WO2024078489A1 - 通信中断处理方法、装置、终端及可读存储介质 - Google Patents

通信中断处理方法、装置、终端及可读存储介质 Download PDF

Info

Publication number
WO2024078489A1
WO2024078489A1 PCT/CN2023/123762 CN2023123762W WO2024078489A1 WO 2024078489 A1 WO2024078489 A1 WO 2024078489A1 CN 2023123762 W CN2023123762 W CN 2023123762W WO 2024078489 A1 WO2024078489 A1 WO 2024078489A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
state
communication interruption
complete
timer
Prior art date
Application number
PCT/CN2023/123762
Other languages
English (en)
French (fr)
Inventor
刘进华
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024078489A1 publication Critical patent/WO2024078489A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a communication interruption processing method, device, terminal and readable storage medium.
  • the 3rd Generation Partnership Project (3GPP) protocol defines the processing method of User Equipment (UE) after the radio channel deteriorates and the radio link failure (RLF) occurs, including searching for the target service cell and initiating radio link reconstruction.
  • UE User Equipment
  • RLF radio link failure
  • the embodiments of the present application provide a communication interruption processing method, device, terminal and readable storage medium, which can solve the problem of communication interruption caused by low power of UE.
  • a communication interruption processing method which is applied to UE, and the method comprises: when the user equipment UE is in a first communication interruption state, collecting power from the environment, the first communication interruption state is: a communication interruption state caused by low power; when the collected power is greater than or equal to a first power threshold, the UE restores communication through a target mode; wherein the target mode comprises at least one of the following: an uplink resynchronization mode (resynchronization with the network in uplink); a radio connection reestablishment mode (radio connection reestablishment).
  • a communication interruption processing device may include: a power collection module and a communication module; the power collection module is used to collect power from the environment when the UE is in a first communication interruption state, and the first communication interruption state is: a communication interruption state caused by low power; the communication module is used to restore communication through a target method when the power collected by the power collection module is greater than or equal to a first power threshold; wherein the target method includes at least one of the following: an uplink resynchronization method; a wireless link reconstruction method.
  • a terminal comprising a processor and a memory, wherein the memory stores a program or instruction that can be executed on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the first aspect are implemented.
  • a terminal comprising a processor and a communication interface, wherein the processor is used to collect power from the environment when the UE is in a first communication interruption state, and the first communication interruption state is: a communication interruption state caused by low power, and the communication interface is used to restore communication through a target method when the power collected by the processor is greater than or equal to a first power threshold; wherein the target method includes at least one of the following: an uplink resynchronization method; a wireless link reconstruction method.
  • a readable storage medium on which a program or instruction is stored.
  • the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented.
  • a chip comprising a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run a program or instruction to implement the method described in the first aspect.
  • a seventh aspect provides a computer program/program product, wherein the computer program/program product is stored in In the storage medium, the computer program/program product is executed by at least one processor to implement the steps of the method of the first aspect.
  • the UE when the UE is in a first communication interruption state, the UE collects power from the environment, and the first communication interruption state is: a communication interruption state caused by low power; when the collected power is greater than or equal to a first power threshold, the UE restores communication through a target method; wherein the target method includes at least one of the following: an uplink resynchronization method; a radio link reconstruction method.
  • the target method includes at least one of the following: an uplink resynchronization method; a radio link reconstruction method.
  • FIG1 is one of the schematic diagrams of the architecture of a communication system provided in an embodiment of the present application.
  • FIG2 is a second schematic diagram of the architecture of a communication system provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of the structure of an EH-UE
  • FIG4 is a flow chart of a method for handling communication interruption provided in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an internal flow chart of a UE entering a first communication interruption state in accordance with a communication interruption processing method provided in an embodiment of the present application;
  • FIG. 6 is a schematic diagram of the structure of a communication interruption processing device provided in an embodiment of the present application.
  • FIG7 is one of the schematic diagrams of the structure of the terminal provided in the embodiment of the present application.
  • FIG. 8 is a second schematic diagram of the structure of the terminal provided in an embodiment of the present application.
  • first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR new radio
  • FIG1 is a block diagram of a wireless communication system applicable to the embodiments of the present application.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palm computer, a netbook, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a mobile Internet device (Mobile Internet Device, MID), an augmented reality (augmented reality) or a network device.
  • the terminal side devices include: artificial intelligence (AI), ...
  • the access network device 12 may include a base station, a WLAN access point or a WiFi node, etc.
  • the base station may be referred to as a node B, an evolved node B (eNB), an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, a basic service set (Basic Service Set, BSS), an extended service set (Extended Service Set, ESS), a home B node, a home evolved B node, a transmitting and receiving point (Transmitting Receiving Point, TRP) or some other suitable term in the field.
  • the base station is not limited to specific technical vocabulary.
  • the core network equipment may include but is not limited to at least one of the following: core network node, core network function, mobility management entity (Mobility Management Entity, MME), access mobility management function (Access and Mobility Management Function, AMF), session management function (Session Management Function, SMF), user plane function (User Plane Function, UPF), policy control function (Policy Control Function, PCF), policy and charging rules function unit (Policy and Charging Rules Function, PCRF), edge application service discovery function (Edge Application Server Discovery Function, EASDF), unified data management (Unified Data Management, UDM), unified data storage (Unified Data Repository, UDR), home user server (Home Subscriber Server, HSS), centralized network configuration (CNC), network storage function (Network Repository Function, NRF), network exposure function (Network Exposure Function, NEF), local NEF (Local N
  • IoT Internet of Things
  • NB-IoT Narrow-band Internet of Things
  • Tags active or semi-active tags
  • mMTC Massive Machine Type Communication
  • NB-IoT terminals are widely used in various communication scenarios with low data rates and low communication frequencies.
  • NB-IoT technology is used for tracking and controlling shared bicycles, transmitting information from electricity and water meters, environmental monitoring, and livestock tracking.
  • NB-IoT terminals need to be equipped with batteries for power supply.
  • the use of battery-powered NB-IoT terminals is subject to some restrictions in some occasions.
  • chemical batteries are not suitable for power supply due to the limitation of high temperature and high humidity environment; in some environments, such as NB-IoT terminals used for environmental monitoring communication in remote areas, the cost of replacing batteries or interruption after the battery life expires is high.
  • collecting energy from the environment and supplying NB-IoT communication modules can circumvent the restrictions brought by the use of batteries.
  • FIG3 shows a structural diagram of an EH-UE.
  • the EH-UE 30 may include an energy collection unit 31, an energy storage unit 32, and a communication function unit 33.
  • the energy collection unit 31 converts the energy collected from the environment into electrical energy and stores it in the energy storage unit 32.
  • the communication function unit 33 uses the electrical energy stored in the energy storage unit. Communicate with network devices.
  • EH-UE the UE powered by energy harvesting
  • RRC_Connected the speed of power consumption is affected by multiple factors, such as the amount and frequency of data sent and received, channel changes, interference changes, etc., which cause changes in the power required for uplink transmission, resulting in that under the condition of a given available power, neither the UE nor the base station can accurately predict how long the UE can maintain the communication state. Therefore, it may happen that the UE does not have time to notify the base station and the communication is interrupted due to low power. In this case, the UE and the network have the problem of how to deal with this abnormal communication interruption, including how to quickly restore to the communication state.
  • the 3GPP protocol defines the processing method of UE after RLF occurs due to radio channel deterioration, including searching for the target service cell and initiating radio link reconstruction.
  • the UE is interrupted due to low battery, it is not necessarily due to poor channel quality, but the UE does not continue to execute the communication program. Therefore, the existing process of reestablishing the radio link after sending RLF cannot be directly applied to the processing of communication interruption caused by low battery.
  • an embodiment of the present application provides a method for processing communication interruption, and provides a method for restoring the communication state of a UE in an RRC_Connected state after the communication interruption occurs due to low power, including:
  • the UE When the UE is in a first communication interruption state, the UE collects power from the environment, and the first communication interruption state is: a communication interruption state caused by low power; when the collected power is greater than or equal to a first power threshold, the communication is restored through a target method; wherein the target method includes at least one of the following: an uplink resynchronization method; a radio link reconstruction method.
  • the target method includes at least one of the following: an uplink resynchronization method; a radio link reconstruction method.
  • the embodiment of the present application further provides at least one of the following after the UE is disconnected from communication due to low power:
  • the communication interruption processing method provided in the embodiment of the present application can be applied to Internet of Things devices that support collecting energy in the environment and converting it into electrical energy for power supply.
  • FIG1 shows a flow chart of the communication interruption processing method provided by the embodiment of the present application.
  • the communication interruption processing method provided by the embodiment of the present application may include the following steps 401 and 402.
  • Step 401 When the UE is in a first communication interruption state, the UE collects power from the environment.
  • the first communication interruption state is a communication interruption state caused by low battery.
  • the UE in the embodiment of the present application may be an Internet of Things terminal that supports collecting energy from the environment and converting it into electrical energy for power supply.
  • the UE can collect electrical energy from the environment through an energy collection unit in the UE, such as the energy collection unit 31 in Figure 3, for example, collecting wind energy in the environment through a wind power sensor and converting it into electrical energy, or collecting light energy in the environment through a photoelectric sensor and converting it into electrical energy.
  • an energy collection unit in the UE such as the energy collection unit 31 in Figure 3, for example, collecting wind energy in the environment through a wind power sensor and converting it into electrical energy, or collecting light energy in the environment through a photoelectric sensor and converting it into electrical energy.
  • the first condition for the UE to trigger the first communication interruption state or the judgment condition for the UE to determine to enter the first communication interruption state includes at least one of the following 1a to 1d:
  • the available power of the UE is insufficient to support or complete uplink transmission
  • the available power of the UE is insufficient to support or complete downlink reception
  • the UE reduces its transmission power due to insufficient power
  • the available power of the UE is less than the second power threshold.
  • the UE when the UE satisfies one or more of the above conditions 1a to 1d, the UE can determine that it has entered the first communication interruption state.
  • the first power threshold is preset, agreed upon by a protocol, or configured by a network.
  • the available power of the UE is insufficient to support or complete uplink transmission includes at least one of the following 1a-1) to 1a-4):
  • the UE cannot perform uplink transmission according to the UE's uplink transmission grant
  • the UE when the UE's uplink transmission grant includes N uplink transmissions, the UE can only support the completion of X uplink transmissions;
  • the UE cannot complete the transmission of the Physical Uplink Control Channel (PUCCH) carrying Scheduling Request (SR), Hybrid Automatic Repeat Request (HARQ) feedback information or Channel State Information (CSI);
  • PUCCH Physical Uplink Control Channel
  • SR Scheduling Request
  • HARQ Hybrid Automatic Repeat Request
  • CSI Channel State Information
  • N is a positive integer
  • X is an integer less than N.
  • 1a-2) may specifically be: the uplink transmission permission of the UE includes the first transmission and N-1 repeated transmissions, and the UE can only complete X (X ⁇ N) transmissions.
  • 1a-3 may specifically be: the uplink transmission permission of the UE includes N transmissions (eg, multi-PUSCH scheduling, each time sending different data), and the UE cannot complete all the N transmissions.
  • N transmissions eg, multi-PUSCH scheduling, each time sending different data
  • the available power of the UE is insufficient to support or complete downlink reception may include at least one of the following:
  • the UE cannot complete the processing of the received baseband information
  • the UE cannot complete the reception of the RF signal
  • the UE cannot complete the processing of the RF signal
  • the UE cannot detect the common physical downlink control channel (PDCCH) search space, that is, the UE does not have enough power to detect the common PDCCH search space;
  • PDCCH physical downlink control channel
  • the UE cannot detect the dedicated PDCCH search space, that is, the UE does not have enough power to detect the dedicated PDCCH search space;
  • the UE after completing downlink reception, the UE cannot complete the sending of HARQ feedback information; that is, after completing downlink reception, the UE does not have sufficient power to complete the sending of HARQ feedback information.
  • the UE's transmission power is reduced due to insufficient power can be understood as: the UE's transmission power is less than the maximum allowed transmission power.
  • the following is an exemplary description of the internal process of the UE determining to enter the communication interruption state.
  • the UE's Media Access Control (MAC) layer or Physical (PHY) layer also needs to notify the UE's RRC layer of the low battery information, and the RRC layer determines that the communication is interrupted.
  • the UE can determine whether the communication is interrupted in any of the following ways:
  • the physical layer of the UE provides a power monitoring function, and sends the power monitoring results including low power information to the MAC layer, which is then processed by the MAC layer and sent to the RRC layer.
  • This report can be periodic or It can be a report to the upper layer triggered by low battery;
  • the MAC layer of the UE provides a power monitoring function and reports the power monitoring results, including information about low power, to the RRC layer. This reporting can be periodic reporting or reporting to the upper layer triggered by low power;
  • the MAC layer or physical layer of the UE sends a message of data transmission and reception interruption to the RRC layer, and the message of data transmission and reception interruption includes at least one of the following: uplink transmission interruption, downlink reception interruption, and the transmission interruption is caused by low battery.
  • the RRC layer can determine whether the UE enters a communication interruption state based on information reported by the MAC layer and/or the physical layer, and configure relevant behaviors of the MAC/PHY layer.
  • Step 402 When the collected power is greater than or equal to the first power threshold, the UE resumes communication in a target manner.
  • the target method may include at least one of the following: a possible implementation method, an uplink resynchronization method; a second possible implementation method, a wireless link reconstruction method.
  • the first power threshold is preset, agreed upon by a protocol, or configured by a network.
  • the first power threshold is greater than or equal to the first power threshold.
  • the UE may restore communication by performing a cell search process in a radio link reestablishment manner.
  • step 402 may be implemented through the following steps 402a and 402b, or may be implemented through the following steps 402a and 402c.
  • Step 402a When the collected power is greater than or equal to the first power threshold, the UE determines whether the RLF state is triggered.
  • the UE when the power collected by the UE is greater than or equal to the first power threshold, it can be determined whether the UE triggers the RLF state. If the UE is in the first communication interruption state and the RLF state is not triggered, continue to execute the following step 402b; if the UE triggers the RLF state, continue to execute the following step 402c.
  • the fourth condition that the UE is in the first communication interruption state and does not trigger the RLF state includes at least one of the following: when the UE is in a radio resource control RRC connection state, the UE enters the first communication interruption state upon receiving communication interruption permission or configuration information configuring the UE to enter a communication interruption state; the first duration of the UE in the first communication interruption state is less than or equal to a first duration threshold.
  • the fifth condition for the UE to trigger the RLF state includes at least one of the following:
  • the UE When the UE is in a radio resource control RRC connected state, the UE enters a first communication interruption state without receiving a communication interruption permission or configuration information for configuring the UE to enter a communication interruption state;
  • the first duration is greater than the first duration threshold
  • the duration during which the UE is expected to be in the first communication interruption state is greater than the third duration threshold.
  • the first duration that the UE is in the first communication interruption state refers to: the time difference between the time when the UE enters the first communication interruption state and the time when the amount of electricity collected by the UE is greater than or equal to the first electricity threshold; in other words, the first duration is the length of time that the UE has been in the first communication interruption state when the amount of electricity collected by the UE is greater than or equal to the first electricity threshold.
  • the first duration threshold can be implemented by a fourth timer, and the initial value of the fourth timer is the first duration threshold.
  • the UE enters the first communication interruption state, the UE starts the fourth timer. If the fourth timer is still running when the amount of electricity collected by the UE is greater than the first electricity threshold, the UE can restore to the communication state by resuming the uplink synchronization procedure and stop the fourth timer. If the fourth timer times out when the amount of electricity collected by the UE is greater than the first electricity threshold, the UE determines that the UE has entered the RLF state, so that communication can be restored by radio link reconstruction.
  • Step 402b The UE resumes communication through uplink resynchronization.
  • Step 402c The UE resumes communication by reestablishing the radio link.
  • the UE can first determine whether the UE is Whether the RLF state is triggered and the communication is restored in a manner corresponding to the judgment result, thereby increasing the probability of successfully restoring the communication.
  • the communication interruption processing method provided in the embodiment of the present application is described below through one possible implementation method and another possible implementation method.
  • the UE when a UE in an RRC connected state enters a communication interruption state due to low battery, the UE remains in the RRC connected state, and when the UE collects power until the stored power reaches a threshold that can support subsequent communications (such as the first power threshold mentioned above), the UE can resynchronize with the network side device (such as a base station).
  • a threshold that can support subsequent communications such as the first power threshold mentioned above
  • the UE resumes communication through an uplink resynchronization manner which may specifically include:
  • the UE sends an uplink signal to the network side device on the target channel;
  • the target channel may include any of the following:
  • the first physical random access channel Physical Random Access Channel, PRACH.
  • the network side device can receive the uplink signal and then complete uplink signal synchronization with the UE based on the uplink signal, and after the uplink signal synchronization is successful, the communication with the UE is restored.
  • the UE can send an uplink signal to the network side device on the first PUCCH, the first PUSCH, and the first PRACH, the flexibility of the UE in sending an uplink synchronization signal can be improved.
  • the first PUCCH carries SR or CSI.
  • the target channel when the UE meets the second condition, may include: a first PUCCH or a first PUSCH; when the UE meets the third condition, the target channel may include the first PRACH.
  • the second condition may include: the first duration is less than or equal to a second duration threshold.
  • the third condition may include at least one of the following: the first duration is greater than the second duration threshold, and the UE has no available PUCCH and PUSCH;
  • the second duration threshold is less than or equal to the first duration threshold.
  • the priority of the first PUCCH and the first PUSCH is higher than the priority of the first PRACH.
  • the UE may preferentially use the first PUCCH or the first PUSCH to send an uplink signal to notify the network side device to restore to the communication state.
  • the UE can restore synchronization with the network side device by sending the first PRACH.
  • UE sends an uplink signal to the network side device on the target channel includes:
  • the UE When the network side device is pre-configured with a dedicated random access resource for recovering uplink synchronization, the UE sends an uplink signal to the network side device on the first PRACH based on resources in the dedicated random access resource;
  • the UE sends an uplink signal to the network side device on the first PRACH based on the resources in the shared random access resources.
  • the PRACH preamble is sent to the serving base station using the network pre-allocated PRACH resources to restore uplink synchronization with the network (i.e., non-contention access);
  • the network does not pre-allocate random access resources, that is, no preamble or time-frequency resources are allocated, then the shared Random access resources, adopt a competitive random access method to restore synchronization with the serving base station.
  • the UE can send an uplink signal to the network side device on the first PRACH based on the dedicated random access resource or the shared random access resource, the flexibility of the UE in sending the uplink signal on the first PRACH can be improved.
  • UE resumes communication through the radio link reconstruction method may specifically include: when the first target timer is running, the UE executes a cell search process.
  • the first target timer includes any one of the following: a first timer, a second timer, and a third timer;
  • the first timer is started when the UE determines to trigger the RLF state
  • the second timer starts after a period of time when the UE determines to trigger the RLF state
  • the third timer starts a period of time after the UE determines that the first communication interruption state is triggered.
  • the second timer may be started after the UE determines that the RLF state is triggered for a first duration
  • the third timer may be started after the UE determines that the first communication interruption state is triggered for a second duration.
  • the first target timer may be terminated when the UE searches for a suitable cell.
  • the UE when the UE searches for a suitable cell while the first timer is running, the UE terminates the first timer;
  • the UE When the UE searches for a suitable cell while the second timer is running, the UE terminates the second timer;
  • the UE In a case where the UE searches for a suitable cell while the third timer is running, the UE terminates the third timer.
  • the timer operation related to the cell search process can be the above-mentioned first timer, second timer or third timer.
  • the first timer may include at least one of a first initial value and a second initial value; wherein the first initial value is applicable to a scenario in which the UE immediately performs a cell search process when determining that the RLF state is triggered; and the second initial value is applicable to a scenario in which the UE performs a cell search process after a period of time after determining that the RLF is triggered.
  • the first timer when the first timer includes a first initial value and a second initial value, the first timer corresponds to the T311 timer in the related art. If the UE immediately starts T311 according to the procedure for reestablishing the radio link when determining that it has entered the RLF state, then when the UE is in the first communication interruption state, the time required for the UE to complete the cell search process is longer than the time required for the UE to immediately execute the cell search process.
  • two T311 initial values can be configured for the UE, wherein the first initial value is applicable to the scenario in which the UE immediately executes the cell search process after the RLF state occurs; and the second initial value is applicable to the scenario in which the UE performs the cell search process after a period of time after entering the RLF state.
  • the UE After the UE performs the cell search process, if the UE fails to search for a suitable cell when the first timer, the second timer or the third timer expires, the UE enters an RRC idle state.
  • the UE when the UE searches for a suitable cell while the first target timer is running, the UE terminates the first target timer.
  • condition for the UE to trigger the radio link reestablishment may be defined as the UE determining that sufficient power has been collected.
  • a timer is introduced, and the timer is started when the UE enters the first communication interruption state.
  • the timer is running, the timer is terminated; if the timer times out and the UE still fails to start the cell search procedure, the UE enters the RRC idle (RRC_Idle) state.
  • the UE may automatically enter an RRC inactive state.
  • the communication interruption processing method provided in the embodiment of the present application may further include the following step 403 or step 404.
  • Step 403 When the UE fails to resume communication and the UE satisfies the sixth condition, the UE enters the RRC inactive state;
  • Step 404 When the UE fails to restore communication and the UE does not meet the sixth condition, the UE Enter RRC idle state.
  • the sixth condition includes at least one of the following:
  • the UE enters the first communication interruption state without permission or configuration of the network side device
  • the UE enters the first communication interruption state without permission or configuration of the network side device, and the duration of being in the first communication interruption state is greater than or equal to the fourth duration threshold;
  • the UE enters the first communication interruption state under the permission or configuration of the network side device, but the duration of being in the first communication interruption state is greater than or equal to the fifth duration threshold.
  • the UE may use the wireless reconnection procedure, i.e., send an RRC resume request (Resume Request) to the network side device.
  • RRC resume request Resume Request
  • the UE may fall to the RRC_Idle state on its own.
  • the communication interruption processing method provided in the embodiment of the present application may further include the following step 405 or step 406.
  • Step 405 The UE retains the RRC context when the communication interruption occurs.
  • Step 406 The UE continues to use the RRC context that the network-side device last configured when the UE entered the RRC inactive state.
  • the UE can retain the RRC context when the communication interruption occurs or continue to use the RRC context that the network side device last configured when the UE entered the RRC inactive state, thereby improving the flexibility of the UE in using the RRC context.
  • the communication interruption processing method provided in the embodiment of the present application may further include the following step 407.
  • Step 407 When the communication is successfully restored, the UE reports the target fault information.
  • the target fault information may be used to indicate that the UE entered a communication interruption state or an RLF state due to low battery last time;
  • the target fault information may include at least one of the following:
  • the fault cause information includes at least one of the following: switching information to the first communication interruption state; wireless link reconstruction failure information; uplink resynchronization failure information.
  • the seventh condition for the UE to report the target fault information includes at least one of the following:
  • the UE enters the first communication interruption state in the most recent RRC connection state, that is, after the UE enters the first communication interruption state, it remains in the RRC connection state;
  • the time difference between the first time and the second time is less than or equal to the sixth time length threshold
  • the network configures the UE to report target fault information
  • the first time is the time when the UE successfully resumes communication
  • the second time is the time when the UE last enters the first communication interruption state.
  • the UE can report fault information to the network side device after restoring communication, the fault information is used to indicate that the Ue last entered a communication interruption state or an RLF state due to low battery. Therefore, it is convenient for the network side device to handle such errors, support UE error handling or state recovery (similar to Track Area Update (TAU)), and help the network side device optimize the configuration of the UE based on energy collection.
  • TAU Track Area Update
  • the communication interruption processing method provided in the embodiment of the present application may further include at least one of the following steps 408 and 409.
  • Step 408 When the UE is in the first communication interruption state, the UE ignores all or part of the downlink reception.
  • Step 409 When the UE is in the first communication interruption state, the UE ignores all or part of the uplink transmission.
  • the UE power consumption can be reduced to increase the UE charging speed.
  • the UE after entering the first communication interruption state, the UE remains in the RRC connected state.
  • the communication interruption processing method provided in the embodiment of the present application can be executed by a communication interruption processing device.
  • the communication interruption processing device executing the communication interruption processing method is taken as an example to illustrate the communication interruption processing device provided in the embodiment of the present application.
  • FIG6 shows a schematic diagram of the structure of the communication interruption processing device provided in the embodiment of the present application.
  • the communication interruption processing device 60 provided in the embodiment of the present application may include: a power collection module 61 and a communication module 62;
  • the power collection module is used to collect power from the environment when the UE is in a first communication interruption state, where the first communication interruption state is a communication interruption state caused by low power;
  • the communication module is used to restore communication in a target manner when the power collected by the power collection module is greater than or equal to the first power threshold;
  • the target method includes at least one of the following:
  • the first condition for the UE to trigger the first communication interruption state includes at least one of the following:
  • the available power of the UE is insufficient to support or complete uplink transmission
  • the available power of the UE is insufficient to support or complete downlink reception
  • the UE has a reduced transmission power due to insufficient power
  • the available power of the UE is less than a second power threshold.
  • the available power of the UE is insufficient to support or complete uplink transmission, including at least one of the following:
  • the UE cannot perform uplink transmission according to the uplink transmission grant of the UE;
  • the UE can only support completion of X uplink transmissions when the UE's uplink transmission grant includes N uplink transmissions;
  • the UE When the UE has N uplink transmission grants, the UE cannot complete all N transmissions;
  • the UE cannot complete the transmission of the PUCCH carrying the SR, HARQ feedback information or CSI;
  • N is a positive integer
  • X is an integer less than N.
  • the available power of the UE is insufficient to support or complete downlink reception, including at least one of the following:
  • the UE is unable to complete processing of received baseband information
  • the UE cannot complete reception of the radio frequency signal
  • the UE is unable to complete the processing of the radio frequency signal
  • the UE cannot complete detection of a common PDCCH search space
  • the UE cannot complete detection of a dedicated PDCCH search space
  • the UE When multi-PDSCH scheduling occurs, the UE cannot complete decoding of all PDSCHs;
  • the UE After completing downlink reception, the UE cannot complete sending of HARQ feedback information.
  • the communication module includes a determination submodule and a communication submodule
  • the communication submodule is configured to restore communication by the uplink resynchronization method when the determination submodule determines that the UE is in the first communication interruption state and the radio link failure RLF state is not triggered;
  • the communication submodule is used to determine in the determination submodule that the UE is in a radio link failure RLF state, and restore communication through the radio link reconstruction method.
  • the communication submodule is specifically used to send an uplink signal to a network side device on a target channel
  • the target channel includes any one of the following:
  • the first PUCCH carries SR or CSI.
  • the target channel when the UE satisfies the second condition, includes the first PUCCH or the first PUSCH;
  • the target channel includes the first PRACH
  • the second condition includes: a first duration of the UE being in the first communication interruption state is less than or equal to a second duration threshold;
  • the third condition includes at least one of the following: the first duration is greater than the second duration threshold, and the UE has no available PUCCH and PUSCH.
  • the target channel includes the first PRACH
  • the communication submodule is specifically used for:
  • the network side device is pre-configured with a dedicated random access resource for recovering uplink synchronization, sending an uplink signal to the network side device on the first PRACH based on resources in the dedicated random access resource;
  • an uplink signal is sent to the network side device on the first PRACH.
  • the fourth condition that the UE is in the first communication interruption state and does not trigger the RLF state includes at least one of the following:
  • the UE When the UE is in a radio resource control (RRC) connected state, the UE enters the first communication interruption state upon receiving communication interruption permission or configuration information for configuring the UE to enter the communication interruption state;
  • RRC radio resource control
  • a first duration of time during which the UE is in the first communication interruption state is less than or equal to a first duration threshold
  • the fifth condition for the UE to trigger the RLF state includes at least one of the following:
  • the UE When the UE is in a radio resource control (RRC) connected state, the UE enters the first communication interruption state without receiving a communication interruption permission or configuration information for configuring the UE to enter the communication interruption state;
  • RRC radio resource control
  • the first duration is greater than the first duration threshold
  • the duration for which the UE is expected to be in the first communication interruption state is greater than a third duration threshold.
  • the communication submodule is specifically configured to execute a cell search process when the first target timer is running;
  • the first target timer includes any one of the following: a first timer, a second timer, a third timer;
  • the first timer is started when the UE determines to trigger the RLF state
  • the second timer starts a period of time after the UE determines to trigger the RLF state
  • the third timer starts a period of time after the UE determines that the first communication interruption state is triggered.
  • the first timer includes at least one of a first initial value and a second initial value
  • the first initial value is applicable to a scenario in which the UE immediately performs a cell search process when determining that the RLF state is triggered;
  • the second initial value is applicable to a scenario in which the UE performs a cell search process after a period of time after determining that the RLF state is triggered.
  • the communication interruption processing device further includes: a first control module
  • the first control module is used to control the UE to enter the RRC idle state after the communication submodule executes the cell search process and if the communication submodule fails to search for a suitable cell when the first timer, the second timer or the third timer times out.
  • the communication interruption processing device further includes: a second control module
  • the second control module is used to:
  • the third timer is terminated.
  • the communication interruption processing device further includes: a third control module;
  • the third control module is configured to, when the communication submodule fails to restore communication, control the UE to enter the RRC inactive state if the UE meets the sixth condition; otherwise, control the UE to enter the RRC idle state;
  • the sixth condition includes at least one of the following:
  • the UE enters the first communication interruption state without permission or configuration of the network side device
  • the UE enters the first communication interruption state without permission or configuration of the network side device, and the duration of being in the first communication interruption state is greater than or equal to the fourth duration threshold;
  • the UE enters the first communication interruption state under the permission or configuration of the network side device, but the duration of being in the first communication interruption state is greater than or equal to the fifth duration threshold.
  • the third control module is further configured to retain the RRC context when the communication interruption occurs after controlling the UE to enter the RRC inactive state;
  • the communication module is further configured to report target fault information after restoring communication in the target manner and when communication is successfully restored, wherein the target fault information is used to indicate that the UE last entered a communication interruption state or an RLF state due to low battery;
  • the target fault information includes at least one of the following:
  • the fault cause information includes at least one of the following:
  • the seventh condition for the UE to report the target fault information includes at least one of the following:
  • the UE enters the first communication interruption state in the most recent RRC connection state
  • the time difference between the first time and the second time is less than or equal to the sixth time length threshold
  • the network configures the UE to report the target fault information
  • the first time is the time when the UE successfully resumes communication
  • the second time is the time when the UE last enters the first communication interruption state.
  • the communication interruption device further includes: a fourth control module
  • the fourth control module is configured to ignore all or part of the downlink reception when the UE is in the first communication interruption state
  • the fourth control module is used to ignore all or part of the uplink transmission when the UE is in the first communication interruption state.
  • the communication interruption device further includes: a fifth control module
  • the UE is in an RRC connected state before entering the first communication interruption state
  • the fifth control module is used to control the UE to remain in the RRC connection state after the UE enters the first communication interruption state.
  • the communication interruption processing device when the UE is in a communication interruption state due to low battery, the communication interruption processing device can collect power from the environment and try to restore communication through uplink resynchronization or wireless link reconstruction after the collected power is greater than the first power threshold, thereby ensuring that the UE can smoothly restore communication.
  • the communication interruption processing device in the embodiment of the present application can be an electronic device, such as an electronic device with an operating system, or a component in the electronic device, such as an integrated circuit or a chip.
  • the electronic device can be a terminal, or it can be other devices other than a terminal.
  • the terminal can include but is not limited to the types of terminals 11 listed above, and other devices can be servers, network attached storage (NAS), etc., which are not specifically limited in the embodiment of the present application.
  • the communication interruption processing device provided in the embodiment of the present application can implement each process implemented by the method embodiments of Figures 1 to 5 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • an embodiment of the present application also provides a communication device 700, including a processor 701 and a memory 702, and the memory 702 stores a program or instruction that can be executed on the processor 701.
  • the program or instruction is executed by the processor 701
  • the various steps of the above-mentioned communication interruption processing method embodiment are implemented, and the same technical effect can be achieved.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, the processor is used to collect power from the environment when the UE is in a first communication interruption state, the first communication interruption state is: a communication interruption state caused by low power, the communication interface is used to restore communication in a target manner when the power collected by the processor is greater than or equal to a first power threshold; wherein the target manner includes at least one of the following: uplink resynchronization manner; wireless link reconstruction manner.
  • This terminal embodiment corresponds to the above-mentioned UE side method embodiment, and each implementation process and implementation method of the above-mentioned method embodiment can be applied to the UE embodiment, and can achieve the same technical effect.
  • Figure 8 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 800 includes but is not limited to: a radio frequency unit 801, a network module 802, an audio output unit 803, an input unit 804, a sensor 805, a display unit 806, a user input unit 807, an interface unit 808, a memory 809 and at least some of the components including a processor 810 and an energy collection unit 811.
  • the terminal 800 may also include a power source (such as a battery) for supplying power to each component, and the power source may be logically connected to the processor 810 through a power management system, so as to implement functions such as managing charging, discharging, and power consumption management through the power management system.
  • a power source such as a battery
  • the terminal structure shown in FIG8 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange components differently, which will not be described in detail here.
  • the input unit 804 may include a graphics processing unit (GPU) 8041 and a microphone 8042, and the graphics processor 8041 processes the image data of the static picture or video obtained by the image capture device (such as a camera) in the video capture mode or the image capture mode.
  • the display unit 806 may include a display panel 8061, and the display panel 8061 may be configured in the form of a liquid crystal display, an organic light emitting diode, etc.
  • the user input unit 807 includes a touch panel 8071 and at least one of other input devices 8072.
  • the touch panel 8071 is also called a touch screen.
  • the touch panel 8071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 8072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control key, a switch key, etc.), a trackball, a mouse, and a joystick, which will not be repeated here.
  • the radio frequency unit 801 after receiving downlink data from the network side device, can transmit the data to the processor 810 for processing; in addition, the radio frequency unit 801 can send uplink data to the network side device.
  • the radio frequency unit 801 includes but is not limited to an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • the memory 809 can be used to store software programs or instructions and various data.
  • the memory 809 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
  • the memory 809 may include a volatile memory or a non-volatile memory, or the memory 809 may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDRSDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous link dynamic random access memory (SLDRAM) and a direct memory bus random access memory (DRRAM).
  • the memory 809 in the embodiment of the present application includes but is not limited to these and any other suitable types of memory.
  • the processor 810 may include one or more processing units; optionally, the processor 810 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to an operating system, a user interface, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It is understandable that the modem processor may not be integrated into the processor 810.
  • the energy collection unit 811 is used to collect power from the environment when the UE is in a first communication interruption state, and the first communication interruption state is: a communication interruption state caused by low power;
  • the radio frequency unit 801 is used to restore communication in a target manner when the amount of electricity collected by the energy collection unit 811 is greater than or equal to a first electricity threshold;
  • the target method includes at least one of the following:
  • the first condition for the UE to trigger the first communication interruption state includes at least one of the following:
  • the available power of the UE is insufficient to support or complete uplink transmission
  • the available power of the UE is insufficient to support or complete downlink reception
  • the UE has a reduced transmission power due to insufficient power
  • the available power of the UE is less than a second power threshold.
  • the available power of the UE is insufficient to support or complete uplink transmission, including: At least one of the following:
  • the UE cannot perform uplink transmission according to the uplink transmission grant of the UE;
  • the UE can only support completion of X uplink transmissions when the UE's uplink transmission grant includes N uplink transmissions;
  • the UE When the UE has N uplink transmission grants, the UE cannot complete all N transmissions;
  • the UE cannot complete the transmission of the PUCCH carrying the SR, HARQ feedback information or CSI;
  • N is a positive integer
  • X is an integer less than N.
  • the available power of the UE is insufficient to support or complete downlink reception, including at least one of the following:
  • the UE is unable to complete processing of received baseband information
  • the UE cannot complete reception of the radio frequency signal
  • the UE is unable to complete the processing of the radio frequency signal
  • the UE cannot complete detection of a common PDCCH search space
  • the UE cannot complete detection of a dedicated PDCCH search space
  • the UE When multi-PDSCH scheduling occurs, the UE cannot complete decoding of all PDSCHs;
  • the UE After completing downlink reception, the UE does not have enough power to complete the transmission of HARQ feedback information.
  • the radio frequency unit 801 includes a processor 810 and a radio frequency unit 801;
  • the radio frequency unit 801 is configured to restore communication by the uplink resynchronization method when the processor 810 determines that the UE is in the first communication interruption state and the radio link failure RLF state is not triggered;
  • the radio frequency unit 801 is configured to determine, in the processor 810, that the UE is in a radio link failure RLF state, and restore communication through the radio link reconstruction method.
  • the radio frequency unit 801 is specifically used to send an uplink signal to a network side device on a target channel;
  • the target channel includes any one of the following:
  • the first PUCCH carries SR or CSI.
  • the target channel when the UE satisfies the second condition, includes the first PUCCH or the first PUSCH;
  • the target channel includes the first PRACH
  • the second condition includes: a first duration of the UE being in the first communication interruption state is less than or equal to a second duration threshold;
  • the third condition includes at least one of the following: the first duration is greater than the second duration threshold, and the UE has no available PUCCH and PUSCH.
  • the target channel includes the first PRACH
  • the radio frequency unit 801 is specifically used for:
  • an uplink signal is sent to the network side device on the first PRACH based on resources in the dedicated random access resource;
  • an uplink signal is sent to the network side device on the first PRACH based on resources in the shared random access resources.
  • the fourth condition that the UE is in the first communication interruption state and does not trigger the RLF state includes at least one of the following:
  • the UE When the UE is in a radio resource control RRC connected state, the UE enters the first communication interruption state upon receiving communication interruption permission or configuration information for configuring the UE to enter the communication interruption state;
  • a first duration of time during which the UE is in the first communication interruption state is less than or equal to a first duration threshold
  • the fifth condition for the UE to trigger the RLF state includes at least one of the following:
  • the UE When the UE is in a radio resource control (RRC) connected state, the UE enters the first communication interruption state without receiving a communication interruption permission or configuration information for configuring the UE to enter the communication interruption state;
  • RRC radio resource control
  • the first duration is greater than the first duration threshold
  • the duration for which the UE is expected to be in the first communication interruption state is greater than a third duration threshold.
  • the radio frequency unit 801 is specifically configured to execute a cell search process when the first target timer is running;
  • the first target timer includes any one of the following: a first timer, a second timer, a third timer;
  • the first timer is started when the UE determines to trigger the RLF state
  • the second timer starts a period of time after the UE determines to trigger the RLF state
  • the third timer starts a period of time after the UE determines that the first communication interruption state is triggered.
  • the first timer includes at least one of a first initial value and a second initial value
  • the first initial value is applicable to a scenario in which the UE immediately performs a cell search process when determining that the RLF state is triggered;
  • the second initial value is applicable to a scenario in which the UE performs a cell search process after a period of time after determining that the RLF state is triggered.
  • the processor 810 is used to control the UE to enter the RRC idle state after the RF unit 801 executes the cell search process and if the RF unit 801 fails to search for a suitable cell when the first timer, the second timer or the third timer expires.
  • the processor 810 is configured to:
  • the radio frequency unit 801 searches for a suitable cell while the first timer is running, terminate the first timer;
  • the radio frequency unit 801 searches for a suitable cell while the third timer is running, the third timer is terminated.
  • the processor 810 is configured to, when the radio frequency unit 801 fails to resume communication, control the UE to enter the RRC inactive state if the UE satisfies a sixth condition; otherwise, control the UE to enter the RRC idle state;
  • the sixth condition includes at least one of the following:
  • the UE enters the first communication interruption state without permission or configuration of the network side device
  • the UE enters the first communication interruption state without permission or configuration of the network side device, and the duration of being in the first communication interruption state is greater than or equal to the fourth duration threshold;
  • the UE enters the first communication interruption state under the permission or configuration of the network side device, but the duration of being in the first communication interruption state is greater than or equal to the fifth duration threshold.
  • the processor 810 is further configured to retain the RRC context when the communication interruption occurs after controlling the UE to enter the RRC inactive state;
  • the radio frequency unit 801 is further configured to, after communication is restored in the target manner and when communication is successfully restored, report target fault information, where the target fault information is used to indicate that the UE last entered a communication interruption state or an RLF state due to low power;
  • the target fault information includes at least one of the following:
  • the fault cause information includes at least one of the following:
  • the seventh condition for the UE to report the target fault information includes at least one of the following:
  • the UE enters the first communication interruption state in the most recent RRC connection state
  • the time difference between the first time and the second time is less than or equal to the sixth time length threshold
  • the network configures the UE to report the target fault information
  • the first time is the time when the UE successfully resumes communication
  • the second time is the time when the UE last enters the first communication interruption state.
  • the processor 810 the processor 810;
  • the processor 810 is configured to ignore all or part of downlink reception when the UE is in the first communication interruption state
  • the processor 810 is configured to ignore all or part of uplink transmission when the UE is in the first communication interruption state.
  • the UE is in an RRC connection state before entering the first communication interruption state; the processor 810 is further used to control the UE to remain in the RRC connection state after the UE enters the first communication interruption state.
  • the communication interruption processing device can collect power from the environment and try to restore communication through uplink resynchronization or wireless link reconstruction after the collected power is greater than the first power threshold, thereby ensuring that the UE can smoothly restore communication.
  • An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • each process of the above-mentioned communication interruption processing method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
  • An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the above-mentioned communication interruption processing method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be referred to as a system-on-chip, a system-on-chip, or a chip system. Or system-on-chip, etc.
  • the embodiment of the present application further provides a computer program/program product, which is stored in a storage medium, and is executed by at least one processor to implement the various processes of the above-mentioned communication interruption processing method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, a magnetic disk, or an optical disk), and includes a number of instructions for enabling a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, a magnetic disk, or an optical disk
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信中断处理方法、装置、终端及可读存储介质,属于通信技术领域,本申请实施例的通信中断处理方法包括:用户设备UE在处于第一通信中断状态的情况下,从环境中收集电量,第一通信中断状态为:因低电量导致的通信中断状态;UE在收集的电量大于或等于第一电量门限的情况下,通过目标方式恢复通信;其中,目标方式包括以下至少一项:上行重同步方式;无线链路重建方式。

Description

通信中断处理方法、装置、终端及可读存储介质
相关申请的交叉引用
本申请主张在2022年10月13日在中国提交申请号为202211256171.1的中国专利的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种通信中断处理方法、装置、终端及可读存储介质。
背景技术
目前第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)协议定义了用户设备(User Equipment,UE)在基于无线信道变差、发生无线链路失败(Radio Link Failure,RLF)后的处理方法,包括搜寻目标服务小区和发起无线链路重建等。但是当UE由于电量过低致使通信中断时,由于UE也没有继续执行通信程序,因此现有进行无线链路重建的流程,无法直接应用于由于电量过低导致的通信中断处理。如此,如何解决UE因电量过低致使的通信中断处理是亟待解决的问题。
发明内容
本申请实施例提供一种通信中断处理方法、装置、终端及可读存储介质,能够解决UE因电量过低致使的通信中断的问题。
第一方面,提供了一种通信中断处理方法,应用于UE,该方法包括:用户设备UE在处于第一通信中断状态的情况下,从环境中收集电量,第一通信中断状态为:因低电量导致的通信中断状态;UE在收集的电量大于或等于第一电量门限的情况下,通过目标方式恢复通信;其中,目标方式包括以下至少一项:上行重同步方式(resynchronization with the network in uplink);无线链路重建方式(radio connection reestablishment)。
第二方面,提供了一种通信中断处理装置,所述通信中断处理装置可以包括:电量收集模块和通信模块;所述电量收集模块,用于在UE处于第一通信中断状态的情况下,从环境中收集电量,所述第一通信中断状态为:因低电量导致的通信中断状态;所述通信模块,用于在所述电量收集模块收集的电量大于或等于第一电量门限的情况下,通过目标方式恢复通信;其中,所述目标方式包括以下至少一项:上行重同步方式;无线链路重建方式。
第三方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种终端,包括处理器及通信接口,其中,所述处理器用于在UE处于第一通信中断状态的情况下,从环境中收集电量,所述第一通信中断状态为:因低电量导致的通信中断状态,所述通信接口用于在处理器收集的电量大于或等于第一电量门限的情况下,通过目标方式恢复通信;其中,所述目标方式包括以下至少一项:上行重同步方式;无线链路重建方式。
第五方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第七方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在 存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面的方法的步骤。
在本申请实施例中,UE在处于第一通信中断状态的情况下,从环境中收集电量,第一通信中断状态为:因低电量导致的通信中断状态;UE在收集的电量大于或等于第一电量门限的情况下,通过目标方式恢复通信;其中,所述目标方式包括以下至少一项:上行重同步方式;无线链路重建方式。通过该方案,当UE在因低电量而导致通信中断状态时,由于UE可以从环境中收集电量,并在收集的电量大于第一电量门限之后,再通过上行重同步或无线链路重建的方式,尝试恢复通信,因此可以确保UE能够在顺利恢复通信。
附图说明
图1是本申请实施例提供的一种通信系统的架构示意图之一;
图2是本申请实施例提供的一种通信系统的架构示意图之二;
图3是EH-UE的结构示意图;
图4本申请实施例提供的通信中断处理方法的流程示意图;
图5是本申请实施例提供的通信中断处理方法所应用的UE进入第一通信中断状态的内部流程示意图;
图6是本申请实施例提供的通信中断处理装置的结构示意图;
图7是本申请实施例提供的终端的结构示意图之一;
图8是本申请实施例提供的终端的结构示意图之二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented  reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。如图2所示,网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
下面对本申请实施例提供的通信中断处理方法、装置、终端及可读存储介质中涉及的一些概念和/或术语做一下解释说明。
物联网物联网(Internet of Things,IoT)终端:是指支持收集环境中的能量并转化为电能进行供电的设备,包括:窄带物联网(Narrow-band Internet of Things,NB-IoT)设备、主动或半主动标签(Tag)、大规模机器通信(Massive Machine Type Communication,mMTC)终端等。
目前,低成本UE例如NB-IoT终端被广泛应用于各种低数据速率、低通信频度的通信场合。例如NB-IoT技术用于共享单车跟踪和控制、电表/水表信息传输、环境监控和牲畜跟踪等。
现有的NB-IoT终端需要装备电池供电。使用电池供电的NB-IoT终端在一些场合下的使用受到一些限制,例如一些场合下由于高温高湿环境的限制不适宜采用化学电池供电;还有在一些环境下,例如在偏远地方用于环境监控通信的NB-IoT终端,电池使用寿命到期后,更换电池或中断的成本较高。在这些场景下,从环境中收集能量,供应NB-IoT通信模块使用,就可以规避使用电池带来的限制。
图3示出了一种EH-UE的结构图,如图3所示,EH-UE30可以包括能量收集单元31、储能单元32和通信功能单元33。能量收集单元31把从环境中收集到的能量在转化为电能在储能单元32里储存起来,通信功能单元33使用储能单元里储存的电能, 与网络设备通信。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的通信中断处理方法、装置、终端及可读存储介质进行详细地说明。
目前,当基于能量收集供电的UE(Energy-Harvesting UE,简称EH-UE)处于RRC连接(RRC_Connected)状态时,消耗电量的速度受到多重因素的影响,例如收发数据的多少和频繁度、信道变化、干扰变化等使得上行发送所需功率的变化等的影响,导致在给定可用电量的条件下,UE和基站均不能准确预知UE可以维持通信状态的时间。因此,可能会发生UE来不及通知基站就由于电量过低导致通信中断的情形。在这种情况下,UE和网络就存在如何处理这种异常通信中断的问题,包括如何快速恢复到通信状态。
目前3GPP协议定义了UE在基于无线信道变差、发生RLF后的处理方法,包括搜寻目标服务小区和发起无线链路重建等。但是在UE由于电量过低致使通信中断并不一定是信道质量差,而是UE也没有继续执行通信程序。因此,现有的发送RLF后进行无线链路重建的流程无法直接应用于由于电量过低导致的通信中断处理。
为了解决上述问题,本申请实施例提供了一种通信中断处理方法,给出了处于RRC_Connected状态的UE由于电量过低发生通信中断后的UE恢复通信状态的方法,包括:
UE在处于第一通信中断状态的情况下,从环境中收集电量,所述第一通信中断状态为:因低电量导致的通信中断状态;在收集的电量大于或等于第一电量门限的情况下,通过目标方式恢复通信;其中,所述目标方式包括以下至少一项:上行重同步方式;无线链路重建方式。如此,当UE在因低电量而导致通信中断状态时,由于UE可以从环境中收集电量,并在收集的电量大于第一电量门限之后,再通过上行重同步或无线链路重建的方式,尝试恢复通信,因此可以确保UE能够在顺利恢复通信。
此外,本申请实施例还提供了UE由于电量过低发生通信中断后以下至少一项:
确定发生通信中断的方法;
跌落到RRC不活跃(RRC_Inactive)状态的方法;
跌落到RRC闲置(RRC_Idle)状态的方法;
向网络侧设备上报故障信息,该故障信息用于指示UE因低电量而发生了通信中断。
可以理解,本申请实施例提供的通信中断处理方法可以应用于支持收集环境中的能量并转化为电能进行供电的物联网设备。
本申请实施例提供了一种通信中断处理方法,图1示出了本申请实施例提供的通信中断处理方法流程图,如图4所示,本申请实施例提供的通信中断处理方法可以包括下述的步骤401和步骤402。
步骤401、UE在处于第一通信中断状态的情况下,从环境中收集电量。
其中,第一通信中断状态为:因低电量导致的通信中断状态。
本申请实施例中的UE可以为支持收集环境中的能量并转化为电能进行供电的物联网终端。
具体而言,UE可以通过UE中的能量收集单元,如图3中的能量收集单元31,从环境中收集电能,例如通过风电传感器收集环境中的风能并转换成电能,或通过光电传感器收集环境中的光能,并转换成电能。
可选地,UE触发第一通信中断状态的第一条件或UE确定进入第一通信中断状态的判断条件包括以下1a至1d中的至少一项:
1a,UE的可用电量不足以支持或完成上行发送;
1b,UE的可用电量不足以支持或完成下行接收;
1c,UE因电量不足发生了发送功率降低;
1d,UE的可用电量小于第二电量门限。
可以理解,UE满足上述1a至1d中的一项或多项时,UE即可确定其进入第一通信中断状态。
可选地,第一电量门限为预设的、协议约定或网络配置的。
可选地,“UE的可用电量不足以支持或完成上行发送”,包括以下1a-1)至1a-4)中的至少一项:
1a-1),UE不能按UE的上行传输许可进行上行发送;
1a-2),UE在UE的上行传输许可包括N次上行发送的情况下,UE仅能支持完成X次上行发送;
1a-3),UE在有N个上行传输许的情况下,UE不能完成所有对应的N次发送;
1a-4),UE不能完成承载有调度请求(Scheduling Request,SR)、混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)反馈信息或信道状态信息(Channel State Information,CSI)的物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)的发送;
其中,N为正整数,且X为小于N的整数。
例如,1a-2)具体可以为:UE的上行传输许可包括第一次发送和N-1次重复发送,UE仅能完成X(X<N)次发送。
例如,1a-3)具体可以为:UE的上行传输许可包括N次发送(例如multi-PUSCH调度,每次发送不同的数据),UE不能完成所有的N次发送。
可选地,在1b中,“UE的可用电量不足以支持或完成下行接收”,可以包括以下至少一项:
1b-1),UE不能完成对接收到的基带信息的处理;
1b-2),UE不能完成射频信号的接收;
1b-3),UE不能完成射频信号的处理;
1b-4),UE不能检测公共的物理下行控制信道(Physical Downlink Control Channel,PDCCH)搜索空间,即UE没有足够的电量检测公共的PDCCH搜索空间;
1b-5),UE不能检测专有的PDCCH搜索空间,即UE没有足够的电量检测专有的PDCCH搜索空间;
1b-6),发生多物理下行共享信道multi-PDSCH调度时,UE不能完成所有的PDSCH的接收;
1b-7),发生多物理下行共享信道multi-PDSCH调度时,UE不能完成所有的PDSCH的解码;
1b-8),UE在完成下行接收后,不能完成HARQ反馈信息的发送;即UE在完成下行接收后,没有足够的电量完成HARQ反馈信息的发送。
可以理解,当UE满足上述1b-1)至1b-8)中的任一项时,即表示UE的可用电量不足以支持或完成下行接收。
本申请实施例中,“UE因电量不足发生了发送功率降低”可以理解为:UE的发送功率小于允许的最大发送功率。
下面对UE确定进入通信中断状态的内部流程进行示例性地说明。
可选地,如图5所示,UE的媒体介入控制层(Media Access Control,MAC)层或物理(Physical,PHY)层还需要将电量过低的信息通知给UE的RRC层,由RRC层确定通信中断,UE可以通过下述的任一种方式确定是否发生通信中断:
a)UE的物理层提供电量监测的功能,将电量监测的结果包括电量过低的信息发送给MAC层、再由MAC层处理后发送给RRC层,这种汇报可以是周期性上报、也 可以是电量过低触发的向上层的上报;
b)UE的MAC层提供电量监测的功能,将电量监测的结果,包括电量过低的信息给RRC层,这种汇报可以是周期性上报、也可以是电量过低触发的向上层的上报;
c)UE的MAC层或物理层把数据收发中断的消息发送给RRC层,该数据收发中断的消息包括以下至少一项:上行发送中断、下行接收中断、该发送中断是由于电量过低导致的等信息。
可以理解,RRC层可以根据MAC层和/或物理层上报的信息,确定UE是否进入通信中断状态,并配置MAC/PHY层的相关行为。
步骤402、UE在收集的电量大于或等于第一电量门限的情况下,通过目标方式恢复通信。
其中,目标方式可以包括以下至少一项:一种可能的实现方式上行重同步方式;第二种可能的实现方式,无线链路重建方式。
本申请实施例中,第一电量门限为预设的、协议约定或网络配置的。
可选地,第一电量门限大于或等于第一电量门限。
可选地,当UE可以通过执行小区搜索流程,以通过无线链路重建方式,恢复通信。
可选地,上述步骤402具体可以通过下述的步骤402a和步骤402b实现,或者可以通过下述的步骤402a和步骤402c实现。
步骤402a、UE在收集的电量大于或等于第一电量门限的情况下,判断UE是否触发RLF状态。
本申请实施例中,UE收集的电量大于或等于第一电量门限的情况下,可以判断UE是否触发RLF状态,若UE处于第一通信中断状态且未触发RLF状态,则继续执行下述的步骤402b;若UE触发了RLF状态,则继续执行下述的步骤402c。
可选地,UE处于所述第一通信中断状态,且未触发所述RLF状态的第四条件包括以下至少一项:在UE处于无线资源控制RRC连接状态的情况下,UE在收到通信中断许可或配置UE进入通信中断状态的配置信息的情况下进入第一通信中断状态;UE处于第一通信中断状态的第一时长小于或等于第一时长门限。
可选地,UE触发RLF状态的第五条件包括以下至少一项:
在UE处于无线资源控制RRC连接状态的情况下,UE在未收到通信中断许可或配置UE进入通信中断状态的配置信息的情况下进入第一通信中断状态;
第一时长大于第一时长门限;
UE预期处于第一通信中断状态的时长大于第三时长门限。
本申请实施例中,“UE处于第一通信中断状态的第一时长”是指:从UE进入第一通信中断状态的时间至UE收集的电量大于或第一电量门限时的时间之间的时间差;换句话说,第一时长是UE收集的电量大于或等于第一电量门限时,UE已经处于第一通信中断状态的时长。
可选地,第一时长门限可以由第四定时器实现,该第四定时器的初始值为第一时长门限。当UE进入第一通信中断状态时,UE启动该第四定时器。如果当UE收集的电量大于第一电量门限时,该第四定时器仍在运行,则UE可以通过恢复上行同步程序,以恢复到通信状态,并停止第四定时器。如果当UE收集的电量大于第一电量门限时,该第四定时器超时,则UE确定UE进入了RLF状态,从而可以通过无线链路重建方式恢复通信。
步骤402b、UE通过上行重同步方式恢复通信。
步骤402c、UE通过无线链路重建方式恢复通信。
如此,当UE收集的电量大于或等于第一电量门限时,由于UE可以先判断UE是 否触发了RLF状态,并采用与判断结果对应的方式,恢复通信,因此可以提高成功恢复通信的概率。
下面分别通过一种可能的实现方式和另一种可能的实现方式,对本申请实施例提供的通信中断处理方法进行说明。
一种可能的实现方式
可选地,当处于RRC连接状态的UE由于电量过低进入通信中断状态时,UE仍保持在RRC连接状态,且当UE收集电量到储存的电量到达一个可以支持后续通信的门限(如上述第一电量门限)后,UE可以重新取得与网络侧设备(如基站)的同步。
可选地,在一种可能的实现方式中,UE通过上行重同步方式恢复通信,具体可以包括:
UE在目标信道向网络侧设备发送上行信号;
其中,目标信道可以包括以下任一项:
第一PUCCH;
授权配置(Configured Grant,CG)的第一物理上行共享信道(Physical Uplink Shared Channel,PUSCH);
第一物理随机接入信道(Physical Random Access Channel,PRACH)。
本申请实施例中,UE通过目标信道向网络侧设备发送上行信号之后,网络侧设备可以接收该上行信号,然后基于该上行信号完成与UE的上行信号同步。且在上行信号同步成功之后,恢复与UE之间的通信。
如此,由于UE可以在第一PUCCH、第一PUSCH、第一PRACH上向网络侧设备发送上行信号,因此可以提高UE发送上行同步信号的灵活性。
可选地,第一PUCCH上承载SR或CSI。
可选地,在UE满足第二条件的情况下,目标信道可以包括:第一PUCCH或第一PUSCH;在UE满足第三条件的情况下,目标信道可以包括所述第一PRACH。
其中,第二条件可以包括:第一时长小于或等于第二时长门限。
第三条件可以包括以下至少一项:第一时长大于第二时长门限、UE无可用的PUCCH和PUSCH;
本申请实施例中,第二时长门限小于或等于第一时长门限。
可以看出,第一PUCCH和第一PUSCH的优先级高于第一PRACH的优先级。
具体而言,如果UE收集到的电量大于第一电量门限时,第四定时器还在运行,那么:
UE可以优先使用第一PUCCH或第一PUSCH发送上行信号,通知网络侧设备,以恢复到通信状态。
在UE没有可用的PUCCH或CG,或第四定时器已经超的情况下,UE可以通过发送第一PRACH恢复与网络侧设备的同步。
可选地,当目标信道包括第一PRACH时,“UE在目标信道向网络侧设备发送上行信号”,包括:
UE在网络侧设备预配置有用于恢复上行同步的专用随机接入资源的情况下,基于专用随机接入资源中的资源,在第一PRACH上向网络侧设备发送上行信号;
否则,UE基于共享随机接入资源中的资源,在第一PRACH上向所述网络侧设备发送上行信号。
具体的,如果网络预分配有用作恢复同步的专用PRACH资源,包括PRACH前导码(preamble)和PRACH时频资源,则使用网络预分配的PRACH资源向服务基站发送PRACH preamble,以恢复与网络的上行同步(即非竞争接入);
如果网络没有预分配随机接入资源,即未分配preamble或时频资源,则选取共享 随机接入资源,采取竞争性的随机接入方法,恢复与服务基站的同步。
如此,由于UE可以基于专用随机接入资源或共享随机接入资源,在第一PRACH上向网络侧设备发送上行信号,因此可以提高UE在第一PRACH上发送上行信号的灵活性。
另一种可能的实现方式
可选地,“UE通过所述无线链路重建方式恢复通信”,具体可以包括:UE在第一目标定时器运行时,执行小区搜索流程。
其中,第一目标定时器包括以下任一项:第一定时器、第二定时器、第三定时器;
其中,第一定时器在UE确定触发所述RLF状态时启动;
第二定时器在所述UE确定触发RLF状态的一段时间之后启动;
第三定时器在所述UE确定触发第一通信中断状态的一段时间之后启动。
例如,第二定时器可以在UE确定触发RLF状态的第一时长之后启动,第三定时器可以在UE确定触发第一通信中断状态的第二时长之后启动。
可选地,第一目标定时器可以在UE搜索到合适的小区时终止。
具体的,在UE在第一定时器运行时搜索到合适的小区的情况下,UE终止第一定时器;
在UE在第二定时器运行时搜索到合适的小区的情况下,UE终止第二定时器;
在UE在第三定时器运行时搜索到合适的小区的情况下,UE终止第三定时器。
本申请实施例中,由于UE需要一些时间收集电量,电量不足不能立即发起小区搜索流程,因此发生RLF状态时,与小区搜索流程相关的定时器操可以为上述的第一定时器、第二定时器或第三定时器。
可选地,第一定时器可以包括第一初始值和第二初始值中的至少一项;其中,第一初始值适用于UE在确定触发RLF状态时立即执行小区搜索流程的场景;第二初始值适用于UE在确定触发RLF后的一段时间之后执行小区搜索流程的场景。
具体而言,当第一定时器包括第一初始值和第二初始值时,第一定时器对应相关技术中的T311定时器。如果UE在确定进入RLF状态时,按照无线链路重建的程序,立即启动T311,则当UE处于第一通信中断状态时,UE完成小区搜索流程需要初始值相对于立即执行小区搜索流程的情形所需时间更长。因此可以给UE配置两个T311初始值,其中,第一初始值适用于UE在发生RLF状态后的立即执行小区搜索流程的场景;第二初始值应用于UE在进入RLF状态后的的一段时间之后,才执行小区搜索的场景。
可选地,UE执行小区搜索流程之后,在UE在第一定时器、第二定时器或第三定时器超时时未搜索到合适的小区的情况下,UE进入RRC空闲状态。
可选地,在UE在第一目标定时器运行时搜索到合适的小区的情况下,UE终止第一目标定时器。
可选地,UE触发无线链路重建的条件可以定义为UE确定已经收集到足够的电量。
可选地,引入一个定时器,在UE进入第一通信中断状态启动该定时器,在UE开始小区搜索时,如该定时器在运行,则终止该定时器;如该定时器超时,UE仍未能启动小区搜索程序,则UE进入RRC空闲(RRC_Idle)状态。
可选地,UE在恢复通信失败的情况下,UE可以自动进入RRC不活跃状态。
可选地,在上述步骤402之后,本申请实施例提供的通信中断处理方法还可以包括下述的步骤403或步骤404。
步骤403、UE在恢复通信失败的情况下,且在UE满足第六条件的情况下,UE进入RRC不活跃状态;
步骤404、UE在恢复通信失败的情况下,且在UE不满足第六条件的情况下,UE 进入RRC空闲状态。
其中,第六条件包括以下至少一项:
UE未经网络侧设备许可或配置进入第一通信中断状态;
UE未经网络侧设备许可或配置就进入第一通信中断状态,且处在第一通信中断状态的时长大于或等于第四时长门限;
UE在网络侧设备的许可或配置下进入第一通信中断状态,但处在第一通信中断状态的时长大于或等于第五时长门限。
可选地,当UE跌落到RRC_Inactive之后,如果UE需求恢复到RRC_Connected状态,则UE可以使用无线重连程序,即向网络侧设备发送RRC恢复请求(Resume Request)。
可选地,在UE之前未配置到RRC_Inactive状态的情况下,UE可以自行跌落到RRC_Idle状态。
可选地,在上述步骤403之后,本申请实施例提供的通信中断处理方法还可以包括下述的步骤405或步骤406。
步骤405、UE保留发生发生通信中断时的RRC上下文。
步骤406、UE继续使用网络侧设备最近一次配置UE进入RRC不活跃状态时的RRC上下文。
如此,在UE进入RRC不活跃状态之后,由于UE可以保留发生通信中断时的RRC上下文或继续使用网络侧设备最近一次配置所述UE进入RRC不活跃状态时的RRC上下文,因此可以提高UE使用RRC上下文的灵活性。
可选地,在上述步骤402之后,本申请实施例提供的通信中断处理方法还可以包括下述的步骤407。
步骤407、UE在成功恢复通信的情况下,上报目标故障信息。
其中,目标故障信息可以用于指示UE最近一次因电量过低进入通信中断状态或RLF状态;
其中,目标故障信息中可以包括以下至少一项:
故障原因信息;
通信中断时长;
发生通信中断时的服务小区信息;
发生通信中断前处于通信状态的时长。
其中,故障原因信息包括以下至少一项:切换至第一通信中断状态的切换信息;无线链路重建失败信息;上行重同步失败信息。
可选地,UE上报目标故障信息的第七条件包括以下至少一项:
UE在最近一次RRC连接状态下进入第一通信中断状态,即UE进入第一通信中断状态后,保持处于RRC连接状态;
第一时间与第二时间之间的时间差小于或等于第六时长门限;
网络配置UE上报目标故障信息;
其中,第一时间为UE成功恢复通信的时间,第二时间为UE最近一次进入第一通信中断状态的时间。
如此,由于UE可以在恢复通信之后,向网络侧设备上报故障信息,该故障信息用于指示Ue最近一次由于电量过低进入通信中断状态或RLF状态,因此可以便于网络侧设备处理此类错误,支持UE的错误处理或状态恢复(类似跟踪区域更新(Track Area Update,TAU)),利于网络侧设备优化对基于能量收集的UE的配置。
可选地,本申请实施例提供的通信中断处理方法还可以包括下述的步骤408和步骤409中的至少一项。
步骤408、UE在处于第一通信中断状态的情况下,忽略全部或部分的下行接收。
步骤409、UE在处于第一通信中断状态的情况下,忽略全部或部分的上行发送。
如此,当UE因电量过低进入通信中断状态时,由于UE可以忽略全部下行接收、部分下行接收、全部上行发送或部分上行发送,因此可以降低UE的电量消耗,以提高UE储点速度。
可选地,假设UE在处于第一通信中断状态之前处于RRC连接状态,那么:UE在进入第一通信中断状态之后,保持处于RRC连接状态。
本申请实施例提供的通信中断处理方法,执行主体可以为通信中断处理装置。本申请实施例中以通信中断处理装置执行通信中断处理方法为例,说明本申请实施例提供的通信中断处理装置。
本申请实施例提供一种通信中断处理装置,图6示出了本申请实施例提供的通信中断处理装置的结构示意图,如图6所示本申请实施例提供的通信中断处理装置60可以包括:电量收集模块61和通信模块62;
所述电量收集模块,用于在UE处于第一通信中断状态的情况下,从环境中收集电量,所述第一通信中断状态为:因低电量导致的通信中断状态;
所述通信模块,用于在所述电量收集模块收集的电量大于或等于第一电量门限的情况下,通过目标方式恢复通信;
其中,所述目标方式包括以下至少一项:
上行重同步方式;
无线链路重建方式。
一种可能的实现方式中,所述UE触发所述第一通信中断状态的第一条件包括以下至少一项:
所述UE的可用电量不足以支持或完成上行发送;
所述UE的可用电量不足以支持或完成下行接收;
所述UE因电量不足发生了发送功率降低;
所述UE的可用电量小于第二电量门限。
一种可能的实现方式中,所述UE的可用电量不足以支持或完成上行发送,包括以下至少一项:
所述UE不能按所述UE的上行传输许可进行上行发送;
所述UE在UE的上行传输许可包括N次上行发送的情况下,所述UE仅能支持完成X次上行发送;
所述UE在有N个上行传输许可的情况下,所述UE不能完成所有的N次发送;
所述UE不能完成承载有SR、HARQ反馈信息或CSI的PUCCH的发送;
N为正整数,且X为小于N的整数。
一种可能的实现方式中,所述UE的可用电量不足以支持或完成下行接收,包括以下至少一项:
所述UE不能完成对接收到的基带信息的处理;
所述UE不能完成射频信号的接收;
所述UE不能完成射频信号的处理;
所述UE不能完成检测公共的PDCCH搜索空间;
所述UE不能完成检测专有的PDCCH搜索空间;
发生multi-PDSCH调度时,所述UE不能完成所有的PDSCH的接收;
发生multi-PDSCH调度时,所述UE不能完成所有的PDSCH的解码;
所述UE在完成下行接收后,不能完成HARQ反馈信息的发送。
一种可能的实现方式中,所述通信模块包括确定子模块和通信子模块;
所述通信子模块,用于在所述确定子模块确定所述UE处于所述第一通信中断状态,且未触发无线链路失败RLF状态的情况下,通过所述上行重同步方式恢复通信;
或者,
所述通信子模块,用于在所述确定子模块确定所述UE处于无线链路失败RLF状态,通过所述无线链路重建方式恢复通信。
一种可能的实现方式中,所述通信子模块,具体用于用于在目标信道向网络侧设备发送上行信号;
其中,所述目标信道包括以下任一项:
第一PUCCH;
CG的第一PUSCH;
第一PRACH。
一种可能的实现方式中,所述第一PUCCH上承载SR或CSI。
一种可能的实现方式中,在所述UE满足第二条件的情况下,所述目标信道包括所述第一PUCCH或所述第一PUSCH;
在所述UE满足第三条件的情况下,所述目标信道包括所述第一PRACH;
其中,所述第二条件包括:所述UE处于所述第一通信中断状态的第一时长小于或等于第二时长门限;
所述第三条件包括以下至少一项:所述第一时长大于所述第二时长门限、所述UE无可用的PUCCH和PUSCH。
一种可能的实现方式中,目标信道包括所述第一PRACH;
所述通信子模块,具体用于:
若所述网络侧设备预配置有用于恢复上行同步的专用随机接入资源,则基于所述专用随机接入资源中的资源,在所述第一PRACH上向所述网络侧设备发送上行信号;
否则,基于共享随机接入资源中的资源,在所述第一PRACH上向所述网络侧设备发送上行信号。
一种可能的实现方式中,其中,所述UE处于所述第一通信中断状态,且未触发所述RLF状态的第四条件包括以下至少一项:
在所述UE处于无线资源控制RRC连接状态的情况下,所述UE在收到通信中断许可或配置所述UE进入通信中断状态的配置信息的情况下进入所述第一通信中断状态;
所述UE处于所述第一通信中断状态的第一时长小于或等于第一时长门限;
其中,所述UE触发所述RLF状态的第五条件包括以下至少一项:
在所述UE处于无线资源控制RRC连接状态的情况下,所述UE在未收到通信中断许可或配置所述UE进入通信中断状态的配置信息的情况下进入所述第一通信中断状态;
所述第一时长大于所述第一时长门限;
所述UE预期处于所述第一通信中断状态的时长大于第三时长门限。
一种可能的实现方式中,通信子模块,具体用于在第一目标定时器运行时,执行小区搜索流程;
其中,所述第一目标定时器包括以下任一项:第一定时器、第二定时器、第三定时器;
其中,所述第一定时器在所述UE确定触发所述RLF状态时启动;
所述第二定时器在所述UE确定触发所述RLF状态的一段时间之后启动;
所述第三定时器在所述UE确定触发所述第一通信中断状态的一段时间之后启动。
一种可能的实现方式中,第一定时器包括第一初始值和第二初始值中的至少一项;
其中,所述第一初始值适用于所述UE在确定触发所述RLF状态时立即执行小区搜索流程的场景;
所述第二初始值适用于所述UE在确定触发所述RLF状态后的的一段时间之后执行小区搜索流程的场景。
一种可能的实现方式中,上述通信中断处理装置还包括:第一控制模块;
所述第一控制模块,用于在所述通信子模块执行小区搜索流程之后,在所述通信子模块在第一定时器、第二定时器或第三定时器超时时未搜索到合适的小区的情况下,控制所述UE进入RRC空闲状态。
一种可能的实现方式中,上述通信中断处理装置还包括:第二控制模块;
所述第二控制模块,用于:
在所述通信子模块在所述第一定时器运行时搜索到合适的小区的情况下,终止所述第一定时器;
在所述通信子模块在所述第二定时器运行时搜索到合适的小区的情况下,终止所述第二定时器;
在所述通信子模块在所述第三定时器运行时搜索到合适的小区的情况下,终止所述第三定时器。
一种可能的实现方式中,上述通信中断处理装置还包括:第三控制模块;
所述第三控制模块,用于在所述通信子模块恢复通信失败的情况下,若所述UE满足第六条件,则控制所述UE进入所述RRC不活跃状态;否则,控制所述UE进入RRC空闲状态;
其中,所述第六条件包括以下至少一项:
所述UE未经网络侧设备许可或配置进入所述第一通信中断状态;
所述UE未经网络侧设备许可或配置就进入所述第一通信中断状态,且处在所述第一通信中断状态的时长大于或等于第四时长门限;
所述UE在网络侧设备的许可或配置下进入所述第一通信中断状态,但处在所述第一通信中断状态的时长大于或等于第五时长门限。
一种可能的实现方式中,上述第三控制模块,还用于在控制所述UE进入所述RRC不活跃状态之后,保留发生发生通信中断时的RRC上下文;
或者,
继续使用网络侧设备最近一次配置所述UE进入RRC不活跃状态时的RRC上下文。
一种可能的实现方式中,上述通信模块,还用于在通过所述目标方式恢复通信之后,且在成功恢复通信的情况下,上报目标故障信息,所述目标故障信息用于指示所述UE最近一次因电量过低进入通信中断状态或RLF状态;
其中,所述目标故障信息中包括以下至少一项:
故障原因信息;
通信中断时长;
发生通信中断时的服务小区信息;
发生通信中断前处于通信状态的时长。
一种可能的实现方式中,上述故障原因信息包括以下至少一项:
切换至第一通信中断状态的切换信息;
无线链路重建失败信息;
上行重同步失败信息。
一种可能的实现方式中,上述UE上报所述目标故障信息的第七条件包括以下至少一项:
所述UE在最近一次RRC连接状态下进入所述第一通信中断状态;
第一时间与第二时间之间的时间差小于或等于第六时长门限;
网络配置所述UE上报所述目标故障信息;
其中,所述第一时间为所述UE成功恢复通信的时间,所述第二时间为所述UE最近一次进入所述第一通信中断状态的时间。
一种可能的实现方式中,通信中断装置还包括:第四控制模块;
所述第四控制模块,用于在所述UE处于所述第一通信中断状态的情况下,忽略全部或部分的下行接收;
和/或,
所述第四控制模块,用于在所述UE处于所述第一通信中断状态的情况下,忽略全部或部分的上行发送。
一种可能的实现方式中,通信中断装置还包括:第五控制模块;
所述UE在进入所述第一通信中断状态之前,处于RRC连接状态;
所述第五控制模块,用于在所述UE进入所述第一通信中断状态之后,控制所述UE保持处于所述RRC连接状态。
在本申请实施例提供的通信中断处理装置中,当UE在因低电量而导致通信中断状态时,由于通信中断处理装置可以从环境中收集电量,并在收集的电量大于第一电量门限之后,再通过上行重同步或无线链路重建的方式,尝试恢复通信,因此可以确保UE能够在顺利恢复通信。
本申请实施例中的通信中断处理装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的通信中断处理装置能够实现图1至图5的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图7所示,本申请实施例还提供一种通信设备700,包括处理器701和存储器702,存储器702上存储有可在所述处理器701上运行的程序或指令,该程序或指令被处理器701执行时实现上述通信中断处理方法实施例的各个步骤,且能达到相同的技术效果。
本申请实施例还提供一种终端,包括处理器和通信接口,处理器用于在UE处于第一通信中断状态的情况下,从环境中收集电量,所述第一通信中断状态为:因低电量导致的通信中断状态,所述通信接口用于在处理器收集的电量大于或等于第一电量门限的情况下,通过目标方式恢复通信;其中,所述目标方式包括以下至少一项:上行重同步方式;无线链路重建方式。该终端实施例与上述UE侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该UE实施例中,且能达到相同的技术效果。具体地,图8为实现本申请实施例的一种终端的硬件结构示意图。
该终端800包括但不限于:射频单元801、网络模块802、音频输出单元803、输入单元804、传感器805、显示单元806、用户输入单元807、接口单元808、存储器809以及处理器810、能量收集单元811等中的至少部分部件。
本领域技术人员可以理解,终端800还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器810逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图8中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元804可以包括图形处理单元(Graphics Processing Unit,GPU)8041和麦克风8042,图形处理器8041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元806可包括显示面板8061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板8061。用户输入单元807包括触控面板8071以及其他输入设备8072中的至少一种。触控面板8071,也称为触摸屏。触控面板8071可包括触摸检测装置和触摸控制器两个部分。其他输入设备8072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元801接收来自网络侧设备的下行数据后,可以传输给处理器810进行处理;另外,射频单元801可以向网络侧设备发送上行数据。通常,射频单元801包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器809可用于存储软件程序或指令以及各种数据。存储器809可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器809可以包括易失性存储器或非易失性存储器,或者,存储器809可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器809包括但不限于这些和任意其它适合类型的存储器。
处理器810可包括一个或多个处理单元;可选的,处理器810集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器810中。
其中,所述能量收集单元811,用于在UE处于第一通信中断状态的情况下,从环境中收集电量,所述第一通信中断状态为:因低电量导致的通信中断状态;
所述射频单元801,用于在所述能量收集单元811收集的电量大于或等于第一电量门限的情况下,通过目标方式恢复通信;
其中,所述目标方式包括以下至少一项:
上行重同步方式;
无线链路重建方式。
一种可能的实现方式中,所述UE触发所述第一通信中断状态的第一条件包括以下至少一项:
所述UE的可用电量不足以支持或完成上行发送;
所述UE的可用电量不足以支持或完成下行接收;
所述UE因电量不足发生了发送功率降低;
所述UE的可用电量小于第二电量门限。
一种可能的实现方式中,所述UE的可用电量不足以支持或完成上行发送,包括 以下至少一项:
所述UE不能按所述UE的上行传输许可进行上行发送;
所述UE在UE的上行传输许可包括N次上行发送的情况下,所述UE仅能支持完成X次上行发送;
所述UE在有N个上行传输许可的情况下,所述UE不能完成所有的N次发送;
所述UE不能完成承载有SR、HARQ反馈信息或CSI的PUCCH的发送;
N为正整数,且X为小于N的整数。
一种可能的实现方式中,所述UE的可用电量不足以支持或完成下行接收,包括以下至少一项:
所述UE不能完成对接收到的基带信息的处理;
所述UE不能完成射频信号的接收;
所述UE不能完成射频信号的处理;
所述UE不能完成检测公共的PDCCH搜索空间;
所述UE不能完成检测专有的PDCCH搜索空间;
发生multi-PDSCH调度时,所述UE不能完成所有的PDSCH的接收;
发生multi-PDSCH调度时,所述UE不能完成所有的PDSCH的解码;
所述UE在完成下行接收后,没有足够的电量完成HARQ反馈信息的发送。
一种可能的实现方式中,所述射频单元801包括处理器810和射频单元801;
所述射频单元801,用于在所述处理器810确定所述UE处于所述第一通信中断状态,且未触发无线链路失败RLF状态的情况下,通过所述上行重同步方式恢复通信;
或者,
所述射频单元801,用于在所述处理器810确定所述UE处于无线链路失败RLF状态,通过所述无线链路重建方式恢复通信。
一种可能的实现方式中,所述射频单元801,具体用于用于在目标信道向网络侧设备发送上行信号;
其中,所述目标信道包括以下任一项:
第一PUCCH;
CG的第一PUSCH;
第一PRACH。
一种可能的实现方式中,所述第一PUCCH上承载SR或CSI。
一种可能的实现方式中,在所述UE满足第二条件的情况下,所述目标信道包括所述第一PUCCH或所述第一PUSCH;
在所述UE满足第三条件的情况下,所述目标信道包括所述第一PRACH;
其中,所述第二条件包括:所述UE处于所述第一通信中断状态的第一时长小于或等于第二时长门限;
所述第三条件包括以下至少一项:所述第一时长大于所述第二时长门限、所述UE无可用的PUCCH和PUSCH。
一种可能的实现方式中,目标信道包括所述第一PRACH;
所述射频单元801,具体用于:
在所述网络侧设备预配置有用于恢复上行同步的专用随机接入资源的情况下,则基于所述专用随机接入资源中的资源,在所述第一PRACH上向所述网络侧设备发送上行信号;
在所述网络侧设备未配置有用于恢复上行同步的专用随机接入资源的情况下,基于共享随机接入资源中的资源,在所述第一PRACH上向所述网络侧设备发送上行信号。
一种可能的实现方式中,其中,所述UE处于所述第一通信中断状态,且未触发所述RLF状态的第四条件包括以下至少一项:
在所述UE处于无线资源控制RRC连接状态的情况下,所述UE在收到通信中断许可或配置所述UE进入通信中断状态的配置信息的情况下进入所述第一通信中断状态;
所述UE处于所述第一通信中断状态的第一时长小于或等于第一时长门限;
其中,所述UE触发所述RLF状态的第五条件包括以下至少一项:
在所述UE处于无线资源控制RRC连接状态的情况下,所述UE在未收到通信中断许可或配置所述UE进入通信中断状态的配置信息的情况下进入所述第一通信中断状态;
所述第一时长大于所述第一时长门限;
所述UE预期处于所述第一通信中断状态的时长大于第三时长门限。
一种可能的实现方式中,射频单元801,具体用于在第一目标定时器运行时,执行小区搜索流程;
其中,所述第一目标定时器包括以下任一项:第一定时器、第二定时器、第三定时器;
其中,所述第一定时器在所述UE确定触发所述RLF状态时启动;
所述第二定时器在所述UE确定触发所述RLF状态的一段时间之后启动;
所述第三定时器在所述UE确定触发所述第一通信中断状态的一段时间之后启动。
一种可能的实现方式中,第一定时器包括第一初始值和第二初始值中的至少一项;
其中,所述第一初始值适用于所述UE在确定触发所述RLF状态时立即执行小区搜索流程的场景;
所述第二初始值适用于所述UE在确定触发所述RLF状态后的的一段时间之后执行小区搜索流程的场景。
一种可能的实现方式中,处理器810,用于在所述射频单元801执行小区搜索流程之后,在所述射频单元801在第一定时器、第二定时器或第三定时器超时时未搜索到合适的小区的情况下,控制所述UE进入RRC空闲状态。
一种可能的实现方式中,处理器810,用于:
在所述射频单元801在所述第一定时器运行时搜索到合适的小区的情况下,终止所述第一定时器;
在所述射频单元801在所述第二定时器运行时搜索到合适的小区的情况下,终止所述第二定时器;
在所述射频单元801在所述第三定时器运行时搜索到合适的小区的情况下,终止所述第三定时器。
一种可能的实现方式中,所述处理器810,用于在所述射频单元801恢复通信失败的情况下,若所述UE满足第六条件,则控制所述UE进入所述RRC不活跃状态;否则,控制所述UE进入RRC空闲状态;
其中,所述第六条件包括以下至少一项:
所述UE未经网络侧设备许可或配置进入所述第一通信中断状态;
所述UE未经网络侧设备许可或配置就进入所述第一通信中断状态,且处在所述第一通信中断状态的时长大于或等于第四时长门限;
所述UE在网络侧设备的许可或配置下进入所述第一通信中断状态,但处在所述第一通信中断状态的时长大于或等于第五时长门限。
一种可能的实现方式中,上述处理器810,还用于在控制所述UE进入所述RRC不活跃状态之后,保留发生发生通信中断时的RRC上下文;
或者,
继续使用网络侧设备最近一次配置所述UE进入RRC不活跃状态时的RRC上下文。
一种可能的实现方式中,上述射频单元801,还用于在通过所述目标方式恢复通信之后,且在成功恢复通信的情况下,上报目标故障信息,所述目标故障信息用于指示所述UE最近一次因电量过低进入通信中断状态或RLF状态;
其中,所述目标故障信息中包括以下至少一项:
故障原因信息;
通信中断时长;
发生通信中断时的服务小区信息;
发生通信中断前处于通信状态的时长。
一种可能的实现方式中,上述故障原因信息包括以下至少一项:
切换至第一通信中断状态的切换信息;
无线链路重建失败信息;
上行重同步失败信息。
一种可能的实现方式中,上述UE上报所述目标故障信息的第七条件包括以下至少一项:
所述UE在最近一次RRC连接状态下进入所述第一通信中断状态;
第一时间与第二时间之间的时间差小于或等于第六时长门限;
网络配置所述UE上报所述目标故障信息;
其中,所述第一时间为所述UE成功恢复通信的时间,所述第二时间为所述UE最近一次进入所述第一通信中断状态的时间。
一种可能的实现方式中,处理器810;
所述处理器810,用于在所述UE处于所述第一通信中断状态的情况下,忽略全部或部分的下行接收;
和/或,
所述处理器810,用于在所述UE处于所述第一通信中断状态的情况下,忽略全部或部分的上行发送。
一种可能的实现方式中,所述UE在进入所述第一通信中断状态之前,处于RRC连接状态;处理器810,还用于在所述UE进入所述第一通信中断状态之后,控制所述UE保持处于所述RRC连接状态。
在本申请实施例提供的终端中,当UE在因低电量而导致通信中断状态时,由于通信中断处理装置可以从环境中收集电量,并在收集的电量大于第一电量门限之后,再通过上行重同步或无线链路重建的方式,尝试恢复通信,因此可以确保UE能够在顺利恢复通信。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述通信中断处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述通信中断处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统 或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述通信中断处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (32)

  1. 一种通信中断处理方法,所述方法包括:
    用户设备UE在处于第一通信中断状态的情况下,从环境中收集电量,所述第一通信中断状态为:因低电量导致的通信中断状态;
    所述UE在收集的电量大于或等于第一电量门限的情况下,通过目标方式恢复通信;
    其中,所述目标方式包括以下至少一项:
    上行重同步方式;
    无线链路重建方式。
  2. 根据权利要求1所述的方法,其中,所述UE触发所述第一通信中断状态的第一条件包括以下至少一项:
    所述UE的可用电量不足以支持或完成上行发送;
    所述UE的可用电量不足以支持或完成下行接收;
    所述UE因电量不足发生了发送功率降低;
    所述UE的可用电量小于第二电量门限。
  3. 根据权利要求2所述的方法,其中,所述不足以支持或完成上行发送,包括以下至少一项:
    所述UE不能按上行传输许可进行上行发送;
    所述UE在上行传输许可包括N次上行发送的情况下,所述UE仅能支持完成X次上行发送;
    所述UE在有N个上行传输许可的情况下,所述UE不能完成所有对应的N次发送;
    所述UE不能完成承载有调度请求SR、混合自动重传请求HARQ反馈信息或信道状态信息CSI的物理上行链路控制信道PUCCH的发送;
    N为正整数,且X为小于N的整数。
  4. 根据权利要求2所述的方法,其中,所述不足以支持或完成下行接收,包括以下至少一项:
    所述UE不能完成对接收到的基带信息的处理;
    所述UE不能完成射频信号的接收;
    所述UE不能完成射频信号的处理;
    所述UE不能完成检测公共的物理下行控制信道PDCCH搜索空间;
    所述UE不能完成检测专有的PDCCH搜索空间;
    发生多物理下行共享信道multi-PDSCH调度时,所述UE不能完成所有的PDSCH的接收;
    发生多物理下行共享信道multi-PDSCH调度时,所述UE不能完成所有的PDSCH的解码;
    所述UE在完成下行接收后,不能完成HARQ反馈信息的发送。
  5. 根据权利要求1所述的方法,其中,所述通过目标方式恢复通信,包括:
    在所述UE确定所述UE处于所述第一通信中断状态,且未触发无线链路失败RLF状态的情况下,所述UE通过所述上行重同步方式恢复通信;
    在所述UE确定所述UE处于无线链路失败RLF状态的情况下,所述UE通过所述无线链路重建方式恢复通信。
  6. 根据权利要求5所述的方法,其中,所述UE通过上行重同步方式恢复通信,包括:
    所述UE在目标信道向网络侧设备发送上行信号;
    其中,所述目标信道包括以下任一项:
    第一PUCCH;
    授权配置CG的第一物理上行共享信道PUSCH;
    第一物理随机接入信道PRACH。
  7. 根据权利要求6所述的方法,其中,所述第一PUCCH上承载SR或CSI。
  8. 根据权利要求6所述的方法,其中,在所述UE满足第二条件的情况下,所述目标信道包括所述第一PUCCH或所述第一PUSCH;
    在所述UE满足第三条件的情况下,所述目标信道包括所述第一PRACH;
    其中,所述第二条件包括:所述UE处于所述第一通信中断状态的第一时长小于或等于第二时长门限;
    所述第三条件包括以下至少一项:所述第一时长大于所述第二时长门限、所述UE无可用的PUCCH和PUSCH。
  9. 根据权利要求6或8所述的方法,其中,所述目标信道包括所述第一PRACH;
    所述UE在目标信道向网络侧设备发送上行信号,包括:
    所述UE在所述网络侧设备预配置有用于恢复上行同步的专用随机接入资源的情况下,基于所述专用随机接入资源中的资源,在所述第一PRACH上向所述网络侧设备发送上行信号;
    否则,所述UE基于共享随机接入资源中的资源,在所述第一PRACH上向所述网络侧设备发送上行信号。
  10. 根据权利要求5所述的方法,其中,其中,所述UE处于所述第一通信中断状态,且未触发所述RLF状态的第四条件包括以下至少一项:
    在所述UE处于无线资源控制RRC连接状态的情况下,所述UE在收到通信中断许可或配置所述UE进入通信中断状态的配置信息的情况下进入所述第一通信中断状态;所述UE处于所述第一通信中断状态的第一时长小于或等于第一时长门限;
    其中,所述UE触发所述RLF状态的第五条件包括以下至少一项:在所述UE处于无线资源控制RRC连接状态的情况下,所述UE在未收到通信中断许可或配置所述UE进入通信中断状态的配置信息的情况下进入所述第一通信中断状态;所述第一时长大于所述第一时长门限;所述UE预期处于所述第一通信中断状态的时长大于第三时长门限。
  11. 根据权利要求5所述的方法,其中,所述通过所述无线链路重建方式恢复通信,包括:
    所述UE在第一目标定时器运行时,执行小区搜索流程;
    其中,所述第一目标定时器包括以下任一项:第一定时器、第二定时器、第三定时器;
    其中,所述第一定时器在所述UE确定触发所述RLF状态时启动;
    所述第二定时器在所述UE确定触发所述RLF状态的一段时间之后启动;
    所述第三定时器在所述UE确定触发所述第一通信中断状态的一段时间之后启动。
  12. 根据权利要求11所述的方法,其中,所述第一定时器包括第一初始值或第二初始值;
    其中,所述第一初始值适用于所述UE在确定触发所述RLF状态时立即执行小区搜索流程的场景;
    所述第二初始值适用于所述UE在确定触发所述RLF状态的一段时间之后执行小区搜索流程的场景。
  13. 根据权利要求11所述的方法,其中,所述执行小区搜索流程之后,所述方法还包括:
    在所述UE在第一定时器、第二定时器或第三定时器超时时未搜索到合适的小区的情况下,所述UE进入RRC空闲状态。
  14. 根据权利要求11所述的方法,其中,所述方法还包括以下任一项:
    在所述UE在所述第一定时器运行时搜索到合适的小区的情况下,所述UE终止所述第一定时器;
    在所述UE在所述第二定时器运行时搜索到合适的小区的情况下,所述UE终止所述第二定时器;
    在所述UE在所述第三定时器运行时搜索到合适的小区的情况下,所述UE终止所述第三定时器。
  15. 根据权利要求5所述的方法,其中,所述方法还包括:
    所述UE在恢复通信失败的情况下,若所述UE满足第六条件,则所述UE进入所述RRC不活跃状态;
    否则,所述UE进入RRC空闲状态;
    其中,所述第六条件包括以下至少一项:
    所述UE未经网络侧设备许可或配置进入所述第一通信中断状态;
    所述UE未经网络侧设备许可或配置就进入所述第一通信中断状态,且处在所述第一通信中断状态的时长大于或等于第四时长门限;
    所述UE在网络侧设备的许可或配置下进入所述第一通信中断状态,但处在所述第一通信中断状态的时长大于或等于第五时长门限。
  16. 根据权利要求15所述的方法,其中,所述UE进入所述RRC不活跃状态之后,所述方法还包括:
    所述UE保留发生通信中断时的RRC上下文;
    或者,
    所述UE继续使用网络侧设备最近一次配置所述UE进入RRC不活跃状态时的RRC上下文。
  17. 根据权利要求1所述的方法,其中,所述通过目标方式恢复通信之后,所述方法还包括:
    所述UE在成功恢复通信的情况下,上报目标故障信息,所述目标故障信息用于指示所述UE最近一次因电量过低进入通信中断状态或RLF状态;
    其中,所述目标故障信息中包括以下至少一项:
    故障原因信息;
    通信中断时长;
    发生通信中断时的服务小区信息;
    发生通信中断前处于通信状态的时长。
  18. 根据权利要求17所述的方法,其中,所述故障原因信息包括以下至少一项:
    切换至第一通信中断状态的切换信息;
    无线链路重建失败信息;
    上行重同步失败信息。
  19. 根据权利要求17所述的方法,其中,所述UE上报所述目标故障信息的第七条件包括以下至少一项:
    所述UE在最近一次RRC连接状态下进入所述第一通信中断状态;
    第一时间与第二时间之间的时间差小于或等于第六时长门限;
    网络配置所述UE上报所述目标故障信息;
    其中,所述第一时间为所述UE成功恢复通信的时间,所述第二时间为所述UE最近一次进入所述第一通信中断状态的时间。
  20. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述UE在处于所述第一通信中断状态的情况下,忽略全部或部分的下行接收;
    和/或,
    所述UE在处于所述第一通信中断状态的情况下,忽略全部或部分的上行发送。
  21. 根据权利要求1所述的方法,其中,所述UE在进入所述第一通信中断状态之前,处于RRC连接状态;
    所述方法还包括:
    所述UE在进入所述第一通信中断状态之后,保持处于所述RRC连接状态。
  22. 一种通信中断处理装置,其中,所述装置包括:电量收集模块和通信模块;
    所述电量收集模块,用于在UE处于第一通信中断状态的情况下,从环境中收集电量,所述第一通信中断状态为:因低电量导致的通信中断状态;
    所述通信模块,用于在所述电量收集模块收集的电量大于或等于第一电量门限的情况下,通过目标方式恢复通信;
    其中,所述目标方式包括以下至少一项:
    上行重同步方式;
    无线链路重建方式。
  23. 根据权利要求22所述的装置,其中,所述UE触发所述第一通信中断状态的第一条件包括以下至少一项:
    所述UE的可用电量不足以支持或完成上行发送;
    所述UE的可用电量不足以支持或完成下行接收;
    所述UE因电量不足发生了发送功率降低;
    所述UE的可用电量小于第二电量门限。
  24. 根据权利要求23所述的装置,其中,所述UE的可用电量不足以支持或完成上行发送,包括以下至少一项:
    所述UE不能按上行传输许可进行上行发送;
    所述UE在上行传输许可包括N次上行发送的情况下,所述UE仅能支持完成X次上行发送;
    所述UE在有N个上行传输许可的情况下,所述UE不能完成所有的N次发送;
    所述UE不能完成承载有SR、HARQ反馈信息或CSI的PUCCH的发送;
    N为正整数,且X为小于N的整数。
  25. 根据权利要求23所述的装置,其中,所述不足以支持或完成下行接收,包括以下至少一项:
    所述UE不能完成对接收到的基带信息的处理;
    所述UE不能完成射频信号的接收;
    所述UE不能完成射频信号的处理;
    所述UE不能完成检测公共的PDCCH搜索空间;
    所述UE不能完成检测专有的PDCCH搜索空间;
    发生multi-PDSCH调度时,所述UE不能完成所有的PDSCH的接收;
    发生multi-PDSCH调度时,所述UE不能完成所有的PDSCH的解码;
    所述UE在完成下行接收后,不能完成HARQ反馈信息的发送。
  26. 根据权利要求22所述的装置,其中,所述通信模块包括确定子模块和通信子模块;
    所述通信子模块,用于在所述确定子模块确定所述UE处于所述第一通信中断状态,且未触发无线链路失败RLF状态的情况下,通过所述上行重同步方式恢复通信;
    或者,
    所述通信子模块,用于在所述确定子模块确定所述UE处于无线链路失败RLF状态,通过所述无线链路重建方式恢复通信。
  27. 根据权利要求22所述的装置,其中,所述通信模块,还用于在通过所述目标方式恢复通信之后,且在成功恢复通信的情况下,上报目标故障信息,所述目标故障信息用于指示所述UE最近一次因电量过低进入通信中断状态或RLF状态;
    其中,所述目标故障信息中包括以下至少一项:
    故障原因信息;
    通信中断时长;
    发生通信中断时的服务小区信息;
    发生通信中断前处于通信状态的时长。
  28. 根据权利要求27所述的装置,其中,所述故障原因信息包括以下至少一项:
    切换至第一通信中断状态的切换信息;
    无线链路重建失败信息;
    上行重同步失败信息。
  29. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至21中任一项所述的通信中断处理方法的步骤。
  30. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至21中任一项所述的通信中断处理方法的步骤。
  31. 一种计算机程序产品,所述计算机程序产品被存储在存储介质中,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至21中任一项所述的通信中断处理方法。
  32. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至21中任一项所述的通信中断处理方法。
PCT/CN2023/123762 2022-10-13 2023-10-10 通信中断处理方法、装置、终端及可读存储介质 WO2024078489A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211256171.1A CN117939706A (zh) 2022-10-13 2022-10-13 通信中断处理方法、装置、终端及可读存储介质
CN202211256171.1 2022-10-13

Publications (1)

Publication Number Publication Date
WO2024078489A1 true WO2024078489A1 (zh) 2024-04-18

Family

ID=90668799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/123762 WO2024078489A1 (zh) 2022-10-13 2023-10-10 通信中断处理方法、装置、终端及可读存储介质

Country Status (2)

Country Link
CN (1) CN117939706A (zh)
WO (1) WO2024078489A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140062668A1 (en) * 2012-04-05 2014-03-06 Ken Gudan Low power radio frequency communication
CN105263157A (zh) * 2015-11-19 2016-01-20 中国人民解放军理工大学 用于Ad Hoc网络中基于情景感知的功率控制方法
US20170041915A1 (en) * 2015-08-04 2017-02-09 Intel Corporation Outage notification and context preservation for energy-harvesting devices
CN107466095A (zh) * 2017-08-07 2017-12-12 上海中信信息发展股份有限公司 采集设备节能方法及采集设备
CN111556547A (zh) * 2020-04-20 2020-08-18 河海大学常州校区 基于无线射频供能的认知用户能量收集和信息传输方法
CN112073094A (zh) * 2020-09-09 2020-12-11 天津工业大学 基于ts策略的包含直接链路swipt中继系统中吞吐量优化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140062668A1 (en) * 2012-04-05 2014-03-06 Ken Gudan Low power radio frequency communication
US20170041915A1 (en) * 2015-08-04 2017-02-09 Intel Corporation Outage notification and context preservation for energy-harvesting devices
CN105263157A (zh) * 2015-11-19 2016-01-20 中国人民解放军理工大学 用于Ad Hoc网络中基于情景感知的功率控制方法
CN107466095A (zh) * 2017-08-07 2017-12-12 上海中信信息发展股份有限公司 采集设备节能方法及采集设备
CN111556547A (zh) * 2020-04-20 2020-08-18 河海大学常州校区 基于无线射频供能的认知用户能量收集和信息传输方法
CN112073094A (zh) * 2020-09-09 2020-12-11 天津工业大学 基于ts策略的包含直接链路swipt中继系统中吞吐量优化方法

Also Published As

Publication number Publication date
CN117939706A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
JP7028974B2 (ja) ワイヤレス通信システムにおけるビーム失敗リカバリのための装置および方法
KR20090077704A (ko) 불연속 수신 기능 개선 방법 및 관련 통신 기기
WO2022089565A1 (zh) 辅小区组信息的配置、获取方法及通信设备
CN114422094A (zh) Pdcp重复的配置、激活或去激活方法和终端
JP2023537147A (ja) 物理ダウンリンク制御チャネルの傍受方法、及び傍受装置
WO2015154564A1 (zh) 一种实现小小区状态通知的方法及系统
US20230362891A1 (en) Terminal operation configuration method and apparatus, and energy-saving method and apparatus for terminal
WO2024078489A1 (zh) 通信中断处理方法、装置、终端及可读存储介质
WO2022184101A1 (zh) 间隙gap处理方法、装置、设备及存储介质
US20220304003A1 (en) Scheduling a group of user equipment by a network cell
CN113905440A (zh) 信道监听、传输方法、装置、终端及网络侧设备
CN114258117A (zh) 确定终端行为的方法、指示终端行为的方法及装置
CN114501483A (zh) 信息处理方法、装置及终端
CN113972965B (zh) 业务的处理方法、装置及相关设备
WO2022171085A1 (zh) 搜索空间组切换方法及装置
WO2023193677A1 (zh) 测量处理方法、装置、终端及网络侧设备
WO2024022352A1 (zh) 通信方法、装置、设备及存储介质
US20240040414A1 (en) Measurement method and apparatus, and terminal
TWI596912B (zh) 空氣鏈上/下協定(aludp)
WO2023011595A1 (zh) 信息上报方法、终端及网络侧设备
WO2024078492A1 (zh) 通信状态配置方法、用户设备ue以及网络侧设备
WO2023246562A1 (zh) 非授权频段的旁链路传输处理方法、装置及相关设备
WO2023193676A1 (zh) 测量上报处理方法、装置、终端及网络侧设备
CN114339950B (zh) 配置方法及装置、终端及网络侧设备
WO2024027588A1 (zh) 唤醒信号的发送方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876691

Country of ref document: EP

Kind code of ref document: A1