WO2024078278A1 - 一种磁集成电感和逆变器 - Google Patents

一种磁集成电感和逆变器 Download PDF

Info

Publication number
WO2024078278A1
WO2024078278A1 PCT/CN2023/119782 CN2023119782W WO2024078278A1 WO 2024078278 A1 WO2024078278 A1 WO 2024078278A1 CN 2023119782 W CN2023119782 W CN 2023119782W WO 2024078278 A1 WO2024078278 A1 WO 2024078278A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic core
winding
magnetic
integrated inductor
column
Prior art date
Application number
PCT/CN2023/119782
Other languages
English (en)
French (fr)
Inventor
王涛
董科宏
胡文浩
易德刚
Original Assignee
深圳市首航新能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市首航新能源股份有限公司 filed Critical 深圳市首航新能源股份有限公司
Publication of WO2024078278A1 publication Critical patent/WO2024078278A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration

Definitions

  • the present application relates to the field of power electronics technology, and in particular to a magnetic integrated inductor and inverter.
  • the main technical problem solved by the implementation methods of the present application is to provide a magnetic integrated inductor and inverter, which can effectively reduce current ripple, reduce the volume of the overall circuit, and reduce costs.
  • a technical solution adopted in the implementation mode of the present application is: to provide a magnetic integrated inductor, including: a first winding, a second winding, a third winding, a middle column magnetic core, an upper magnetic core, a lower magnetic core, a left column magnetic core and a right column magnetic core; the upper magnetic core and the lower magnetic core are symmetrically arranged up and down; the middle column magnetic core, the left column magnetic core and the right column magnetic core are all arranged perpendicular to the upper magnetic core and the lower magnetic core; the first winding is wound on the left column magnetic core, the second winding is wound on the right column magnetic core, and the third winding is wound on the middle column magnetic core; the input end of the first winding is connected to the inverter circuit, the input end of the second winding is connected to the inverter circuit, and the output end of the first winding is connected to the output end of the second winding; the first winding and the second winding have the same number of turns; the input end
  • the third winding is used to obtain the magnetic flux of the first winding and the magnetic flux of the second winding to calculate the induced voltage of the third winding, so that the signal processing circuit calculates the current difference between the first winding and the second winding based on the induced voltage.
  • the left-leg magnetic core and the right-leg magnetic core have the same shape and the first winding and the second winding have the same number of turns.
  • the upper magnetic core, the lower magnetic core, the left-column magnetic core and the right-column magnetic core are all made of a first type of material, and the middle-column magnetic core is made of a second type of material; the magnetic permeability of the first type of material is lower than the magnetic permeability of the second type of material.
  • the first type of material is a combination of one or more of iron silicon, sendust and iron nickel;
  • the second type of material is a combination of one or more of ferrite, amorphous and nanocrystalline.
  • the tops of the middle magnetic core, the left magnetic core, and the right magnetic core are all flush with the bottom of the upper magnetic core, and the bottoms of the middle magnetic core, the left magnetic core, and the right magnetic core are all flush with the top of the lower magnetic core.
  • the upper magnetic core includes two parts, and the two parts of the upper magnetic core are symmetrically arranged about the middle column magnetic core; the top of the middle column magnetic core is flush with the top of the upper magnetic core, and the bottom of the middle column magnetic core is flush with the top of the lower magnetic core; the tops of the left column magnetic core and the right column magnetic core are both flush with the bottom of the upper magnetic core, and the bottoms of the left column magnetic core and the right column magnetic core are both flush with the top of the lower magnetic core.
  • the upper magnetic core and the lower magnetic core each include two parts, the two parts of the upper magnetic core are symmetrically arranged about the middle column magnetic core, and the two parts of the lower magnetic core are symmetrically arranged about the middle column magnetic core; the top of the middle column magnetic core is flush with the top of the upper magnetic core, and the bottom of the middle column magnetic core is flush with the bottom of the lower magnetic core; the tops of the left column magnetic core and the right column magnetic core are flush with the bottom of the upper magnetic core, and the bottoms of the left column magnetic core and the right column magnetic core are flush with the top of the lower magnetic core.
  • an inverter comprising: an inverter circuit and the magnetic integrated inductor as described above; the magnetic integrated inductor is connected to the inverter circuit.
  • the inverter circuit includes: a three-phase bridge arm module, a bus capacitor module and an output filter module, the three-phase bridge arm module includes three single-phase bridge arms, and each phase bridge arm includes two bridge arms; the three-phase bridge arm module is respectively connected to the bus capacitor module and the magnetic integrated inductor, the magnetic integrated inductor is also connected to the output filter module, and the magnetic integrated inductor is also used to connect to the signal processing circuit
  • the bus capacitor module is also used to connect direct current
  • the output filter module is also used to output alternating current;
  • the magnetic integrated inductor is used to: when the inverter converts the direct current into alternating current, suppress common-mode current ripple and differential-mode current ripple, and measure the current difference between the two bridge arms in each phase bridge arm of the three-phase bridge arm module.
  • the present application provides a magnetic integrated inductor and inverter, the magnetic integrated inductor comprising: a first winding, a second winding, a third winding, a middle column magnetic core, an upper magnetic core, a lower magnetic core, a left column magnetic core and a right column magnetic core; the upper magnetic core and the lower magnetic core are arranged symmetrically from top to bottom; the middle column magnetic core, the left column magnetic core and the right column magnetic core are arranged vertically with the upper magnetic core and the lower magnetic core; the first winding is wound on the left column magnetic core, the second winding is wound on the right column magnetic core, and the third winding is wound on the middle column magnetic core; the input end of the first winding is connected to the inverter circuit, the input end of the second winding is connected to the inverter circuit, and the output end of the first winding is connected to the output end of the second winding; the number of turns of the first winding and the second winding is the same; the input end and the output end of the third winding are
  • FIG1 is a schematic diagram of the structure of a three-phase bridge arm parallel inverter circuit
  • FIG2 is a schematic diagram of the structure of a magnetic integrated inductor provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of the structure of an inverter provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of the structure of the magnetic integrated inductor provided in an embodiment of the present application when in operation;
  • FIG5 is a schematic diagram of the structure of five structures of a bridge arm in an inverter
  • FIG6 is a schematic diagram of the structure of another magnetic integrated inductor provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the structure of another magnetic integrated inductor provided in an embodiment of the present application.
  • FIG. 1 is a schematic diagram of the structure of a three-phase bridge arm parallel inverter circuit.
  • the three-phase bridge arm parallel inverter circuit comprises a bus capacitor module, a three-phase bridge arm module, a current sensor module, a filter inductor module and an output filter module.
  • the bus capacitor module is connected to a DC power supply, and is also connected to the input end of the three-phase bridge arm module.
  • the output end of the three-phase bridge arm module is respectively connected to the filter inductor module and the current sensor module.
  • the filter inductor module is also connected to the output filter module, and the output filter module is used to output AC power.
  • the busbar capacitor module includes a capacitor Cp and a capacitor Cn.
  • the three-phase bridge arm module includes an R-phase bridge arm, an S-phase bridge arm and a T-phase bridge arm, wherein the R-phase bridge arm includes an R1 bridge arm and an R2 bridge arm, the S-phase bridge arm includes an S1 bridge arm and an S2 bridge arm, and the T-phase bridge arm includes a T1 bridge arm and a T2 bridge arm.
  • the current sensor module includes a current sensor CT 1 , a current sensor CT 2 , a current sensor CT 3 , a current sensor CT 4 , a current sensor CT 5 and a current sensor CT 6 .
  • the filter inductor module includes an inductor LR1 , an inductor LR2 , an inductor LS1 , an inductor LS2 , an inductor LT1 , and an inductor LT2 .
  • the output filter module includes an inductor L1 , an inductor L2 , an inductor L3 , a capacitor C1 , a capacitor C2 and a capacitor C3 .
  • inductor L R1 , inductor L R2 , inductor L S1 , inductor L S2 , inductor L T1 , and inductor L T2 are filter inductors at the output end of each bridge arm, used to suppress common mode current ripple and differential mode current ripple.
  • Current sensor CT 1 , current sensor CT 2 , current sensor CT 3 , current sensor CT 4 , current sensor CT 5 and current sensor CT 6 are current sensors at the output end of each bridge arm, and are used to measure the current of each bridge arm.
  • FIG. 2 is a schematic diagram of the structure of a magnetic integrated inductor provided in an embodiment of the present application.
  • the magnetic integrated inductor includes: a first winding N1, a second winding N2, a third winding N3, a middle column magnetic core C4, an upper magnetic core C3, a lower magnetic core C5, a left column magnetic core C1 and a right column magnetic core C2.
  • the upper magnetic core C3 and the lower magnetic core C5 are arranged symmetrically up and down.
  • the middle column magnetic core C4, the left column magnetic core C1 and the right column magnetic core C2 are all arranged perpendicular to the upper magnetic core C3 and the lower magnetic core C5.
  • the first winding N1 is wound on the left column magnetic core C1, the second winding N2 is wound on the right column magnetic core C2, and the third winding N3 is wound on the middle column magnetic core C4.
  • the input end of the first winding N1 is connected to the inverter circuit
  • the input end of the second winding N2 is connected to the inverter circuit
  • the output end of the first winding N1 is connected to the output end of the second winding N2.
  • the first winding N1 and the second winding N2 have the same number of turns.
  • the input end and the output end of the third winding N3 are respectively connected to the signal processing circuit.
  • the tops of the middle magnetic core C4, the left magnetic core C1 and the right magnetic core C2 are flush with the bottom of the upper magnetic core C3, and the bottoms of the middle magnetic core C4, the left magnetic core C1 and the right magnetic core C2 are flush with the top of the lower magnetic core C5.
  • the third winding N3 is used to obtain the magnetic flux of the first winding N1 and the magnetic flux of the second winding N2 to calculate the induced voltage of the third winding N3, so that the signal processing circuit calculates the current difference between the first winding N1 and the second winding N2 according to the induced voltage.
  • the left-leg magnetic core C1 and the right-leg magnetic core C2 have the same shape and the first winding N1 and the second winding N2 have the same number of turns.
  • the upper magnetic core C3, the lower magnetic core C5, the left magnetic core C1 and the right magnetic core C2 are all made of the first type of material, and the middle magnetic core C4 is made of the second type of material.
  • the magnetic permeability of the first type of material is lower than the magnetic permeability of the second type of material.
  • the first type of material is a combination of one or more of iron silicon, sendust and iron nickel.
  • the second type of material is a combination of one or more of ferrite, amorphous and nanocrystalline.
  • the left and right magnetic cores C1 and C2 may also be made of gapped ferrite, nanocrystalline or amorphous magnetic cores, etc. It should be noted that the magnetic permeability of the left and right magnetic cores C1 and C2 must be lower than the magnetic permeability of the middle magnetic core C4.
  • FIG3 is a schematic diagram of the structure of an inverter provided in an embodiment of the present application.
  • the inverter includes: an inverter circuit and the magnetic integrated inductor as described above, the magnetic integrated inductor and the inverter Circuit connection.
  • the inverter circuit includes: a three-phase bridge arm module, a bus capacitor module and an output filter module, the three-phase bridge arm module includes three single-phase bridge arms, and each phase bridge arm includes two bridge arms.
  • the three-phase bridge arm module is respectively connected to the bus capacitor module and the magnetic integrated inductor, the magnetic integrated inductor is also connected to the output filter module, the magnetic integrated inductor is also used to connect to the signal processing circuit, the bus capacitor module is also used to access direct current, and the output filter module is also used to output alternating current.
  • the magnetic integrated inductor is used to suppress common-mode current ripple and differential-mode current ripple when the inverter converts direct current into alternating current, and to measure the current difference between two bridge arms in each phase of the three-phase bridge arm module.
  • the busbar capacitor module includes capacitor Cp and capacitor Cn.
  • the three-phase bridge arm module includes R-phase bridge arm, S-phase bridge arm and T-phase bridge arm, the R-phase bridge arm includes R1 bridge arm and R2 bridge arm, the S-phase bridge arm includes S1 bridge arm and S2 bridge arm, and the T-phase bridge arm includes T1 bridge arm and T2 bridge arm.
  • the output filter module includes inductor L1, inductor L2, inductor L3, capacitor C1, capacitor C2 and capacitor C3.
  • the L1 and L3 terminals of each magnetic integrated inductor are respectively connected to the outputs of the two bridge arms in each phase bridge arm.
  • the L2 and L4 terminals of each magnetic integrated inductor are connected and connected to the output filter module.
  • the L5 and L6 terminals of each magnetic integrated inductor are respectively connected to the signal processing circuit for measuring the current difference between the two bridge arms in each phase bridge arm.
  • the magnetic integrated inductor r, the magnetic integrated inductor s and the magnetic integrated inductor t are used to suppress common-mode current ripple and differential-mode current ripple, and are also used to measure the current difference between two bridge arms in each phase bridge arm.
  • FIG. 4 is a schematic diagram of the structure of the magnetic integrated inductor provided in an embodiment of the present application when in operation.
  • the magnetic flux generated by the first winding N1 and the second winding N2 is shown in Figure 4. Because the magnetic permeability of the middle column core C4 is higher than that of other cores, the middle column core C4 will decouple the magnetic flux generated by the first winding N1 and the second winding N2, and the magnetic flux ⁇ 1 generated by the first winding N1 will not flow through the second winding N2, and the magnetic flux ⁇ 2 generated by the second winding N2 will not flow through the first winding N1.
  • the magnetic flux ⁇ 1 is equal to the magnetic flux ⁇ 2, and the magnetic flux generated by the first winding N1 on the middle column magnetic core C4 and the magnetic flux generated by the second winding N2 on the middle column magnetic core C4 cancel each other out.
  • the induced voltage V diff sensed by the third winding N3 is 0.
  • the magnetic flux ⁇ 1 is not equal to the magnetic flux ⁇ 2
  • the magnetic flux generated by the first winding N1 on the middle column magnetic core C4 is equal to The magnetic flux generated by the second winding N2 on the center magnetic core C4 will not cancel each other out.
  • the third winding N3 can induce an induced voltage V diff , and the calculation formula of the induced voltage V diff is:
  • N3 is the number of turns of the third winding N3.
  • the center column magnetic flux ⁇ 3 can be obtained, and the current difference between the first winding N1 and the second winding N2 can be calculated based on the center column magnetic flux ⁇ 3.
  • the signal processing circuit may be an integration circuit.
  • winding directions of the first winding N1 and the second winding N2 can be the same or opposite. However, one of the following conditions 1 and 2 must be met:
  • Condition 1 When the winding directions of the first winding N1 and the second winding N2 are the same, the current in the first winding N1 flows from the L1 end to the L2 end and the current in the second winding N2 flows from the L3 end to the L4 end, or, the current in the first winding N1 flows from the L2 end to the L1 end and the current in the second winding N2 flows from the L4 end to the L3 end.
  • Condition 2 When the winding directions of the first winding N1 and the second winding N2 are opposite, the current in the first winding N1 flows from the L1 end to the L2 end and the current in the second winding N2 flows from the L4 end to the L3 end, or, the current in the first winding N1 flows from the L2 end to the L1 end and the current in the second winding N2 flows from the L3 end to the L4 end.
  • FIG. 5 is a schematic diagram of five structures of a bridge arm in an inverter.
  • a first structure of a bridge arm is shown as structure 11 in FIG. 5 , which is an active clamped three-level structure.
  • the second structure of one bridge arm is shown as structure 12 in FIG. 5 , which is a diode-clamped three-level structure.
  • the third structure of a bridge arm is shown as structure 13 in FIG. 5 , which is a two-level full-bridge structure.
  • the fourth structure of a bridge arm is shown as structure 14 in FIG. 5 , which is a T-type three-level structure.
  • a fifth structure of a bridge arm is shown as structure 15 in FIG. 5 , which is two electric Flat half-bridge structure.
  • bridge arms are not limited to the above five types of bridge arms, and other types of bridge arms can also be applied to the embodiments of the present application.
  • Any two of the above bridge arms can be connected in parallel to form a one-phase bridge arm.
  • the magnetic integrated inductor provided in the embodiment of the present application can be applied to any inverter with parallel bridge arms, the number of inverter levels can be any level such as 2 levels, 3 levels, 5 levels, etc., and the number of inverter phases can be any number of phases such as single phase, 2 phases, 3 phases, etc.
  • the magnetic integrated inductor provided in the embodiment of the present application can also be applied to a rectifier or a power factor corrector.
  • FIG. 6 is a schematic diagram of the structure of another magnetic integrated inductor provided in an embodiment of the present application.
  • the upper magnetic core C3 includes two parts, which are symmetrically arranged about the middle magnetic core C4.
  • the top of the middle magnetic core C4 is flush with the top of the upper magnetic core C3, and the bottom of the middle magnetic core C4 is flush with the top of the lower magnetic core C5.
  • the upper magnetic core C3 has two parts, namely, magnetic core C31 and magnetic core C32.
  • the magnetic core C31 and magnetic core C32 are respectively arranged on the left and right sides of the middle column magnetic core C4 and are flush with the top of the middle column magnetic core C4.
  • the tops of the left magnetic core C1 and the right magnetic core C2 are flush with the bottom of the upper magnetic core C3 , and the bottoms of the left magnetic core C1 and the right magnetic core C2 are flush with the top of the lower magnetic core C5 .
  • the upper magnetic core C3 and the lower magnetic core C5 are of the same length
  • the left magnetic core C1 and the right magnetic core C2 are of the same length
  • the middle magnetic core C4 is longer than the left magnetic core C1
  • the left magnetic core C1 and the right magnetic core C are arranged between the upper magnetic core C3 and the lower magnetic core C5.
  • FIG. 7 is a schematic diagram of the structure of another magnetic integrated inductor provided in an embodiment of the present application.
  • the upper magnetic core C3 and the lower magnetic core C5 each include two parts, the two parts of the upper magnetic core C3 are symmetrically arranged about the middle magnetic core C4, and the two parts of the lower magnetic core C5 are symmetrically arranged about the middle magnetic core C4.
  • the top of the middle magnetic core C4 is flush with the top of the upper magnetic core C3, and the bottom of the middle magnetic core C4 is flush with the bottom of the lower magnetic core C5.
  • the upper magnetic core C3 has two parts, namely, magnetic core C31 and magnetic core C32.
  • the magnetic core C31 and magnetic core C32 are respectively arranged on the left and right sides of the middle column magnetic core C4 and are flush with the top of the middle column magnetic core C4.
  • the two parts of the lower magnetic core C5 are magnetic core C51 and magnetic core C52.
  • the magnetic core C51 and magnetic core C52 are respectively arranged on the left and right sides of the middle column magnetic core C4 and are flush with the bottom of the middle column magnetic core C4.
  • the tops of the left magnetic core C1 and the right magnetic core C2 are both flush with the bottom of the upper magnetic core C3 , and the bottoms of the left magnetic core C1 and the right magnetic core C2 are both flush with the top of the lower magnetic core C5 .
  • the upper magnetic core C3 and the lower magnetic core C5 are of the same length
  • the left magnetic core C1 and the right magnetic core C2 are of the same length
  • the middle magnetic core C4 is longer than the left magnetic core C1
  • the left magnetic core C1 and the right magnetic core C are arranged between the upper magnetic core C3 and the lower magnetic core C5.
  • the upper magnetic core C3, the lower magnetic core C5, the middle magnetic core C4, the left magnetic core C1 and the right magnetic core C2 may have any of the following shapes:
  • FIG2 shows a cross-sectional view corresponding to the main view of the magnetic integrated inductor
  • the various external shapes mentioned above refer to the corresponding shapes of each magnetic core when viewed from above.
  • the upper magnetic core C3 and the lower magnetic core C5 can be plate-shaped, and the shape of the plate can be the above shape.
  • the middle column magnetic core C3, the left column magnetic core C1 and the right column magnetic core C2 may be columnar, and their cross-sections may be the above shapes, such as cylindrical, elliptical or prism-shaped, wherein the prism-shaped may be triangular, quadrangular, pentagonal or hexagonal.
  • the upper magnetic core C3 and the lower magnetic core C5 can generally be in the shape of a plate, such as a rectangular plate or a cube plate.
  • the individual magnetic cores in the magnetic integrated inductor described in the above embodiments can be independently arranged, or some of the magnetic cores can be integrated. When some of the magnetic cores are integrated, they can be integrated together to form an integral body.
  • the upper magnetic core C3, the middle magnetic core C4, the left magnetic core C1 and the right magnetic core C2 are integrated together to form an integral body, while the lower magnetic core C5 is separately arranged, and the magnetic core formed in this way is an EI type.
  • the lower magnetic core C5, the middle magnetic core C4, the left magnetic core C1 and the right magnetic core C2 can be integrated together, while the upper magnetic core C3 is separately arranged, and the magnetic core formed in this way is also an EI type.
  • the shape of the magnetic core in the magnetic integrated inductor is not limited to the EI type, and can be other shapes, such as EE type, PQ type, etc.
  • the integrated magnetic cores can be integrally formed during manufacturing, provided that the materials of the integrally formed magnetic cores are the same.
  • the first winding N1 , the second winding N2 , and the third winding N3 may be flat wires, enameled wires, or Litz wires, and the winding materials may be aluminum wires, copper wires, or the like.
  • the magnetic integrated inductor has two side columns, the first side column is the right column magnetic core C1 and the first winding N1 wound on the right column magnetic core C1, and the second side column is the right column magnetic core C2 and the second winding N2 wound on the right column magnetic core C2.
  • the number of side columns of the magnetic integrated inductor is not limited to 2, and the number of side columns of the magnetic integrated inductor can be an integer multiple of 2.
  • the side columns are symmetrical about the middle column magnetic core C4, and the magnetic permeability of the middle column magnetic core C4 is higher than the magnetic permeability of the side column magnetic core.
  • the embodiment of the present application provides a magnetic integrated inductor, which includes: a first winding, a second winding, a third winding, a middle column magnetic core, an upper magnetic core, a lower magnetic core, a left column magnetic core and a right column magnetic core; the upper magnetic core and the lower magnetic core are symmetrically arranged up and down; the middle column magnetic core, the left column magnetic core and the right column magnetic core are all arranged vertically with the upper magnetic core and the lower magnetic core; the first winding is wound on the left column magnetic core, the second winding is wound on the right column magnetic core, and the third winding is wound on the middle column magnetic core; the input end of the first winding is connected to the inverter circuit, the input end of the second winding is connected to the inverter circuit, and the output end of the first winding is connected to the output end of the second winding; the number of turns of the first winding and the second winding is the same; the input end and the output end of the third winding are respectively connected to the signal processing circuit
  • the magnetic integrated inductor provided in the embodiment of the present application integrates two power windings and a current sensor into one inductor, and can perform differential mode current sampling while suppressing differential mode current ripple and common mode current ripple, reducing the volume of the overall circuit and reducing costs.
  • the embodiment of the present application further provides an inverter, which includes the magnetic integrated inductor introduced in the above embodiment, and specifically, see Figure 3, the converter includes an inverter circuit and a magnetic integrated inductor.
  • the magnetic integrated inductor is connected to the inverter circuit.
  • the inverter provided in this embodiment integrates two inductors and two current sensors to form a magnetic integrated inductor, which suppresses differential mode current ripple and common mode current ripple and realizes differential mode current sampling.
  • the magnetic integrated converter reduces the number of magnetic columns, thereby reducing the volume of the entire inverter and improving the power density.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inverter Devices (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Dc-Dc Converters (AREA)
  • Power Conversion In General (AREA)

Abstract

本申请公开了一种磁集成电感和逆变器,磁集成电感包括:第一绕组、第二绕组、第三绕组、中柱磁芯、上磁芯、下磁芯、左柱磁芯及右柱磁芯;上磁芯和下磁芯上下对称设置;中柱磁芯、左柱磁芯和右柱磁芯均与上磁芯和下磁芯垂直设置;第一绕组绕在左柱磁芯上,第二绕组绕在右柱磁芯上,第三绕组绕在中柱磁芯上;第一绕组的输入端连接逆变电路,第二绕组的输入端连接逆变电路,第一绕组的输出端连接第二绕组的输出端;第一绕组和所述第二绕组的匝数相同;第三绕组的输入端和输出端分别与信号处理电路连接。本申请提供的磁集成电感可以在抑制差模电流纹波和共模电流纹波的同时做差模电流采样,减小了电路的体积,降低了成本。

Description

一种磁集成电感和逆变器
相关申请的交叉参考
本申请要求于2022年10月10日提交中国专利局,申请号为202211235724.5,申请名称为“一种磁集成电感和逆变器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电力电子技术领域,尤其涉及一种磁集成电感和逆变器。
背景技术
在光伏发电、电化学储能等领域中,对并网逆变器功率的要求逐步提高,而现有的单管器件无法满足大功率的要求,为此必需使用功率模块,但是模块价格较高,增加了系统成本。为此,通常使用单管器件搭建逆变桥臂,再将多个逆变桥臂并联使用,但是,这种方式会增加电感器、电流传感器的数量,增加了系统的成本和复杂度。
发明内容
本申请实施方式主要解决的技术问题是提供一种磁集成电感和逆变器,能够有效降低电流纹波,减小整体电路的体积,降低成本。
为解决上述技术问题,本申请实施方式采用的一个技术方案是:提供一种磁集成电感,包括:第一绕组、第二绕组、第三绕组、中柱磁芯、上磁芯、下磁芯、左柱磁芯及右柱磁芯;所述上磁芯和下磁芯上下对称设置;所述中柱磁芯、左柱磁芯和右柱磁芯均与所述上磁芯和下磁芯垂直设置;所述第一绕组绕在所述左柱磁芯上,所述第二绕组绕在所述右柱磁芯上,所述第三绕组绕在所述中柱磁芯上;所述第一绕组的输入端连接逆变电路,所述第二绕组的输入端连接逆变电路,所述第一绕组的输出端连接所述第二绕组的输出端;所述第一绕组和所述第二绕组的匝数相同;所述第三绕组的输入端和输出端分别与信号处理电路连接。
在一些实施例中,所述第三绕组用于:获取所述第一绕组的磁通与所述第二绕组的磁通,以计算出所述第三绕组的感应电压,以使所述信号处理电路根据所述感应电压计算出所述第一绕组与所述第二绕组之间的电流差。
在一些实施例中,所述左柱磁芯和右柱磁芯的形状相同且所述第一绕组和所述第二绕组的匝数相同。
在一些实施例中,所述上磁芯、下磁芯、左柱磁芯和右柱磁芯均为第一类型材料,所述中柱磁芯为第二类型材料;所述第一类型材料的磁导低于所述第二类型材料的磁导。
在一些实施例中,所述第一类型材料为铁硅、铁硅铝和铁镍中的一种或多种的组合;所述第二类型材料为铁氧体、非晶和纳米晶中的一种或多种的组合。
在一些实施例中,所述中柱磁芯、左柱磁芯和右柱磁芯的顶部均与所述上磁芯的底部平齐,所述中柱磁芯、左柱磁芯和右柱磁芯的底部均与所述下磁芯的顶部平齐。
在一些实施例中,所述上磁芯包括两部分,所述上磁芯的两部分关于所述中柱磁芯左右对称设置;所述中柱磁芯的顶部与所述上磁芯的顶部平齐,所述中柱磁芯的底部与所述下磁芯的顶部平齐;所述左柱磁芯和右柱磁芯的顶部均与所述上磁芯的底部平齐,所述左柱磁芯和右柱磁芯的底部均与所述下磁芯的顶部平齐。
在一些实施例中,所述上磁芯和下磁芯均包括两部分,所述上磁芯的两部分关于所述中柱磁芯左右对称设置,所述下磁芯的两部分关于所述中柱磁芯左右对称设置;所述中柱磁芯的顶部与所述上磁芯的顶部平齐,所述中柱磁芯的底部与所述下磁芯的底部平齐;所述左柱磁芯和右柱磁芯的顶部均与所述上磁芯的底部平齐,所述左柱磁芯和右柱磁芯的底部均与所述下磁芯的顶部平齐。
为解决上述技术问题,本申请实施方式采用的另一个技术方案是:提供一种逆变器,所述逆变器包括:逆变电路和如上所述的磁集成电感;所述磁集成电感与所述逆变电路连接。
在一些实施例中,所述逆变电路包括:三相桥臂模块、母线电容模块及输出滤波模块,所述三相桥臂模块包括三个一相桥臂,每一相桥臂包括两个桥臂;所述三相桥臂模块分别与所述母线电容模块和所述磁集成电感连接,所述磁集成电感还与所述输出滤波模块连接,所述磁集成电感还用于与信号处理电路连 接,所述母线电容模块还用于接入直流电,所述输出滤波模块还用于输出交流电;所述磁集成电感用于:当所述逆变器将所述直流电转换为交流电时,抑制共模电流纹波和差模电流纹波,并测量三相桥臂模块中每一相桥臂中的两个桥臂的电流差。
本申请提供了一种磁集成电感和逆变器,所述磁集成电感包括:第一绕组、第二绕组、第三绕组、中柱磁芯、上磁芯、下磁芯、左柱磁芯及右柱磁芯;所述上磁芯和下磁芯上下对称设置;所述中柱磁芯、左柱磁芯和右柱磁芯均与所述上磁芯和下磁芯垂直设置;所述第一绕组绕在所述左柱磁芯上,所述第二绕组绕在所述右柱磁芯上,所述第三绕组绕在所述中柱磁芯上;所述第一绕组的输入端连接逆变电路,所述第二绕组的输入端连接逆变电路,所述第一绕组的输出端连接所述第二绕组的输出端;所述第一绕组和所述第二绕组的匝数相同;所述第三绕组的输入端和输出端分别与信号处理电路连接。本申请实施例提供的磁集成电感可以在抑制差模电流纹波和共模电流纹波的同时做差模电流采样,减小了电路的体积,降低了成本。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是三相桥臂并联逆变电路的结构示意图;
图2是本申请实施例提供的一种磁集成电感的结构示意图;
图3是本申请实施例提供的一种逆变器的结构示意图;
图4是本申请实施例提供的磁集成电感工作时的结构示意图;
图5是逆变器中一个桥臂的五种结构的结构示意图;
图6是本申请实施例提供的另一种磁集成电感的结构示意图;
图7是本申请实施例提供的又一种磁集成电感的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实 施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,如果不冲突,本申请实施例中的各个特征可以相互组合,均在本申请的保护范围之内。另外,虽然在装置示意图中进行了功能模块的划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置示意图中的模块划分,或流程图中的顺序执行所示出或描述的步骤。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
随着大型光伏电站、储能系统的发展,并网逆变器的功率等级逐步提高。而现有的单管器件无法满足大功率的需求。为此,通常使用桥臂并联的逆变电路来满足大功率的需求,但是,这种电路会增加电感器和电流传感器的数量,增加成本和电路的体积。
请参阅图1,图1是三相桥臂并联逆变电路的结构示意图。
该三相桥臂并联逆变电路包括母线电容模块、三相桥臂模块、电流传感器模块、滤波电感模块及输出滤波模块。
母线电容模块与直流电源连接,母线电容模块还与三相桥臂模块的输入端连接,三相桥臂模块的输出端分别与滤波电感模块和电流传感器模块连接,滤波电感模块还与输出滤波模块连接,输出滤波模块用于输出交流电。
母线电容模块包括电容Cp和电容Cn。三相桥臂模块包括R相桥臂、S相桥臂及T相桥臂,R相桥臂包括R1桥臂和R2桥臂,S相桥臂包括S1桥臂和S2桥臂,T相桥臂包括T1桥臂和T2桥臂。电流传感器模块包括电流传感器CT1、电流传感器CT2、电流传感器CT3、电流传感器CT4、电流传感器CT5及电流传感器CT6。滤波电感模块包括电感LR1、电感LR2、电感LS1、电感LS2、电感LT1、及电感LT2。输出滤波模块包括电感L1、电感L2、电感L3、电容C1、电容C2及电容C3
其中,电感LR1、电感LR2、电感LS1、电感LS2、电感LT1、及电感LT2为每一个桥臂的输出端的滤波电感,用于抑制共模电流纹波和差模电流纹波。电流传感器CT1、电流传感器CT2、电流传感器CT3、电流传感器CT4、电流传感器 CT5及电流传感器CT6为每一个桥臂的输出端的电流传感器,用于测量每一个桥臂的电流。
针对上述三相桥臂并联逆变电路,为了减少成本并减少电路的体积,请参阅图2,图2是本申请实施例提供的一种磁集成电感的结构示意图。
如图2所示,该磁集成电感包括:第一绕组N1、第二绕组N2、第三绕组N3、中柱磁芯C4、上磁芯C3、下磁芯C5、左柱磁芯C1及右柱磁芯C2。上磁芯C3和下磁芯C5上下对称设置。中柱磁芯C4、左柱磁芯C1和右柱磁芯C2均与上磁芯C3和下磁芯C5垂直设置。第一绕组N1绕在左柱磁芯C1上,第二绕组N2绕在右柱磁芯C2上,第三绕组N3绕在中柱磁芯C4上。第一绕组N1的输入端连接逆变电路,第二绕组N2的输入端连接逆变电路,第一绕组N1的输出端连接第二绕组N2的输出端。第一绕组N1和第二绕组N2的匝数相同。第三绕组N3的输入端和输出端分别与信号处理电路连接。
在一些实施例中,中柱磁芯C4、左柱磁芯C1和右柱磁芯C2的顶部均与上磁芯C3的底部平齐,中柱磁芯C4、左柱磁芯C1和右柱磁芯C2的底部均与下磁芯C5的顶部平齐。
在一些实施例中,第三绕组N3用于:获取第一绕组N1的磁通与第二绕组N2的磁通,以计算出第三绕组N3的感应电压,以使信号处理电路根据感应电压计算出第一绕组N1与第二绕组N2之间的电流差。
在一些实施例中,左柱磁芯C1和右柱磁芯C2的形状相同且第一绕组N1和第二绕组N2的匝数相同。
在一些实施例中,上磁芯C3、下磁芯C5、左柱磁芯C1和右柱磁芯C2均为第一类型材料,中柱磁芯C4为第二类型材料。第一类型材料的磁导低于第二类型材料的磁导。
在一些实施例中,第一类型材料为铁硅、铁硅铝和铁镍中的一种或多种的组合。第二类型材料为铁氧体、非晶和纳米晶中的一种或多种的组合。
在一些实施例中,左柱磁芯C1和右柱磁芯C2的材料还可以是开了气隙的铁氧体、纳米晶或非晶磁芯等材料。需要注意的是,左柱磁芯C1和右柱磁芯C2的材料的磁导必须低于中柱磁芯C4的材料的磁导。
请参阅图3,图3是本申请实施例提供的一种逆变器的结构示意图。如图3所示,该逆变器包括:逆变电路和如上所述的磁集成电感,磁集成电感与逆变 电路连接。
在一些实施例中,逆变电路包括:三相桥臂模块、母线电容模块及输出滤波模块,三相桥臂模块包括三个一相桥臂,每一相桥臂包括两个桥臂。三相桥臂模块分别与母线电容模块和磁集成电感连接,磁集成电感还与输出滤波模块连接,磁集成电感还用于与信号处理电路连接,母线电容模块还用于接入直流电,输出滤波模块还用于输出交流电。
磁集成电感用于:当逆变器将直流电转换为交流电时,抑制共模电流纹波和差模电流纹波,并测量三相桥臂模块中每一相桥臂中的两个桥臂的电流差。
母线电容模块包括电容Cp和电容Cn。三相桥臂模块包括R相桥臂、S相桥臂及T相桥臂,R相桥臂包括R1桥臂和R2桥臂,S相桥臂包括S1桥臂和S2桥臂,T相桥臂包括T1桥臂和T2桥臂。输出滤波模块包括电感L1、电感L2、电感L3、电容C1、电容C2及电容C3。
每个磁集成电感的L1端和L3端分别接每一相桥臂中的两个桥臂的输出。每个磁集成电感的L2端和L4端连接,并连接输出滤波模块。每个磁集成电感的L5和L6端分别连接信号处理电路,用于测量每一相桥臂中的两个桥臂的电流差。
其中,磁集成电感r、磁集成电感s及磁集成电感t用于抑制共模电流纹波和差模电流纹波,还用于测量每一相桥臂中的两个桥臂的电流差。
请参阅图4,图4是本申请实施例提供的磁集成电感工作时的结构示意图。
当第一绕组N1和第二绕组N2中有电流时,第一绕组N1和第二绕组N2产生的磁通如图4所示。因为中柱磁芯C4的磁导高于其它磁芯,所以中柱磁芯C4会解耦第一绕组N1和第二绕组N2产生的磁通,且第一绕组N1产生的磁通φ1不会流过第二绕组N2,第二绕组N2产生的磁通φ2也不会流过第一绕组N1。
当第一绕组N1的输入端L1和第二绕组N2的输入端L3流过相同大小的电流时,磁通φ1与磁通φ2相等,第一绕组N1在中柱磁芯C4上产生的磁通与第二绕组N2在中柱磁芯C4上产生的磁通相互抵消。此时,第三绕组N3感应到的感应电压Vdiff为0。
当第一绕组N1的输入端L1和第二绕组N2的输入端L3流过的电流存在差异时,磁通φ1与磁通φ2不相等,第一绕组N1在中柱磁芯C4上产生的磁通与 第二绕组N2在中柱磁芯C4上产生的磁通不会相互抵消。
那么,第三绕组N3能够感应出感应电压Vdiff,感应电压Vdiff的计算公式为:
其中,N3为第三绕组N3的匝数。
进一步的,感应电压Vdiff经过信号处理电路的积分处理后可以获得中柱磁通φ3,根据中柱磁通φ3可以计算获得第一绕组N1和第二绕组N2的电流差。
其中,信号处理电路可为积分电路。
需要说明的是,第一绕组N1和第二绕组N2的绕制方向可以相同,也可以相反。但是,需满足如下条件一和条件二中的一个:
条件一,当第一绕组N1和第二绕组N2的绕制方向相同时,在第一绕组N1中电流从L1端流向L2端且在第二绕组N2中电流中L3端流向L4端,或是,在第一绕组N1中电流从L2端流向L1端且在第二绕组N2中电流中L4端流向L3端。
条件二,当第一绕组N1和第二绕组N2的绕制方向相反时,在第一绕组N1中电流从L1端流向L2端且在第二绕组N2中电流中L4端流向L3端,或是,在第一绕组N1中电流从L2端流向L1端且在第二绕组N2中电流中L3端流向L4端。
请参阅图5,图5是逆变器中一个桥臂的五种结构的结构示意图。
在一些实施例中,一个桥臂的第一种结构为图5中的结构11所示,为有源钳位三电平结构。
在一些实施例中,一个桥臂的第二种结构为图5中的结构12所示,为二极管钳位三电平结构。
在一些实施例中,一个桥臂的第三种结构为图5中的结构13所示,为两电平全桥结构。
在一些实施例中,一个桥臂的第四种结构为图5中的结构14所示,为T型三电平结构。
在一些实施例中,一个桥臂的第五种结构为图5中的结构15所示,为两电 平半桥结构。
需要说明的是,桥臂的种类不局限于上述的五种桥臂,其它类型的桥臂也可应用于本申请实施例。
上述任意两个桥臂并联可组成一相桥臂。
本申请实施例提供的磁集成电感可以应用于任意的桥臂并联的逆变器中,逆变器电平数量可以为2电平、3电平、5电平等任意电平,逆变器的相数可以为单相、2相、3相等任意相数。本申请实施例提供的磁集成电感还可以应用于整流器或功率因数校正器中。
请参阅图6,图6是本申请实施例提供的另一种磁集成电感的结构示意图。
在一些实施例中,上磁芯C3包括两部分,上磁芯C3的两部分关于中柱磁芯C4左右对称设置。中柱磁芯C4的顶部与上磁芯C3的顶部平齐,中柱磁芯C4的底部与下磁芯C5的顶部平齐。
上磁芯C3的两部分,分别为磁芯C31和磁芯C32。磁芯C31和磁芯C32分别设置在中柱磁芯C4的左右两侧,且与中柱磁芯C4的顶部平齐。
左柱磁芯C1和右柱磁芯C2的顶部均与上磁芯C3的底部平齐,左柱磁芯C1和右柱磁芯C2的底部均与下磁芯C5的顶部平齐。
本实施例中,上磁芯C3和下磁芯C5的长短相同,左柱磁芯C1和右柱磁芯C2的长短相同,而且中柱磁芯C4比左柱磁芯C1的长度长,并且,左柱磁芯C1和右柱磁芯C设置在上磁芯C3和下磁芯C5之间。
请参阅图7,图7是本申请实施例提供的又一种磁集成电感的结构示意图。
在一些实施例中,上磁芯C3和下磁芯C5均包括两部分,上磁芯C3的两部分关于中柱磁芯C4左右对称设置,下磁芯C5的两部分关于中柱磁芯C4左右对称设置。中柱磁芯C4的顶部与上磁芯C3的顶部平齐,中柱磁芯C4的底部与下磁芯C5的底部平齐。
上磁芯C3的两部分,分别为磁芯C31和磁芯C32。磁芯C31和磁芯C32分别设置在中柱磁芯C4的左右两侧,且与中柱磁芯C4的顶部平齐。
下磁芯C5的两部分,分别为磁芯C51和磁芯C52。磁芯C51和磁芯C52分别设置在中柱磁芯C4的左右两侧,且与中柱磁芯C4的底部平齐。
左柱磁芯C1和右柱磁芯C2的顶部均与上磁芯C3的底部平齐,左柱磁芯C1和右柱磁芯C2的底部均与下磁芯C5的顶部平齐。
本实施例中,上磁芯C3和下磁芯C5的长短相同,左柱磁芯C1和右柱磁芯C2的长短相同,而且中柱磁芯C4比左柱磁芯C1的长度长,并且,左柱磁芯C1和右柱磁芯C设置在上磁芯C3和下磁芯C5之间。
在产品实现时,上磁芯C3、下磁芯C5、中柱磁芯C4、左柱磁芯C1和右柱磁芯C2的外形可以为以下形状中的任意一种:
圆形、椭圆形、三角形、正方形、矩形、圆角矩形和圆角三角形。
可以理解的是,图2所示的是磁集成电感的主视图对应的剖面图,而以上所说的各种外形形状是指各个磁芯的俯视时对应的形状。例如,上磁芯C3和下磁芯C5可以为板状,板的形状可以为以上形状。
中柱磁芯C3、左柱磁芯C1和右柱磁芯C2可以为柱状,其截面可以为以上形状。例如圆柱形、椭圆形柱或棱柱形均可以,其中棱柱形可以为三棱柱、四棱柱、五棱柱或六棱柱等。
而上磁芯C3和下磁芯C5一般可以采用板状,例如长方体板或者正方体板。
以上实施例介绍的磁集成电感中的各个磁芯可以独立设置,也可以部分磁芯集成设置,当部分磁芯集成设置时可以集成在一起一体成型。例如上磁芯C3、中柱磁芯C4、左柱磁芯C1和右柱磁芯C2集成在一起一体成型,而下磁芯C5单独设置,这样形成的磁芯为EI型。另外,还可以为下磁芯C5、中柱磁芯C4、左柱磁芯C1和右柱磁芯C2集成在一起,而上磁芯C3单独设置,这样形成的磁芯也为EI型。磁集成电感中的磁芯形状不限于EI型,可以为其他形状,如EE型、PQ型等。
为了制造方便,集成在一起的各个磁芯可以在制造时一体成型,前提是一体成型的各个磁芯的材料需要相同。
在一些实施例中,第一绕组N1、第二绕组N2及第三绕组N3可以为扁线、漆包线或利兹线等,绕组材料可以为铝线、铜线等。
本实施例中,磁集成电感的边柱数量为两个,第一个边柱是右柱磁芯C1和绕制在右柱磁芯C1上的第一绕组N1,第二个边柱是右柱磁芯C2和绕制在右柱磁芯C2上的第二绕组N2。
在一些实施例中,磁集成电感的边柱数量不限于2个,磁集成电感的边柱数量可以为2的整数倍,边柱关于中柱磁芯C4对称,且中柱磁芯C4的磁导高于边柱磁芯的磁导。
本申请实施例提供了一种磁集成电感,磁集成电感包括:第一绕组、第二绕组、第三绕组、中柱磁芯、上磁芯、下磁芯、左柱磁芯及右柱磁芯;上磁芯和下磁芯上下对称设置;中柱磁芯、左柱磁芯和右柱磁芯均与上磁芯和下磁芯垂直设置;第一绕组绕在左柱磁芯上,第二绕组绕在右柱磁芯上,第三绕组绕在中柱磁芯上;第一绕组的输入端连接逆变电路,第二绕组的输入端连接逆变电路,第一绕组的输出端连接第二绕组的输出端;第一绕组和第二绕组的匝数相同;第三绕组的输入端和输出端分别与信号处理电路连接。本申请实施例提供的磁集成电感将2个功率绕组和电流传感器集成到一个电感中,可以在抑制差模电流纹波和共模电流纹波的同时做差模电流采样,减小整体电路的体积,降低成本。
基于以上实施例提供的一种磁集成电感,本申请实施例还提供一种逆变器,该逆变器包括以上实施例介绍的磁集成电感,具体可以参见图3,该变换器包括逆变电路和磁集成电感。磁集成电感与逆变电路连接。
本实施例提供的逆变器,将两个电感和两个电流传感器集成在一起形成磁集成电感,起到抑制差模电流纹波和共模电流纹波的作用又实现差模电流采样的作用,该磁集成变换器减少了磁柱的个数,因此降低了整个逆变器的体积,提高了功率密度。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种磁集成电感,其特征在于,包括:第一绕组、第二绕组、第三绕组、中柱磁芯、上磁芯、下磁芯、左柱磁芯及右柱磁芯;
    所述上磁芯和下磁芯上下对称设置;
    所述中柱磁芯、左柱磁芯和右柱磁芯均与所述上磁芯和下磁芯垂直设置;
    所述第一绕组绕在所述左柱磁芯上,所述第二绕组绕在所述右柱磁芯上,所述第三绕组绕在所述中柱磁芯上;
    所述第一绕组的输入端连接逆变电路,所述第二绕组的输入端连接逆变电路,所述第一绕组的输出端连接所述第二绕组的输出端;所述第一绕组和所述第二绕组的匝数相同;
    所述第三绕组的输入端和输出端分别与信号处理电路连接。
  2. 根据权利要求1所述的磁集成电感,其特征在于,所述第三绕组用于:获取所述第一绕组的磁通与所述第二绕组的磁通,以计算出所述第三绕组的感应电压,以使所述信号处理电路根据所述感应电压计算出所述第一绕组与所述第二绕组之间的电流差。
  3. 根据权利要求1所述的磁集成电感,其特征在于,所述左柱磁芯和右柱磁芯的形状相同且所述第一绕组和所述第二绕组的匝数相同。
  4. 根据权利要求1所述的磁集成电感,其特征在于,所述上磁芯、下磁芯、左柱磁芯和右柱磁芯均为第一类型材料,所述中柱磁芯为第二类型材料;
    所述第一类型材料的磁导低于所述第二类型材料的磁导。
  5. 根据权利要求4所述的磁集成电感,其特征在于,所述第一类型材料为铁硅、铁硅铝和铁镍中的一种或多种的组合;
    所述第二类型材料为铁氧体、非晶和纳米晶中的一种或多种的组合。
  6. 根据权利要求1-5任一项所述的磁集成电感,其特征在于,所述中柱磁芯、左柱磁芯和右柱磁芯的顶部均与所述上磁芯的底部平齐,所述中柱磁芯、左柱磁芯和右柱磁芯的底部均与所述下磁芯的顶部平齐。
  7. 根据权利要求1-5任一项所述的磁集成电感,其特征在于,所述上磁芯包括两部分,所述上磁芯的两部分关于所述中柱磁芯左右对称设置;
    所述中柱磁芯的顶部与所述上磁芯的顶部平齐,所述中柱磁芯的底部与所述下磁芯的顶部平齐;
    所述左柱磁芯和右柱磁芯的顶部均与所述上磁芯的底部平齐,所述左柱磁芯和右柱磁芯的底部均与所述下磁芯的顶部平齐。
  8. 根据权利要求1-5任一项所述的磁集成电感,其特征在于,所述上磁芯和下磁芯均包括两部分,所述上磁芯的两部分关于所述中柱磁芯左右对称设置,所述下磁芯的两部分关于所述中柱磁芯左右对称设置;
    所述中柱磁芯的顶部与所述上磁芯的顶部平齐,所述中柱磁芯的底部与所述下磁芯的底部平齐;
    所述左柱磁芯和右柱磁芯的顶部均与所述上磁芯的底部平齐,所述左柱磁芯和右柱磁芯的底部均与所述下磁芯的顶部平齐。
  9. 一种逆变器,其特征在于,所述逆变器包括:
    逆变电路和如权利要求1至8任一项所述的磁集成电感;
    所述磁集成电感与所述逆变电路连接。
  10. 根据权利要求9所述的逆变器,其特征在于,所述逆变电路包括:三相桥臂模块、母线电容模块及输出滤波模块,所述三相桥臂模块包括三个一相桥臂,每一相桥臂包括两个桥臂;
    所述三相桥臂模块分别与所述母线电容模块和所述磁集成电感连接,所述磁集成电感还与所述输出滤波模块连接,所述磁集成电感还用于与信号处理电路连接,所述母线电容模块还用于接入直流电,所述输出滤波模块还用于输出交流电;
    所述磁集成电感用于:当所述逆变器将所述直流电转换为交流电时,抑制共模电流纹波和差模电流纹波,并测量三相桥臂模块中每一相桥臂中的两个桥臂的电流差。
PCT/CN2023/119782 2022-10-10 2023-09-19 一种磁集成电感和逆变器 WO2024078278A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211235724.5 2022-10-10
CN202211235724.5A CN115313822B (zh) 2022-10-10 2022-10-10 一种磁集成电感和逆变器

Publications (1)

Publication Number Publication Date
WO2024078278A1 true WO2024078278A1 (zh) 2024-04-18

Family

ID=83868381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/119782 WO2024078278A1 (zh) 2022-10-10 2023-09-19 一种磁集成电感和逆变器

Country Status (2)

Country Link
CN (1) CN115313822B (zh)
WO (1) WO2024078278A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115313822B (zh) * 2022-10-10 2023-11-07 深圳市首航新能源股份有限公司 一种磁集成电感和逆变器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204188695U (zh) * 2014-09-11 2015-03-04 中国南方电网有限责任公司超高压输电公司检修试验中心 交/直流滤波器高压电容器不平衡电流检测互感器
CN105024571A (zh) * 2014-04-29 2015-11-04 艾默生网络能源有限公司 一种三相逆变电路
CN108648899A (zh) * 2018-03-27 2018-10-12 华为技术有限公司 一种磁集成器件、变换器、功率因数校正电路及方法
US11303196B2 (en) * 2018-09-27 2022-04-12 Abb Schweiz Ag Apparatus for conversion between AC power and DC power
CN115313822A (zh) * 2022-10-10 2022-11-08 深圳市首航新能源股份有限公司 一种磁集成电感和逆变器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208739A (en) * 1992-01-07 1993-05-04 Powercube Corporation Integrated magnetic power converter
US6617814B1 (en) * 2001-04-11 2003-09-09 Rockwell Automation Technologies, Inc. Integrated DC link choke and method for suppressing common-mode voltage in a motor drive
CN102356438B (zh) * 2009-03-31 2014-08-27 伟创力国际美国公司 使用u形芯件形成的磁器件以及运用该器件的功率转换器
CN106971815B (zh) * 2016-01-14 2018-12-14 华为技术有限公司 集成电感及应用所述集成电感的功率变换器
CN107656120B (zh) * 2017-10-20 2020-01-07 吉林大学 一种高精度低噪声直流大电流检测装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105024571A (zh) * 2014-04-29 2015-11-04 艾默生网络能源有限公司 一种三相逆变电路
CN204188695U (zh) * 2014-09-11 2015-03-04 中国南方电网有限责任公司超高压输电公司检修试验中心 交/直流滤波器高压电容器不平衡电流检测互感器
CN108648899A (zh) * 2018-03-27 2018-10-12 华为技术有限公司 一种磁集成器件、变换器、功率因数校正电路及方法
US11303196B2 (en) * 2018-09-27 2022-04-12 Abb Schweiz Ag Apparatus for conversion between AC power and DC power
CN115313822A (zh) * 2022-10-10 2022-11-08 深圳市首航新能源股份有限公司 一种磁集成电感和逆变器

Also Published As

Publication number Publication date
CN115313822B (zh) 2023-11-07
CN115313822A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
CN206962702U (zh) 多相dc/dc电源转换器
US10804812B1 (en) Three phase AC/DC power converter with interleaved LLC converters
US9281738B2 (en) Power conversion apparatus with low common mode noise and application systems thereof
CN104078992B (zh) 一种储能电压平衡电力电子电能变换系统及其控制方法
US10873265B2 (en) Bidirectional three-phase direct current (DC)/DC converters
WO2024078278A1 (zh) 一种磁集成电感和逆变器
CN107134358A (zh) 一种电感绕制方法及装置
CN108964469A (zh) 一种并串联结构的全桥双llc谐振变换器
CN103762846A (zh) 一种磁集成谐振变换器
CN106971815A (zh) 集成电感及应用所述集成电感的功率变换器
CN114039491A (zh) 一种llc谐振变换电路、充电设备、储能设备和用电设备
CN113437876A (zh) 一种基于全耦合电感器的可自动均流的多相并联谐振变换器
CN102904420A (zh) 多端口变流器
CN208337415U (zh) 一种并串联结构的全桥双llc谐振变换器
CN211479840U (zh) 一种磁集成滤波器、单相逆变器和三相逆变器
CN210405078U (zh) 三相多重工频隔离型光伏并网逆变器
CN209767388U (zh) 一种可自动均流的多相并联谐振变换器
US11309123B2 (en) Fully integrated inversely weakly coupled power inductor
CN110112927A (zh) 交流电网用双端口柔性合环装置
CN212518795U (zh) 一种基于全耦合电感器的可自动均流的多相并联谐振变换器
CN112382486B (zh) 一种环形绕组的直线式移相变压器、控制方法及应用
CN110535365B (zh) 三相共模电流与开关损耗协同抑制的逆变系统
CN113258817A (zh) 单级式隔离型双向变换器及其控制方法
CN219420574U (zh) 一种适用于并网逆变器的陷波滤波器电压采样装置
CN112564530B (zh) 三电平逆变器的中点平衡电路、控制方法、电力电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876483

Country of ref document: EP

Kind code of ref document: A1