WO2024077647A1 - 一种声学装置 - Google Patents

一种声学装置 Download PDF

Info

Publication number
WO2024077647A1
WO2024077647A1 PCT/CN2022/126079 CN2022126079W WO2024077647A1 WO 2024077647 A1 WO2024077647 A1 WO 2024077647A1 CN 2022126079 W CN2022126079 W CN 2022126079W WO 2024077647 A1 WO2024077647 A1 WO 2024077647A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
acoustic
diaphragm
hole
cavity
Prior art date
Application number
PCT/CN2022/126079
Other languages
English (en)
French (fr)
Inventor
王传波
邓宏国
李浩乾
Original Assignee
深圳市大十未来科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大十未来科技有限公司 filed Critical 深圳市大十未来科技有限公司
Publication of WO2024077647A1 publication Critical patent/WO2024077647A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2400/00Loudspeakers
    • H04R2400/11Aspects regarding the frame of loudspeaker transducers

Definitions

  • the present invention relates to the field of electroacoustic technology, and more particularly to an acoustic device.
  • the purpose of the present invention is to overcome the deficiencies of the prior art and provide an acoustic device.
  • the present invention adopts the following technical solutions:
  • An acoustic device comprises a shell, a sound source arranged in the shell, the shell being provided with a sound outlet hole and an anti-phase sound hole on different surfaces; the sounds emitted by the sound outlet hole and the anti-phase sound hole are in opposite phases and have the same amplitude; a first sound cavity is formed between the front end of the sound source and the sound outlet hole, and a second sound cavity is formed between the rear end of the sound source and the anti-phase sound hole; the first sound cavity and the second sound cavity are connected via an acoustic dipole.
  • a further technical solution is that the sound source can radiate sound signals relative to the front and rear sides of the sound source.
  • a spatial coordinate system is established with the EEP at the entrance of the ear canal in the standard ITU-T P.57 as the origin; the EEP is the origin O, the positive semi-axis of the X-axis is perpendicular to the ear and outward, the positive semi-axis of the Y-axis is perpendicular to the ear and forward, and the positive semi-axis of the Z-axis is vertically upward; when the acoustic device is worn, the sound outlet is located in the areas of (0mm, -12mm.2, -5.2mm), (15.3mm, 3.2mm, 13.3mm) and (3mm, 10mm, -10mm) in the coordinate system, and the anti-phase sound hole is located in the areas of (5mm, -22mm, -3.2mm), (27.3mm, 15mm, 18mm) and (5mm, -15mm, 12mm) in the coordinate system.
  • a spatial coordinate system is established with the ERP of standard ITU-T P.57 as the origin; the ERP is the coordinate origin O, the positive semi-axis of the X-axis is perpendicular to the ear and outward, the positive semi-axis of the Y-axis is perpendicular to the ear and forward, and the positive semi-axis of the Z-axis is vertically upward; when the acoustic device is worn, the sound outlet is located in the areas of (0mm, -12.2mm, -5.2mm), (15.3mm, 3.2mm, 13.3mm) and (3mm, 10mm, -10mm) in the coordinate system, and the anti-phase sound hole is located in the areas of (5mm, -22mm, -3.2mm), (27.3mm, 15mm, 18mm) and (5mm, -15mm, 12mm) in the coordinate system.
  • a further technical solution is: a set angle is formed between the sound emission direction of the sound hole and the sound emission direction of the anti-phase sound hole; and the set angle is 90° to 180°.
  • a further technical solution is: the volumes of the first sound cavity and the second sound cavity are greater than 0.8 cm3, and the volume of the first sound cavity is 0.4-6 times that of the second sound cavity.
  • a further technical solution is: the sound outlet holes and the anti-phase sound holes are both provided with acoustic meshes; the acoustic impedance formed by the sound outlet holes, the anti-phase sound holes and the acoustic meshes attached thereto is less than or equal to 9*10 7 Pa ⁇ s/m3.
  • the cross-sectional area of the sound outlet hole is 20% to 35% of the area of the sound source diaphragm; the cross-sectional area of the anti-phase sound hole is 15% to 20% of the area of the sound source diaphragm.
  • a further technical solution is: the areas of the sound outlet hole and the anti-phase sound hole are greater than or equal to 4 mm2, and the sound outlet hole is 0.4-2.5 times the anti-phase sound hole.
  • the cross-sectional area of the acoustic dipole is greater than or equal to 2 mm2; the length of the acoustic dipole is greater than or equal to 2 mm and less than or equal to 25 mm.
  • a further technical solution is as follows: an acoustic mesh is arranged at the connection point between the acoustic dipole and the first sound cavity or the second sound cavity.
  • the sound source is a single diaphragm speaker; the single diaphragm speaker is provided with a first diaphragm; the first sound cavity is formed between the first diaphragm and the inner wall of the shell; and a second sound cavity is formed between the rear side of the single diaphragm speaker and the inner wall of the shell.
  • the sound source is a dual-diaphragm speaker; the dual-diaphragm speaker is provided with a first diaphragm and a second diaphragm; the first sound cavity is formed between the first diaphragm and the inner wall of the shell; and the second sound cavity is formed between the second diaphragm and the inner wall of the shell.
  • the sound source includes a single diaphragm speaker and a passive membrane;
  • the single diaphragm speaker is provided with a first diaphragm;
  • the first sound cavity is formed between the first diaphragm and the inner wall of the shell;
  • the second sound cavity is formed between the passive membrane and the inner wall of the shell.
  • a further technical solution is as follows: the passive membrane and the rear side of the single-diaphragm loudspeaker form a first closed sound cavity; the volume of the first closed sound cavity is less than 18 cm 3 .
  • the sound source is a speaker module;
  • the speaker module includes at least one pair of single diaphragm speakers;
  • the single diaphragm speakers are arranged back to back;
  • the single diaphragm speakers are provided with a first diaphragm;
  • the first sound cavity is formed between the first diaphragm of one of the single diaphragm speakers and the inner wall of the shell, and the second sound cavity is formed between the first diaphragm of the other single diaphragm speaker and the inner wall of the shell.
  • a further technical solution is as follows: a second sealed sound cavity is formed between the rear sides of the pair of single diaphragm loudspeakers; and the volume of the second sealed sound cavity is less than 18 cm 3 .
  • a further technical solution is as follows: the sound source is provided with a vibration membrane; and the distance between the centers of the two ends of the acoustic dipole and the vibration membrane does not exceed 25 mm.
  • a further technical solution is that the distance between the centers of the two ends of the acoustic dipole and the centers of the sound outlet and the anti-phase sound hole does not exceed 30 mm.
  • the present invention sets a first sound cavity between the sound outlet hole and the sound source, sets a second sound cavity between the anti-phase sound hole and the rear side of the sound source, and the first sound cavity is connected with the second sound cavity through a dipole tube, so that sounds with the same amplitude and opposite phase are coupled inside the acoustic device, and the size of the dipole tube and the acoustic impedance set on the dipole tube are adjusted to achieve the purpose of adjusting the size of the acoustic coupling, thereby effectively suppressing sound leakage.
  • FIG1 is a coordinate system of an acoustic device of the present invention with EEP as the origin;
  • Fig. 2 is a cross-sectional view taken along line B-B of Fig. 1;
  • FIG3 is a coordinate diagram of an acoustic device according to the present invention with ERP as the origin;
  • Fig. 4 is a cross-sectional view taken along line A-A of Fig. 3;
  • FIG5 is a cross-sectional view of a single diaphragm sound source of an acoustic device of the present invention.
  • FIG6 is a cross-sectional view of a double-diaphragm sound source of an acoustic device of the present invention.
  • FIG7 is a cross-sectional view of a single diaphragm sound source plus a passive membrane of an acoustic device of the present invention
  • FIG8 is a cross-sectional view of a speaker module of an acoustic device of the present invention.
  • FIG9 is a leakage frequency response curve of an acoustic device of the present invention.
  • FIG. 10 is a frequency response curve of an acoustic device of the present invention.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present invention, the meaning of “plurality” is two or more, unless otherwise clearly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be connected, detachably connected, or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • installed e.g., it can be connected, detachably connected, or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • a first feature being “above” or “below” a second feature may include that the first and second features are in direct contact, or may include that the first and second features are not in direct contact but are in contact through another feature between them.
  • a first feature being “above”, “above” and “above” a second feature includes that the first feature is directly above and obliquely above the second feature, or simply indicates that the first feature is higher in level than the second feature.
  • a first feature being “below”, “below” and “below” a second feature includes that the first feature is directly below and obliquely below the second feature, or simply indicates that the first feature is lower in level than the second feature.
  • the present embodiment provides an acoustic device, as shown in Figures 1 to 4, and the standard ITU-T P.57 promulgated by the International Telecommunication Union Telecommunication Standardization Administration (ITU) defines the position of the ear canal entrance 4 (EEP, Ear canal Entrance Point) and the position of the ear reference point (ERP, Ear reference Point).
  • ITU International Telecommunication Union Telecommunication Standardization Administration
  • EEP is the origin O
  • EEP ear outward is the positive semi-axis of the X axis
  • EEP forward is the positive semi-axis of the Y axis
  • EEP upward is the positive semi-axis of the Z axis, forming a first coordinate system.
  • the coordinates (x, y, z) of the center point of the sound outlet 11 are located in the spatial area 13A surrounded by (0mm, -12mm.2, -5.2mm), (15.3mm, 3.2mm, 13.3mm) and (3mm, 10mm, -10mm).
  • the coordinates (x, y, z) of the center point of the anti-phase sound hole 12 are located in the spatial area 14A surrounded by (5mm, -22mm, -3.2mm), (27.3mm, 15mm, 18mm) and (5mm, -15mm, 12mm).
  • ERP ear reference point
  • the coordinates (x, y, z) of the center point of the sound outlet 11 are located in the spatial area 13B surrounded by (0mm, -12.2mm, -5.2mm), (15.3mm, 3.2mm, 13.3mm) and (3mm, 10mm, -10mm).
  • the coordinates (x, y, z) of the center point of the anti-phase sound hole 12 are between (5mm, -22mm, -3.2mm), (27.3mm, 15mm, 18mm) and (5mm, -15mm, 12mm)
  • the spatial area 14B surrounded by.
  • the acoustic device 3 is provided with a wearing structure so that the sound outlet hole 11 and the anti-phase sound hole 12 can be located in the above-mentioned space area 13A and space area 14A, space area 13B and space area 14B. After being located in the above-mentioned space areas, since the sounds emitted by the sound outlet hole 11 and the anti-phase sound hole 12 have opposite phases and the same amplitude, the acoustic device 3 can better reduce the sound leakage from the ear to the outside and enhance the sound energy at the ear end.
  • the acoustic device 3 includes a shell 10 and a sound source 20 arranged inside the shell 10.
  • the sound source 20 can radiate sound signals relative to the front and rear sides of itself.
  • the shell 10 is provided with a sound outlet 11 and an anti-phase sound hole 12 on different surfaces, wherein the sound signal radiated forward by the sound source 20 is propagated through the sound outlet 11, and the sound signal radiated backward by the sound source 20 is propagated through the anti-phase sound hole 12.
  • the sound emitted by the sound outlet 11 and the anti-phase sound hole 12 are opposite in phase and have the same amplitude.
  • a first sound cavity 15 is formed between the front side of the sound source 20 and the sound outlet 11, and a second sound cavity 16 is formed between the rear side of the sound source 20 and the anti-phase sound hole 12.
  • the first sound cavity 15 and the second sound cavity 16 are connected through an acoustic dipole 17.
  • the first sound cavity 15 and the second sound cavity 16 are cavities, and the cross-sectional areas are larger than the sound outlet 11 and the anti-phase sound hole 12.
  • the sound emitted by the sound source 20 passes through the first sound cavity 15 and the second sound cavity 16 to filter the high frequency and improve the low frequency characteristics, making the emitted sound more mellow.
  • the sounds emitted by the sound outlet 11 and the anti-phase sound hole 12 are in opposite phases and have the same amplitude, and a set angle is formed between the sound outlet direction of the sound outlet 11 and the sound outlet direction of the anti-phase sound hole 12 (preferably, as shown in FIG. 2 , angle a is a set angle, and its size is 90° to 180°).
  • the sound outlet 11 and the anti-phase sound hole 12 are arranged on two opposite surfaces of the housing 10, so that the sounds in the anti-phase sound hole 12 facing the outside area can cancel each other out, thereby preventing sound leakage; the sound toward the inside of the ear (i.e., the ear canal) is not canceled out or the energy of the cancellation is limited, so when wearing the acoustic device, the wearer can hear the sound, but people outside cannot hear it, thereby preventing sound leakage.
  • the volume of the first sound cavity 15 and the second sound cavity 16 affects the sound quality, so preferably the volume of the first sound cavity 15 and the second sound cavity 16 is greater than 0.8 cm 3 , and the volume of the first sound cavity 15 is 0.4-6 times that of the second sound cavity 16 .
  • the ratio of the volume of the first sound cavity 15 to the volume of the second sound cavity 16 the amplitude and phase of the sound emitted by the sound hole 11 and the anti-phase sound hole 12 can be adjusted.
  • Acoustic mesh cloth also needs to be attached to the holes of the sound outlet hole 11 and the anti-phase sound hole 12, and the resistance of the mesh cloth is set according to actual needs.
  • the acoustic impedance formed by the sound outlet hole 11 and the acoustic mesh cloth is less than or equal to 9*10 7 Pa ⁇ s/m 3
  • the acoustic impedance formed by the anti-phase sound hole 12 and the acoustic mesh cloth is less than or equal to 9*10 7 Pa ⁇ s/m 3.
  • the cross-sectional area of the sound outlet hole 11 is 20% to 35% of the area of the vibration membrane provided in the sound source 20, and the cross-sectional area of the anti-phase sound hole 12 is 15% to 20% of the area of the vibration membrane provided in the sound source 20.
  • the amplitude and phase of the sound emitted by the sound outlet hole 11 can be adjusted by adjusting the area of the sound outlet hole 11.
  • the shapes of the sound outlet hole 11 and the anti-phase sound hole 12 are not limited to circular, square, elliptical or runway shapes.
  • the vibration membrane of the sound source 20 is the first vibration membrane 201A, the first vibration membrane 201B, the second vibration membrane 202B, the first vibration membrane 201C, the passive membrane 107, the first vibration membrane 201D, and the second vibration membrane 202D described below.
  • the number of the sound holes 11 is 1 or more than 2, and the number of the anti-phase sound holes 12 is 1 or more than 2, but the spatial positions of the sound holes 11 and the anti-phase sound holes 12 need to meet the definition of the present invention in the spatial coordinate system. In this embodiment, only one front sound hole 11 and one anti-phase sound hole 12 are used.
  • the areas of the sound outlet hole 11 and the anti-phase sound hole 12 are greater than or equal to 4 mm 2 , and the sound outlet hole 11 is 0.4-2.5 times the anti-phase sound hole 12.
  • the areas of the sound outlet hole 11 and the anti-phase sound hole 12 are greater than or equal to 4 mm 2 , which can avoid sound intensity loss and suppress high-frequency sound.
  • the sound outlet hole 11 is 0.4-2.5 times the anti-phase sound hole 12.
  • the cross-sectional area of the acoustic dipole tube 17 is greater than or equal to 2 mm 2 ; the length of the acoustic dipole tube 17 is greater than or equal to 2 mm and less than or equal to 25 mm; the volume of the acoustic dipole tube 17 is greater than or equal to 4 mm 3 and less than or equal to 50 mm 3 .
  • the end surfaces of both ends of the acoustic dipole 17 are located in the cavity where the vibrating membrane of the sound source 20 is located, that is, the first sound hole 171 is located in the first sound cavity 15, and the second sound hole 172 is located in the second sound cavity 16.
  • the distance d1 between the center of the first sound hole 171 and the second sound hole 172 and the center of the corresponding vibrating membrane does not exceed 25 mm, which effectively improves the bass effect of the acoustic device, adjusts the amplitude and phase of the sound emitted by the sound hole 11 and the anti-phase sound hole 12, effectively improves the sound coupling of the sound source 20, and reduces the leakage volume.
  • the distance d2 between the center of the first sound hole 171 of the acoustic dipole 17 and the center of the sound outlet hole 11 is not greater than 30 mm
  • the distance d3 between the center of the second sound hole 172 and the center of the anti-phase sound hole 12 is not greater than 30 mm, thereby improving the low-frequency effect of the acoustic device.
  • the sound leakage response curve has the frequency (in Hz) on the abscissa and the sound pressure level (in dB) on the ordinate.
  • the sound leakage curve is obtained when the test microphone is 0.5 m away from the acoustic device, that is, the sound leakage is tested by testing the microphone at a position 0.5 m away from the acoustic device.
  • the sound leakage response curve of the acoustic device with the acoustic dipole 17 is shown as a solid line
  • the sound leakage response curve of the acoustic device without the acoustic dipole 17 is shown as a dotted line.
  • the sound pressure level generated by the acoustic device with the acoustic dipole 17 is much smaller than that of the acoustic device without the acoustic dipole 17, indicating that the acoustic device with the acoustic dipole 17 has smaller sound leakage and can enhance the privacy protection of the user.
  • the horizontal axis represents the frequency (in Hz) and the vertical axis represents the sound pressure level (in dB).
  • the solid line extends to the low frequency band compared to the dotted line, improving the low frequency sound pressure level, allowing the human ear to hear more low frequency sound details, and improving the low frequency performance of the acoustic device.
  • the sound source 20 adopts a single diaphragm speaker, a dual diaphragm speaker, a combination of a single diaphragm speaker and a passive membrane, or a speaker module formed by at least one pair of single diaphragm speakers.
  • the single diaphragm speaker is provided with a first diaphragm 201A.
  • the housing 10 includes a first surface 101, a second surface 102, and a side surface 103 connecting the first surface 101 and the second surface 102.
  • a first mounting surface 104 for fixing the sound source 20 is provided inside the housing 10.
  • the first mounting surface 104, the first diaphragm 201A and the inner wall of the housing 10 are sealed to form a first sound cavity 15.
  • the sound outlet 11 is provided on the first surface 101, but the sound outlet 11 can be provided on the second surface 102 or the side surface 103 as required in the application.
  • a bracket 106 for fixing the speaker is provided inside the housing 10, and specifically, the first mounting surface 104 is the end surface of the bracket 106.
  • the single diaphragm speaker is sealedly connected to the bracket 106, or the first diaphragm 201A is sealedly connected to the first mounting surface 104, so that the front side and the rear side of the single diaphragm speaker are isolated from each other. Therefore, a second sound cavity 16 is formed between the rear side of the single diaphragm speaker and the inner wall of the housing 10.
  • the anti-phase sound hole 12 connected to the second sound cavity 16 is located on the second surface 102. According to actual applications, the anti-phase sound hole 12 can be located on the side surface 103 or the first surface 101.
  • the first sound cavity 15 and the second sound cavity 16 are connected and conducted by an acoustic dipole 17, and the specific acoustic dipole 17 is arranged on one side of the single diaphragm speaker.
  • the first sound cavity 15 is provided with a first sound hole 171
  • the second sound cavity 16 is provided with a second sound hole 172
  • the acoustic dipole 17 connects the first sound hole 171 and the second sound hole 172.
  • the first sound hole 171 and the second sound hole 172 are the end faces of the acoustic dipole, so that the first sound cavity 15 and the second sound cavity 16 are connected.
  • the acoustic dipole 17 connects the first sound cavity 15 and the second sound cavity 16, so that sounds with the same amplitude and opposite phases are coupled inside the housing 10.
  • the purpose of adjusting the size of the acoustic coupling is achieved, thereby effectively suppressing sound leakage.
  • the acoustic mesh on the acoustic dipole 17 is generally provided on the first sound hole 171 and the second sound hole 172.
  • the acoustic impedance formed by the first acoustic hole 171 and the second acoustic hole 172 and the acoustic mesh cloth attached thereto is less than or equal to 9*10 7 Pa ⁇ s/m 3 .
  • the dual-diaphragm speaker is provided with a first diaphragm 201B and a second diaphragm 202B.
  • the first diaphragm 201B and the second diaphragm 202B are respectively arranged on two sides of the speaker.
  • the shell structure is the same as the shell 10 of the single-diaphragm speaker, and is not repeated here.
  • the dual-diaphragm speaker is mounted on the bracket 106, and the dual-diaphragm speaker and the bracket 106 are sealed, so the front and rear sides of the dual-diaphragm speaker are sealed.
  • the end surface of the bracket 10 facing the sound outlet 11 is the first mounting surface 104, and the end facing the anti-phase sound hole 12 is the second mounting surface 105, so the dual-diaphragm speaker is sealed and connected to the first mounting surface 104 and the second mounting surface 105, or the first diaphragm 201B and the second diaphragm 202B are sealed and connected to the first mounting surface 104 and the second mounting surface 105, so that the front and rear sides of the dual-diaphragm speaker are sealed and isolated.
  • the first mounting surface 104, the first diaphragm 201B and the inner wall of the shell 10 are sealed to form a first sound cavity 15.
  • the sound outlet hole 11 is arranged on the first surface 101, but according to the application, the sound outlet hole 11 can be arranged on the second surface 102 or the side surface 103.
  • the second sound cavity 16 is formed between the second mounting surface 105, the second diaphragm 202B and the inner wall of the shell 10.
  • the position of the anti-phase sound hole 12 connected to the second sound cavity 16 is located on the second surface 102. According to the actual application, the position of the anti-phase sound hole 12 can be set on the side surface 103 or the first surface 101.
  • the first sound cavity 15 and the second sound cavity 16 are connected and conducted by the acoustic dipole 17, and the specific acoustic dipole 17 is arranged on one side of the dual diaphragm speaker.
  • the acoustic dipole 17 connects the first sound cavity 15 and the second sound cavity 16, so that sounds with the same amplitude and opposite phases are coupled inside the housing 10.
  • the acoustic mesh cloth on the acoustic dipole 17 is generally arranged on the first sound hole 171 and the second sound hole 172.
  • a sealed cavity is formed between the first diaphragm 201B and the second diaphragm 202B of the dual-diaphragm loudspeaker and inside the loudspeaker.
  • the volume of the sealed cavity is less than 8 cm 3 , so that the first diaphragm 201B and the second diaphragm 202B can be effectively linked to better adjust the amplitude and phase of the sound emitted from the sound outlet 11 and the anti-phase sound hole 12 .
  • the acoustic impedance formed by the first acoustic hole 171 and the second acoustic hole 172 and the acoustic mesh cloth attached thereto is less than or equal to 9*10 7 Pa ⁇ s/m 3 .
  • the single diaphragm speaker is provided with a first diaphragm 201C and a passive membrane 107 fixed to a bracket 106 and located at the rear side of the single diaphragm speaker.
  • the shell structure is the same as the shell 10 of the single diaphragm speaker, and is not repeated here.
  • the end surface of the bracket 10 facing the sound outlet 11 is the first mounting surface 104, and the end facing the anti-phase sound hole 12 is the second mounting surface 105, so the single diaphragm speaker is sealed and connected to the first mounting surface 104, or the first diaphragm 201C is sealed and connected to the first mounting surface 104, so that the front side and the rear side of the double diaphragm speaker are sealed and isolated.
  • the passive membrane 107 is sealed and fixed to the second mounting surface 105, so that the passive membrane 107 and the rear side of the single diaphragm speaker form a first closed sound cavity 203.
  • the center distance between the first diaphragm 201C and the passive membrane 107 is not more than 25 mm, and the volume of the first closed sound cavity 203 is less than 18 cm 3 .
  • the vibration information of the first diaphragm 201C is linked through the air holes inside the single diaphragm speaker and the first closed sound cavity 203, so that the sounds emitted from the sound outlet hole 11 and the anti-phase sound hole 12 have opposite phases and the same amplitude.
  • the first mounting surface 104, the first diaphragm 201C and the inner wall of the shell 10 are sealed to form a first sound cavity 15.
  • the sound outlet hole 11 is arranged on the first surface 101, but according to the application, the sound outlet hole 11 can be arranged on the second surface 102 or the side surface 103.
  • a second sound cavity 16 is formed between the second mounting surface 105, the passive membrane 107 and the inner wall of the shell 10.
  • the position of the anti-phase sound hole 12 connected to the second sound cavity 16 is located on the second surface 102. According to the actual application, the position of the anti-phase sound hole 12 can be set on the side surface 103 or the first surface 101.
  • the first sound cavity 15 and the second sound cavity 16 are connected and conducted by the acoustic dipole 17, and the specific acoustic dipole 17 is arranged on one side of the dual diaphragm speaker.
  • the acoustic impedance formed by the first acoustic hole 171 and the second acoustic hole 172 and the acoustic mesh cloth attached thereto is less than or equal to 9*10 7 Pa ⁇ s/m 3 .
  • the acoustic dipole 17 connects the first sound cavity 15 and the second sound cavity 16, so that sounds with the same amplitude and opposite phases are coupled inside the housing 10.
  • the acoustic mesh cloth on the acoustic dipole 17 is generally arranged on the first sound hole 171 and the second sound hole 172.
  • the sound source 20 is a speaker module formed by at least one pair of single-diaphragm speakers, as shown in FIG8 .
  • the speaker module is at least a pair of relatively mounted single-diaphragm speakers, one of which is a first speaker 205, whose diaphragm faces the sound outlet 11, and is referred to as the first diaphragm 201D; the other speaker is a first speaker 206, whose diaphragm faces the anti-phase sound hole 12, and is referred to as the second diaphragm 202D.
  • the center distance between the first diaphragm 201D and the second diaphragm 202D is not greater than 25 mm.
  • the shell structure is the same as the shell 10 of the single-diaphragm speaker, and the bracket 106 is the same as the bracket of the single-diaphragm speaker, which is not repeated here.
  • the rear side of the first speaker 205 and the rear side of the first speaker 206 form a second closed sound cavity 204, and preferably, the volume of the second closed sound cavity 204 is less than 18 cm 3.
  • the first speaker 205 and the first speaker 206 are controlled by the input electrical signal, so that the sound emitted by the first diaphragm 201D has the same amplitude and opposite phase as the sound emitted by the second diaphragm 202D.
  • the first diaphragm 201D, the first mounting surface 104 and the inner wall of the shell 10 are sealed to form a first sound cavity 15.
  • the sound outlet hole 11 is arranged on the first surface 101, but according to the needs in the application, the sound outlet hole 11 can be arranged on the second surface 102 or the side surface 103.
  • a second sound cavity 16 is formed between the second mounting surface 105, the second diaphragm 202D and the inner wall of the shell 10.
  • the position of the anti-phase sound hole 12 connected to the second sound cavity 16 is located on the second surface 102. According to the actual application, the position of the anti-phase sound hole 12 can be set on the side surface 103 or the first surface 101.
  • the first sound cavity 15 and the second sound cavity 16 are connected and conducted by the acoustic dipole 17, and the specific acoustic dipole 17 is arranged on one side of the dual diaphragm speaker.
  • the acoustic dipole 17 connects the first sound cavity 15 and the second sound cavity 16, so that sounds with the same amplitude and opposite phases are coupled inside the housing 10.
  • the acoustic mesh cloth on the acoustic dipole 17 is generally set on the first sound hole 171 and the second sound hole 172.
  • the acoustic impedance formed by the first acoustic hole 171 and the second acoustic hole 172 and the acoustic mesh cloth attached thereto is less than or equal to 9*10 7 Pa ⁇ s/m 3 .
  • the present invention sets a first sound cavity 15 between the sound outlet hole 11 and the sound source, sets a second sound cavity 16 between the anti-phase sound hole 12 and the rear side of the sound source, and the first sound cavity 15 and the second sound cavity 16 are connected through an acoustic dipole 17, so that sounds with the same amplitude and opposite phases are coupled inside the acoustic device, and the size of the acoustic coupling is adjusted by adjusting the size of the dipole and the acoustic impedance set on the dipole, thereby effectively suppressing sound leakage.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Abstract

一种声学装置(3),包括壳体(10),设置于壳体(10)内的声源(20),壳体(10)位于不同的表面设置有出声孔(11)及反相声孔(12);出声孔(11)与反相声孔(12)所发出的声音相位相反且幅度相同;声源(20)的前端与出声孔(11)之间形成有第一音腔(15),声源(20)的后端与反相声孔(12)之间形成有第二音腔(16);第一音腔(15)与第二音腔(16)之间通过设有的声偶极管(17)连通。通过在出声孔(11)与声源(20)之间设置第一音腔(15),反相声孔(12)与声源(20)的后侧之间设置第二音腔(16),并且第一音腔(15)与第二音腔(16)通过声偶极管(17)连通,使幅值相同相位相反的声音在声学装置(3)内部发生耦合,通过调整声偶极管(17)尺寸以及设置在声偶极管(17)上的声学阻尼值,起到调整声耦合大小的目的,从而有效抑制声泄漏。

Description

一种声学装置 技术领域
本发明涉及电声技术领域,更具体地说是一种声学装置。
背景技术
在现有的音频产品设计中,如眼镜、悬挂式耳机的出声孔距离耳道入口处(EEP,Ear canal Entrance Point,国际电信联盟电信标准分局(ITU)颁布的标准ITU-T P.57)较远,在音频装置播放大的音量时,有较大的声音泄露到外界,对外界造成影响,或者泄露使用者的隐私。
发明内容
本发明的目的在于克服现有技术的不足,提供一种声学装置。
为实现上述目的,本发明采用以下技术方案:
一种声学装置,包括壳体,设置于壳体内的声源,所述壳体位于不同的表面设置有出声孔及反相声孔;所述出声孔与反相声孔所发出的声音相位相反且幅度相同;所述声源的前端与出声孔之间形成有第一音腔,所述声源的后端与反相声孔之间形成有第二音腔;所述第一音腔与第二音腔之间通过设有的声偶极管连通。
其进一步技术方案为:所述音源可相对于本身的前侧和后侧辐射声音信号。
其进一步技术方案为:在标准ITU-T P.57中的耳道入口处EEP为原点建立空间坐标系;所述EEP为原点O,垂直于耳朵向外为X轴的正半轴,垂直于耳朵向前为Y轴的正半轴,竖直向上为Z轴的正半轴;所述声学装置佩戴时,所述出声孔位于坐标系中的(0mm,-12mm.2,-5.2mm)、(15.3mm,3.2mm,13.3mm)及(3mm,10mm,-10mm)的区域内,所述反相声孔位于坐标系中的(5mm,-22mm,-3.2mm)、(27.3mm,15mm,18mm)及(5mm,-15mm,12mm)的区域内。
其进一步技术方案为:在标准ITU-T P.57的ERP为原点建立的空间坐标系;所述ERP为坐标原点O,垂直于耳朵向外为X轴的正半轴,垂直于耳朵向前为Y轴的正半轴,竖直向上为Z轴的正半轴;所述声学装置佩戴时,所述出声孔位于坐标系中的(0mm,-12.2mm,-5.2mm)、(15.3mm,3.2mm,13.3mm)及(3mm,10mm, -10mm)的区域内,所述反相声孔位于坐标系中的(5mm,-22mm,-3.2mm)、(27.3mm,15mm,18mm)及(5mm,-15mm,12mm)的区域内。
其进一步技术方案为:所述出声孔的出音方向与反相声孔的出音方向之间形成设定角度;所述设定角度为90°至180°。
其进一步技术方案为:所述第一音腔和第二音腔的容积大于0.8cm3,并且第一音腔的容积是第二音腔的0.4-6倍。
其进一步技术方案为:所述出声孔、反相声孔均设置有声学网布;所述出声孔、反相声孔及其附着的声学网布构成的声阻抗小于或等于9*10 7Pa·s/m3。
其进一步技术方案为:所述出声孔的截面面积为声源振膜的面积的20%至35%;所述反相声孔的截面面积为声源振膜面积的15%至20%。
其进一步技术方案为:所述出声孔及反相声孔面积大于等于4mm2,且出声孔是反相声孔的0.4-2.5倍。
其进一步技术方案为:所述声偶极管的横截面积大于或等于2mm2;所述声偶极管的长度大于或等于2mm,并且小于或等于25mm。
其进一步技术方案为:所述声偶极管位于第一音腔或第二音腔的连通处设置有声学网布。
其进一步技术方案为:所述声源为单振膜扬声器;所述单振膜扬声器设有第一振动膜;所述第一振动膜与壳体内壁之间形成所述的第一音腔;所述单振膜扬声器后侧与壳体内壁之间形成第二音腔。
其进一步技术方案为:所述声源为双振膜扬声器;所述双振膜扬声器设有第一振膜与第二振膜;所述第一振动膜与壳体内壁之间形成所述的第一音腔;所述第二振膜与壳体内壁之间形成第二音腔。
其进一步技术方案为:所述声源包括单振膜扬声器与被动膜;所述单振膜扬声器设有第一振膜;所述第一振动膜与壳体内壁之间形成所述的第一音腔;所述被动膜与壳体内壁之间形成所述的第二音腔。
其进一步技术方案为:所述被动膜与单振膜扬声器后侧形成第一密闭音腔;所述第一密闭音腔的容积小于18cm 3
其进一步技术方案为:所述声源为扬声器模组;所述扬声器模组包括至少一对单振膜扬声器;所述单振膜扬声器相背设置;所述单振膜扬声器设有第一振动膜;其中一个所述单振膜扬声器的第一振动膜与壳体内壁之间形成所述的第一音腔,另一所述单振膜扬声器的第一振动膜与壳体内壁之间形成所述的第 二音腔。
其进一步技术方案为:一对所述单振膜扬声器的后侧之间形成有第二密闭音腔;所述第二密闭音腔的容积小于18cm 3
其进一步技术方案为:所述声源设有振动膜;所述声偶极管的两端中心与振动膜的距离不超过25mm。
其进一步技术方案为:所述声偶极管的两端中心与出声孔、反相声孔的中心距离不超过30mm。
本发明与现有技术相比的有益效果是:本发明通过在出声孔与声源之间设置第一音腔,反相声孔与声源的后侧之间设置第二音腔,并且第一音腔与第二音腔通过偶极管连通,使幅值相同相位相反的声音在声学装置内部发生耦合,通过调整偶极管尺寸以及设置在偶极管上的声阻抗,起到调整声耦合大小的目的,从而有效抑制声泄漏。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明技术手段,可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征及优点能够更明显易懂,以下特举较佳实施例,详细说明如下。
附图说明
图1为本发明的一种声学装置的以EEP为原点的坐标系;
图2为图1的B-B剖视图;
图3为本发明的一种声学装置的以ERP为原点的坐标;
图4为图3的A-A剖视图;
图5为本发明的一种声学装置的单振膜声源的剖视图;
图6为本发明的一种声学装置的双振膜声源的剖视图;
图7为本发明的一种声学装置的单振膜声源加被动膜的剖视图;
图8为本发明的一种声学装置的扬声器模组的剖视图;
图9为本发明的一种声学装置的漏音频响曲线;
图10为本发明的一种声学装置的频响曲线。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图和具体实施方式对本发明作进一步详细说明。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不应理解为必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或 多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行结合和组合。
图1至10为本发明的附图。
本实施提供了一种声学装置,如图1至4所示,国际电信联盟电信标准分局(ITU)颁布的标准ITU-T P.57中定义了耳道入口处4(EEP,Ear canal Entrance Point)的位置,以及耳朵参考点(ERP,Ear reference Point)的位置。
如图1至2所示,EEP为原点O,EEP耳朵朝外为X轴的正半轴,EEP向前为Y轴的正半轴,EEP向上为Z轴的正半轴,形成第一坐标系。在EEP为原点的空间坐标系中,在声学装置3佩戴于耳朵1时,出声孔11中心点坐标(x,y,z)位于(0mm,-12mm.2,-5.2mm)、(15.3mm,3.2mm,13.3mm)及(3mm,10mm,-10mm)围成的空间区域13A。反相声孔12中心点坐标(x,y,z)位于(5mm,-22mm,-3.2mm)、(27.3mm,15mm,18mm)及(5mm,-15mm,12mm)围成的空间区域14A。
如图3至4所示,同样地,本发明引用标准ITU-T P.57中耳朵参考点(ERP,Ear reference Point)原点建立空间坐标2。如图3-4所示,ERP为坐标原点O,ERP向耳朵外为X轴正半轴,ERP向前为Y轴正半轴,ERP向上为Z轴正半轴。在ERP为原点的空间坐标系中,在声学装置佩戴3于耳朵1时,出声孔11的中心点坐标(x,y,z)位于(0mm,-12.2mm,-5.2mm)、(15.3mm,3.2mm,13.3mm)及(3mm,10mm,-10mm)围成的空间区域13B。反相声孔12中心点坐标(x,y,z)介于(5mm,-22mm,-3.2mm)、(27.3mm,15mm,18mm)及(5mm,-15mm,12mm)围成的空间区域14B。
声学装置3设置有佩戴结构,使得出声孔11及反相声孔12能够位于上述的空间区域13A和空间区域14A、空间区域13B和空间区域14B,位于上述空间区域后,由于出声孔11与反相声孔12所发出的声音相位相反且幅度相同,声学装置3能够更好的减少耳朵朝外侧的声音泄露,加强入耳端声音能量。
在声学装置3的具体结构中,如图5至7所示,声学装置3包括壳体10,设置于壳体10内部的声源20。音源20可相对于本身的前侧和后侧辐射声音信号。壳体10于不同的表面设置有出声孔11及反相声孔12,其中,音源20向前辐射的声音信号通过出声孔11传播出去,音源20向后辐射的声音信号通过反相声孔12传播出去。出声孔11与反相声孔12所发出的声音相位相反且幅度相同。声源20的前侧与出声孔11之间形成有第一音腔15,声源20的后侧与反相声孔12之间形成有第二音腔16。第一音腔15与第二音腔16之间通过设有的声偶极管17连通。第 一音腔15、第二音腔16为容腔,横截面积均比出声孔11、反相声孔12大。音源20发出的声音经过第一音腔15、第二音腔16的过滤高频,改善低频特性,使得发出的声音更加圆润。
出声孔11与反相声孔12所发出的声音相位相反且幅度相同,在出声孔11的出音方向与反相声孔12的出音方向之间形成设定角度(优选的,如图2,角度a为设定角度,其大小为90°至180°)。在本实施例中,出声孔11与反相声孔12设置在壳体10的两个相反的表面,使得反相声孔12朝外区域的声音能够相互抵消,避免声音外泄;朝向耳朵内(即耳道内)的声音未进行抵消或者抵消的能量有限,所以佩戴本声学装置的时候,佩戴者能够听见声音,而外面的人听不见,起到防止声音外泄的功能。
第一音腔15和第二音腔16的容积大小影响到音质效果,所以,优选的第一音腔15和第二音腔16容积大于0.8cm 3,并且第一音腔15的容积是第二音腔16的0.4-6倍,通过调整第一音腔15和第二音腔16容积的比值,调整出声孔11与反相声孔12所发出声音的幅值和相位。
出声孔11、反相声孔12的孔道中也需要贴附声学网布,并且根据实际需要设置网布阻值。优选的,出音孔11和声学网布构成的声阻抗小于或等于9*10 7Pa·s/m 3,反相声孔12和声学网布构成的声阻抗小于或等于9*10 7Pa·s/m 3。其中,出音孔11和声学网布构成的声阻抗K为声学网布的声学阻尼值与出音孔11的单位面积的比值,即K=声学网布的声学阻尼值/出音孔的横截面积。
其中,出声孔11的横截面面积为声源20设有的振动膜面积的20%至35%,反相声孔12的截面面积为声源20设有的振动膜面积的15%至20%,可以通过调整出音孔11的面积实现出声孔11发出声音的幅值和相位的调整。出声孔11和反相声孔12的形状不限于圆形或方形或椭圆形或者跑道形。具体的,声源20的振动膜为下文所述的第一振膜201A、第一振膜201B、第二振膜202B、第一振膜201C、被动膜107、第一振膜201D、第二振膜202D。
出声孔11数量为1或2个以上,反相声孔12数量为1或2个以上,但是出声孔11和反相声孔12的空间位置需要满足本发明在空间坐标系中的定义。在本实施例中,只采用一个前出声孔11和一个反相声孔12。
优选的,出声孔11及反相声孔12面积大于或等于4mm 2,且出声孔11是反相声孔12的0.4-2.5倍。出声孔11及反相声孔12面积大于或等于4mm 2,能够避免声强损失,抑制高频声音。出声孔11是反相声孔12的0.4-2.5倍,通过调整出声孔11 及反相声孔12面积的比值,调整出声孔11及反相声孔12所发出声音的幅值和相位。
声偶极管17横截面积大于或等于2mm 2;还有,声偶极管17的长度大于或等于2mm,并且小于或等于25mm;声偶极管17体积大于或等于4mm 3,小于或等于50mm 3,通过调整偶极管的截面积、长度和体积,并与第一音腔15和第二音腔16,出声孔11和反相声孔12,第一声孔171和第二声孔172的结构尺寸参数配合,可以调整低频增强的频率范围,幅度以及漏音频率的范围。
如图5所示,声偶极管17两端端面位于声源20的振动膜所在的腔体内,即第一声孔171位于第一音腔15内,第二声孔172位于第二音腔16内。第一声孔171与第二声孔172的中心与相对应的振动膜中心的距离d1不超过25mm,有效的提升声学装置的低音效果,调整出声孔11及反相声孔12所发出声音的幅值和相位,有效的提高声源20的声音耦合,降低漏音量。
如图5所示,声偶极管17的第一声孔171中心位置与出声孔11中心位置距离d2不大于30mm,第二声孔172中心位置与反相声孔12中心位置的距离d3不大于30mm,提高声学装置的低频效果。
具体的,如图9所示的漏音频响曲线,横坐标表示频率(单位为Hz),纵坐标为声压级(单位为dB)。其中,漏音曲线为测试麦克风距离本声学装置0.5m的条件下获得,也即通过测试麦克风距离本声学装置0.5m的位置测试声音泄露情况。相同测试条件下,声学装置中设置声偶极管17的漏音频响曲线为实线所示,无声偶极管17的声学装置的漏音频响曲线为虚线所示。从图中可以看出,在声学装置发出的声音小于350Hz时,声偶极管17的有无对声音泄露表现不明显;声学装置发出的声音在350Hz-8000Hz时,在相同的声音频率下,具备声偶极管17的声学装置产生的声压级比不具备声偶极管17的声学装置的要小得多,表明具备声偶极管17的声学装置具有更小的声音泄漏,能够提升用户的私密保护。
具体的,如图10所示的所示频响曲线,横坐标表示频率(单位为Hz),纵坐标为声压级(单位为dB)。声学装置在仿真人耳上的频响曲线,无声偶极管17如虚线所示,加上声偶极管17如实线所示。实线较虚线向低频段延展,提升低频的声压级,让人耳可以听到更多的低频声音细节,提升声学装置低频性能。
在实际设计过程中,声源20采用单振膜扬声器,双振膜扬声器,单振膜扬声器和被动膜组合,至少一对单振膜扬声器形成的扬声器模组。
声源20采用单振膜扬声器时,如图5所示,单振膜扬声器设有第一振膜201A。壳体10包括第一表面101、第二表面102,及连接第一表面101和第二表面102的侧表面103。壳体10内部设置有用于声源20固定的第一安装面104。第一安装面104、第一振膜201A以及壳体10内壁密封形成第一音腔15。在本结构中,出声孔11设置于第一表面101上,但是应用中根据需要,出声孔11可以设置于第二表面102或侧表面103上。壳体10内部设置有用于固定扬声器的支架106,具体的,第一安装面104为支架106的端面。单振膜扬声器与支架106之间密封连接,或者第一振膜201A与第一安装面104密封连接,使得单振膜扬声器的前侧与后侧之间相互隔绝。所以,单振膜扬声器后侧与壳体10内壁之间形成第二音腔16。同样,本结构中,第二音腔16连通的反相声孔12的位置位于第二表面102,根据际应用,反相声孔12的位置可以设置于侧表面103、第一表面101。第一音腔15和第二音腔16由声偶极管17连接导通,具体的声偶极管17设置在单振膜扬声器的一侧。
具体的,位于第一音腔15设有第一声孔171,第二音腔16设有第二声孔172,声偶极管17连通第一声孔171与第二声孔172,第一声孔171与第二声孔172即为声偶极管的端面,这样使得第一音腔15和第二音腔16导通。声偶极管17将第一音腔15和第二音腔16连通,使幅值相同相位相反的声音在壳体10内部发生耦合,通过调整声偶极管17尺寸,以及设置在声偶极管17上的声学网布的阻尼值,起到调整声耦合大小的目的,从而有效抑制声泄漏。声偶极管17上的声学网布一般设置在第一声孔171和第二声孔172上,配合调整第一声孔171和第二声孔172的网布的阻尼值能够使装置的低频声音的截止频率向低音移动,起到增强低音的作用。
优选的,第一声孔171和第二声孔172与其附着的声学网布形成的声阻抗小于或等于9*10 7Pa·s/m 3
声源20采用双振膜扬声器时,如图6所示,双振膜扬声器设有第一振膜201B和第二振膜202B。第一振膜201B和第二振膜202B分别设置在扬声器的两个侧面。壳体结构与单振膜扬声器的壳体10相同,在此不做累赘。双振膜扬声器安装在支架106,并且双振膜扬声器与支架106之间为密封连接,所以双振膜扬声器的前侧与后侧之间为密封。支架10朝向出声孔11的一端面为第一安装面104,朝向反相声孔12的一端为第二安装面105,所以双振膜扬声器与第一安装面104、第二安装面105密封连接,或者第一振膜201B和第二振膜202B与第一安装面104、第二安装面105密封连接,使得双振膜扬声器前侧与后侧密封隔绝。
第一安装面104、第一振膜201B以及壳体10内壁密封形成第一音腔15。在本结构中,出声孔11设置于第一表面101上,但是应用中根据需要,出声孔11可以设置于第二表面102或侧表面103上。第二安装面105、第二振膜202B以及壳体10内壁之间形成第二音腔16。同样,本结构中,第二音腔16连通的反相声孔12的位置位于第二表面102,根据际应用,反相声孔12的位置可以设置于侧表面103、第一表面101。第一音腔15和第二音腔16由声偶极管17连接导通,具体的声偶极管17设置在双振膜扬声器的一侧。
声偶极管17将第一音腔15和第二音腔16连通,使幅值相同相位相反的声音在壳体10内部发生耦合,通过调整声偶极管17尺寸,以及设置在声偶极管17上的声学网布的阻尼值,起到调整声耦合大小的目的,从而有效抑制声泄漏。声偶极管17上的声学网布一般设置在第一声孔171和第二声孔172上,配合调整第一声孔171和第二声孔172的网布的阻尼值能够使装置的低频声音的截止频率向低音移动,起到增强低音的作用。
其中,双振膜扬声器的第一振膜201B与第二振膜202B之间并且在扬声器内部形成密封腔体,所述密封腔体容积小于8cm 3,使得第一振膜201B与第二振膜202B有效的进行联动,更好的调整从出声孔11、反相声孔12发出声音的幅度和相位。
优选的,第一声孔171和第二声孔172与其相附着的声学网布形成的声阻抗小于或等于9*10 7Pa·s/m 3
声源20采用单振膜扬声器与被动膜组合时,如图7所示,单振膜扬声器设有第一振膜201C及固定于支架106且位于单振膜扬声器后侧的被动膜107。壳体结构与单振膜扬声器的壳体10相同,在此不做累赘。支架10朝向出声孔11的一端面为第一安装面104,朝向反相声孔12的一端为第二安装面105,所以单振膜扬声器与第一安装面104密封连接,或者第一振膜201C和第一安装面104密封连接,使得双振膜扬声器前侧与后侧密封隔绝。另外,被动膜107密封固定在第二安装面105,使得被动膜107与单振膜扬声器后侧形成第一密闭音腔203,优选的,第一振膜201C与被动膜107的中心距离不大于25mm,第一密闭音腔203的容积小于18cm 3。第一振膜201C的振动信息通过单振膜扬声器内部气孔、第一密闭音腔203联动,使得从出声孔11、反相声孔12发出的声音相位相反且幅度相同。
其中,第一安装面104、第一振膜201C以及壳体10内壁密封形成第一音腔15。在本结构中,出声孔11设置于第一表面101上,但是应用中根据需要,出声孔11 可以设置于第二表面102或侧表面103上。第二安装面105、被动膜107以及壳体10内壁之间形成第二音腔16。同样,本结构中,第二音腔16连通的反相声孔12的位置位于第二表面102,根据际应用,反相声孔12的位置可以设置于侧表面103、第一表面101。第一音腔15和第二音腔16由声偶极管17连接导通,具体的声偶极管17设置在双振膜扬声器的一侧。
优选的,第一声孔171和第二声孔172与其相附着的声学网布形成的声阻抗小于或等于9*10 7Pa·s/m 3
声偶极管17将第一音腔15和第二音腔16连通,使幅值相同相位相反的声音在壳体10内部发生耦合,通过调整声偶极管17尺寸,以及设置在声偶极管17上的声学网布的阻尼值,起到调整声耦合大小的目的,从而有效抑制声泄漏。声偶极管17上的声学网布一般设置在第一声孔171和第二声孔172上,配合调整第一声孔171和第二声孔172的网布的阻尼值能够使装置的低频声音的截止频率向低音移动,起到增强低音的作用。
声源20采用至少一对单振膜扬声器形成的扬声器模组,如图8所示。扬声器模组至少为一对相对安装的单振膜扬声器,其中一个扬声器为第一扬声器205,其振膜朝向出声孔11,称之为第一振膜201D;另一个扬声器为第一扬声器206,其振膜朝向反相声孔12,称之为第二振膜202D。第一振膜201D和第二振膜202D的中心距离不大于25mm。壳体结构与单振膜扬声器的壳体10相同,支架106与单振膜扬声器的支架相同,在此不做累赘。第一扬声器205后侧与第一扬声器206的后侧形成第二密闭音腔204,优选的,第二密闭音腔204的容积小于18cm 3。第一扬声器205与第一扬声器206通过输入的电信号控制,使得第一振膜201D发出声音与第二振膜202D发出的声音幅值相同相位相反。
其中,第一振膜201D、第一安装面104以及壳体10内壁密封形成第一音腔15。在本结构中,出声孔11设置于第一表面101上,但是应用中根据需要,出声孔11可以设置于第二表面102或侧表面103上。第二安装面105、第二振膜202D以及壳体10内壁之间形成第二音腔16。同样,本结构中,第二音腔16连通的反相声孔12的位置位于第二表面102,根据际应用,反相声孔12的位置可以设置于侧表面103、第一表面101。第一音腔15和第二音腔16由声偶极管17连接导通,具体的声偶极管17设置在双振膜扬声器的一侧。
同样,声偶极管17将第一音腔15和第二音腔16连通,使幅值相同相位相反的声音在壳体10内部发生耦合,通过调整声偶极管17尺寸,以及设置在声偶极 管17上的声学网布的阻尼值,起到调整声耦合大小的目的,从而有效抑制声泄漏。声偶极管17上的声学网布一般设置在第一声孔171和第二声孔172上,配合调整第一声孔171和第二声孔172的网布的阻尼值能够使装置的低频声音的截止频率向低音移动,起到增强低音的作用。
优选的,第一声孔171和第二声孔172与其相附着的声学网布形成的声阻抗小于或等于9*10 7Pa·s/m 3
与现有技术相比,本发明通过在出声孔11与声源之间设置第一音腔15,反相声孔12与声源的后侧之间设置第二音腔16,并且第一音腔15与第二音腔16通过声偶极管17连通,使幅值相同相位相反的声音在声学装置内部发生耦合,通过调整偶极管尺寸以及设置在偶极管上的声阻抗,起到调整声耦合大小的目的,从而有效抑制声泄漏。
上述仅以实施例来进一步说明本发明的技术内容,以便于读者更容易理解,但不代表本发明的实施方式仅限于此,任何依本发明所做的技术延伸或再创造,均受本发明的保护。本发明的保护范围以权利要求书为准。

Claims (19)

  1. 一种声学装置,包括壳体,设置于壳体内的声源,其特征在于,所述壳体位于不同的表面设置有出声孔及反相声孔;所述出声孔与反相声孔所发出的声音相位相反且幅度相同;所述声源的前端与出声孔之间形成有第一音腔,所述声源的后端与反相声孔之间形成有第二音腔;所述第一音腔与第二音腔之间通过设有的声偶极管连通。
  2. 根据权利要求1所述的一种声学装置,其特征在于,所述音源可相对于本身的前侧和后侧辐射声音信号。
  3. 根据权利要求1所述的一种声学装置,其特征在于,在标准ITU-T P.57中的耳道入口处EEP为原点建立空间坐标系;所述EEP为原点O,垂直于耳朵向外为X轴的正半轴,垂直于耳朵向前为Y轴的正半轴,竖直向上为Z轴的正半轴;所述声学装置佩戴时,所述出声孔位于坐标系中的(0mm,-12mm.2,-5.2mm)、(15.3mm,3.2mm,13.3mm)及(3mm,10mm,-10mm)的区域内,所述反相声孔位于坐标系中的(5mm,-22mm,-3.2mm)、(27.3mm,15mm,18mm)及(5mm,-15mm,12mm)的区域内。
  4. 根据权利要求1所述的一种声学装置,其特征在于,在标准ITU-T P.57的ERP为原点建立的空间坐标系;所述ERP为坐标原点O,垂直于耳朵向外为X轴的正半轴,垂直于耳朵向前为Y轴的正半轴,竖直向上为Z轴的正半轴;所述声学装置佩戴时,所述出声孔位于坐标系中的(0mm,-12.2mm,-5.2mm)、(15.3mm,3.2mm,13.3mm)及(3mm,10mm,-10mm)的区域内,所述反相声孔位于坐标系中的(5mm,-22mm,-3.2mm)、(27.3mm,15mm,18mm)及(5mm,-15mm,12mm)的区域内。
  5. 根据权利要求1所述的一种声学装置,其特征在于,所述出声孔的出音方向与反相声孔的出音方向之间形成设定角度;所述设定角度为90°至180°。
  6. 根据权利要求1所述的一种声学装置,其特征在于,所述第一音腔和第二音腔的容积大于0.8cm 3,并且第一音腔的容积是第二音腔的0.4-6倍。
  7. 根据权利要求1所述的一种声学装置,其特征在于,所述出声孔、反相声孔均设置有声学网布;所述出声孔、反相声孔与相应的声学网布的声阻抗小于或等于9*10 7Pa·s/m 3
  8. 根据权利要求1所述的一种声学装置,其特征在于,所述出声孔的截面面积为声源设有的振动膜面积的20%至35%;所述反相声孔的截面面积为声源设 有的振动膜面积的15%至20%。
  9. 根据权利要求1所述的一种声学装置,其特征在于,所述出声孔及反相声孔面积大于等于4mm 2,且出声孔是反相声孔的0.4-2.5倍。
  10. 根据权利要求1所述的一种声学装置,其特征在于,所述声偶极管的横截面积大于或等于2mm 2;所述声偶极管的长度大于或等于2mm,并且小于或等于25mm。
  11. 根据权利要求1所述的一种声学装置,其特征在于,所述声偶极管位于第一音腔或第二音腔的连通处设置有声学网布;所述声偶极管与相应的声学网布构成的声阻抗小于或等于9*10 7Pa·s/m 3
  12. 根据权利要求1所述的一种声学装置,其特征在于,所述声源为单振膜扬声器;所述单振膜扬声器设有第一振动膜;所述第一振动膜与壳体内壁之间形成所述的第一音腔;所述单振膜扬声器后侧与壳体内壁之间形成第二音腔。
  13. 根据权利要求1所述的一种声学装置,其特征在于,所述声源为双振膜扬声器;所述双振膜扬声器设有第一振膜与第二振膜;所述第一振动膜与壳体内壁之间形成所述的第一音腔;所述第二振膜与壳体内壁之间形成第二音腔。
  14. 根据权利要求1所述的一种声学装置,其特征在于,所述声源包括单振膜扬声器与被动膜;所述单振膜扬声器设有第一振膜;所述第一振动膜与壳体内壁之间形成所述的第一音腔;所述被动膜与壳体内壁之间形成所述的第二音腔。
  15. 根据权利要求14所述的一种声学装置,其特征在于,所述被动膜与单振膜扬声器后侧形成第一密闭音腔;所述第一密闭音腔的容积小于18cm 3
  16. 根据权利要求1所述的一种声学装置,其特征在于,所述声源为扬声器模组;所述扬声器模组包括至少一对单振膜扬声器;所述单振膜扬声器相背设置;所述单振膜扬声器设有第一振动膜;其中一个所述单振膜扬声器的第一振动膜与壳体内壁之间形成所述的第一音腔,另一所述单振膜扬声器的第一振动膜与壳体内壁之间形成所述的第二音腔。
  17. 根据权利要求16所述的一种声学装置,其特征在于,一对所述单振膜扬声器的后侧之间形成有第二密闭音腔;所述第二密闭音腔的容积小于18cm 3
  18. 根据权利要求1所述的一种声学装置,其特征在于,所述声源设有振动膜;所述声偶极管的两端中心与振动膜的距离不超过25mm。
  19. 根据权利要求1所述的一种声学装置,其特征在于,所述声偶极管的两端中心与出声孔、反相声孔的中心距离不超过30mm。
PCT/CN2022/126079 2022-10-09 2022-10-19 一种声学装置 WO2024077647A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211225706.9A CN115379363A (zh) 2022-10-09 2022-10-09 一种声学装置
CN202211225706.9 2022-10-09

Publications (1)

Publication Number Publication Date
WO2024077647A1 true WO2024077647A1 (zh) 2024-04-18

Family

ID=84073368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126079 WO2024077647A1 (zh) 2022-10-09 2022-10-19 一种声学装置

Country Status (2)

Country Link
CN (1) CN115379363A (zh)
WO (1) WO2024077647A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121489A1 (ja) * 2012-02-16 2013-08-22 Necカシオモバイルコミュニケーションズ株式会社 電気音響変換器及び電子機器
CN103297904A (zh) * 2013-05-18 2013-09-11 歌尔声学股份有限公司 一种双振膜扬声器模组
CN203859862U (zh) * 2014-05-12 2014-10-01 全艺电子(昆山)有限公司 带被动膜的微型扬声器音箱
CN112770232A (zh) * 2021-01-29 2021-05-07 苏州智集芯科技有限公司 一种微型扬声器
CN113316061A (zh) * 2021-02-24 2021-08-27 深圳市大十科技有限公司 一种防止声音泄露的音频装置
CN113316054A (zh) * 2021-02-03 2021-08-27 深圳市大十科技有限公司 一种声音私密保护装置
CN113556655A (zh) * 2021-07-07 2021-10-26 歌尔股份有限公司 智能头戴设备
CN216700051U (zh) * 2022-01-11 2022-06-07 Oppo广东移动通信有限公司 电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121489A1 (ja) * 2012-02-16 2013-08-22 Necカシオモバイルコミュニケーションズ株式会社 電気音響変換器及び電子機器
CN103297904A (zh) * 2013-05-18 2013-09-11 歌尔声学股份有限公司 一种双振膜扬声器模组
CN203859862U (zh) * 2014-05-12 2014-10-01 全艺电子(昆山)有限公司 带被动膜的微型扬声器音箱
CN112770232A (zh) * 2021-01-29 2021-05-07 苏州智集芯科技有限公司 一种微型扬声器
CN113316054A (zh) * 2021-02-03 2021-08-27 深圳市大十科技有限公司 一种声音私密保护装置
CN113316061A (zh) * 2021-02-24 2021-08-27 深圳市大十科技有限公司 一种防止声音泄露的音频装置
CN113556655A (zh) * 2021-07-07 2021-10-26 歌尔股份有限公司 智能头戴设备
CN216700051U (zh) * 2022-01-11 2022-06-07 Oppo广东移动通信有限公司 电子设备

Also Published As

Publication number Publication date
CN115379363A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
US9654865B2 (en) Earphone
US8300871B2 (en) Earphone for wideband communication
US3393764A (en) Loudspeaker systems
CN111918167B (zh) 智能穿戴式眼镜
JP5002787B2 (ja) スピーカ装置、音源シミュレーションシステム、およびエコーキャンセルシステム
US9613614B2 (en) Noise-reducing headphone
US11706552B2 (en) Open audio device
WO2020228472A1 (zh) 扬声器及终端设备
WO2022227629A1 (zh) 入耳式耳机
WO2022143209A1 (zh) 发声单体和耳机
CN103313162B (zh) 一种双喇叭耳机
CN113163297B (zh) 音频装置以及智能头戴设备
WO2021057891A1 (zh) 一种耳机
CN212586656U (zh) 一种带有喇叭支架的眼镜腿和音频眼镜
WO2024077647A1 (zh) 一种声学装置
WO2023030038A1 (zh) 一种喇叭模组和头戴设备
WO2023051523A1 (zh) 声音输出装置
CN219041969U (zh) 一种声学装置
TWM625261U (zh) 反饋主動降噪式的聲腔模組
CN214507328U (zh) 扬声器组件和头戴式设备
CN207968806U (zh) 一种高保真的耳机喇叭
WO2020156137A1 (zh) 耳机结构及终端
CN220342423U (zh) 一种低频声压级增强音箱及其音箱箱体
CN217406708U (zh) 一种后挂开放式耳机音腔
WO2005079045A1 (en) Electro-acoustic transducer for a portable communication device