WO2024078144A1 - 咔唑盐及其衍生物以及在制备太阳能电池中的应用 - Google Patents

咔唑盐及其衍生物以及在制备太阳能电池中的应用 Download PDF

Info

Publication number
WO2024078144A1
WO2024078144A1 PCT/CN2023/114273 CN2023114273W WO2024078144A1 WO 2024078144 A1 WO2024078144 A1 WO 2024078144A1 CN 2023114273 W CN2023114273 W CN 2023114273W WO 2024078144 A1 WO2024078144 A1 WO 2024078144A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
formula
compound
solar cell
hole transport
Prior art date
Application number
PCT/CN2023/114273
Other languages
English (en)
French (fr)
Inventor
张华�
董鑫
何永才
丁蕾
王永磊
顾小兵
何博
徐希翔
Original Assignee
隆基绿能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆基绿能科技股份有限公司 filed Critical 隆基绿能科技股份有限公司
Publication of WO2024078144A1 publication Critical patent/WO2024078144A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application relates to the technical field of solar cells, and in particular to a carbazole salt and its derivatives and their application in the preparation of solar cells.
  • Organic-inorganic hybrid perovskite solar cells have attracted much attention due to their special optoelectronic properties, such as large light absorption coefficient, long free carrier diffusion length, bipolar characteristics and high concentration defect tolerance. As a result, their efficiency has rapidly climbed from 3.8% in 2009 to more than 25%. Over time, perovskite solar cells have become increasingly limited in terms of efficiency and stability. This is mainly because there are still many defects on the surface of perovskites that have not been effectively resolved, resulting in many problems in the device, such as severe V OC loss, large hysteresis and poor stability.
  • the present application proposes a solar cell, whose organic layer contains a compound of formula I as shown below, wherein the compound of formula I is a carbazole salt and its derivatives, which have high hole extraction performance, reduce interface non-radiative recombination defects, and inhibit phase separation, thereby reducing the VOC loss of the device and improving the device efficiency.
  • the present application provides a solar cell, comprising an organic layer, wherein the organic layer contains at least one compound of formula I:
  • a + is Li + , K + , Na + , Rb + , Cs + , NH 4 + , preferably Li + , K + or Cs + ;
  • R 1 and R 2 are independently selected from one of hydrogen, halogen, alkyl, alkoxy, sulfonic acid, alkenyl, alkynyl, aryl or heteroaryl,
  • the organic layer comprises a hole transport layer, an interface modification layer and a perovskite absorption layer which are stacked in sequence, and the interface modification layer contains the compound of formula I.
  • the hole transport layer is doped with the compound of formula I and/or the perovskite absorption layer is doped with the compound of formula I.
  • the doping concentration of the compound of formula I is 0.01%-0.1%
  • the doping concentration of the compound of formula I is 0.01%-50%.
  • the organic layer comprises a stacked hole transport layer and a perovskite absorption layer, and at least one of the hole transport layer and the perovskite absorption layer is doped with the compound of formula I.
  • the doping concentration of the compound of formula I is 0.01%-50%.
  • the hole transport material of the hole transport layer is selected from a molybdenum oxide layer, a [bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) layer, a copper iodide layer, a 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene) layer, a PEDOT layer, a PEDOT:PSS layer, a P3HT layer, a P3OHT layer, a P3ODDT layer, a NiOx layer or a CuSCN layer; preferably one of KX3-3 ([2-(3,6-dimethoxy-9H-carbazole-9-yl)ethyl]phosphonic acid), PTAA (poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine]) or NiOx.
  • PTAA [bis(4-phenyl)
  • a substrate is stacked on a surface of the hole transport layer facing away from the perovskite absorption layer.
  • the substrate is a battery substrate or a crystalline silicon bottom battery.
  • the crystalline silicon bottom cell is selected from one of a PERC cell, a TOPCon cell, a HJT cell, an IBC cell or a HBC cell.
  • the present application provides a method for preparing a solar cell, characterized in that it comprises the following steps:
  • the organic layer contains at least one compound of formula I.
  • a solution containing the compound of formula I is mixed with a solvent to obtain a mixed solution, and the mixed solution is applied to a substrate to obtain an organic layer.
  • the solvent is ethanol, n-propanol, isopropanol or 2-methoxyethanol.
  • a + is Li + , K + , Na + , Rb + , Cs + , or NH 4 + , preferably Li + , K + or Cs + ;
  • R 1 and R 2 are independently selected from one of hydrogen, halogen, alkyl, alkoxy, sulfonic acid, alkenyl, alkynyl, aryl or heteroaryl,
  • carbazole salt and its derivatives are selected from one of the following structures:
  • R is a substituent
  • the present application provides an application of a carbazole salt and its derivatives in a photoelectric device.
  • the solar cell introduces a compound of formula I into the organic layer, wherein the compound of formula I is a carbazole salt and its derivatives have high hole extraction performance, can reduce interface non-radiative recombination defects, inhibit phase separation, thereby reducing the V OC loss of the device and improving device efficiency.
  • the A ions in the compound of formula I are alkali metal ions such as lithium ions, potassium ions, sodium ions, rubidium ions, and cesium ions, which will gradually penetrate into the perovskite lattice to reduce vacancy defects, and may have a certain inhibitory effect on ion migration, thereby inhibiting the hysteresis of the perovskite solar cell device and improving stability.
  • R 1 and R 2 in the compound of formula I can be groups such as alkanes, methoxy groups, ethoxy groups, ammonium salts, sulfonates, etc., which can passivate interface defects, reduce interface barriers, and enhance the transmission of hole carriers, thereby improving device performance.
  • FIG1 is a schematic diagram of the structure of a single-layer solar cell provided in the present application.
  • FIG. 2 is a schematic diagram of the structure of a stacked solar cell provided in the present application.
  • the present application provides a solar cell, comprising an organic layer, wherein the organic layer contains at least one compound of formula I:
  • a + is Li + , K + , Na + , Rb + , Cs + , NH 4 + , preferably K + , Na + or Cs + ;
  • R 1 and R 2 are independently selected from one of hydrogen, halogen (F, Cl, Br, I), alkyl (alkyl with carbon number of C1-C10), alkoxy (alkoxy with carbon number of C1-C10, preferably methoxy, ethoxy, etc.), sulfonic acid group, alkenyl (alkenyl with carbon number of C1-C10), alkynyl (alkynyl with carbon number of C1-C10), aryl (aryl with carbon number of C6-C20) or heteroaryl (heteroaryl with carbon number of C6-C20),
  • the compound of formula I can be a small molecule compound, an oligomer or a polymer, so n ⁇ 1, n can be 1-1000, for example, n can be 1, 2, 3, 4, 5, 6, 7, 8, 9, etc., and the value of n can be determined according to actual needs.
  • R 1 and R 2 may be the same or different.
  • R 1 and R 2 are independently selected from one of hydrogen, halogen, alkyl, alkoxy, sulfonic acid, alkenyl, alkynyl, aryl or heteroaryl, and n ⁇ 1.
  • R 1 and R 2 are independently selected from one of hydrogen, halogen, alkyl, alkoxy, sulfonic acid, alkenyl, alkynyl, aryl or heteroaryl, and n ⁇ 1.
  • R 1 and R 2 are independently selected from one of hydrogen, halogen, alkyl, alkoxy, sulfonic acid, alkenyl, alkynyl, aryl or heteroaryl, and n ⁇ 1.
  • R 1 and R 2 are independently selected from one of hydrogen, halogen, alkyl, alkoxy, sulfonic acid, alkenyl, alkynyl, aryl or heteroaryl, and n ⁇ 1.
  • R1 and R2 are independently selected from one of hydrogen, halogen, alkyl, alkoxy, sulfonic acid, alkenyl, alkynyl, aryl or heteroaryl, and n ⁇ 1.
  • R 1 and R 2 are independently selected from one of hydrogen, halogen, alkyl, alkoxy, sulfonic acid, alkenyl, alkynyl, aryl or heteroaryl, and n ⁇ 1.
  • the solar cell introduces a compound of formula I into the organic layer, wherein the compound of formula I is a carbazole salt and its derivatives have high hole extraction performance, can reduce interface non-radiative composite defects, inhibit phase separation, thereby reducing the V OC loss of the device and improving device efficiency.
  • the A ions in the compound of formula I are alkali metal ions such as lithium ions, potassium ions, sodium ions, rubidium ions, and cesium ions, which will gradually penetrate into the perovskite lattice to reduce vacancy defects, and may have a certain inhibitory effect on ion migration, thereby inhibiting the hysteresis of the perovskite solar cell device and improving stability.
  • R 1 and R 2 in the compound of formula I can be groups such as alkanes, methoxy groups, ethoxy groups, ammonium salts, sulfonates, and polymers, which can passivate interface defects, reduce interface barriers, and enhance the transmission of hole carriers, thereby improving device performance.
  • R is a substituent, for example, hydrogen, halogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted cycloalkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, substituted or unsubstituted aryl, or substituted or unsubstituted heteroaryl.
  • the organic layer includes a hole transport layer 3, an interface modification layer 4 and a perovskite absorption layer 5 which are stacked in sequence, and the interface modification layer 4 contains the compound of formula I.
  • the solar cell includes a substrate 1, a hole transport layer 3, an interface modification layer 4, a perovskite absorption layer 5, an electron transport layer 7, a buffer layer 8, a second transparent conductive layer 9 and a back electrode 10 which are stacked in sequence.
  • a first transparent conductive layer 2 may be provided between the substrate 1 and the hole transport layer 3.
  • An electron blocking/passivation layer 6 may be provided between the perovskite absorption layer 5 and the electron transport layer 7.
  • the interface modification layer 4 contains the compound of formula I, and the other layers do not contain the compound of formula I.
  • the interface modification layer 4 is formed of the compound of formula I.
  • the interface modification layer 4 is prepared by mixing the compound of formula I and a solvent.
  • the solvent is one of ethanol, n-propanol, isopropanol and 2-methoxyethanol.
  • the hole transport layer 3 is doped with the compound of formula I and/or the perovskite absorption layer 5 is doped with the compound of formula I.
  • the solar cell includes a substrate 1, a hole transport layer 3, an interface modification layer 4, a perovskite absorption layer 5, an electron transport layer 7, a buffer layer 8, a second transparent conductive layer 9 and a back electrode 10 which are stacked in sequence.
  • a first transparent conductive layer 2 may be provided between the substrate 1 and the hole transport layer 3.
  • An electron blocking/passivation layer 6 may be provided between the perovskite absorption layer 5 and the electron transport layer 7.
  • the interface modification layer 4 and the hole transport layer 3 contain the compound of formula I, and the other layers do not contain the compound of formula I.
  • the compound of formula I is uniformly doped.
  • the interface modification layer 4 is formed by the compound of formula I.
  • the doping concentration of the compound of formula I is 0.01%-50%, for example It can be 0.01%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%,
  • the solar cell includes a substrate 1, a hole transport layer 3, an interface modification layer 4, a perovskite absorption layer 5, an electron transport layer 7, a buffer layer 8, a second transparent conductive layer 9 and a back electrode 10 which are stacked in sequence.
  • a first transparent conductive layer 2 may be provided between the substrate 1 and the hole transport layer 3.
  • An electron blocking/passivation layer 6 may be provided between the perovskite absorption layer 5 and the electron transport layer 7.
  • the interface modification layer 4 and the perovskite absorption layer 5 contain the compound of formula I, and the other layers do not contain the compound of formula I.
  • the compound of formula I is located at the grain boundary of the perovskite crystal.
  • the interface modification layer 4 is formed by the compound of formula I.
  • the doping concentration of the compound of formula I is 0.01%-0.1%, for example, it can be 0.01%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09% or 0.1%.
  • the solar cell includes a substrate 1, a hole transport layer 3, an interface modification layer 4, a perovskite absorption layer 5, an electron transport layer 7, a buffer layer 8, a second transparent conductive layer 9 and a back electrode 10 which are stacked in sequence.
  • a first transparent conductive layer 2 may be provided between the substrate 1 and the hole transport layer 3.
  • An electron blocking/passivation layer 6 may be provided between the perovskite absorption layer 5 and the electron transport layer 7.
  • the hole transport layer 3, the interface modification layer 4 and the perovskite absorption layer 5 all contain the compound of formula I, and the other layers do not contain the compound of formula I.
  • the compound of formula I is uniformly doped.
  • the compound of formula I is located at the grain boundary of the perovskite crystal.
  • the interface modification layer 4 is formed by the compound of formula I.
  • the doping concentration of the compound of formula I is 0.01%-0.1%, for example, it can be 0.01%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09% or 0.1%.
  • the doping concentration of the compound of formula I is 0.01%-50%, for example, 0.01%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, %, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, or 50%.
  • the organic layer includes a hole transport layer 3 and a perovskite absorption layer 5 which are stacked, and at least one of the hole transport layer 3 and the perovskite absorption layer 5 is doped with the compound of formula I.
  • the solar cell includes a substrate 1 , a hole transport layer 3 , a perovskite absorption layer 5 , an electron transport layer 7 , a buffer layer 8 , a second transparent conductive layer 9 and a back electrode 10 which are stacked in sequence.
  • a first transparent conductive layer 2 may be provided between the substrate 1 and the hole transport layer 3.
  • An electron blocking/passivation layer 6 may be provided between the perovskite absorption layer 5 and the electron transport layer 7.
  • the hole transport layer 3 contains the compound of formula I, and other layers do not contain the compound of formula I.
  • the compound of formula I is uniformly doped.
  • the doping concentration of the compound of formula I is 0.01%-50%, for example, it can be 0.01%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%.
  • the solar cell includes a substrate 1 , a hole transport layer 3 , a perovskite absorption layer 5 , an electron transport layer 7 , a buffer layer 8 , a second transparent conductive layer 9 and a back electrode 10 which are stacked in sequence.
  • a first transparent conductive layer 2 may be provided between the substrate 1 and the hole transport layer 3.
  • An electron blocking/passivation layer 6 may be provided between the perovskite absorption layer 5 and the electron transport layer 7.
  • the perovskite absorption layer 5 contains the compound of formula I, and other layers do not contain the compound of formula I.
  • the compound of formula I is located at the grain boundary of the perovskite crystal.
  • the doping concentration of the compound of formula I is 0.01%-0.1%, for example, it can be 0.01%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09% or 0.1%.
  • the solar cell comprises a substrate 1, a spacer 2 and a substrate 3 which are stacked in sequence.
  • a hole transport layer 3 an interface modification layer 4 , a perovskite absorption layer 5 , an electron transport layer 7 , a buffer layer 8 , a second transparent conductive layer 9 and a back electrode 10 .
  • a first transparent conductive layer 2 may be provided between the substrate 1 and the hole transport layer 3.
  • An electron blocking/passivation layer 6 may be provided between the perovskite absorption layer 5 and the electron transport layer 7.
  • the hole transport layer 3 and the perovskite absorption layer 5 contain the compound of formula I, and the other layers do not contain the compound of formula I.
  • the compound of formula I is uniformly doped.
  • the compound of formula I is located at the grain boundary of the perovskite crystal.
  • the doping concentration of the compound of formula I is 0.01%-0.1%, for example, it can be 0.01%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09% or 0.1%.
  • the doping concentration of the compound of formula I is 0.01%-50%, for example, it can be 0.01%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%.
  • the hole transport material of the hole transport layer 3 is selected from a molybdenum oxide layer, a [bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) layer, a copper iodide layer, a 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene) layer, a PEDOT layer, a PEDOT:PSS layer, a P3HT layer, a P3OHT layer, a P3ODDT layer, a NiOx layer or a CuSCN layer; preferably one of KX3-3 ([2-(3,6-dimethoxy-9H-carbazole-9-yl)ethyl]phosphonic acid), PTAA (poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine]) or NiOx.
  • PTAA [bis(4-phenyl
  • the thickness thereof is 10-150 nm, for example, 10 nm, 20 nm, 30 nm, 40 nm, 45 nm, 60 nm, 70 nm, 80 nm, 90 nm, 100 nm, 110 nm, 120 nm, 130 nm, 140 nm or 150 nm.
  • Its thickness is 300-600nm, for example, it can be 300nm, 310nm, 320nm, 330nm, 340nm, 350nm, 360nm, 370nm, 380nm, 390nm, 400nm, 410nm, 420nm, 430nm, 440nm, 450nm, 460nm, 470nm, 480nm, 490nm, 500nm, 510nm, 520nm, 530nm, 540nm, 550nm, 560nm, 570nm, 580nm, 590nm or 600nm.
  • the substrate 1 is a battery substrate or a crystalline silicon bottom battery.
  • the crystalline silicon bottom cell is selected from one of a PERC cell, a TOPCon cell, a HJT cell, an IBC cell or a HBC cell.
  • the solar cell is a single-layer solar cell
  • the battery substrate is an organic polymer transparent substrate such as transparent glass, polyethylene terephthalate (PET), polyimide (PI), etc., preferably transparent glass.
  • the solar cell is a stacked solar cell.
  • the bottom cell may be a silicon-based cell.
  • the first transparent conductive layer 2 and the second transparent conductive layer 9 can both be an ITO layer, a FTO layer, an IZO layer, an IWO layer, an AZO layer or a ZTO layer, wherein the thickness of the first transparent conductive layer is 5-30nm, for example, it can be 5nm, 10nm, 20nm, or 30nm; the thickness of the second transparent conductive layer is 50-150nm, for example, it can be 50nm, 60nm, 70nm, 80nm, 90nm, 100nm, 110nm, 120nm or 130nm.
  • the electron transport layer 7 can be a titanium oxide layer, a tin oxide layer, a C60 layer or a C60-PCBM layer, a [60]PCBM ([6,6]-phenyl-C 61 butyric acid methyl ester, Chinese name is [6,6]-phenyl-C 61 -butyric acid isomethyl ester) layer, a [70]PCBM ([6,6]-Phenyl-C 71 -butyric acid methyl ester, Chinese name is [6,6]-phenyl-C 71 -butyric acid isomethyl ester) layer, a bis[60]PCB (Bis(1-[3-(methoxycarbonyl)propyl]-1-phenyl)-[6,6]C 62 ) layer, [60]ICBA (1',1",4',4"-Tetrahydro-di[1,4]methanonaphthaleno[1,2:2',3',56,60:2",3"
  • the electron blocking/passivation layer 6 is generally LiF, Al2O3 , etc., preferably LiF, including but not limited to these, as long as it can achieve the functions in the present application. Its thickness is 1-10nm, for example, 1nm, 2nm, 3nm, 4nm, 5nm, 6nm, 7nm, 8nm, 9nm or 10nm.
  • the buffer layer 8 is generally SnO 2 , ZnO 2 , etc., preferably SnO 2 , including but not limited to these, as long as it can achieve the functions in the present application. Its thickness is 10-20nm. For example, it can be 10nm, 11nm, 12nm, 13nm, 14nm, 15nm, 16nm, 17nm, 18nm, 19nm or 20nm.
  • the back electrode 10 is a metal electrode used in perovskite solar cells and is generally Au, Ag, C or Cu, preferably Ag, including but not limited to these, as long as it can achieve the functions in this application. Its thickness is 10-400nm.
  • the present application provides a method for preparing a solar cell, comprising the following steps:
  • Step 1 providing a substrate 1;
  • the substrate 1 is a battery substrate or a bottom battery.
  • a first transparent conductive layer 2 is deposited on the cell substrate or bottom cell.
  • Step 2 preparing an organic layer on one surface of the substrate 1;
  • Step 2.1 forming a hole transport layer 3 on a surface of the first transparent conductive layer 2 facing away from the substrate 1 .
  • the hole transport layer 3 may be doped with the compound of formula I or may not be doped with the compound of formula I.
  • Step 2.2 Form an interface modification layer 4 on the surface of the hole transport layer 3 facing away from the first transparent conductive layer 2 using the compound of formula I.
  • Step 2.2 is optional.
  • Step 2.3 forming a perovskite absorption layer 5 on the surface of the interface modification layer 4 facing away from the hole transport layer 3 .
  • the perovskite absorption layer 5 and the hole transport layer 3 are stacked.
  • the perovskite absorption layer 5 may be doped with the compound of formula I or may not be doped with the compound of formula I.
  • a + is Li + , K + , Na + , Rb + , Cs + , NH4 + ,
  • R 1 and R 2 are independently selected from one of hydrogen, halogen, alkyl, alkoxy, sulfonic acid, alkenyl, alkynyl, aryl or heteroaryl,
  • Step three forming an electron blocking/passivation layer 6 on the surface of the perovskite absorption layer 5 facing away from the hole transport layer 3 .
  • Step 4 forming an electron transport layer 7 on the surface of the electron blocking/passivation layer 6 facing away from the perovskite absorption layer 5 .
  • Step five forming a buffer layer 8 on the surface of the electron transport layer 7 which is away from the electron blocking/passivation layer 6 .
  • Step six forming a second transparent conductive layer 9 on the surface of the buffer layer 8 which is away from the electron transport layer 7 .
  • Step seven forming a back electrode 10 on a surface of the second transparent conductive layer 9 that is away from the buffer layer 8 .
  • the solar cell prepared by the above method is the aforementioned solar cell, wherein the substrate 1, the first transparent The conductive layer 2, the hole transport layer 3, the interface modification layer 4, the perovskite absorption layer 5, the electron transport layer 7, the buffer layer 8, the second transparent conductive layer 9 and the back electrode 10 can refer to the description of the aforementioned substrate 1, the first transparent conductive layer 2, the hole transport layer 3, the interface modification layer 4, the perovskite absorption layer 5, the electron transport layer 7, the buffer layer 8, the second transparent conductive layer 9 and the back electrode 10.
  • the present application also provides a carbazole salt and its derivatives, the structure of which is as follows:
  • a + is Li + , K + , Na + , Rb + , Cs + , NH4 + ,
  • R 1 and R 2 are independently selected from one of hydrogen, halogen, alkyl, alkoxy, sulfonic acid, alkenyl, alkynyl, aryl or heteroaryl,
  • the carbazole salt and its derivatives are the compounds of the aforementioned formula I, and the specific description can refer to the compounds of the aforementioned formula I.
  • the present application also provides a method for preparing a carbazole salt and its derivatives, comprising the following steps:
  • Step 1 mixing carbazole/carbazole derivative, alkali metal hydroxide and xylene, heating and boiling to obtain a vapor-like azeotropic mixture;
  • Step 2 condensing the vaporous azeotropic mixture
  • Step 3 Separate the water and introduce it into a water receiver to react for a period of time. After the reaction stops, filter and separate the carbazole salt and its derivatives dispersed in xylene and dry them to obtain the carbazole salt and its derivatives.
  • the alkali metal hydroxide may be sodium hydroxide, potassium hydroxide, cesium hydroxide or the like.
  • the present application also provides a use of the above-mentioned carbazole salt and its derivatives in optoelectronic devices, wherein the optoelectronic devices are solar cells, OLED devices, etc.
  • the solar cell in this embodiment is shown in FIG. 1a , and its preparation method comprises the following steps:
  • Step 1 Provide transparent glass as a battery substrate, deposit an ITO layer with a thickness of 180nm on one side of the battery substrate, and its square resistance is 10 ⁇ /sq, then cut the glass substrate with the ITO layer into 2 ⁇ 2cm2 size, and ultrasonically clean it with acetone, deionized water, and ethanol in turn, and then blow dry it with a nitrogen flow.
  • Step 2.1 Spin-coat a 2-methoxyethanol solution of KX3-3 on the surface of the ITO layer facing away from the battery substrate, and immediately place the layer on a hot plate and heat it at 100° C. for 10 min to form a hole transport layer with a thickness of 30 nm.
  • Step 2.2 Use a pipette to draw 60 ⁇ L of 0.7 mg/mL potassium carbazole solution (the solvent in the potassium carbazole solution is 2-methoxyethanol) and spin-coat it on the surface of the hole transport layer facing away from the ITO layer at a speed of 3000 rpm for 30 seconds. No treatment is required after completion to form an interface modification layer with a thickness of 30 nm.
  • Step 2.3 Prepare a perovskite light absorption layer on the surface of the interface modification layer facing away from the hole transport layer by a one-step method.
  • Step 3 Use an evaporation device to evaporate LiF on the surface of the perovskite absorption layer on the side away from the interface modification layer, thereby forming an electron blocking/passivation layer with a thickness of 1 nm.
  • Step 4 Use an evaporation device to evaporate C60 on the surface of the electron blocking/passivation layer on the side away from the perovskite absorption layer, thereby forming an electron transport layer with a thickness of 15 nm.
  • Step 5 Using an atomic vacuum deposition system, a SnO 2 buffer layer with a thickness of 15 nm is formed on the surface of the electron transport layer on the side away from the electron blocking/passivation layer.
  • Step 6 Using a physical vapor deposition (PVD) system, an ITO transparent conductive layer is prepared on the surface of the SnO 2 buffer layer on the side away from the electron transport layer, and the thickness of the ITO transparent conductive layer is 100 nm.
  • PVD physical vapor deposition
  • Step 7 Forming an Ag electrode with a thickness of 400 nm on the surface of the ITO transparent conductive layer away from the SnO 2 buffer layer.
  • the solar cell in this embodiment is shown in FIG. 1d , which is different from the solar cell in Example 1 in that the hole transport layer in the organic layer is prepared by the following method:
  • Step 2.1 Spin-coat a 2-methoxyethanol solution of KX3-3 and potassium carbazole on the surface of the ITO layer facing away from the battery substrate, wherein the concentrations of KX3-3 and potassium carbazole in the solution are both 0.7 mg/mL. Immediately after spin coating, place the layer on a hot plate and heat it at 100°C for 10 minutes to form a hole transport layer containing potassium carbazole with a thickness of 30 nm.
  • the solar cell in this embodiment is shown in FIG. 1e , which is different from the solar cell in Example 1 in that the perovskite absorption layer is in the organic layer.
  • the preparation method of the perovskite absorption layer in this embodiment is as follows:
  • Step 2.3 Prepare a perovskite light absorption layer on the surface of the interface modification layer facing away from the hole transport layer by a one-step method.
  • the spin coating is completed, it is immediately placed on a hot stage and heated at 120° C. for 20 minutes to form a perovskite absorption layer containing potassium carbazole, and the thickness of the perovskite absorption layer is 600 nm.
  • the solar cell in this embodiment is shown in FIG. 1c, which is similar to the solar cell in Example 2. The difference is that there is no interface modification layer in the organic layer.
  • the solar cell in this embodiment is shown in FIG. 1 b , which is different from the solar cell in Example 3 in that there is no interface modification layer in the organic layer.
  • Step one in this embodiment is: providing an SHJ single junction cell, and using a physical vapor deposition (PVD) system to deposit an ITO transparent conductive layer on one side surface of the SHJ single junction cell, wherein the ITO transparent conductive layer has a square resistance of 40 ⁇ /sq and a thickness of 20nm.
  • PVD physical vapor deposition
  • the solar cell in this embodiment is different from that in Example 1 in that potassium carbazole in the organic layer is replaced by sodium carbazole.
  • the solar cell in this embodiment is different from that in Example 1 in that potassium carbazole in the organic layer is replaced with cesium carbazole.
  • the solar cell of Comparative Example 1 is different from the solar cell of Example 1 in that there is no interface modification layer.
  • the performance of the solar cell in this embodiment is shown in Table 1.
  • Table 1 shows the performance parameters of the solar cells of various embodiments and comparative examples.
  • the carbazole salt of the material described in the present application when introduced, on the one hand, the film quality of KX3-3 can be improved, the recombination center can be reduced, and the device V OC can be improved; when the material has an interface, on the one hand, the coverage rate can be improved, and on the other hand, the alkali metal salt or other functional group molecules therein can react chemically with the perovskite, improving the lower interface defects and ion migration problems of the perovskite, thereby improving the quality of the perovskite, facilitating the vertical orientation growth of the perovskite, and improving the extraction of carriers; when the material is directly added to the perovskite precursor solution, it plays a role in delaying crystallization during the growth of perovskite crystals, which is beneficial to grain growth, reducing grain boundaries, thereby improving the film quality of the perovskite, and ultimately improving the device performance. Especially VOC and PCE.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the scheme of this embodiment. Those of ordinary skill in the art may understand and implement it without creative effort.
  • references to "one embodiment,” “embodiment,” or “one or more embodiments” herein mean that a particular feature, structure, or characteristic described in conjunction with the embodiment is included in at least one embodiment of the present application.
  • examples of the term “in one embodiment” herein do not necessarily all refer to the same embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请公开了一种太阳能电池,包括有机层,所述有机层含有至少一种如式(I)化合物:其中A+为Li+、K+、Na+、Rb+、Cs+、NH4 +,R1、R2独立地选自氢、卤素、烷基、烷氧基、磺酸基、烯基、炔基、芳基或杂芳基中的一种,n≥1。本申请还提供一种太阳能电池的制备方法。本申请还提供一种太阳能电池的制备方法。本申请还提供一种咔唑盐及其衍生物。本申请的太阳能电池,由于其有机层中含有式I化合物,式I化合物为咔唑盐及其衍生物,咔唑盐及其衍生物具有较高的空穴提取性能,降低了界面非辐射复合缺陷,抑制相分离,从而降低器件的VOC损失并提高器件效率。

Description

咔唑盐及其衍生物以及在制备太阳能电池中的应用
本申请要求在2022年10月9日提交中国专利局、申请号为202211227121.0、名称为“咔唑盐及其衍生物以及在制备太阳能电池中的应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及太阳能电池技术领域,具体涉及一种咔唑盐及其衍生物以及在制备太阳能电池中的应用。
背景技术
有机-无机杂化钙钛矿太阳能电池引起特殊的光电性能而备受关注,比如光吸收系数大,自由载流子扩散长度长,具有双极性特性及高浓度的缺陷容忍等。因此,其效率迅速从2009年的3.8%攀升至25%以上。随着时间推移,钙钛矿太阳能电池在效率和稳定性方面越来越受到限制。这主要是因为钙钛矿的体表仍存在很多缺陷未得到有效解决,从而导致器件存在很多问题,比如严重的VOC损失、较大的迟滞现象及较差的稳定性。
发明内容
针对上述问题,本申请提出了一种太阳能电池,由于其有机层中含有如下文所示的式I化合物,式I化合物为咔唑盐及其衍生物,咔唑盐及其衍生物具有较高的空穴提取性能,降低了界面非辐射复合缺陷,抑制相分离,从而降低器件的VOC损失并提高器件效率。
本申请提供一种太阳能电池,包括有机层,所述有机层含有至少一种式I化合物:
其中A+为Li+、K+、Na+、Rb+、Cs+、NH4 +,优选为Li+、K+或Cs+
R1、R2独立地选自氢、卤素、烷基、烷氧基、磺酸基、烯基、炔基、芳基或杂芳基中的一种,
n≥1。
进一步地,所述式I化合物选自以下结构中的一种:
进一步地,所述有机层包括依次层叠设置的空穴传输层、界面修饰层以及钙钛矿吸收层,且所述界面修饰层内含有所述式I化合物。
进一步地,所述空穴传输层内掺杂有所述式I化合物和/或所述钙钛矿吸收层内掺杂有所述式I化合物,
优选地,当所述钙钛矿吸收层内掺杂有所述式I化合物时,所述式I化合物的掺杂浓度为0.01%-0.1%;
优选地,当所述空穴传输层内掺杂有所述式I化合物时,所述式I化合物的掺杂浓度为0.01%-50%。
进一步地,所述有机层包括层叠设置的空穴传输层和钙钛矿吸收层,且所述空穴传输层和钙钛矿吸收层中至少有一层内掺杂有式I化合物,优选地,所述式I化合物的掺杂浓度为0.01%-50%。
进一步地,所述空穴传输层的空穴传输材料选自氧化钼层、[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)层、碘化铜层、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴)层、PEDOT层、PEDOT:PSS层、P3HT层、P3OHT层、P3ODDT层、NiOx层或CuSCN层;优选为KX3-3([2-(3,6-二甲氧基-9H-咔唑-9-基)乙基]膦酸)、PTAA(聚[双(4-苯基)(2,4,6-三甲基苯基)胺])或者NiOx中的一种。
进一步地,所述钙钛矿吸收层的钙钛矿材料的化学通式为AB(XnY1-n)3,其中A选自CH3NH3、C4H9NH3、NH2=CHNH2或碱金属中的一种或多种;B选自Pb或Sn的二价金属离子;X、Y均为卤素,且X与Y不相同;n为1、2或3。
进一步地,所述空穴传输层背离所述钙钛矿吸收层一侧的表面层叠有基底。
进一步地,所述基底为电池衬底或晶硅底电池。
进一步地,所述晶硅底电池选自PERC电池、TOPCon电池、HJT电池、IBC电池或HBC电池中的一种。
本申请提供一种太阳能电池的制备方法,其特征在于,包括如下步骤:
提供基底;
在所述基底的一侧表面上制备有机层;
所述有机层中含有至少一种式I化合物。
进一步地,将含有所述式I化合物的溶液与溶剂混合得到混合液,将所述混合液施加于基底上得到有机层,优选地,所述溶剂为乙醇、正丙醇、异丙醇或2-甲氧基乙醇。
本申请提供一种咔唑盐及其衍生物,其结构如下式I:
其中A+为Li+、K+、Na+、Rb+、Cs+、NH4 +,优选为Li+、K+或Cs+
R1、R2独立地选自氢、卤素、烷基、烷氧基、磺酸基、烯基、炔基、芳基或杂芳基中的一种,
n≥1。
进一步地,所述咔唑盐及其衍生物选自以下结构中的一种:
其中,R为取代基。
本申请提供一种咔唑盐及其衍生物在光电器件中的应用。
本申请提供的太阳能电池,在所述有机层中引入式I化合物,其中式I化合物为咔唑盐及其衍生物具有较高的空穴提取性能,可以降低界面非辐射复合缺陷,抑制相分离,从而降低器件的VOC损失并提高器件效率。式I化合物中的A离子为锂离子、钾离子、钠离子、铷离子、铯离子等碱金属离子会逐渐渗透进钙钛矿晶格减少空位缺陷,可能对离子迁移有一定抑制作用,从而抑制钙钛矿太阳能电池器件的迟滞并改善稳定性。式I化合物中的R1以及R2可以为烷烃、甲氧基、乙氧基、铵盐、磺酸盐等基团可钝化界面缺陷,降低界面势垒,增强空穴载流子的传输,从而提高器件性能。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的单层太阳能电池的结构示意图。
图2为本申请提供的叠层太阳能电池的结构示意图。
附图标记说明
1-基底,2-第一透明导电层,3-空穴传输层,4-界面修饰层,5-钙钛矿吸收
层,6-电子阻挡/钝化层,7-电子传输层,8-缓冲层,9-第二透明导电层,10-背电极。
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下对本申请的示范性实施例做出说明,其中包括本申请实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本申请的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。在本申请中上下位置依据光线入射方向而定,光线入射处为上。
本申请提供一种太阳能电池,包括有机层,所述有机层中含有至少一种如式I化合物:
其中A+为Li+、K+、Na+、Rb+、Cs+、NH4 +,优选为K+、Na+或Cs+
R1、R2独立地选自氢、卤素(F、Cl、Br、I)、烷基(碳数在C1-C10的烷基)、烷氧基(碳数在C1-C10的烷氧基,优选为甲氧基、乙氧基等)、磺酸基、烯基(C数在C1-C10的烯基)、炔基(C数在C1-C10的炔基)、芳基(C数在C6-C20的芳基)或杂芳基(C数在C6-C20的杂芳基)中的一种,
式I化合物可以为小分子化合物、低聚物或高聚物,因此n≥1,n可以为1-1000,例如n可以为1、2、3、4、5、6、7、8、9等,n的数值可根据实际需要来确定。
具体地,R1、R2可以相同也可以不同。
具体地,当A+为Li+时,R1、R2独立地选自氢、卤素、烷基、烷氧基、磺酸基、烯基、炔基、芳基或杂芳基中的一种,n≥1。
具体地,当A+为K+时,R1、R2独立地选自氢、卤素、烷基、烷氧基、磺酸基、烯基、炔基、芳基或杂芳基中的一种,n≥1。
具体地,当A+为Na+时,R1、R2独立地选自氢、卤素、烷基、烷氧基、磺酸基、烯基、炔基、芳基或杂芳基中的一种,n≥1。
具体地,当A+为Rb+时,R1、R2独立地选自氢、卤素、烷基、烷氧基、磺酸基、烯基、炔基、芳基或杂芳基中的一种,n≥1。
具体地,当A+为Cs+时,R1、R2独立地选自氢、卤素、烷基、烷氧基、磺酸基、烯基、炔基、芳基或杂芳基中的一种,n≥1。
具体地,当A+为NH4 +时,R1、R2独立地选自氢、卤素、烷基、烷氧基、磺酸基、烯基、炔基、芳基或杂芳基中的一种,n≥1。
本申请提供的太阳能电池,在所述有机层中引入式I化合物,其中式I化合物为咔唑盐及其衍生物具有较高的空穴提取性能,可以降低界面非辐射复合缺陷,抑制相分离,从而降低器件的VOC损失并提高器件效率。式I化合物中的A离子为锂离子、钾离子、钠离子、铷离子、铯离子等碱金属离子会逐渐渗透进钙钛矿晶格减少空位缺陷,可能对离子迁移有一定抑制作用,从而抑制钙钛矿太阳能电池器件的迟滞并改善稳定性。式I化合物中的R1以及R2可以为烷烃、甲氧基、乙氧基、铵盐、磺酸盐及聚合物等基团可钝化界面缺陷,降低界面势垒,增强空穴载流子的传输,从而提高器件性能。
在本申请中,所述式I化合物选自以下结构中的一种:
其中R为取代基,例如为氢、卤素、取代或未取代的烷基、取代或未取代的烷氧基、取代或未取代的环烷基、取代或未取代的烯基、取代或未取代的炔基、取代或未取代的芳基、取代或未取代的杂芳基。
在本申请中,所述有机层包括依次层叠设置的空穴传输层3、界面修饰层4以及钙钛矿吸收层5,且所述界面修饰层4内含有所述式I化合物。
在一个具体实施方式中,如图1a所示,所述太阳能电池包括依次层叠设置的基底1、空穴传输层3、界面修饰层4、钙钛矿吸收层5、电子传输层7、缓冲层8、第二透明导电层9以及背电极10。
具体地,在所述基底1与所述空穴传输层3之间还可以设置第一透明导电层2。在所述钙钛矿吸收层5与所述电子传输层7之间还可以设置电子阻挡/钝化层6。
具体地,在图1a所示的太阳能电池中,只有界面修饰层4中含有式I化合物,其他层中均不含有式I化合物。界面修饰层4是由式I化合物形成。
具体地,所述界面修饰层4由式I化合物和溶剂混合后制备界面修饰层4。
所述溶剂为乙醇、正丙醇、异丙醇、2-甲氧基乙醇中的一种。
在本申请中,所述空穴传输层3内掺杂有所述式I化合物和/或所述钙钛矿吸收层5内掺杂有所述式I化合物。
在一个具体实施方式中,如图1d所示,所述太阳能电池包括依次层叠设置的基底1、空穴传输层3、界面修饰层4、钙钛矿吸收层5、电子传输层7、缓冲层8、第二透明导电层9以及背电极10。
具体地,在所述基底1与所述空穴传输层3之间还可以设置第一透明导电层2。在所述钙钛矿吸收层5与所述电子传输层7之间还可以设置电子阻挡/钝化层6。
具体地,在图1d所示的太阳能电池中,只有界面修饰层4和空穴传输层3中含有式I化合物,其他层中均不含有式I化合物。在空穴传输层3中,式I化合物是均匀掺杂。界面修饰层4是由式I化合物形成。
在所述空穴传输层3中,所述式I化合物的掺杂浓度为0.01%-50%,例如 可以为0.01%、0.02%、0.03%、0.04%、0.05%、0.06%、0.07%、0.08%、0.09%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%或50%。
在一个具体实施方式中,如图1e所示,所述太阳能电池包括依次层叠设置的基底1、空穴传输层3、界面修饰层4、钙钛矿吸收层5、电子传输层7、缓冲层8、第二透明导电层9以及背电极10。
具体地,在所述基底1与所述空穴传输层3之间还可以设置第一透明导电层2。在所述钙钛矿吸收层5与所述电子传输层7之间还可以设置电子阻挡/钝化层6。
具体地,在图1e所示的太阳能电池中,只有界面修饰层4和钙钛矿吸收层5中含有式I化合物,其他层中均不含有式I化合物。在钙钛矿吸收层5中,式I化合物位于所述钙钛矿晶体的晶界处。界面修饰层4是由式I化合物形成。
在所述钙钛矿吸收层5中,所述式I化合物的掺杂浓度为0.01%-0.1%,例如可以为0.01%、0.02%、0.03%、0.04%、0.05%、0.06%、0.07%、0.08%、0.09%或0.1%。
在一个具体实施方式中,所述太阳能电池包括依次层叠设置的基底1、空穴传输层3、界面修饰层4、钙钛矿吸收层5、电子传输层7、缓冲层8、第二透明导电层9以及背电极10。
具体地,在所述基底1与所述空穴传输层3之间还可以设置第一透明导电层2。在所述钙钛矿吸收层5与所述电子传输层7之间还可以设置电子阻挡/钝化层6。
具体地,在该实施方式中的太阳能电池,在所述空穴传输层3、界面修饰层4以及钙钛矿吸收层5中均含有式I化合物,其他层中均不含有式I化合物。在空穴传输层3中,式I化合物是均匀掺杂。在钙钛矿吸收层5中,式I化合物位于所述钙钛矿晶体的晶界处。界面修饰层4是由式I化合物形成。
在所述钙钛矿吸收层5中,所述式I化合物的掺杂浓度为0.01%-0.1%,例如可以为0.01%、0.02%、0.03%、0.04%、0.05%、0.06%、0.07%、0.08%、0.09%或0.1%。
在所述空穴传输层3中,所述式I化合物的掺杂浓度为0.01%-50%,例如可以为0.01%、0.02%、0.03%、0.04%、0.05%、0.06%、0.07%、0.08%、0.09%、 0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%或50%。
在本申请中,所述有机层包括层叠设置的空穴传输层3和钙钛矿吸收层5,且所述空穴传输层3和钙钛矿吸收层5中至少有一层内掺杂有式I化合物。
在一个具体实施方式中,如图1c所示,所述太阳能电池包括依次层叠设置的基底1、空穴传输层3、钙钛矿吸收层5、电子传输层7、缓冲层8、第二透明导电层9以及背电极10。
具体地,在所述基底1与所述空穴传输层3之间还可以设置第一透明导电层2。在所述钙钛矿吸收层5与所述电子传输层7之间还可以设置电子阻挡/钝化层6。
所述空穴传输层3中含有式I化合物,其他层中均不含有式I化合物。在空穴传输层3中,式I化合物是均匀掺杂。
在所述空穴传输层3中,所述式I化合物的掺杂浓度为0.01%-50%,例如可以为0.01%、0.02%、0.03%、0.04%、0.05%、0.06%、0.07%、0.08%、0.09%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%或50%。
在一个具体实施方式中,如图1b所示,所述太阳能电池包括依次层叠设置的基底1、空穴传输层3、钙钛矿吸收层5、电子传输层7、缓冲层8、第二透明导电层9以及背电极10。
具体地,在所述基底1与所述空穴传输层3之间还可以设置第一透明导电层2。在所述钙钛矿吸收层5与所述电子传输层7之间还可以设置电子阻挡/钝化层6。
所述钙钛矿吸收层5中含有式I化合物,其他层中均不含有式I化合物。在钙钛矿吸收层5中,式I化合物位于所述钙钛矿晶体的晶界处。
在所述钙钛矿吸收层5中,所述式I化合物的掺杂浓度为0.01%-0.1%,例如可以为0.01%、0.02%、0.03%、0.04%、0.05%、0.06%、0.07%、0.08%、0.09%或0.1%。
在一个具体实施方式中,所述太阳能电池包括依次层叠设置的基底1、空 穴传输层3、界面修饰层4、钙钛矿吸收层5、电子传输层7、缓冲层8、第二透明导电层9以及背电极10。
具体地,在所述基底1与所述空穴传输层3之间还可以设置第一透明导电层2。在所述钙钛矿吸收层5与所述电子传输层7之间还可以设置电子阻挡/钝化层6。
具体地,在该实施方式中的太阳能电池,在所述空穴传输层3以及钙钛矿吸收层5中均含有式I化合物,其他层中均不含有式I化合物。在空穴传输层3中,式I化合物是均匀掺杂。在钙钛矿吸收层5中,式I化合物位于所述钙钛矿晶体的晶界处。
在所述钙钛矿吸收层5中,所述式I化合物的掺杂浓度为0.01%-0.1%,例如可以为0.01%、0.02%、0.03%、0.04%、0.05%、0.06%、0.07%、0.08%、0.09%或0.1%。
在所述空穴传输层3中,所述式I化合物的掺杂浓度为0.01%-50%,例如可以为0.01%、0.02%、0.03%、0.04%、0.05%、0.06%、0.07%、0.08%、0.09%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%、35%、36%、37%、38%、39%、40%、41%、42%、43%、44%、45%、46%、47%、48%、49%或50%。
在本申请中,所述空穴传输层3的空穴传输材料选自氧化钼层、[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)层、碘化铜层、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴)层、PEDOT层、PEDOT:PSS层、P3HT层、P3OHT层、P3ODDT层、NiOx层或CuSCN层;优选为KX3-3([2-(3,6-二甲氧基-9H-咔唑-9-基)乙基]膦酸)、PTAA(聚[双(4-苯基)(2,4,6-三甲基苯基)胺])或者NiOx中的一种。包括但不仅限于此。其厚度为10-150nm,例如可以为10nm、20nm、30nm、40nm、45nm、60nm、70nm、80nm、90nm、100nm、110nm、120nm、130nm、140nm或150nm。
在本申请中,所述钙钛矿吸收层5可以为有机-无机杂化卤化物钙钛矿层、全无机卤化物钙钛矿层、无铅钙钛矿层等,包括但不仅限于此;进一步钙钛矿吸收层的钙钛矿材料的化学通式为AB(XnY1-n)3,其中A选自CH3NH3、C4H9NH3、NH2=CHNH2或碱金属中的一种或多种;B选自Pb或Sn的二价金属离子;X、Y均为卤素,且X与Y不相同;n为1、2或3。其厚度为300-600nm,例如可以为300nm、310nm、320nm、330nm、340nm、350nm、360nm、370nm、380nm、390nm、400nm、410nm、420nm、430nm、440nm、450nm、 460nm、470nm、480nm、490nm、500nm、510nm、520nm、530nm、540nm、550nm、560nm、570nm、580nm、590nm或600nm。
在本申请中,所述基底1为电池衬底或晶硅底电池。
具体地,所述晶硅底电池选自PERC电池、TOPCon电池、HJT电池、IBC电池或HBC电池中的一种。
具体地,当所述基底1为电池衬底时,所述太阳能电池为单层太阳能电池,所述电池衬底为透明玻璃、聚对苯二甲酸乙二醇酯(PET)、聚酰亚胺(PI)等有机聚合物透明衬底,优选为透明玻璃。
具体地,当所述基底1为底电池时,所述太阳能电池为叠层太阳能电池。
具体地,所述底电池可以为硅基电池。
具体地,所述第一透明导电层2以及所述第二透明导电层9均可以为ITO层、FTO层、IZO层、IWO层、AZO层或ZTO层,其中,第一透明导电层厚度为5-30nm,例如可以为5nm、10nm、20nm、30nm;第二透明导电层厚度为50-150nm,例如可以为50nm、60nm、70nm、80nm、90nm、100nm、110nm、120nm或130nm。
所述电子传输层7可以为氧化钛层、氧化锡层、C60层或C60-PCBM层、[60]PCBM([6,6]-phenyl-C61butyric acid methyl ester,中文名称为[6,6]-苯基-C61-丁酸异甲酯)层、[70]PCBM([6,6]-Phenyl-C71-butyric acid methyl ester,中文名称为[6,6]-苯基-C71-丁酸异甲酯)层、bis[60]PCB(Bis(1-[3-(methoxycarbonyl)propyl]-1-phenyl)-[6,6]C62)层、[60]ICBA(1',1”,4',4”-Tetrahydro-di[1,4]methanonaphthaleno[1,2:2',3',56,60:2”,3”][5,6]fullerene-C60)层等,包括但不仅限于此,只要能实现在本申请中的功能即可。其厚度为10-20nm,例如可以为10nm、11nm、12nm、13nm、14nm、15nm、16nm、17nm、18nm、19nm或20nm。
所述电子阻挡/钝化层6,一般为LiF、Al2O3等,优选为LiF,包括但不仅限于此,只要能实现在本申请中的功能即可。其厚度为1-10nm,例如可以为1nm、2nm、3nm、4nm、5nm、6nm、7nm、8nm、9nm或10nm。
所述缓冲层8,一般为SnO2、ZnO2等,优选为SnO2,包括但不仅限于此,只要能实现在本申请中的功能即可。其厚度为10-20nm.例如可以为10nm、11nm、12nm、13nm、14nm、15nm、16nm、17nm、18nm、19nm或20nm。
所述背电极10,应用于钙钛矿太阳电池的金属电极一般为Au、Ag、C或Cu等,优选为Ag,包括但不仅限于此,只要能实现在本申请中的功能即可。其厚度为10-400nm。
本申请提供一种太阳能电池的制备方法,包括如下步骤:
步骤一:提供基底1;
具体地,所述基底1为电池衬底或底电池。
在所述电池衬底或底电池上沉积第一透明导电层2。
步骤二:在所述基底1的一侧表面上制备有机层;
步骤2.1:在所述第一透明导电层2背离所述基底1的一侧表面形成空穴传输层3。
在所述空穴传输层3中可以掺杂式I化合物,也可以不掺杂式I化合物。
步骤2.2:在所述空穴传输层3背离所述第一透明导电层2的一侧表面采用式I化合物形成界面修饰层4。
步骤2.2可以没有。
步骤2.3:在所述界面修饰层4背离所述空穴传输层3的一侧表面形成钙钛矿吸收层5。
当没有界面修饰层4时,所述钙钛矿吸收层5与空穴传输层3层叠设置。
所述钙钛矿吸收层5中可以掺杂式I化合物,也可以不掺杂式I化合物。
所述式I化合物为
其中A+为Li+、K+、Na+、Rb+、Cs+、NH4 +
R1、R2独立地选自氢、卤素、烷基、烷氧基、磺酸基、烯基、炔基、芳基或杂芳基中的一种,
n≥1。
步骤三:在所述钙钛矿吸收层5背离所述空穴传输层3的一侧表面形成电子阻挡/钝化层6。
步骤四:在所述电子阻挡/钝化层6背离所述钙钛矿吸收层5的一侧表面形成电子传输层7。
步骤五:在所述电子传输层7背离所述电子阻挡/钝化层6的一侧表面形成缓冲层8。
步骤六:在所述缓冲层8背离所述电子传输层7的一侧表面形成第二透明导电层9。
步骤七:在所述第二透明导电层9背离所述缓冲层8的一侧表面形成背电极10。
上述方法制备的太阳能电池为前述太阳能电池,对于基底1、第一透明 导电层2、空穴传输层3、界面修饰层4、钙钛矿吸收层5、电子传输层7、缓冲层8、第二透明导电层9以及背电极10可参考前述基底1、第一透明导电层2、空穴传输层3、界面修饰层4、钙钛矿吸收层5、电子传输层7、缓冲层8、第二透明导电层9以及背电极10描述。
本申请还提供一种咔唑盐及其衍生物,其结构如下式I:
其中A+为Li+、K+、Na+、Rb+、Cs+、NH4 +
R1、R2独立地选自氢、卤素、烷基、烷氧基、磺酸基、烯基、炔基、芳基或杂芳基中的一种,
n≥1。
所述咔唑盐及其衍生物为前述式I化合物,具体描述可参考前述式I化合物。
本申请还提供一种咔唑盐及其衍生物的制备方法,包括如下步骤:
步骤一:将咔唑/咔唑衍生物、碱金属氢氧化物以及二甲苯混合加热煮沸,得到蒸汽状共沸混合物;
步骤二:将所述蒸汽状共沸混合物冷凝;
步骤三:将水分离,并引入水接收器,反应一段时间,反应停止后,将分散在二甲苯中的咔唑盐及其衍生物过滤分离并干燥,得到咔唑盐及其衍生物。
碱金属氢氧化物可以为氢氧化钠、氢氧化钾、氢氧化铯等。
具体地,将1mol咔唑衍生物56g(1mol)氢氧化钾粉末和700mL二甲苯装入配备有温度计、接水器和搅拌器的规格为2L的四颈烧瓶中并加热煮沸;将获得的蒸汽状共沸混合物冷凝,然后将水分离并引入水接收器回收水;约15h后反应停止;将分散在二甲苯中的咔唑钾盐衍生物过滤分离并干燥,得到咔唑钾盐衍生物
具体地,将167g(1mol)咔唑、56g(1mol)氢氧化钾粉末和700mL二甲苯装入配备有温度计、接水器和搅拌器的规格为2L的四颈烧瓶中并加热煮沸;将获得的蒸汽状共沸混合物冷凝,然后将水分离并引入水接收器;约15h后回收18mL水,反应停止;将分散在二甲苯中的咔唑钾盐过滤分离并干燥,得到190g呈淡黄色晶体的咔唑钾。
本申请还提供一种上述所述的咔唑盐及其衍生物在光电器件中的应用,所述光电器件为太阳能电池、OLED器件等。
实施例
下述实施例中所使用的实验方法如无特殊要求,均为常规方法。
下述实施例中所使用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1
本实施方式中的太阳能电池如图1a所示,其制备方法,包括如下步骤:
步骤一:提供透明玻璃作为电池衬底,在所述电池衬底的一侧表面沉积厚度为180nm的ITO层,其方阻为10Ω/sq,然后将沉积有ITO层的玻璃衬底切成2×2cm2大小,依次用丙酮、去离子水、乙醇超声清洗,然后用氮气流吹干。
步骤二:制备有机层
步骤2.1:在所述ITO层背离所述电池衬底的一侧表面旋涂KX3-3的2-甲氧基乙醇溶液,旋涂完毕后立即放置在热台上100℃加热10min;从而形成空穴传输层,其厚度为30nm。
步骤2.2:使用移液枪吸取60μL 0.7mg/mL的咔唑钾溶液(在咔唑钾溶液中的溶剂为2-甲氧基乙醇)旋涂在所述空穴传输层背离所述ITO层的一侧表面,在3000rpm转速下旋涂30s,完毕后无需处理,从而形成界面修饰层,其厚度为30nm。
步骤2.3:在所述界面修饰层背离所述空穴传输层的一侧表面采用一步法制备钙钛矿光吸收层。
具体地,在所述界面修饰层背离所述空穴传输层的一侧表面旋涂钙钛矿前驱体溶液,在所述钙钛矿前驱体中,所述钙钛矿的组分为Cs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3,前驱体溶液为PbI2/PbBr2/FAI/MABr/CsI,溶剂为DMF:DMSO=4:1的混合溶剂,旋涂完毕后,立即放置热台上120℃加热20min,从而形成钙钛矿吸收层,其厚度为600nm。
步骤三:使用蒸镀设备在所述钙钛矿吸收层背离所述界面修饰层的一侧表面蒸镀LiF,从而形成电子阻挡/钝化层,其厚度为1nm。
步骤四:使用蒸镀设备在所述电子阻挡/钝化层背离所述钙钛矿吸收层的一侧表面蒸镀C60,从而形成电子传输层,其厚度为15nm。
步骤五:使用原子真空沉积系统在所述电子传输层背离所述电子阻挡/钝化层的一侧表面形成SnO2缓冲层,其厚度为15nm。
步骤六:使用物理气相沉积(PVD)系统在所述SnO2缓冲层背离所述电子传输层的一侧表面制备ITO透明导电层,其厚度为100nm。
步骤七:在所述ITO透明导电层背离所述SnO2缓冲层的一侧表面形成Ag电极,其厚度为400nm。
本实施方式中的太阳能电池的性能见表1。
实施例2
本实施方式中的太阳能电池如图1d所示,其与实施例1中太阳能电池的不同之处在于有机层中的空穴传输层,本实施方式中的空穴传输层的制备方法如下:
步骤2.1:在所述ITO层背离所述电池衬底的一侧表面旋涂KX3-3与咔唑钾的2-甲氧基乙醇溶液,在该溶液中KX3-3和咔唑钾的浓度均为0.7mg/mL,旋涂完毕后立即放置在热台上100℃加热10min,从而形成含有咔唑钾的空穴传输层,其厚度为30nm。
本实施方式中的太阳能电池的性能见表1。
实施例3
本实施方式中的太阳能电池如图1e所示,其与实施例1中太阳能电池的不同之处在于有机层中的钙钛矿吸收层,本实施方式中的钙钛矿吸收层的制备方法如下:
步骤2.3:在所述界面修饰层背离所述空穴传输层的一侧表面采用一步法制备钙钛矿光吸收层。
具体地,在所述界面修饰层背离所述空穴传输层的一侧表面旋涂添加有咔唑钾的钙钛矿前驱体溶液,在所述钙钛矿前驱体中,所述钙钛矿的组分为Cs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3,前驱体溶液为PbI2/PbBr2/FAI/MABr/CsI,溶剂为DMF:DMSO=4:1的混合溶剂,以钙钛矿和咔唑钾为基准,添加的所述咔唑钾的摩尔百分比为0.05%,旋涂完毕后,立即放置热台上120℃加热20min,从而形成含有咔唑钾的钙钛矿吸收层,其厚度为600nm。
本实施方式中的太阳能电池的性能见表1。
实施例4
本实施方式中的太阳能电池如图1c所示,其与实施例2中太阳能电池的 不同之处在于有机层中无界面修饰层。
本实施方式中的太阳能电池的性能见表1。
实施例5
本实施方式中的太阳能电池如图1b所示,其与实施例3中太阳能电池的不同之处在于有机层中无界面修饰层。
本实施方式中的太阳能电池的性能见表1。
实施例6
本实施方式中的太阳能电池如图2所示,其与实施例1的区别在于步骤一不同,本实施方式中的步骤一为:提供SHJ单结电池,在所述SHJ单结电池的一侧表面使用物理气相沉积(PVD)系统沉积ITO透明导电层,其方阻为40Ω/sq,其厚度为20nm。
本实施方式中的太阳能电池的性能见表1。
实施例7
本实施方式中的太阳能电池与实施例1的区别在于有机层中的咔唑钾替换为咔唑钠。
本实施方式中的太阳能电池的性能见表1。
实施例8
本实施方式中的太阳能电池与实施例1的区别在于有机层中的咔唑钾替换为咔唑铯。
本实施方式中的太阳能电池的性能见表1。
对比例1
对比例1的太阳能电池与实施例1的太阳能电池的不同之处在于没有界面修饰层,本实施方式中的太阳能电池的性能见表1。
表1 为各实施例以及对比例的太阳能电池的性能参数
小结:本申请所述的太阳能电池,当空穴传输层中含有咔唑盐及其衍生物时,空穴传输层在下层透明导电氧化物上生长时发生化学反应形成SAM单分子层,但由于其结构上的甲氧基会带来位阻效应阻碍其单分子层薄膜的质量与覆盖率,因此当引入本申请所述材料咔唑盐时,一方面可提升KX3-3的薄膜质量,减少复合中心,提升器件VOC;当所述材料存在界面时,一方面会提升覆盖率,一方面其中的碱金属盐或其他官能团分子可与钙钛矿发生化学反应,改善了钙钛矿的下界面缺陷和离子迁移问题,从而也提升了钙钛矿的质量,有利于钙钛矿的垂直取向生长,提升了载流子的提取;当所述材料直接加入钙钛矿前驱体溶液中时,在钙钛矿结晶生长时起到延缓结晶的作用,有利于晶粒长大,减少了晶界,从而提升了钙钛矿的薄膜质量,最终器件性能得到改善, 尤其是VOC和PCE。
尽管以上结合对本申请的实施方案进行了描述,但本申请并不局限于上述的具体实施方案和应用领域,上述的具体实施方案仅仅是示意性的、指导性的,而不是限制性的。本领域的普通技术人员在本说明书的启示下和在不脱离本申请权利要求所保护的范围的情况下,还可以做出很多种的形式,这些均属于本申请保护之列。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (15)

  1. 一种太阳能电池,其特征在于,包括有机层,所述有机层含有至少一种式I化合物:
    其中A+为Li+、K+、Na+、Rb+、Cs+、NH4 +,优选为Li+、K+或Cs+
    R1、R2独立地选自氢、卤素、烷基、烷氧基、磺酸基、烯基、炔基、芳基或杂芳基中的一种,
    n≥1。
  2. 根据权利要求1所述的太阳能电池,其特征在于,所述式I化合物选自以下结构中的一种:
    其中,R为取代基。
  3. 根据权利要求1或2所述的太阳能电池,其特征在于,所述有机层包括依次层叠设置的空穴传输层、界面修饰层以及钙钛矿吸收层,且所述界面修饰层内含有所述式I化合物。
  4. 根据权利要求3所述的太阳能电池,其特征在于,所述空穴传输层内掺杂有所述式I化合物和/或所述钙钛矿吸收层内掺杂有所述式I化合物,
    优选地,当所述钙钛矿吸收层内掺杂有所述式I化合物时,所述式I化合物的掺杂浓度为0.01%-0.1%;
    优选地,当所述空穴传输层内掺杂有所述式I化合物时,所述式I化合物的掺杂浓度为0.01%-50%。
  5. 根据权利要求1或2所述的太阳能电池,其特征在于,所述有机层包括层叠设置的空穴传输层和钙钛矿吸收层,且所述空穴传输层和钙钛矿吸收层中至少有一层内掺杂有式I化合物,优选地,所述式I化合物的掺杂浓度为0.01%-50%。
  6. 根据权利要求4或5所述的太阳能电池,其特征在于,所述空穴传输层的空穴传输材料选自氧化钼层、[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)层、碘化铜层、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴)层、PEDOT层、PEDOT:PSS层、P3HT层、P3OHT层、P3ODDT层、NiOx层或CuSCN层;优选为KX3-3([2-(3,6-二甲氧基-9H-咔唑-9-基)乙基]膦酸)、PTAA(聚[双(4-苯基)(2,4,6-三甲基苯基)胺])或者NiOx中的一种。
  7. 根据权利要求4或5所述的太阳能电池,其特征在于,所述钙钛矿吸收层的钙钛矿材料的化学通式为AB(XnY1-n)3,其中A选自CH3NH3、C4H9NH3、NH2=CHNH2或碱金属中的一种或多种;B选自Pb或Sn的二价金属离子;X、Y均为卤素,且X与Y不相同;n为1、2或3。
  8. 根据权利要求3-7任一项所述的太阳能电池,其特征在于,所述空穴传输层背离所述钙钛矿吸收层一侧的表面层叠有基底。
  9. 根据权利要求8所述的太阳能电池,其特征在于,所述基底为电池衬底或晶硅底电池。
  10. 根据权利要求9所述的太阳能电池,其特征在于,所述晶硅底电池选自PERC电池、TOPCon电池、HJT电池、IBC电池或HBC电池中的一种。
  11. 一种权利要求1-10任一项所述太阳能电池的制备方法,其特征在于,包括如下步骤:
    提供基底;
    在所述基底的一侧表面上制备有机层;
    所述有机层中含有至少一种式I化合物。
  12. 根据权利要求11所述的制备方法,其特征在于,将含有所述式I化合物的溶液与溶剂混合得到混合液,将所述混合液施加于基底上得到有机层,优选地,所述溶剂为乙醇、正丙醇、异丙醇或2-甲氧基乙醇。
  13. 一种咔唑盐及其衍生物,其特征在于,其结构如下式I:
    其中A+为Li+、K+、Na+、Rb+、Cs+、NH4+,优选为K+、Na+或Cs+
    R1、R2独立地选自氢、卤素、烷基、烷氧基、磺酸基、烯基、炔基、芳基或杂芳基中的一种,
    n≥1。
  14. 根据权利要求13所述的咔唑盐及其衍生物,其特征在于,所述咔唑盐及其衍生物选自以下结构中的一种:
    其中,R为取代基。
  15. 一种根据权利要求13或14所述的咔唑盐及其衍生物在光电器件中的应用。
PCT/CN2023/114273 2022-10-09 2023-08-22 咔唑盐及其衍生物以及在制备太阳能电池中的应用 WO2024078144A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211227121.0 2022-10-09
CN202211227121.0A CN115915786A (zh) 2022-10-09 2022-10-09 咔唑盐及其衍生物以及在制备太阳能电池中的应用

Publications (1)

Publication Number Publication Date
WO2024078144A1 true WO2024078144A1 (zh) 2024-04-18

Family

ID=86485145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114273 WO2024078144A1 (zh) 2022-10-09 2023-08-22 咔唑盐及其衍生物以及在制备太阳能电池中的应用

Country Status (2)

Country Link
CN (1) CN115915786A (zh)
WO (1) WO2024078144A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115915786A (zh) * 2022-10-09 2023-04-04 隆基绿能科技股份有限公司 咔唑盐及其衍生物以及在制备太阳能电池中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224593A (ja) * 2008-03-17 2009-10-01 Nippon Steel Chem Co Ltd インドロカルバゾール誘導体を含有する電子デバイス用有機導電性材料
CN102115457A (zh) * 2011-03-05 2011-07-06 太原理工大学 一种n-乙基咔唑的制备方法
CN113461736A (zh) * 2021-01-29 2021-10-01 浙江华显光电科技有限公司 一种有机金属配合物和含有该化合物的有机光电元件
CN114335346A (zh) * 2021-12-03 2022-04-12 西安隆基乐叶光伏科技有限公司 一种化合物在太阳能电池中的应用
CN115915786A (zh) * 2022-10-09 2023-04-04 隆基绿能科技股份有限公司 咔唑盐及其衍生物以及在制备太阳能电池中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224593A (ja) * 2008-03-17 2009-10-01 Nippon Steel Chem Co Ltd インドロカルバゾール誘導体を含有する電子デバイス用有機導電性材料
CN102115457A (zh) * 2011-03-05 2011-07-06 太原理工大学 一种n-乙基咔唑的制备方法
CN113461736A (zh) * 2021-01-29 2021-10-01 浙江华显光电科技有限公司 一种有机金属配合物和含有该化合物的有机光电元件
CN114335346A (zh) * 2021-12-03 2022-04-12 西安隆基乐叶光伏科技有限公司 一种化合物在太阳能电池中的应用
CN115915786A (zh) * 2022-10-09 2023-04-04 隆基绿能科技股份有限公司 咔唑盐及其衍生物以及在制备太阳能电池中的应用

Also Published As

Publication number Publication date
CN115915786A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
Ahmad et al. Recent progress in cathode interlayer materials for non‐fullerene organic solar cells
Li et al. Wide bandgap interface layer induced stabilized perovskite/silicon tandem solar cells with stability over ten thousand hours
Wu et al. Thin films of tin oxide nanosheets used as the electron transporting layer for improved performance and ambient stability of perovskite photovoltaics
US10665800B2 (en) Inverted solar cell and process for producing the same
Wang et al. An Embedding 2D/3D Heterostructure Enables High‐Performance FA‐Alloyed Flexible Perovskite Solar Cells with Efficiency over 20%
JP5436418B2 (ja) 有機太陽電池及び有機光検出器の光活性層を生成する混合物
KR101723824B1 (ko) 이온성고분자 물질을 포함하는 유무기 하이브리드 페로브스카이트 광전변환소자용 수분차단막, 이를 포함하는 광전변환소자 및 이의 제조방법
US9437825B2 (en) Hole-transporting material for inorganic/organic hybrid perovskite solar cells
Liu et al. Grain regrowth and bifacial passivation for High‐efficiency wide‐bandgap perovskite solar cells
CN109216557B (zh) 一种基于柠檬酸/SnO2电子传输层的钙钛矿太阳能电池及其制备方法
WO2020029205A1 (zh) 基于梯度退火与反溶剂协同效应制备无机钙钛矿电池的方法及制备的无机钙钛矿电池
WO2024078144A1 (zh) 咔唑盐及其衍生物以及在制备太阳能电池中的应用
WO2023097995A1 (zh) 一种化合物在太阳能电池中的应用
EP3871279A1 (en) Multi-junction device production process
Coskun et al. Thermally evaporated two-dimensional SnS as an efficient and stable electron collection interlayer for inverted planar perovskite solar cells
KR101689161B1 (ko) 페로브스카이트 태양전지 및 이의 제조 방법
Wu et al. Progress in blade-coating method for perovskite solar cells toward commercialization
WO2023098022A1 (zh) 一种钙钛矿材料层的制备方法和电池器件
Jiang et al. Recent advances of monolithic all‐perovskite tandem solar cells: from materials to devices
CN108550700B (zh) 钙钛矿光敏层及其制备方法、钙钛矿电池
Yang et al. Mixed-steam annealing treatment for perovskite films to improve solar cells performance
KR102121413B1 (ko) 광활성층과 정공전달층 사이 계면층 도입으로 인해 광전변환 효율이 개선된 페로브스카이트 태양전지, 및 이의 제조방법
Sánchez et al. Increasing the stability of perovskite solar cells with dibenzofulvene-based hole transporting materials
Wei et al. Two-dimensional cyclohexane methylamine based perovskites as stable light absorbers for solar cells
CN114447234B (zh) 有机无机杂化钙钛矿表界面处理方法、材料及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876349

Country of ref document: EP

Kind code of ref document: A1