿勢制御フラグFLGは、少なくとも時刻tよりも後の時刻tに「0」(オフ)から「1」(オン)に遷移し、姿勢制御が開始される。 On the other hand, as shown in FIG. 7(D), the actual acceleration Gact starts to increase from time t4 due to the control delay. Therefore, as shown in FIG. 7E, the actual jerk J act also occurs from time t4 due to the control delay. Further, as shown in FIG. 7(D), the time t5 at which the actual acceleration Gact becomes equal to or greater than the threshold value THG is after the time t4 . Then, as shown in FIG. 7(E), the actual jerk J act exceeds the threshold value TH J and is further delayed. Therefore, at time t6 , both the actual acceleration G act and the actual jerk J act become equal to or greater than the respective threshold values TH G and TH J. Therefore, as shown in FIG. 7(F), in the comparative example (dotted chain line), the attitude control flag FLG changes from "0" (off) to "1" (on) at least at time t6 after time t4 . ) and attitude control is started.
 したがって、本実施形態と比較例を比較すると、本実施形態では、電動車両100に実際に加速度G等が生じる前の時刻tに、姿勢制御実行判定が完了し、電動車両100に実際に加速度G等が生じたときには、姿勢制御が開始されている。これに対し、比較例では、姿勢制御実行判定が完了するのは、電動車両100に実際に加速度G等が生じる時刻t以前とはなり得ない。このため、比較例では、電動車両100に実際に加速度G等が生じた後、姿勢制御が開始されるまでに、少なくとも制御遅延程度の遅れが生じることが避けられない。 Therefore, when comparing the present embodiment and the comparative example, in the present embodiment, the attitude control execution determination is completed at time t3 before acceleration G etc. actually occur in the electric vehicle 100, and the electric vehicle 100 is actually accelerated. When G or the like occurs, attitude control has started. On the other hand, in the comparative example, the attitude control execution determination cannot be completed before time t4 when electric vehicle 100 actually experiences acceleration G or the like. Therefore, in the comparative example, after acceleration G etc. actually occur in electric vehicle 100, it is inevitable that a delay equivalent to at least a control delay will occur before attitude control is started.
 その結果、図7(G)に示すように、本実施形態(実線)では、ピッチ角θの変化が生じる時刻t以降、速やかに、ピッチレートΔ(傾き)を抑えつつ、かつ、ピッチ角θを目標ピッチ角θ に収束させることができる。すなわち、本実施形態では、ピッチ角θの変動が生じる当初から姿勢制御を機能させることができる。 As a result, as shown in FIG. 7(G), in this embodiment (solid line), after time t 4 when the pitch angle θ P changes, the pitch rate Δ P (inclination) is quickly suppressed, and The pitch angle θ P can be converged to the target pitch angle θ P * . That is, in this embodiment, the attitude control can be made to function from the beginning when the pitch angle θ P fluctuates.
 一方、比較例(破線)では、時刻t以降、姿勢制御が開始される時刻tまでの間に、急峻なピッチレートΔでピッチ角θが上昇して目標ピッチ角θ に近づく。その後、時刻tに姿勢制御が開始されることによって、ピッチ角θが目標ピッチ角θ に収束する。したがって、比較例では、時刻tから時刻tの姿勢制御が働いていない期間に殆どのピッチ角θの変動が生じている。すなわち、比較例では、実質的に姿勢制御が間に合わない。 On the other hand, in the comparative example (broken line), after time t4 until time t6 when attitude control is started, the pitch angle θP increases at a steep pitch rate ΔP and reaches the target pitch angle θP * . Get closer. Thereafter, attitude control is started at time t6 , and the pitch angle θ P converges to the target pitch angle θ P * . Therefore, in the comparative example, most of the fluctuations in pitch angle θ P occur during the period from time t 4 to time t 6 when attitude control is not working. That is, in the comparative example, attitude control is substantially not done in time.
 [第2実施形態]
 上記第1実施形態では、姿勢制御実行判定部47は、推定加速度Gest及び推定ジャークJestに基づいて姿勢制御の要否を判定するものであって、推定加速度Gestまたは推定ジャークJestのいずれかに基づいて姿勢制御の要否を判定することもできる。しかし、姿勢制御の要否を判定するため姿勢制御実行判定部47の具体的構成は、これに限らない。姿勢制御実行判定部47は、推定加速度Gest及び/または推定ジャークJestの他に、実加速度Gact、実ジャークJact、または、これらの両方に基づいて、姿勢制御の要否を判定することができる。以下の第2実施形態では、一例として、姿勢制御実行判定部47が、推定加速度Gest及び推定ジャークJestに基づく姿勢制御の要否判定に、実加速度Gact及び実ジャークJactに基づく姿勢制御の要否判定を組み合わせて、総合的に姿勢制御の要否を判定する形態を説明する。
[Second embodiment]
In the first embodiment, the attitude control execution determination unit 47 determines whether or not attitude control is necessary based on the estimated acceleration G est and the estimated jerk J est . It is also possible to determine whether or not posture control is necessary based on either. However, the specific configuration of the attitude control execution determination unit 47 for determining whether or not attitude control is necessary is not limited to this. The attitude control execution determination unit 47 determines whether or not attitude control is necessary based on the actual acceleration G act , the actual jerk J act , or both of these in addition to the estimated acceleration G est and/or the estimated jerk J est be able to. In the second embodiment below, as an example, the attitude control execution determination unit 47 determines whether or not attitude control is necessary based on the estimated acceleration G est and the estimated jerk J est , and the attitude control execution determination unit 47 based on the actual acceleration G act and the actual jerk J act . An embodiment will be described in which the necessity of attitude control is determined comprehensively by combining the determination of necessity of control.
 図8は、第2実施形態における姿勢制御実行判定部47の構成を示すブロック図である。図8に示すように、第2実施形態の姿勢制御実行判定部47は、第1実施形態と同様の走行抵抗演算部51、加速度推定部52、ジャーク推定部53、及び、勾配判定部54を備える。そして、第2実施形態の姿勢制御実行判定部47は、第1実施形態のピッチ状態判定部55の代わりに、第1ピッチ状態判定部201及び第2ピッチ状態判定部202を備える。また、第2実施形態の姿勢制御実行判定部47は、第1実施形態のフラグ設定部56の代わりに、フラグ設定部203を備える。 FIG. 8 is a block diagram showing the configuration of the attitude control execution determination unit 47 in the second embodiment. As shown in FIG. 8, the attitude control execution determination unit 47 of the second embodiment includes a running resistance calculation unit 51, an acceleration estimation unit 52, a jerk estimation unit 53, and a gradient determination unit 54, which are similar to those of the first embodiment. Be prepared. The attitude control execution determination section 47 of the second embodiment includes a first pitch state determination section 201 and a second pitch state determination section 202 instead of the pitch state determination section 55 of the first embodiment. Furthermore, the attitude control execution determination section 47 of the second embodiment includes a flag setting section 203 instead of the flag setting section 56 of the first embodiment.
 第1ピッチ状態判定部201は、第1実施形態のピッチ状態判定部55と同様に、推定加速度Gest及び推定ジャークJestに基づき、発生が予測されるピッチ状態(θ,Δ)に応じて、姿勢制御を実行する必要があるか否かを判定する。ここでは、第1ピッチ状態判定部201は、第1実施形態と同様に簡易的あるいは近似的な方法で、姿勢制御の要否を判定する。具体的には、第1ピッチ状態判定部201は、推定加速度Gest及び推定ジャークJestに対してそれぞれ閾値TH,THを予め設定する。そして、推定加速度Gestが閾値TH以上(かつ上限値UL以下)であり、かつ、推定ジャークJestが閾値TH以上であるときに、第1ピッチ状態判定部201は、姿勢制御の実行(オン)が必要であると判定する。一方、推定加速度Gestが閾値THよりも小さいとき、または、推定ジャークJestが閾値THよりも小さいときには、第1ピッチ状態判定部201は、姿勢制御の実行を要しないと判定する。 Similar to the pitch state determining unit 55 of the first embodiment, the first pitch state determining unit 201 determines the pitch state (θ P , Δ P ) that is predicted to occur based on the estimated acceleration G est and the estimated jerk J est . Accordingly, it is determined whether or not attitude control needs to be executed. Here, the first pitch state determination unit 201 determines whether or not attitude control is necessary using a simple or approximate method as in the first embodiment. Specifically, the first pitch state determination unit 201 presets threshold values TH G and TH J for the estimated acceleration G est and the estimated jerk J est , respectively. Then, when the estimated acceleration G est is equal to or greater than the threshold value TH G (and equal to or less than the upper limit value UL), and the estimated jerk J est is equal to or greater than the threshold value TH J , the first pitch state determination unit 201 executes attitude control. (On) is determined to be necessary. On the other hand, when the estimated acceleration G est is smaller than the threshold value TH G or when the estimated jerk J est is smaller than the threshold value TH J , the first pitch state determination unit 201 determines that execution of attitude control is not required.
 第2ピッチ状態判定部202は、実加速度Gact及び実ジャークJactを取得し、これらに基づいて、姿勢制御を実行する必要があるか否かを判定する。すなわち、第2ピッチ状態判定部202は、実際に発生したピッチ状態(θ,Δ)に応じて、姿勢制御の要否を判定する。推定加速度Gest及び推定ジャークJestの代わりに実加速度Gact及び実ジャークJactを用いることを除けば、第2ピッチ状態判定部202は、姿勢制御の要否判定を、第1実施形態のピッチ状態判定部55、または、上記第1ピッチ状態判定部201と同様の方法で行うことができる。 The second pitch state determination unit 202 acquires the actual acceleration G act and the actual jerk J act , and determines based on these whether or not attitude control needs to be executed. That is, the second pitch state determination unit 202 determines whether or not attitude control is necessary, depending on the pitch state (θ P , Δ P ) that actually occurs. Except for using the actual acceleration G act and the actual jerk J act instead of the estimated acceleration G est and the estimated jerk J est , the second pitch state determination unit 202 performs the determination of the necessity of attitude control in the same manner as in the first embodiment. This can be performed using a method similar to that used by the pitch state determining section 55 or the first pitch state determining section 201 described above.
 ここでは、第2ピッチ状態判定部202は、第1ピッチ状態判定部201が実行する具体的な要否判定方法と同一の簡易的あるいは近似的な方法で、実加速度Gact及び実ジャークJactに基づき、姿勢制御の要否を判定する。すなわち、第2ピッチ状態判定部202は、実加速度Gact及び実ジャークJactに対してそれぞれ閾値TH,THを設定する。実加速度Gact及び実ジャークJactに対して設定する閾値TH,THは、推定加速度Gest及び推定ジャークJestに対して設定する閾値TH,THと異なる値とすることができるが、ここでは簡単のために、同じ値の閾値TH,THが設定される。そして、実加速度Gactが閾値TH以上(かつ上限値UL以下)となり、かつ、実ジャークJactが閾値TH以上となったときに、第2ピッチ状態判定部202は、姿勢制御の実行(オン)が必要であると判定する。一方、実加速度Gactが閾値THよりも小さいとき、または、実ジャークJactが閾値THよりも小さいときには、第2ピッチ状態判定部202は、姿勢制御の実行を要しないと判定する。 Here, the second pitch state determining section 202 uses the same simple or approximate method as the specific necessity determining method executed by the first pitch state determining section 201 to determine the actual acceleration G act and the actual jerk J act . Based on this, it is determined whether attitude control is necessary. That is, the second pitch state determination unit 202 sets threshold values TH G and TH J for the actual acceleration G act and the actual jerk J act , respectively. The threshold values TH G and TH J set for the actual acceleration G act and the actual jerk J act can be different values from the threshold values TH G and TH J set for the estimated acceleration G est and the estimated jerk J est . However, here, for simplicity, the thresholds TH G and TH J are set to have the same value. Then, when the actual acceleration G act is equal to or greater than the threshold value TH G (and equal to or less than the upper limit value UL), and the actual jerk J act is equal to or greater than the threshold value TH J , the second pitch state determination unit 202 executes attitude control. (On) is determined to be necessary. On the other hand, when the actual acceleration G act is smaller than the threshold value TH G or when the actual jerk J act is smaller than the threshold value TH J , the second pitch state determination unit 202 determines that attitude control does not need to be executed.
 フラグ設定部203は、勾配判定部54、第1ピッチ状態判定部201、及び、第2ピッチ状態判定部202の各判定結果に基づいて、姿勢制御フラグFLGを設定する。 The flag setting unit 203 sets the attitude control flag FLG based on the determination results of the slope determining unit 54, the first pitch state determining unit 201, and the second pitch state determining unit 202.
 具体的には、勾配判定部54が姿勢制御を実行不要と判定したときには、フラグ設定部203は、第1ピッチ状態判定部201及び第2ピッチ状態判定部202の各判定結果に関わらず、姿勢制御フラグFLGを「0」(オフ)に設定する。 Specifically, when the slope determining unit 54 determines that attitude control is not required, the flag setting unit 203 determines that the attitude control is not necessary, regardless of the determination results of the first pitch state determining unit 201 and the second pitch state determining unit 202. Set control flag FLG to "0" (off).
 一方、勾配判定部54が姿勢制御を実行可と判定したときには、フラグ設定部203は、第1ピッチ状態判定部201及び第2ピッチ状態判定部202による各判定結果に基づいて、姿勢制御フラグFLGを設定する。具体的には、勾配判定部54が姿勢制御を実行可と判定し、かつ、第1ピッチ状態判定部201が姿勢制御の実行(オン)が必要であると判定したときには、フラグ設定部203は、第2ピッチ状態判定部202の判定結果に関わらず、姿勢制御フラグFLGを「1」(オン)に設定する。また、勾配判定部54が姿勢制御を実行可と判定したものの、第1ピッチ状態判定部201が姿勢制御の実行を要しないと判定した場合、フラグ設定部203は、第2ピッチ状態判定部202が姿勢制御の実行(オン)が必要であると判定したときに、姿勢制御フラグFLGを「1」(オン)に設定する。そして、勾配判定部54が姿勢制御を実行可と判定したものの、第1ピッチ状態判定部201及び第2ピッチ状態判定部202がいずれも姿勢制御の実行を要しないと判定したときには、フラグ設定部203は、姿勢制御フラグFLGを「0」(オフ)に設定する。 On the other hand, when the slope determining unit 54 determines that attitude control is executable, the flag setting unit 203 sets the attitude control flag FLG based on the determination results by the first pitch state determining unit 201 and the second pitch state determining unit 202. Set. Specifically, when the gradient determining unit 54 determines that attitude control is executable and the first pitch state determining unit 201 determines that attitude control needs to be executed (turned on), the flag setting unit 203 , the attitude control flag FLG is set to "1" (on) regardless of the determination result of the second pitch state determination unit 202. Further, if the slope determining unit 54 determines that attitude control is executable, but the first pitch state determining unit 201 determines that attitude control does not need to be executed, the flag setting unit 203 determines that the second pitch state determining unit 202 When it is determined that attitude control needs to be executed (on), the attitude control flag FLG is set to "1" (on). Then, when the gradient determining unit 54 determines that attitude control is executable, but both the first pitch state determining unit 201 and the second pitch state determining unit 202 determine that attitude control does not need to be executed, the flag setting unit 203 sets the attitude control flag FLG to "0" (off).
 すなわち、勾配判定部54が姿勢制御を実行可と判定した場合、フラグ設定部203は、第1ピッチ状態判定部201または第2ピッチ状態判定部202のいずれかが、姿勢制御の実行(オン)が必要であると判定したときに、姿勢制御フラグFLGを「1」(オン)に設定する。そして、勾配判定部54が姿勢制御を実行可と判定し、かつ、第1ピッチ状態判定部201及び第2ピッチ状態判定部202のいずれもが、姿勢制御の実行を要しないと判定したときに、姿勢制御フラグFLGを「0」(オフ)に設定する。 That is, when the gradient determining unit 54 determines that attitude control can be executed, the flag setting unit 203 determines whether either the first pitch state determining unit 201 or the second pitch state determining unit 202 executes attitude control (on). When it is determined that this is necessary, the attitude control flag FLG is set to "1" (on). Then, when the gradient determining unit 54 determines that attitude control is executable, and both the first pitch state determining unit 201 and the second pitch state determining unit 202 determine that attitude control does not need to be executed, , set the attitude control flag FLG to "0" (off).
 以下、上記のように構成される第2実施形態の電動車両100について、姿勢制御のオン/オフに係る作用を説明する。 Hereinafter, the operation related to turning on/off the posture control for the electric vehicle 100 of the second embodiment configured as described above will be explained.
 図9は、第2実施形態の電動車両100について、姿勢制御のオン/オフに係る作用を示すフローチャートである。図9に示すように、ステップS20では、総駆動力演算部41がアクセル開度APOを取得するとともに、第2ピッチ状態判定部202が実加速度Gact及び実ジャークJactを取得する。次いで、ステップS21では、総駆動力演算部41がアクセル開度APOに基づいて総駆動力TQを演算し、走行抵抗演算部51が総駆動力TQ及び車速VSPに基づいて、電動車両100の走行抵抗RLを演算する。また、ステップS21では、加速度推定部52が走行抵抗RLに基づいて推定加速度Gestを演算するとともに、ジャーク推定部53が、推定加速度Gestを用いて推定ジャークJestを演算する。 FIG. 9 is a flowchart illustrating an operation related to turning on/off posture control for electric vehicle 100 according to the second embodiment. As shown in FIG. 9, in step S20, the total driving force calculation unit 41 acquires the accelerator opening degree A PO , and the second pitch state determination unit 202 acquires the actual acceleration G act and the actual jerk J act . Next, in step S21, the total driving force calculating section 41 calculates the total driving force TQ based on the accelerator opening degree APO, and the running resistance calculating section 51 calculates the driving force of the electric vehicle 100 based on the total driving force TQ and the vehicle speed VSP. Calculate resistance RL. Further, in step S21, the acceleration estimating section 52 calculates the estimated acceleration G est based on the running resistance RL, and the jerk estimating section 53 calculates the estimated jerk J est using the estimated acceleration G est .
 その後、ステップS22では、勾配判定部54が、路面勾配φLSに基づいて姿勢制御の可否を判定する。路面勾配φLSが閾値THLSよりも大きく、路面勾配φLSのために乗員がピッチ角θ及びその変動を体感し得ないときには、ステップS28に進み、姿勢制御は停止され、または、姿勢制御の停止状態が維持される。一方、路面勾配φLSが閾値THLS以下であり、乗員がピッチ角θ及びその変動を体感でき、それによって電動車両100の乗り心地が悪くなる可能性があるときには、ステップS23に進み、発生することが予測されるピッチ状態(θ,Δ)、または、実際に発生したピッチ状態(θ,Δ)に基づいて、姿勢制御の要否が判定される。 Thereafter, in step S22, the slope determination unit 54 determines whether attitude control is possible based on the road surface slope φLS . When the road surface gradient φ LS is larger than the threshold value TH LS and the occupant cannot experience the pitch angle θ P and its fluctuations due to the road surface gradient φ LS , the process proceeds to step S28, and the attitude control is stopped or the attitude control is stopped. The stopped state is maintained. On the other hand, if the road surface gradient φ LS is less than or equal to the threshold TH LS and there is a possibility that the occupant can experience the pitch angle θ P and its fluctuations, thereby worsening the ride comfort of the electric vehicle 100, the process proceeds to step S23, and the process proceeds to step S23. The necessity of attitude control is determined based on the pitch state (θ P , Δ P ) that is predicted to occur or the pitch state (θ P , Δ P ) that actually occurred.
 ステップS23では、第1ピッチ状態判定部201が、推定加速度Gestを閾値THと比較する。推定加速度Gestが閾値TH以上であるときには、ステップS24に進み、第1ピッチ状態判定部201は、さらに推定ジャークJestを閾値THと比較する。そして、推定ジャークJestが閾値TH以上である場合、すなわち推定加速度Gest及び推定ジャークJestがいずれも各閾値TH,TH以上である場合には、姿勢制御の実行(オン)が必要であると判定される。このため、ステップS27に進み、姿勢制御が実行され、または、姿勢制御の実行が維持される。 In step S23, the first pitch state determination unit 201 compares the estimated acceleration G est with the threshold value TH G. When the estimated acceleration G est is equal to or greater than the threshold TH G , the process proceeds to step S24, and the first pitch state determination unit 201 further compares the estimated jerk J est with the threshold TH J. Then, when the estimated jerk J est is greater than or equal to the threshold TH J , that is, when the estimated acceleration G est and the estimated jerk J est are both greater than or equal to the respective thresholds TH G and TH J , execution (on) of attitude control is performed. It is determined that it is necessary. Therefore, the process advances to step S27, and attitude control is executed, or execution of attitude control is maintained.
 一方、ステップS23において推定加速度Gestが閾値THよりも小さいとき、または、ステップS24において推定ジャークJestが閾値THよりも小さいときには、ステップS25に進み、第2ピッチ状態判定部202が、実加速度Gactを閾値THと比較する。そして、実加速度Gactが閾値TH以上であるときには、ステップS26に進み、第2ピッチ状態判定部202は、さらに実ジャークJactを閾値THと比較する。 On the other hand, when the estimated acceleration G est is smaller than the threshold TH G in step S23, or when the estimated jerk J est is smaller than the threshold TH J in step S24, the process advances to step S25, and the second pitch state determination unit 202 The actual acceleration Gact is compared with a threshold value THG . Then, when the actual acceleration G act is equal to or greater than the threshold value TH G , the process proceeds to step S26, and the second pitch state determination unit 202 further compares the actual jerk J act with the threshold value TH J.
 ステップS25において実加速度Gactが閾値TH以上であり、かつ、ステップS26において実ジャークJactが閾値TH以上であるときには、姿勢制御の実行(オン)が必要であると判定される。このため、ステップS27に進み、姿勢制御が実行され、または、姿勢制御の実行が維持される。すなわち、推定加速度Gest及び推定ジャークJestに基づく判定の結果、姿勢制御の実行を要しないと判断された場合でも、実加速度Gact及び実ジャークJactに基づく判定の結果、姿勢制御の実行(オン)が必要であると判定されたときには、姿勢制御はオンとなる。 When the actual acceleration G act is equal to or greater than the threshold value TH G in step S25, and the actual jerk J act is equal to or greater than the threshold value TH J in step S26, it is determined that attitude control needs to be executed (on). Therefore, the process advances to step S27, and attitude control is executed, or execution of attitude control is maintained. In other words, even if it is determined as a result of the determination based on the estimated acceleration G est and the estimated jerk J est that it is not necessary to execute attitude control, as a result of the determination based on the actual acceleration G act and the actual jerk J act , the execution of attitude control is not necessary. When it is determined that (on) is necessary, attitude control is turned on.
 一方、ステップS25において実加速度Gactが閾値THよりも小さいとき、または、ステップS26において実ジャークJactが閾値THよりも小さいときには、姿勢制御の実行を要しないと判定される。このため、ステップS28に進み、姿勢制御は停止され、または、姿勢制御の停止状態が維持される。すなわち、推定加速度Gest及び推定ジャークJestに基づく判定の結果、姿勢制御の実行を要しないと判断され、かつ、実加速度Gact及び実ジャークJactに基づく判定の結果、姿勢制御の実行を要しないと判断された場合に、姿勢制御はオフとなる。 On the other hand, when the actual acceleration G act is smaller than the threshold value TH G in step S25, or when the actual jerk J act is smaller than the threshold value TH J in step S26, it is determined that attitude control does not need to be executed. Therefore, the process proceeds to step S28, and the attitude control is stopped, or the stopped state of the attitude control is maintained. That is, as a result of the determination based on the estimated acceleration G est and the estimated jerk J est , it is determined that the execution of attitude control is not required, and as a result of the determination based on the actual acceleration G act and the actual jerk J act , it is determined that the execution of attitude control is not required. If it is determined that it is not required, attitude control is turned off.
 このように、推定加速度Gest及び推定ジャークJestに基づく判定と、実加速度Gact及び実ジャークJactに基づく判定と、を組み合わせて、姿勢制御の要否判定を行うと、少なくともピッチ角θ及びその変動が実際に生じたときには、姿勢制御が確実に機能する。例えば、車両重量Mの変化やアフターパーツの取り付けたことによる空気抵抗の変化等があって、推定加速度Gest及び推定ジャークJestの演算に必要な走行抵抗RLに無視し得ない演算誤差が生じる。そして、推定加速度Gest及び推定ジャークJestに基づいて姿勢制御の実行(オン)が必要であると判定されるよりも前に、ピッチ角θ及びその変動が生じてしまうことがある。このとき、上記のように、実加速度Gact及び実ジャークJactに基づく姿勢制御の要否判定が組み合わせて用いられていれば、姿勢制御の実行(オン)が必要な程度のピッチ角θ及びその変動が実際に生じたときに、姿勢制御を機能させることができる。 In this way, if the determination based on the estimated acceleration G est and estimated jerk J est is combined with the determination based on the actual acceleration G act and actual jerk J act to determine whether or not attitude control is necessary, at least the pitch angle θ When P and its fluctuations actually occur, attitude control functions reliably. For example, there is a change in the vehicle weight M or a change in air resistance due to the installation of aftermarket parts, which causes a non-negligible calculation error in the running resistance RL required to calculate the estimated acceleration G est and estimated jerk J est . . Then, the pitch angle θ P and its fluctuation may occur before it is determined that it is necessary to execute (turn on) attitude control based on the estimated acceleration G est and the estimated jerk J est . At this time, as described above, if the attitude control necessity determination based on the actual acceleration G act and the actual jerk J act is used in combination, the pitch angle θ P is such that it is necessary to execute (turn on) the attitude control. Attitude control can be activated when this change actually occurs.
 [第3実施形態]
 上記第1実施形態及び第2実施形態では、推定加速度Gest及び推定ジャークJestは走行抵抗RLに基づいて演算され、走行抵抗RLは車速VSPの二次関数で近似される。そして、走行抵抗RLの演算に用いる近似式における各次の係数A,A,Aは、実験またはシミュレーション等によって予め定められている。しかし、走行抵抗RLは、電動車両100の具体的な使用状態に応じて変わり得る。例えば、車両重量Mが変化したときや、アフターパーツの取り付け等をしたことによって空気抵抗が変化したときには、電動車両100の走行抵抗RLは変化する。このように、走行抵抗RLに顕著な変化があったときに、推定加速度Gest及び推定ジャークJestを用いた姿勢制御実行判定の精度を保つためには、予め定めた係数A,A,Aを更新し、電動車両100の具体的な使用状態に応じた走行抵抗RLを正確に演算することが望ましい。以下の第3実施形態では、走行抵抗RLの演算に用いる係数A,A,Aを、電動車両100の具体的な使用状態に応じた更新する例を説明する。
[Third embodiment]
In the first and second embodiments described above, the estimated acceleration G est and the estimated jerk J est are calculated based on the running resistance RL, and the running resistance RL is approximated by a quadratic function of the vehicle speed VSP. The coefficients A 0 , A 1 , and A 2 of each order in the approximate expression used to calculate the running resistance RL are determined in advance by experiment, simulation, or the like. However, running resistance RL may change depending on the specific usage state of electric vehicle 100. For example, when vehicle weight M changes, or when air resistance changes due to installation of aftermarket parts, etc., running resistance RL of electric vehicle 100 changes. As described above, in order to maintain the accuracy of attitude control execution determination using the estimated acceleration G est and estimated jerk J est when there is a significant change in the running resistance RL, the predetermined coefficients A 0 and A 1 are , A2 , and accurately calculate running resistance RL according to the specific usage state of electric vehicle 100. In the following third embodiment, an example will be described in which coefficients A 0 , A 1 , and A 2 used for calculating running resistance RL are updated according to a specific usage state of electric vehicle 100.
 図10は、走行抵抗RLの演算に用いる近似式の係数A,A,Aを更新するための構成を示すブロック図である。図10に示すように、コントローラ12は、第1実施形態及び/または第2実施形態の構成に加えて、係数更新部301を備えることができる。 FIG. 10 is a block diagram showing a configuration for updating coefficients A 0 , A 1 , and A 2 of the approximate expression used to calculate running resistance RL. As shown in FIG. 10, the controller 12 can include a coefficient update section 301 in addition to the configuration of the first embodiment and/or the second embodiment.
 係数更新部301は、平坦路判定部311、定常走行判定部312、第1誤差演算部313、走行抵抗記憶部314、第2誤差演算部315、及び、係数更新部316を備える。 The coefficient update section 301 includes a flat road determination section 311 , a steady running determination section 312 , a first error calculation section 313 , a running resistance storage section 314 , a second error calculation section 315 , and a coefficient update section 316 .
 平坦路判定部311は、路面勾配φLSに基づいて、電動車両100が平坦路を走行しているか否かを判定する。すなわち、平坦路判定部311は、勾配抵抗が走行抵抗RLに含まれない状態で、電動車両100が走行しているか否かを判定する。具体的には、平坦路判定部311は、路面勾配φLSが予め定める誤差±φ以下でゼロに近いときに(-φ≦φLS≦+φ)、電動車両100が平坦路を走行していると判定する。 The flat road determination unit 311 determines whether the electric vehicle 100 is traveling on a flat road based on the road surface slope φLS . That is, flat road determining section 311 determines whether electric vehicle 100 is traveling in a state where running resistance RL does not include gradient resistance. Specifically, the flat road determination unit 311 determines that the electric vehicle 100 runs on a flat road when the road surface gradient φ LS is close to zero with a predetermined error of ±φ 0 or less (−φ 0 ≦φ LS ≦+φ 0 ). It is determined that the
 定常走行判定部312は、電動車両100が加速または減速をせずに、一定速度の定常走行(いわゆるロードロード走行)をしているか否かを判定する。すなわち、定常走行判定部312は、加減速による抵抗が走行抵抗RLに含まれない状態で、電動車両100が走行しているか否かを判定する。本実施形態では、定常走行判定部312は、実加速度Gactを取得し、実加速度Gactに基づいて、定常走行が継続しているか否かを判定する。具体的には、実加速度Gactが予め定める誤差±G以下(-G≦Gact≦+G)となっているときに、電動車両100が定常走行をしていると判定する。 Steady running determination unit 312 determines whether electric vehicle 100 is running at a constant speed (so-called road running) without accelerating or decelerating. That is, steady running determination section 312 determines whether electric vehicle 100 is running in a state where running resistance RL does not include resistance due to acceleration or deceleration. In this embodiment, the steady running determination unit 312 acquires the actual acceleration Gact , and determines whether or not steady running is continuing based on the actual acceleration Gact . Specifically, when the actual acceleration G act is less than or equal to a predetermined error of ±G 0 (-G 0 ≦G act ≦+G 0 ), it is determined that the electric vehicle 100 is running steadily.
 第1誤差演算部313は、推定加速度Gestと実加速度Gactの誤差である第1誤差Gerr(加速度推定誤差)を演算する。第1誤差演算部313は、加速度推定部52から推定加速度Gestを取得する。但し、第1誤差演算部313は、加速度推定部52と同様の方法で推定加速度Gestを演算してもよい。本実施形態では、第1誤差演算部313は、推定加速度Gestから実加速度Gatを減算することにより、第1誤差Gerrを演算する。 The first error calculation unit 313 calculates a first error G err (acceleration estimation error) which is an error between the estimated acceleration G est and the actual acceleration G act . The first error calculation unit 313 obtains the estimated acceleration Gest from the acceleration estimation unit 52. However, the first error calculation unit 313 may calculate the estimated acceleration G est using the same method as the acceleration estimation unit 52. In this embodiment, the first error calculation unit 313 calculates the first error G err by subtracting the actual acceleration G at from the estimated acceleration G est .
 また、第1誤差演算部313は、演算した第1誤差Gerrに基づき、推定加速度Gestに有意な誤差が継続的に生じている期間(以下、継続時間τerrという)を計数する。具体的には、第1誤差演算部313は、演算した第1誤差Gerrを予め定める閾値THerr1と比較し、第1誤差Gerrが閾値THerr1以上となっている時間を、継続時間τerrとする。 Furthermore, the first error calculation unit 313 counts a period (hereinafter referred to as duration τ err ) during which a significant error continues to occur in the estimated acceleration G est based on the calculated first error G err . Specifically, the first error calculation unit 313 compares the calculated first error G err with a predetermined threshold TH err1 , and calculates the time period during which the first error G err is equal to or greater than the threshold TH err1 as a duration τ. Set to err .
 走行抵抗記憶部314は、電動車両100が平坦路を定常走行しているときの走行抵抗RLを、そのときの車速VSPと対応付けて、少なくとも一時的に記憶する。具体的には、走行抵抗記憶部314は、平坦路での定常走行において、第1誤差Gerrが閾値THerr1以上となっている継続時間τerrが、適合により予め定める閾値τ以上となった場合に、そのときの総駆動力TQを取得する。そして、走行抵抗記憶部314は、取得した総駆動力TQを、平坦路における定常走行時の実際の走行抵抗RL(以下、実走行抵抗RLactという)として、車速VSPに対応付けて記憶する。 The running resistance storage unit 314 at least temporarily stores the running resistance RL when the electric vehicle 100 is steadily running on a flat road in association with the vehicle speed VSP at that time. Specifically, the running resistance storage unit 314 stores the information that, during steady running on a flat road, the duration τ err during which the first error G err is equal to or greater than the threshold value TH err1 becomes equal to or greater than the threshold value τ 0 predetermined by adaptation. In this case, the total driving force TQ at that time is obtained. The running resistance storage unit 314 then stores the acquired total driving force TQ as the actual running resistance RL during steady running on a flat road (hereinafter referred to as actual running resistance RL act ) in association with the vehicle speed VSP.
 第2誤差演算部315は、走行抵抗記憶部314が記憶した実走行抵抗RLactと、走行抵抗演算部51が演算する走行抵抗RLと、の誤差である第2誤差RLerr(走行抵抗誤差)を演算する。第2誤差RLerrの演算は、車速VSPごとに行われる。また、第2誤差演算部315は、第2誤差RLerrの分散その他の統計値等を演算することにより、第2誤差RLerrのばらつきを評価する。 The second error calculation unit 315 calculates a second error RL err (running resistance error) which is an error between the actual running resistance RL act stored in the running resistance storage unit 314 and the running resistance RL calculated by the running resistance calculation unit 51. Calculate. The calculation of the second error RL err is performed for each vehicle speed VSP. Further, the second error calculation unit 315 evaluates the dispersion of the second error RL err by calculating the variance of the second error RL err and other statistical values.
 係数更新部316は、実走行抵抗RLactに基づいて、走行抵抗演算部51が走行抵抗RLの演算に用いる係数A,A,Aの全部または一部を更新(演算)する。また、係数更新部316は、予め記憶された係数A,A,Aを補正することにより、または、新たな係数A,A,Aを演算して、予め記憶された係数A,A,Aを置き換えることにより、走行抵抗RLの演算に用いる係数A,A,Aを更新する。 The coefficient update unit 316 updates (calculates) all or part of the coefficients A 0 , A 1 , and A 2 that the running resistance calculation unit 51 uses to calculate the running resistance RL, based on the actual running resistance RL act . Further, the coefficient updating unit 316 corrects the pre-stored coefficients A 0 , A 1 , A 2 or calculates new coefficients A 0 , A 1 , A 2 , and updates the pre-stored coefficients. By replacing A 0 , A 1 , and A 2 , the coefficients A 0 , A 1 , and A 2 used for calculating the running resistance RL are updated.
 本実施形態では、係数更新部316は、走行抵抗記憶部314が少なくとも3個以上の実走行抵抗RLactを記憶しており、第2誤差RLerrのばらつきが予め定める閾値THerr2以下であるときに、係数更新部316は、定数項の係数Aを更新する。具体的には、係数更新部316は、第2誤差RLerrに基づいて、定数項の係数Aを補正することにより、定数項の係数Aを更新する。例えば、係数更新部316は、従前の定数項の係数Aに対して、第2誤差RLerrの平均値を加算することにより、定数項の係数Aを補正する。 In the present embodiment, the coefficient update unit 316 is configured to update the coefficient when the running resistance storage unit 314 stores at least three or more actual running resistances RL act and the variation in the second error RL err is less than or equal to a predetermined threshold TH err2 . Then, the coefficient update unit 316 updates the coefficient A2 of the constant term. Specifically, the coefficient update unit 316 updates the coefficient A 2 of the constant term by correcting the coefficient A 2 of the constant term based on the second error RL err . For example, the coefficient updating unit 316 corrects the coefficient A 2 of the constant term by adding the average value of the second error RL err to the coefficient A 2 of the previous constant term.
 また、本実施形態では、走行抵抗記憶部314が少なくとも3個以上の実走行抵抗RLactを記憶しているものの、第2誤差RLerrのばらつきが閾値THerr2よりも大きいときには、係数更新部316は、二次及び一次の項の係数A,Aを更新する。具体的には、係数更新部316は、実走行抵抗RLactに基づいて、二次及び一次の項の係数A,Aを新たに演算することにより、これを更新する。例えば、係数更新部316は、定数項の係数Aとして従前の値を使用し、実走行抵抗RLactに基づく二次回帰曲線を求めることによって、新たな二次及び一次の項の係数A,Aを演算する。 Further, in this embodiment, although the running resistance storage unit 314 stores at least three or more actual running resistances RL act , when the variation in the second error RL err is larger than the threshold TH err2 , the coefficient updating unit 316 updates the coefficients A 0 and A 1 of the quadratic and first order terms. Specifically, the coefficient updating unit 316 updates the coefficients A 0 and A 1 of the quadratic and primary terms by newly calculating them based on the actual running resistance RL act . For example, the coefficient updating unit 316 uses the previous value as the coefficient A 2 of the constant term, and calculates a quadratic regression curve based on the actual running resistance RL act , thereby updating the coefficient A 0 of the new quadratic and first-order terms. , A 1 is calculated.
 図11は、走行抵抗RLの演算に用いる近似式の係数A,A,Aを更新する具体的態様を示す説明図である。図11において、丸(○)の凡例で示すデータセットは、電動車両100の初期状態において、予め記憶された係数A,A,Aを用いて演算される走行抵抗RLを示す。また、三角形(△)、及び、四角形(□)の凡例で示す各データセットは、電動車両100の具体的使用状況が異なる独立した走行シーンにおいて、走行抵抗記憶部314が記憶した走行抵抗RLを示す。 FIG. 11 is an explanatory diagram showing a specific manner of updating the coefficients A 0 , A 1 , and A 2 of the approximate expression used to calculate the running resistance RL. In FIG. 11, a data set indicated by a legend circle (◯) indicates running resistance RL calculated using coefficients A 0 , A 1 , and A 2 stored in advance in the initial state of electric vehicle 100. In addition, each data set indicated by a triangle (△) and a square (□) legend represents the running resistance RL stored in the running resistance storage unit 314 in independent running scenes in which the specific usage conditions of the electric vehicle 100 are different. show.
 図11に示すように、平坦路における定常走行によって、三角形(△)の凡例で示す走行抵抗RLが得られた場合、各データ点における第2誤差RLerrは、E1A,E1B,及びE1Cである。そして、これらの第2誤差RLerr(=E1A,E1B,E1C)はいずれも同程度の大きさであって、そのばらつきは閾値THerr2以下である。このため、係数更新部316は、これらの第2誤差RLerrの平均値、すなわちE1A,E1B,E1Cの平均値を、従前の係数Aに加算することにより、定数項の係数Aを更新する。これは、走行抵抗RLを近似する二次曲線を、実線から破線に平行移動させる。したがって、定数項の係数Aの更新は、例えば、車両重量Mの変化等によって空気抵抗以外の走行抵抗成分(転がり抵抗等)が変更となったときに好適である。 As shown in FIG. 11, when the running resistance RL indicated by the triangle (△) legend is obtained by steady running on a flat road, the second errors RL err at each data point are E 1A , E 1B , and E It is 1C . These second errors RL err (=E 1A , E 1B , E 1C ) are all approximately the same size, and the variation thereof is less than or equal to the threshold value TH err2 . Therefore, the coefficient update unit 316 adds the average value of these second errors RL err , that is, the average value of E 1A , E 1B , and E 1C to the previous coefficient A 2 to update the coefficient A of the constant term. Update 2 . This causes the quadratic curve that approximates the running resistance RL to be translated from a solid line to a broken line. Therefore, updating the coefficient A2 of the constant term is suitable when, for example, a running resistance component other than air resistance (rolling resistance, etc.) changes due to a change in vehicle weight M or the like.
 平坦路における定常走行によって、四角形(□)の凡例で示す走行抵抗RLが得られた場合、各データ点における第2誤差RLerrは、E2A,E2B,及びE2Cである。そして、これらの第2誤差RLerr(=E2A,E2B,E2C)の大きさはそれぞれに異なっており、そのばらつきは閾値THerr2よりも大きい。このため、係数更新部316は、定数項の係数Aを維持しつつ、四角形(□)の凡例で示すデータ点の二次回帰曲線を求めることによって、二次及び一次の項の係数A,Aを更新する。これは、走行抵抗RLを近似する二次曲線の形状を、実線から一点鎖線に変更する。したがって、二次及び一次の項の係数A,Aの更新は、アフターパーツの取り付けや交換等によって、電動車両100の空気抵抗が変更となったときに好適である。 When the running resistance RL indicated by the rectangle (□) legend is obtained by steady running on a flat road, the second error RL err at each data point is E 2A , E 2B , and E 2C . The magnitudes of these second errors RL err (=E 2A , E 2B , E 2C ) are different from each other, and the dispersion thereof is larger than the threshold value TH err2 . Therefore, the coefficient update unit 316 maintains the coefficient A 2 of the constant term and calculates the quadratic regression curve of the data points indicated by the rectangle (□) legend, thereby increasing the coefficient A 0 of the quadratic and linear terms. , A 1 is updated. This changes the shape of the quadratic curve that approximates the running resistance RL from a solid line to a dashed-dotted line. Therefore, updating the coefficients A 0 and A 1 of the quadratic and first-order terms is suitable when the air resistance of electric vehicle 100 changes due to installation or replacement of aftermarket parts.
 図12は、走行抵抗RLの演算に用いる近似式の係数A,A,Aの更新に係る作用を示すフローチャートである。図12に示すように、ステップS30では、平坦路判定部311が、路面勾配φLSに基づいて、電動車両100が平坦路を走行しているか否かを判定する。そして、電動車両100が平坦路を走行していると判定された場合には、ステップS31に進み、定常走行判定部312が、電動車両100が、加速も減速もせずに、定常走行をしているか否かを判定する。そして、電動車両100が定常走行をしていると判定された場合には、ステップS32に進む。 FIG. 12 is a flowchart showing the operation related to updating the coefficients A 0 , A 1 , and A 2 of the approximate expression used to calculate the running resistance RL. As shown in FIG. 12, in step S30, the flat road determination unit 311 determines whether the electric vehicle 100 is traveling on a flat road based on the road surface slope φLS . If it is determined that the electric vehicle 100 is traveling on a flat road, the process proceeds to step S31, and the steady running determining unit 312 determines that the electric vehicle 100 is traveling steadily without accelerating or decelerating. Determine whether or not there is. If it is determined that the electric vehicle 100 is traveling steadily, the process advances to step S32.
 ステップS32では、第1誤差演算部313が、推定加速度Gestと実加速度Gactに基づいて、第1誤差Gerrを演算するとともに、第1誤差Gerrが有意な誤差となっている継続時間τerrを計数する。そして、ステップS33において、継続時間τerrを閾値τ以上となった場合、さらにステップS34に進み、走行抵抗記憶部314が、そのときの総駆動力TQを、実走行抵抗RLactとして、車速VSPに対応付けて記憶する。 In step S32, the first error calculation unit 313 calculates the first error G err based on the estimated acceleration G est and the actual acceleration G act , and also calculates the duration during which the first error G err is a significant error. Count τ err . Then, in step S33, if the duration time τ err becomes equal to or greater than the threshold value τ 0 , the process further advances to step S34, where the running resistance storage unit 314 sets the total driving force TQ at that time as the actual running resistance RL act , and sets the vehicle speed It is stored in association with the VSP.
 そして、ステップS35において、実走行抵抗RLactが3個以上となった場合、ステップS36において、第2誤差演算部315は、第2誤差RLerrを演算するとともに、そのばらつきを評価する。 Then, in step S35, when the number of actual running resistances RL act becomes three or more, in step S36, the second error calculation unit 315 calculates the second error RL err and evaluates its dispersion.
 その後、ステップS37において、係数更新部316が、第2誤差RLerrのばらつきが閾値THerr2以下であるか否かを判定する。そして、第2誤差RLerrのばらつきが閾値THerr2以下であるときには、ステップS38に進み、係数更新部316は、走行抵抗RLの演算に用いる近似式における定数項の係数Aを更新する。一方、第2誤差RLerrのばらつきが閾値THerr2よりも大きいときには、ステップS39に進み、係数更新部316は、走行抵抗RLの演算に用いる近似式における二次及び一次の項の係数A,Aを更新する。 After that, in step S37, the coefficient update unit 316 determines whether the variation in the second error RL err is less than or equal to the threshold TH err2 . Then, when the variation in the second error RL err is equal to or less than the threshold value TH err2 , the process proceeds to step S38, and the coefficient updating unit 316 updates the coefficient A 2 of the constant term in the approximate expression used to calculate the running resistance RL. On the other hand, when the variation in the second error RL err is larger than the threshold TH err2 , the process proceeds to step S39, and the coefficient updating unit 316 updates the coefficient A 0 of the quadratic and first-order terms in the approximate equation used to calculate the running resistance RL, Update A1 .
 上記のように、走行抵抗RLの演算に用いる近似式における係数A,A,Aを更新することにより、電動車両100の具体的な使用状態に応じて走行抵抗RLが変化した場合でも、推定加速度Gest及び推定ジャークJestは正確に演算される。その結果、推定加速度Gest及び/または推定ジャークJestを用いた姿勢制御実行判定は、実際のピッチ角θ及びその変動が発生する前に、的確に行われる。このため、姿勢制御は、実際のピッチ角θ及びその変動の発生に遅れることなく適時に開始される。 As described above, by updating the coefficients A 0 , A 1 , and A 2 in the approximate expression used to calculate the running resistance RL, even if the running resistance RL changes depending on the specific usage state of the electric vehicle 100. , estimated acceleration G est and estimated jerk J est are calculated accurately. As a result, the attitude control execution determination using the estimated acceleration G est and/or the estimated jerk J est is accurately performed before the actual pitch angle θ P and its fluctuation occur. Therefore, attitude control is started in a timely manner without delay in the occurrence of the actual pitch angle θ P and its fluctuation.
 なお、上記第3実施形態は、第1実施形態と第2実施形態のいずれにも組み合わせて実施することができる。また、上記第3実施形態では、第1誤差演算部313は、加速度Gの推定誤差を表す第1誤差Gerrを演算しているが、これに限らず、第1誤差演算部313は、これと同様の方法で、ジャークJの推定誤差を表す第1誤差(Jerr)を演算することができる。この場合、後続の処理は、ジャークJの推定誤差を表す第1誤差(Jerr)を用いて、上記第3実施形態と同様に行うことができる。また、第1誤差演算部313は、加速度Gの推定誤差を表す誤差(Gerr)とジャークJの推定誤差を表す誤差(Jerr)の両方を第1誤差として演算することができる。この場合、後続の処理は、加速度Gの推定誤差を表す誤差(Gerr)とジャークJの推定誤差を表す誤差(Jerr)の両方を用いて行うことができる。例えば、加速度Gの推定誤差を表す誤差(Gerr)が閾値τ以上継続し、及び/または、ジャークJの推定誤差を表す誤差(Jerr)が閾値τ以上継続したときに、走行抵抗記憶部314は、実走行抵抗RLactを記憶する構成とすることができる。 Note that the third embodiment described above can be implemented in combination with either the first embodiment or the second embodiment. Further, in the third embodiment, the first error calculation unit 313 calculates the first error G err representing the estimation error of the acceleration G, but the first error calculation unit 313 is not limited to this. The first error (J err ) representing the estimation error of the jerk J can be calculated in a similar manner. In this case, the subsequent processing can be performed in the same manner as in the third embodiment using the first error (J err ) representing the jerk J estimation error. Further, the first error calculation unit 313 can calculate both the error (G err ) representing the estimation error of acceleration G and the error (J err ) representing the estimation error of jerk J as the first error. In this case, the subsequent processing can be performed using both the error (G err ) representing the estimation error of the acceleration G and the error (J err ) representing the estimation error of the jerk J. For example, when the error (G err ) representing the estimation error of the acceleration G continues to be equal to or greater than the threshold value τ 0 , and/or the error (J err ) representing the estimation error of the jerk J continues to be equal to or greater than the threshold value τ 0 , the running resistance The storage unit 314 can be configured to store the actual running resistance RL act .
 なお、上記第1実施形態、第2実施形態、及び、第3実施形態では、推定加速度Gest及び推定ジャークJestの両方を用いて姿勢制御実行判定が行われているが、推定加速度Gestまたは推定ジャークJestのいずれか一方のみが姿勢制御実行判定に使用されてもよい。同様に、第2実施形態では、実加速度Gact及び実ジャークJactの両方を用いて姿勢制御実行判定が行われているが、実加速度Gactまたは実ジャークJactのいずれか一方のみが姿勢制御実行判定に使用されてもよい。これは、第3実施形態を第2実施形態に組み合わせる場合も同様である。 Note that in the first embodiment, the second embodiment, and the third embodiment, the attitude control execution determination is performed using both the estimated acceleration G est and the estimated jerk J est . Alternatively, only one of the estimated jerk J est may be used to determine whether to perform attitude control. Similarly, in the second embodiment, the attitude control execution determination is performed using both the actual acceleration G act and the actual jerk J act , but only one of the actual acceleration G act and the actual jerk J act It may be used for control execution determination. This also applies when the third embodiment is combined with the second embodiment.
 また、上記第1実施形態、第2実施形態、及び、第3実施形態では、補正部48によって、フィードフォワード制御による姿勢制御が行われるが、これに限らない。姿勢制御が、実際に生じたピッチ角θまたはピッチレートΔをフィードバックするフィードバック制御によって実行される場合も、上記第1実施形態、第2実施形態、及び、第3実施形態のように、フィードフォワード制御による姿勢制御実行判定を行うことが好ましい。 Further, in the first embodiment, the second embodiment, and the third embodiment, the correction unit 48 performs attitude control using feedforward control, but the present invention is not limited to this. Even when posture control is performed by feedback control that feeds back the pitch angle θ P or pitch rate Δ P that actually occurred, as in the first embodiment, second embodiment, and third embodiment, It is preferable to perform attitude control execution determination using feedforward control.
 以上のように、第1実施形態、第2実施形態、及び、第3実施形態に係る電動車両の制御方法は、駆動輪である前輪21及び後輪26の駆動力配分を調整することにより、前後方向の姿勢を制御する姿勢制御を実行する電動車両100の制御方法である。この電動車両100の制御方法では、アクセルペダルの操作に基づいて、電動車両100に対する要求駆動力である総駆動力TQが演算され、総駆動力TQに基づいて、電動車両100が総駆動力TQで駆動するときに生じる加速度Gについての推定値である推定加速度Gest、または、加速度Gの時間変化率であるジャークJについての推定値である推定ジャークJest、が演算される。そして、推定加速度Gestまたは推定ジャークJestに基づいて、姿勢制御のオン/オフを切り替える姿勢制御実行判定が行われる。 As described above, the electric vehicle control methods according to the first embodiment, the second embodiment, and the third embodiment adjust the driving force distribution between the front wheels 21 and the rear wheels 26, which are the driving wheels. This is a control method for electric vehicle 100 that executes attitude control to control the attitude in the longitudinal direction. In this control method for electric vehicle 100, total driving force TQ, which is the required driving force for electric vehicle 100, is calculated based on the operation of the accelerator pedal, and based on total driving force TQ, electric vehicle 100 is controlled by total driving force TQ. An estimated acceleration G est that is an estimated value for the acceleration G that occurs when driving with , or an estimated jerk J est that is an estimated value for the jerk J that is the time change rate of the acceleration G is calculated. Then, based on the estimated acceleration G est or the estimated jerk J est , an attitude control execution determination is made to turn on/off the attitude control.
 このように、推定加速度Gestまたは推定ジャークJestに基づくフィードフォワード制御によって、姿勢制御のオン/オフを判定すると、電費等のために姿勢制御がオフになっていた場合でも、ピッチ角θ及びその変動が実際に生じる前に、遅れなく、姿勢制御を開始することができる。すなわち、駆動力配分の調整による姿勢制御を必要に応じてオン/オフする場合に、姿勢制御の開始判断についての遅れを低減し、姿勢制御を適時に実施することができる。特に、姿勢制御をフィードフォワード制御によって行うときには、ピッチ角θ及びその変動が実際に生じる前に、姿勢制御が機能する。また、姿勢制御をフィードバック制御によって行う場合でも、姿勢制御実行判定で生じる制御遅れが削減される。このため、姿勢制御の制御開始の遅れを最小限に抑えることができる。したがって、上記のように、推定加速度Gestまたは推定ジャークJestに基づくフィードフォワード制御によって姿勢制御のオン/オフを判定すれば、電費の悪化を抑えつつ、駆動力配分の調整による姿勢制御を実行することができる。すなわち、姿勢制御による電費の悪化が最小限に抑えられつつ、かつ、電動車両100の乗り心地が改善される。 In this way, if the attitude control is turned on or off by feedforward control based on the estimated acceleration G est or estimated jerk J est , the pitch angle θ P Attitude control can be started without delay before this change actually occurs. That is, when turning on/off attitude control based on adjustment of driving force distribution as necessary, the delay in determining the start of attitude control can be reduced and attitude control can be implemented in a timely manner. In particular, when the attitude control is performed by feedforward control, the attitude control functions before the pitch angle θ P and its fluctuation actually occur. Furthermore, even when attitude control is performed by feedback control, control delays caused in attitude control execution determination are reduced. Therefore, the delay in starting attitude control can be minimized. Therefore, as described above, if attitude control is determined to be on/off by feedforward control based on estimated acceleration G est or estimated jerk J est , attitude control by adjusting driving force distribution can be performed while suppressing deterioration of electricity consumption. can do. That is, the deterioration in electricity consumption due to attitude control is minimized, and the ride comfort of electric vehicle 100 is improved.
 上記第1実施形態、第2実施形態、及び、第3実施形態に係る電動車両の制御方法では、特に、総駆動力TQに基づいて、推定加速度Gest及び推定ジャークJestが演算され、推定加速度Gest及び推定ジャークJestに基づいて、姿勢制御のオン/オフが切り替えられる。このように、姿勢制御実行判定に推定加速度Gestと推定ジャークJestの両方を用いることによって、姿勢制御実行判定の精度が向上する。また、乗員が体感し得るピッチ状態(θ,Δ)に応じた適切なタイミングで、姿勢制御をオンにすることができる。 In the electric vehicle control method according to the first embodiment, the second embodiment, and the third embodiment, the estimated acceleration G est and the estimated jerk J est are calculated based on the total driving force TQ, and the estimated Posture control is switched on/off based on the acceleration G est and the estimated jerk J est . In this way, by using both the estimated acceleration G est and the estimated jerk J est for the attitude control execution determination, the accuracy of the attitude control execution determination is improved. Further, attitude control can be turned on at an appropriate timing according to the pitch state (θ P , Δ P ) that can be felt by the occupant.
 上記第1実施形態、第2実施形態、及び、第3実施形態に係る電動車両の制御方法では、特に、推定加速度Gestが、加速度Gについて予め定める所定の閾値である加速度閾値(TH)以上であり、かつ、推定ジャークJestが、ジャークJについて予め定める所定の閾値であるジャーク閾値(TH)以上であるときに、姿勢制御がオンにされる。このように簡易的な方法でも、乗員が体感し得るピッチ状態(θ,Δ)に応じた適切なタイミングで、姿勢制御をオンにすることができる。 In the electric vehicle control method according to the first embodiment, the second embodiment, and the third embodiment, the estimated acceleration G est is an acceleration threshold (TH G ) that is a predetermined threshold value predetermined for the acceleration G. When the above is true and the estimated jerk J est is equal to or greater than the jerk threshold (TH J ), which is a predetermined threshold for the jerk J, posture control is turned on. Even with such a simple method, attitude control can be turned on at an appropriate timing according to the pitch state (θ P , Δ P ) that can be felt by the occupant.
 上記第1実施形態、第2実施形態、及び、第3実施形態に係る電動車両の制御方法では、特に、車両モデルに基づき駆動力配分を補正するフィードフォワード制御により、姿勢制御が実行される。このように、姿勢制御がフィードフォワード制御によって実行される場合に、推定加速度Gestまたは推定ジャークJestに基づくフィードフォワード制御の姿勢制御実行判定によって姿勢制御のオン/オフを制御すると、特に確実に、ピッチ角θ及びその変動が実際に生じる前に、姿勢制御が機能する。すなわち、電費悪化の抑制と、姿勢制御による乗り心地の改善が、特に両立されやすい。 In the electric vehicle control methods according to the first embodiment, the second embodiment, and the third embodiment, attitude control is performed particularly by feedforward control that corrects driving force distribution based on a vehicle model. In this way, when attitude control is executed by feedforward control, controlling on/off of attitude control based on the attitude control execution determination of feedforward control based on the estimated acceleration G est or the estimated jerk J est is particularly effective. , the attitude control functions before the pitch angle θ P and its variations actually occur. In other words, it is particularly easy to achieve both suppression of deterioration in electricity consumption and improvement of ride comfort through posture control.
 上記第1実施形態、第2実施形態、及び、第3実施形態に係る電動車両の制御方法では、電動車両100が走行する路面の勾配(φLS)が取得され、勾配(φLS)と、推定加速度Gestまたは推定ジャークJestと、に基づいて、姿勢制御のオン/オフが切り替えられる。このように、さらに路面勾配φLSを加味した姿勢制御実行判定によれば、乗員がピッチ角θ及びその変動を体感し難い傾斜路面を走行シーンにおいて姿勢制御をオフに維持することができる。その結果、無用な姿勢制御の実行による電費の悪化が抑えられる。 In the electric vehicle control methods according to the first embodiment, the second embodiment, and the third embodiment, the slope (φ LS ) of the road surface on which the electric vehicle 100 runs is acquired, and the slope (φ LS ) and Attitude control is switched on/off based on the estimated acceleration G est or the estimated jerk J est . In this way, according to the posture control execution determination that further takes into account the road surface gradient φ LS , posture control can be kept off in a driving scene on a sloped road surface where it is difficult for the occupant to experience the pitch angle θ P and its fluctuations. As a result, deterioration in electricity consumption due to execution of unnecessary attitude control can be suppressed.
 上記第1実施形態、第2実施形態、及び、第3実施形態に係る電動車両の制御方法では、具体的に、勾配(φLS)が予め定める所定勾配(THLS)以下である場合、推定加速度Gestまたは推定ジャークJestに基づいて、姿勢制御の要否が判定され、勾配(φLS)が所定勾配(THLS)よりも大きい場合、姿勢制御はオフにされる。すなわち、乗員がピッチ角θ及びその変動を体感し難い急勾配の路面を走行しているときに、特に確実に姿勢制御をオフに維持することができる。したがって、無用な姿勢制御の実行による電費の悪化が特に抑えられやすい。 Specifically, in the electric vehicle control method according to the first embodiment, the second embodiment, and the third embodiment, when the gradient (φ LS ) is equal to or less than a predetermined gradient (TH LS ), the estimated Based on the acceleration G est or the estimated jerk J est , it is determined whether attitude control is necessary, and if the gradient (φ LS ) is larger than the predetermined gradient (TH LS ), the attitude control is turned off. That is, when the vehicle is traveling on a steeply sloped road surface where it is difficult for the occupant to experience the pitch angle θ P and its fluctuations, it is possible to maintain the attitude control off particularly reliably. Therefore, deterioration in electricity consumption due to execution of unnecessary posture control is particularly likely to be suppressed.
 上記第2実施形態に係る電動車両の制御方法では、電動車両100に生じた実際の加速度Gである実加速度Gact、または、電動車両100に生じた実際の加速度Gの時間変化率である実ジャークJactが取得される。そして、推定加速度Gestもしくは推定ジャークJestに基づく判定、または、実加速度Gactもしくは実ジャークJactに基づく判定、のいずれかによって姿勢制御が必要であると判定されたときに、姿勢制御がオンにされる。このように、実加速度Gactまたは実ジャークJactによる判定を組み合わせると、電動車両100の具体的な使用状況に応じて走行抵抗RLが有意の誤差を含んでおり、推定加速度Gestまたは推定ジャークJestによる判定が不正確となってしまった場合でも、実際に生じたピッチ角θやその変動が生じたときには、姿勢制御が実行される。すなわち、ピッチ角θ及びその変動が実際に生じれば、姿勢制御が確実に機能する。 In the electric vehicle control method according to the second embodiment, the actual acceleration G act is the actual acceleration G generated in the electric vehicle 100, or the actual acceleration G act is the time change rate of the actual acceleration G generated in the electric vehicle 100. A jerk J act is obtained. Then, when it is determined that attitude control is necessary based on either the judgment based on the estimated acceleration G est or the estimated jerk J est , or the judgment based on the actual acceleration G act or actual jerk J act , the attitude control is performed. turned on. In this way, when the determination based on the actual acceleration G act or the actual jerk J act is combined, the running resistance RL includes a significant error depending on the specific usage situation of the electric vehicle 100, and the estimated acceleration G est or the estimated jerk Even if the determination by J est becomes inaccurate, attitude control is executed when the pitch angle θ P actually occurs or its fluctuation occurs. That is, if the pitch angle θ P and its fluctuation actually occur, attitude control will function reliably.
 上記第1実施形態、第2実施形態、及び、第3実施形態に係る電動車両の制御方法では、車速VSPに基づいて、電動車両100の走行抵抗RLが演算され、総駆動力TQ及び走行抵抗RLに基づいて、推定加速度Gestまたは推定ジャークJestが演算される。このように、走行抵抗RLに基づいて推定加速度Gestまたは推定ジャークJestを演算すると、実際に加速度Gが生じる前に、正確に推定加速度Gestまたは推定ジャークJestを演算することができる。その結果、姿勢制御実行判定の正確性が向上する。 In the electric vehicle control methods according to the first embodiment, the second embodiment, and the third embodiment, the running resistance RL of the electric vehicle 100 is calculated based on the vehicle speed VSP, and the running resistance RL of the electric vehicle 100 is calculated based on the total driving force TQ and the running resistance. Based on RL, estimated acceleration G est or estimated jerk J est is calculated. In this way, by calculating the estimated acceleration G est or the estimated jerk J est based on the running resistance RL, it is possible to accurately calculate the estimated acceleration G est or the estimated jerk J est before the acceleration G actually occurs. As a result, the accuracy of attitude control execution determination is improved.
 特に、上記第3実施形態に係る電動車両の制御方法では、電動車両100が走行する路面が平坦路であるか否かが判定され、電動車両100が加速または減速をしない定常走行をしているか否かが判定される。また、電動車両100が平坦路を定常走行しているときの総駆動力TQが、実際の前記走行抵抗である実走行抵抗RLactとして記憶される。そして、実走行抵抗RLactに基づいて、走行抵抗RLの演算に用いる係数A,A,Aが更新される。このように、走行抵抗RLの演算に用いる係数A,A,Aを更新すると、電動車両100の具体的な使用状態に応じて走行抵抗RLが変化した場合でも、その走行抵抗RLを正確に演算することができる。その結果、姿勢制御実行判定の正確性が特に向上する。 In particular, in the electric vehicle control method according to the third embodiment, it is determined whether the road surface on which the electric vehicle 100 is traveling is a flat road, and whether the electric vehicle 100 is traveling steadily without accelerating or decelerating. It is determined whether or not. Further, the total driving force TQ when the electric vehicle 100 is steadily traveling on a flat road is stored as the actual traveling resistance RL act , which is the actual traveling resistance. Based on the actual running resistance RL act , the coefficients A 0 , A 1 , and A 2 used for calculating the running resistance RL are updated. In this way, by updating the coefficients A 0 , A 1 , and A 2 used to calculate the running resistance RL, even if the running resistance RL changes depending on the specific usage state of the electric vehicle 100, the running resistance RL can be updated. Can be calculated accurately. As a result, the accuracy of attitude control execution determination is particularly improved.
 また、上記第3実施形態に係る電動車両の制御方法では、電動車両100が平坦路を定常走行しているときに、推定加速度Gestと、電動車両100に生じた実際の加速度Gである実加速度Gactと、の誤差である加速度推定誤差(Gerr)が演算される。そして、予め定める所定誤差(±G)以上の加速度推定誤差(Gerr)が予め定める所定時間(τ)以上継続したときの実走行抵抗RLactに基づいて、走行抵抗RLの演算に用いる係数A,A,Aが更新される。このように、実加速度Gactに対して推定加速度Gestが有意の誤差を含むことが確実なときに、走行抵抗RLの演算に用いる係数A,A,Aを更新することで、係数A,A,Aの無用な更新が抑えられる。その結果、係数A,A,Aの正確性が向上するので、姿勢制御実行判定の正確性が特に維持されやすい。 Further, in the electric vehicle control method according to the third embodiment, when the electric vehicle 100 is traveling steadily on a flat road, the estimated acceleration G est and the actual acceleration G that is generated in the electric vehicle 100 are calculated. An acceleration estimation error (G err ), which is an error between the acceleration G act and the acceleration G act, is calculated. Then, it is used to calculate the running resistance RL based on the actual running resistance RL act when the acceleration estimation error (G err ) greater than or equal to a predetermined error (±G 0 ) continues for a predetermined time (τ 0 ) or more. Coefficients A 0 , A 1 , A 2 are updated. In this way, when it is certain that the estimated acceleration G est includes a significant error with respect to the actual acceleration G act , by updating the coefficients A 0 , A 1 , and A 2 used for calculating the running resistance RL, Unnecessary updating of the coefficients A 0 , A 1 , and A 2 can be suppressed. As a result, the accuracy of the coefficients A 0 , A 1 , and A 2 improves, so the accuracy of attitude control execution determination is particularly easily maintained.
 そして、上記第3実施形態に係る電動車両の制御方法では、演算した走行抵抗RLと、実走行抵抗RLactと、の誤差である走行抵抗誤差(RLerr)が演算され、この走行抵抗誤差(RLerr)のばらつきが予め定める閾値THerr2以下であるときに、走行抵抗RLの演算に用いる係数A,A,Aのうち、定数項を構成する係数Aが更新される。このように、走行抵抗誤差(第2誤差RLerr)のばらつきが閾値THerr2以下である場合に係数Aを更新すると、転がり抵抗等、空気抵抗以外の走行抵抗の要因が変化したときに、その変化に応じた走行抵抗RLを正確に演算することができる。その結果、転がり抵抗等が変化したときに、姿勢制御実行判定の正確性が特に維持されやすい。 In the electric vehicle control method according to the third embodiment, a running resistance error (RL err ), which is an error between the calculated running resistance RL and the actual running resistance RL act , is calculated, and this running resistance error ( RL err ) is less than or equal to a predetermined threshold TH err2 , among the coefficients A 0 , A 1 , and A 2 used to calculate the running resistance RL, the coefficient A 2 that constitutes a constant term is updated. In this way, if the coefficient A2 is updated when the variation in the running resistance error (second error RL err ) is less than the threshold value TH err2 , when the factors of running resistance other than air resistance, such as rolling resistance, change, It is possible to accurately calculate running resistance RL according to the change. As a result, the accuracy of posture control execution determination is particularly likely to be maintained when rolling resistance or the like changes.
 また、上記第3実施形態に係る電動車両の制御方法では、演算した走行抵抗RLと、実走行抵抗RLactと、の誤差である走行抵抗誤差(RLerr)が演算され、走行抵抗誤差(RLerr)のばらつきが予め定める閾値THerr2よりも大きいときに、走行抵抗RLの演算に用いる係数A,A,Aのうち、車速VSPを含む項を構成する係数A,Aが更新される。このように、走行抵抗誤差(第2誤差RLerr)のばらつきが閾値THerr2よりも大きい場合に係数A,Aを更新すると、電動車両100の空気抵抗が変化したときに、その変化に応じた走行抵抗RLを正確に演算することができる。その結果、空気抵抗が変化したときに、姿勢制御実行判定の正確性が特に維持されやすい。 Further, in the electric vehicle control method according to the third embodiment, a running resistance error (RL err ), which is an error between the calculated running resistance RL and the actual running resistance RL act , is calculated, and the running resistance error (RL err ) is calculated. err ) is larger than a predetermined threshold TH err2 , among the coefficients A 0 , A 1 , and A 2 used to calculate the running resistance RL, the coefficients A 0 and A 1 constituting the term including the vehicle speed VSP are Updated. In this way, if the coefficients A 0 and A 1 are updated when the variation in the running resistance error (second error RL err ) is larger than the threshold value TH err2 , when the air resistance of the electric vehicle 100 changes, the The corresponding running resistance RL can be calculated accurately. As a result, the accuracy of attitude control execution determination is particularly likely to be maintained when air resistance changes.
 上記第1実施形態、第2実施形態、及び、第3実施形態に係る電動車両の制御装置は、駆動輪である前輪21及び後輪26の駆動力配分を調整することにより、前後方向の姿勢を制御する姿勢制御を実行する電動車両100の制御装置(コントローラ12)である。この制御装置(コントローラ12)は、アクセルペダルの操作に基づいて、電動車両100に対する要求駆動力である総駆動力TQを演算する総駆動力演算部41と、総駆動力TQに基づいて、電動車両100が総駆動力TQで駆動するときに生じる加速度Gについての推定値である推定加速度Gest、または、加速度Gの時間変化率であるジャークJについての推定値である推定ジャークJest、を演算する推定部(52,53)と、推定加速度Gestまたは推定ジャークJestに基づいて、姿勢制御のオン/オフを切り替える姿勢制御実行判定を行う姿勢制御実行判定部47と、を含む。この構成により、電費等のために姿勢制御がオフになっていた場合でも、ピッチ角θ及びその変動が実際に生じる前に、遅れなく、姿勢制御を開始することができる。したがって、電費の悪化を抑えつつ、駆動力配分の調整による姿勢制御を実行することができる。すなわち、姿勢制御による電費の悪化が最小限に抑えられつつ、かつ、電動車両100の乗り心地が改善される。 The control device for an electric vehicle according to the first embodiment, the second embodiment, and the third embodiment adjusts the driving force distribution of the front wheels 21 and the rear wheels 26, which are the driving wheels, to control the posture in the longitudinal direction. This is a control device (controller 12) for electric vehicle 100 that executes attitude control to control. This control device (controller 12) includes a total driving force calculation unit 41 that calculates a total driving force TQ that is a required driving force for the electric vehicle 100 based on the operation of the accelerator pedal, and a total driving force calculation unit 41 that calculates the total driving force TQ that is the required driving force for the electric vehicle 100, and The estimated acceleration G est is an estimated value of the acceleration G that occurs when the vehicle 100 is driven with the total driving force TQ, or the estimated jerk J est is an estimated value of the jerk J that is the time rate of change of the acceleration G. It includes an estimation unit (52, 53) that performs calculations, and an attitude control execution determination unit 47 that makes an attitude control execution determination for switching on/off of attitude control based on the estimated acceleration G est or the estimated jerk J est . With this configuration, even if attitude control is turned off due to electricity consumption or the like, attitude control can be started without delay before the pitch angle θ P and its fluctuation actually occur. Therefore, it is possible to perform attitude control by adjusting the driving force distribution while suppressing deterioration in electricity consumption. That is, the deterioration in electricity consumption due to attitude control is minimized, and the ride comfort of electric vehicle 100 is improved.
 なお、上記第1実施形態、第2実施形態、及び、第3実施形態に係る電動車両100の制御プログラムは、電動車両100の制御装置(コントローラ12)を、アクセルペダルの操作に基づいて、電動車両100に対する要求駆動力である総駆動力TQを演算する総駆動力演算部41;総駆動力TQに基づいて、電動車両100が総駆動力TQで駆動するときに生じる加速度Gについての推定値である推定加速度Gest、または、加速度Gの時間変化率であるジャークJについての推定値である推定ジャークJest、を演算する推定部(52,53);推定加速度Gestまたは推定ジャークJestに基づいて、姿勢制御のオン/オフを切り替える姿勢制御実行判定を行う姿勢制御実行判定部47;として機能させる。 Note that the control program for the electric vehicle 100 according to the first embodiment, the second embodiment, and the third embodiment controls the control device (controller 12) of the electric vehicle 100 to Total driving force calculation unit 41 that calculates total driving force TQ that is the required driving force for vehicle 100; Based on total driving force TQ, estimated value of acceleration G that occurs when electric vehicle 100 is driven with total driving force TQ. Estimating unit (52, 53) that calculates the estimated acceleration G est which is the estimated acceleration G est or the estimated jerk J est which is the estimated value of the jerk J which is the time rate of change of the acceleration G; the estimated acceleration G est or the estimated jerk J est It functions as an attitude control execution determination unit 47 that makes an attitude control execution determination for switching on/off of attitude control based on the following.
 以上、本発明の実施形態について説明したが、上記実施形態及び各変形例で説明した構成は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を限定する趣旨ではない。 Although the embodiments of the present invention have been described above, the configurations described in the above embodiments and each modification example merely show a part of the application examples of the present invention, and are not intended to limit the technical scope of the present invention. do not have.

Claims (13)

  1.  駆動輪である前輪及び後輪の駆動力配分を調整することにより、前後方向の姿勢を制御する姿勢制御を実行する電動車両の制御方法であって、
     アクセルペダルの操作に基づいて、前記電動車両に対する要求駆動力である総駆動力を演算し、
     前記総駆動力に基づいて、前記電動車両が前記総駆動力で駆動するときに生じる加速度についての推定値である推定加速度、または、前記加速度の時間変化率であるジャークについての推定値である推定ジャーク、を演算し、
     前記推定加速度または前記推定ジャークに基づいて、前記姿勢制御のオン/オフを切り替える姿勢制御実行判定を行う、
    電動車両の制御方法。
    A control method for an electric vehicle that executes attitude control to control the attitude in the longitudinal direction by adjusting the driving force distribution of front wheels and rear wheels that are drive wheels, the method comprising:
    Calculating the total driving force that is the required driving force for the electric vehicle based on the operation of the accelerator pedal,
    Based on the total driving force, an estimated acceleration that is an estimated value of the acceleration that occurs when the electric vehicle is driven with the total driving force, or an estimated value that is an estimated value of jerk that is a time rate of change of the acceleration. jerk, calculate
    making an attitude control execution determination for switching on/off of the attitude control based on the estimated acceleration or the estimated jerk;
    How to control electric vehicles.
  2.  請求項1に記載の電動車両の制御方法であって、
     前記総駆動力に基づいて、前記推定加速度及び前記推定ジャークを演算し、
     前記推定加速度及び前記推定ジャークに基づいて、前記姿勢制御のオン/オフを切り替える、
    電動車両の制御方法。
    A method for controlling an electric vehicle according to claim 1,
    calculating the estimated acceleration and the estimated jerk based on the total driving force;
    switching on/off of the attitude control based on the estimated acceleration and the estimated jerk;
    How to control electric vehicles.
  3.  請求項2に記載の電動車両の制御方法であって、
     前記推定加速度が、前記加速度について予め定める所定の閾値である加速度閾値以上であり、かつ、前記推定ジャークが、前記ジャークについて予め定める所定の閾値であるジャーク閾値以上であるときに、前記姿勢制御をオンにする、
    電動車両の制御方法。
    A method for controlling an electric vehicle according to claim 2, comprising:
    The attitude control is performed when the estimated acceleration is greater than or equal to an acceleration threshold that is a predetermined threshold for the acceleration, and the estimated jerk is greater than or equal to a jerk threshold that is a predetermined threshold for the jerk. turn on,
    How to control electric vehicles.
  4.  請求項1に記載の電動車両の制御方法であって、
     車両モデルに基づき前記駆動力配分を補正するフィードフォワード制御により、前記姿勢制御を実行する、
    電動車両の制御方法。
    A method for controlling an electric vehicle according to claim 1,
    Executing the attitude control by feedforward control that corrects the driving force distribution based on a vehicle model;
    How to control electric vehicles.
  5.  請求項1に記載の電動車両の制御方法であって、
     前記電動車両が走行する路面の勾配を取得し、
     前記勾配と、前記推定加速度または前記推定ジャークと、に基づいて、前記姿勢制御のオン/オフを切り替える、
    電動車両の制御方法。
    A method for controlling an electric vehicle according to claim 1,
    Obtaining the slope of the road surface on which the electric vehicle runs,
    switching on/off of the attitude control based on the gradient and the estimated acceleration or the estimated jerk;
    How to control electric vehicles.
  6.  請求項5に記載の電動車両の制御方法であって、
     前記勾配が予め定める所定勾配以下である場合、前記推定加速度または前記推定ジャークに基づいて、前記姿勢制御の要否を判定し、
     前記勾配が前記所定勾配よりも大きい場合、前記姿勢制御をオフにする、
    電動車両の制御方法。
    The method for controlling an electric vehicle according to claim 5,
    If the slope is less than or equal to a predetermined slope, determining whether or not the attitude control is necessary based on the estimated acceleration or the estimated jerk;
    if the gradient is larger than the predetermined gradient, turning off the attitude control;
    How to control electric vehicles.
  7.  請求項1に記載の電動車両の制御方法であって、
     前記電動車両に生じた実際の加速度である実加速度、または、前記電動車両に生じた実際の加速度の時間変化率である実ジャークを取得し、
     前記推定加速度もしくは前記推定ジャークに基づく判定、または、前記実加速度もしくは前記実ジャークに基づく判定、のいずれかによって前記姿勢制御が必要であると判定されたときに、前記姿勢制御をオンにする、
    電動車両の制御方法。
    A method for controlling an electric vehicle according to claim 1,
    Obtaining an actual acceleration that is the actual acceleration that occurred in the electric vehicle, or an actual jerk that is a time change rate of the actual acceleration that occurred in the electric vehicle,
    turning on the attitude control when it is determined that the attitude control is necessary based on either the judgment based on the estimated acceleration or the estimated jerk, or the judgment based on the actual acceleration or the actual jerk;
    How to control electric vehicles.
  8.  請求項1に記載の電動車両の制御方法であって、
     車速に基づいて、前記電動車両の走行抵抗を演算し、
     前記総駆動力及び前記走行抵抗に基づいて、前記推定加速度または前記推定ジャークを演算する、
    電動車両の制御方法。
    A method for controlling an electric vehicle according to claim 1,
    Calculating the running resistance of the electric vehicle based on the vehicle speed,
    calculating the estimated acceleration or the estimated jerk based on the total driving force and the running resistance;
    How to control electric vehicles.
  9.  請求項8に記載の電動車両の制御方法であって、
     前記電動車両が走行する路面が平坦路であるか否かを判定し、
     前記電動車両が加速または減速をしない定常走行をしているか否かを判定し、
     前記電動車両が前記平坦路を定常走行しているときの前記総駆動力を、実際の前記走行抵抗である実走行抵抗として記憶し、
     前記実走行抵抗に基づいて、前記走行抵抗の演算に用いる係数を更新する、
    電動車両の制御方法。
    The method for controlling an electric vehicle according to claim 8,
    Determining whether the road surface on which the electric vehicle travels is a flat road,
    Determining whether the electric vehicle is traveling steadily without accelerating or decelerating;
    storing the total driving force when the electric vehicle is steadily traveling on the flat road as an actual running resistance that is the actual running resistance;
    updating a coefficient used to calculate the running resistance based on the actual running resistance;
    How to control electric vehicles.
  10.  請求項9に記載の電動車両の制御方法であって、
     前記電動車両が前記平坦路を定常走行しているときに、前記推定加速度と、前記電動車両に生じた実際の加速度である実加速度と、の誤差である加速度推定誤差を演算し、
     予め定める所定誤差以上の前記加速度推定誤差が予め定める所定時間以上継続したときの前記実走行抵抗に基づいて、前記走行抵抗の演算に用いる係数を更新する、
    電動車両の制御方法。
    The method for controlling an electric vehicle according to claim 9,
    when the electric vehicle is traveling steadily on the flat road, calculating an acceleration estimation error that is an error between the estimated acceleration and the actual acceleration that is the actual acceleration that occurs in the electric vehicle;
    updating a coefficient used to calculate the running resistance based on the actual running resistance when the acceleration estimation error that is greater than a predetermined error continues for a predetermined time or more;
    How to control electric vehicles.
  11.  請求項10に記載の電動車両の制御方法であって、
     演算した前記走行抵抗と、前記実走行抵抗と、の誤差である走行抵抗誤差を演算し、
     前記走行抵抗誤差のばらつきが予め定める閾値以下であるときに、前記走行抵抗の演算に用いる係数のうち、定数項を構成する係数を更新する、
    電動車両の制御方法。
    The method for controlling an electric vehicle according to claim 10,
    Calculating a running resistance error that is an error between the calculated running resistance and the actual running resistance,
    updating a coefficient constituting a constant term among the coefficients used to calculate the running resistance when the variation in the running resistance error is below a predetermined threshold;
    How to control electric vehicles.
  12.  請求項10に記載の電動車両の制御方法であって、
     演算した前記走行抵抗と、前記実走行抵抗と、の誤差である走行抵抗誤差を演算し、
     前記走行抵抗誤差のばらつきが予め定める閾値よりも大きいときに、前記走行抵抗の演算に用いる係数のうち、前記車速を含む項を構成する係数を更新する、
    電動車両の制御方法。
    The method for controlling an electric vehicle according to claim 10,
    Calculating a running resistance error that is an error between the calculated running resistance and the actual running resistance,
    When the variation in the running resistance error is larger than a predetermined threshold, updating a coefficient constituting a term including the vehicle speed among the coefficients used to calculate the running resistance;
    How to control electric vehicles.
  13.  駆動輪である前輪及び後輪の駆動力配分を調整することにより、前後方向の姿勢を制御する姿勢制御を実行する電動車両の制御装置であって、
     アクセルペダルの操作に基づいて、前記電動車両に対する要求駆動力である総駆動力を演算する総駆動力演算部と、
     前記総駆動力に基づいて、前記電動車両が前記総駆動力で駆動するときに生じる加速度についての推定値である推定加速度、または、前記加速度の時間変化率であるジャークについての推定値である推定ジャーク、を演算する推定部と、
     前記推定加速度または前記推定ジャークに基づいて、前記姿勢制御のオン/オフを切り替える姿勢制御実行判定を行う姿勢制御実行判定部と、
    を備える、電動車両の制御装置。
    A control device for an electric vehicle that performs attitude control to control the attitude in the longitudinal direction by adjusting the driving force distribution of front wheels and rear wheels that are drive wheels, the control device comprising:
    a total driving force calculation unit that calculates a total driving force that is a required driving force for the electric vehicle based on the operation of an accelerator pedal;
    Based on the total driving force, an estimated acceleration that is an estimated value of the acceleration that occurs when the electric vehicle is driven with the total driving force, or an estimated value that is an estimated value of jerk that is a time rate of change of the acceleration. an estimator that calculates jerk;
    an attitude control execution determination unit that makes an attitude control execution determination for switching on/off of the attitude control based on the estimated acceleration or the estimated jerk;
    A control device for an electric vehicle, comprising:
PCT/JP2022/034487 2022-09-14 2022-09-14 Electric vehicle control method and electric vehicle control device WO2024057465A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034487 WO2024057465A1 (en) 2022-09-14 2022-09-14 Electric vehicle control method and electric vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034487 WO2024057465A1 (en) 2022-09-14 2022-09-14 Electric vehicle control method and electric vehicle control device

Publications (1)

Publication Number Publication Date
WO2024057465A1 true WO2024057465A1 (en) 2024-03-21

Family

ID=90274506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034487 WO2024057465A1 (en) 2022-09-14 2022-09-14 Electric vehicle control method and electric vehicle control device

Country Status (1)

Country Link
WO (1) WO2024057465A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290535A (en) * 2007-05-23 2008-12-04 Toyota Motor Corp Traveling device and drive control device
JP2020028151A (en) * 2018-08-09 2020-02-20 本田技研工業株式会社 Driving force control device
JP2021115926A (en) * 2020-01-24 2021-08-10 株式会社アドヴィックス Brake control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290535A (en) * 2007-05-23 2008-12-04 Toyota Motor Corp Traveling device and drive control device
JP2020028151A (en) * 2018-08-09 2020-02-20 本田技研工業株式会社 Driving force control device
JP2021115926A (en) * 2020-01-24 2021-08-10 株式会社アドヴィックス Brake control device

Similar Documents

Publication Publication Date Title
JP6644635B2 (en) Vehicle turning control device
US11364806B2 (en) Control apparatus for electric vehicle, control system for electric vehicle, and control method for electric vehicle
JP2006060936A (en) Vehicle behavior control system
JP5696405B2 (en) Vehicle system vibration control device
JP2005529788A (en) Method and apparatus for cooperatively controlling at least two systems that affect the driving behavior of an automobile
WO2016121546A1 (en) Vehicle orientation control device
US8335625B2 (en) Slip control device and method for a vehicle
JP4979639B2 (en) Electric vehicle and method for controlling electric vehicle
JP4737058B2 (en) Braking / driving force control device
WO2019059131A1 (en) Vehicle control device
JP6993044B2 (en) Motor vehicle control device, motor vehicle control system, and motor vehicle control method
WO2024057465A1 (en) Electric vehicle control method and electric vehicle control device
US9126593B2 (en) Vibration damping control device
JP6764300B2 (en) Vehicle control device and vehicle control method
JP2008247064A (en) Motion control device for vehicle
WO2014103522A1 (en) Control device for electric vehicle and control method for electric vehicle
WO2024057466A1 (en) Electric vehicle control method and electric vehicle control device
US20200216046A1 (en) Vehicle control device
WO2024079829A1 (en) Method for controlling electric vehicle and device for controlling electric vehicle
JP2009196504A (en) Suspension control device
WO2022085082A1 (en) Driving force control method and driving force control device
WO2023145259A1 (en) Moving body control system and program
CN113646218B (en) Control device for vehicle
WO2023182209A1 (en) Travel control device for vehicle
JP2022146558A (en) Drive force control method and drive force control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958317

Country of ref document: EP

Kind code of ref document: A1