WO2024077990A1 - 相变热泵系统和终端设备 - Google Patents

相变热泵系统和终端设备 Download PDF

Info

Publication number
WO2024077990A1
WO2024077990A1 PCT/CN2023/100226 CN2023100226W WO2024077990A1 WO 2024077990 A1 WO2024077990 A1 WO 2024077990A1 CN 2023100226 W CN2023100226 W CN 2023100226W WO 2024077990 A1 WO2024077990 A1 WO 2024077990A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
heat exchanger
box
heat
port
Prior art date
Application number
PCT/CN2023/100226
Other languages
English (en)
French (fr)
Inventor
王文鹏
Original Assignee
广东美的白色家电技术创新中心有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的白色家电技术创新中心有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Publication of WO2024077990A1 publication Critical patent/WO2024077990A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present application relates to the field of heat pump system design, and in particular to a phase change heat pump system and terminal equipment.
  • Phase change materials are used in heat pump systems because of their high thermal conductivity, large specific heat capacity, ability to store or release a lot of heat, and reusability.
  • phase change material In a heat pump system, a phase change material is usually combined with an evaporator. When the evaporator is working, it absorbs the heat stored in the phase change material. After the phase change material releases heat, it changes from liquid to solid. As the heat in the phase change material decreases, the working efficiency of the evaporator decreases. When the phase change material changes to a solid state, it is usually necessary to stop the evaporator and heat the phase change material.
  • the method used to heat the phase change material is usually passive heating, such as natural wind heating, circulating water heating, etc. Passive heating has low efficiency, that is, it takes a lot of time for the phase change material to change from solid to liquid, which ultimately leads to low working efficiency of the heat pump system.
  • the embodiment of the present application provides a phase change heat pump system and terminal device, which can solve the problem of low working efficiency of the heat pump system due to the passive heating method of the phase change material in the related art.
  • the technical solution is as follows:
  • the present application provides a phase change heat pump system, the phase change heat pump system comprising: a reversing device, a first heat exchanger, a second heat exchanger, a compressor and a phase change heat exchanger;
  • the reversing device has a first reversing port, a second reversing port, a third reversing port and a fourth reversing port;
  • the first heat exchanger has a first heat exchange port and a second heat exchange port, and the first heat exchange port is connected to the first reversing port;
  • the second heat exchanger has a third heat exchange port and a fourth heat exchange port, the third heat exchange port and the fourth heat exchange port The second heat exchange port is connected, and the fourth heat exchange port is connected with the second heat exchange port;
  • the compressor has an air intake port and an air discharge port, the air intake port is connected to the third reversing port, and the air discharge port is connected to the fourth reversing port;
  • the phase change heat exchanger comprises a first box and a phase change material, wherein the phase change material is located in the first box and is used for heat exchange with the first heat exchanger;
  • the air intake port When the reversing device is in a first working state, the air intake port is connected to the first heat exchanger, and the air exhaust port is connected to the second heat exchanger. When the reversing device is in a second working state, the air intake port is connected to the second heat exchanger, and the air exhaust port is connected to the first heat exchanger.
  • the first heat exchanger is located in the first housing
  • the phase change material is located in a first spacing space formed by the first heat exchanger and the first housing, and at least a portion of the first heat exchanger is immersed in the phase change material.
  • the phase change heat pump system further includes a water circulation subsystem, and the water circulation subsystem includes a water tank, a second tank, a circulating water pump and a spray arm;
  • the water tank, the second box, and the circulating water pump are connected to each other, and the second box is thermally connected to the second heat exchanger;
  • the reversing device When the reversing device is in a first working state, the water tank is not connected to the circulating water pump, and the circulating water pump is connected to the spray arm. When the reversing device is in a second working state, the water tank is connected to the circulating water pump, and the circulating water pump is not connected to the spray arm.
  • the water circulation subsystem further includes a reversing valve, and the reversing valve is respectively connected to the water tank, the circulating water pump, and the spray arm.
  • the water circulation subsystem further includes a third box
  • the third box is communicated with the circulating water pump and connected to the water tank;
  • the water tank When the reversing device is in a first working state, the water tank is not connected to the third box body, and when the reversing device is in a second working state, the third box body is connected to the water tank.
  • the water circulation subsystem further includes a second one-way valve, and the second one-way valve is connected to the water tank and the third box respectively.
  • the circulating water sprayed by the spray arm flows back to the water tank, and the water circulation subsystem further includes a drainage pump and a drainage pipe;
  • the drainage pump is communicated with the water tank and the drainage pipe respectively, and at least a portion of the drainage pipe passes through the third box.
  • the phase change heat exchanger further includes an auxiliary heat exchange component
  • the auxiliary heat exchange component includes a fourth box and a heat exchange medium, and the heat exchange medium is filled in the fourth box, and the auxiliary heat exchange component is used to perform heat exchange with the phase change heat exchanger.
  • the first box is located in the fourth box, and a third spacing space is formed between the first box and the fourth box.
  • the heat exchange medium is filled in the third spacing space, and at least a portion of the first box is immersed in the heat exchange medium.
  • the present application provides a terminal device, characterized in that the terminal device comprises a phase change heat pump system as described in the first aspect and any one of its possible implementations.
  • the terminal device is a washing device, and the washing device further includes a base, a housing, and a partition;
  • the partition is located between the base and the shell, a receiving cavity is formed between the partition and the base, the phase change heat pump system is located in the receiving cavity, a washing cavity is formed between the partition and the shell, and the washing cavity is used to wash the target object.
  • the compressor, the first heat exchanger and the second heat exchanger are connected through a reversing device.
  • the communication path between the compressor, the first heat exchanger and the second heat exchanger can be adjusted to achieve the switching of functions between the first heat exchanger and the second heat exchanger.
  • the reversing device can be adjusted to the second working state, so that the first heat exchanger is adjusted from an evaporator to a condenser, thereby using the first heat exchanger to actively heat the phase change material.
  • the method of actively heating the phase change material by the first heat exchanger is superior to the passive heating (natural wind heating, circulating water heating) in the related art.
  • the method of heating, air heating, etc. has higher heating efficiency and significantly shortens the regeneration time of the phase change material, thus being beneficial to improving the working efficiency of the phase change heat pump system.
  • FIG1 is a schematic structural diagram of a phase change heat pump system provided in an embodiment of the present application.
  • FIG2 is a schematic structural diagram of a phase change heat pump system provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of a partial structure of a phase change heat pump system provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of a partial structure of a phase change heat pump system provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of a partial structure of a phase change heat pump system provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of a partial structure of a phase change heat pump system provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of a partial structure of a phase change heat pump system provided in an embodiment of the present application.
  • FIG8 is a schematic structural diagram of a phase change heat pump system provided in an embodiment of the present application.
  • Words such as "connect” or “connected” and similar words are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect. "Up”, “down”, “left”, “right” and the like are only used to indicate relative positional relationships. When the absolute position of the described object changes, the relative positional relationship may also change accordingly.
  • the heat pump system usually includes components such as a compressor, a condenser and an evaporator.
  • the compressor, condenser and evaporator are interconnected.
  • the compressor sucks in low-temperature and low-pressure gas from the evaporator and delivers high-temperature and high-pressure gas to the condenser.
  • the high-temperature and high-pressure gas condenses into liquid at the condenser and releases heat to the outside.
  • the condensed liquid flows into the evaporator and absorbs heat and evaporates at the evaporator to form low-temperature and low-pressure gas.
  • a heat exchange medium is usually set at the evaporator to provide heat for the evaporator. Since phase change materials have the characteristics of high thermal conductivity, large specific heat capacity, ability to store or release more heat, and reusability, phase change materials are used as heat exchange media in heat pump systems.
  • the evaporator absorbs the heat stored in the phase change material when it is working, and the phase change material will change from liquid to solid after releasing heat. As the heat in the phase change material decreases, the working efficiency of the evaporator will decrease. When the phase change material changes to a solid state, it can no longer provide heat to the evaporator. At this time, the evaporator cannot evaporate the condensed liquid into a low-temperature and low-pressure gas, and the entire heat pump system cannot operate normally. In this case, the phase change material needs to be heated to change it from a solid state back to a liquid state to store heat for the evaporator to work.
  • phase change material is usually passive heating, such as natural wind heating, circulating water heating, etc.
  • passive heating it takes a lot of time for the phase change material to change from solid to liquid, such as 10 hours, 12 hours, or even 24 hours, which seriously affects the working efficiency of the heat pump system using the phase change material.
  • the embodiment of the present application provides a phase change heat pump system, which can greatly shorten the time it takes for the phase change material to change from solid to liquid, thereby improving the working efficiency of the heat pump system.
  • FIG1 is a schematic diagram of the structure of a phase change heat pump system provided in an embodiment of the present application.
  • the phase change heat pump system provided in an embodiment of the present application comprises: a reversing device 1 , a first heat exchanger 2 , a second heat exchanger 3 , a compressor 4 and a phase change heat exchanger 5 .
  • the reversing device 1 has four interfaces, which are the first reversing port 11, the second reversing port 12, the third reversing port 13 and the fourth reversing port 14.
  • the reversing device 1 can be a four-way reversing valve, a cam reversing device, etc.
  • the reversing device 1 can be considered as an existing related technology, and the specific structure of the reversing device 1 is not described here.
  • the reversing device 1 is used to adjust the connection relationship between the first heat exchanger 2, the second heat exchanger 3 and the compressor 4 in the phase change heat pump system, which will be described in detail below.
  • the first heat exchanger 2 has a first heat exchange port 21 and a second heat exchange port 22, and the second heat exchanger 3 has a third heat exchange port 31 and a fourth heat exchange port 32.
  • the first heat exchange port 21 of the first heat exchanger 2 is connected to the first reversing port 11 of the reversing device 1
  • the second heat exchange port 22 of the first heat exchanger 2 is connected to the third heat exchange port 31 of the second heat exchanger 3
  • the fourth heat exchange port 32 of the second heat exchanger 3 is connected to the second reversing port 12 of the reversing device 1.
  • the heat pump system may further include a throttle valve, which is respectively connected to the first heat exchanger 3 and the second heat exchanger 4, and the throttle valve is used to control the flow rate of the medium between the first heat exchanger 3 and the second heat exchanger 4, which will not be described in detail here.
  • a throttle valve which is respectively connected to the first heat exchanger 3 and the second heat exchanger 4, and the throttle valve is used to control the flow rate of the medium between the first heat exchanger 3 and the second heat exchanger 4, which will not be described in detail here.
  • the compressor 4 has an air intake port 4A and an air exhaust port 4B.
  • the air intake port 4A is connected to the third reversing port 13 of the reversing device 1, and the air exhaust port 4B is connected to the fourth reversing port 14 of the reversing device 1.
  • the first heat exchanger 2, the second heat exchanger 3 and the compressor 4 are interconnected through the reversing device 1.
  • the phase change heat exchanger 5 may include a first box body 51 and a phase change material 52, the phase change material 52 is filled in the first box body 51, the phase change heat exchanger 5 is in contact with the first heat exchanger 2, and the phase change heat exchanger 5 is thermally connected to the first heat exchanger 2.
  • the thermal connection here can also be called thermal coupling, indicating that heat exchange can be performed between the phase change heat exchanger 5 and the first heat exchanger 2.
  • the phase change material 52 can be a solid-liquid phase change energy storage material. Usually, when the phase change material 52 changes from liquid to solid, it releases heat to the outside to play a role in heat preservation and heating, and when the phase change material 52 changes from solid to liquid, it absorbs external heat to play a role in cooling and heat storage.
  • the phase change material 52 may be an inorganic phase change material.
  • the phase change material 52 may be water.
  • the phase change material 52 may also be sodium sulfate, such as sodium sulfate hydrate with an anti-phase separation agent added;
  • the phase change material 52 may also be sodium acetate, such as sodium acetate trihydrate with an anti-phase separation agent added;
  • the phase change material 52 may also be calcium chloride, such as calcium chloride hydrate;
  • the phase change material 52 may also be phosphate, such as disodium hydrogen phosphate dodecahydrate.
  • phase change material 52 may also be an organic phase change material.
  • the phase change material 52 may be paraffin or fatty acid.
  • the air inlet 4A is connected to the first heat exchanger 2, and the air outlet 4B is connected to the second heat exchanger 3.
  • the first heat exchanger 2 is equivalent to the evaporator in the related art, which is used to evaporate the condensed liquid to form a low-temperature and low-pressure gas, and deliver the low-temperature and low-pressure gas to the compressor 4;
  • the second heat exchanger 3 is equivalent to the condenser in the related art, which is used to condense the high-temperature and high-pressure gas discharged from the compressor 4 to form a liquid, and deliver the condensed liquid to the first heat exchanger 2.
  • the first heat exchanger 2 absorbs the heat stored in the phase change material 52 of the phase change heat exchanger 5, and the phase change material 52 changes from liquid to solid.
  • the air inlet 4A is connected to the second heat exchanger 3, and the air outlet 4B is connected to the first heat exchanger 2.
  • the second heat exchanger 3 is equivalent to the evaporator in the related art, which is used to evaporate the condensed liquid to form a low-temperature and low-pressure gas, and deliver the low-temperature and low-pressure gas to the compressor 4;
  • the first heat exchanger 2 is equivalent to the condenser in the related art, which is used to condense the high-temperature and high-pressure gas discharged from the compressor 4 to form a liquid, and deliver the condensed liquid to the second heat exchanger 3.
  • the second heat exchanger 3 heats the phase change material 52 of the phase change heat exchanger 5 to change the phase change material 52 from a solid state to a liquid state, thereby realizing the regeneration and heat storage of the phase change material 52.
  • the reversing device 1 when the reversing device 1 is in the first working state and the phase change material 52 is transformed into a solid state, the reversing device 1 is adjusted to the second working state, so that the first heat exchanger 2 heats the phase change material 52, thereby realizing active heating of the phase change material 52.
  • the method of actively heating the phase change material by the first heat exchanger has a higher heating efficiency than the method of passive heating (natural wind heating, circulating water heating, air heating, etc.) in the related art, and significantly shortens the regeneration time of the phase change material 52, thereby being conducive to improving the working efficiency of the phase change heat pump system.
  • the first heat exchanger 2 is located in the first box 51 of the phase change heat exchanger 5, and the first heat exchanger 2 and the inner wall of the first box 51 form a first spacing space, and the phase change material 52 is filled in the first spacing space. Moreover, at least a portion of the first heat exchanger 2 is in contact with the phase change material 52, that is, at least a portion of the first heat exchanger 2 is immersed in the liquid phase change material 52 (or is covered by the solid phase change material). The phase change material 52 is wrapped in the liquid phase change material 52), and the phase change material 52 is used to exchange heat with the first heat exchanger 2.
  • the first heat exchanger 2 is completely immersed in the liquid phase change material 52 (or wrapped in the solid phase change material 52), which is conducive to increasing the heat exchange area between the first heat exchanger 2 and the phase change material 52 for heat exchange, thereby improving the heat exchange efficiency between the first heat exchanger 2 and the phase change material 52, and further improving the working efficiency of the phase change heat pump system.
  • the first heat exchanger 2 is located outside the first box 51, and the surface of the first heat exchanger 2 is in contact with the first box 51.
  • the first heat exchanger 2 and the phase change material 52 perform heat exchange through the first box 51.
  • This structure is convenient for the production and processing of the first heat exchanger 2 and the phase change heat exchanger 5, and is conducive to reducing the difficulty of assembling the first heat exchanger 2 and the phase change heat exchanger 5.
  • FIG2 is a schematic diagram of the structure of a phase change heat pump system provided in an embodiment of the present application.
  • the phase change heat pump system may further include a water circulation subsystem 6, which may include a water tank 61, a second box 62, a circulating water pump 63 and a spray arm 64.
  • the water tank 61, the second box 62, and the circulating water pump 63 are interconnected, and the second box 62 is thermally connected to the second heat exchanger 3, that is, the second box 62 performs heat exchange with the second heat exchanger 3.
  • the water tank 61, the second box 62, and the circulating water pump 63 may be sequentially connected to each other, and the circulating water pump 63 is respectively connected to the water tank 61 and the spray arm 64.
  • the circulating water pump 63 may be located between the water tank 61 and the second box 62, that is, the circulating water pump 63 is respectively connected to the water tank 61 and the second box 62, and the second box 62 is connected to the circulating water pump 63 and is also connected to the spray arm 64.
  • the connection sequence of the water tank 61, the second box 62, the circulating water pump 63, and the spray arm 64 is not limited here.
  • the water tank 61 and the circulating water pump 63 are in a disconnected state, and the circulating water pump 63 and the spray arm 64 are in a connected state.
  • the circulating water in the water tank 61 first reaches the second box 62, and then is heated under the action of the second heat exchanger 3.
  • the heated circulating water in the second box 62 enters the spray arm 64 through the circulating water pump 63, and the spray arm 64 sprays the heated circulating water under the action of the circulating water pump 63.
  • the water tank 61 and the circulating water pump 63 are in a connected state, and the circulating water pump 63 and the spray arm 64 are in a disconnected state.
  • the circulating water in the water tank 61 reaches the second box 62, it transfers heat to the second heat exchanger 3.
  • the circulating water after releasing heat returns to the water tank 61 through the circulating water pump 63, thus forming a reciprocating cycle to continuously provide heat to the second heat exchanger 3.
  • the outer surface of the second heat exchanger 3 is in contact with the outer surface of the second box 62.
  • the high-temperature and high-pressure gas in the second heat exchanger 3 condenses.
  • the generated heat is transferred to the circulating water via the second box 62, thereby heating the circulating water.
  • the heat in the circulating water is transferred to the second heat exchanger 3 via the second box 62, thereby achieving evaporation treatment at the second heat exchanger 3.
  • FIG3 is a partial structural diagram of a phase change heat pump system provided in an embodiment of the present application.
  • the second heat exchanger 3 is located in the second box 62, and a second space is formed between the second heat exchanger 3 and the second box 62.
  • the circulating water is located in the second space, and at least part of the second heat exchanger 3 is immersed in the circulating water.
  • the second heat exchanger 3 can directly exchange heat with the circulating water, and the second heat exchanger 3 immersed in the circulating water can increase the heat exchange area, which is conducive to improving the heat exchange efficiency.
  • FIG4 is a schematic diagram of the partial structure of a phase change heat pump system provided in an embodiment of the present application.
  • the water circulation subsystem 6 further includes a reversing valve 65.
  • the reversing valve 65 is respectively connected to the water tank 61, the circulating water pump 63, and the spray arm 64, and is used to control the on-off relationship between the circulating water pump 63 and the water tank 61 and the spray arm 64.
  • the reversing valve 65 When the reversing device 1 is in the first working state, the reversing valve 65 connects the circulating water pump 63 and the spray arm 64, and blocks the circulating water pump 63 and the water tank 61; when the reversing device 1 is in the second working state, the reversing valve 65 connects the circulating water pump 63 and the water tank 61, and blocks the circulating water pump 63 and the spray arm 64.
  • the water circulation subsystem 6 may further include two first one-way valves, one first one-way valve is used to connect the water tank 61 and the circulating water pump 63, and the other first one-way valve is used to connect the circulating water pump 63 and the spray arm 64.
  • the on-off relationship between the circulating water pump 63 and the water tank 61 and the spray arm 64 is similar to the above, and will not be repeated here.
  • the water circulation subsystem may include only one first one-way valve, which is used to connect the circulating water pump 63 and the spray arm 64.
  • the circulating water pump 63 is always connected to the water tank 61.
  • the first one-way valve connects the circulating water pump 63 and the spray arm 64 to achieve the spraying of circulating water by the spray arm 64;
  • the first one-way valve blocks the circulating water pump 63 and the spray arm 64 to achieve the circulation of circulating water between the water tank 61, the second box 62 and the circulating water pump 63, thereby providing heat for the second heat exchanger 3.
  • the function of using the phase change heat pump system to heat the circulating water in the water circulation subsystem 6 can be realized; on the other hand, when the first heat exchanger 2 heats the phase change material 52, heat can be provided to the second heat exchanger 3, which is beneficial to improve the working efficiency of the second heat exchanger 3 in the process, thereby improving the heating efficiency of the first heat exchanger 2 for the phase change material 52.
  • FIG5 is a partial structural diagram of a phase change heat pump system provided in an embodiment of the present application.
  • the water circulation subsystem 6 may also include a third box 66.
  • the pump 63 and the third tank 66 are connected to each other in sequence, the second tank 62 and the spray arm 64 (not shown in FIG. 5 ) are not connected, and the third tank 66 and the water tank 61 are connected.
  • the water tank 61 and the third box 66 are in a disconnected state to ensure that there is sufficient pressure in the water circulation subsystem 6 to spray the circulating water from the spray arm 64, so as to realize the corresponding utilization of the circulating water.
  • the circulating water pump 63 and the spray arm 64 are in a disconnected state, and the third box 66 and the water tank 61 are in a connected state, so that the power generated by the circulating water pump 63 can be fully used to promote the circulation of the circulating water between the water tank 61, the second box 62, the circulating water pump 63 and the third box 66, increase the circulation rate of the circulating water, and help to improve the efficiency of the heat exchange with the second heat exchanger 3.
  • FIG. 6 is a partial structural schematic diagram of a phase change heat pump system provided in an embodiment of the present application.
  • the water circulation subsystem 6 may further include a second one-way valve 67.
  • the two ends of the second one-way valve 67 are respectively connected to the water tank 61 and the third box 66, and the second one-way valve 67 is used to control the on-off relationship between the third box 66 and the water tank 61.
  • the second one-way valve 67 blocks the water tank 61 and the third box 66, and the circulating water flowing to the third box 66 is temporarily stored in the third box 66;
  • the second one-way valve 67 connects the water tank 61 and the third box 66, and the circulating water stored in the third box 66 flows to the second box 62 through the water tank 61, so as to realize the heat transfer to the second heat exchanger 3 and promote the evaporation efficiency in the second heat exchanger 3.
  • the third box 66 is always in communication with the water tank 61, that is, no matter whether the reversing device 1 is in the first working state or the second working state.
  • the third box 66 is always in communication with the water tank 61, and the circulating water can be circulated between the water tank 61, the second box 62, the circulating water pump 63 and the third box 66.
  • the second heat exchanger 3 is equivalent to a condenser or an evaporator, it can exchange heat with the circulating water in the second box 62, which is conducive to making full use of the heat of the second heat exchanger 3 or the circulating water, improving the utilization rate of energy, and improving work efficiency.
  • FIG7 is a schematic diagram of the partial structure of a phase change heat pump system provided in an embodiment of the present application.
  • the water circulation subsystem 6 also includes a drain pump 68 and a drain pipe 69.
  • the drain pump 68 is respectively connected to an interface of the water tank 61 and a port of the drain pipe 69, and at least part of the drain pipe 69 passes through the third box 66.
  • at least part of the drain pipe 69 is located in the third box 66, and the outer wall of this part of the drain pipe 69 is wrapped by the circulating water in the third box 66.
  • the circulating water sprayed by the spray arm 64 can flow back to the water tank 61 after being used externally.
  • the circulating water flowing back to the water tank 61 can be called waste water
  • the drain pump 68 is used to discharge the waste water in the water tank 61 through the drain pipe 69.
  • the specific process of heating the circulating water until it is discharged can be as follows: first, the reversing device 1 is in the first working state, and the circulating water enters the water tank 61 from the water inlet; it reaches the second box 62 under the action of the circulating water pump 63, and is heated under the action of the second heat exchanger 3; the heated circulating water reaches the spray arm 64 and the third box 66 respectively through the circulating water pump 63; the circulating water flowing into the spray arm 64 is sprayed out under the action of the circulating water pump 63, and after being used externally, it flows back to the water tank 61 (at this time it is called waste water, and at this time no new circulating water will enter the water inlet of the water tank 61); the circulating water flowing to the third box 66 is temporarily stored in the third box 66; after the drainage pump 68 and the drainage pipe 69 discharge the waste water from the water tank 61, the reversing device 1 is adjusted to the second working state, and the circulating water in
  • the heat in the wastewater can be transferred to the circulating water in the third box 66 via the drainage pipe 69.
  • the heat in the wastewater is used to maintain the temperature of the circulating water in the third box 66 during the drainage process.
  • FIG8 is a schematic diagram of the structure of a phase change heat pump system provided in an embodiment of the present application.
  • the phase change heat exchanger 5 in the phase change heat pump system may further include an auxiliary heat exchange component 53.
  • the auxiliary heat exchange component 53 may include a fourth box 531 and a heat exchange medium 532, and the heat exchange medium 532 is filled in the fourth box 531.
  • the auxiliary heat exchange component 53 is in contact with the first box 51, and is used to perform heat exchange with the phase change heat exchanger 5 to heat the phase change material 52 in the first box 51.
  • the first box body 51 is located in the fourth box body 531, and a third spacing space is formed between the inner walls of the first box body 51 and the fourth box body 531, the heat exchange medium 532 is filled in the third spacing space, and at least a portion of the first box body 51 is immersed in the heat exchange medium 532, and the heat exchange medium 532 is used to heat the phase change material 52 in the first box body 51.
  • the fourth tank 531 can be connected to the circulating water pump 63 or the third tank 66, and the heated circulating water in the second tank 62 can flow to the fourth tank 531 via the circulating water pump 63 or the third tank 66 and be stored in the fourth tank 531.
  • the heat exchange medium 532 is the heated circulating water.
  • the fourth box 531 is not connected to the circulating water pump 63 or the third box 66, but is connected to an external heat exchange medium supply device, which continuously transports the heat exchange medium 532 to the fourth box 531. No limitation is made here for the heat exchange medium supply device.
  • the heat exchange medium 532 transfers heat to the phase change material 52 through the first box 51.
  • the time for the phase change material 52 to change from liquid to solid can be prolonged, and the time for the phase change material 52 to continuously release heat can be increased, thereby increasing the time for the first heat exchanger 2 to perform the evaporation function, and then increasing the time for the second heat exchanger 3 to heat the circulating water;
  • the heat exchange medium 532 can also provide heat for the phase change material 52, which is beneficial to accelerate the regeneration rate of the phase change material 52, thereby helping to improve the working efficiency of the phase change heat pump system.
  • the first box body 51 can be located outside the fourth box body 531. At this time, the outer surface of the first box body 51 contacts the outer surface of the fourth box body 531 to achieve heat exchange. Adopting this solution is beneficial to reducing the production and processing of the various components of the phase change heat exchanger 5 and reducing the difficulty of assembly between the various components of the phase change heat exchanger 5.
  • the auxiliary heat exchange component 53 may also include a micro-drain pump, which is connected to the fourth box 531.
  • the micro-drain pump can be unidirectionally connected to the water tank, that is, the micro-drain pump can discharge the heat exchange medium 532 to the water tank 61, and the circulating water in the water tank 61 will not enter the fourth box 531 through the micro-drain pump.
  • the circulation of the heat exchange medium 532 in the fourth box 531 can be achieved, which is conducive to timely discharge of the heat exchange medium 532 with a lower temperature and re-input of the heat exchange medium 532 with a higher temperature, thereby ensuring continuous and efficient heat transfer to the phase change material 52.
  • one interface of the micro drainage pump is connected to the fourth box body 531, and the other interface is connected to the outside (not connected to the water tank 61).
  • the heat exchange medium 532 can be directly discharged to prevent the heat exchange medium 532 from mixing with the circulating water or waste water in the water tank 61. It is also helpful to simplify the connection relationship between the various components of the phase change heat pump system and reduce the difficulty of system installation.
  • the reversing device 1 when the reversing device 1 is in the first working state and the phase change material 52 is transformed into a solid state, the reversing device 1 is adjusted to the second working state, so that the first heat exchanger 2 heats the phase change material 52, thereby realizing active heating of the phase change material 52.
  • the method of actively heating the phase change material by the first heat exchanger has a higher heating efficiency than the method of passive heating (natural wind heating, circulating water heating, air heating, etc.) in the related art, and significantly shortens the heating time of the phase change material 52, thereby being conducive to improving the working efficiency of the phase change heat pump system.
  • an embodiment of the present application provides a terminal device, which includes any phase change heat pump system provided in the embodiment of the present application.
  • the terminal device is a washing device, which may further include a base, a shell, and a partition.
  • the partition is located between the base and the shell, and the partition may be sealed to the base or to the shell.
  • a receiving cavity is formed between the partition and the base, and the phase change heat pump system is located in the receiving cavity.
  • a washing chamber is formed between the plate and the housing, and the washing chamber is used to wash the target object.
  • the washing device can be a dishwasher, a washing machine, etc.
  • the target object is the tableware to be washed.
  • the tableware to be washed is placed in the washing chamber of the dishwasher, the water outlet of the spray arm 64 is connected to the water tank 61 through the washing chamber, and the circulating water sprayed from the water outlet of the spray arm 64 returns to the water tank 61 after washing the tableware in the washing chamber, and is discharged by the drainage pump 68 and the drainage pipe 69.
  • the specific structure of the dishwasher is not limited here.
  • the terminal device may be a refrigeration device, a heating device, etc. in addition to a washing device represented by a dishwasher and a washing machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

本申请公开了一种相变热泵系统和终端设备,属于机械设计技术领域。该相变热泵系统包括换向装置、第一换热器、第二换热器、压缩机和相变换热器,压缩机、第一换热器和第二换热器通过换向装置实现连通。相变换热器包括第一箱体和相变材料,相变材料填充于第一箱体中,相变换热器与第一换热器相接触,且与第一换热器热连通。当换向装置处于第一工作状态时,吸气口与第一换热器连通,排气口与第二换热器连通,当换向装置处于第二工作状态时,吸气口与所述第二换热器连通,排气口与第一换热器连通。采用该方案,第一换热器可以对相变材料进行主动加热,相比于相关技术明显缩短相变材料的再生时间,有利于提高相变热泵系统的工作效率。

Description

相变热泵系统和终端设备
本申请要求于2022年10月13日提交的申请号为202211255855.X、发明名称为“相变热泵系统和终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及热泵系统设计领域,特别涉及一种相变热泵系统和终端设备。
背景技术
相变材料由于具有导热系数大、比热容大、能贮藏或放出较多的热量、以及可重复利用等特点,被应用于热泵系统中。
在热泵系统中,通常会将相变材料与蒸发器相结合,蒸发器在工作时会吸收相变材料中贮藏的热量,相变材料放热后则会由液态转变为固态。随着相变材料中热量的减少,蒸发器的工作效率会降低。当相变材料转变为固态后,通常需要使蒸发器停止工作,并对相变材料进行加热。
然而,对相变材料进行加热时所采用的方法通常为被动加热,如自然风加热、循环水加热等。被动加热的效率较低,即相变材料由固态转变为液态需要花费大量时间,最终导致热泵系统工作效率低。
发明内容
本申请实施例提供了一种相变热泵系统和终端设备,能解决相关技术中由于对相变材料采用被动加热的方法导致热泵系统工作效率低的问题。技术方案如下:
第一方面,本申请提供了一种相变热泵系统,所述相变热泵系统包括:换向装置、第一换热器、第二换热器、压缩机和相变换热器;
所述换向装置具有第一换向口、第二换向口、第三换向口和第四换向口;
所述第一换热器具有第一换热口和第二换热口,所述第一换热口与所述第一换向口连通;
所述第二换热器具有第三换热口和第四换热口,所述第三换热口与所述第 二换热口连通,所述第四换热口与所述第二换向口连通;
所述压缩机具有吸气口和排气口,所述吸气口与所述第三换向口连通,所述排气口与所述第四换向口连通;
所述相变换热器包括第一箱体和相变材料,所述相变材料位于所述第一箱体中,用于与所述第一换热器进行热交换;
当所述换向装置处于第一工作状态时,所述吸气口与所述第一换热器连通,所述排气口与所述第二换热器连通,当所述换向装置处于第二工作状态时,所述吸气口与所述第二换热器连通,所述排气口与所述第一换热器连通。
在一种可能的实现方式中,所述第一换热器位于所述第一箱体中,所述相变材料位于第一换热器与所述第一箱体形成的第一间隔空间中,所述第一换热器的至少部分浸在所述相变材料中。
在一种可能的实现方式中,所述相变热泵系统还包括水循环子系统,所述水循环子系统包括水槽、第二箱体、循环水泵和喷臂;
所述水槽、所述第二箱体、所述循环水泵相互连通,所述第二箱体与所述第二换热器热连通;
当所述换向装置处于第一工作状态时,所述水槽与所述循环水泵不连通,所述循环水泵与所述喷臂连通,当所述换向装置处于第二工作状态时,所述水槽与所述循环水泵连通,所述循环水泵与所述喷臂不连通。
在一种可能的实现方式中,所述水循环子系统还包括换向阀,所述换向阀分别与所述水槽、所述循环水泵、所述喷臂相连。
在一种可能的实现方式中,所述水循环子系统还包括第三箱体;
所述第三箱体和所述循环水泵连通,且与所述水槽相连;
当所述换向装置处于第一工作状态时,所述水槽与所述第三箱体不连通,当所述换向装置处于第二工作状态时,所述第三箱体与所述水槽连通。
在一种可能的实现方式中,所述水循环子系统还包括第二单向阀,所述第二单向阀分别与所述水槽、所述第三箱体连通。
在一种可能的实现方式中,所述喷臂喷出的循环水回流至所述水槽,所述水循环子系统还包括排水泵和排水管道;
所述排水泵分别与所述水槽、所述排水管道连通,所述排水管道的至少部分贯穿所述第三箱体。
在一种可能的实现方式中,所述相变换热器还包括辅助换热组件,所述辅助换热组件包括第四箱体和换热媒介,且所述换热媒介填充在所述第四箱体中,所述辅助换热组件用于与所述相变换热器进行热交换。
在一种可能的实现方式中,所述第一箱体位于所述第四箱体内,且所述第一箱体与所述第四箱体之间形成第三间隔空间,所述换热媒介填充于所述第三间隔空间中,且所述第一箱体的至少部分浸在所述换热媒介中。
第二方面,本申请提供了一种终端设备,其特征在于,所述终端设备包括如第一方面及其可能的实现方式中的任一项所述的相变热泵系统。
在一种可能的实现方式中,所述终端设备为洗涤设备,所述洗涤设备还包括底座、外壳和隔板;
所述隔板位于所述底座和所述外壳之间,所述隔板与所述底座之间形成容纳腔,所述相变热泵系统位于所述容纳腔内,所述隔板与所述外壳之间形成洗涤腔,所述洗涤腔用于对目标物进行洗涤处理。
本申请实施例提供的技术方案带来的有益效果是:
本申请实施例提供的方案中,压缩机、第一换热器和第二换热器通过换向装置实现连通,通过调整换向装置的工作状态,可以调整压缩机、第一换热器和第二换热器之间的连通路径,以实现第一换热器与第二换热器之间功能的切换。当换向装置处于第一工作状态时,且相变材料释放热量由液态转变为固态后,可以将换向装置调整为第二工作状态,使第一换热器由蒸发器调整为冷凝器,从而利用第一换热器对相变材料进行主动加热。采用该方案,由第一换热器主动加热相变材料的方法相比于相关技术中被动加热(自然风加热,循环水 加热,空气加热等)的方法具有更高的加热效率,明显缩短相变材料的再生时间,从而,有利于提高相变热泵系统的工作效率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种相变热泵系统的结构示意图;
图2是本申请实施例提供的一种相变热泵系统的结构示意图;
图3是本申请实施例提供的一种相变热泵系统的局部结构示意图;
图4是本申请实施例提供的一种相变热泵系统的局部结构示意图;
图5是本申请实施例提供的一种相变热泵系统的局部结构示意图;
图6是本申请实施例提供的一种相变热泵系统的局部结构示意图;
图7是本申请实施例提供的一种相变热泵系统的局部结构示意图;
图8是本申请实施例提供的一种相变热泵系统的结构示意图。
图例说明
1、换向装置;2、第一换热器;3、第二换热器;4、压缩机;5、相变换热
器;6、水循环子系统;
11、第一换向口;12、第二换向口;13、第三换向口;14、第四换向口;
21、第一换热口;22、第二换热口;31、第三换热口;32、第四换热口;4A、吸气口;4B、排气口;51、第一箱体;52、相变材料;53、辅助换热组件;61、水槽;62、第二箱体;63、循环水泵;64、喷臂;65、换向阀;66、第三箱体;67、第二单向阀;68、排水泵;69、排水管道;
531、第四箱体;532、换热媒介。
具体实施方式
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”、“第三”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则所述相对位置关系也可能相应地改变。
热泵系统通常包括压缩机、冷凝器和蒸发器等器件,压缩机、冷凝器和蒸发器两两之间相互连通,压缩机由蒸发器处吸入低温低压气体,并向冷凝器输送高温高压气体,高温高压气体在冷凝器处冷凝成液体并向外部放热,冷凝后的液体流入蒸发器并在蒸发器处吸热蒸发形成低温低压的气体。为了保证蒸发器的工作效率,通常会在蒸发器处设置换热媒介为蒸发器提供热量。由于相变材料具有导热系数大、比热容大、能贮藏或放出较多的热量、以及可重复利用等特点,因此,相变材料被作为换热媒介应用于热泵系统中。
在热泵系统中,蒸发器在工作时会吸收相变材料中贮藏的热量,相变材料放热后则会由液态转变为固态。随着相变材料中热量的减少,蒸发器的工作效率会降低。当相变材料转变为固态后,无法再为蒸发器提供热量,此时蒸发器也就无法将冷凝后的液体蒸发为低温低压的气体,此时整个热泵系统就无法正常运行。此种情况下,需要对相变材料进行加热,使其由固态变回液态以储藏供蒸发器工作的热量。
然而,相关技术中对相变材料进行加热时所采用的方法通常为被动加热,如自然风加热、循环水加热等。采用被动加热时,相变材料由固态转变为液态需要花费大量时间,如10小时、12小时等,甚至需要24小时,严重影响了应用相变材料的热泵系统的工作效率。
因此,本申请实施例提供了一种相变热泵系统,可以大大缩短相变材料由固态转变为液态时花费的时间,从而提高热泵系统的工作效率。为使本申请的 目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
图1是本申请实施例提供的一种相变热泵系统的结构示意图。如图1所示,本申请实施例提供的相变热泵系统包括:换向装置1、第一换热器2、第二换热器3、压缩机4和相变换热器5。
换向装置1具有四个接口,这四个接口分别为第一换向口11、第二换向口12、第三换向口13和第四换向口14。作为示例,换向装置1可以是四通换向阀、也可以是凸轮换向装置,等等,换向装置1可以认为是一种现有的相关技术,对于换向装置1的具体结构,此处不进行赘述。换向装置1用于调整相变热泵系统中第一换热器2、第二换热器3和压缩机4之间的连通关系,下文会详细说明。
第一换热器2具有第一换热口21和第二换热口22,第二换热器3具有第三换热口31和第四换热口32。其中,第一换热器2的第一换热口21与换向装置1的第一换向口11连通,第一换热器2的第二换热口22与第二换热器3的第三换热口31连通,第二换热器3的第四换热口32与换向装置1的第二换向口12连通。
在一些示例中,该热泵系统还可以包括节流阀,节流阀分别与第一换热器3和第二换热器4相连通,节流阀用于控制第一换热器3和第二换热器4之间的介质的流速,此处不进行赘述。
压缩机4具有吸气口4A和排气口4B,吸气口4A与换向装置1的第三换向口13连通,排气口4B与换向装置1的第四换向口14连通,从而,通过换向装置1实现第一换热器2、第二换热器3和压缩机4两两之间的相互连通。
相变换热器5可以包括第一箱体51和相变材料52,相变材料52填充于第一箱体51中,相变换热器5与第一换热器2相接触,且相变换热器5与第一换热器2热连通。此处的热连通又可以称为热耦合,表示相变换热器5与第一换热器2之间可以进行热交换。
相变材料52可以是固液相变储能材料,通常,相变材料52由液态变化为固态的时候向外部释放热量,以起到保温加热的作用,而相变材料52由固态变化为液态的时候吸收外部的热量,以起到降温储热的作用。
作为示例,相变材料52可以是无机相变材料。相变材料52可以是水,相 变材料52也可以是硫酸钠类,如加入防相分离剂的硫酸钠水合盐等;相变材料52也可以是醋酸钠类,如加入防相分离剂的三水醋酸钠等;相变材料52还可以是氯化钙类,如氯化钙的含水盐等;相变材料52还可以是磷酸盐类,如磷酸氢二钠的十二水盐等。
可选地,相变材料52也可以是有机相变材料。相变材料52可以是石蜡,也可以是脂肪酸类。
当换向装置1处于第一工作状态时,吸气口4A与第一换热器2连通,排气口4B与第二换热器3连通。此时,在该相变热泵系统中,第一换热器2相当于相关技术中的蒸发器,用于对冷凝后的液体进行蒸发处理形成低温低压的气体,并向压缩机4输送低温低压气体;第二换热器3相当于相关技术中的冷凝器,用于对压缩机4排出的高温高压气体进行冷凝处理形成液体,并将冷凝后的液体输送给第一换热器2。此种情况下,第一换热器2吸收相变换热器5的相变材料52中贮藏的热量,相变材料52由液态向固态变化。
当换向装置1处于第二工作状态时,吸气口4A与第二换热器3连通,排气口4B与第一换热器2连通。此时,在该相变热泵系统中,第二换热器3相当于相关技术中的蒸发器,用于对冷凝后的液体进行蒸发处理形成低温低压的气体,并向压缩机4输送低温低压气体;第一换热器2相当于相关技术中的冷凝器,用于对压缩机4排出的高温高压气体进行冷凝处理形成液体,并将冷凝后的液体输送给第二换热器3。此种情况下,第二换热器3加热相变换热器5的相变材料52以使相变材料52由固态向液态变化,从而实现相变材料52的再生储热。
本申请实施例提供的方案中,当换向装置1处于第一工作状态时,且相变材料52转变为固态后,将换向装置1调整为第二工作状态,使第一换热器2对相变材料52进行加热,实现对相变材料52的主动加热。采用该方案,由第一换热器主动加热相变材料的方法相比于相关技术中被动加热(自然风加热,循环水加热,空气加热等)的方法具有更高的加热效率,明显缩短相变材料52的再生时间,从而,有利于提高相变热泵系统的工作效率。
在一些示例中,如图1所示,第一换热器2位于相变换热器5的第一箱体51中,且第一换热器2与第一箱体51的内壁形成第一间隔空间,相变材料52填充于第一间隔空间中。而且,第一换热器2的至少部分与相变材料52相接触,即第一换热器2的至少部分浸没在液态的相变材料52中(或者被固态的相变材 料52包裹),相变材料52则用于与第一换热器2进行热交换。作为示例,第一换热器2完全浸泡在液态的相变材料52中(或者被固态的相变材料52包裹),这样,有利于增加第一换热器2与相变材料52之间用于热交换的换热面积,从而提高第一换热器2与相变材料52之间的换热效率,进而提高相变热泵系统的工作效率。
在另一些示例中,第一换热器2位于第一箱体51外,第一换热器2的表面与第一箱体51相接触。第一换热器2和相变材料52通过第一箱体51进行热交换。采用该结构,便于第一换热器2、相变换热器5的生产加工,而且有利于降低第一换热器2与相变换热器5之间的装配难度。
图2是本申请实施例提供的一种相变热泵系统的结构示意图。如图2所示,该相变热泵系统还可以包括水循环子系统6,水循环子系统6可以包括水槽61、第二箱体62、循环水泵63和喷臂64。水槽61、第二箱体62、循环水泵63相互连通,第二箱体62与第二换热器3热连通,即第二箱体62与第二换热器3进行热交换。
作为示例,水槽61、第二箱体62、循环水泵63可以依次相互连通,且循环水泵63分别与水槽61、喷臂64相连。可选地,循环水泵63可以位于水槽61和第二箱体62之间,即循环水泵63分别与水槽61、第二箱体62连通,第二箱体62与循环水泵63连通的同时还与喷臂64相连。对于水槽61、第二箱体62、循环水泵63以及喷臂64的连接顺序,此处不进行任何限定。
当换向装置1处于上述第一工作状态时,水槽61与循环水泵63处于不连通状态,循环水泵63与喷臂64则处于连通状态,水槽61中的循环水先到达第二箱体62,然后在第二换热器3的作用下进行加热,第二箱体62中加热后的循环水经过循环水泵63进入喷臂64,喷臂64则在循环水泵63的作用下将加热后的循环水喷出。
当换向装置1处于第二工作状态时,水槽61与循环水泵63处于连通状态,循环水泵63与喷臂64处于不连通状态,水槽61中的循环水到达第二箱体62后,向第二换热器3传递热量,放热后的循环水经过循环水泵63回到水槽61中,以此往复形成循环,持续为第二换热器3提供热量。
在一些示例中,第二换热器3的外表面与第二箱体62的外表面相接触。当换向装置1处于上述第一工作状态时,第二换热器3中高温高压的气体冷凝时 所产生的热量经由第二箱体62传递给循环水,从而实现对循环水的加热。当换向装置1处于第二工作状态时,循环水中的热量经由第二箱体62传递给第二换热器3,以实现第二换热器3处的蒸发处理。
在另一示例中,图3是本申请实施例提供的一种相变热泵系统的局部结构示意图。如图3所示,第二换热器3位于第二箱体62中,第二换热器3与第二箱体62之间形成第二间隔空间,循环水位于第二间隔空间中,第二换热器3的至少部分浸在循环水中。采用该方案,第二换热器3可以直接与循环水进行热交换,而且第二换热器3浸在循环水中可以增加换热面积,从而有利于提高换热效率。
图4是本申请实施例提供的一种相变热泵系统的局部结构示意图。在一些示例中,如图4所示,水循环子系统6还包括换向阀65。换向阀65分别与水槽61、循环水泵63、喷臂64相连,用于控制循环水泵63与水槽61、喷臂64之间的通断关系。当换向装置1处于第一工作状态时,换向阀65连通循环水泵63和喷臂64,并阻断循环水泵63和水槽61;当换向装置1处于第二工作状态时,换向阀65连通循环水泵63和水槽61,并阻断循环水泵63和喷臂64。
在另一些示例中,水循环子系统6还可以包括两个第一单向阀,一个第一单向阀用于连接水槽61和循环水泵63,另一个第一单向阀用于连接循环水泵63和喷臂64。对于循环水泵63与水槽61、喷臂64之间的通断关系与上文类似,此处不进行赘述。
可选地,水循环子系统可以只包括一个第一单向阀,第一单向阀用于连接循环水泵63和喷臂64。此种情况下,循环水泵63与水槽61始终连通,当换向装置1处于第一工作状态时,第一单向阀连通循环水泵63和喷臂64,以实现循环水由喷臂64喷出;当换向装置1处于第二工作状态时,第一单向阀阻断循环水泵63和喷臂64,以实现循环水在水槽61、第二箱体62和循环水泵63之间循环,从而为第二换热器3提供热量。
采用该方案,一方面,可以实现使用该相变热泵系统对水循环子系统6中的循环水进行加热的功能;另一方面,能在第一换热器2对相变材料52进行加热时,为第二换热器3提供热量,有利于提高该过程中第二换热器3的工作效率,从而,提高第一换热器2对相变材料52的加热效率。
图5是本申请实施例提供的一种相变热泵系统的局部结构示意图。如图5所示,水循环子系统6还可以包括第三箱体66。水槽61、第二箱体62、循环水 泵63和第三箱体66依次相互连通,第二箱体62与喷臂64(图5中未示出)未连通,并且第三箱体66与水槽61之间相连。
在一些示例中,当换向装置1处于第一工作状态时,水槽61与第三箱体66处于不连通状态,以保证水循环子系统6中存在足够的压力使循环水由喷臂64喷出,以对循环水实现相应的利用。而当换向装置1处于第二工作状态时,循环水泵63与喷臂64处于不连通状态,第三箱体66与水槽61处于连通状态,这样可以将循环水泵63产生的动力全部用来促进循环水在水槽61、第二箱体62、循环水泵63和第三箱体66之间的循环,增加循环水的循环速率,有利于提高与第二换热器3之间的热交换的效率。
对于水槽61与第三箱体66之间的连接关系,作为示例,图6是本申请实施例提供的一种相变热泵系统的局部结构示意图,如图6所示,水循环子系统6还可以包括第二单向阀67。第二单向阀67的两端分别与水槽61、第三箱体66连通,第二单向阀67用于控制第三箱体66与水槽61之间的通断关系。作为示例,当换向装置1处于第一工作状态时,第二单向阀67阻断水槽61和第三箱体66,流至第三箱体66的循环水则暂时储存在第三箱体66中;当换向装置1处于第二工作状态时,第二单向阀67连通水槽61和第三箱体66,存储于第三箱体66中的循环水经过水槽61流向第二箱体62,以实现向第二换热器3传递热量,促进第二换热器3中的蒸发效率。
在另一些示例中,第三箱体66与水槽61之间始终处于连通状态,即无论换向装置1处于第一工作状态还是第二工作状态。第三箱体66始终与水槽61连通,循环水可以一直在水槽61、第二箱体62、循环水泵63和第三箱体66之间循环,这样,无论第二换热器3相当于冷凝器还是蒸发器,均可以与第二箱体62中的循环水进行热交换,有利于充分利用第二换热器3或循环水的热量,提高能量的利用率,并提高工作效率。
图7是本申请实施例提供的一种相变热泵系统的局部结构示意图。如图7所示,水循环子系统6还包括排水泵68和排水管道69。排水泵68分别与水槽61的一个接口、排水管道69的一个端口连通,并且排水管道69的至少部分贯穿第三箱体66,换句话说,排水管道69的至少部分位于第三箱体66内,且该部分排水管道69的外壁被第三箱体66内的循环水包裹。此种情况下,喷臂64喷出的循环水在外部完成利用后可以回流至水槽61内,回流至水槽61中的循环水可以称为废水,排水泵68则用于将水槽61中的废水经由排水管道69排出。
循环水加热至排出的具体过程可以如下:首先,换向装置1处于第一工作状态,循环水由进水口进入水槽61中;在循环水泵63的作用下到达第二箱体62,并在第二换热器3的作用下进行加热;加热后的循环水经由循环水泵63分别到达喷臂64和第三箱体66;流至喷臂64中的循环水在循环水泵63的作用下喷出,并在外部完成利用后回流至水槽61(此时称为废水,且此时水槽61的进水口不会再进入新的循环水);流至第三箱体66的循环水则暂时存储在第三箱体66中;排水泵68、排水管道69将废水排出水槽61后,将换向装置1调整为第二工作状态,第三箱体66中的循环水经过水槽61到达第二箱体62,为第二换热器3提供热量。
采用该方案,废水经过位于第三箱体66中的部分排水管道69时,可以将废水中的热量经由排水管道69传递给第三箱体66中的循环水,排水过程中利用废水中的热量保持第三箱体66中的循环水的温度,一方面有利于提高循环水可以向第二换热器3传递的总热量,另一方面有利于提高循环水与第二换热器3之间的热传递速率。
图8是本申请实施例提供的一种相变热泵系统的结构示意图。如图8所示,相变热泵系统中的相变换热器5还可以包括辅助换热组件53。辅助换热组件53可以包括第四箱体531和换热媒介532,并且换热媒介532填充在第四箱体531中。辅助换热组件53与第一箱体51相接触,用于与相变换热器5进行热交换以加热第一箱体51中的相变材料52。
在一些示例中,如图8所示,第一箱体51位于第四箱体531内,且第一箱体51与第四箱体531的内壁之间形成第三间隔空间,换热媒介532填充于第三间隔空间中,并且第一箱体51的至少部分浸在换热媒介532中,换热媒介532则用于加热第一箱体51中的相变材料52。
作为示例,第四箱体531可以与循环水泵63或第三箱体66连通,第二箱体62中经过加热后的循环水可以经由循环水泵63或第三箱体66流至第四箱体531,并储存在第四箱体531中,此时,换热媒介532就是加热后的循环水。
可选地,第四箱体531与循环水泵63或第三箱体66不连通,而是与外部某一换热媒介供应设备连通,该换热媒介供应设备向第四箱体531持续输送换热媒介532,对于该换热媒介供应设备,此处不进行任何限定。
采用该方案,换热媒介532经第一箱体51将热量传递给相变材料52,一方 面,在第一换热器2执行蒸发功能时,可以延长相变材料52由液态变为固态的时间,增加相变材料52持续放热的时间,从而,增加第一换热器2执行蒸发功能的时长,进而,提高第二换热器3加热循环水的时间;另一方面,在第一换热器2执行冷凝功能时,换热媒介532也可以为相变材料52提供热量,有利于加快相变材料52的再生速率,从而,有利于提高相变热泵系统的工作效率。
在另一些示例中,第一箱体51可以位于第四箱体531外,此时,第一箱体51的外表面与第四箱体531的外表面相接触以实现热交换,采用该方案,有利于降低相变换热器5各部件的生产加工,降低相变换热器5各部件之间的装配难度。
在一些示例中,辅助换热组件53还可以包括微型排水泵,微型排水泵与第四箱体531连通,微型排水泵可以与水槽单向连通,即微型排水泵可以将换热媒介532排向水槽61,而不会使水槽61中的循环水经由微型排水泵进入第四箱体531。采用该方案,可以实现第四箱体531中的换热媒介532的循环流动,有利于将温度较低的换热媒介532及时排出,并重新输入温度较高的换热媒介532,从而,有利于保证持续高效地向相变材料52传递热量。
可选地,微型排水泵的一个接口与第四箱体531连通,另一个接口与外部连通(不与水槽61连通),这样可以直接将换热媒介532排出,防止换热媒介532与水槽61中的循环水或者废水混合,而且有利于简化相变热泵系统各部件之间的连接关系,降低系统安装的难度。
本申请实施例提供的方案中,当换向装置1处于第一工作状态时,且相变材料52转变为固态后,将换向装置1调整为第二工作状态,使第一换热器2对相变材料52进行加热,实现对相变材料52的主动加热。采用该方案,由第一换热器主动加热相变材料的方法相比与相关技术中被动加热(自然风加热,循环水加热,空气加热等)的方法具有更高的加热效率,明显缩短相变材料52的加热时间,从而,有利于提高相变热泵系统的工作效率。
基于相同的技术构思,本申请实施例提供了一种终端设备,该终端设备包括本申请实施例提供的任一种相变热泵系统。
在一些示例中,上述终端设备为洗涤设备,该洗涤设备还可以包括底座、外壳和隔板。隔板位于底座和外壳之间,隔板可以与底座密封相连,也可以和外壳密封相连。隔板与底座之间形成容纳腔,相变热泵系统位于容纳腔内。隔 板与外壳之间形成洗涤腔,洗涤腔用于对目标物进行洗涤处理。作为示例,该洗涤设备可以是洗碗机、洗衣机等。
作为示例,上述洗涤设备为洗碗机时,上述目标物是待清洗的餐具,具体的:待清洗餐具放置在洗碗机的洗涤腔中,喷臂64的出水口与水槽61通过洗涤腔连通,喷臂64的出水口喷出的循环水在洗涤腔中完成对餐具的清洗后回流至水槽61中,并由上述排水泵68和排水管道69排出。对于洗碗机的具体结构此处不进行任何限定。
可选地,上述终端设备除了可以是以洗碗机、洗衣机为代表的洗涤设备外,还可以是制冷设备、采暖设备等。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种相变热泵系统,其特征在于,所述相变热泵系统包括:换向装置(1)、第一换热器(2)、第二换热器(3)、压缩机(4)和相变换热器(5);
    所述换向装置(1)具有第一换向口(11)、第二换向口(12)、第三换向口(13)和第四换向口(14);
    所述第一换热器(2)具有第一换热口(21)和第二换热口(22),所述第一换热口(21)与所述第一换向口(11)连通;
    所述第二换热器(3)具有第三换热口(31)和第四换热口(32),所述第三换热口(31)与所述第二换热口(22)连通,所述第四换热口(32)与所述第二换向口(12)连通;
    所述压缩机(4)具有吸气口(4A)和排气口(4B),所述吸气口(4A)与所述第三换向口(13)连通,所述排气口(4B)与所述第四换向口(14)连通;
    所述相变换热器(5)包括第一箱体(51)和相变材料(52),所述相变材料(52)位于所述第一箱体(51)中,用于与所述第一换热器(2)进行热交换;
    当所述换向装置(1)处于第一工作状态时,所述吸气口(4A)与所述第一换热器(2)连通,所述排气口(4B)与所述第二换热器(3)连通,当所述换向装置(1)处于第二工作状态时,所述吸气口(4A)与所述第二换热器(3)连通,所述排气口(4B)与所述第一换热器(2)连通。
  2. 根据权利要求1所述的相变热泵系统,其特征在于,所述第一换热器(2)位于所述第一箱体(51)中,所述相变材料(52)位于第一换热器(2)与所述第一箱体(51)形成的第一间隔空间中,所述第一换热器(2)的至少部分浸在所述相变材料(52)中。
  3. 根据权利要求1或2所述的相变热泵系统,其特征在于,所述相变热泵系统还包括水循环子系统(6),所述水循环子系统(6)包括水槽(61)、第二箱体(62)、循环水泵(63)和喷臂(64);
    所述水槽(61)、所述第二箱体(62)、所述循环水泵(63)相互连通,所述第二箱体(62)与所述第二换热器(3)热连通;
    当所述换向装置(1)处于第一工作状态时,所述水槽(61)与所述循环水 泵(63)不连通,所述循环水泵(63)与所述喷臂(64)连通,当所述换向装置(1)处于第二工作状态时,所述水槽(61)与所述循环水泵(63)连通,所述循环水泵(63)与所述喷臂(64)不连通。
  4. 根据权利要求3所述的相变热泵系统,其特征在于,所述水循环子系统(6)还包括换向阀(65),所述换向阀(65)分别与所述水槽(61)、所述循环水泵(63)、所述喷臂(64)相连。
  5. 根据权利要求3所述的相变热泵系统,其特征在于,所述水循环子系统(6)还包括第三箱体(66);
    所述第三箱体(66)和所述循环水泵(63)连通,且与所述水槽(61)相连;
    当所述换向装置(1)处于第一工作状态时,所述水槽(61)与所述第三箱体(66)不连通,当所述换向装置(1)处于第二工作状态时,所述第三箱体(66)与所述水槽(61)连通。
  6. 根据权利要求5所述的相变热泵系统,其特征在于,所述水循环子系统(6)还包括第二单向阀(67),所述第二单向阀(67)分别与所述水槽(61)、所述第三箱体(66)连通。
  7. 根据权利要求5所述的相变热泵系统,其特征在于,所述喷臂(64)喷出的循环水回流至所述水槽(61),所述水循环子系统(6)还包括排水泵(68)和排水管道(69);
    所述排水泵(68)分别与所述水槽(61)、所述排水管道(69)连通,所述排水管道(69)的至少部分贯穿所述第三箱体(66)。
  8. 根据权利要求1或2所述的相变热泵系统,其特征在于,所述相变换热器(5)还包括辅助换热组件(53),所述辅助换热组件(53)包括第四箱体(531)和换热媒介(532),且所述换热媒介(532)填充在所述第四箱体(531)中,所述辅助换热组件(53)用于与所述相变换热器(5)进行热交换。
  9. 根据权利要求8所述的相变热泵系统,其特征在于,所述第一箱体(51)位于所述第四箱体(531)内,且所述第一箱体(51)与所述第四箱体(531)之间形成第三间隔空间,所述换热媒介(532)填充于所述第三间隔空间中,且所述第一箱体(51)的至少部分浸在所述换热媒介(532)中。
  10. 一种终端设备,其特征在于,所述终端设备包括如权利要求1-9任一项所述的相变热泵系统。
  11. 根据权利要求10所述的终端设备,其特征在于,所述终端设备为洗涤设备,所述洗涤设备还包括底座、外壳和隔板;
    所述隔板位于所述底座和所述外壳之间,所述隔板与所述底座之间形成容纳腔,所述相变热泵系统位于所述容纳腔内,所述隔板与所述外壳之间形成洗涤腔,所述洗涤腔用于对目标物进行洗涤处理。
PCT/CN2023/100226 2022-10-13 2023-06-14 相变热泵系统和终端设备 WO2024077990A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211255855.X 2022-10-13
CN202211255855.XA CN115540386A (zh) 2022-10-13 2022-10-13 相变热泵系统和终端设备

Publications (1)

Publication Number Publication Date
WO2024077990A1 true WO2024077990A1 (zh) 2024-04-18

Family

ID=84733022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100226 WO2024077990A1 (zh) 2022-10-13 2023-06-14 相变热泵系统和终端设备

Country Status (2)

Country Link
CN (1) CN115540386A (zh)
WO (1) WO2024077990A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115540386A (zh) * 2022-10-13 2022-12-30 广东美的白色家电技术创新中心有限公司 相变热泵系统和终端设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1462850A (zh) * 2003-06-16 2003-12-24 浙江大学 相变储热预热式热泵热水器
US20170219294A1 (en) * 2014-07-23 2017-08-03 Muller & Cie Device and method for storing thermal energy
CN111964308A (zh) * 2020-08-28 2020-11-20 万江新能源集团有限公司 一种空气源化霜除霜装置
CN112178737A (zh) * 2019-07-04 2021-01-05 青岛海尔空调器有限总公司 蓄能组件及热泵系统
CN217004977U (zh) * 2021-09-30 2022-07-19 常州海卡太阳能热泵有限公司 基于相变储能式换热器除霜的空气源热泵
CN115540386A (zh) * 2022-10-13 2022-12-30 广东美的白色家电技术创新中心有限公司 相变热泵系统和终端设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1462850A (zh) * 2003-06-16 2003-12-24 浙江大学 相变储热预热式热泵热水器
US20170219294A1 (en) * 2014-07-23 2017-08-03 Muller & Cie Device and method for storing thermal energy
CN112178737A (zh) * 2019-07-04 2021-01-05 青岛海尔空调器有限总公司 蓄能组件及热泵系统
CN111964308A (zh) * 2020-08-28 2020-11-20 万江新能源集团有限公司 一种空气源化霜除霜装置
CN217004977U (zh) * 2021-09-30 2022-07-19 常州海卡太阳能热泵有限公司 基于相变储能式换热器除霜的空气源热泵
CN115540386A (zh) * 2022-10-13 2022-12-30 广东美的白色家电技术创新中心有限公司 相变热泵系统和终端设备

Also Published As

Publication number Publication date
CN115540386A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
WO2024077990A1 (zh) 相变热泵系统和终端设备
CN109701291A (zh) 一种基于热泵循环的双效低温蒸发浓缩碱液的循环系统
KR20080093279A (ko) 연속 제상이 가능한 냉,난방 히트펌프장치
JP4521855B2 (ja) 吸収冷凍機
CN211781571U (zh) 溶液再生装置及具有其的空气除湿装置
CN202083198U (zh) 对冻干机热媒循环系统的热媒进行加热的系统
CN210751315U (zh) 一种应用于切削液浓缩的空气源多效真空式蒸发系统
CN106317165B (zh) 一种蛋白质浓缩系统及其应用方法
CN107305064A (zh) 即热持续式高能效型热泵热水器
JP2005003210A (ja) ヒートポンプ給湯装置
WO2023193774A1 (zh) 洗涤设备及其控制方法
CN218821299U (zh) 一种基于热泵冷凝热回收的真空冷冻干燥系统
CN221205323U (zh) 一种洗碗机
EP4310412A1 (en) Heat exchange device and dishwasher
CN109357434A (zh) 一种基于双压缩机的空调与传热装置并联室内温控系统
CN214664887U (zh) 一种除湿制冷设备
CN210123212U (zh) 一种干燥供暖供冷复合系统
CN221205322U (zh) 一种洗碗机
CN216244978U (zh) 切削液余热回收用于空气源热泵系统
CN113324347B (zh) 双吸收工质储热型开式吸收换热系统
CN218348779U (zh) 一种多模式蒸发空调
CN221122419U (zh) 一种深度溶液除湿装置
CN217899985U (zh) 一种热管理系统及数据中心
JP4134579B2 (ja) 排熱利用型吸収式冷凍装置
CN114869196A (zh) 洗涤电器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876201

Country of ref document: EP

Kind code of ref document: A1