WO2024078041A1 - 空调器的控制方法、空调器以及计算机可读存储介质 - Google Patents

空调器的控制方法、空调器以及计算机可读存储介质 Download PDF

Info

Publication number
WO2024078041A1
WO2024078041A1 PCT/CN2023/104218 CN2023104218W WO2024078041A1 WO 2024078041 A1 WO2024078041 A1 WO 2024078041A1 CN 2023104218 W CN2023104218 W CN 2023104218W WO 2024078041 A1 WO2024078041 A1 WO 2024078041A1
Authority
WO
WIPO (PCT)
Prior art keywords
operating
air conditioner
energy efficiency
output capacity
parameter combination
Prior art date
Application number
PCT/CN2023/104218
Other languages
English (en)
French (fr)
Inventor
樊其锋
尚喆
晏璐
夏云龙
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2024078041A1 publication Critical patent/WO2024078041A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content

Definitions

  • the present application relates to the technical field of air conditioner control, and in particular to a control method of an air conditioner, an air conditioner, and a computer-readable storage medium.
  • energy saving is often achieved by adjusting the operating frequency of the air conditioner, such as the common ECO (Ecology Conservation Optimization) mode.
  • the main purpose of the present application is to provide a control method for an air conditioner, aiming to solve the problem of how to avoid overheating of the air conditioner.
  • the present application provides a method for controlling an air conditioner, the method comprising:
  • the air conditioner is controlled to operate according to the target operating parameter combination.
  • the step of determining a target operating parameter combination that satisfies a target operating power according to the operating energy efficiency and/or the output capacity comprises:
  • the parameter combination that satisfies the target output capacity is determined as the target operating parameter combination.
  • one parameter combination is selected as the target operating parameter combination according to a preset rule.
  • selecting a parameter combination as the target operating parameter combination according to a preset rule includes:
  • the parameter combination with the highest operating energy efficiency value and the lowest output capacity value among the parameter combinations is determined as the target operating parameter combination.
  • the step of predicting the operating energy efficiency and/or output capacity corresponding to each parameter combination of the controllable operating parameters of the air conditioner comprises:
  • the operating energy efficiency and/or the output capacity corresponding to each of the parameter combinations is determined according to a mapping relationship between the controllable operating parameters, the uncontrollable operating parameters and the operating energy efficiency and/or the output capacity.
  • the step of determining the operating energy efficiency and/or the output capacity corresponding to each parameter combination according to the mapping relationship between the controllable operating parameters, the uncontrollable operating parameters and the operating energy efficiency and/or the output capacity includes:
  • the first mapping relationship determines the operating energy efficiency corresponding to each of the parameter combinations.
  • the step of determining the operating energy efficiency and/or the output capacity corresponding to each parameter combination according to the mapping relationship between the controllable operating parameters, the uncontrollable operating parameters and the operating energy efficiency and/or the output capacity includes:
  • the output capability corresponding to each of the parameter combinations is determined according to each of the parameter combinations and the second mapping relationship between the historical parameter combinations and the historical output capabilities.
  • the step before the step of predicting the operating energy efficiency and/or output capacity corresponding to the operating parameter combination of multiple controllable operating parameters in the current working cycle of the air conditioner, the step includes:
  • the step of predicting the operating energy efficiency and/or output capacity corresponding to the operating parameter combination of the plurality of controllable operating parameters in the current working cycle of the air conditioner is performed.
  • the present application also provides an air conditioner, which includes: a memory, a processor, and an air conditioner control program stored in the memory and executable on the processor, and the air conditioner control program, when executed by the processor, implements the steps of the air conditioner control method as described above.
  • the present application also provides a computer-readable storage medium, wherein the computer-readable storage medium stores a control program of an air conditioner, and when the control program of the air conditioner is executed by a processor, the steps of the control method of the air conditioner as described above are implemented.
  • the embodiment of the present application provides a control method of an air conditioner, an air conditioner and a computer-readable storage medium, wherein the method comprises: obtaining an uncontrollable operating parameter of the air conditioner; based on the uncontrollable operating parameter Control operating parameters, predict the operating energy efficiency and/or output capacity corresponding to each parameter combination of the controllable operating parameters of the air conditioner; determine the target operating parameter combination that meets the target operating power according to the operating energy efficiency and/or the output capacity; control the air conditioner to operate according to the target operating parameter combination.
  • the operating parameters are adjusted before overheating or frequency fluctuation of the air conditioner occurs, avoiding overheating of the air conditioner, thereby meeting the heat load requirements of the air conditioner under different working environments.
  • FIG1 is a schematic diagram of the structure of the hardware operating environment involved in the embodiment of the air conditioner control method of the present application.
  • FIG2 is a flow chart of a first embodiment of a method for controlling an air conditioner according to the present invention.
  • FIG. 3 is a flow chart of a second embodiment of a method for controlling an air conditioner according to the present application.
  • the present application aims to improve the energy-saving effect of air conditioners.
  • the present application proposes a control method for air conditioners. Specifically, the present application realizes the control of operating energy efficiency and/or capacity by constructing a predictive energy efficiency and/or capacity model. Compared with the backward feedback principle of the traditional GA algorithm, the operating parameters are adjusted before overheating or frequency fluctuation of the air conditioner occurs, so as to avoid overheating of the air conditioner, thereby meeting the heat load of the air conditioner under different working environments.
  • FIG1 is a schematic diagram of the structure of the hardware operating environment involved in the embodiment scheme of the present application.
  • the air conditioner may include: a processor 1001, such as a CPU, a memory 1005, a user interface 1003, a network interface 1004, and a communication bus 1002.
  • the communication bus 1002 is used to realize the connection and communication between these components.
  • the user interface 1003 may include a display screen (Display), an input unit such as a keyboard (Keyboard), and the user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may include a standard wired interface and a wireless interface (such as a WI-FI interface).
  • the memory 1005 may be a high-speed RAM memory, or a stable memory (non-volatile memory), such as a disk memory.
  • the memory 1005 may also be a storage device independent of the aforementioned processor 1001.
  • the air conditioner structure shown in FIG. 1 does not limit the air conditioner and may include more or fewer components than shown, or a combination of certain components, or a different arrangement of components.
  • the memory 1005 as a storage medium may include an operating system, a network communication module, a user interface module and a control program of the air conditioner.
  • the operating system is a program for managing and controlling the hardware and software resources of the air conditioner, based on the operation of the control program of the air conditioner and other software or programs.
  • the user interface 1003 is mainly used to connect to the terminal and communicate data with the terminal;
  • the network interface 1004 is mainly used for the background server and communicates data with the background server;
  • the processor 1001 can be used to call the control program of the air conditioner stored in the memory 1005.
  • the air conditioner comprises: a memory 1005, a processor 1001, and a control program of the air conditioner stored in the memory and executable on the processor, wherein:
  • the parameter combination corresponding to the target output capacity is determined as the target operating parameter combination.
  • one parameter combination is selected as the target operating parameter combination according to a preset rule.
  • the parameter combination with the highest operating energy efficiency value and the lowest output capacity value among the parameter combinations is determined as the target operating parameter combination.
  • the operating energy efficiency and/or the output capacity corresponding to each of the parameter combinations is determined according to a mapping relationship between the controllable operating parameters, the uncontrollable operating parameters and the operating energy efficiency and/or the output capacity.
  • the operating energy efficiency corresponding to each of the parameter combinations is determined according to each of the parameter combinations and a first mapping relationship between a historical parameter combination and a historical operating energy efficiency.
  • the output capability corresponding to each of the parameter combinations is determined according to each of the parameter combinations and a second mapping relationship between historical parameter combinations and historical output capabilities.
  • the step of predicting the operating energy efficiency and/or output capacity corresponding to the operating parameter combination of the plurality of controllable operating parameters in the current working cycle of the air conditioner is performed.
  • control method of the air conditioner includes the following steps:
  • Step S10 obtaining uncontrollable operating parameters of the air conditioner
  • Step S20 predicting the operating energy efficiency and/or output capacity corresponding to each parameter combination of the controllable operating parameters of the air conditioner based on the uncontrollable operating parameters;
  • the uncontrollable operating parameters of the air conditioner are first obtained, and then based on the obtained uncontrollable operating parameters, according to the operating parameter combination formed by multiple controllable operating parameters in the current working cycle, the operating energy efficiency of the air conditioner in the next cycle is predicted, and/or according to the operating parameter combination formed by multiple controllable operating parameters in the current working cycle, the output capacity of the air conditioner in the next cycle is predicted.
  • the operating energy efficiency is the ratio between the power consumption and the cooling/heating capacity during the operation of the air conditioner.
  • the output capacity is the quantitative value of the cooling/heating capacity of the air conditioner per unit time.
  • controllable operating parameters include, for example, one or more of the internal fan speed, the external fan speed, or the compressor operating frequency.
  • the controllable operating parameters can be set to correspond to one or more parameter combinations, and the size and number of parameter combinations corresponding to the controllable operating parameters of different models of air conditioners are different. If there are two or more controllable operating parameters, each parameter combination of the controllable operating parameters can constitute a parameter combination.
  • the air conditioner is preset with an interval working cycle T, and the operating parameters of the air conditioner are collected every preset interval period T.
  • the working cycle can be set to 30 seconds.
  • the operating parameters of the air conditioner include controllable operating parameters and uncontrollable operating parameters.
  • the controllable operating parameters are characterized by the controllable operating parameters of the air conditioner itself, such as the internal fan speed, the external fan speed and the compressor frequency, etc.;
  • the uncontrollable parameters are characterized by the uncontrollable parameters of the air conditioner itself, such as the indoor and outdoor temperature, the indoor and outdoor humidity, the exhaust valve temperature and other environmental parameters that affect the operation of the air conditioner but cannot be set, or the target temperature, the set target wind speed and other user-set parameters.
  • the operating energy efficiency is characterized by the power consumption during the operation of the air conditioner.
  • the output capacity is characterized by the cooling capacity during the operation of the air conditioner.
  • the operating energy efficiency is characterized by the predicted operating energy efficiency of the next cycle and the operating energy efficiency change value of the current operating energy efficiency.
  • the output capacity is characterized by the output capacity change value of the predicted output capacity of the next cycle and the current output capacity.
  • the operating energy efficiency may be determined by monitoring the power consumption of the air conditioner on an electric meter associated with the air conditioner.
  • the output capacity may be determined according to the operating frequency and the operating power of the air conditioner.
  • the step of predicting the operating energy efficiency may be: first, obtaining the parameter combination of the uncontrollable parameters in the air conditioner (including but not limited to indoor and outdoor temperature, indoor and outdoor humidity, exhaust valve temperature, set temperature, etc.), and then determining the various parameter combinations of the controllable operating parameters of the air conditioner (including but not limited to the internal fan speed, the external fan speed and the compressor frequency, etc.), constructing a mapping relationship between the controllable operating parameters, the uncontrollable operating parameters and the operating energy efficiency, and based on the mapping relationship, determining the operating energy efficiency corresponding to each parameter combination.
  • the step of predicting the output capacity may be: first, obtaining the parameter combination of the uncontrollable parameters in the air conditioner (including but not limited to indoor and outdoor temperature, indoor and outdoor humidity, exhaust valve temperature, set temperature, etc.), and then determining the various parameter combinations of the controllable operating parameters of the air conditioner (including but not limited to internal fan speed, external fan speed and compressor frequency, etc.), constructing a mapping relationship between the controllable operating parameters, uncontrollable operating parameters and output capacity, and based on the mapping relationship, determining the output capacity corresponding to each parameter combination.
  • the parameter combination of the uncontrollable parameters in the air conditioner including but not limited to indoor and outdoor temperature, indoor and outdoor humidity, exhaust valve temperature, set temperature, etc.
  • determining the various parameter combinations of the controllable operating parameters of the air conditioner including but not limited to internal fan speed, external fan speed and compressor frequency, etc.
  • the historical operation combination is (Tin, Tout, Hin, Hout, Tp, Ts, Ws, Sin, Sout, Pr).
  • the above historical parameter combination is used as an independent variable, and the operating energy efficiency Q5 is used as a dependent variable.
  • Step S30 determining a target operating parameter combination that meets a target operating energy efficiency and/or a target output capacity according to the operating energy efficiency and/or the output capacity;
  • a target operation parameter combination of the air conditioner that satisfies the next working cycle is determined according to the operation energy efficiency and/or the output capacity.
  • the step of determining the target operating parameter combination may be: based on a preset energy efficiency prediction model, determining each operating energy efficiency predicted in the current cycle, determining a parameter combination corresponding to an operating energy efficiency greater than a preset energy efficiency value among each of the operating energy efficiencies, and determining the parameter combination corresponding to the target operating energy efficiency as the target operating parameter combination;
  • the step of determining the target operating parameter combination may be: based on a preset capacity prediction model, determine each output capacity predicted for the current cycle, determine the parameter combination corresponding to the output capacity that is greater than the preset output capacity value among each of the output capacities, and determine the parameter combination that meets the target output capacity as the target operating parameter combination.
  • the step of determining the target operating parameter combination may be: determining each operating energy efficiency predicted for the current period based on a preset energy efficiency prediction model, and determining each output capacity predicted for the current period based on a preset capacity prediction model, and then determining each operating energy efficiency and each output capacity predicted for the current period, determining, among each operating energy efficiency and each output capacity, a parameter combination corresponding to an operating energy efficiency and an output capacity that are both greater than a preset energy efficiency value and a preset output capacity value, and using the parameter combination as the target operating parameter combination.
  • controllable operating parameters may include at least two, wherein the predicted operating The power variation corresponds to a parameter combination consisting of various parameter combinations of all controllable operating parameters.
  • the preset rule may be: taking the parameter combination with the smallest frequency change of the air conditioner compressor as the target operating parameter combination.
  • Step S40 controlling the air conditioner to operate according to the target operating parameter combination.
  • the air conditioner is controlled to operate according to the determined target operating parameter combination.
  • the operating energy efficiency and/or output capacity corresponding to the controllable operating parameters of the air conditioner are predicted, and the target operating parameter combination that meets the target operating power is determined according to the operating energy efficiency and/or output capacity.
  • the air conditioner is then controlled to operate according to the target operating parameter combination.
  • the operating energy efficiency and/or capacity control is achieved by constructing a predictive energy efficiency and/or capacity model. Compared with the backward feedback principle of the traditional GA algorithm, the operating parameters are adjusted before overheating or frequency fluctuation of the air conditioner occurs, so as to avoid overheating of the air conditioner, thereby meeting the heat load of the air conditioner under different working environments.
  • FIG. 3 the flowchart of the second embodiment of the control method of the air conditioner of the present application can be shown in FIG. 3 .
  • part of the operation data of the air conditioner is collected at intervals, including the operation state, user settings and working settings.
  • the operation state includes indoor temperature, outdoor temperature, indoor humidity, outdoor humidity Hout, exhaust valve temperature, parameters that affect the operation of the air conditioner but cannot be set, user settings include set temperature, set wind speed and other parameters actively set by the user, and working settings include parameters set by the air conditioner itself, such as internal fan speed, external fan speed, and compressor operating frequency.
  • the working setting parameters of the air conditioner are changed to obtain a plurality of operation parameter combinations, namely, combination 1, combination 2...combination N.
  • the features in the combination are extracted, and then the output capacity Q/operation energy efficiency E (i.e., target operation energy efficiency/target output capacity) of the combination is predicted according to the features, wherein the prediction method is to predict through a preset capacity/energy efficiency prediction model, and the training steps of the capacity/energy efficiency prediction model are: collect the historical operation data of the air conditioner, the historical operation data includes the historical operation state, the historical user settings and the historical working settings, then extract the feature data in the historical operation data, take the feature data as the independent variable, take the historical operation power of the air conditioner as the dependent variable, input the independent variable and the dependent variable into the power prediction model for training.
  • the control strategy corresponding to capacity/energy efficiency i.e. target Operation parameters corresponding to operation capacity/operation energy efficiency
  • the computer program includes program instructions, and the computer program can be stored in a storage medium, which is a computer-readable storage medium.
  • the program instructions are executed by at least one processor in the air conditioner to implement the process steps of the embodiment of the above method.
  • the present application also provides a computer-readable storage medium, which stores a control program for an air conditioner.
  • a control program for an air conditioner When the control program for the air conditioner is executed by a processor, the various steps of the control method for the air conditioner described in the above embodiment are implemented.
  • the computer-readable storage medium can be a U disk, a mobile hard disk, a read-only memory (ROM), a magnetic disk or an optical disk, and other computer-readable storage media that can store program codes.
  • the storage medium provided in the embodiment of the present application is the storage medium used to implement the method of the embodiment of the present application, based on the method introduced in the embodiment of the present application, the person skilled in the art can understand the specific structure and deformation of the storage medium, so it is not repeated here. All storage media used in the method of the embodiment of the present application belong to the scope of protection of this application.
  • the embodiments of the present application may be provided as methods, systems or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment or an embodiment in combination with software and hardware. Moreover, the present application may adopt the form of a computer program product implemented in one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) that contain computer-usable program code.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • any reference signs placed between brackets shall not be construed as limiting the claims.
  • the word “comprising” does not exclude the presence of components or steps not listed in the claims.
  • the word “a” or “an” preceding a component does not exclude the presence of a plurality of such components.
  • the present application may be implemented by means of hardware comprising several different components and by means of a suitably programmed computer. In a unit claim enumerating several means, several of these means may be embodied by the same item of hardware.
  • the use of the words first, second, and third etc. does not indicate any order. These words may be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器的控制方法、空调器以及计算机可读存储介质,所述方法包括:获取空调器的不可控运行参数;基于不可控运行参数,预测空调器的可控运行参数的各个参数组合对应的运行能效和/或输出能力;根据运行能效和/或输出能力确定满足目标运行功率的目标运行参数组合;控制空调器按目标运行参数组合运行。

Description

空调器的控制方法、空调器以及计算机可读存储介质
相关申请
本申请要求于2022年10月11号申请的、申请号为202211243266.X的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空调器控制技术领域,尤其涉及一种空调器的控制方法、空调器以及计算机可读存储介质。
背景技术
空调器在家电中的耗电比重较大,低耗电的空调器在家电市场往往会更受消费者青睐。在降低空调器耗电的相关技术方案中,常通过调节空调器运行频率的方式来实现节能,如常见的ECO(Ecology Conservation Optimization,生态节能优化)模式。
然而,传统的根据空调的运行频率来实现空调节能的方式,由于其基于GA(Genetic Algorithm,遗传算法)的向后反馈原理,即先检测后执行的执行逻辑,容易使空调器的制冷量或制冷温度出现波动,存在容易出现过达温的缺陷。
上述内容仅用于辅助理解本申请的技术方案,并不代表承认上述内容是现有技术。
发明内容
本申请的主要目的在于提供一种空调器的控制方法,旨在解决如何避免空调器出现过达温的问题。
为实现上述目的,本申请提供的一种空调器的控制方法,所述方法包括:
获取空调器的不可控运行参数;
基于所述不可控运行参数,预测所述空调器的可控运行参数的各个参数组合对应的运行能效和/或输出能力;
根据所述运行能效和/或所述输出能力确定满足目标运行功率的目标运行 参数组合;
控制所述空调器按所述目标运行参数组合运行。
在一实施例中,所述根据所述运行能效和/或所述输出能力确定满足目标运行功率的目标运行参数组合的步骤包括:
基于预设能效预测模型,确定当前周期所预测的各个运行能效;
确定各个所述运行能效中,大于预设能效值的运行能效对应的参数组合;
将满足所述目标运行能效对应的参数组合确定为所述目标运行参数组合;和/或,
基于预设能力预测模型,确定当前周期所预测的各个输出能力;
确定各个所述输出能力中,大于预设输出能力值的输出能力对应的参数组合;
将满足所述目标输出能力对应的参数组合确定为所述目标运行参数组合。
在一实施例中,当所述目标运行参数组合为两个以上时,按照预设的规则选择一个参数组合作为所述目标运行参数组合。
在一实施例中,所述按照预设的规则选择一个参数组合作为所述目标运行参数组合包括:
将各个所述参数组合中运行能效值最高且输出能力值最低的参数组合,确定为所述目标运行参数组合。
在一实施例中,所述预测空调器的可控运行参数的各个参数组合对应的运行能效和/或输出能力的步骤包括:
获取所述空调器不可控参数的参数组合;
确定所述空调器可控运行参数的各个参数组合;
根据可控运行参数、不可控运行参数和所述运行能效和/或所述输出能力之间的映射关系,确定各个所述参数组合对应的所述运行能效和/或所述输出能力。
在一实施例中,所述根据可控运行参数、不可控运行参数和所述运行能效和/或所述输出能力之间的映射关系,确定各个所述参数组合对应的所述运行能效和/或所述输出能力的步骤包括:
根据各个所述参数组合以及不可控运行参数组合确定多个参数组合;
根据各个所述参数组合,以及历史参数组合与历史运行能效之间的所述 第一映射关系,确定各个所述参数组合对应的运行能效。
在一实施例中,所述根据可控运行参数、不可控运行参数和所述运行能效和/或所述输出能力之间的映射关系,确定各个所述参数组合对应的所述运行能效和/或所述输出能力的步骤包括:
根据各个所述参数组合以及不可控运行参数组合确定多个参数组合;
根据各个所述参数组合,以及历史参数组合与历史输出能力之间的所述第二映射关系,确定各个所述参数组合对应的输出能力。
在一实施例中,所述预测空调器当前工作周期内多个可控运行参数的运行参数组合对应的运行能效和/或输出能力的步骤之前,包括:
记录所述空调器每个运行周期内的可控运行参数和不可控参数,以及所述空调器在每个周期运行后的历史运行能效和/或历史输出能力;
根据所述空调器的历史运行记录,进行数据训练,生成所述可控运行参数、所述不可控运行参数和所述运行能效之间的第一映射关系;或,
根据所述空调器的历史运行记录,进行数据训练,生成所述可控运行参数、所述不可控运行参数和所述输出能力之间的第二映射关系;
基于所述第一映射关系和/或所述第二映射关系,执行所述预测空调器当前工作周期内多个可控运行参数的运行参数组合对应的运行能效和/或输出能力的步骤。
此外,为实现上述目的,本申请还提供一种空调器,所述空调器包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的空调器的控制程序,所述空调器的控制程序被所述处理器执行时实现如上所述的空调器的控制方法的步骤。
此外,为实现上述目的,本申请还提供一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有空调器的控制程序,所述空调器的控制程序被处理器执行时实现如上所述的空调器的控制方法的步骤。
本申请实施例提供一种空调器的控制方法、空调器以及计算机可读存储介质,其中,所述方法包括:获取空调器的不可控运行参数;基于所述不可 控运行参数,预测所述空调器的可控运行参数的各个参数组合对应的运行能效和/或输出能力;根据所述运行能效和/或所述输出能力确定满足目标运行功率的目标运行参数组合;控制所述空调器按所述目标运行参数组合运行。通过构建能力和/或能效预测模型实现对空调的运行能力和/或运行能效策略的控制,相较于传统的GA算法向后反馈原理,在过热现象或空调器的频率波动现象尚未发生前就进行运行参数调节,避免空调器出现过热现象,从而满足不同工作环境下对空调器的热负荷需求。
附图说明
图1为本申请空调器的控制方法实施例涉及的硬件运行环境的结构示意图;
图2为本申请空调器的控制方法的第一实施例的流程示意图;
图3为本申请空调器的控制方法的第二实施例的流程示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
目前,随着空调的需求量增多,空调的耗电量也日益增加。在购买空调时,不仅要考虑舒适便利性,还要考虑空调耗电量,节能空调就是一个不错的选择。现有的空调的节能方案均是基于后向反馈,即当室内温度超过或低于设定温度时才调节压缩机的运行频率。如此就容易出现温度频繁波动后才能达到设定温度,甚至出现过达温的现象,不但造成用户体验效果差,而且无法实现节能效果的提升。
而本申请为了提高空调的节能效果。本申请提出了一种空调的控制方法。具体的,本申请通过构建预测能效和/或能力模型实现对运行能效和/或能力的控制,相较于传统的GA算法向后反馈原理,在过热现象或空调器的频率波动现象尚未发生前就进行运行参数调节,避免空调器出现过热现象,从而满足不同工作环境下的空调器的热负荷。
为了更好的理解上述技术方案,下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解, 可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
作为一种实现方案,图1为本申请实施例方案涉及的硬件运行环境的结构示意图。
如图1所示,该空调器可以包括:处理器1001,例如CPU,存储器1005,用户接口1003,网络接口1004,通信总线1002。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005还可以是独立于前述处理器1001的存储装置。
本领域技术人员可以理解,图1中示出的空调器结构并不构成对空调器限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及空调器的控制程序。其中,操作系统是管理和控制空调器硬件和软件资源的程序,基于空调器的控制程序以及其它软件或程序的运行。
在图1所示的空调器中,用户接口1003主要用于连接终端,与终端进行数据通信;网络接口1004主要用于后台服务器,与后台服务器进行数据通信;处理器1001可以用于调用存储器1005中存储的空调器的控制程序。
在一实施例中,空调器包括:存储器1005、处理器1001及存储在所述存储器上并可在所述处理器上运行的空调器的控制程序,其中:
处理器1001调用存储器1005中存储的空调器的控制程序时,执行以下操作:
基于预设能效预测模型,确定当前周期所预测的各个运行能效;
确定各个所述运行能效中,大于预设能效值的运行能效对应的参数组合;
将满足所述目标运行能效对应的参数组合确定为所述目标运行参数组合;和/或,
基于预设能力预测模型,确定当前周期所预测的各个输出能力;
确定各个所述输出能力中,大于预设输出能力值的输出能力对应的参数组合;
将满足所述目标输出能力对应的参数组合确定为所述目标运行参数组合。处理器1001调用存储器1005中存储的空调器的控制程序时,执行以下操作:
当所述目标运行参数组合为两个以上时,按照预设的规则选择一个参数组合作为所述目标运行参数组合。
处理器1001调用存储器1005中存储的空调器的控制程序时,执行以下操作:
将各个所述参数组合中运行能效值最高且输出能力值最低的参数组合,确定为所述目标运行参数组合。
处理器1001调用存储器1005中存储的空调器的控制程序时,执行以下操作:
获取所述空调器不可控参数的参数组合;
确定所述空调器可控运行参数的各个参数组合;
根据可控运行参数、不可控运行参数和所述运行能效和/或所述输出能力之间的映射关系,确定各个所述参数组合对应的所述运行能效和/或所述输出能力。
处理器1001调用存储器1005中存储的空调器的控制程序时,执行以下操作:
根据各个所述参数组合以及不可控运行参数组合确定多个参数组合;
根据各个所述参数组合,以及历史参数组合与历史运行能效之间的第一映射关系,确定各个所述参数组合对应的运行能效。
处理器1001调用存储器1005中存储的空调器的控制程序时,执行以下操作:
根据各个所述参数组合以及不可控运行参数组合确定多个参数组合;
根据各个所述参数组合,以及历史参数组合与历史输出能力之间的第二映射关系,确定各个所述参数组合对应的输出能力。
处理器1001调用存储器1005中存储的空调器的控制程序时,执行以下操作:
记录所述空调器每个运行周期内的可控运行参数和不可控参数,以及所述空调器在每个周期运行后的历史运行能效和/或历史输出能力;
根据所述空调器的历史运行记录,进行数据训练,生成所述可控运行参数、所述不可控运行参数和所述运行能效之间的第一映射关系;或,
根据所述空调器的历史运行记录,进行数据训练,生成所述可控运行参数、所述不可控运行参数和所述输出能力之间的第二映射关系;
基于所述第一映射关系和/或所述第二映射关系,执行所述预测空调器当前工作周期内多个可控运行参数的运行参数组合对应的运行能效和/或输出能力的步骤。
基于上述基于空调控制技术的空调器的硬件架构,提出本申请空调器的控制方法的实施例。
参照图2,在第一实施例中,所述空调器的控制方法包括以下步骤:
步骤S10,获取空调器的不可控运行参数;
步骤S20,基于所述不可控运行参数,预测所述空调器的可控运行参数的各个参数组合对应的运行能效和/或输出能力;
在一实施例中,首先获取空调器的不可控运行参数,然后基于获取到的不可控运行参数,根据对当前工作周期内的多个可控运行参数构成的运行参数组合,预测下一周期空调器的运行功率可能出现运行能效,和/或根据对当前工作周期内的多个可控运行参数构成的运行参数组合,预测下一周期空调器的运行功率可能出现输出能力。
需要说明的是,运行能效为空调运行该过程中耗电量和制冷/制热量之间的比值。输出能力为单位时间内空调的制冷/制热量的量化值。
需要说明的是,可控运行参数例如包括内风机转速、外风机转速或者压缩机运行频率中的一个或多个。该可控运行参数均可对应设置一个或多个参数组合,不同型号的空调的可控运行参数对应的参数组合的大小以及参数组合的数量不同。如果可控运行参数为两个或两个以上时,则可控运行参数的各个参数组合可组成参数组合。
空调器预设有间隔工作周期T,每隔预设间隔周期T就收集空调的运行参数。在一实施例中,工作周期可以设置为30秒。空调器的运行参数包括可控运行参数和不可控运行参数,可控运行参数表征为空调自身可控的运行参数,例如内风机转速、外风机转速和压缩机频率等等;不可控参数表征为空调自身不可控的参数,例如室内外温度、室内外湿度、排气阀温度等影响空调运行但无法设定的环境参数,或是目标温度、设定的目标风速等用户设定的参数。运行能效表征为空调器的运行过程中的耗电量。输出能力表征为空调器运行过程中的制冷能力。运行能效表征为预测到的下一周期的运行能效和当前的运行能效的运行能效变化值。输出能力表征为预测到的下一周期的输出能力和当前的输出能力的输出能力变化值。
在一实施例中,运行能效可以通过监测空调器刮关联的电表上的耗电量进行确定。
在一实施例中,输出能力可以根据空调器的运行频率和运行功率来确定。
在一实施例中,预测运行能效的步骤可以为:首先获取空调器中的不可控参数的参数组合(包括但不限于室内外温度、室内外湿度、排气阀温度、设定温度等),然后确定出空调器的可控运行参数的各个参数组合(包括但不限于内风机转速、外风机转速和压缩机频率等),构建可控运行参数、不可控运行参数和运行能效之间的映射关系,基于该映射关系,确定各个参数组合对应的所述运行能效。
在一实施例中,预测输出能力的步骤可以为:首先获取空调器中的不可控参数的参数组合(包括但不限于室内外温度、室内外湿度、排气阀温度、设定温度等),然后确定出空调器的可控运行参数的各个参数组合(包括但不限于内风机转速、外风机转速和压缩机频率等),构建可控运行参数、不可控运行参数和输出能力之间的映射关系,基于该映射关系,确定各个参数组合对应的所述输出能力。
示例性地,以运行能效为例,在一些实施方式中,假设此时空调器处于第5个周期,(即开机后的120-150秒),当前周期获取到的不可控运行参数为:室内温度Tin5=27.6,室外温度Tout5=34.3,室内湿度Hin5=62,室外湿度Hout5=65,排气阀温度Tp5=45,用户设定温度Ts5=24,用户设定风速为Ws5=60,再加入第1到第5周期的统计量:平均室内温度Avg(Tin)=28.3,最 大压缩机运行频率Max(Pr)=46,将上述参数作为周期5的特征。然后获取到的可控运行参数为:内风机转速Sin=1200,外风机转速Sout=820,压缩机频率Pr=50。
则,得到历史运行组合为(Tin,Tout,Hin,Hout,Tp,Ts,Ws,Sin,Sout,Pr)。
该工作周期空调器的运行能效Q5=6400,将上述历史参数组合作为自变量,将运行能效Q5作为因变量,利用机器学习/深度学习算法,训练出该反映述历史参数组合和历史运行能效之间的映射关系的能效模型yi(Q):
yi(Q)=fi(Tin,Tout,Hin,Hout,Tp,Ts,Ws,Sin,Sout,Pr)
基于能效模型yi(Q),预测出第6周期(即开机后的150-180秒)的运行能效Q6=6300。
需要说明的是,基于能力模型确定出的输出能力同理,此处不再赘述。
步骤S30,根据所述运行能效和/或所述输出能力确定满足目标运行能效和/或目标输出能力的目标运行参数组合;
在一实施例中,在预测出运行能效和/或所述输出能力,根据运行能效和/或所述输出能力确定出满足下一工作周期的空调器的目标运行参数组合。
在一实施例中,若预测的为运行能效,则确定目标运行参数组合的步骤可以为:基于预设能效预测模型,确定当前周期所预测的各个运行能效,确定各个所述运行能效中,大于预设能效值的运行能效对应的参数组合,将满足所述目标运行能效对应的参数组合确定为所述目标运行参数组合;
在一实施例中,若预测的为输出能力,则确定目标运行参数组合的步骤可以为:基于预设能力预测模型,确定当前周期所预测的各个输出能力,确定各个所述输出能力中,大于预设输出能力值的输出能力对应的参数组合,将满足所述目标输出能力对应的参数组合确定为所述目标运行参数组合。
在一实施例中,若预测的为运行能效和输出能力,则确定目标运行参数组合的步骤可以为:基于预设能效预测模型确定当前周期所预测的各个运行能效,以及基于预设能力预测模型确定当前周期所预测的各个输出能力,然后确定当前周期所预测的各个运行能效和各个输出能力,确定各个运行能效和各个输出能力中,同时大于预设能效值的运行能效和预设输出能力值的输出能力对应的参数组合,将所述参数组合作为所述目标运行参数组合。
在一实施例中,可控运行参数可以包括至少两个,其中,所预测的运行 功率变化量与所有可控运行参数的各个参数组合组成的参数组合对应。
在一实施例中,为了使空调的耗电足够低的同时保持运行能效尽可能的大,预设规则可以为:将空调器压缩机频率变化量最小的参数组合,作为目标运行参数组合。
步骤S40,控制所述空调器按所述目标运行参数组合运行。
在一实施例中,在确定出目标运行参数组合之后,控制空调器按照确定出的目标运行参数组合运行。
在本实施例提供的技术方案中,通过预测空调器的可控运行参数对应的运行能效和/或输出能力,根据运行能效和/或输出能力确定出满足目标运行功率的目标运行参数组合,再控制空调器按所述目标运行参数组合运行的方式,通过构建预测能效和/或能力模型实现对运行能效和/或能力的控制,相较于传统的GA算法向后反馈原理,在过热现象或空调器的频率波动现象尚未发生前就进行运行参数调节,避免空调器出现过热现象,从而满足不同工作环境下的空调器的热负荷。
此外,作为另一种实现方案,本申请空调器的控制方法的第二实施例的流程示意图可以如图3所示。
在一实施例中,在空调运行过程中每隔间隔周期收集空调的部分运行数据,包括运行状态、用户设定和工作设定。其中,运行状态包括室内温度、室外温度、室内湿度、室外湿度Hout、排气阀温度影响空调运行但无法设定的参数,用户设定包括设定温度、设定风速等由用户主动设定的参数,工作设定包括内风机转速、外风机转速、压缩机运行频率等由空调自行设定的参数。然后改变空调器的工作设定参数,得出多种运行参数组合,即组合1、组合2...组合N,基于上述收集的运行数据,提取组合中的特征,然后根据特征预测该组合的输出能力Q/运行能效E(即目标运行能效/目标输出能力),其中,预测方式为通过预设的能力/能效预测模型进行预测,能力/能效预测模型的训练步骤为:收集空调器的历史运行数据,历史运行数据包括历史运行状态、历史用户设定和历史工作设定,然后提取历史运行数据中的特征数据,将特征数据作为自变量,将空调的历史运行功率作为因变量,输入自变量和因变量到功率预测模型中进行训练。按照能力/能效对应的控制策略(即目标 运行能力/运行能效对应的运行参数),控制空调运行。
此外,本领域普通技术人员可以理解的是实现上述实施例的方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成。该计算机程序包括程序指令,计算机程序可存储于一存储介质中,该存储介质为计算机可读存储介质。该程序指令被空调器中的至少一个处理器执行,以实现上述方法的实施例的流程步骤。
因此,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质存储有空调器的控制程序,所述空调器的控制程序被处理器执行时实现如上实施例所述的空调器的控制方法的各个步骤。
其中,所述计算机可读存储介质可以是U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的计算机可读存储介质。
需要说明的是,由于本申请实施例提供的存储介质,为实施本申请实施例的方法所采用的存储介质,故而基于本申请实施例所介绍的方法,本领域所属人员能够了解该存储介质的具体结构及变形,故而在此不再赘述。凡是本申请实施例的方法所采用的存储介质都属于本申请所欲保护的范围。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功 能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
应当注意的是,在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的部件或步骤。位于部件之前的单词“一”或“一个”不排除存在多个这样的部件。本申请可以借助于包括有若干不同部件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (10)

  1. 一种空调器的控制方法,其中,所述方法包括:
    获取空调器的不可控运行参数;
    基于所述不可控运行参数,预测所述空调器的可控运行参数的各个参数组合对应的运行能效和/或输出能力;
    根据所述运行能效和/或所述输出能力确定满足目标运行能效和/或目标输出能力的目标运行参数组合;
    控制所述空调器按所述目标运行参数组合运行。
  2. 如权利要求1所述的方法,其中,所述根据所述运行能效和/或所述输出能力确定满足目标运行功率的目标运行参数组合的步骤包括:
    基于预设能效预测模型,确定当前周期所预测的各个运行能效;
    确定各个所述运行能效中,大于预设能效值的运行能效对应的参数组合;
    将满足所述目标运行能效对应的参数组合确定为所述目标运行参数组合;和/或,
    基于预设能力预测模型,确定当前周期所预测的各个输出能力;
    确定各个所述输出能力中,大于预设输出能力值的输出能力对应的参数组合;
    将满足所述目标输出能力对应的参数组合确定为所述目标运行参数组合。
  3. 如权利要求2所述的方法,其中,当所述目标运行参数组合为两个以上时,按照预设的规则选择一个参数组合作为所述目标运行参数组合。
  4. 如权利要求3所述的方法,其中,所述按照预设的规则选择一个参数组合作为所述目标运行参数组合包括:
    将各个所述参数组合中运行能效值最高且输出能力值最低的参数组合,确定为所述目标运行参数组合。
  5. 如权利要求1所述的方法,其中,所述预测空调器的可控运行参数的各个参数组合对应的运行能效和/或输出能力的步骤包括:
    获取所述空调器不可控运行参数的参数组合;
    确定所述空调器可控运行参数的各个参数组合;
    根据可控运行参数、不可控运行参数和所述运行能效和/或所述输出能力之间的映射关系,确定各个所述参数组合对应的所述运行能效和/或所述输出能力。
  6. 如权利要求5所述的方法,其中,所述根据可控运行参数、不可控运行参数和所述运行能效和/或所述输出能力之间的映射关系,确定各个所述参数组合对应的所述运行能效和/或所述输出能力的步骤包括:
    根据各个所述参数组合以及不可控运行参数组合确定多个参数组合;
    根据各个所述参数组合,以及历史参数组合与历史运行能效之间的第一映射关系,确定各个所述参数组合对应的运行能效。
  7. 如权利要求5所述的方法,其中,所述根据可控运行参数、不可控运行参数和所述运行能效和/或所述输出能力之间的映射关系,确定各个所述参数组合对应的所述运行能效和/或所述输出能力的步骤包括:
    根据各个所述参数组合以及不可控运行参数组合确定多个参数组合;
    根据各个所述参数组合,以及历史参数组合与历史输出能力之间的第二映射关系,确定各个所述参数组合对应的输出能力。
  8. 如权利要求1所述的方法,其中,所述预测空调器当前工作周期内多个可控运行参数的运行参数组合对应的运行能效和/或输出能力的步骤之前,包括:
    记录所述空调器每个运行周期内的可控运行参数和不可控参数,以及所述空调器在每个周期运行后的历史运行能效和/或历史输出能力;
    根据所述空调器的历史运行记录,进行数据训练,生成所述可控运行参数、所述不可控运行参数和所述运行能效之间的第一映射关系;和/或,
    根据所述空调器的历史运行记录,进行数据训练,生成所述可控运行参数、所述不可控运行参数和所述输出能力之间的第二映射关系;
    基于所述第一映射关系和/或所述第二映射关系,执行所述预测空调器当 前工作周期内多个可控运行参数的运行参数组合对应的运行能效和/或输出能力的步骤。
  9. 一种空调器,其中,所述空调器包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的空调器的控制程序,所述空调器的控制程序被所述处理器执行时实现如权利要求1至8中任一项所述的空调器的控制方法的步骤。
  10. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有空调器的控制程序,所述空调器的控制程序被处理器执行时实现如权利要求1至8中任一项所述的空调器的控制方法的步骤。
PCT/CN2023/104218 2022-10-11 2023-06-29 空调器的控制方法、空调器以及计算机可读存储介质 WO2024078041A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211243266.X 2022-10-11
CN202211243266.XA CN117906254A (zh) 2022-10-11 2022-10-11 空调器的控制方法、空调器以及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2024078041A1 true WO2024078041A1 (zh) 2024-04-18

Family

ID=90668658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104218 WO2024078041A1 (zh) 2022-10-11 2023-06-29 空调器的控制方法、空调器以及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN117906254A (zh)
WO (1) WO2024078041A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100152905A1 (en) * 2008-09-25 2010-06-17 Andrew Kusiak Data-driven approach to modeling sensors
US20170123959A1 (en) * 2013-05-07 2017-05-04 International Business Machines Corporation Optimized instrumentation based on functional coverage
CN110186168A (zh) * 2019-06-03 2019-08-30 深圳创维空调科技有限公司 空调控制方法、装置、空调器及计算机可读存储介质
CN114777237A (zh) * 2022-05-05 2022-07-22 美的集团武汉制冷设备有限公司 空调器的控制方法、空调器及计算机可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100152905A1 (en) * 2008-09-25 2010-06-17 Andrew Kusiak Data-driven approach to modeling sensors
US20170123959A1 (en) * 2013-05-07 2017-05-04 International Business Machines Corporation Optimized instrumentation based on functional coverage
CN110186168A (zh) * 2019-06-03 2019-08-30 深圳创维空调科技有限公司 空调控制方法、装置、空调器及计算机可读存储介质
CN114777237A (zh) * 2022-05-05 2022-07-22 美的集团武汉制冷设备有限公司 空调器的控制方法、空调器及计算机可读存储介质

Also Published As

Publication number Publication date
CN117906254A (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
US10209687B2 (en) Realization of energy savings potential through feedback
WO2020056960A1 (zh) 机组的温控方法和装置、空调机组
CN107166666A (zh) 空调器制热控制方法、装置及计算机可读存储介质
US10527304B2 (en) Demand response based air conditioning management systems and method
CN109323414B (zh) 空调器及其控制方法和控制装置及电子设备
CN111880490A (zh) 一种环境调节方法、装置、电子设备及存储介质
CN104833038A (zh) 多联机空调集中控制方法及集中控制器
CN112283890A (zh) 适应建筑暖通设备监控系统的冷热量控制方法及装置
EP4089619A1 (en) Building equipment energy management control system and control method therefor
CN115682324A (zh) 中央空调系统节能优化控制方法、装置、设备和存储介质
CN111737857A (zh) 一种基于互动能力曲线的暖通空调集群协调控制方法
CN114115027A (zh) 目标环境参数的调节方法、系统、装置、设备及存储介质
WO2024078041A1 (zh) 空调器的控制方法、空调器以及计算机可读存储介质
CN112465230A (zh) 一种自适应的冷水机组开机组合优化的预测方法及系统
WO2023159977A1 (zh) 空调节能的控制方法、控制系统、电子设备和存储介质
WO2024078040A1 (zh) 基于运行功率的空调器控制方法、空调器及可读存储介质
TWI776544B (zh) 溫度調控設備的節能控制方法及裝置
CN111474858B (zh) 一种建筑能源管理控制系统及方法
WO2024078034A1 (zh) 空调的控制方法、空调器及计算机可读存储介质
CN114526537A (zh) 一种设备节能控制方法和装置
WO2024093410A1 (zh) 空调器的控制方法、空调器及计算机可读存储介质
CN111880419A (zh) 家电设备的控制方法、系统、家电设备及运算设备
WO2024093356A1 (zh) 空气调节设备的控制方法、设备及存储介质
CN117346295B (zh) 多机组的耦合控制方法、装置、设备及计算机可读介质
CN110543969A (zh) 一种家庭用电行为优化算法