WO2024078154A1 - 用于管道焊缝缺陷的检测设备和方法 - Google Patents

用于管道焊缝缺陷的检测设备和方法 Download PDF

Info

Publication number
WO2024078154A1
WO2024078154A1 PCT/CN2023/114821 CN2023114821W WO2024078154A1 WO 2024078154 A1 WO2024078154 A1 WO 2024078154A1 CN 2023114821 W CN2023114821 W CN 2023114821W WO 2024078154 A1 WO2024078154 A1 WO 2024078154A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipeline
detection section
magnetic flux
mileage
flux leakage
Prior art date
Application number
PCT/CN2023/114821
Other languages
English (en)
French (fr)
Inventor
陈朋超
富宽
李睿
贾光明
郑健峰
邱红辉
王富祥
玄文博
雷铮强
杨辉
Original Assignee
国家石油天然气管网集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家石油天然气管网集团有限公司 filed Critical 国家石油天然气管网集团有限公司
Publication of WO2024078154A1 publication Critical patent/WO2024078154A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9006Details, e.g. in the structure or functioning of sensors

Definitions

  • the present invention relates to the technical field of pipeline detection, and in particular to a device and method for detecting pipeline weld defects.
  • Oil and gas pipelines are the main arteries of national energy transportation.
  • the safe operation of oil and gas pipelines has an important impact on the country's economic development and the stability of people's lives.
  • Pipelines are the safest and most reliable way to transport large quantities of energy, but due to welding during construction, corrosion during operation, and third-party damage, oil and gas pipeline leakage accidents occur from time to time.
  • the welds of oil and gas pipelines have always been the weak link in the safe operation of pipelines, and weld cracking is one of the main failure forms of oil and gas pipelines.
  • the crack detection of pipeline welds is a commonly used pipeline defect detection technology at home and abroad.
  • pipelines are laid underground, and a positioning device is needed to accurately locate the cracked defect position of the pipeline welds, so as to provide a basis for subsequent pipeline repair.
  • Existing detection equipment for pipeline welds mostly uses a mileage wheel for positioning in the pipeline, but the mileage wheel may slip when running in the pipeline, resulting in inaccurate measurement results, and thus unable to accurately locate the cracked position of the pipeline weld.
  • the purpose of the present invention is to provide a device and method for detecting pipeline weld defects.
  • the device for detecting pipeline weld defects has the advantages of improving the measurement accuracy of the odometer wheel and ensuring the positioning accuracy of the pipeline weld defect position.
  • the present invention provides a device and method for detecting pipeline weld defects, which are as follows:
  • the present invention provides a device for detecting pipeline weld defects, and the specific technical solution is as follows:
  • It includes a controller, a plurality of mileage wheel assemblies, and a magnetic flux leakage detection section for moving along the axial direction of the pipeline;
  • the magnetic flux leakage detection section is used to: collect the magnetic flux leakage signal of the inner wall of the pipeline when the magnetic flux leakage detection section moves along the axial direction of the pipeline;
  • Each mileage wheel assembly is used to: obtain mileage data when the mobile magnetic flux leakage detection section moves along the axial direction of the pipeline;
  • the controller is used to obtain and determine whether there is a defect in the pipeline weld based on the leakage magnetic signal collected by the leakage magnetic detection section. When it is determined that there is a defect in the pipeline weld, the position of the defect is located based on the mileage data collected by each mileage wheel assembly.
  • the mileage data collected by multiple mileage wheel assemblies are taken into consideration, avoiding slippage and other situations that may occur when using a single mileage wheel for mileage measurement in the prior art, and can improve the accuracy of locating the weld defect position.
  • the leakage magnetic detection section includes a leakage magnetic detection section body, a first moving mechanism and a leakage magnetic detection probe assembly.
  • the first moving mechanism can be movably arranged on the leakage magnetic detection section body along the axial direction of the pipeline.
  • the leakage magnetic detection probe assembly is arranged on the outer peripheral side of the leakage magnetic detection section body and is used to collect the leakage magnetic signal of the inner peripheral wall of the pipeline.
  • each mileage wheel assembly includes a mileage wheel for closely contacting the inner circumferential wall of the pipeline.
  • the process of the controller locating the defect includes:
  • the mileage data of each mileage wheel is obtained and the main mileage wheel is determined from all the mileage wheels, and the position of the defect is located according to the mileage data of the main mileage wheel.
  • the detection equipment includes a magnetic flux leakage detection section, a plurality of mileage wheel components and a controller
  • the magnetic flux leakage detection probe component on the magnetic flux leakage detection section is used to collect the magnetic flux leakage signal of the inner wall of the pipeline
  • the control The device determines the presence of defects in the pipeline weld based on the magnetic leakage signal, then determines the main odometer wheel based on the mileage data of multiple odometer wheels, and then locates the position of the defect based on the mileage data of the main odometer wheel, further ensuring the accuracy of mileage measurement, thereby greatly improving the accuracy of locating the weld defect position.
  • the process of determining the main mileage wheel from all mileage wheels includes:
  • the mileage wheel corresponding to the maximum value is determined as the main mileage wheel.
  • a speed control system which is arranged on the front side of the magnetic flux leakage detection section and is used to: conduct and block the flow of the flowing medium in the pipeline.
  • the speed control system includes a fixed part and a rotating part.
  • the fixed part is funnel-shaped and has an internal cavity.
  • a first through-hole for allowing the flow medium in the pipeline to pass through is provided on the peripheral wall of the fixed part.
  • the rotating part is rotatably arranged in the internal cavity and has a blocking part. The shape and size of the blocking part are consistent with the shape and size of the first through-hole.
  • the magnetic flux leakage detection joint also includes a first leather cup assembly which is sleeved on the magnetic flux leakage detection joint body and has a second through hole, and the extension direction of the second through hole is consistent with the axial direction of the magnetic flux leakage detection joint body.
  • the magnetic flux leakage detection section also includes a cylindrical iron core sleeved on the outside of the magnetic flux leakage detection section body and a first magnetizer assembly and a second magnetizer assembly respectively arranged at both ends of the cylindrical iron core, and the magnetic flux leakage detection probe assembly is sleeved on the outside of the cylindrical iron core and is located between the first magnetizer assembly and the second magnetizer assembly.
  • first magnetizer assembly and the second magnetizer assembly both include a permanent magnet and a steel brush.
  • the permanent magnet is sleeved on the outside of the cylindrical iron core
  • the steel brush is sleeved on the outside of the permanent magnet and contacts the pipeline.
  • the first moving mechanism includes a first moving component and a second moving component respectively arranged at the front end and the rear end of the leakage magnetic detection node body, and the first moving component and the second moving component both include a plurality of moving wheels distributed at circumferential intervals along the leakage magnetic detection node body.
  • the detection device also includes a crack dynamic detection section which is arranged at the rear side of the magnetic flux leakage detection section and flexibly connected to the magnetic flux leakage detection section.
  • the crack dynamic detection node includes a crack dynamic detection node body, a second movable mechanism and a crack dynamic detection probe assembly.
  • the second movable mechanism can be movably arranged on the crack dynamic detection node body along the axial direction of the pipeline.
  • the crack dynamic detection probe assembly is arranged on the outer peripheral side of the crack dynamic detection node body and is used to dynamically detect cracks on the inner peripheral wall of the pipeline.
  • the crack dynamic detection probe assembly includes a first probe holder having one side arranged on the crack dynamic detection section body and in a parallelogram shape, and a crack dynamic detection probe, wherein the crack dynamic detection probe is arranged on a side of the first probe holder away from the crack dynamic detection section body.
  • the present invention provides a method for detecting pipeline weld defects, and the specific technical solution is as follows:
  • the method includes:
  • the magnetic flux leakage detection section moves along the axial direction of the pipeline, the magnetic flux leakage signal collected by the magnetic flux leakage detection section is obtained and it is determined whether there is a defect in the pipeline weld;
  • the position of the defect is located based on the mileage data collected by each mileage wheel assembly.
  • FIG1 is a schematic diagram of the structure of a detection device in an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the overall structure of a magnetic flux leakage detection section according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the structure of local components in a magnetic flux leakage detection section according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a magnetic flux leakage detection probe assembly according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the structure of a dynamic crack detection section according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the structure of a dynamic crack detection probe assembly according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the structure of a speed control system according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a first electronic compartment in an embodiment of the present invention.
  • FIG9 is one of the methods for detecting pipeline weld defects according to an embodiment of the present invention.
  • FIG10 is a second method for detecting pipeline weld defects according to an embodiment of the present invention.
  • Magnetic flux leakage detection section 101. Magnetic flux leakage detection section body; 102. First moving mechanism; 1021. First moving assembly; 1022, second moving assembly; 1023, moving wheel; 103, magnetic flux leakage detection probe assembly; 1031, second probe bracket; 1032, magnetic flux leakage detection probe; 104, first leather cup assembly; 1041, first sealing leather cup; 1042, second sealing leather cup; 1043, second perforation; 105, cylindrical iron core; 106, first magnetizer assembly; 107, second magnetizer assembly; 108, permanent magnet; 109, steel brush; 110, first electronic compartment; 111, first battery; 112, first electronic package; 2, mileage wheel assembly; 201, mileage wheel; 3, speed control system; 301 , fixing part; 3011, first perforation; 302, rotating part; 3021, blocking part; 4, crack dynamic detection section; 401, crack dynamic detection section body; 402, second moving mechanism; 4021, third moving assembly; 4022, fourth moving assembly;
  • a detection device for pipeline weld defects comprises a controller, a plurality of mileage wheel assemblies 2, and a magnetic flux leakage detection section 1 for moving along the axial direction of the pipeline;
  • the magnetic flux leakage detection section 1 is used to collect magnetic flux leakage signals from the inner wall of the pipeline when the magnetic flux leakage detection section 1 moves along the axial direction of the pipeline;
  • Each mileage wheel assembly 2 is used to: obtain mileage data when the mobile magnetic flux leakage detection section 1 moves along the pipeline axial direction;
  • the controller is used to: obtain and determine whether there is a defect in the pipeline weld according to the magnetic leakage signal collected by the magnetic leakage detection section 1. When it is determined that there is a defect in the pipeline weld, the position of the defect is located according to the mileage data collected by each mileage wheel assembly 2, wherein the weld is a girth weld or other welds;
  • the magnetic flux leakage detection section 1 comprises a magnetic flux leakage detection section body 101, a first moving mechanism 102 and a magnetic flux leakage detection probe assembly 103.
  • the first moving mechanism 102 is arranged on the magnetic flux leakage detection section body 101 so as to be movable along the axial direction of the pipeline.
  • the magnetic flux leakage detection probe assembly 103 is arranged on the outer peripheral side of the magnetic flux leakage detection section body 101 and is used to collect magnetic flux leakage signals of the inner peripheral wall of the pipeline.
  • the magnetic flux leakage detection probe assembly 103 is communicatively connected with a controller;
  • each mileage wheel assembly 2 includes a mileage wheel 201 for close contact with the inner circumferential wall of the pipeline, and the mileage wheel 201 is communicatively connected with the controller;
  • each mileage wheel assembly 2 further includes a mileage wheel bracket, that is, each mileage wheel assembly 2 includes a mileage wheel bracket and a mileage wheel 201, one end of which is connected to the rear end surface of the leakage magnetic detection section body 101 and is inclinedly arranged.
  • the mileage wheel 201 is arranged at one end of the mileage wheel bracket away from the leakage magnetic detection section body 101 and is in close contact with the inner circumferential wall of the pipeline. When the mileage wheel 201 rolls along the inner circumferential wall of the pipeline, the motion mileage measurement of the detection device can be realized;
  • the controller can locate the defect in the following two ways:
  • the controller is configured to perform the following steps, specifically:
  • step S102 determining whether the pipeline weld has defects according to the magnetic flux leakage signal: determining whether the pipeline weld has defects according to the magnetic flux leakage signal collected by the magnetic flux leakage detection section 1, and if there are defects, executing step S103;
  • S104 determining a main mileage wheel according to a plurality of mileage data: determining a main mileage wheel from all mileage wheels 201;
  • the leakage magnetic detection probe assembly 103 When the detection equipment is running in the pipeline, the leakage magnetic detection probe assembly 103 performs leakage magnetic detection on the inner wall of the pipeline. If there are defects on the inner wall of the pipeline, the leakage magnetic detection probe assembly 103 will detect the leakage magnetic signal and send the above leakage magnetic signal to the controller, and the controller will then analyze the above leakage magnetic signal to determine whether there are weld defects in the pipeline; since there is a flowing medium (such as oil or natural gas) flowing in the pipeline, the mileage wheel 201 may slip when rolling on the inner wall of the pipeline, thereby making the mileage data measured by the mileage wheel 201 inaccurate.
  • a flowing medium such as oil or natural gas
  • multiple mileage wheels 201 are provided in this embodiment.
  • the mileage detection function is turned on and the mileage data detected by each wheel is sent to the controller.
  • the controller analyzes the mileage data of each of the multiple mileage wheels 201 after obtaining them, so as to determine the main mileage wheel among the multiple mileage wheels 201.
  • the main mileage wheel is the mileage wheel 201 with the lowest slip probability. After that, the controller locates the position of the weld defect according to the mileage data of the main mileage wheel, which can further ensure the accuracy of mileage measurement, thereby greatly improving the accuracy of locating the weld defect position.
  • the controller is configured to perform the following steps, specifically:
  • step S202 determining whether the pipeline weld has defects according to the magnetic flux leakage signal: determining whether the pipeline weld has defects according to the magnetic flux leakage signal collected by the magnetic flux leakage detection section 1, and if there are defects, executing step S203;
  • the probability of the multiple odometer wheels 201 slipping at the same time is extremely low. If the fluctuation amplitude of the odometer data of all odometer wheels 201 is within the preset range, it means that all odometer wheels 201 have not slipped. At this time, the position of the defect is located according to the average value of the odometer data of all odometer wheels 201, which can greatly improve the accuracy of locating the weld defect position.
  • the specific process of determining the main mileage wheel according to the multiple mileage data includes S1040 and S1041:
  • the magnetic flux leakage detection section 1 is provided with three mileage wheels 201 evenly spaced along the circumference of the magnetic flux leakage detection section body 101. If one or two of the mileage wheels 201 slip, the corresponding mileage data will be changed. (i.e., when the mileage wheel 201 slips, the mileage measurement will temporarily stagnate, which will cause the mileage data to be relatively reduced). Therefore, after obtaining the three sets of mileage data, the controller compares them to determine the maximum value among the three sets of mileage data, and further determines that the mileage wheel 201 corresponding to the maximum value of the mileage data is the main mileage wheel.
  • a speed control system 3 is further included, and the speed control system 3 is arranged at the front side of the magnetic flux leakage detection section 1, and the speed control system 3 is used to: conduct and block the flow of the flowing medium in the pipeline, specifically:
  • the detection equipment also includes a speed control system 3 arranged on the front side of the leakage magnetic detection section 1, the speed control system 3 includes a fixed part 301 and a rotating part 302, the fixed part 301 is funnel-shaped and has an internal cavity, and a first through-hole 3011 for the flow medium in the pipeline to pass through is provided on the peripheral wall of the fixed part 301, the rotating part 302 is rotatably arranged in the internal cavity and has a blocking part 3021, and the shape and size of the blocking part 3021 are consistent with the shape and size of the first through-hole 3011.
  • the detection device in this embodiment is provided with a speed control system 3 connected to the main body 101 of the magnetic flux leakage detection section through a flange to control the running speed of the detection device.
  • the speed control system 3 also includes a driving motor, a front baffle and a rear baffle arranged on the front side of the leakage magnetic detection node 1.
  • the front baffle is arranged at the front end of the fixing member 301, and the rear baffle is arranged at the rear end of the fixing member 301.
  • a through hole is arranged on the rear baffle, and a first through hole 3011 is arranged on the peripheral wall of the fixing member 301.
  • the flowing medium (such as oil or natural gas) can flow into or out of the internal cavity of the fixing member 301 through the through hole and the first through hole 3011; the rotating member 302 is arranged in the internal cavity and is connected to the driving motor.
  • the rotating member 302 includes a rod, a plurality of blades and a plurality of blocking parts 3021. One end of the rod passes through the rear baffle and is connected to the driving motor. The plurality of blades are arranged along the periphery of the rod.
  • the blocking portion 3021 is arranged on the outer peripheral wall of the rod portion, and is arranged on the side of the blade portion away from the rod portion, and the shape and size of the blocking portion 3021 are consistent with the shape and size of the first through hole 3011.
  • the different sizes of opening of the first through hole 3011 can be controlled by controlling the rotation position of the blocking portion 3021.
  • the larger the opening of the first through hole 3011 the smoother the flow medium flows through the internal cavity, and the more conducive to the operation of the detection equipment. This method realizes the active leakage of the flow medium; if the opening of the first through hole 3011 is smaller, the flow medium flows more unsmoothly through the internal cavity, and this unsmooth flow will hinder the operation of the detection equipment, and then reduce the operation speed of the detection equipment.
  • the speed control system 3 in this embodiment also includes a sealed cabin and a reducer.
  • the sealed cabin is arranged on the front side of the leakage magnetic detection section 1, and the drive motor and the reducer are both arranged in the sealed cabin; the input end of the reducer is connected to the output end of the drive motor, and the output end of the reducer extends from the sealed cabin and is drive-connected to the rotating part 302.
  • the drive motor in this embodiment can be selected as a DC brushless servo motor, and the reducer can be selected as a planetary gear reducer.
  • the magnetic flux leakage detection joint 1 further comprises a first leather cup assembly 104 which is sleeved on the magnetic flux leakage detection joint body 101 and has a second through hole 1043 , and the extension direction of the second through hole 1043 is consistent with the axial direction of the magnetic flux leakage detection joint body 101 .
  • the first leather cup assembly 104 includes a first sealing leather cup 1041 and a second sealing leather cup 1042, both of which are made of polyurethane material. Both are annular and are respectively mounted on the front and rear ends of the leakage magnetic detection node body 101.
  • the outer diameters of the first sealing leather cup 1041 and the second sealing leather cup 1042 are slightly larger than the inner diameter of the pipe so that they can be tightly supported on the inner circumferential wall of the pipe to form a sealing surface, thereby isolating the flow medium at the front and rear ends of the first leather cup assembly 104 to generate a front and rear pressure difference, which can push the detection device forward; further, the first sealing leather cup 1041 and the second sealing leather cup 1042 are both provided with a second perforation 1043 to avoid excessive pressure difference between the front and rear of the first leather cup assembly 104, which makes the running speed of the detection device too fast.
  • the flow medium passes through the first sealing leather cup 1041 and the second sealing leather cup 1042 through the second perforation 1043, which can play a role in leakage, so as to relieve the pressure at the front and rear ends of the first leather cup assembly 104, thereby reducing the running speed of the detection equipment.
  • This leakage method is fixed leakage.
  • a combination of fixed leakage and active leakage is adopted.
  • the number of second perforations 1043 is set so that the leakage area of the fixed leakage is 2%.
  • the opening of the first perforation 3011 is changed by driving the rotating member 302 so that the leakage area of the active leakage is 12%.
  • the operating speed of the detection equipment can be controlled below 5m/s.
  • the magnetic flux leakage detection section 1 further includes a magnetic flux leakage detection section 101 which is sleeved on the outside of the magnetic flux leakage detection section body 101.
  • the cylindrical core 105 and the first magnetizer assembly 106 and the second magnetizer assembly 107 are respectively arranged at both ends of the cylindrical core 105.
  • the magnetic flux leakage detection probe assembly 103 is arranged on the outer peripheral side of the cylindrical core 105 and is located between the first magnetizer assembly 106 and the second magnetizer assembly 107.
  • the cylindrical core 105 and the first magnetizer assembly 106 and the second magnetizer assembly 107 work together to saturate the inner wall of the pipeline to ensure that high-quality magnetic flux leakage signals are collected at the defective position of the pipeline, which is conducive to further improving the accuracy of pipeline defect detection;
  • the magnetic flux leakage detection probe assembly 103 includes a second probe bracket 1031 and a parallelogram-shaped second probe bracket 1031 fixedly connected to the cylindrical core 105 on one side, and a magnetic flux leakage detection probe 1032.
  • the magnetic flux leakage detection probe 1032 is arranged on the side of the second probe bracket 1031 away from the cylindrical core 105.
  • the magnetic flux leakage detection probe 1032 in this embodiment includes 8 Hall sensors and 2 eddy current sensors, the Hall sensors are used to collect magnetic flux leakage signals to realize the detection of larger-sized weld defects; the eddy current sensors are used to distinguish between inner wall defects and outer wall defects of the pipeline.
  • the first magnetizer assembly 106 and the second magnetizer assembly 107 both include a permanent magnet 108 and a steel brush 109, the permanent magnet 108 is sleeved on the outside of the cylindrical iron core 105, and the steel brush 109 is sleeved on the outside of the permanent magnet 108 and in contact with the pipeline, wherein the steel brush 109 structure has the advantages of strong supporting capacity and impact resistance;
  • the permanent magnet 108 can be an N48H neodymium iron boron permanent magnet, and the permanent magnet 108 of this material has the advantages of high performance and high temperature resistance;
  • the permanent magnet 108 is connected to the inner wall of the pipeline through the steel brush 109, and the magnetic lines of force generated by the permanent magnet 108 form a closed magnetic circuit through the cylindrical iron core 105, the permanent magnet 108, the steel brush 109 and the inner wall of the pipeline to achieve saturation magnetization of the inner wall of the pipeline, thereby ensuring that high-quality leakage magnetic signals are collected at the defective position of the pipeline.
  • the first moving mechanism 102 includes a first moving component 1021 and a second moving component 1022 respectively arranged at the front end and the rear end of the leakage magnetic detection section body 101, and the first moving component 1021 and the second moving component 1022 both include a plurality of moving wheels 1023 spaced apart along the circumference of the leakage magnetic detection section body 101.
  • the first moving component 1021 and the second moving component 1022 both include a plurality of moving wheel brackets arranged obliquely, one end of the moving wheel bracket is connected to the leakage magnetic detection section body 101, and the moving wheel 1023 is arranged at one end of the moving wheel bracket away from the leakage magnetic detection section body 101, and is used to stably support the leakage magnetic detection section 1 while realizing the movement function of the leakage magnetic detection section 1.
  • the first movable component 1021 and the second movable component 1022 are respectively arranged at the front end and the rear end of the leakage magnetic detection joint body 101, which can avoid the above situation.
  • the main body of the magnetic flux leakage node is a hollow structure, which forms a first sealed cabin.
  • the magnetic flux leakage node also includes a first electronic cabin 110 that can be removably arranged in the first sealed cabin.
  • the first electronic cabin 110 can be taken out or put in from the first sealed cabin as a whole, which is convenient for replacing the first battery 111 or using and maintaining other components.
  • the first electronic cabin 110 is a pressure-bearing structure and its pressure-bearing capacity is ⁇ 10MPa.
  • the first electronic cabin 110 includes a first pressure-bearing cabin body and a first battery 111 and a first electronic package 112 (the first electronic package 112 in this embodiment can be integrated with the controller) arranged in the first pressure-bearing cabin body.
  • the first battery 111 provides power for the first electronic package 112 and each probe on the magnetic flux leakage node.
  • the first electronic package 112 is used to collect and store detection data (the first electronic package 112 in this embodiment collects data from the magnetic flux leakage detection probe 1032).
  • the sampling frequency of the first electronic package 112 can reach 5KHz. When the operating data of the detection equipment is 5m/s, the axial sampling spacing is 1mm.
  • the detection device further includes a crack dynamic detection section 4 which is arranged at the rear side of the leakage magnetic detection section 1 and flexibly connected to the leakage magnetic detection section 1.
  • the detection device further includes a universal joint 5, the front end of which is connected to the leakage magnetic detection section 1, and the rear end of which is connected to the crack dynamic detection section 4, which can avoid the leakage magnetic detection section 1 from affecting the crack dynamic detection section 4 when turning, and increases the leakage magnetic detection section 1 and the crack dynamic detection section 4.
  • the dynamic crack detection section 4 in this embodiment can detect various defects such as the unfused position with a smaller opening on the ring weld, the incomplete penetration position with a smaller opening, cracks, small-sized undercuts, weld cracks, hydrogen-induced cracking, fatigue cracks, shrinkage cracks, etc.
  • the crack dynamic detection section 4 includes a crack dynamic detection section body 401, a second moving mechanism 402 and a crack dynamic detection probe assembly 403.
  • the second moving mechanism 402 is movably arranged on the crack dynamic detection section body 401 along the axial direction of the pipeline, and the crack dynamic detection probe assembly 403 is arranged on the outer peripheral side of the crack dynamic detection section body 401.
  • the second moving mechanism 402 includes a third moving assembly 4021 and a fourth moving assembly 4022 respectively arranged at the front end and the rear end of the crack dynamic detection section body 401, and the third moving assembly 4021 and the fourth moving assembly 4022 both include a plurality of moving wheels 1023 spaced apart along the circumference of the crack dynamic detection section body 401.
  • the third moving assembly 4021 and the fourth moving assembly 4022 each include a plurality of inclined moving wheel brackets, one end of the moving wheel bracket being connected to the crack dynamic detection section body 401, and the moving wheel 1023 being arranged at one end of the moving wheel bracket away from the crack dynamic detection section body 401, for stably supporting the crack dynamic detection section 4 while realizing the moving function of the crack dynamic detection section 4, thereby avoiding eccentric wear caused by unstable support, and further avoiding damage to the crack dynamic detection probe assembly 403;
  • the crack dynamic detection probe assembly 403 is provided with two rows, and the two rows of crack dynamic detection probe assemblies 403 are arranged front and back along the axial direction of the crack dynamic detection section body 401, which can effectively prevent the crack dynamic detection probe assemblies 403 from being squeezed and damaged by each other when entering the pipeline; the number of crack dynamic detection probe assemblies 403 in each row is 80, and the 80 crack dynamic detection probe assemblies 403 are evenly distributed along the circumferential interval of the crack dynamic detection section body 401, and adjacent crack dynamic detection probe
  • the sensing module consists of three parts: a permanent magnet, a magnetic disturbance sensor and a three-axis Hall magnetic sensor.
  • the permanent magnet moves relative to the pipe wall during the detection process to generate an eddy current signal;
  • the magnetic disturbance sensor (such as a coil) is used to measure the crack defect signal on the inner wall of the pipeline.
  • the permanent magnet is brought close to the surface of the pipeline, a magnetic interaction is generated to form a magnetic disturbance environment.
  • the crack defect on the inner wall of the pipeline serves as a disturbance source, which will form a magnetic disturbance and be detected by the magnetic disturbance sensor;
  • the three-axis Hall magnetic sensor is used to measure the abnormal signal generated by the motion-induced eddy current at the crack on the inner wall of the pipeline.
  • the dynamic crack detection section 4 in this embodiment can detect cracks on the inner wall of the pipeline when the detection device is in a moving state, without the need to deliberately stop the movement of the detection device to ensure the accuracy of the detection result, thereby effectively improving the detection efficiency of cracks on the inner wall of the pipeline.
  • the crack dynamic detection probe assembly 403 includes a first probe bracket 4031 and a crack dynamic detection probe 4032, one side of which is arranged on the crack dynamic detection section body 401 and is in the shape of a parallelogram, and the crack dynamic detection probe 4032 is arranged on the side of the first probe bracket 4031 away from the crack dynamic detection section body 401.
  • the first probe bracket 4031 includes a first connecting member, a second connecting member, a third connecting member and a fourth connecting member that together form a parallelogram, the first connecting member is arranged on the crack dynamic detection section body 401, the second connecting member and the third connecting member are both inclinedly arranged and their respective bottom ends are rotatably connected to the two ends of the first connecting member, the two ends of the fourth connecting member are respectively connected to the top of the second connecting member and the third connecting member, and a crack dynamic detection probe 4032 installation cavity is formed on the fourth connecting member, and the crack dynamic detection probe 4032 is installed in the crack dynamic detection probe 4032 installation cavity;
  • the crack dynamic detection probe 403 2 is wrapped with a wear-resistant sheet 4034 on the outside, which is used to protect the dynamic crack detection probe 4032 and prevent the dynamic crack detection probe 4032 from being worn when the detection equipment is running in the pipeline;
  • the first probe bracket 4031 also includes a spring 4033 obliquely arranged in a parallelogram, one end of the spring 4033 is connected to the
  • a plurality of mileage wheel assemblies 2 are also provided on the crack dynamic detection section 4, wherein the plurality of mileage wheel assemblies 2 are evenly arranged at the rear end of the crack dynamic detection section body 401 and are aligned with the inner circumferential wall of the pipeline.
  • the mileage wheel assembly 2 here also includes a mileage wheel 201 bracket and a mileage wheel 201 that is connected to the controller in communication.
  • the data collected by each sensor needs to be analyzed uniformly, and the data must be aligned, that is, the data of each sensor on the magnetic flux leakage section and the data of each sensor on the crack dynamic detection section 4 are aligned through mileage, so as to view and compare the data detected by the magnetic flux leakage detection section 1 at a certain position in the pipeline and the data detected by the crack dynamic detection section 4.
  • the controller controls the mileage wheel 201 on the crack dynamic detection section 4 to stop measuring, and only relies on the mileage data detected by the mileage wheel 201 on the magnetic flux leakage detection section 1 to determine the main mileage wheel.
  • the dynamic crack detection probe assembly 403 further includes a stress detection probe that is communicatively connected to the controller and is used to measure the axial stress of the pipeline.
  • the dynamic crack detection node 4 also includes a diameter measuring sensor 6 disposed on the first connecting member and in communication with the controller, for detecting geometric defects such as pits and elliptical deformation on the inner wall of the pipeline.
  • the main body 401 of the crack dynamic detection section is a hollow structure, which forms a second sealed cabin.
  • the crack dynamic detection section 4 also includes a second electronic cabin that can be removably arranged in the above-mentioned second sealed cabin.
  • the second electronic cabin can be taken out or put in from the second sealed cabin as a whole, which is convenient for replacing the second battery or using and maintaining other components.
  • the second electronic cabin is a pressure-bearing structure and its pressure bearing capacity is ⁇ 10MPa.
  • the second electronic cabin includes a second pressure-bearing cabin body and an IMU (inertial measurement unit) arranged in the second pressure-bearing cabin body, a second battery and a second electronic package (the second electronic package in this embodiment can be integrated with the controller), the second battery provides power for the IMU, the second electronic package and each probe on the crack dynamic detection section 4, and the IMU is used to perform centerline detection and strain detection on the pipeline; the second electronic package is used to collect and store detection data (in this embodiment, the second electronic package collects data from the crack dynamic detection probe 4032), the sampling frequency of the second electronic package can reach 5KHz, and the axial sampling spacing is 1mm when the operating data of the detection equipment is 5m/s.
  • the second electronic package collects data from the crack dynamic detection probe 4032
  • the sampling frequency of the second electronic package can reach 5KHz
  • the axial sampling spacing is 1mm when the operating data of the detection equipment is 5m/s.
  • the crack dynamic detection section 4 also includes a second leather cup assembly 404 which is sleeved on the crack dynamic detection section body 401 and has a third through hole 4043, and the extension direction of the third through hole 4043 is consistent with the axial direction of the crack dynamic detection section body 401.
  • the second leather cup assembly 404 includes a third sealing leather cup 4041 and a fourth sealing leather cup 4042, both of which are made of polyurethane material, both of which are annular and sleeved on the front and rear ends of the crack dynamic detection section body 401, respectively, and the outer diameters of the third sealing leather cup 4041 and the fourth sealing leather cup 4042 are slightly larger than the inner diameter of the pipeline, so that they can be tightly supported on the inner circumferential wall of the pipeline to form a sealing surface; further, the third sealing leather cup 4041 and the fourth sealing leather cup 4042 are both provided with a third through hole 4043.
  • the magnetic flux leakage detection node 1 and the crack dynamic detection node 4 are both detachably connected to the universal joint 5, and when the magnetic flux leakage detection node 1 and the crack dynamic detection node 4 are separated, the crack dynamic detection has an independent controller to control the various components thereon, that is, when the magnetic flux leakage detection node 1 and the crack dynamic detection node 4 are separated, the two can independently perform their respective functions without interfering with each other.
  • a first junction box and a second junction box are respectively provided in the leakage magnetic flux detection node 1 and the crack dynamic detection node 4.
  • the first junction box is arranged at the rear end of the leakage magnetic flux detection node 1, and is used for collecting the detection data of the leakage magnetic flux detection probe 1032 on the leakage magnetic flux detection node 1 and transmitting it to the first electronic package in the leakage magnetic flux detection node 1;
  • the second junction box is arranged at the rear end of the crack dynamic detection node 4, and is used for collecting the detection data of the crack dynamic detection probe 4032 on the crack dynamic detection node 4 and transmitting it to the second electronic package in the crack dynamic detection node 4;
  • the first junction box and the second junction box both adopt a one-to-eight structure, and the connectors of each probe in the leakage magnetic flux detection node 1 and the crack dynamic detection node 4 adopt a plug-and-play structure to facilitate replacement.
  • Weld defects are divided into common defects and crack defects. Common defects can be identified through magnetic flux leakage data. Data analysis software converts the detection data into line graphs, grayscale graphs and pseudo-color graphs. The comprehensive analysis of the three signals can be used to determine the weld defects. Check whether there are any defects in the seam.
  • the internal detection data proposed in the present invention has an axially seamless and ultra-high-definition leakage magnetic detection sensor, which can detect larger open cracks and can be clearly identified in grayscale and color images; smaller crack defects are detected by the crack dynamic detection probe carried by the internal detection equipment, and the circumferential weld crack defects can be effectively detected in grayscale and color images, and the defect signal of the crack dynamic detection sensor is obvious.
  • a marker box will be buried every 1 km along the pipeline.
  • the leakage magnetic detection section 1 passes, the permanent magnet of the leakage magnetic detection section 1 will trigger the marker, and the position information and the detector passing time will be recorded in the marker.
  • the time information in the internal inspection data and the cumulative inspection mileage of the mileage wheel and the marker trigger information are first analyzed comprehensively to locate the defect within a 1 km range.
  • the internal inspection data can identify the girth weld and weld intersection angle and record the girth weld mileage to obtain the entire pipeline weld list.
  • the elbow information can also identify the elbow information, and determine the location of the defect through the upstream and downstream clock intersection angles of the defective pipe section, combined with the upstream and downstream elbows and short section information.
  • the specific location of the defect can be obtained through the mileage data of the main mileage wheel and the distance from the upstream girth weld.
  • the present invention provides a detection device for pipeline weld defects.
  • the detection device includes a magnetic flux leakage detection section, multiple mileage wheel assemblies and a controller.
  • the magnetic flux leakage detection probe assembly on the magnetic flux leakage detection section is used to collect magnetic flux leakage signals from the inner wall of the pipeline.
  • the controller determines that there are defects in the pipeline weld according to the magnetic flux leakage signals, and then determines the main mileage wheel according to the mileage data of the multiple mileage wheels. The position of the defect is then located according to the mileage data of the main mileage wheel, thereby further ensuring the accuracy of mileage measurement, thereby greatly improving the accuracy of locating the weld defect position.
  • a method for detecting pipeline weld defects uses any of the above-mentioned devices for detecting pipeline weld defects, and specifically includes the following steps:
  • the position of the defect is located according to the mileage data collected by each mileage wheel assembly 2.
  • S2 includes:
  • determining a main mileage wheel from all mileage wheels 201 includes:
  • connection and “connectivity” should be understood in a broad sense, for example, they can be fixedly connected, detachably connected, or integrated; they can be mechanically connected, electrically connected, or able to communicate with each other; they can be directly connected, or indirectly connected through an intermediate medium; they can be internally connected between two elements or an interactive relationship between two elements, unless otherwise clearly defined.
  • connection and “connectivity” should be understood in a broad sense, for example, they can be fixedly connected, detachably connected, or integrated; they can be mechanically connected, electrically connected, or able to communicate with each other; they can be directly connected, or indirectly connected through an intermediate medium; they can be internally connected between two elements or an interactive relationship between two elements, unless otherwise clearly defined.
  • connection and “connectivity” should be understood in a broad sense, for example, they can be fixedly connected, detachably connected, or integrated; they can be mechanically connected, electrically connected, or able to communicate with each other; they can be directly connected, or indirectly connected through an intermediate medium; they can
  • a first feature being “above” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediate medium.
  • a first feature being “above”, “above” or “above” a second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • a first feature being “below”, “below” or “below” a second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is lower in level than the second feature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

本发明公开了一种用于管道焊缝缺陷的检测设备,该检测设备包括:包括控制器、多个里程轮组件,以及用于沿管道轴向移动的漏磁检测节,漏磁检测节用于:采集管道内周壁的漏磁信号;每个里程轮组件用于:当移动漏磁检测节沿管道轴向移动时,获取里程数据;控制器用于:获取并根据漏磁检测节采集的漏磁信号确定管道焊缝是否存在缺陷,当判定管道焊缝存在缺陷时,根据每个里程轮组件采集的里程数据,对缺陷的位置进行定位,在对管道缺陷的位置进行定位时,考虑了多个里程轮组件采集的里程数据,避免了现有技术中采用单一里程轮进行里程测量所可能出现的打滑等情况,能够提升焊缝缺陷位置定位的准确性。

Description

用于管道焊缝缺陷的检测设备和方法 技术领域
本发明涉及管道检测技术领域,具体地涉及一种用于管道焊缝缺陷的检测设备和方法。
背景技术
油气管道是国家能源运输的大动脉,油气管道的安全运行对国家的经济发展和人民生活稳定具有重要影响。管道是最安全可靠的大批量能源运输方式,但是由于建设期焊接、运营期腐蚀和第三方损伤等,油气管道泄漏事故时有发生。其中,受建设时期技术水平、现场焊接施工质量管理和运行环境等因素,油气管道焊缝一直是管道安全运行的薄弱环节,焊缝开裂是油气管道的主要失效形式之一。
管道内焊缝的开裂检测是目前国内外常用的管道缺陷检测技术,但管道铺设于地下,需要采用定位装置对管道的焊缝开裂的缺陷位置处进行准确定位,以便为后续的管道修复提供依据。现有的用于管道内焊缝的检测设备在进行管道内定位时多采用里程轮,但里程轮在管道内运行时可能存在打滑现象,导致其测量结果不准确,进而无法对管道的焊缝开裂位置进行精准定位。
发明内容
本发明的目的是为了提供一种用于管道焊缝缺陷的检测设备和方法,该用于管道焊缝缺陷的检测设备具有提升里程轮的测量精度,保障管道焊缝缺陷位置的定位准确度的优点。
为了实现上述目的,本发明提供一种用于管道焊缝缺陷的检测设备和方法,具体如下:
1)第一方面,本发明提供一种用于管道焊缝缺陷的检测设备,具体技术方案如下:
包括控制器、多个里程轮组件,以及用于沿管道轴向移动的漏磁检测节;
漏磁检测节用于:当漏磁检测节沿管道轴向移动时,采集管道内周壁的漏磁信号;
每个里程轮组件用于:当移动漏磁检测节沿管道轴向移动时,获取里程数据;
控制器用于:获取并根据漏磁检测节采集的漏磁信号确定管道焊缝是否存在缺陷,当判定管道焊缝存在缺陷时,根据每个里程轮组件采集的里程数据,对缺陷的位置进行定位。
本发明提供的一种用于管道焊缝缺陷的检测设备的有益效果如下:
在对管道缺陷的位置进行定位时,考虑了多个里程轮组件采集的里程数据,避免了现有技术中采用单一里程轮进行里程测量所可能出现的打滑等情况,能够提升焊缝缺陷位置定位的准确性。
进一步,漏磁检测节包括漏磁检测节主体、第一移动机构和漏磁检测探头组件,第一移动机构可沿管道轴向移动地设置在漏磁检测节主体上,漏磁检测探头组件设置在漏磁检测节主体的外周侧并用于采集管道内周壁的漏磁信号。
进一步,多个里程轮组件沿漏磁检测节主体的周向间隔分布,每个里程轮组件均包括用于和管道内周壁紧密接触的里程轮。
进一步,控制器对缺陷的位置进行定位的过程,包括:
当判定管道焊缝存在缺陷时,获取并根据每个里程轮的里程数据,从所有的里程轮中确定出主里程轮,根据主里程轮的里程数据对缺陷的位置进行定位。
采用上述进一步技术方案的有益效果是:检测设备包括漏磁检测节、多个里程轮组件和控制器,漏磁检测节上的漏磁检测探头组件用于采集管道内周壁的漏磁信号,控制 器根据漏磁信号确定管道焊缝存在缺陷,之后根据多个里程轮的里程数据确定主里程轮,再根据主里程轮的里程数据对缺陷的位置进行定位,进一步保证了里程测量的准确性,进而大幅度提升焊缝缺陷位置定位的准确性。
进一步,从所有的里程轮中确定出主里程轮的过程,包括:
对每个里程轮的里程数据进行比较并确定最大值;
将最大值对应的里程轮确定为主里程轮。
进一步,还包括速度控制系统,速度控制系统设置在漏磁检测节的前侧,速度控制系统用于:导通和阻挡管道中的流动介质的流动。
进一步,速度控制系统包括固定件和转动件,固定件呈漏斗状并具有内部空腔,固定件的周壁上设有用于供管道中的流动介质穿过的第一穿孔,转动件可转动地设置在内部空腔中并具有阻挡部,阻挡部的形状、尺寸和第一穿孔的形状、尺寸一致。
进一步,漏磁检测节还包括套设在漏磁检测节主体上并具有第二穿孔的第一皮碗组件,第二穿孔的延伸方向和漏磁检测节主体的轴向一致。
进一步,漏磁检测节还包括套设在漏磁检测节主体外侧的筒状铁芯和分别设置在筒状铁芯两端的第一磁化器组件、第二磁化器组件,漏磁检测探头组件套设在筒状铁芯的外侧并位于第一磁化器组件、第二磁化器组件之间。
进一步,第一磁化器组件和第二磁化器组件均包括永磁铁和钢刷,永磁铁套设在筒状铁芯的外侧,钢刷套设在永磁铁的外侧并和管道接触。
进一步,第一移动机构包括分别设置在漏磁检测节主体的前端、后端的第一移动组件和第二移动组件,第一移动组件和第二移动组件均包括多个沿漏磁检测节主体的周向间隔分布的移动轮。
进一步,检测设备还包括设置在漏磁检测节后侧并和漏磁检测节柔性连接的裂纹动态检测节。
进一步,裂纹动态检测节包括裂纹动态检测节主体、第二移动机构和裂纹动态检测探头组件,第二移动机构可沿管道轴向移动地设置在裂纹动态检测节主体上,裂纹动态检测探头组件设置在裂纹动态检测节主体的外周侧并用于对管道内周壁上的裂纹进行动态检测。
进一步,裂纹动态检测探头组件包括一侧设置在裂纹动态检测节主体上并呈平行四边形状的第一探头支架和裂纹动态检测探头,裂纹动态检测探头设置在第一探头支架远离裂纹动态检测节主体的一侧上。
1)第二方面,本发明提供一种用于管道焊缝缺陷的检测方法,具体技术方案如下:
采用上述任一种用于管道焊缝缺陷的检测设备,方法包括:
当漏磁检测节沿管道轴向移动时,获取并根据漏磁检测节采集的漏磁信号确定管道焊缝是否存在缺陷;
当判定管道焊缝存在缺陷时,根据每个里程轮组件采集的里程数据,对缺陷的位置进行定位。
需要说明的是,本发明的第二方面的技术方案及对应的可能的实现方式所取得的有益效果,可以参见上述对第一方面及其对应的可能的实现方式的技术效果,此处不再赘述。
附图说明
附图是用来提供对本发明实施例的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明实施例,但并不构成对本发明实施例的限制。在附图中:
图1是本发明实施例中检测设备的结构示意图;
图2是本发明实施例中漏磁检测节的整体结构示意图;
图3是本发明实施例中漏磁检测节中局部部件的结构示意图;
图4是本发明实施例中漏磁检测探头组件的结构示意图;
图5是本发明实施例中裂纹动态检测节的结构示意图;
图6是本发明实施例中裂纹动态检测探头组件的结构示意图;
图7是本发明实施例中速度控制系统的结构示意图;
图8是本发明实施例中第一电子舱的结构示意图。
图9为本发明实施例的一种用于管道焊缝缺陷的检测方法之一;
图10为本发明实施例的一种用于管道焊缝缺陷的检测方法之二;
附图中,各标号所代表的部件列表如下:
1、漏磁检测节;101、漏磁检测节主体;102、第一移动机构;1021、第一移动组件;
1022、第二移动组件;1023、移动轮;103、漏磁检测探头组件;1031、第二探头支架;1032、漏磁检测探头;104、第一皮碗组件;1041、第一密封皮碗;1042、第二密封皮碗;1043、第二穿孔;105、筒状铁芯;106、第一磁化器组件;107、第二磁化器组件;108、永磁铁;109、钢刷;110、第一电子舱;111、第一电池;112、第一电子包;2、里程轮组件;201、里程轮;3、速度控制系统;301、固定件;3011、第一穿孔;302、转动件;3021、阻挡部;4、裂纹动态检测节;401、裂纹动态检测节主体;402、第二移动机构;4021、第三移动组件;4022、第四移动组件;403、裂纹动态检测探头组件;4031、第一探头支架;4032、裂纹动态检测探头;4033、弹簧;4034、耐磨片;404、第二皮碗组件;4041、第三密封皮碗;4042、第四密封皮碗;4043、第三穿孔;5、万向节;6、测径传感器。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
本发明实施例的一种用于管道焊缝缺陷的检测设备,包括控制器、多个里程轮组件2,以及用于沿管道轴向移动的漏磁检测节1;
漏磁检测节1用于:当漏磁检测节1沿管道轴向移动时,采集管道内周壁的漏磁信号;
每个里程轮组件2用于:当移动漏磁检测节1沿管道轴向移动时,获取里程数据;
控制器用于:获取并根据漏磁检测节1采集的漏磁信号确定管道焊缝是否存在缺陷,当判定管道焊缝存在缺陷时,根据每个里程轮组件2采集的里程数据,对缺陷的位置进行定位,其中,焊缝为环焊缝,也可为其它焊缝;
其中,对漏磁检测节1、里程轮组件2进行如下解释:
1)漏磁检测节1包括漏磁检测节主体101、第一移动机构102和漏磁检测探头组件103,第一移动机构102可沿管道轴向移动地设置在漏磁检测节主体101上,漏磁检测探头组件103设置在漏磁检测节主体101的外周侧并用于采集管道内周壁的漏磁信号,漏磁检测探头组件103和控制器通信连接;
2)多个里程轮组件2沿漏磁检测节主体101的周向间隔分布,每个里程轮组件2均包括用于和管道内周壁紧密接触的里程轮201,里程轮201和控制器通信连接;
在另外一个实施例中,每个里程轮组件2还分别包括一个里程轮支架,即每个里程轮组件2均包括一端和漏磁检测节主体101的后侧端面连接并倾斜设置的里程轮支架和里程轮201,里程轮201设置在里程轮支架远离漏磁检测节主体101的一端并和管道内周壁紧密接触,里程轮201沿着管道的内周壁滚动时能实现检测设备的运动里程测量;
其中,控制器对缺陷的位置进行定位的过程,可通过如下两种方式实现:
1)第一种实现方式:控制器被配置成执行以下步骤,具体地:
S101、获取漏磁信号:当漏磁检测节1沿管道轴向移动时,控制器获取漏磁检测节 1采集的漏磁信号。
S102、根据漏磁信号确定管道焊缝存在缺陷:根据漏磁检测节1采集的漏磁信号确定管道焊缝是否存在缺陷,若存在缺陷时,执行步骤S103;
S103、获取多个里程轮201的里程数据:根据每个里程轮201的里程数据,从所有的里程轮201中确定出主里程轮;
S104、根据多个里程数据确定主里程轮:从所有的里程轮201中确定出主里程轮;
S105、根据主里程轮的里程数据对缺陷的位置进行定位。
利用S101至S105,能够达到大幅度提升焊缝缺陷位置定位的准确性的技术效果,原因如下:
1)出现里程数据不准确的原因如下:
检测设备在管道内运行时漏磁检测探头组件103对管道内周壁进行漏磁检测,若管道内周壁上存在缺陷,则漏磁检测探头组件103会检测到漏磁信号并将上述漏磁信号发送给控制器,控制器再对上述漏磁信号进行分析,以确定管道内存在焊缝缺陷;由于管道中流通有流动介质(如石油或天然气),因此里程轮201在管道内周壁上滚动时可能会存在打滑现象,进而使得里程轮201测量的里程数据不准确。
2)大幅度提升焊缝缺陷位置定位的准确性的原因如下:
为解决上述出现的“现里程数据不准确”的技术问题,本实施例中设置有多个里程轮201,多个里程轮201在管道内周壁上运行时即开启了里程检测功能,并将各自检测的里程数据发送给控制器。进一步地,由于多个里程轮201不是设置在同一位置,因此多个里程轮201同时打滑的概率极低,基于上述原因,控制器在获得多个里程轮201各自的里程数据后对其进行分析,以在多个里程轮201中确定出主里程轮,该主里程轮即为打滑概率最小的里程轮201,之后控制器根据主里程轮的里程数据对焊缝缺陷的位置进行定位,即能进一步保证里程测量的准确性,进而大幅度提升焊缝缺陷位置定位的准确性。
2)第二种实现方式:控制器被配置成执行以下步骤,具体地:
S201、获取漏磁信号:当漏磁检测节1沿管道轴向移动时,控制器获取漏磁检测节1采集的漏磁信号。
S202、根据漏磁信号确定管道焊缝存在缺陷:根据漏磁检测节1采集的漏磁信号确定管道焊缝是否存在缺陷,若存在缺陷时,执行步骤S203;
S203、取平均值:
当所有里程轮201的里程数据的波动幅值均在预设范围内时,说明所有里程轮201均未出现打滑现象,此时取所有里程轮201的里程数据的平均值,预设范围的上限和下限可根据实际情况设置。
S204、根据所有里程轮201的里程数据的平均值对缺陷的位置进行定位。
利用S201至S204,能够达到大幅度提升焊缝缺陷位置定位的准确性的技术效果,原因如下:
由于多个里程轮201不是设置在同一位置,因此多个里程轮201同时打滑的概率极低,若当所有里程轮201的里程数据的波动幅值均在预设范围内时,说明所有里程轮201均未出现打滑现象,此时,根据所有里程轮201的里程数据的平均值对缺陷的位置进行定位,能够达到大幅度提升焊缝缺陷位置定位的准确性。
可选地,在上述技术方案中,S104中,根据多个里程数据确定主里程轮的具体过程,包括S1040和S1041:
S1040、对每个里程轮201的里程数据进行比较并确定最大值;
S1041、将最大值对应的里程轮201确定为主里程轮。
具体地,本实施例中漏磁检测节1上设有三个沿漏磁检测节主体101周向间隔均匀分布的里程轮201,若其中一个或两个里程轮201打滑时则会导致对应的里程数据发生变 化(即里程轮201打滑时里程测量会暂时停滞,进而导致里程数据会相对减少),因此控制器在获得三组里程数据后将其进行比较,以确定出三组里程数据中的最大值,再进一步确定里程数据最大值对应的里程轮201为主里程轮。
可选地,在上述技术方案中,还包括速度控制系统3,所述速度控制系统3设置在所述漏磁检测节1的前侧,所述速度控制系统3用于:导通和阻挡所述管道中的流动介质的流动,具体地:
检测设备还包括设置在漏磁检测节1的前侧的速度控制系统3,速度控制系统3包括固定件301和转动件302,固定件301呈漏斗状并具有内部空腔,固定件301的周壁上设有用于供管道中的流动介质穿过的第一穿孔3011,转动件302可转动地设置在内部空腔中并具有阻挡部3021,阻挡部3021的形状、尺寸和第一穿孔3011的形状、尺寸一致。
若检测设备移动太快,则会导致无法对焊缝缺陷位置处进行充分的检测,影响检测结果,若检测设备移动太慢,则会降低焊缝缺陷的检测效率。为解决上述技术问题,本实施例中的检测设备设有通过法兰盘和漏磁检测节主体101连接的速度控制系统3,以对检测设备的运行速度进行控制。速度控制系统3还包括设置在漏磁检测节1的前侧的驱动电机、前挡板和后挡板,前挡板设置在固定件301的前端,后挡板设置在固定件301的后端,后挡板上设有通孔,固定件301的周壁上设有第一穿孔3011,流动介质(如石油或天然气)能经过该通孔、第一穿孔3011流入或流出固定件301的内部空腔中;转动件302设置在该内部空腔中并和驱动电机驱动连接,转动件302包括杆部、多个叶片部和多个阻挡部3021,杆部的一端自后挡板穿出并和驱动电机驱动连接,多个叶片部沿杆部的周向设置在杆部的外周壁上,阻挡部3021设置在叶片部远离杆部的一侧,且阻挡部3021的形状、尺寸和第一穿孔3011的形状、尺寸一致,即可通过控制阻挡部3021的转动位置实现第一穿孔3011不同大小开度的控制,第一穿孔3011打开的开度越大,流动介质流经内部空腔时越顺畅,则越利于检测设备的运行,该种方式实现了流动介质的主动泄流;若第一穿孔3011打开的开度越小,流动介质流经内部空腔时越不顺畅,该种不顺畅的流动会阻碍检测设备的运行,进而会降低检测设备的运行速度。
进一步地,本实施例中的速度控制系统3还包括密封舱体和减速机,密封舱体设置在漏磁检测节1的前侧,驱动电机和减速机均设置在密封舱体中;减速机的输入端和驱动电机的输出端连接,减速机的输出端自密封舱体中伸出并和转动件302驱动连接,且本实施例中的驱动电机可选为直流无刷伺服电机,减速机可选为行星齿轮减速机。
在本发明的一个实施例中,漏磁检测节1还包括套设在漏磁检测节主体101上并具有第二穿孔1043的第一皮碗组件104,第二穿孔1043的延伸方向和漏磁检测节主体101的轴向一致。具体地,第一皮碗组件104包括均由聚氨酯材料制成的第一密封皮碗1041和第二密封皮碗1042,两者均呈环状并分别套设在漏磁检测节主体101的前端和后端,第一密封皮碗1041和第二密封皮碗1042的外径略大于管道的内径,以便其能紧紧地撑在管道内周壁上形成密封面,进而隔离第一皮碗组件104前后两端的流动介质,以产生前后压差,该种压差能推动检测设备前行;进一步地,第一密封皮碗1041和第二密封皮碗1042上均设有第二穿孔1043,以避免第一皮碗组件104前后压差过大而使得检测设备的运行速度偏快,流动介质经第二穿孔1043穿过第一密封皮碗1041、第二密封皮碗1042,能起到泄流的作用,以缓解第一皮碗组件104前后两端的压力,进而降低检测设备的运行速度,该种泄流方式为固定泄流。
在本发明的一个实施例中,采用固定泄流和主动泄流相结合的方式,通过设置第二穿孔1043的数量使得固定泄流方式的泄流面积为2%,通过驱动转动件302改变第一穿孔3011的开度,使得主动泄流的泄流面积为12%,可将检测设备的运行速度控制在5m/s以下。
在本发明的一个实施例中,漏磁检测节1还包括套设在漏磁检测节主体101外侧的 筒状铁芯105和分别设置在筒状铁芯105两端的第一磁化器组件106、第二磁化器组件107,漏磁检测探头组件103设置在筒状铁芯105的外周侧并位于第一磁化器组件106、第二磁化器组件107之间,其中,筒状铁芯105和第一磁化器组件106、第二磁化器组件107共同作用以对管道内周壁进行饱和的磁化,保证在管道的缺陷位置处采集到高质量的漏磁信号,有利于进一步提升管道缺陷检测的准确性;漏磁检测探头组件103包括一侧和筒状铁芯105固定连接并呈平行四边形状的第二探头支架1031和漏磁检测探头1032,漏磁检测探头1032设置在第二探头支架1031远离筒状铁芯105的一侧上,进一步地,本实施例中漏磁检测探头组件103共设有两排,上述两排漏磁检测探头组件103沿漏磁检测节主体101的轴向前后排布,能有效防止漏磁检测探头组件103在进入管道时互相挤压损坏;每排漏磁检测探头组件103的数量为80个,上述80个漏磁检测探头组件103沿筒状铁芯105的周向间隔均匀分布,且相邻漏磁检测探头组件103之间有重复的检测区域,用于实现管道周向零间隙检测,保证管道内周壁上缺陷检测的全面性;此外,本实施例中的漏磁检测探头1032包括8个霍尔传感器和2个涡流传感器,霍尔传感器用于采集漏磁信号,以实现对较大尺寸的焊缝缺陷检测;涡流传感器用于实现管道的内壁缺陷和外壁缺陷的区分。
在本发明的一个实施例中,第一磁化器组件106和第二磁化器组件107均包括永磁铁108和钢刷109,永磁铁108套设在筒状铁芯105的外侧,钢刷109套设在永磁铁108的外侧并和管道接触,其中,钢刷109结构具有支撑能力强、耐冲击的优点;永磁铁108可以采用N48H钕铁硼永磁铁,该种材质的永磁铁108具有高性能、耐高温的优点;永磁铁108通过钢刷109与管道内周壁连接,永磁铁108产生的磁力线通过筒状铁芯105、永磁铁108、钢刷109和管道内周壁形成一个闭合的磁回路,以实现对管道内周壁的饱和磁化进,进而保证在管道的缺陷位置处采集到高质量漏磁信号。
在本发明的一个实施例中,第一移动机构102包括分别设置在漏磁检测节主体101的前端、后端的第一移动组件1021和第二移动组件1022,第一移动组件1021和第二移动组件1022均包括多个沿漏磁检测节主体101的周向间隔分布的移动轮1023。具体地,第一移动组件1021和第二移动组件1022均包括多个倾斜设置的移动轮支架,移动轮支架的一端和漏磁检测节主体101连接,移动轮1023设置在移动轮支架远离漏磁检测节主体101的一端,用于在实现漏磁检测节1移动功能的同时对其进行稳定的支撑。此外,由于漏磁节的重量较大,若不对其进行平稳支撑,则其轴向中间位置处会发生向下弯曲变形的情形,进而导致第一密封皮碗1041和第二密封皮碗1042在检测过程中和管道内周壁摩擦形成偏磨情形,而本实施例中将第一移动组件1021和第二移动组件1022均分别设置在漏磁检测节主体101的前端和后端,能避免产生上述情形。
在本发明的一个实施例中,漏磁节主体为中空结构,该中空结构形成第一密封舱,漏磁节还包括可抽取地设置在上述第一密封舱中的第一电子舱110,第一电子舱110整体可从第一密封舱中取出或放入,便于对第一电池111进行更换或对其它部件进行使用维护,第一电子舱110为承压结构且其承压能力≥10MPa。在本实施例中,第一电子舱110包括第一承压舱体和设置在第一承压舱体中的第一电池111和第一电子包112(本实施例中的第一电子包112可以和控制器集成为一体),第一电池111为第一电子包112及漏磁节上的各个探头提供电能,第一电子包112用于采集和存储检测数据(本实施例中第一电子包112采集的是来自漏磁检测探头1032的数据),第一电子包112采样频率可达5KHz,检测设备运行数据为5m/s时轴向采样间距为1mm。
在本发明的一个实施例中,检测设备还包括设置在漏磁检测节1的后侧并和漏磁检测节1柔性连接的裂纹动态检测节4。具体地,检测设备还包括万向节5,该万向节5的前端和漏磁检测节1连接,该万向节5的后端和裂纹动态检测节4连接,能避免漏磁检测节1转弯时对裂纹动态检测节4产生影响,增加了漏磁检测节1、裂纹动态检测节4 在过弯时的运动平稳性;进一步地,本实施例中的裂纹动态检测节4可以对环焊缝上开口较小的未熔合位置处、开口较小的未焊透位置处、裂纹、小尺寸咬边、焊缝开裂、氢致开裂、疲劳裂纹、收缩裂纹等多种缺陷进行检测。
在本发明的一个实施例中,裂纹动态检测节4包括裂纹动态检测节主体401、第二移动机构402和裂纹动态检测探头组件403,第二移动机构402可沿管道轴向移动地设置在裂纹动态检测节主体401上,裂纹动态检测探头组件403设置在裂纹动态检测节主体401的外周侧。具体地,第二移动机构402包括分别设置在裂纹动态检测节主体401的前端、后端的第三移动组件4021和第四移动组件4022,第三移动组件4021和第四移动组件4022均包括多个沿裂纹动态检测节主体401的周向间隔分布的移动轮1023。具体地,第三移动组件4021和第四移动组件4022均包括多个倾斜设置的移动轮支架,移动轮支架的一端和裂纹动态检测节主体401连接,移动轮1023设置在移动轮支架远离裂纹动态检测节主体401的一端,用于在实现裂纹动态检测节4移动功能的同时对其进行稳定的支撑,能避免支撑不平稳造成的偏磨现象,进而避免对裂纹动态检测探头组件403造成损坏;在本实施例中,裂纹动态检测探头组件403共设有两排,上述两排裂纹动态检测探头组件403沿裂纹动态检测节主体401的轴向前后排布,能有效防止裂纹动态检测探头组件403在进入管道时互相挤压损坏;每排裂纹动态检测探头组件403的数量为80个,上述80个裂纹动态检测探头组件403沿裂纹动态检测节主体401的周向间隔均匀分布,且相邻裂纹动态检测探头组件403之间有重复的检测区域,实现了管道内周壁上缺陷检测的全面性;此外,本实施例中的裂纹动态检测探头4032包括均与控制器通信连接的传感模块、信号处理模块和通信模块,传感模块由永磁体、磁扰动传感器和三轴霍尔磁传感器三部分组成,永磁体在检测过程中与管壁相对移动产生涡流信号;磁扰动传感器(如线圈)用于测量管道内周壁上裂纹缺陷信号,将永磁体靠近管道表面时,就会产生磁相互作用进而形成磁扰动环境,管道内周壁上的裂纹缺陷作为扰动源,就会形成磁扰动并被磁扰动传感器检测到;三轴霍尔磁传感器用于测量动生涡流在管道内周壁裂纹处产生的异常信号,传感模块在检测完成后将检测结果发送给信号处理模块,信号处理模块对上述检测结果进行信号处理,信号处理模块在信号处理完成后将处理后的结果通过通信模块发送给控制器。本实施例中的裂纹动态检测节4在检测设备处于移动的状态时即可实现管道内周壁上裂纹的检测,而无需为了保证检测结果的准确性而使检测设备刻意停止移动,有效提升了管道内周壁上裂纹的检测效率。
在本发明的一个实施例中,裂纹动态检测探头组件403包括一侧设置在裂纹动态检测节主体401上并呈平行四边形状的第一探头支架4031和裂纹动态检测探头4032,裂纹动态检测探头4032设置在第一探头支架4031远离裂纹动态检测节主体401的一侧上。具体地,第一探头支架4031包括共同围成平行四边形的第一连接件、第二连接件、第三连接件和第四连接件,第一连接件设置在裂纹动态检测节主体401上,第二连接件、第三连接件均倾斜设置且各自的底端分别和第一连接件的两端转动连接,第四连接件的两端分别和第二连接件、第三连接件的顶端连接,第四连接件上形成有裂纹动态检测探头4032安装腔,裂纹动态检测探头4032安装在裂纹动态检测探头4032安装中;裂纹动态检测探头4032的外侧包裹有耐磨片4034,用于对裂纹动态检测探头4032起保护作用,防止检测设备在管道中运行时对裂纹动态检测探头4032造成磨损;第一探头支架4031还包括倾斜设置在平行四边形中的弹簧4033,该弹簧4033的一端和第三连接件连接,该弹簧4033的另一端和第四连接件连接,弹簧4033提供拉力,第一探头支架4031能随着管道的凹凸变化而活动,使得裂纹动态检测探头4032在管道中能有效地和管道内周壁充分接触。
在本发明的一个实施例中,裂纹动态检测节4上也设有多个里程轮组件2,此处的多个里程轮组件2周向间隔均匀地设置在裂纹动态检测节主体401的后端并和管道内周壁 紧密接触,与漏磁检测节1中里程轮组件2的设置方式一样,此处的里程轮组件2也包括里程轮201支架和与控制器通信连接的里程轮201。在本实施例中,当漏磁检测节1、裂纹动态检测节4通过万向节5连接在一起时,需将各个传感器采集的数据进行统一分析,必须对数据进行对齐,即将漏磁节上的各个传感器数据与裂纹动态检测节4上各个传感器数据通过里程进行对准,以便对管道中某一位置的漏磁检测节1检测到数据和裂纹动态检测节4检测到的数据进行查看和对比分析,因此为避免产生漏磁检测节1、裂纹动态检测节4两节装置运行过程中因里程轮201转动误差造成数据偏移的情形,控制器控制裂纹动态检测节4上的里程轮201停止测量,仅依靠漏磁检测节1上的里程轮201检测的里程数据来确定主里程轮。
在本发明的一个实施例中,裂纹动态检测探头组件403还包括和控制器通信连接的应力检测探头,用于测量管道的轴向应力。
在本发明的一个实施例中,裂纹动态检测节4还包括设置再第一连接件上并和控制器通信连接的测径传感器6,用于检测管道内周壁上的凹坑、椭圆变形等几何缺陷。
在本发明的一个实施例中,裂纹动态检测节主体401为中空结构,该中空结构形成第二密封舱,裂纹动态检测节4还包括可抽取地设置在上述第二密封舱中的第二电子舱,第二电子舱整体可从第二密封舱中取出或放入,便于对第二电池进行更换或对其它部件进行使用维护,第二电子舱为承压结构且其承压能力≥10MPa。在本实施例中,第二电子舱包括第二承压舱体和设置在第二承压舱体中的IMU(惯性测量单元)、第二电池和第二电子包(本实施例中的第二电子包可以和控制器集成为一体),第二电池为IMU、第二电子包及裂纹动态检测节4上的各个探头提供电能,IMU用于对管道进行中心线检测及应变检测;第二电子包用于采集和存储检测数据(本实施例中第二电子包采集的是来自裂纹动态检测探头4032的数据),第二电子包采样频率可达5KHz,检测设备运行数据为5m/s时轴向采样间距为1mm。
在本发明的一个实施例中,裂纹动态检测节4还包括套设在裂纹动态检测节主体401上并具有第三穿孔4043的第二皮碗组件404,第三穿孔4043的延伸方向和裂纹动态检测节主体401的轴向一致。具体地,第二皮碗组件404包括均由聚氨酯材料制成的第三密封皮碗4041和第四密封皮碗4042,两者均呈环状并分别套设在裂纹动态检测节主体401的前端和后端,第三密封皮碗4041和第四密封皮碗4042的外径略大于管道的内径,以便其能紧紧地撑在管道内周壁上形成密封面;进一步地,第三密封皮碗4041和第四密封皮碗4042上均设有第三穿孔4043。
在本发明的一个实施例中,漏磁检测节1、裂纹动态检测节4均和万向节5可拆卸连接,且漏磁检测节1、裂纹动态检测节4分开时裂纹动态检测有独立的控制器对其上的各个部件进行控制,即漏磁检测节1、裂纹动态检测节4分开时两者能独立执行各自的功能而互不干扰。
在本发明的一个实施例中,漏磁检测节1和裂纹动态检测节4中分别设有第一汇线盒和第二汇线盒,第一汇线盒设置在漏磁检测节1的后端,用于将漏磁检测节1上漏磁检测探头1032的检测数据进行汇集后传输给漏磁检测节1中的第一电子包;第二汇线盒设置在裂纹动态检测节4的后端,用于将裂纹动态检测节4上裂纹动态检测探头4032的检测数据进行汇集后传输给裂纹动态检测节4中的第二电子包;进一步地,第一汇线盒和第二汇线盒均采用一拖八结构,漏磁检测节1和裂纹动态检测节4中每个探头的接插件都采用即插即用结构,以方便更换。
可选地,在上述技术方案中,S102中,根据漏磁信号确定管道焊缝存在缺陷的具体过程如下:
焊缝缺陷分为普通缺陷和裂纹缺陷,普通缺陷可以通过漏磁数据进行识别,数据分析软件将检测数据转换为线图、灰度图和伪彩图,通过对三种信号的综合分析可判断焊 缝是否存在缺陷。
裂纹型缺陷尺寸较小,现有内检测设备无法有效检测,本发明提出的内检测数据具备轴向无缝,轴向超高清的漏磁检测传感器,能够对较大的开口裂纹进行检测,在灰度图和彩图中能够清楚识别;较小裂纹缺陷通过内检测设备搭载的裂纹动态检测探头进行检测,在灰度图和彩图中可有效检测环焊缝裂纹缺陷,裂纹动态检测传感器缺陷信号明显。
可选地,在上述技术方案中,S105中,根据主里程轮的里程数据对缺陷的位置进行定位的具体过程如下:
在管道内检测实施前,会在管道沿线每1km埋设定标盒(marker),内检测实施过程中,漏磁检测节1经过时,漏磁检测节1的永磁体会触发marker,在marker中记录位置信息盒检测器通过时间。检测完成后数据分析过程中发现较大缺陷需开挖修复时,首先将内检测数据中时间信息和里程轮累计检测里程与marker触发信息综合分析,定位缺陷所在1公里范围。内检测数据可识别环焊缝和焊缝交角并记录环焊缝里程,得到整个管道焊缝列表,还可识别弯头信息,通过缺陷所在管节上下游时钟交角,结合上下游弯头和短节信息确定缺陷所在管节位置,通过主里程轮的里程数据与上游环焊缝的距离,可以得到缺陷的具体位置。
本发明提供一种用于管道焊缝缺陷的检测设备,检测设备包括漏磁检测节、多个里程轮组件和控制器,漏磁检测节上的漏磁检测探头组件用于采集管道内周壁的漏磁信号,控制器根据漏磁信号确定管道焊缝存在缺陷,之后根据多个里程轮的里程数据确定主里程轮,再根据主里程轮的里程数据对缺陷的位置进行定位,进一步保证了里程测量的准确性,进而大幅度提升焊缝缺陷位置定位的准确性。
如图9所示,本发明实施例的一种用于管道焊缝缺陷的检测方法,采用上述任一种用于管道焊缝缺陷的检测设备,具体包括如下步骤:
S1、当漏磁检测节1沿管道轴向移动时,获取并根据漏磁检测节1采集的漏磁信号确定管道焊缝是否存在缺陷;
S2、当判定管道焊缝存在缺陷时,根据每个里程轮组件2采集的里程数据,对缺陷的位置进行定位。
可选地,在上述技术方案中,如图10所示,S2包括:
S20、当判定管道焊缝存在缺陷时,获取并根据每个里程轮201的里程数据,从所有的里程轮201中确定出主里程轮,根据主里程轮的里程数据对缺陷的位置进行定位。
可选地,在上述技术方案中,S20中,从所有的里程轮201中确定出主里程轮,包括:
S1040、对每个里程轮201的里程数据进行比较并确定最大值;
S1041、将最大值对应的里程轮201确定为主里程轮。
在上述各实施例中,虽然对步骤进行了编号S1、S2等,但只是本发明给出的具体实施例,本领域的技术人员可根据实际情况调整S1、S2等的执行顺序,此也在本发明的保护范围内,可以理解,在一些实施例中,可以包含如上述各实施方式中的部分或全部。
需要说明的是,上述实施例提供的一种用于管道焊缝缺陷的检测方法的具体实现过程详见上述的一种用于管道焊缝缺陷的检测设备的实施例,在此不再赘述。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个具体技术特征以任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。但这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定” 等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
尽管上面已经示出和描述了本发明的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施方式进行变化、修改、替换和变型。

Claims (15)

  1. 一种用于管道焊缝缺陷的检测设备,其特征在于,包括控制器、多个里程轮组件(2),以及用于沿管道轴向移动的漏磁检测节(1);
    所述漏磁检测节(1)用于:当漏磁检测节(1)沿管道轴向移动时,采集管道内周壁的漏磁信号;
    每个里程轮组件(2)用于:当漏磁检测节(1)沿管道轴向移动时,获取里程数据;
    所述控制器用于:获取并根据所述漏磁检测节(1)采集的漏磁信号确定管道焊缝是否存在缺陷,当判定管道焊缝存在缺陷时,根据每个里程轮组件(2)采集的里程数据,对所述缺陷的位置进行定位。
  2. 根据权利要求1所述的一种用于管道焊缝缺陷的检测设备,其特征在于,所述漏磁检测节(1)包括漏磁检测节主体(101)、第一移动机构(102)和漏磁检测探头组件(103),所述第一移动机构(102)可沿管道轴向移动地设置在所述漏磁检测节主体(101)上,所述漏磁检测探头组件(103)设置在所述漏磁检测节主体(101)的外周侧并用于采集管道内周壁的漏磁信号。
  3. 根据权利要求2所述的一种用于管道焊缝缺陷的检测设备,其特征在于,多个里程轮组件(2)沿所述漏磁检测节主体(101)的周向间隔分布,每个里程轮组件(2)均包括用于和所述管道内周壁紧密接触的里程轮(201)。
  4. 根据权利要求3所述的一种用于管道焊缝缺陷的检测设备,其特征在于,所述控制器对所述缺陷的位置进行定位的过程,包括:
    当判定管道焊缝存在缺陷时,获取并根据每个所述里程轮(201)的里程数据,从所有的里程轮(201)中确定出主里程轮,根据所述主里程轮的里程数据对所述缺陷的位置进行定位。
  5. 根据权利要求4所述的一种用于管道焊缝缺陷的检测设备,其特征在于,从所有的里程轮(201)中确定出主里程轮的过程,包括:
    对每个所述里程轮(201)的里程数据进行比较并确定最大值;
    将所述最大值对应的里程轮(201)确定为所述主里程轮。
  6. 根据权利要求2所述的一种用于管道焊缝缺陷的检测设备,其特征在于,还包括速度控制系统(3),所述速度控制系统(3)设置在所述漏磁检测节(1)的前侧,所述速度控制系统(3)用于:导通和阻挡所述管道中的流动介质的流动。
  7. 根据权利要求6所述的一种用于管道焊缝缺陷的检测设备,其特征在于,所述速度控制系统(3)包括固定件(301)和转动件(302),所述固定件(301)呈漏斗状并具有内部空腔,所述固定件(301)的周壁上设有用于供所述管道中的流动介质穿过的第一穿孔(301),所述转动件(302)可转动地设置在所述内部空腔中并具有阻挡部(3021),所述阻挡部(3021)的形状、尺寸和所述第一穿孔(301)的形状、尺寸一致。
  8. 根据权利要求7所述的一种用于管道焊缝缺陷的检测设备,其特征在于,所述漏磁检测节(1)还包括套设在所述漏磁检测节主体(101)上并具有第二穿孔(1043)的第一皮碗组件(104),所述第二穿孔(1043)的延伸方向和所述漏磁检测节主体(101)的轴向一致。
  9. 根据权利要求2所述的一种用于管道焊缝缺陷的检测设备,其特征在于,所述漏磁检测节(1)还包括套设在所述漏磁检测节主体(101)外侧的筒状铁芯(105)和分别设置在所述筒状铁芯(105)两端的第一磁化器组件(106)、第二磁化器组件(107),所述漏磁检测探头组件(103)套设在所述筒状铁芯(105)的外侧并位于所述第一磁化器组件(106)、所述第二磁化器组件(107)之间。
  10. 根据权利要求9所述的一种用于管道焊缝缺陷的检测设备,其特征在于,所述 第一磁化器组件(106)和所述第二磁化器组件(107)均包括永磁铁(108)和钢刷(109),所述永磁铁(108)套设在所述筒状铁芯(105)的外侧,所述钢刷(109)套设在所述永磁铁(108)的外侧并和所述管道接触。
  11. 根据权利要求2所述的一种用于管道焊缝缺陷的检测设备,其特征在于,所述第一移动机构(102)包括分别设置在所述漏磁检测节主体(101)的前端、后端的第一移动组件(1021)和第二移动组件(1022),所述第一移动组件(1021)和第二移动组件(1022)均包括多个沿所述漏磁检测节主体(101)的周向间隔分布的移动轮(1023)。
  12. 根据权利要求1所述的一种用于管道焊缝缺陷的检测设备,其特征在于,所述检测设备还包括设置在所述漏磁检测节(1)后侧并和所述漏磁检测节(1)柔性连接的裂纹动态检测节(4)。
  13. 根据权利要求12所述的一种用于管道焊缝缺陷的检测设备,其特征在于,所述裂纹动态检测节(4)包括裂纹动态检测节主体(401)、第二移动机构(402)和裂纹动态检测探头组件(403),所述第二移动机构(402)可沿所述管道轴向移动地设置在所述裂纹动态检测节主体(401)上,所述裂纹动态检测探头组件(403)设置在所述裂纹动态检测节主体(401)的外周侧并用于对所述管道内周壁上的裂纹进行动态检测。
  14. 根据权利要求13所述的一种用于管道焊缝缺陷的检测设备,其特征在于,所述裂纹动态检测探头组件(403)包括一侧设置在所述裂纹动态检测节主体(401)上并呈平行四边形状的第一探头支架(4031)和裂纹动态检测探头(4032),所述裂纹动态检测探头(4032)设置在所述第一探头支架(4031)远离所述裂纹动态检测节主体(401)的一侧上。
  15. 一种管道焊缝缺陷的检测方法,其特征在于,采用权利要求1至14任一项所述的一种用于管道焊缝缺陷的检测设备,方法包括:
    当漏磁检测节(1)沿管道轴向移动时,获取并根据所述漏磁检测节(1)采集的漏磁信号确定管道焊缝是否存在缺陷;
    当判定管道焊缝存在缺陷时,根据每个里程轮组件(2)采集的里程数据,对所述缺陷的位置进行定位。
PCT/CN2023/114821 2022-10-11 2023-08-25 用于管道焊缝缺陷的检测设备和方法 WO2024078154A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211238730.6A CN115452938A (zh) 2022-10-11 2022-10-11 用于管道焊缝缺陷的检测设备
CN202211238730.6 2022-10-11

Publications (1)

Publication Number Publication Date
WO2024078154A1 true WO2024078154A1 (zh) 2024-04-18

Family

ID=84309428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114821 WO2024078154A1 (zh) 2022-10-11 2023-08-25 用于管道焊缝缺陷的检测设备和方法

Country Status (2)

Country Link
CN (1) CN115452938A (zh)
WO (1) WO2024078154A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115452938A (zh) * 2022-10-11 2022-12-09 国家石油天然气管网集团有限公司 用于管道焊缝缺陷的检测设备
CN116343115B (zh) * 2023-03-15 2024-01-26 杭州力为科技有限公司 一种pcb焊接缺陷检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1828219A (zh) * 2006-04-06 2006-09-06 上海交通大学 海底管道智能检测器
CN104048164A (zh) * 2014-06-16 2014-09-17 东北大学 一种管道内检测器里程测量装置及方法
US20190072522A1 (en) * 2016-05-20 2019-03-07 Desjardins Integrity Ltd. System and Method for Detecting and Characterizing Defects in a Pipe
CN110146069A (zh) * 2019-04-29 2019-08-20 北京航空航天大学 一种管道支管定位装置及方法
CN212691215U (zh) * 2020-07-27 2021-03-12 达州帝泰克检测设备有限公司 用于管道缺陷的高精度漏磁检测设备
CN114062481A (zh) * 2021-12-14 2022-02-18 国家石油天然气管网集团有限公司 Φ1219输气管道双向励磁超高清晰漏磁内检测系统
CN115452938A (zh) * 2022-10-11 2022-12-09 国家石油天然气管网集团有限公司 用于管道焊缝缺陷的检测设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1828219A (zh) * 2006-04-06 2006-09-06 上海交通大学 海底管道智能检测器
CN104048164A (zh) * 2014-06-16 2014-09-17 东北大学 一种管道内检测器里程测量装置及方法
US20190072522A1 (en) * 2016-05-20 2019-03-07 Desjardins Integrity Ltd. System and Method for Detecting and Characterizing Defects in a Pipe
CN110146069A (zh) * 2019-04-29 2019-08-20 北京航空航天大学 一种管道支管定位装置及方法
CN212691215U (zh) * 2020-07-27 2021-03-12 达州帝泰克检测设备有限公司 用于管道缺陷的高精度漏磁检测设备
CN114062481A (zh) * 2021-12-14 2022-02-18 国家石油天然气管网集团有限公司 Φ1219输气管道双向励磁超高清晰漏磁内检测系统
CN115452938A (zh) * 2022-10-11 2022-12-09 国家石油天然气管网集团有限公司 用于管道焊缝缺陷的检测设备

Also Published As

Publication number Publication date
CN115452938A (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
WO2024078154A1 (zh) 用于管道焊缝缺陷的检测设备和方法
CN109682881B (zh) 一种一体式连续油管缺陷检测装置
US11946903B2 (en) Magnetizer with cushion
CN108828059A (zh) 电磁多场耦合缺陷综合检测评价方法及装置
CN102636560B (zh) 一种在线管道探伤装置
KR101999446B1 (ko) 배관 검사 로봇의 배관 검사 방법
CN102759564B (zh) 一种可变径管外磁记忆检测装置
CN108254434B (zh) 一种埋地管道免开挖磁感检测的探头阵列装置及检测方法
CN109001294B (zh) 一种管道内壁检测装置
CN110108790B (zh) 一种矿用提升钢丝绳损伤的在役脉冲涡流检测装置的检测方法
CN112881513A (zh) 一种联合漏磁与电磁超声波检测管道缺陷的方法
CN112130099B (zh) 埋地管道内剩磁检测装置
CN103868984A (zh) 地面高压管汇内表面损伤检测装置
CN112888940A (zh) 一种金属管道缺陷检测的方法和装置
CN203465241U (zh) 管道无损检测装置
CN107345937A (zh) 一种风机主轴表面缺陷超声阵列原位检测方法
CN203758959U (zh) 地面高压管汇内表面损伤检测装置
CN206036676U (zh) 管道腐蚀在线检测装置
RU2539777C1 (ru) Наружный сканирующий дефектоскоп
CN109085239A (zh) 一种轮轴综合诊断平台
CN202794107U (zh) 一种可变径管外磁记忆检测装置
CN202583121U (zh) 一种在线管道探伤装置
CN212432444U (zh) 锅炉压力管道检测装置
CN205103208U (zh) 一种钢管全面探伤装置
CN209656001U (zh) 一种海底管道检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876359

Country of ref document: EP

Kind code of ref document: A1