WO2024078034A1 - 空调的控制方法、空调器及计算机可读存储介质 - Google Patents

空调的控制方法、空调器及计算机可读存储介质 Download PDF

Info

Publication number
WO2024078034A1
WO2024078034A1 PCT/CN2023/104112 CN2023104112W WO2024078034A1 WO 2024078034 A1 WO2024078034 A1 WO 2024078034A1 CN 2023104112 W CN2023104112 W CN 2023104112W WO 2024078034 A1 WO2024078034 A1 WO 2024078034A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
indoor temperature
working cycle
parameters
operating parameters
Prior art date
Application number
PCT/CN2023/104112
Other languages
English (en)
French (fr)
Inventor
尚喆
樊其锋
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2024078034A1 publication Critical patent/WO2024078034A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content

Definitions

  • the present application relates to the technical field of air conditioners, and in particular to an air conditioner control method, an air conditioner, and a computer-readable storage medium.
  • Air conditioners are a type of air conditioning equipment that is installed in buildings or structures to adjust and control the temperature, humidity, flow rate and other parameters of the ambient air in the building or structure. Since air conditioners consume a lot of electricity, the energy-saving effect (or energy efficiency) of air conditioners has become one of the important indicators of air conditioner product quality.
  • the operating parameters set by the air conditioner are mainly adjusted directly based on experience or preset rules, such as the internal fan speed, the external fan speed and the compressor operating frequency, so as to achieve the effect of cooling or heating.
  • the preset rule can be: when the indoor temperature has exceeded a certain set value, the operating parameters set by the air conditioner are adjusted.
  • the existing adjustment rules are based on backward feedback, that is, the operating frequency of the compressor is adjusted only when the indoor temperature has exceeded a certain set value. This is prone to temperature fluctuations and over-temperature phenomena, which is not conducive to temperature control.
  • the present application aims to not only improve the energy-saving effect of the air conditioner, but also solve the problem of over-temperature by providing an air conditioner control method, an air conditioner and a computer-readable storage medium.
  • the present application provides a method for controlling an air conditioner, the method for controlling an air conditioner comprising:
  • the air conditioner is controlled to operate according to the target operating parameters in the next working cycle.
  • the step of determining the target operating parameters of the air conditioner in the next working cycle according to the determined indoor temperature change, the current indoor temperature and the set temperature includes:
  • the target operating parameters of the air conditioner in the next working cycle are determined according to the indoor temperature that can be achieved in the next working cycle and the set temperature.
  • the indoor temperature that can be achieved according to the predicted indoor temperature of the next working cycle and the set temperature are determined.
  • the steps of determining the target operating parameters of the air conditioner in the next working cycle include:
  • the target operating parameters of the air conditioner in the next working cycle are determined according to the indoor temperature that can be achieved in the next working cycle and the temperature range.
  • the step of determining the target operating parameters of the air conditioner in the next working cycle according to the predicted indoor temperature that can be achieved in the next working cycle and the temperature range includes:
  • the operating parameters of the air conditioner in the current working cycle are determined as the target operating parameters of the air conditioner in the next working cycle.
  • the step of determining the target operating parameters of the air conditioner in the next working cycle according to the predicted indoor temperature that can be achieved in the next working cycle and the temperature range includes:
  • the operating parameters of the air conditioner in the current working cycle are adjusted according to a first preset adjustment ratio to obtain the target operating parameters of the air conditioner in the next working cycle;
  • the operating parameters of the air conditioner in the current working cycle are adjusted according to the second preset adjustment ratio to obtain the target operating parameters of the air conditioner in the next working cycle, and the first preset adjustment ratio is less than the second preset adjustment ratio.
  • the step of determining the target operating parameters of the air conditioner in the next working cycle according to the predicted indoor temperature that can be achieved in the next working cycle and the temperature range includes:
  • the preset operating parameters are determined as the target operating parameters of the air conditioner in the next working cycle to stop the air conditioner compressor.
  • the operating parameters include operating state parameters, user setting parameters and air conditioner working setting parameters; the step of predicting the indoor temperature change when the air conditioner is operated according to the operating parameters includes:
  • the indoor temperature change when the air conditioner is operated according to the operating status parameters, the user setting parameters and the air conditioning working setting parameters is determined.
  • the step of predicting the indoor temperature change when the air conditioner is operated according to the operating parameters further includes:
  • Training is performed based on the recorded historical operation data of the air conditioner to generate a relationship between the operation status parameters, user setting parameters, air conditioner working setting parameters and the historical indoor temperature changes, so as to predict the indoor temperature changes based on the relationship.
  • the present application also provides an air conditioner, including: a memory, a processor, and an air conditioner control program stored in the memory and executable on the processor, wherein the air conditioner control program implements the steps of the above-mentioned air conditioner control method when executed by the processor.
  • the present application also provides a storage medium on which a control program for an air conditioner is stored.
  • the control program for the air conditioner is executed by a processor, the steps of the above-mentioned air conditioner control method are implemented.
  • the technical solutions of the air conditioner control method, air conditioner and computer-readable storage medium provided by the present application determine the operating parameters of the air conditioner in the current working cycle, and then predict the indoor temperature change when the air conditioner is operated according to the operating parameters; then, the target operating parameters of the air conditioner in the next working cycle are determined according to the indoor temperature change, the current indoor temperature and the set temperature of the next working cycle, and then the air conditioner is controlled to operate according to the target operating parameters when the next working cycle arrives.
  • the air conditioner is controlled to perform frequency reduction operation according to the target operating parameters, thereby avoiding the indoor temperature exceeding the set temperature when the indoor temperature exceeds the set temperature.
  • the frequency is reduced only when the value is reached, resulting in temperature fluctuations and over-temperature phenomena, thereby improving the energy-saving effect of the air conditioner.
  • FIG1 is a flow chart of a first embodiment of a method for controlling an air conditioner according to the present invention
  • FIG2 is a flow chart of a second embodiment of a method for controlling an air conditioner according to the present invention.
  • FIG3 is a flow chart of a third embodiment of a method for controlling an air conditioner according to the present application.
  • FIG. 4 is a schematic diagram of the structure of an air conditioner according to an embodiment of the present application.
  • the power consumption of air conditioners is also increasing.
  • energy-saving air conditioners are a good choice.
  • the operating frequency of the air conditioner is controlled according to the temperature difference between the indoor temperature and the outdoor temperature. If the temperature difference is large, the operating frequency is also large, and when the temperature difference is small, the operating frequency is also small.
  • the indoor temperature reaches the set temperature, the current frequency is maintained to achieve energy saving.
  • the energy-saving schemes of existing air conditioners are all based on backward feedback, that is, the operating frequency of the compressor is adjusted only when the indoor temperature exceeds or falls below the set temperature. In this way, it is easy for the temperature to fluctuate frequently before reaching the set temperature, or even the phenomenon of over-reaching the temperature occurs, which not only causes poor user experience, but also fails to achieve energy saving effect.
  • the present application proposes a control method for the air conditioner. Specifically, the present application determines the operating parameters of the air conditioner in the current working cycle, and then predicts the indoor temperature change when the air conditioner is running according to the operating parameters; then, the target operating parameters of the air conditioner in the next working cycle are determined according to the indoor temperature change, the current indoor temperature and the set temperature of the next working cycle, and then the air conditioner is controlled to operate according to the target operating parameters when the next working cycle arrives.
  • the air conditioner is controlled to perform frequency reduction operation according to the target operating parameters; thereby avoiding frequency reduction when the indoor temperature exceeds the set value, resulting in temperature fluctuations and over-temperature phenomena, thereby improving the energy-saving effect of the air conditioner.
  • the present application does not need to frequently change the operating parameters set for the air conditioner, that is, the operating parameters set for the air conditioner in each working cycle are fixed, that is, the internal fan speed, the external fan speed and the compressor operating frequency in each working cycle are fixed, thereby improving the stability of the air conditioner.
  • the air conditioner control method of the present application includes the following steps:
  • Step S110 determining the operating parameters of the air conditioner in the current working cycle.
  • the operating parameters are the working parameters of the air conditioner.
  • the operating parameters include but are not limited to operating state parameters, user-set parameters, and air conditioner working setting parameters.
  • the operating state parameters are parameters that affect the operation of the air conditioner but cannot be set;
  • the operating state parameters include environmental state parameters and air conditioner operating state parameters, for example, the environmental state parameters include indoor temperature, outdoor temperature, indoor humidity, and outdoor humidity, and the air conditioner operating state parameters include exhaust valve temperature, etc.
  • the user-set parameters are parameters actively set by the user, and the user-set parameters include: set temperature, set wind speed, etc.
  • the air conditioner The working setting parameters are the parameters set by the air conditioner itself, including the internal fan speed, external fan speed and compressor operating frequency.
  • the operating parameters can be determined by the predicted indoor temperature change in the previous working cycle.
  • the operating parameters of the air conditioner in the previous working cycle can be determined, and the indoor temperature change when the air conditioner is operated according to the operating parameters in the previous working cycle can be determined; the operating parameters of the air conditioner in the current working cycle are determined according to the determined indoor temperature change, the indoor temperature corresponding to the previous working cycle, and the set temperature of the current working cycle.
  • the operating parameters can also be predicted, that is, there are corresponding operating parameters for each working cycle. When the working cycle is reached, the operating parameters corresponding to the working cycle are operated.
  • Step S120 predicting the indoor temperature change when the air conditioner is operated according to the operating parameters
  • the temperature change amount between the indoor temperature in the current operation cycle of the air conditioner and the indoor temperature in the next operation cycle is called the indoor temperature change amount.
  • the air conditioner operates according to the parameter value corresponding to the operation parameter, there is a corresponding indoor temperature change amount.
  • the operation parameter and the parameter value of the operation parameter can be determined according to actual conditions.
  • the predicted indoor temperature change of the air conditioner is ⁇ T1.
  • the speed of the inner fan is 800 rpm
  • the speed of the outer fan is 900 rpm
  • the frequency of the compressor is 40HZ
  • the predicted indoor temperature change of the air conditioner is ⁇ T2.
  • the indoor temperature variation when the air conditioner is operated according to the operating parameters can be predicted by: the relationship between the operating state parameters, the user setting parameters, the air conditioner working setting parameters and the indoor temperature variation can be established according to the historical operating data of the air conditioner, and then the indoor temperature variation corresponding to the operation of the air conditioner according to the operating state parameters, the user setting parameters and the air conditioner working setting parameters in the current working cycle can be determined according to the relationship.
  • the establishment of the relationship can be specifically referred to in the second embodiment, and will not be repeated here.
  • the indoor temperature change corresponding to the parameter combination can be determined through the above mapping relationship, that is, the indoor temperature change that can be predicted when the air conditioner operates according to the operating parameters corresponding to the current operating cycle can be determined.
  • Step S130 determining target operating parameters of the air conditioner in the next working cycle according to the determined indoor temperature change, the current indoor temperature and the set temperature.
  • the current indoor temperature is the temperature of the room where the air conditioner is located in the current working cycle.
  • the set temperature is the temperature preset for the next working cycle, that is, the desired indoor temperature.
  • Each set temperature has a corresponding target operating parameter value, that is, the desired indoor temperature can be achieved when the air conditioner is operated according to the target operating parameter value. Therefore, after determining the indoor temperature change, the target operating parameters of the air conditioner in the next working cycle can be determined according to the indoor temperature of the current working cycle, the current indoor temperature and the set temperature.
  • determining the target operating parameters of the air conditioner in the next working cycle specifically includes the following steps:
  • Step S131 obtaining the current indoor temperature and the set temperature.
  • a temperature sensor may be provided outside the housing of the air conditioner to collect the current indoor temperature.
  • a temperature sensor may also be provided in the area where the air conditioner is located, such as on a wall, to collect the current indoor temperature.
  • the area where the air conditioner is located may be divided into multiple sub-areas. The temperature of the corresponding sub-area is collected by the temperature sensor set in each sub-area, and the current indoor temperature is determined by the average value of the temperature of each sub-area, so that the determined current indoor temperature is more accurate.
  • the air conditioner has a networking function, and the current indoor temperature displayed on a smart terminal, such as a mobile phone, can be obtained through the network.
  • the current indoor temperature can be collected in real time or at a fixed time.
  • the set temperature is the desired indoor temperature.
  • the set temperature may be a single threshold. When the set temperature is a single threshold, that is, in any working cycle, the set temperature is fixed.
  • the set temperature may also be a change value in a temperature change curve, that is, in different working cycles, the set temperature changes.
  • the set temperature can be pre-set by the user.
  • the expected indoor temperature change curve can be planned on the temperature adjustment application of the air conditioner, that is, the set temperature for each working cycle can be planned.
  • the indoor temperature can meet the set temperature on the expected indoor temperature change curve.
  • the indoor temperature change curve can be planned by the user, that is, the indoor temperature change curve can be formulated according to the user's own needs; it can also be fixedly written into the control program of the air conditioner with each model of air conditioner when leaving the factory; the indoor temperature change curve can also be modified according to actual usage during the operation of the air conditioner.
  • corresponding indoor temperature change curves can be formulated for different operating modes of the air conditioner. For example, corresponding indoor temperature change curves can be formulated for sleep mode and energy-saving mode, respectively, so as to achieve energy saving while improving comfort.
  • Step S132 determining the indoor temperature that can be achieved in the next working cycle according to the indoor temperature change and the current indoor temperature.
  • step S120 after predicting the indoor temperature change when the air conditioner is running according to the operating parameters, the indoor temperature predicted to be achievable in the next working cycle can be determined in combination with the current indoor temperature. Wherein, both the predicted indoor temperature change and the predicted achievable indoor temperature are determined by calculation and are not pre-set.
  • Step S133 determining target operating parameters of the air conditioner in the next working cycle according to the predicted indoor temperature that can be achieved in the next working cycle and the set temperature.
  • the target operating parameters of the air conditioner in the next working cycle can be determined in advance, so that when the next working cycle arrives, the frequency can be reduced to avoid temperature fluctuations and over-temperature phenomena.
  • determining the target operating parameters of the air conditioner in the next working cycle specifically includes:
  • Step S1331 determining the temperature range corresponding to the set temperature
  • Step S1332 determining target operating parameters of the air conditioner in the next working cycle according to the predicted indoor temperature that can be achieved in the next working cycle and the temperature range.
  • the temperature interval corresponding to the set temperature can be determined according to actual conditions. Assuming that the set temperature is 18°C, the temperature interval corresponding to the set temperature can be [16°C, 20°C]. In one embodiment, the temperature interval can be divided into multiple sub-temperature intervals according to actual conditions, for example, it can be divided into (20°C, n1°C), [20°C, 18°C), [18°C, 16°C) and [16°C, n2°C), etc.
  • the target operating parameters of the air conditioner in the next working cycle can be determined based on the predicted indoor temperature and temperature range that can be achieved in the next working cycle.
  • the operating parameters of the air conditioner in the current working cycle are determined as the target operating parameters of the air conditioner in the next working cycle. For example, when Tin+ ⁇ Tin>Ts+2, the operating parameters of the air conditioner in the current working cycle are determined as the target operating parameters of the air conditioner in the next working cycle. Assuming that the temperature interval is [16°C, 20°C], when the indoor temperature predicted to be achievable in the next working cycle satisfies (20°C, n1°C), the compressor operating frequency is kept unchanged and continues to operate.
  • the operating parameters of the air conditioner in the previous working cycle Assuming the temperature range is [16°C, 20°C], when the set temperature is 18°C, when the indoor temperature predicted to be achieved in the next working cycle meets [20°C, 18°C), the compressor frequency or operating power is reduced according to the preset ratio 1.
  • the compressor frequency or operating power is reduced according to the preset ratio 2.
  • the first preset adjustment ratio is smaller than the second preset adjustment ratio, and the lower the indoor temperature that can be achieved is, the greater the frequency reduction range is.
  • a step-by-step frequency reduction is achieved to avoid a sudden drop in the compressor operating frequency, which affects the stability of the air conditioner and reduces the comfort of the environment in which the air conditioner is located.
  • Step S140 controlling the air conditioner to operate according to the target operating parameters in the next working cycle.
  • the air conditioner can be controlled to operate according to the target operating parameter value in the next operating cycle when the next operating cycle arrives. Since the air conditioner can operate based on the target operating parameter value determined in advance, it is avoided that the operating frequency of the compressor is adjusted only when the indoor temperature reaches the set value, resulting in temperature fluctuations and over-temperature phenomena, thereby improving the energy saving effect of the air conditioner.
  • this embodiment determines the operating parameters of the air conditioner in the current working cycle, and then predicts the indoor temperature change when the air conditioner is operated according to the operating parameters; then, the target operating parameters of the air conditioner in the next working cycle are determined according to the indoor temperature change, the current indoor temperature and the set temperature of the next working cycle, and then the air conditioner is controlled to operate according to the target operating parameters when the next working cycle arrives.
  • the air conditioner Because it can predict the indoor temperature change of the next working cycle according to the operating parameters in the current working cycle before entering the next working cycle, and thus determine the appropriate target operating parameters of the air conditioner according to the indoor temperature change, so that when the next working cycle arrives, the air conditioner is controlled to perform frequency reduction operation according to the target operating parameters; thereby avoiding frequency reduction only when the indoor temperature exceeds the set value, resulting in temperature fluctuations and over-temperature phenomena, thereby improving the energy saving effect of the air conditioner.
  • the operating parameters set by the air conditioner that is, the operating parameters set by the air conditioner in each working cycle are fixed, that is, the internal fan speed, the external fan speed and the compressor operating frequency in each working cycle are fixed, thereby improving the stable performance of the air conditioner.
  • the air conditioner control method of the present application further includes the following steps:
  • Step S110 determining the operating parameters of the air conditioner in the current working cycle, wherein the operating parameters include operating state parameters, user setting parameters and air conditioner working setting parameters;
  • Step S210 recording the operating state parameters, user setting parameters and air conditioner working setting parameters in each operating cycle of the air conditioner, and the historical indoor temperature change after the air conditioner runs in each cycle;
  • Step S220 training is performed based on the recorded historical operation data of the air conditioner to generate a relationship between the operation state parameter, the user setting parameter, the air conditioner operation setting parameter and the historical indoor temperature change, so as to predict the indoor temperature change based on the relationship;
  • the indoor temperature change in the first embodiment is determined based on the temperature change prediction model.
  • the indoor temperature can be finely controlled by constructing the temperature change prediction model, making the air conditioning control more energy-saving and intelligent.
  • the operating state parameters, user setting parameters and air conditioner working setting parameters of the air conditioner in each operating cycle, as well as the historical indoor temperature change corresponding to the operation of the air conditioner according to the operating state parameters, user setting parameters and air conditioner working setting parameters in each operating cycle can be recorded.
  • Data training can be performed based on the historical operating records of the air conditioner to obtain the relationship between the operating state parameters, user setting parameters, air conditioner working setting parameters and the historical indoor temperature change that can be used for subsequent prediction of indoor temperature change.
  • the historical operation record includes the historical operation data of the air conditioner.
  • the historical indoor temperature change is affected by the number of air conditioners and the size of the room. That is, the larger the room, the smaller the historical indoor temperature change; the smaller the room, the larger the historical indoor temperature change; the more air conditioners there are, the larger the historical indoor temperature change; the fewer air conditioners there are, the smaller the historical indoor temperature change.
  • the corresponding temperature change expectation model can be determined based on the size of each room and the number of air conditioners in each room. Since it can be trained for different numbers of air conditioners and room sizes, it can meet the heat load of the room.
  • the training process of the temperature change prediction model mainly includes the following parts:
  • the operation data of the air conditioner includes: the parameter values corresponding to the operation state parameters, user-set parameters and air conditioner working setting parameters; wherein, the uncontrollable operation parameters include the operation state parameters and the user-set parameters.
  • the operation state parameters are parameters that affect the operation of the air conditioner but cannot be set; the operation state parameters include environmental state parameters and air conditioner operation state parameters, for example, the environmental state parameters include indoor temperature, outdoor temperature, indoor humidity and outdoor humidity, etc., and the air conditioner operation state parameters include exhaust valve temperature, etc.
  • the user-set parameters are parameters actively set by the user, and the user-set parameters include: set temperature, set wind speed, etc.
  • the air conditioner working setting parameters are parameters set by the air conditioner itself, including the internal fan speed, the external fan speed and the compressor operating frequency, etc.
  • Period 1 represents the first T after power-on
  • period i represents the i-th T after power-on.
  • Tin 27.6°C
  • Tout 34.3°C
  • Tp 45°C
  • Ts 24°C
  • Tin 27.6 ° C
  • Tout 34.3 ° C
  • Hin 62%
  • Hout 65%
  • Tp 45 ° C
  • Ts 24 ° C
  • Ws 60m/s
  • avg (Tin5) 28.3 ° C
  • the relationship between the operating state parameters, user setting parameters, air conditioner working setting parameters and historical indoor temperature changes can be generated.
  • This relationship can be fixedly written into the air conditioner control program, or it can be modified in real time according to actual usage to improve the prediction accuracy.
  • the indoor temperature change amount can be predicted based on the determined relationship, thereby improving the energy-saving effect of the air conditioner.
  • Step S121 determining the indoor temperature change when the air conditioner is operated according to the operating state parameter, the user setting parameter, the air conditioner working setting parameter and the indoor temperature change according to the relationship between the operating state parameter, the user setting parameter, the air conditioner working setting parameter and the indoor temperature change;
  • Step S130 determining target operating parameters of the air conditioner in the next working cycle according to the determined indoor temperature change, the current indoor temperature and the set temperature;
  • Step S140 controlling the air conditioner to operate according to the target operating parameters in the next working cycle.
  • the present application provides an embodiment of a method for controlling an air conditioner. It should be noted that, although a logical order is shown in the flow chart, in some cases, the steps shown or described may be performed in an order different from that shown here.
  • control method of the air conditioner of the present application is divided into the following parts:
  • the historical operation data of the air conditioner is collected, including the operation status (operation status parameters), user settings (user setting parameters) and working settings (controllable operation parameters).
  • the historical operation data features are extracted according to cycle i.
  • the temperature change expectation model is trained with the features of each cycle as the independent variable and the temperature change values ⁇ Tin (historical indoor temperature change) of cycle i+1 and cycle i as the dependent variable.
  • the current operating parameters of the air conditioner are collected at each interval, including the operating status (operating status parameters) and user settings (user setting parameters); a parameter combination is generated based on the operating status parameters, user setting parameters and working setting parameters; and the combination features corresponding to the parameter combination are extracted.
  • the combined features extracted from the parameter combination are input into the temperature change prediction model to predict the indoor temperature change corresponding to the parameter combination.
  • the target operating parameters suitable for the next cycle are selected for step-by-step frequency reduction, effectively avoiding temperature fluctuations/over-temperatures of the traditional GA algorithm.
  • FIG. 4 is a schematic diagram of the structure of the hardware operating environment involved in the embodiment of the present application.
  • FIG. 4 is a schematic diagram of the structure of the hardware operating environment of the air conditioner.
  • the air conditioner may include: a processor 1001, such as a CPU, a memory 1005, a user interface 1003, a network interface 1004, and a communication bus 1002.
  • the communication bus 1002 is used to realize the connection and communication between these components.
  • the user interface 1003 may include a display screen (Display), an input unit such as a keyboard (Keyboard), and the user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may include a standard wired interface and a wireless interface (such as a WI-FI interface).
  • the memory 1005 may be a high-speed RAM memory, or a stable memory (non-volatile memory), such as a disk memory.
  • the memory 1005 may also be a storage device independent of the aforementioned processor 1001.
  • the air conditioner structure shown in FIG. 4 does not limit the air conditioner and may include more or fewer components than shown in the figure, or a combination of certain components, or a different arrangement of components.
  • the memory 1005 as a storage medium may include an operating system, a network communication module, a user interface module and an air conditioner control program.
  • the operating system is a program for managing and controlling the hardware and software resources of the air conditioner, the air conditioner control program and the operation of other software or programs.
  • the user interface 1003 is mainly used to connect to the terminal and communicate data with the terminal;
  • the network interface 1004 is mainly used for the background server and communicates data with the background server;
  • the processor 1001 can be used to call the air conditioner control program stored in the memory 1005.
  • the air conditioner comprises: a memory 1005, a processor 1001, and a control program of the air conditioner stored in the memory and executable on the processor, wherein:
  • the air conditioner is controlled to operate according to the target operating parameters in the next working cycle.
  • the target operating parameters of the air conditioner in the next working cycle are determined according to the indoor temperature that can be achieved in the next working cycle and the set temperature.
  • the target operating parameters of the air conditioner in the next working cycle are determined according to the indoor temperature that can be achieved in the next working cycle and the temperature range.
  • the operating parameters of the air conditioner in the current working cycle are determined as the target operating parameters of the air conditioner in the next working cycle.
  • the operating parameters of the air conditioner in the current working cycle are adjusted according to a first preset adjustment ratio to obtain the target operating parameters of the air conditioner in the next working cycle;
  • the operating parameters of the air conditioner in the current working cycle are adjusted according to the second preset adjustment ratio to obtain the target operating parameters of the air conditioner in the next working cycle, and the first preset adjustment ratio is less than the second preset adjustment ratio.
  • the preset operating parameters are determined as the target operating parameters of the air conditioner in the next working cycle to stop the air conditioner compressor.
  • the indoor temperature change when the air conditioner is operated according to the operating status parameters, the user setting parameters and the air conditioning working setting parameters is determined.
  • Training is performed based on the recorded historical operation data of the air conditioner to generate a relationship between the operation status parameters, user setting parameters, air conditioner working setting parameters and the historical indoor temperature changes, so as to predict the indoor temperature changes based on the relationship.
  • the present application also provides a computer-readable storage medium, which stores an air conditioner control program.
  • the air conditioner control program When executed by a processor, it implements the various steps of the air conditioner control method as described above and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the storage medium provided in this application is the storage medium used to implement the method of this application, based on the method introduced in the embodiment of this application, the person skilled in the art can understand the specific structure and deformation of the storage medium, so it is not repeated here. All storage media used in the method of the embodiment of this application belong to the scope of protection of this application.
  • the present application provides embodiments of methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program code.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • any reference signs placed between brackets shall not be construed as limiting the claims.
  • the word “comprising” does not exclude the presence of components or steps not listed in the claims.
  • the word “a” or “an” preceding a component does not exclude the presence of a plurality of such components.
  • the present application may be implemented by means of hardware comprising several different components and by means of a suitably programmed computer. In a unit claim enumerating several means, several of these means may be embodied by the same item of hardware.
  • the use of the words first, second, and third etc. does not indicate any order. These words may be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调的控制方法、空调器及计算机可读存储介质,该方法包括:确定空调当前工作周期内的运行参数;预测空调按所述运行参数运行时的室内温度变化量;根据所确定的室内温度变化量、当前室内温度以及设定温度,确定下一工作周期内空调的目标运行参数;控制所述空调在下一工作周期内按所述目标运行参数运行。

Description

空调的控制方法、空调器及计算机可读存储介质
相关申请
本申请要求于2022年10月11日申请的、申请号为202211243262.1的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空调器技术领域,尤其涉及一种空调的控制方法、空调器及计算机可读存储介质。
背景技术
空调作为空气调节设备的一种,安装于建筑或构筑物,用于对建筑或构筑物内环境空气的温度、湿度、流速等参数进行调节和控制的设备。由于空调的用电量较大,因此空调的节能效果(或者能效)成为空调产品质量的重要指标之一。
目前,主要是根据经验或者预设的规则直接调节空调设定的运行参数,例如内风机转速、外风机转速和压缩机运行频率等,从而实现降温或者升温的效果,其中,预设的规则可以是:当室内温度已超过某一设定值后,调节空调设定的运行参数。但是,现有的调整规则都是基于后向反馈,即在室内温度已经超过某一设定值时,才调节压缩机的运行频率,如此容易出现温度波动以及过达温的现象,不利于温度控制。
发明内容
本申请通过提供一种空调的控制方法、空调器及计算机可读存储介质,旨在不但提升空调的节能效果,而且还解决了过达温的问题。
在一实施例中,本申请提供了一种空调的控制方法,所述空调的控制方法,包括:
确定空调当前工作周期内的运行参数;
预测空调按所述运行参数运行时的室内温度变化量;
根据所确定的室内温度变化量、当前室内温度以及设定温度,确定下一工作周期内空调的目标运行参数;
控制所述空调在下一工作周期内按所述目标运行参数运行。
在一实施例中,所述根据所确定的室内温度变化量、当前室内温度以及设定温度,确定下一工作周期内空调的目标运行参数的步骤包括:
获取当前室内温度和设定温度;
根据所述室内温度变化量和所述当前室内温度确定下一工作周期预测能达到的室内温度;
根据所述下一工作周期预测能达到的室内温度和所述设定温度,确定下一工作周期内空调的目标运行参数。
在一实施例中,所述根据所述下一工作周期预测能达到的室内温度和所述设定温度,确 定下一工作周期内空调的目标运行参数的步骤包括:
确定所述设定温度对应的温度区间;
根据所述下一工作周期预测能达到的室内温度和所述温度区间确定下一工作周期内空调的目标运行参数。
在一实施例中,所述根据所述下一工作周期预测能达到的室内温度和所述温度区间确定下一工作周期内空调的目标运行参数的步骤包括:
在所述下一工作周期预测能达到的室内温度大于所述温度区间的最大值时,将当前工作周期内空调的运行参数确定为所述下一工作周期内空调的目标运行参数。
在一实施例中,所述根据所述下一工作周期预测能达到的室内温度和所述温度区间确定下一工作周期内空调的目标运行参数的步骤包括:
在所述下一工作周期预测能达到的室内温度小于或等于所述温度区间的最大值,且所述下一工作周期预测能达到的室内温度大于所述设定温度时,按照第一预设调节比例调节所述当前工作周期内空调的运行参数,得到所述下一工作周期内空调的目标运行参数;或,
在所述下一工作周期预测能达到的室内温度小于或等于所述设定温度,且所述下一工作周期预测能达到的室内温度大于所述温度区间的最小值时,按照第二预设调节比例调节所述当前工作周期内空调的运行参数,得到所述下一工作周期内空调的目标运行参数,所述第一预设调节比例小于所述第二预设调节比例。
在一实施例中,所述根据所述下一工作周期预测能达到的室内温度和所述温度区间确定下一工作周期内空调的目标运行参数的步骤包括:
在所述下一工作周期预测能达到的室内温度小于或等于所述温度区间的最小值时,将预设运行参数确定为所述下一工作周期内空调的目标运行参数,以使所述空调压缩机停止运行。
在一实施例中,所述运行参数包括运行状态参数、用户设定参数和空调工作设定参数;所述预测空调按所述运行参数运行时的室内温度变化量的步骤包括:
根据所述运行状态参数、所述用户设定参数、所述空调工作设定参数和室内温度变化量之间的关系,确定所述空调按所述运行状态参数、所述用户设定参数和所述空调工作设定参数运行时的室内温度变化量。
在一实施例中,所述预测空调按所述运行参数运行时的室内温度变化量的步骤之前,还包括:
记录空调每个运行周期内的运行状态参数、用户设定参数和空调工作设定参数,以及空调在每个周期运行后的历史室内温度变化量;
根据记录的空调历史运行数据,进行训练,生成所述运行状态参数、用户设定参数、空调工作设定参数和所述历史室内温度变化量之间的关系,以基于所述关系预测室内温度变化量。
此外,为实现上述目的,本申请还提供了一种空调器,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的空调的控制程序,所述空调的控制程序被所述处理器执行时实现上述的空调的控制方法的步骤。
此外,为实现上述目的,本申请还提供了一种存储介质,其上存储有空调的控制程序,所述空调的控制程序被处理器执行时实现上述的空调的控制方法的步骤。
本申请提供的空调的控制方法、空调器及计算机可读存储介质的技术方案,通过确定空调当前工作周期内的运行参数,进而预测该空调按该运行参数运行时的室内温度变化量;接着,根据室内温度变化量、当前室内温度以及下一工作周期的设定温度确定下一工作周期内空调的目标运行参数,进而控制该空调在下一工作周期到达时,能按照该目标运行参数运行。由于其可以在尚未进入下一工作周期时,根据当前工作周期内的运行参数预测下一工作周期的室内温度变化量,从而根据该室内温度变化量确定合适的空调的目标运行参数,以在下一工作周期到达时,控制空调按该目标运行参数进行降频操作,进而避免在室内温度超过设定 值时才进行降频,导致出现温度波动以及过达温的现象,从而提高空调的节能效果。
附图说明
图1为本申请空调的控制方法第一实施例的流程示意图;
图2为本申请空调的控制方法第二实施例的流程示意图;
图3为本申请空调的控制方法第三实施例的流程示意图;
图4为本申请实施例方案涉及的空调器的结构示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明,上述附图只是一个实施例图,而不是发明的全部。
具体实施方式
目前,随着空调的需求量增多,空调的耗电量也日益增加。在购买空调时,不仅要考虑舒适便利性,还要考虑空调耗电量,节能空调就是一个不错的选择。现有的节能空调在使用过程中,根据室内温度和室外温度的温差控制空调的运行频率,若温差较大则运行频率也较大,温差较小时则运行频率也较小。当室内温度达到设定温度后,再保持当前频率运行,从而达到节能的效果。但是,现有的空调的节能方案均是基于后向反馈,即当室内温度超过或低于设定温度时才调节压缩机的运行频率。如此就容易出现温度频繁波动后才能达到设定温度,甚至出现过达温的现象,不但造成用户体验效果差,而且无法实现节能效果的提升。
而为了提高空调的节能效果,本申请提出了一种空调的控制方法。具体的,本申请通过确定空调当前工作周期内的运行参数,进而预测该空调按该运行参数运行时的室内温度变化量;接着,根据室内温度变化量、当前室内温度以及下一工作周期的设定温度确定下一工作周期内空调的目标运行参数,进而控制该空调在下一工作周期到达时,能按照该目标运行参数运行。由于其可以在尚未进入下一工作周期时,根据当前工作周期内的运行参数预测下一工作周期的室内温度变化量,从而根据该室内温度变化量确定合适的空调的目标运行参数,以在下一工作周期到达时,控制空调按该目标运行参数进行降频操作;进而避免在室内温度超过设定值时才进行降频,导致出现温度波动以及过达温的现象,从而提高空调的节能效果。
另外,由于现有技术需要频繁的改变空调设定的运行参数,使得空调的稳定性能降低,例如频繁改变室内风机转速,容易给用户带来室内空调不稳定的感受。因此,本申请在空调的控制过程中,不用频繁改变空调设定的运行参数,即每个工作周期内空调设定的运行参数是固定不变的,也即每个工作周期内的内风机转速、外风机转速和压缩机运行频率是固定不变的,从而提高空调的稳定性能。
为了更好的理解上述技术方案,下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
第一实施例。
如图2所示,在本申请的第一实施例中,本申请的空调的控制方法,包括以下步骤:
步骤S110,确定空调当前工作周期内的运行参数。
在一实施例中,运行参数为空调的工作参数。该运行参数包括但不限于运行状态参数、用户设定参数和空调工作设定参数等。其中,该运行状态参数为影响空调运行但无法设定的参数;该运行状态参数包括环境状态参数和空调运行状态参数,例如该环境状态参数包括室内温度、室外温度、室内湿度和室外湿度等,该空调运行状态参数包括排气阀温度等。该用户设定参数为用户主动设定的参数,且该用户设定参数包括:设定温度、设定风速等。该空 调工作设定参数为由空调自行设定的参数,包括内风机转速、外风机转速和压缩机运行频率等。
在一实施例中,该运行参数可由上一个工作周期所预测的室内温度变化量确定。在一实施例中,可确定空调上一工作周期内的运行参数,确定空调按该上一工作周期内的运行参数运行时的室内温度变化量;根据所确定的室内温度变化量、上一工作周期对应的室内温度以及当前工作周期的设定温度,确定当前工作周期内空调的运行参数。在一实施例中,该运行参数也可以进行预测,即每个工作周期存在对应的运行参数。在达到该工作周期时,运行该工作周期对应的运行参数。
步骤S120,预测空调按所述运行参数运行时的室内温度变化量;
在一实施例中,空调从当前运行周期内的室内温度至下一运行周期的室内温度之间的温度变化量称为室内温度变化量。空调按照运行参数对应的参数值运行时,存在对应的室内温度变化量。可根据实际情况确定该运行参数以及该运行参数的参数值。
例如,空调按照室内温度Tin=27.6℃、室外温度Tout=34.3℃、室内湿度Hin=62%、室外湿度Hout=65%、排气阀温度Tp=45℃、设定温度Ts=24℃、设定风速Ws=60m/s、内风机转速的转速值为750转/分钟,外风机转速的转速值为800转/分钟和压缩机运行频率的频率值为50HZ运行时,对应的参数组合为(27.6,34.3,62,65,45,24,60,750,800,50),则控制空调按照该参数组合对应的参数值进行运行时,预测得到的空调的室内温度变化量为△T1。在内风机转速的转速值为800转/分钟,外风机转速的转速值为900转/分钟、压缩机运行频率的频率值为40HZ时,在空调按照(27.6,34.3,62,65,45,24,60,800,900,40)这一参数组合运行时,预测得到的空调的室内温度变化量为△T2。需要强调的是,为了避免频繁的改变运行参数,使得空调的稳定性能降低,因此,每个工作周期内的运行参数是固定不变的,也即每个工作周期内均存在由运行参数形成的参数组合,且该参数组合是固定不变的,从而提高空调的稳定性能。
在一实施例中,预测空调按运行参数运行时的室内温度变化量可以为:可根据空调的历史运行数据建立运行状态参数、用户设定参数、空调工作设定参数和室内温度变化量之间的关系,进而根据该关系确定当前工作周期内空调按运行状态参数、用户设定参数和空调工作设定参数运行时所对应的室内温度变化量。该关系的建立具体可参照第二实施例,在此不再赘述。
由于每个参数组合,以及每个参数组合与室内温度变化量之间预先建立的映射关系也是确定的,因此,当空调在按照参数组合运行时,通过上述的映射关系即可确定该参数组合对应的室内温度变化量,也即确定空调按照当前运行周期对应的运行参数运行时,能预测到的室内温度变化量。
步骤S130,根据所确定的室内温度变化量、当前室内温度以及设定温度,确定下一工作周期内空调的目标运行参数。
在一实施例中,当前室内温度为当前工作周期下空调所处室内的温度。该设定温度为下一工作周期所预先设定的温度,也即期望达到的室内温度。每个设定温度存在对应的目标运行参数值,也即在空调按照该目标运行参数值运行时能达到期望达到的室内温度。因此,在确定室内温度变化量之后,即可根据当前工作周期的室内温度、当前室内温度以及设定温度确定下一工作周期内空调的目标运行参数。
在一实施例中,为了确定下一工作周期内空调的目标运行参数,也即在根据所确定的室内温度变化量、当前室内温度以及设定温度,确定下一工作周期内空调的目标运行参数具体包括以下步骤:
步骤S131,获取当前室内温度和设定温度。
在一实施例中,可在空调器的壳体外部设置温度传感器,通过该温度传感器采集当前室内温度。还可在空调所在区域空间内,例如墙壁上设置温度传感器,通过该温度传感器采集当前室内温度。在一实施例中,在房间比较大时,可将空调器所在区域划分为多个子区域, 通过每个子区域内所设置的温度传感器采集对应子区域的温度,通过各个子区域的温度的平均值确定当前室内温度,使得所确定的当前室内温度更加准确。在一实施例中,该空调具有联网功能,可通过网络获取智能终端,例如手机上所显示的当前室内温度。在一实施例中,可实时采集当前室内温度,也可以定时采集当前室内温度。
在一实施例中,该设定温度为期望能达到的室内温度。该设定温度可以为单阈值。在该设定温度为单阈值时,即在任意工作周期,其设定温度是固定不变的。在一实施例中,该设定温度也可以为温度变化曲线里的变化值,即在不同工作周期,其设定温度是变化的。
在一实施例中,该设定温度可由用户进行预先设定。例如,可在空调的温度调节应用上规划预期的室内温度变化曲线,即规划每一工作周期的设定温度。理想情况下,空调工作时,室内温度能符合该预期的室内温度变化曲线上的设定温度。在一实施例中,该室内温度变化曲线可由用户进行规划,即该室内温度变化曲线可根据用户自身的需求进行制定;也可以在出厂时随着每一型号的空调固定写入空调的控制程序中;该室内温度变化曲线也可在空调运行过程中,根据实际使用情况进行修正。在一实施例中,可为空调的不同运行模式制定对应的室内温度变化曲线,例如可为睡眠模式、节能模式下分别制定对应的室内温度变化曲线,以实现在节能的同时,提高舒适性。
步骤S132,根据所述室内温度变化量和所述当前室内温度确定下一工作周期预测能达到的室内温度。
在一实施例中,在步骤S120中,在预测空调按运行参数运行时的室内温度变化量后,即可结合当前室内温度确定下一工作周期预测能达到的室内温度。其中,不管是上述的所预测的室内温度变化量,还是预测能达到的室内温度,其均是通过计算所确定的,而并非预先设定的。
步骤S133,根据所述下一工作周期预测能达到的室内温度和所述设定温度,确定下一工作周期内空调的目标运行参数。
在一实施例中,在确定下一工作周期预测能达到的室内温度和设定温度之后,即可提前确定下一工作周期内空调的目标运行参数,从而实现在下一工作周期到达时,进行降频,以避免出现温度波动和过达温的现象。
在一实施例中,根据下一工作周期预测能达到的室内温度和所述设定温度,确定下一工作周期内空调的目标运行参数具体包括:
步骤S1331,确定所述设定温度对应的温度区间;
步骤S1332,根据所述下一工作周期预测能达到的室内温度和所述温度区间确定下一工作周期内空调的目标运行参数。
在一实施例中,设定温度对应的温度区间可根据实际情况进行确定。假设设定温度为18℃,则该设定温度对应的温度区间可以为[16℃,20℃]。在一实施例中,该温度区间可根据实际情况划分为多个子温度区间,例如,可划分为(20℃,n1℃)、[20℃,18℃)、[18℃,16℃)和[16℃,n2℃)等。
每个温度区间存在对应的调节策略。可根据下一工作周期预测能达到的室内温度和温度区间确定下一工作周期内空调的目标运行参数。其中,
在一实施例中,在所述下一工作周期预测能达到的室内温度大于所述温度区间的最大值时,将当前工作周期内空调的运行参数确定为所述下一工作周期内空调的目标运行参数。例如,在Tin+△Tin>Ts+2时,将当前工作周期内空调的运行参数确定为所述下一工作周期内空调的目标运行参数。假设温度区间为[16℃,20℃]时,在下一工作周期预测能达到的室内温度满足(20℃,n1℃)时,保持压缩机运行频率不变,继续运行。
在一实施例中,在所述下一工作周期预测能达到的室内温度小于或等于所述温度区间的最大值,且所述下一工作周期预测能达到的室内温度大于所述设定温度时,按照第一预设调节比例调节所述当前工作周期内空调的运行参数,得到所述下一工作周期内空调的目标运行参数。例如,在Tin+△Tin<=Ts+2且Tin+△Tin>Ts时,按照第一预设调节比例调节所述当 前工作周期内空调的运行参数。假设温度区间为[16℃,20℃],设定温度为18℃时,在下一工作周期预测能达到的室内温度满足[20℃,18℃)时,则按照预设比例1降低压缩机频率或者运行功率。
在一实施例中,在所述下一工作周期预测能达到的室内温度小于或等于所述设定温度,且所述下一工作周期预测能达到的室内温度大于所述温度区间的最小值时,按照第二预设调节比例调节所述当前工作周期内空调的运行参数,得到所述下一工作周期内空调的目标运行参数。例如,在Tin+△Tin<=Ts且Tin+△Tin>Ts-2时,按照第一预设调节比例调节所述当前工作周期内空调的运行参数。假设温度区间为[16℃,20℃],设定温度为18℃时,在下一工作周期预测能达到的室内温度满足[18℃,16℃)时,则按照预设比例2降低压缩机频率或者运行功率。
其中,上述的第一预设调节比例小于第二预设调节比例,且预测能达到的室内温度越小时,降频的幅度越大。
在一实施例中,在所述下一工作周期预测能达到的室内温度小于或等于所述温度区间的最小值时,将预设运行参数确定为所述下一工作周期内空调的目标运行参数,以使所述空调压缩机停止运行。例如,在Tin+△Tin<=Ts-2时,空调压缩机停止运行,送风保持运行。假设温度区间为[16℃,20℃],设定温度为18℃时,在下一工作周期预测能达到的室内温度满足[16℃,n2℃)时,则停止压缩机,送风保持运行。
综上,通过确定预测能达到的室内温度对应的温度区间,进而确定对应的降频策略,从而实现阶梯式降频,以避免压缩机运行频率的骤降而影响空调的稳定性,也使得空调所处环境的舒适性降低。
步骤S140,控制所述空调在下一工作周期内按所述目标运行参数运行。
在一实施例中,在确定目标运行参数值之后,即可在下一运行周期到来时,控制空调在下一运行周期按该目标运行参数值进行运行。由于空调能基于提前确定的目标运行参数值运行,避免在室内温度达到设定值时才调节压缩机的运行频率,导致出现温度波动以及过达温的现象,从而提高空调的节能效果。
本实施例根据上述技术方案,通过确定空调当前工作周期内的运行参数,进而预测该空调按该运行参数运行时的室内温度变化量;接着,根据室内温度变化量、当前室内温度以及下一工作周期的设定温度确定下一工作周期内空调的目标运行参数,进而控制该空调在下一工作周期到达时,能按照该目标运行参数运行。由于其可以在尚未进入下一工作周期时,根据当前工作周期内的运行参数预测下一工作周期的室内温度变化量,从而根据该室内温度变化量确定合适的空调的目标运行参数,以在下一工作周期到达时,控制空调按该目标运行参数进行降频操作;进而避免在室内温度超过设定值时才进行降频,导致出现温度波动以及过达温的现象,从而提高空调的节能效果。另外,在空调的控制过程中,不用频繁改变空调设定的运行参数,即每个工作周期内空调设定的运行参数是固定不变的,也即每个工作周期内的内风机转速、外风机转速和压缩机运行频率是固定不变的,从而提高空调的稳定性能。
第二实施例。
如图2所示,基于第一实施例,在本申请的第二实施例中,本申请的空调的控制方法,还包括以下步骤:
步骤S110,确定空调当前工作周期内的运行参数,所述运行参数包括运行状态参数、用户设定参数和空调工作设定参数;
步骤S210,记录空调每个运行周期内的运行状态参数、用户设定参数和空调工作设定参数,以及空调在每个周期运行后的历史室内温度变化量;
步骤S220,根据记录的空调历史运行数据,进行训练,生成所述运行状态参数、用户设定参数、空调工作设定参数和所述历史室内温度变化量之间的关系,以基于所述关系预测室内温度变化量;
在一实施例中,第一实施例中的室内温度变化量是基于温变预期模型进行确定的,可以通过构建温变预期模型实现室内温度的精细化控制,使得空调控制更加节能和智能。
在一实施例中,可记录空调在每个运行周期内的运行状态参数、用户设定参数和空调工作设定参数,以及空调在每个运行周期内按照该运行状态参数、用户设定参数和空调工作设定参数运行后所对应的历史室内温度变化量。可基于空调的历史运行记录进行数据训练,得到可用于后续预测室内温度变化量的运行状态参数、用户设定参数、空调工作设定参数和所述历史室内温度变化量之间的关系。
其中,该历史运行记录中包括空调的历史运行数据。该历史室内温度变化量受空调的数量以及房间的大小的影响。即在房间越大时,该历史室内温度变化量越小;在房间越小时,该历史室内温度变化量越大;在空调的数量越多时,历史室内温度变化量越大;在空调的数量越少时,历史室内温度变化量越小。可基于每一个房间的大小和每一个房间内空调的数量确定对应的温变预期模型。由于其可以针对不同的空调数量以及房间大小进行训练,从而能够满足房间的热负荷。
具体的,温变预测模型在各种特征情况下,均可预测下周期与本周期的室内温度变化量△Tin=Tin(N+1)-Tin(N)。而在温变预期模型训练过程中,主要包括以下几个部分:
a、每间隔特定周期T(如:30秒)收集空调的运行数据,空调的运行数据包括:运行状态参数、用户设定参数和空调工作设定参数各自对应的参数值;其中,不可控运行参数包括运行状态参数和用户设定参数。其中,该运行状态参数为影响空调运行但无法设定的参数;该运行状态参数包括环境状态参数和空调运行状态参数,例如该环境状态参数包括室内温度、室外温度、室内湿度和室外湿度等,该空调运行状态参数包括排气阀温度等。该用户设定参数为用户主动设定的参数,且该用户设定参数包括:设定温度、设定风速等。该空调工作设定参数为由空调自行设定的参数,包括内风机转速、外风机转速和压缩机运行频率等。
例如,本次空调共运行30分钟,包含60个周期(每个周期30秒);收集每个周期的运行状态参数、用户设定参数以及可控运行参数,如:第5个周期,Tin=27.6℃、Tout=34.3℃、Hin=62%、Hout=65%、Tp=45℃、Ts=24℃、Ws=60m/s。
b、针对周期i,提取出该周期的特征;
以周期i的运行状态参数、用户设定参数以及可控运行参数作为周期i的特征;此外,还需要引入第1到i周期的统计变量,也作为周期i的特征;其中,周期1表示开机后的第一个T,周期i表示开机后的第i个T。
例如,针对第5个周期(即开机后的120-150秒),把Tin=27.6℃、Tout=34.3℃、Hin=62%、Hout=65%、Tp=45℃、Ts=24℃、Ws=60m/s作为该周期5的特征;在1-5周期内,avg(Tin)=28.3℃,max(Pr)=46等统计量,也作为该周期5的特征。
c、以周期i特征作为自变量,周期i+1与周期i的室内温度变化量△Tin作为因变量,训练温变预期模型;其中,每个周期,作为一条训练数据,包括自变量和因变量;其中,自变量为该周期的所有特征;因变量为下一个周期与该周期的室内温度变化量△Tin=Tin(N+1)-Tin(N)。
例如,针对第5个周期(即开机后的120-150秒),把Tin=27.6℃、Tout=34.3℃、Hin=62%、Hout=65%、Tp=45℃、Ts=24℃、Ws=60m/s,avg(Tin5)=28.3℃,max(Pr5)=46作为该周期5的自变量,把Tin6-Tin5作为该周期5的因变量;利用机器学习/深度学习算法,训练出该温变预期模型:
yi(ΔTi=Tini+1-Tini)=fi(Tin,Tout,Hin,Hout,...)。
其中,采用上述方式对温变预期模型进行训练之后,可生成运行状态参数、用户设定参数、空调工作设定参数和历史室内温度变化量之间的关系。该关系可以是固定写入空调的控制程序,也可根据实际使用情况进行实时的修正,以提高预测精度。在得到该温变预期模型 后,在后续预测室内温度变化量时,可基于所确定的关系预测室内温度变化量,提高空调节能效果。
步骤S121,根据所述运行状态参数、所述用户设定参数、所述空调工作设定参数和室内温度变化量之间的关系,确定所述空调按所述运行状态参数、所述用户设定参数和所述空调工作设定参数运行时的室内温度变化量;
步骤S130,根据所确定的室内温度变化量、当前室内温度以及设定温度,确定下一工作周期内空调的目标运行参数;
步骤S140,控制所述空调在下一工作周期内按所述目标运行参数运行。
本申请提供了空调的控制方法的实施例,需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
第三实施例。
基于第一实施例和第二实施例,参照图3,在本申请的第三实施例中,本申请空调的控制方法分为以下几个部分:
首先,收集空调的历史运行数据,包括运行状态(运行状态参数)、用户设定(用户设定参数)和工作设定(可控运行参数);基于历史运行数据,按照周期i提取出特征;以每个周期特征作为自变量,周期i+1与周期i的温变值△Tin(历史室内温度变化量)作为因变量训练温变预期模型。
接着,在空调运行过程中,每间隔周期收集空调的当前运行参数,包括运行状态(运行状态参数)和用户设定(用户设定参数);根据运行状态参数、用户设定参数和工作设定参数生成参数组合;提取参数组合对应的组合特征。
接着,将参数组合所提取的组合特征输入温变预期模型,预测该参数组合对应的室内温度变化量。
最后,判断Tin+△Tin所处的区间。在(Tin+△Tin)>Ts+2时,则频率保持不变,继续运行。在(Tin+△Tin<=Ts+2且Tin+△Tin>Ts)时,则按照预设比例1降低频率/功率运行。在(Tin+△Tin<=Ts且Tin+△Tin>Ts-2)时,则按照预设比例2降低频率/功率运行。在(Tin+△Tin<=Ts-2)时,则停止压缩机,送风保持运行。
由于在尚未进入下一个周期时,预测参数组合对应的下一个周期的室内温度值或者室内温度变化值,从而选择适合下一周期运行的目标运行参数进行阶梯式降频,有效避免传统GA算法温度波动/过达温。
如图4所示,图4为本申请实施例方案涉及的硬件运行环境的结构示意图。
需要说明的是,图4即可为空调器的硬件运行环境的结构示意图。
如图4所示,该空调器可以包括:处理器1001,例如CPU,存储器1005,用户接口1003,网络接口1004,通信总线1002。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005还可以是独立于前述处理器1001的存储装置。
本领域技术人员可以理解,图4中示出的空调器结构并不构成对空调器限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图4所示,作为一种存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及空调的控制程序。其中,操作系统是管理和控制空调器硬件和软件资源的程序,空调的控制程序以及其它软件或程序的运行。
在图4所示的空调器中,用户接口1003主要用于连接终端,与终端进行数据通信;网络接口1004主要用于后台服务器,与后台服务器进行数据通信;处理器1001可以用于调用存储器1005中存储的空调的控制程序。
在一实施例中,空调器包括:存储器1005、处理器1001及存储在所述存储器上并可在所述处理器上运行的空调的控制程序,其中:
处理器1001调用存储器1005中存储的空调的控制程序时,执行以下操作:
确定空调当前工作周期内的运行参数;
预测空调按所述运行参数运行时的室内温度变化量;
根据所确定的室内温度变化量、当前室内温度以及设定温度,确定下一工作周期内空调的目标运行参数;
控制所述空调在下一工作周期内按所述目标运行参数运行。
处理器1001调用存储器1005中存储的空调的控制程序时,执行以下操作:
获取当前室内温度和设定温度;
根据所述室内温度变化量和所述当前室内温度确定下一工作周期预测能达到的室内温度;
根据所述下一工作周期预测能达到的室内温度和所述设定温度,确定下一工作周期内空调的目标运行参数。
处理器1001调用存储器1005中存储的空调的控制程序时,执行以下操作:
确定所述设定温度对应的温度区间;
根据所述下一工作周期预测能达到的室内温度和所述温度区间确定下一工作周期内空调的目标运行参数。
处理器1001调用存储器1005中存储的空调的控制程序时,执行以下操作:
在所述下一工作周期预测能达到的室内温度大于所述温度区间的最大值时,将当前工作周期内空调的运行参数确定为所述下一工作周期内空调的目标运行参数。
处理器1001调用存储器1005中存储的空调的控制程序时,执行以下操作:
在所述下一工作周期预测能达到的室内温度小于或等于所述温度区间的最大值,且所述下一工作周期预测能达到的室内温度大于所述设定温度时,按照第一预设调节比例调节所述当前工作周期内空调的运行参数,得到所述下一工作周期内空调的目标运行参数;或,
在所述下一工作周期预测能达到的室内温度小于或等于所述设定温度,且所述下一工作周期预测能达到的室内温度大于所述温度区间的最小值时,按照第二预设调节比例调节所述当前工作周期内空调的运行参数,得到所述下一工作周期内空调的目标运行参数,所述第一预设调节比例小于所述第二预设调节比例。
处理器1001调用存储器1005中存储的空调的控制程序时,执行以下操作:
在所述下一工作周期预测能达到的室内温度小于或等于所述温度区间的最小值时,将预设运行参数确定为所述下一工作周期内空调的目标运行参数,以使所述空调压缩机停止运行。
处理器1001调用存储器1005中存储的空调的控制程序时,执行以下操作:
根据所述运行状态参数、所述用户设定参数、所述空调工作设定参数和室内温度变化量之间的关系,确定所述空调按所述运行状态参数、所述用户设定参数和所述空调工作设定参数运行时的室内温度变化量。
处理器1001调用存储器1005中存储的空调的控制程序时,执行以下操作:
记录空调每个运行周期内的运行状态参数、用户设定参数和空调工作设定参数,以及空调在每个周期运行后的历史室内温度变化量;
根据记录的空调历史运行数据,进行训练,生成所述运行状态参数、用户设定参数、空调工作设定参数和所述历史室内温度变化量之间的关系,以基于所述关系预测室内温度变化量。
基于同一发明构思,本申请还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有空调的控制程序,所述空调的控制程序被处理器执行时实现如上所述的空调的控制方法的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
由于本申请提供的存储介质为实施本申请的方法所采用的存储介质,故而基于本申请实施例所介绍的方法,本领域所属人员能够了解该存储介质的具体结构及变形,故而在此不再赘述。凡是本申请实施例的方法所采用的存储介质都属于本申请所欲保护的范围。
本领域内的技术人员应明白,本申请提供了方法、系统、或计算机程序产品的实施例。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
应当注意的是,在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的部件或步骤。位于部件之前的单词“一”或“一个”不排除存在多个这样的部件。本申请可以借助于包括有若干不同部件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (10)

  1. 一种空调的控制方法,其中,所述空调的控制方法包括:
    确定空调当前工作周期内的运行参数;
    预测空调按所述运行参数运行时的室内温度变化量;
    根据所确定的室内温度变化量、当前室内温度以及设定温度,确定下一工作周期内空调的目标运行参数;
    控制所述空调在下一工作周期内按所述目标运行参数运行。
  2. 如权利要求1所述的方法,其中,所述根据所确定的室内温度变化量、当前室内温度以及设定温度,确定下一工作周期内空调的目标运行参数的步骤包括:
    获取当前室内温度和设定温度;
    根据所述室内温度变化量和所述当前室内温度确定下一工作周期预测能达到的室内温度;
    根据所述下一工作周期预测能达到的室内温度和所述设定温度,确定下一工作周期内空调的目标运行参数。
  3. 如权利要求2所述的方法,其中,所述根据所述下一工作周期预测能达到的室内温度和所述设定温度,确定下一工作周期内空调的目标运行参数的步骤包括:
    确定所述设定温度对应的温度区间;
    根据所述下一工作周期预测能达到的室内温度和所述温度区间确定下一工作周期内空调的目标运行参数。
  4. 如权利要求3所述的方法,其中,所述根据所述下一工作周期预测能达到的室内温度和所述温度区间确定下一工作周期内空调的目标运行参数的步骤包括:
    在所述下一工作周期预测能达到的室内温度大于所述温度区间的最大值时,将当前工作周期内空调的运行参数确定为所述下一工作周期内空调的目标运行参数。
  5. 如权利要求3所述的方法,其中,所述根据所述下一工作周期预测能达到的室内温度和所述温度区间确定下一工作周期内空调的目标运行参数的步骤包括:
    在所述下一工作周期预测能达到的室内温度小于或等于所述温度区间的最大值,且所述下一工作周期预测能达到的室内温度大于所述设定温度时,按照第一预设调节比例调节所述当前工作周期内空调的运行参数,得到所述下一工作周期内空调的目标运行参数;或,
    在所述下一工作周期预测能达到的室内温度小于或等于所述设定温度,且所述下一工作周期预测能达到的室内温度大于所述温度区间的最小值时,按照第二预设调节比例调节所述当前工作周期内空调的运行参数,得到所述下一工作周期内空调的目标运行参数,所述第一预设调节比例小于所述第二预设调节比例。
  6. 如权利要求3所述的方法,其中,所述根据所述下一工作周期预测能达到的室内温度和所述温度区间确定下一工作周期内空调的目标运行参数的步骤包括:
    在所述下一工作周期预测能达到的室内温度小于或等于所述温度区间的最小值时,将预设运行参数确定为所述下一工作周期内空调的目标运行参数,以使所述空调压缩机停止运行。
  7. 如权利要求1所述的方法,其中,所述运行参数包括运行状态参数、用户设定参数和空调工作设定参数;所述预测空调按所述运行参数运行时的室内温度变化量的步骤包括:
    根据所述运行状态参数、所述用户设定参数、所述空调工作设定参数和室内温度变化量之间的关系,确定所述空调按所述运行状态参数、所述用户设定参数和所述空调工作设定参数运行时的室内温度变化量。
  8. 如权利要求7所述的方法,其中,所述预测空调按所述运行参数运行时的室内温度变化量的步骤之前,还包括:
    记录空调每个运行周期内的运行状态参数、用户设定参数和空调工作设定参数,以及空调在每个周期运行后的历史室内温度变化量;
    根据记录的空调历史运行数据,进行训练,生成所述运行状态参数、用户设定参数、空调工作设定参数和所述历史室内温度变化量之间的关系,以基于所述关系预测室内温度变化量。
  9. 一种空调器,其中,所述空调器包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的空调的控制程序,所述空调的控制程序被所述处理器执行时实现如权利要求1-8中任一项所述的空调的控制方法的步骤。
  10. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有空调的控制程序,所述空调的控制程序被处理器执行时实现权利要求1-8中任一项所述的空调的控制方法的步骤。
PCT/CN2023/104112 2022-10-11 2023-06-29 空调的控制方法、空调器及计算机可读存储介质 WO2024078034A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211243262.1A CN117906253A (zh) 2022-10-11 2022-10-11 空调的控制方法、空调器及计算机可读存储介质
CN202211243262.1 2022-10-11

Publications (1)

Publication Number Publication Date
WO2024078034A1 true WO2024078034A1 (zh) 2024-04-18

Family

ID=90668662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104112 WO2024078034A1 (zh) 2022-10-11 2023-06-29 空调的控制方法、空调器及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN117906253A (zh)
WO (1) WO2024078034A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087991A (ja) * 2011-10-14 2013-05-13 Fuji Electric Co Ltd 熱源制御装置、空調システム、熱源制御プログラムおよび熱源制御方法
CN105143781A (zh) * 2013-04-22 2015-12-09 三菱电机株式会社 空调控制系统及空调控制方法
CN105241007A (zh) * 2015-09-29 2016-01-13 海信(广东)空调有限公司 一种变频空调控制方法及装置
CN107940693A (zh) * 2017-11-14 2018-04-20 珠海格力电器股份有限公司 空调负荷调节控制方法和装置
CN108344104A (zh) * 2017-12-27 2018-07-31 青岛海尔空调器有限总公司 一种用于空调器的室内温度预测方法以及空调器
CN110375425A (zh) * 2019-07-22 2019-10-25 广东美的暖通设备有限公司 空调系统及其控制方法、控制设备、计算机可读存储介质
JP2020197309A (ja) * 2019-05-30 2020-12-10 アズビル株式会社 目標到達制御装置および目標到達制御方法
CN114413420A (zh) * 2021-12-24 2022-04-29 珠海格力电器股份有限公司 空调的控制方法以及空调

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087991A (ja) * 2011-10-14 2013-05-13 Fuji Electric Co Ltd 熱源制御装置、空調システム、熱源制御プログラムおよび熱源制御方法
CN105143781A (zh) * 2013-04-22 2015-12-09 三菱电机株式会社 空调控制系统及空调控制方法
CN105241007A (zh) * 2015-09-29 2016-01-13 海信(广东)空调有限公司 一种变频空调控制方法及装置
CN107940693A (zh) * 2017-11-14 2018-04-20 珠海格力电器股份有限公司 空调负荷调节控制方法和装置
CN108344104A (zh) * 2017-12-27 2018-07-31 青岛海尔空调器有限总公司 一种用于空调器的室内温度预测方法以及空调器
JP2020197309A (ja) * 2019-05-30 2020-12-10 アズビル株式会社 目標到達制御装置および目標到達制御方法
CN110375425A (zh) * 2019-07-22 2019-10-25 广东美的暖通设备有限公司 空调系统及其控制方法、控制设备、计算机可读存储介质
CN114413420A (zh) * 2021-12-24 2022-04-29 珠海格力电器股份有限公司 空调的控制方法以及空调

Also Published As

Publication number Publication date
CN117906253A (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
CN113819596B (zh) 一种空调控制方法及空调器
CN107676935B (zh) 智能空调节能控制方法
CN104019526A (zh) 改进pso算法模糊自适应pid温湿度控制系统及方法
CN115630434B (zh) 一种基于多智能体模拟的建筑碳排放预测方法和装置
CN109654682A (zh) 空调器的控制方法、控制终端以及空调器
CN112050446B (zh) 新风空调的控制方法
CN117515808B (zh) 一种中央空调冷热源节能智控系统
CN111023523A (zh) 空调器控制方法、装置、空调器和存储介质
US20190353369A1 (en) Environmental control system and method for automatically adjusting operating parameters
WO2024078034A1 (zh) 空调的控制方法、空调器及计算机可读存储介质
CN113587371A (zh) 一种空调器控制方法、控制装置及空调器
WO2023159977A1 (zh) 空调节能的控制方法、控制系统、电子设备和存储介质
WO2023236550A1 (zh) 空调器的控制方法、装置及空调器
WO2023159942A1 (zh) 空调节能的控制方法、控制系统、电子设备和存储介质
CN112050440A (zh) 新风空调的控制方法
WO2024093356A1 (zh) 空气调节设备的控制方法、设备及存储介质
WO2024093368A1 (zh) 空气调节设备的控制方法、设备及可读存储介质
CN115218388A (zh) 空调器控制方法、装置、空调器、遥控器及存储介质
WO2024078041A1 (zh) 空调器的控制方法、空调器以及计算机可读存储介质
CN112050443B (zh) 新风空调的净化控制方法
CN112050392B (zh) 制冷工况下空调器的控制方法
CN112050447B (zh) 新风空调的控制方法
WO2024093410A1 (zh) 空调器的控制方法、空调器及计算机可读存储介质
CN112050439A (zh) 新风空调的控制方法
Zhang Research on Intelligent Control System of Air Conditioning Based on Internet of Things

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876243

Country of ref document: EP

Kind code of ref document: A1