WO2024078638A1 - 一种夹紧力估算方法、系统及汽车 - Google Patents

一种夹紧力估算方法、系统及汽车 Download PDF

Info

Publication number
WO2024078638A1
WO2024078638A1 PCT/CN2023/128784 CN2023128784W WO2024078638A1 WO 2024078638 A1 WO2024078638 A1 WO 2024078638A1 CN 2023128784 W CN2023128784 W CN 2023128784W WO 2024078638 A1 WO2024078638 A1 WO 2024078638A1
Authority
WO
WIPO (PCT)
Prior art keywords
clamping force
current
clamping
motor
force
Prior art date
Application number
PCT/CN2023/128784
Other languages
English (en)
French (fr)
Inventor
袁晓峰
袁永彬
陶征鑫
李壮壮
Original Assignee
芜湖伯特利汽车安全系统股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芜湖伯特利汽车安全系统股份有限公司 filed Critical 芜湖伯特利汽车安全系统股份有限公司
Publication of WO2024078638A1 publication Critical patent/WO2024078638A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/171Detecting parameters used in the regulation; Measuring values used in the regulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines

Definitions

  • the present invention belongs to the technical field of vehicle braking, and more specifically, the present invention relates to a clamping force estimation method, system and vehicle.
  • Brake-by-wire technology was first used in aircraft. With the maturity and development of technology, it has now been widely recognized by the public in the automotive field.
  • the brake-by-wire system is mainly divided into two directions, one is the electronic hydraulic brake system (EHB), and the other is the electronic mechanical brake system (EMB).
  • EHB electronic hydraulic brake system
  • EMB electronic mechanical brake system
  • all hydraulic devices including master cylinder, hydraulic pipeline, power assist device, etc.
  • the reaction time of the electronic mechanical brake system EMB is much shorter than that of EHB, there is no risk of hydraulic leakage, the actuator is independently controlled, and the safety advantage is outstanding. Due to the above advantages of the electronic mechanical brake system EMB, in the process of vehicle intelligence and unmanned driving, the electronic mechanical brake system EMB will become the mainstream direction in the future.
  • EHB wire-controlled brake products such as Bethel WCBS, Continental MKC1, and Bosch IPB have been widely popularized in mass-produced vehicles.
  • the electronic mechanical brake system EMB has obvious performance advantages over EHB, the electronic mechanical brake system EMB usually uses closed-loop control to make the clamping force reach the target clamping force, and usually requires multiple force sensors to detect the clamping force.
  • the hardware cost of the force sensor is relatively high. Therefore, how to reduce or even get rid of the dependence of the electronic mechanical brake system EMB on force sensors has become a current research hotspot.
  • the present invention provides a clamping force estimation method in an electronic mechanical brake system, aiming to improve the Mechanical brake system EMB relies on force sensors.
  • the present invention is implemented in this way: a clamping force estimation method, the method comprising the following steps:
  • a final clamping force F of the electromechanical brake system is formed based on the clamping force Fx and/or the clamping force FI .
  • the method for forming the clamping force F based on the clamping force Fx and the clamping force FI is as follows:
  • the clamping force F x and the clamping force FI are fused based on the weights k x and k I to form the clamping force F of the electronic mechanical brake system.
  • the weight k I is greater than the weight k x ;
  • the weight k x is greater than the weight k I .
  • the rotor position xm of the motor at the current moment is converted into the displacement x of the brake pad;
  • n is the transmission ratio of the electronic mechanical brake system
  • xm is the rotor position of the motor at the current moment.
  • a clamping force estimation system the system comprising:
  • a current sensor and a position sensor are arranged on the motor, and the current sensor and the position sensor are communicatively connected with the controller;
  • the current sensor is used to collect the current I of the motor at the current moment and send it to the controller;
  • the position sensor is used to collect the rotor position x m of the motor at the current moment and send it to the controller;
  • the controller estimates the clamping force F of the electromechanical brake system based on the above-mentioned clamping force estimation method.
  • clamping force estimation system further comprises:
  • a force sensor is provided on the mechanical transmission structure, and the force sensor is communicatively connected with the controller;
  • the controller uses the clamping force detected by the force sensor as the clamping force of the electronic mechanical brake system.
  • the controller uses the clamping force F output by the clamping force estimation system as the clamping force of the electronic mechanical brake coefficient.
  • the present invention is implemented in a vehicle in which the above-mentioned clamping force estimation system is integrated.
  • the present invention estimates the clamping force of the electronic mechanical brake system based on the rotor position xm of the motor and/or the motor current I, thereby getting rid of the dependence of the electronic mechanical brake system EMB on the force sensor, and providing the possibility for closed-loop control of the clamping force in the absence of a mechanical sensor; for the electronic mechanical brake system equipped with a clamping force sensor, the method can also be used to improve the redundancy of the system, thereby avoiding degradation or even failure of the system function due to a clamping force sensor failure.
  • FIG1 is a flow chart of a method for estimating clamping force in an electronic mechanical braking system based on motor rotor position and motor current provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the structure of a clamping force estimation system provided in an embodiment of the present invention.
  • the clamping force estimation method based on the rotor position of the motor and/or the motor current designed in the present invention can make the electronic mechanical brake system EMB get rid of the dependence on the force sensor by improving the program.
  • the brake block displacement x in the electronic mechanical brake system is calculated, and then the clamping force Fx generated by the brake block position x is calculated.
  • the clamping force Fx is the clamping force of the electronic mechanical brake system at the current moment;
  • the clamping force corresponding to the current brake pad displacement x is found, which is the clamping force F x .
  • the clamping force F I of the electronic mechanical brake system is calculated based on the motor current I at the current moment.
  • the calculation process is as follows:
  • FIG1 is a flow chart of a method for estimating clamping force in an electronic mechanical brake system based on motor rotor position and motor current provided in a third embodiment of the present invention.
  • the method specifically comprises the following steps:
  • the rotor position xm of the motor at the current moment is converted into the displacement x of the brake pad.
  • the clamping force corresponding to the current brake pad displacement x is found, which is the clamping force F x .
  • Tf is the friction torque, which is related to the speed, and kf is the clamping force torque coefficient.
  • the clamping force FI and the clamping force Fx are merged to generate the clamping force F of the electronic mechanical brake system at the current moment.
  • the clamping force F is the clamping force output by the electronic mechanical brake system at the current moment.
  • clamping force FI clamping force Fx
  • k x and k I represent the weights of the clamping force F x and the clamping force FI, respectively.
  • the weight k I is greater than the weight k x , and the clamping force FI calculated based on the motor current I is more credible, so the weight k I is assigned a larger value; in the braking force maintaining and reducing stage, the weight k x is greater than the weight k I , and the clamping force F x estimated by the electronic rotor position is more credible, so the weight k x is assigned a larger value.
  • FIG2 is a schematic diagram of the structure of a clamping force estimation system provided by an embodiment of the present invention. For ease of explanation, only the parts related to the embodiment of the present invention are shown.
  • the system includes:
  • a current sensor and a position sensor are arranged on the motor, and the current sensor and the position sensor are communicatively connected with the controller;
  • the current sensor is used to collect the current I of the motor at the current moment and send it to the controller.
  • the position sensor is used to collect the rotor position x m of the motor at the current moment and send it to the controller.
  • the controller estimates the current moment of the electronic mechanical brake system based on the above-mentioned electric clamping force estimation system.
  • the clamping force F The clamping force F.
  • the system also includes: a force sensor arranged on the mechanical transmission structure, and the force sensor is communicatively connected with the controller; when the force sensor is normal, the controller uses the clamping force detected by the force sensor as the clamping force of the electronic mechanical braking system, and when the force sensor fails, the controller uses the clamping force F output by the clamping force estimation system as the clamping force of the electronic mechanical braking coefficient.
  • the mechanical transmission structure converts the rotational motion of the motor into linear motion to control the brake pad to brake or release the brake, and achieves the target clamping force by decelerating and increasing the torque.
  • the present invention also provides a car, on which the clamping force estimation system in the above-mentioned electronic mechanical brake system is integrated.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

一种夹紧力估算方法,包括如下步骤:基于当前时刻电机的转子位置x m估算制动块位置x所产生的夹紧力F x;和/或,基于当前时刻的电机电流I估算电子机械制动系统的夹紧力F I;基于夹紧力F x和/或夹紧力F I形成电子机械制动系统的最终夹紧力F。基于电机的转子位置x m和/或电机电流I来预估电子机械制动系统的夹紧力,摆脱了电子机械制动系统EMB对力传感器的依赖,在无力学传感器的情况下为夹紧力的闭环控制提供了可能。还提供一种夹紧力估算系统及集成了该夹紧力估算系统的汽车。

Description

一种夹紧力估算方法、系统及汽车 技术领域
本发明属于车辆制动技术领域,更具体地,本发明涉及一种夹紧力估算方法、系统及汽车。
背景技术
线控制动技术(brake-by-wire)最早应用在飞机上,随着技术的成熟和发展,目前,线控制动技术在汽车领域已经被大众普遍认可。
线控制动系统主要分为两个方向,其一是电子液压制动系统(EHB),其二是电子机械制动系统(EMB)。电子机械制动系统EMB中,所有的液压装置(包括主缸、液压管路、助力装置等)均被电子机械系统替代,电子机械制动系统EMB的反应时间远小于EHB,无液压泄露风险,执行器独立控制,安全优势突出。由于电子机械制动系统EMB具有上述优点,在车辆智能化和实现无人驾驶的过程中,电子机械制动系统EMB将会成为未来的主流方向。
如今,伯特利WCBS、大陆MKC1、博世IPB等EHB线控制动产品已大规模普及到量产车上,虽然电子机械制动系统EMB较EHB性能优势明显。由于电子机械制动系统EMB通常通过闭环控制来使夹紧力达到目标夹紧力,通常需要设置多个力传感器来检测夹紧力,但是力传感器的硬件成本相对较高,因此如何降低甚至摆脱电子机械制动系统EMB对力传感器的依赖成为当下的研究热点。
发明内容
本发明提供一种电子机械制动系统中的夹紧力估算方法,旨在改善电子 机械制动系统EMB对力传感器的依赖。
本发明是这样实现的,一种夹紧力估算方法,所述方法包括如下步骤:
基于当前时刻电机的转子位置xm估算制动块位置x所产生的夹紧力Fx
和/或,基于当前时刻的电机电流I估算电子机械制动系统的夹紧力FI
基于夹紧力Fx和/或夹紧力FI形成电子机械制动系统的最终夹紧力F。
进一步的,基于夹紧力Fx和夹紧力FI的夹紧力F形成方法具体如下:
确定夹紧力Fx、夹紧力FI的权值kx、权值kI
基于权值kx、权值kI对夹紧力Fx、夹紧力FI进行融合,形成电子机械制动系统的夹紧力F。
进一步的,权值kx、权值kI的确定方法具体如下:
在制动力增加阶段,权值kI大于权值kx
在制动力保持和减小阶段,权值kx大于权值kI
进一步的,夹紧力Fx的预估方法具体如下:
基于电子机械制动系统的传动比n将当前时刻电机的转子位置xm转化为制动块的位移x;
基于夹紧力与制动块位移的关系Fx=f(x)查找出当前制动块位移x对应的夹紧力,即为夹紧力Fx
进一步的,夹紧力与制动块位移的关系为Fx=f(x)获取方法具体如下:
其是通过台架试验获取不同制动块位移下的夹紧力,再对制动块位移和对应的夹紧力进行曲线拟合,形成夹紧力与制动块位移的关系式Fx=f(x)。
进一步的,制动块的位移x计算公式具体如下:
x=xm/n
其中,n为电子机械制动系统的传动比,xm当前时刻电机的转子位置。
本发明是这样实现的,一种夹紧力估算系统,所述系统包括:
设于电机上的电流传感器及位置传感器,电流传感器及位置传感器与控制器通讯连接;
电流传感器用于采集当前时刻电机的电流I,并发送至控制器;
位置传感器用于采集当前时刻电机的转子位置xm,并发送至控制器;
控制器基于上述夹紧力估算方法来估算电子机械制动系统的夹紧力F。
进一步的,夹紧力估算系统还包括:
设于机械传动结构上的力传感器,且力传感器与控制器通讯连接;
在力传感器正常时,控制器将力传感器检测到的夹紧力作为电子机械制动系统的夹紧力,在力传感器出现故障时,基于所述夹紧力估算系统输出的夹紧力F作为电子机械制动系数的夹紧力。
本发明是这样实现的,一种汽车,所述汽车上集成上述夹紧力估算系统。
本发明基于电机的转子位置xm和/或电机电流I来预估电子机械制动系统的夹紧力,摆脱了电子机械制动系统EMB对力传感器的依赖,在无力学传感器的情况下为夹紧力的闭环控制提供了可能;对于装备夹紧力传感器的电子机械制动系统,也可以通过该方法提高系统的冗余性,避免了由于夹紧力传感器故障导致系统功能降级甚至失效。
附图说明
图1为本发明实施例提供的基于电机转子位置及电机电流的电子机械制动系统中的夹紧力估算方法流程图;
图2为本发明实施例提供的夹紧力估算系统的结构示意图。
具体实施方式
下面对照附图,通过对实施例的描述,对本发明的具体实施方式作进一步详细的说明,以帮助本领域的技术人员对本发明的发明构思、技术方案有更完整、准确和深入的理解。
本发明设计的基于电机的转子位置和/或电机电流的夹紧力估算方法,通过对程序的改进即可使得电子机械制动系统EMB摆脱对力传感器的依赖。
本发明实施例一提供的基于电机转子位置的夹紧力估算Fx方法具体如下:
基于当前时刻电机的转子位置xm计算电子机械制动系统制中的制动块位移x,进而计算制动块位置x所产生的夹紧力Fx,该夹紧力Fx即为电子机械制动系统制当前时刻的夹紧力;
基于电子机械制动系统的传动比n将当前时刻电机的转子位置xm转化为制动块的位移x,其计算公式具体如如下:
x=xm/n
基于夹紧力与制动块位移的关系查找出当前制动块位移x对应的夹紧力,即为夹紧力Fx
在本发明实施例中,夹紧力与制动块位移的关系为Fx=f(x),其是通过台架试验获取不同制动块位移下的夹紧力,再对制动块位移和对应的夹紧力进行曲线拟合,形成夹紧力与制动块位移的关系式,通常为三次多项式。
本发明实施例二提供的基于电机电流的夹紧力估算FI方法具体如下:
基于当前时刻的电机电流I计算电子机械制动系统的夹紧力FI,其计算过程具体如下:
读取当前时刻电机的电流I,根据公式Te=keI,得到电磁转矩Te,其中, ke为转矩系数;
在已知等效转动惯量J及电机转速ω的前提下,根据公式Te-TL=Jω,可求得电机负载转矩TL
再根据公式TL=kfFI+Tf,求得夹紧力FI,其中,Tf为摩擦转矩,摩擦转矩Tf与转速有关,kf为夹紧力转矩系数。
图1为本发明实施例三提供的基于电机转子位置及电机电流的电子机械制动系统中的夹紧力估算方法的流程图,该方法具体包括如下步骤:
S1、基于当前时刻电机的转子位置计算电子机械制动系统制中的制动块位移x,进而计算制动块位置x所产生的夹紧力Fx
基于电子机械制动系统的传动比n将当前时刻电机的转子位置xm转化为制动块的位移x,其计算公式具体如下:
x=xm/n
基于夹紧力与制动块位移的关系查找出当前制动块位移x对应的夹紧力,即为夹紧力Fx
在本发明实施例中,夹紧力与制动块位移的关系为Fx=f(x),其是通过台架试验获取不同制动块位移下的夹紧力,再对制动块位移和对应的夹紧力进行曲线拟合,形成夹紧力与制动块位移的关系式,通常为三次多项式。
S2、基于当前时刻的电机电流I计算电子机械制动系统的夹紧力FI
读取当前时刻电机的电流I,根据公式Te=keI,得到电磁转矩Te,其中,ke为转矩系数;
在已知等效转动惯量J及电机转速ω的前提下,根据公式Te-TL=Jω,可求得电机负载转矩TL,再根据公式TL=kfFI+Tf,求得夹紧力FI,Tf为摩擦转矩,摩擦转矩Tf与转速有关,kf为夹紧力转矩系数。
S3、对夹紧力FI及夹紧力Fx进行融合,生成当前时刻电子机械制动系统的夹紧力F,该夹紧力F即为当前时刻电子机械制动系统输出的夹紧力。
夹紧力FI及夹紧力Fx的融合公式具体如下:
其中,kx、kI分别表示夹紧力Fx、夹紧力FI的权值。
在制动力增加阶段,权值kI大于权值kx,基于电机的电流I计算的夹紧力FI的可信度更高,因此,赋予权值kI较大值;在制动力保持和减小阶段,权值kx大于权值kI,通过电子转子位置估算出的夹紧力Fx的可信度更高,因此,赋予权值kx较大值。
在夹紧过程中消除制动间隙时,系统无夹紧力,电机电流在在空行程范围内波动。此时F=0;制动间隙消除后,夹紧力快速增加,电机电流随着夹紧力的上升逐渐增加,此时取kx<0.5,kI>0.5;达到目标夹紧力时,夹紧力保持,系统夹紧力不变,电机电流在夹紧电流附近上下调节,此时取kx>0.7,kI<0.3;制动需求发生变化,系统夹紧力在当前夹紧力的基础上需要再次夹紧,此时取kx>0.7,kI<0.3;系统夹紧力在当前夹紧力的基础上减小,此时取kx>0.7,kI<0.3。
图2为本发明实施例提供的夹紧力估算系统的结构示意图,为了便于说明,仅示出与本发明实施例相关的部分。该系统包括:
设于电机上的电流传感器及位置传感器,电流传感器及位置传感器与控制器通讯连接;
电流传感器用于采集当前时刻电机的电流I,并发送至控制器,位置传感器用于采集当前时刻电机的转子位置xm,并发送至控制器;
控制器基于上述电夹紧力估算系统来估算电子机械制动系统当前时刻 的夹紧力F。
在本发明实施例中,该系统还包括:设于机械传动结构上的力传感器,且力传感器与控制器通讯连接;在力传感器正常时,控制器将力传感器检测到的夹紧力作为电子机械制动系统的夹紧力,在力传感器出现故障时,基于上述夹紧力估算系统输出的夹紧力F作为电子机械制动系数的夹紧力。
机械传动结构将电机的旋转运动转化为直线运动,以控制制动块进行刹车或松刹操作,并通过减速增扭达到目标的夹紧力。
本发明还提供一种汽车,该汽车上集成有上述电子机械制动系统中的夹紧力估算系统。
本发明进行了示例性描述,显然本发明具体实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种非实质性的改进,或未经改进将本发明的构思和技术方案直接应用于其它场合的,均在本发明的保护范围之内。

Claims (12)

  1. 一种夹紧力估算方法,其特征在于,所述方法包括如下步骤:
    基于当前时刻电机的转子位置xm估算制动块位置x所产生的夹紧力Fx
    和/或,基于当前时刻的电机电流I估算电子机械制动系统的夹紧力FI
    基于夹紧力Fx和/或夹紧力FI形成电子机械制动系统的最终夹紧力F。
  2. 如权利要求1所述夹紧估算方法,其特征在于,基于夹紧力Fx和夹紧力FI的夹紧力F形成方法具体如下:
    确定夹紧力Fx、夹紧力FI的权值kx、权值kI
    基于权值kx、权值kI对夹紧力Fx、夹紧力FI进行融合,形成电子机械制动系统的夹紧力F。
  3. 如权利要求2所述夹紧估算方法,其特征在于,权值kx、权值kI的确定方法具体如下:
    在制动力增加阶段,权值kI大于权值kx
    在制动力保持和减小阶段,权值kx大于权值kI
  4. 如权利要求1所述夹紧估算方法,其特征在于,夹紧力Fx的预估方法具体如下:
    基于电子机械制动系统的传动比n将当前时刻电机的转子位置xm转化为制动块的位移x;
    基于夹紧力与制动块位移的关系Fx=f(x)查找出当前制动块位移x对应的夹紧力,即为夹紧力Fx
  5. 如权利要求4所述夹紧估算方法,其特征在于,夹紧力与制动块位移的关系为Fx=f(x)获取方法具体如下:
    其是通过台架试验获取不同制动块位移下的夹紧力,再对制动块位移和 对应的夹紧力进行曲线拟合,形成夹紧力与制动块位移的关系式Fx=f(x)。
  6. 如权利要求4所述夹紧估算方法,其特征在于,制动块的位移x计算公式具体如下:
    x=xm/n
    其中,n为电子机械制动系统的传动比,xm当前时刻电机的转子位置。
  7. 如权利要求1所述夹紧估算方法,其特征在于,基于当前时刻的电机电流I计算电子机械制动系统的夹紧力FI包括:
    读取当前时刻电机的电流I,根据公式Te=keI,得到电磁转矩Te,其中,ke为转矩系数;以及
    在已知等效转动惯量J及电机转速ω的前提下,根据公式Te-TL=Jω,可求得电机负载转矩TL,再根据公式TL=kfFI+Tf,求得夹紧力FI
    其中,Tf为摩擦转矩,摩擦转矩Tf与转速有关,kf为夹紧力转矩系数。
  8. 如权利要求2所述夹紧估算方法,其特征在于,夹紧力FI及夹紧力Fx的融合公式如下:
  9. 如权利要求8所述夹紧估算方法,其特征在于,在夹紧过程中消除制动间隙时,系统无夹紧力,电机电流在在空行程范围内波动,此时F=0;制动间隙消除后,夹紧力快速增加,电机电流随着夹紧力的上升逐渐增加,此时kx<0.5,kI>0.5;达到目标夹紧力时,夹紧力保持,系统夹紧力不变,电机电流在夹紧电流附近上下调节,此时kx>0.7,kI<0.3;制动需求发生变化,系统夹紧力在当前夹紧力的基础上需要再次夹紧,此时kx>0.7,kI<0.3;系统夹紧力在当前夹紧力的基础上减小,此时kx>0.7,kI<0.3。
  10. 一种夹紧力估算系统,其特征在于,所述系统包括:
    设于电机上的电流传感器及位置传感器,电流传感器及位置传感器与控制器通讯连接;
    电流传感器用于采集当前时刻电机的电流I,并发送至控制器;
    位置传感器用于采集当前时刻电机的转子位置xm,并发送至控制器;
    控制器基于权利要求1至9中任一权利要求所述夹紧力估算方法来估算电子机械制动系统的夹紧力F。
  11. 如权利要求10所述夹紧力估算系统,其特征在于,夹紧力估算系统还包括:
    设于机械传动结构上的力传感器,且力传感器与控制器通讯连接;
    在力传感器正常时,控制器将力传感器检测到的夹紧力作为电子机械制动系统的夹紧力,在力传感器出现故障时,基于所述夹紧力估算系统输出的夹紧力F作为电子机械制动系数的夹紧力。
  12. 一种汽车,其特征在于,所述汽车上集成权利要求10或11所述的夹紧力估算系统。
PCT/CN2023/128784 2022-10-13 2023-10-31 一种夹紧力估算方法、系统及汽车 WO2024078638A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211253620.7A CN117928795A (zh) 2022-10-13 2022-10-13 一种夹紧力估算方法、系统及汽车
CN202211253620.7 2022-10-13

Publications (1)

Publication Number Publication Date
WO2024078638A1 true WO2024078638A1 (zh) 2024-04-18

Family

ID=90668882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/128784 WO2024078638A1 (zh) 2022-10-13 2023-10-31 一种夹紧力估算方法、系统及汽车

Country Status (2)

Country Link
CN (1) CN117928795A (zh)
WO (1) WO2024078638A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102424041A (zh) * 2011-11-03 2012-04-25 湖北绿驰科技有限公司 一种无夹紧力传感器的电子机械制动方法及装置
CN102923111A (zh) * 2012-11-02 2013-02-13 芜湖伯特利汽车安全系统有限公司 一种车辆用电子驻车制动系统及控制方法
CN203157970U (zh) * 2012-11-02 2013-08-28 芜湖伯特利汽车安全系统有限公司 一种车辆用电子驻车制动系统
CN112298134A (zh) * 2019-07-30 2021-02-02 比亚迪股份有限公司 制动控制方法、装置、存储介质及车辆
KR20220036480A (ko) * 2020-09-16 2022-03-23 현대모비스 주식회사 전동식 브레이크 장치 및 제어방법
KR20220141409A (ko) * 2021-04-13 2022-10-20 현대모비스 주식회사 차량용 제동장치 및 이의 제어방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102424041A (zh) * 2011-11-03 2012-04-25 湖北绿驰科技有限公司 一种无夹紧力传感器的电子机械制动方法及装置
CN102923111A (zh) * 2012-11-02 2013-02-13 芜湖伯特利汽车安全系统有限公司 一种车辆用电子驻车制动系统及控制方法
CN203157970U (zh) * 2012-11-02 2013-08-28 芜湖伯特利汽车安全系统有限公司 一种车辆用电子驻车制动系统
CN112298134A (zh) * 2019-07-30 2021-02-02 比亚迪股份有限公司 制动控制方法、装置、存储介质及车辆
KR20220036480A (ko) * 2020-09-16 2022-03-23 현대모비스 주식회사 전동식 브레이크 장치 및 제어방법
KR20220141409A (ko) * 2021-04-13 2022-10-20 현대모비스 주식회사 차량용 제동장치 및 이의 제어방법

Also Published As

Publication number Publication date
CN117928795A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
CN103249614B (zh) 用于调节由驻车制动器施加的调节力的方法
US8768552B2 (en) Vehicle brake system and method of operating the same
JP5691453B2 (ja) 電動車両のブレーキ制御装置
CN103237701B (zh) 驻车制动器及其夹紧力调节方法和调节或控制设备
US10144413B2 (en) Anti-jerk control system and method of eco-friendly vehicle
CN112277916B (zh) 车辆控制设备和车辆控制方法
CN102963360A (zh) 车辆的控制装置
US20100256885A1 (en) Method for operating a vehicle brake system
EP3808618B1 (en) Brake system
KR101316874B1 (ko) 브레이크 유압 보상장치 및 방법
CN109311467A (zh) 用于监控在车辆中的制动力的方法
KR101725652B1 (ko) 브레이크 장치
WO2024078638A1 (zh) 一种夹紧力估算方法、系统及汽车
JP6855178B2 (ja) 電動機を備えた車両固有のブレーキシステムを運転するための方法、および車両固有のブレーキシステムの少なくとも1つの電動機のための制御装置
JP5673028B2 (ja) 電動ブレーキ制御システム
KR102322388B1 (ko) 하이브리드 차량의 엔진 클러치 토크 추정 장치 및 방법
KR102447169B1 (ko) 전기 기계식 제동력 부스터가 장착된 차량 브레이크 시스템 내 마스터 브레이크 실린더 압력을 추정하기 위한 전자 평가 장치 및 방법
JP6880674B2 (ja) 電動車両の制御方法、及び、電動車両の制御装置
Savitski et al. Base-brake functions of electric vehicle: Disturbance compensation in decoupled brake system
CN105000006B (zh) Abs制动方法及装置、电动车辆abs控制方法、车辆稳定方法
CN110065479B (zh) 一种位移与力矩耦合控制的电子机械制动系统及控制方法
JP7155055B2 (ja) 電動パーキングブレーキ装置
KR20190104165A (ko) 차량의 브레이크 시스템의 전기 기계식 브레이크 부스터를 작동시키기 위한 제어 장치 및 그 방법
JP2012144059A (ja) 車両用制動装置
JP5817421B2 (ja) 電動車両のブレーキ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876837

Country of ref document: EP

Kind code of ref document: A1