WO2024077450A1 - 储能设备及储能系统 - Google Patents

储能设备及储能系统 Download PDF

Info

Publication number
WO2024077450A1
WO2024077450A1 PCT/CN2022/124427 CN2022124427W WO2024077450A1 WO 2024077450 A1 WO2024077450 A1 WO 2024077450A1 CN 2022124427 W CN2022124427 W CN 2022124427W WO 2024077450 A1 WO2024077450 A1 WO 2024077450A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
wall portion
storage device
cabinet
pressure relief
Prior art date
Application number
PCT/CN2022/124427
Other languages
English (en)
French (fr)
Inventor
郭勇
王增忠
彭浩然
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/124427 priority Critical patent/WO2024077450A1/zh
Priority to CN202280089818.8A priority patent/CN118715665A/zh
Publication of WO2024077450A1 publication Critical patent/WO2024077450A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases

Definitions

  • the present application relates to the field of energy storage technology, and more specifically, to an energy storage device and an energy storage system.
  • the embodiments of the present application provide an energy storage device and an energy storage system, which can effectively improve the safety of the energy storage device.
  • an embodiment of the present application provides an energy storage device, comprising a cabinet, a battery and a gas collecting bin; the cabinet has a first wall portion; the battery is accommodated in the cabinet; the gas collecting bin is arranged on the first wall portion, and the gas collecting bin is located on the outside of the cabinet, and a accommodating space is formed inside the gas collecting bin; wherein an exhaust port connected to the accommodating space is arranged on the first wall portion, and the accommodating space is used to accommodate emissions released by the battery.
  • the energy storage device adopting this structure can, on the one hand, reduce the phenomenon of emissions released by the battery being discharged into the external environment, which is beneficial to reducing pollution to the environment.
  • it can facilitate the subsequent centralized treatment of emissions, so as to reduce the phenomenon of imperfect treatment of emissions in the cabinet of the energy storage device, and can reduce the risk of fire or explosion caused by the accumulation of emissions in the cabinet, which is beneficial to improving the safety of the energy storage device.
  • an opening communicating with the accommodating space is formed on one side of the gas collecting bin, and the first wall portion closes the opening.
  • an opening is provided on one side of the gas collecting bin, and the first wall portion is capable of closing the opening, that is, the gas collecting bin is provided as a structure with one side open, and the gas collecting bin cover is closed on the first wall portion so that the gas collecting bin is installed on the first wall portion, thereby enabling the exhaust port on the first wall portion to be connected to the accommodating space of the gas collecting bin.
  • This structure is simple and easy to manufacture and assemble.
  • the energy storage device further includes a first seal; the first seal is disposed between the gas collecting bin and the first wall portion, and the first seal is disposed along the circumference of the opening, and the first seal is used to seal the gas collecting bin and the first wall portion.
  • a first seal is provided between the gas collecting bin and the first wall portion, and the first seal is provided as an annular structure extending circumferentially along the opening of the gas collecting bin, so that the first seal can seal the gap between the gas collecting bin and the first wall portion, so as to reduce the leakage of emissions in the accommodating space from the gap between the gas collecting bin and the first wall portion, thereby facilitating the improvement of the collection effect of the gas collecting bin on emissions released by the pressure relief mechanism of the battery.
  • the width of the first sealing member is D 1 , satisfying D 1 ⁇ 5 mm.
  • the first seal with such a structure can facilitate the connection of the gas collecting bin to the first wall portion through the first seal, for example, drilling holes on the first seal for bolt connection, etc., to reduce the risk of sealing failure of the first seal.
  • the first seal using this structure can effectively ensure the sealing effect of the first seal on the gas collecting bin and the first wall, so as to further improve the sealing quality between the gas collecting bin and the first wall.
  • the battery has a pressure relief mechanism, which is arranged opposite to the exhaust port and is configured to release the internal pressure of the battery cell; the exhaust port is used to connect the accommodating space and the pressure relief mechanism, and the accommodating space is used to accommodate the emissions released by the pressure relief mechanism.
  • the battery is provided with a pressure relief mechanism for releasing the internal pressure of the battery cell.
  • the pressure relief mechanism By arranging the pressure relief mechanism relative to the exhaust port, the emissions released by the pressure relief mechanism can be directly discharged into the accommodation space of the gas collecting bin through the exhaust port, so as to reduce the accumulation of emissions released by the pressure relief mechanism of the battery in the cabinet, thereby helping to reduce the risk of fire or explosion caused by the accumulation of emissions in the cabinet, so as to improve the safety of the energy storage equipment.
  • a projection of the pressure relief mechanism on the first wall portion is located inside the exhaust port.
  • the energy storage device adopting this structure can effectively ensure that the emissions released by the pressure relief mechanism directly enter the storage space of the gas collecting bin through the exhaust port, so as to reduce the phenomenon that the pressure relief mechanism is blocked by the first wall portion when releasing the emissions.
  • the battery has a first side wall, the first side wall is arranged opposite to the first wall portion, and the pressure relief mechanism is arranged on the first side wall.
  • the battery is arranged on a first side wall facing the first wall portion in the thickness direction of the first wall portion.
  • the pressure relief mechanism By arranging the pressure relief mechanism on the first side wall, it is convenient to arrange the pressure relief mechanism as a structure arranged opposite to the exhaust port on the first wall portion. This structure is simple and easy to assemble.
  • the energy storage device further includes a second seal; the second seal is disposed between the first side wall and the first wall portion, and the second seal is disposed along the circumference of the exhaust port, and the second seal is used to seal the first side wall and the first wall portion.
  • a second seal is provided between the first side wall of the battery on which a pressure relief mechanism is installed and the first wall portion, and the second seal is an annular structure extending circumferentially along the exhaust port, so that the second seal can seal the gap between the first wall portion and the first side wall of the battery to alleviate the phenomenon that emissions released by the pressure relief mechanism leak from the gap between the first wall portion and the first side wall into the cabinet, thereby reducing the fire and explosion caused by the accumulation of emissions in the cabinet, thereby improving the safety of the energy storage device.
  • the second seal surrounds the outside of the pressure relief mechanism.
  • the second seal is arranged around the outside of the pressure relief mechanism so that the second seal can effectively separate the pressure relief mechanism from the space in the cabinet, thereby reducing the risk of emissions released by the pressure relief mechanism entering the cabinet.
  • the width of the second sealing member is D 2 , satisfying D 2 ⁇ 5 mm.
  • the width of the second seal is set to be greater than or equal to 5 mm, that is, the distance between the inner edge and the outer edge of the annular structure of the second seal is greater than or equal to 5 mm, the second seal using such a structure can reduce the risk of sealing failure of the second seal.
  • the second seal using this structure can effectively ensure the sealing effect of the second seal on the first wall portion and the first side wall of the battery, so as to further improve the sealing quality between the first wall portion and the first side wall of the battery.
  • the energy storage device includes a plurality of batteries, and the plurality of batteries are arranged along a first direction, and the first direction is perpendicular to the thickness direction of the first wall portion; the first wall portion is provided with a plurality of exhaust ports arranged along the first direction, and each exhaust port is provided corresponding to a pressure relief mechanism.
  • the energy storage device is provided with a plurality of batteries, and the pressure relief mechanism of each battery is provided with a corresponding exhaust port, so that the pressure relief mechanisms of each battery do not affect each other when releasing emissions.
  • This structure can improve the storage capacity of the energy storage device while ensuring the safety of the use of the energy storage device.
  • the gas collecting bin is provided with a gas outlet communicating with the accommodation space, and the gas outlet is configured to discharge the exhaust in the accommodation space.
  • the gas collecting bin is also provided with an outlet for discharging the emissions in the accommodating space, which can, on the one hand, alleviate the phenomenon of increased pressure caused by excessive accumulation of emissions in the accommodating space, and on the other hand, facilitate the unified treatment of the emissions in the accommodating space of the gas collecting bin after being discharged.
  • the energy storage device further includes a pressure relief member; the pressure relief member is disposed on the first wall portion, and the pressure relief member is configured to release the exhaust in the cabinet into the accommodation space.
  • a pressure relief component is provided on the first wall of the cabinet so that the pressure relief component can release the internal pressure of the cabinet.
  • the energy storage device with this structure can alleviate the phenomenon of sudden increase in internal pressure of the cabinet due to accumulation of emissions in the cabinet, thereby reducing the risk of explosion of the cabinet.
  • the energy storage device also includes an alarm device; the alarm device is disposed in the cabinet, and the alarm device is configured to detect the temperature and/or smoke concentration inside the cabinet, and alarm when the temperature and/or smoke concentration inside the cabinet reaches a threshold.
  • an alarm device is also provided in the cabinet, which can detect the temperature and/or smoke concentration in the cabinet and sound an alarm when the temperature and/or smoke concentration in the cabinet reaches a threshold value, thereby reminding the staff to take timely measures to reduce the safety hazards caused by the energy storage equipment.
  • an embodiment of the present application further provides an energy storage system, comprising a plurality of the above-mentioned energy storage devices.
  • the energy storage system further includes an exhaust pipe and a processing device; the exhaust pipe is connected to the storage spaces of multiple energy storage devices; the processing device is connected to the exhaust pipe, the exhaust pipe is used to transport the emissions in the storage space to the processing device, and the processing device is configured to process the emissions transported by the exhaust pipe.
  • the energy storage system is also provided with an exhaust pipe connected to the accommodating space of the gas collecting bins of the multiple energy storage devices, so that the emissions generated by the batteries of the multiple energy storage devices can be transported to the processing equipment through the exhaust pipe for centralized and unified processing, so as to reduce the phenomenon of imperfect processing of emissions in the cabinet of the energy storage device, which is beneficial to improving the safety of the use of the energy storage equipment and can reduce the later use cost of the energy storage system.
  • FIG1 is a schematic diagram of the structure of an energy storage device provided in some embodiments of the present application.
  • FIG2 is an exploded view of the structure of an energy storage device provided in some embodiments of the present application.
  • FIG3 is a schematic diagram of the structure of a cabinet of an energy storage device provided in some embodiments of the present application.
  • FIG4 is a schematic diagram of the structure of a gas collection bin of an energy storage device provided in some embodiments of the present application.
  • FIG5 is a schematic structural diagram of a first sealing member of an energy storage device provided in some embodiments of the present application.
  • FIG6 is a schematic diagram of the connection between a battery and a second sealing member of an energy storage device provided in some embodiments of the present application;
  • FIG7 is a schematic structural diagram of a second sealing member of an energy storage device provided in some embodiments of the present application.
  • FIG8 is a schematic diagram of the connection between the battery and the cabinet of the energy storage device provided in some embodiments of the present application.
  • FIG9 is a top view of a battery of an energy storage device provided in some embodiments of the present application.
  • FIG10 is a front view of a gas collection bin of an energy storage device provided in some embodiments of the present application.
  • FIG11 is a top view of a gas collection bin of an energy storage device provided in some embodiments of the present application.
  • FIG. 12 is a schematic diagram of the structure of an energy storage system provided in some embodiments of the present application.
  • Icons 1000-energy storage system; 100-energy storage equipment; 10-cabinet; 11-first wall; 111-exhaust port; 12-mounting frame; 20-battery; 21-pressure relief mechanism; 22-first side wall; 30-gas collecting chamber; 31-accommodating space; 32-opening; 33-flange; 34-air outlet; 40-first sealing member; 50-second sealing member; 60-pressure relief member; 70-alarm device; 71-first detection member; 72-second detection member; 200-exhaust pipe; 300-processing equipment; X-thickness direction of the first wall; Y-first direction; Z-second direction.
  • the terms “installed”, “connected”, “connected”, and “attached” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this application generally indicates that the associated objects before and after are in an "or" relationship.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in the present application may include a battery module or a battery pack.
  • the battery generally includes a box for encapsulating one or more battery cells or multiple battery modules. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries or magnesium-ion batteries, etc., and the embodiments of the present application do not limit this.
  • Battery cells may be cylindrical, flat, rectangular or other shapes, etc., and the embodiments of the present application do not limit this. Battery cells are generally divided into three types according to the packaging method: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application do not limit this.
  • the batteries inside the energy storage devices are usually provided with a pressure relief valve, which is configured to release the internal pressure of the battery when the temperature or pressure inside the battery reaches a threshold value, so as to reduce the risk of explosion of the battery due to thermal runaway during use.
  • thermal runaway often occurs in the batteries of the energy storage devices due to abnormal reasons such as weather, battery aging, overcharging, etc., and the thermal runaway gas discharged by the battery can easily cause safety hazards such as fire and explosion.
  • an ignition device is usually provided in the cabinet of the energy storage device, and each ignition device is provided corresponding to a battery.
  • the ignition device By connecting the ignition device with the pressure relief valve of the battery, the ignition device can ignite the smoke released by the pressure relief valve and then burn it, so as to reduce the risk of fire and explosion caused by the smoke released by the pressure relief valve accumulating in the cabinet.
  • this type of energy storage structure has a low oxygen content in the cabinet, which makes it very easy for the flue gas released by the pressure relief valve to be imperfectly burned, and the combustion space of the flue gas is limited, which means that the energy storage device still has the risk of fire and explosion caused by the accumulation of flue gas in the cabinet.
  • the ignition device processes the flue gas released by the pressure relief valve, toxic and harmful gases will still exist. If the gas is directly discharged into the external environment, it is very easy to pollute the environment, which is not conducive to the promotion and use of energy storage equipment.
  • the inventor has designed an energy storage device after in-depth research, and the energy storage device includes a cabinet, a battery and a gas collecting bin.
  • the cabinet has a first wall portion.
  • the battery is accommodated in the cabinet.
  • the gas collecting bin is arranged on the first wall portion, and the gas collecting bin is located on the outside of the cabinet, and a accommodating space is formed inside the gas collecting bin.
  • An exhaust port connected to the accommodating space is arranged on the first wall portion, and the accommodating space is used to accommodate the emissions released by the battery.
  • a gas collecting bin is arranged on the side of the first wall portion facing away from the interior of the cabinet, and an exhaust port connected to the storage space of the gas collecting bin is arranged on the first wall portion, so that emissions released by the battery during thermal runaway can enter the storage space of the gas collecting bin through the exhaust port, so that the gas collecting bin can collect and store emissions released by the battery when an abnormality occurs, which is convenient for centralized treatment of emissions released by the battery.
  • Energy storage devices with this structure can, on the one hand, reduce the phenomenon of emissions released by the battery being discharged into the external environment, which is beneficial to reducing pollution to the environment, and on the other hand, can facilitate subsequent centralized treatment of emissions, so as to reduce the phenomenon of imperfect treatment of emissions in the cabinet of the energy storage device, and can reduce the risk of fire or explosion caused by accumulation of emissions in the cabinet, which is beneficial to improving the safety of the energy storage device.
  • the embodiment of the present application provides an energy storage device, which can improve the risk of existing energy storage devices that are very likely to explode or burst when the battery has thermal runaway, thereby causing safety hazards such as large-scale fire and explosion, and is very likely to pollute the external environment, which is not conducive to promotion and use.
  • the specific structure of the energy storage device is described in detail below with reference to the accompanying drawings.
  • Figure 1 is a schematic diagram of the structure of an energy storage device 100 provided in some embodiments of the present application
  • Figure 2 is an exploded diagram of the structure of an energy storage device 100 provided in some embodiments of the present application
  • Figure 3 is a schematic diagram of the structure of a cabinet 10 of an energy storage device 100 provided in some embodiments of the present application
  • Figure 4 is a schematic diagram of the structure of a gas collection bin 30 of an energy storage device 100 provided in some embodiments of the present application.
  • the present application provides an energy storage device 100, which includes a cabinet 10, a battery 20, and a gas collection bin 30.
  • the cabinet 10 has a first wall portion 11.
  • the battery 20 is accommodated in the cabinet 10.
  • the gas collection bin 30 is arranged on the first wall portion 11, and the gas collection bin 30 is located on the outside of the cabinet 10, and a receiving space 31 is formed inside the gas collection bin 30.
  • an exhaust port 111 connected to the receiving space 31 is arranged on the first wall portion 11, and the receiving space 31 is used to receive the emissions released by the battery 20.
  • the cabinet 10 is surrounded by a plurality of side walls to form an assembly space for assembling the battery 20 inside the cabinet 10 , and the first wall portion 11 is one of the plurality of side walls of the cabinet 10 .
  • the cabinet 10 and the battery 20 contained in the cabinet 10 may have various shapes, such as a rectangular parallelepiped structure, a triangular prism structure, or a cylindrical structure, etc.
  • a rectangular parallelepiped structure such as a rectangular parallelepiped structure, a triangular prism structure, or a cylindrical structure, etc.
  • the cabinet 10 and the battery 20 are both rectangular parallelepiped structures.
  • the gas collecting bin 30 is arranged on the first wall portion 11, and the gas collecting bin 30 is located on the outside of the cabinet 10, that is, the gas collecting bin 30 is arranged on the side of the first wall portion 11 away from the inside of the cabinet 10.
  • This structure is convenient for designing and assembling the gas collecting bin 30, and gas collecting bins 30 of different sizes can be arranged according to actual needs. In addition, it is convenient to export the emissions contained in the gas collecting bin 30 for unified processing.
  • the gas collecting bin 30 may be arranged in various structures on the first wall portion 11.
  • the gas collecting bin 30 may be an integral structure with the first wall portion 11, or a split structure.
  • the gas collecting bin 30 and the first wall portion 11 may be made by casting, stamping and other processes; when the gas collecting bin 30 and the first wall portion 11 are a split structure, the gas collecting bin 30 may be connected to the first wall portion 11 by welding, bonding or bolting.
  • the gas collecting bin 30 is screwed to the first wall portion 11 by bolts.
  • an exhaust port 111 connected to the storage space 31 is provided on the first wall portion 11, that is, the exhaust port 111 provided on the first wall portion 11 can connect the storage space 31 of the gas collecting bin 30 and the interior of the cabinet 10, so that the emissions released by the battery 20 during thermal runaway can enter the storage space 31 of the gas collecting bin 30 through the exhaust port 111.
  • the emissions released by the battery 20 during thermal runaway can enter the storage space 31 of the gas collecting bin 30 through the exhaust port 111, so that the gas collecting bin 30 can collect and contain the emissions released by the battery 20 when an abnormality occurs, which is convenient for centralized treatment of the emissions released by the battery 20.
  • the energy storage device 100 adopting such a structure can, on the one hand, reduce the phenomenon of emissions released by the battery 20 being discharged into the external environment, which is beneficial to reducing pollution to the environment.
  • it can facilitate subsequent centralized treatment of emissions, so as to reduce the phenomenon of imperfect treatment of emissions in the cabinet 10 of the energy storage device 100, and can reduce the risk of fire or explosion caused by the accumulation of emissions in the cabinet 10, thereby helping to improve the safety of the energy storage device 100.
  • an opening 32 communicating with the accommodating space 31 is formed on one side of the gas collecting bin 30 , and the first wall portion 11 closes the opening 32 .
  • An opening 32 communicating with the accommodating space 31 is formed on one side of the gas collecting bin 30 , and the first wall portion 11 is closed, that is, the gas collecting bin 30 is configured as a structure with one side open, and the gas collecting bin 30 is covered on the first wall portion 11 .
  • a flange portion 33 is formed on the side of the air collecting bin 30 facing the first wall portion 11, and the flange portion 33 extends along the circumference of the opening 32 and is arranged around the opening 32.
  • the flange portion 33 is used to be connected to the first wall portion 11 to realize the connection of the air collecting bin 30 to the first wall portion 11.
  • the gas collecting chamber 30 may have various structures, such as a rectangular parallelepiped structure, a triangular prism structure, a hexagonal prism structure, etc.
  • the gas collecting chamber 30 is a rectangular parallelepiped structure with an opening 32 formed on one side.
  • the gas collecting bin 30 can be installed on the first wall portion 11, so that the exhaust port 111 on the first wall portion 11 can be connected to the accommodating space 31 of the gas collecting bin 30.
  • This structure is simple and easy to manufacture and assemble.
  • FIG. 2 is a schematic diagram of the structure of the first seal 40 of the energy storage device 100 provided in some embodiments of the present application.
  • the energy storage device 100 also includes a first seal 40.
  • the first seal 40 is disposed between the gas collection bin 30 and the first wall portion 11, and the first seal 40 is disposed along the circumference of the opening 32, and the first seal 40 is used to seal the gas collection bin 30 and the first wall portion 11.
  • the first seal 40 is arranged along the circumference of the opening 32, that is, the first seal 40 is an annular structure extending along the circumference of the opening 32.
  • the first seal 40 is arranged between the first wall portion 11 and the flange portion 33 of the gas collecting bin 30 to seal the gap between the gas collecting bin 30 and the first wall portion 11.
  • the opening 32 is rectangular, and correspondingly, the first sealing member 40 is a rectangular annular structure.
  • the first seal 40 may be made of a variety of materials, such as rubber, silicone, plastic or foam, etc.
  • the first seal 40 is made of foam, and the first seal 40 is arranged in a compressed state between the first wall portion 11 and the flange portion 33 of the gas collecting bin 30, and the compression ratio of the first seal 40 before and after compression is 40%-60%. This structure is conducive to improving the sealing effect of the first seal 40 on the gap between the gas collecting bin 30 and the first wall portion 11.
  • the first seal 40 By setting a first seal 40 between the gas collecting bin 30 and the first wall portion 11, and setting the first seal 40 as an annular structure extending circumferentially along the opening 32 of the gas collecting bin 30, the first seal 40 can seal the gap between the gas collecting bin 30 and the first wall portion 11, so as to reduce the leakage of emissions in the accommodating space 31 from the gap between the gas collecting bin 30 and the first wall portion 11, thereby facilitating improving the collection effect of the gas collecting bin 30 on emissions released by the pressure relief mechanism 21 of the battery 20.
  • the width of the first sealing member 40 is D 1 , satisfying D 1 ⁇ 5 mm.
  • the width D1 of the first sealing member 40 is the distance between the inner edge and the outer edge of the first sealing member 40 of the annular structure.
  • the first seal 40 with such a structure can facilitate the gas collection bin 30 to be connected to the first wall portion 11 through the first seal 40, for example, drilling holes in the first seal 40 for bolt connection, etc., so as to reduce the risk of sealing failure of the first seal 40.
  • the width of the first seal 40 is less than 5 mm, it is very easy to cause the width of the first seal 40 at the position where the bolts are set to be too small, so that the sealing failure phenomenon is very easy to occur.
  • D 1 ⁇ 8 mm D 1 ⁇ 8 mm.
  • the width D1 of the first sealing member 40 may be 8 mm, 8.5 mm, 9 mm, 10 mm, 11 mm, or 15 mm.
  • the width of the first seal 40 is less than 8 mm, the sealing effect of the first seal 40 is poor, and the gap between the gas collecting bin 30 and the first wall portion 11 cannot be effectively sealed. Therefore, by further setting the width of the first seal 40 to be greater than or equal to 8 mm, the first seal 40 with such a structure can effectively ensure the sealing effect of the first seal 40 on the gas collecting bin 30 and the first wall portion 11, so as to further improve the sealing quality between the gas collecting bin 30 and the first wall portion 11.
  • the battery 20 has a pressure relief mechanism 21, which is arranged opposite to the exhaust port 111, and is configured to release the internal pressure of the battery 20.
  • the exhaust port 111 is used to connect the accommodating space 31 and the pressure relief mechanism 21, and the accommodating space 31 is used to accommodate the discharge released by the pressure relief mechanism 21.
  • the pressure relief mechanism 21 is arranged opposite to the exhaust port 111 , that is, in the thickness direction X of the first wall portion, the pressure relief mechanism 21 is arranged facing the first wall portion 11 , and the exhaust port 111 covers at least a portion of the pressure relief mechanism 21 .
  • the pressure relief mechanism 21 is used to release the pressure inside the battery 20 when the internal pressure or temperature of the battery 20 reaches a predetermined value.
  • the pressure relief mechanism 21 can be a component such as an explosion-proof valve, an explosion-proof disk, a gas valve, a pressure relief valve or a safety valve.
  • the battery 20 is provided with a pressure relief mechanism 21 for releasing the internal pressure of the battery 20 single cell.
  • the pressure relief mechanism 21 By arranging the pressure relief mechanism 21 relative to the exhaust port 111, the emissions released by the pressure relief mechanism 21 can be directly discharged into the accommodating space 31 of the gas collecting bin 30 through the exhaust port 111, so as to reduce the accumulation of emissions released by the pressure relief mechanism 21 of the battery 20 in the cabinet 10, thereby helping to reduce the risk of fire or explosion caused by the accumulation of emissions in the cabinet 10, so as to improve the safety of the energy storage device 100.
  • the projection of the pressure relief mechanism 21 on the first wall portion 11 is located inside the exhaust port 111 .
  • the projection of the pressure relief mechanism 21 on the first wall portion 11 is located inside the exhaust port 111 , that is, in the thickness direction X of the first wall portion, the exhaust port 111 can cover the pressure relief mechanism 21 .
  • the energy storage device 100 By setting the projection of the pressure relief mechanism 21 in the thickness direction X of the first wall portion to fall into the exhaust port 111, the energy storage device 100 adopting this structure can effectively ensure that the emissions released by the pressure relief mechanism 21 directly enter the storage space 31 of the gas collecting bin 30 through the exhaust port 111, so as to reduce the phenomenon that the pressure relief mechanism 21 is blocked by the first wall portion 11 when releasing the emissions.
  • FIG. 2 is a schematic diagram of the connection between the battery 20 and the second sealing member 50 of the energy storage device 100 provided in some embodiments of the present application.
  • the battery 20 has a first side wall 22, which is arranged opposite to the first wall portion 11, and the pressure relief mechanism 21 is arranged on the first side wall 22.
  • the first side wall 22 is disposed opposite to the first wall portion 11 , that is, the first side wall 22 of the battery 20 is disposed facing the first wall portion 11 in the thickness direction X of the first wall portion.
  • the battery 20 is provided with a first side wall 22 facing the first wall portion 11 in the thickness direction X of the first wall portion.
  • the pressure relief mechanism 21 can be conveniently provided as a structure opposite to the exhaust port 111 on the first wall portion 11. This structure is simple and easy to assemble.
  • the energy storage device 100 may further include a second seal 50.
  • the second seal 50 is disposed between the first side wall 22 and the first wall portion 11, and the second seal 50 is disposed along the circumference of the exhaust port 111, and the second seal 50 is used to seal the first side wall 22 and the first wall portion 11.
  • the second sealing member 50 is disposed along the circumference of the exhaust port 111 , that is, the second sealing member 50 is an annular structure extending along the circumference of the exhaust port 111 .
  • the exhaust port 111 is circular, and correspondingly, the second sealing member 50 is a circular ring structure.
  • the second sealing member 50 may be made of a variety of materials, such as rubber, silicone, plastic or foam, etc.
  • the second sealing member 50 is made of foam, and the second sealing member 50 is arranged between the first wall portion 11 and the first side wall 22 in a compressed state, and the compression ratio of the second sealing member 50 before and after compression is 40%-60%. This structure is conducive to improving the sealing effect of the second sealing member 50 on the gap between the first side wall 22 and the first wall portion 11.
  • the second seal 50 can seal the gap between the first wall portion 11 and the first side wall 22 of the battery 20, so as to alleviate the phenomenon that the emissions released by the pressure relief mechanism 21 leak from the gap between the first wall portion 11 and the first side wall 22 into the cabinet 10, thereby reducing the fire and explosion caused by the accumulation of emissions in the cabinet 10, so as to improve the safety of the energy storage device 100.
  • the second seal 50 surrounds the outside of the pressure relief mechanism 21.
  • the second seal 50 is disposed around the pressure relief mechanism 21, so that the pressure relief mechanism 21 is located inside the second seal 50.
  • the second seal 50 can effectively separate the pressure relief mechanism 21 from the space inside the cabinet 10 , thereby reducing the risk of emissions released by the pressure relief mechanism 21 entering the cabinet 10 .
  • Figure 6 is a schematic diagram of the structure of the second seal 50 of the energy storage device 100 provided in some embodiments of the present application.
  • the width of the second seal 50 is D2 , satisfying D2 ⁇ 5mm .
  • the width D2 of the second sealing member 50 is the distance between the inner edge and the outer edge of the second sealing member 50 of the annular structure.
  • the second seal 50 By setting the width of the second seal 50 to be greater than or equal to 5 mm, that is, the spacing between the inner edge and the outer edge of the annular second seal 50 is greater than or equal to 5 mm, the second seal 50 with such a structure can reduce the risk of sealing failure of the second seal 50. For example, if it is necessary to punch a hole in the second seal 50 for the bolts connecting the first wall portion 11 and the first side wall 22 to pass through, when the width of the second seal 50 is less than 5 mm, it is very easy to cause the width of the second seal 50 at the position where the bolts are set to be too small, so that the sealing failure phenomenon is very easy to occur.
  • the width D2 of the second sealing member 50 may be 8 mm, 8.5 mm, 9 mm, 10 mm, 11 mm, or 15 mm.
  • the width of the second seal 50 is less than 8 mm, the sealing effect of the second seal 50 is poor, and the gap between the first wall portion 11 and the first side wall 22 cannot be effectively sealed. Therefore, by further setting the width of the second seal 50 to be greater than or equal to 8 mm, the second seal 50 with this structure can effectively ensure the sealing effect of the second seal 50 on the first wall portion 11 and the first side wall 22 of the battery 20, so as to further improve the sealing quality between the first wall portion 11 and the first side wall 22 of the battery 20.
  • FIG. 8 is a schematic diagram of the connection between the battery 20 and the cabinet 10 of the energy storage device 100 provided in some embodiments of the present application.
  • the energy storage device 100 includes a plurality of batteries 20, and the plurality of batteries 20 are arranged along a first direction Y, and the first direction Y is perpendicular to the thickness direction X of the first wall portion.
  • the first wall portion 11 is provided with a plurality of exhaust ports 111 arranged along the first direction Y, and each exhaust port 111 is provided corresponding to a pressure relief mechanism 21.
  • each exhaust port 111 is provided correspondingly to a pressure relief mechanism 21, that is, a corresponding number of exhaust ports 111 are provided on the first wall portion 11 corresponding to the number of batteries 20, and the pressure relief mechanism 21 of each battery 20 is connected to the accommodating space 31 of the gas collection bin 30 through an exhaust port 111.
  • the energy storage device 100 is provided with a second sealing member 50
  • the second sealing member 50 corresponds to the exhaust port 111 one by one
  • a second sealing member 50 is provided correspondingly to the pressure relief mechanism 21 of each battery 20.
  • the number of batteries 20 disposed in the cabinet 10 is seven.
  • the number of batteries 20 may be two, three, four, five, six, eight, etc.
  • the plurality of batteries 20 are arranged along a first direction Y.
  • the plurality of batteries 20 may be arranged in various directions.
  • the plurality of batteries 20 may also be arranged along a second direction Z.
  • a plurality of mounting frames 12 are provided in the cabinet 10, the plurality of mounting frames 12 are spaced apart along the first direction Y, and the mounting parts are connected to the inner surface wall of the cabinet 10, and the mounting frames 12 are used to install and place the batteries 20 so as to arrange the plurality of batteries 20 along the first direction Y in the cabinet 10.
  • the battery 20 may be mounted on the mounting frame 12.
  • the battery 20 may be mounted on the mounting frame 12 by bolting, clamping, bonding or welding.
  • the energy storage device 100 is provided with a plurality of batteries 20, and the pressure relief mechanism 21 of each battery 20 is correspondingly provided with an exhaust port 111, so that the pressure relief mechanism 21 of each battery 20 does not affect each other when releasing emissions.
  • This structure can improve the power storage capacity of the energy storage device 100 while ensuring the safety of the use of the energy storage device 100.
  • the gas collecting bin 30 is provided with a gas outlet 34 communicating with the accommodating space 31 , and the gas outlet 34 is configured to discharge the exhaust in the accommodating space 31 .
  • the gas outlet 34 is disposed on one side of the gas collecting bin 30 in the first direction Y.
  • the gas outlet 34 may also be disposed on one side of the gas collecting bin 30 in the second direction Z.
  • the gas collecting bin 30 is also provided with an outlet 34 for discharging the emissions in the accommodating space 31, which can alleviate the pressure increase caused by excessive accumulation of emissions in the accommodating space 31 on the one hand, and facilitate the unified treatment of the emissions in the accommodating space 31 of the gas collecting bin 30 on the other hand.
  • the energy storage device 100 may further include a pressure relief member 60 .
  • the pressure relief member 60 is disposed on the first wall portion 11 , and is configured to release the exhaust in the cabinet 10 into the accommodation space 31 .
  • the pressure relief component 60 is located in the accommodating space 31 of the gas collecting bin 30, so that the pressure relief component 60 can release the exhaust in the cabinet 10 into the accommodating space 31.
  • the pressure relief member 60 may be a component such as an explosion-proof valve, an explosion-proof disk, an air valve, a pressure relief valve or a safety valve.
  • the pressure relief member 60 can release the internal pressure of the cabinet 10.
  • the energy storage device 100 with this structure can alleviate the phenomenon of a sudden increase in the internal pressure of the cabinet 10 due to the accumulation of emissions in the cabinet 10, thereby reducing the risk of explosion of the cabinet 10.
  • the energy storage device 100 may further include an alarm device 70.
  • the alarm device 70 is disposed in the cabinet 10, and the alarm device 70 is configured to detect the temperature and/or smoke concentration inside the cabinet 10, and to alarm when the temperature and/or smoke concentration inside the cabinet 10 reaches a threshold value.
  • the alarm device 70 may include a first detection member 71, a second detection member 72 and an alarm (not shown in the figure), the first detection member 71 and the second detection member 72 are both electrically connected to the alarm, the first detection member 71 is used to detect the temperature inside the cabinet 10, and the second detection member 72 is used to detect the smoke concentration inside the cabinet 10.
  • the alarm can sound an alarm.
  • the specific structure of the alarm can refer to the relevant technology and will not be repeated here.
  • the first detection element 71 may be a thermistor sensor, a thermocouple sensor, a resistance temperature detector, etc.
  • the second detection element 72 may be an ion smoke sensor, a photoelectric smoke sensor, a gas-sensitive smoke sensor, etc.
  • An alarm device 70 is also provided in the cabinet 10.
  • the alarm device 70 can detect the temperature and/or smoke concentration in the cabinet 10 and sound an alarm when the temperature and/or smoke concentration in the cabinet 10 reaches a threshold value, thereby reminding the staff to take timely measures to reduce the safety hazards caused by the energy storage device 100.
  • FIG3 is a top view of the battery 20 of the energy storage device 100 provided in some embodiments of the present application.
  • the length of the cabinet 10 is L1
  • the length of the battery 20 is L2 , which satisfies 50% ⁇ L2 / L1 ⁇ 95 %, that is, in the thickness direction X of the first wall, the length of the battery 20 is 50% to 95% of the length of the cabinet 10, so as to reduce the interference between the battery 20 and the cabinet 10 in the thickness direction X of the first wall, thereby facilitating the assembly of the battery 20 into the cabinet 10.
  • the height of the cabinet 10 is H 1 , which satisfies 500 mm ⁇ H 1 ⁇ 3000 mm.
  • the width of the cabinet 10 is W 1
  • the width of the battery 20 is W 2 , satisfying 60% ⁇ W 2 /W 1 ⁇ 95%, that is, in the second direction Z, the width of the battery 20 is 60% to 95% of the width of the cabinet 10 , so as to reduce the interference between the battery 20 and the cabinet 10 in the first direction Y, thereby facilitating the assembly of the battery 20 into the cabinet 10 .
  • the thickness direction X of the first wall portion, the first direction Y and the second direction Z are perpendicular to each other, that is, the thickness direction X of the first wall portion is the length direction of the cabinet 10, the first direction Y is the height direction of the cabinet 10, and the second direction Z is the width direction of the cabinet 10.
  • FIG. 10 is a front view of the gas collecting bin 30 of the energy storage device 100 provided in some embodiments of the present application
  • FIG. 11 is a top view of the gas collecting bin 30 of the energy storage device 100 provided in some embodiments of the present application.
  • the height of the gas collecting bin 30 is H 2 , satisfying 400 mm ⁇ H 2 ⁇ 2900 mm.
  • the width of the gas collecting bin 30 is W 3 , satisfying 200 mm ⁇ W 3 ⁇ 1500 mm.
  • the thickness of the gas collecting bin 30 is L 3 , satisfying 50 mm ⁇ L 3 ⁇ 500 mm.
  • Figure 12 is a schematic diagram of the structure of an energy storage system 1000 provided in some embodiments of the present application.
  • the present application also provides an energy storage system 1000, comprising a plurality of the above energy storage devices 100.
  • the energy storage system 1000 is provided with three energy storage devices 100 .
  • the number of the energy storage devices 100 may also be two, four, five, six, etc.
  • the energy storage system 1000 further includes an exhaust pipe 200 and a processing device 300.
  • the exhaust pipe 200 is in communication with the accommodation spaces 31 of the plurality of energy storage devices 100.
  • the processing device 300 is in communication with the exhaust pipe 200, and the exhaust pipe 200 is used to transport the exhaust in the accommodation space 31 to the processing device 300, and the processing device 300 is configured to process the exhaust transported by the exhaust pipe 200.
  • the specific structure of the processing device 300 can be found in the related art, and will not be described in detail here.
  • the exhaust pipe 200 is connected to the processing device 300 , and the exhaust pipe 200 is connected to the gas outlet 34 of the gas collecting bin 30 of each energy storage device 100 , so that the exhaust pipe 200 is connected to the processing device 300 and the accommodating space 31 of the gas collecting bin 30 .
  • the energy storage system 1000 is also provided with an exhaust pipe 200 connected to the accommodating space 31 of the gas collecting bin 30 of the multiple energy storage devices 100, so that the emissions generated by the batteries 20 of the multiple energy storage devices 100 can be transported to the processing equipment 300 through the exhaust pipe 200 for centralized and unified processing, so as to reduce the phenomenon of imperfect processing of emissions in the cabinet 10 of the energy storage device 100, which is beneficial to improving the safety of the use of the energy storage device 100 and can reduce the later use cost of the energy storage system 1000.
  • the present application provides an energy storage device 100, which includes a cabinet 10, a plurality of batteries 20, a gas collecting bin 30, a first seal 40, a plurality of second seals 50, a pressure relief member 60 and an alarm device 70.
  • the cabinet 10 has a first wall 11.
  • the plurality of batteries 20 are all accommodated in the cabinet 10, and the plurality of batteries 20 are arranged along the first direction Y.
  • the battery 20 has a pressure relief mechanism 21, which is configured to release the internal pressure of the battery 20 monomer.
  • the battery 20 has a first side wall 22, which is arranged opposite to the first wall 11, and the pressure relief mechanism 21 is arranged on the first side wall 22.
  • the gas collecting bin 30 is arranged on the first wall 11, and the gas collecting bin 30 is located outside the cabinet 10, and a receiving space 31 is formed inside the gas collecting bin 30, and an opening 32 communicating with the receiving space 31 is formed on one side of the gas collecting bin 30, and the first wall 11 closes the opening 32.
  • the first wall portion 11 is provided with a plurality of exhaust ports 111 communicating with the accommodation space 31, and each exhaust port 111 is arranged opposite to a pressure relief mechanism 21.
  • the projection of the pressure relief mechanism 21 on the first wall portion 11 is located in the exhaust port 111, and the accommodation space 31 is used to accommodate the discharge released by the pressure relief mechanism 21.
  • the first sealing member 40 is arranged between the gas collecting bin 30 and the first wall portion 11, and the first sealing member 40 is arranged along the circumference of the opening 32, and the first sealing member 40 is used to seal the gas collecting bin 30 and the first wall portion 11.
  • the second sealing member 50 corresponds to the pressure relief mechanism 21 one by one, and the second sealing member 50 is arranged between the first side wall 22 and the first wall portion 11, and the second sealing member 50 is arranged along the circumference of the exhaust port 111, and the second sealing member 50 is used to seal the first side wall 22 and the first wall portion 11.
  • the pressure relief member 60 is arranged on the first wall portion 11, and the pressure relief member 60 is configured to release the discharge in the cabinet 10 into the accommodation space 31.
  • the alarm device 70 is disposed in the cabinet 10, and is configured to detect the temperature and/or smoke density inside the cabinet 10, and alarm when the temperature and/or smoke density inside the cabinet 10 reaches a threshold.
  • the width of the first sealing member 40 is D 1
  • the width of the second sealing member 50 is D 2 , satisfying that D 1 ⁇ 8 mm, D 2 ⁇ 8 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请提供了一种储能设备及储能系统,属于储能技术领域。其中,储能设备包括柜体、电池和集气仓。柜体具有第一壁部,电池容纳于柜体内。集气仓设置于第一壁部,且集气仓位于柜体的外侧,集气仓的内部形成有容纳空间。第一壁部上设置有与容纳空间连通的排气口,容纳空间用于容纳电池释放的排放物。采用这种结构的储能设备一方面能够减少电池释放的排放物排放至外部环境的现象,有利于降低对环境的污染,另一方面能够便于后续对排放物进行集中处理,以减少排放物在储能设备的柜体内处理不完善的现象,且能够降低排放物在柜体内堆积而引发的起火或爆炸风险,从而有利于提升储能设备的使用安全性。

Description

储能设备及储能系统 技术领域
本申请涉及储能技术领域,具体而言,涉及一种储能设备及储能系统。
背景技术
近些年,随着科技的飞跃式发展,各大基站也得到了大力推广,比如,5G基站等。其中,在基站的基础运行设备中,储能设备在用于储能和供能方面有着重要的意义,然而,储能设备在安全方面也有着较高的使用要求。但是,在储能设备的应用过程中,由于天气原因、电池老化、过度充电等异常原因常常会造成储能设备的电池出现热失控的现象,从而导致储能设备极容易发生爆燃或炸裂等风险,甚至会由此引发大面积起火的安全隐患,因此,如何提升储能设备的使用安全性,成为目前亟需解决的问题。
发明内容
本申请实施例提供一种储能设备及储能系统,能够有效提升储能设备的使用安全性。
第一方面,本申请实施例提供一种储能设备,包括柜体、电池和集气仓;柜体具有第一壁部;电池容纳于柜体内;集气仓设置于第一壁部,且集气仓位于柜体的外侧,集气仓的内部形成有容纳空间;其中,第一壁部上设置有与容纳空间连通的排气口,容纳空间用于容纳电池释放的排放物。
在上述技术方案中,通过将集气仓设置于第一壁部背离柜体内部的一侧,且在第一壁部上设置有与集气仓的容纳空间连通的排气口,使得电池在热失控时释放的排放物能够通过排气口进入至集气仓的容纳空间内,以使集气仓能够收集并容纳电池在出现异常时释放的排放物,便于对电池释放的排放物进行集中处理,采用这种结构的储能设备一方面能够减少电池释放的排放物排放至外部环境的现象,有利于降低对环境的污染,另一方面能够便于后续对排放物进行集中处理,以减少排放物在储能设备的柜体内处理不完善的现象,且能够降低排放物在柜体内堆积而引发的起火或爆炸风险,从而有利于提升储能设备的使用安全性。
在一些实施例中,集气仓的一侧形成与容纳空间连通的开口,第一壁部封闭开口。
在上述技术方案中,通过在集气仓的一侧上设置开口,且第一壁部能够封闭开口,即将集气仓设置为一侧开放的结构,且将集气仓盖合于第一壁部上,以使集气仓安装于第一壁部上,从而能够实现第一壁部上的排气口与集气仓的容纳空间连接,这种结构简单,且便于制造和装配。
在一些实施例中,储能设备还包括第一密封件;第一密封件设置于集气仓与第一壁部之间,且第一密封件沿开口的周向设置,第一密封件用于密封集气仓与第一壁部。
在上述技术方案中,通过在集气仓与第一壁部之间设置第一密封件,且将第一密封件设置为沿集气仓的开口的周向延伸的环形结构,使得第一密封件能够密封集气仓与第一壁部之间的间隙,以减少容纳空间内的排放物出现从集气仓与第一壁部之间的间隙处泄露的现象,从而有利于提升集气仓对电池的泄压机构释放的排放物的收集效果。
在一些实施例中,第一密封件的宽度为D 1,满足,D 1≥5mm。
在上述技术方案中,通过将第一密封件的宽度设置为大于或等于5mm,即将环形结构的第一密封件的内边缘与外边缘之间的间距设置为大于或等于5mm,采用这种结构的第一密封件能够便于集气仓通过第一密封件连接在第一壁部上,比如,在第一密封件上打孔进行螺栓连接等,以降低第一密封件出现密封失效的风险。
在一些实施例中,D 1≥8mm。
在上述技术方案中,通过进一步将第一密封件的宽度设置为大于或等于8mm,采用这种结构的第一密封件能够有效保证第一密封件对集气仓和第一壁部的密封效果,以进一步提升集气仓与第一壁部之间的密封质量。
在一些实施例中,电池具有泄压机构,泄压机构与排气口相对设置,泄压机构被配置为释放电池单体的内部压力;排气口用于连通容纳空间和泄压机构,容纳空间用于容纳泄压机构释放的排放物。
在上述技术方案中,电池上设置有用于释放电池单体内部压力的泄压机构,通过将泄压机构与排气口相对设置,使得泄压机构释放的排放物能够通过排气口直接排放至集气仓的容纳空间内,以减少电池的泄压机构释放的排放物在柜体内堆积的现象,从而有利于降低排放物在柜体内堆积而引发的起火或爆炸风险,以提升储能设备的使用安全性。
在一些实施例中,沿第一壁部的厚度方向,泄压机构在第一壁部上的投影位于排气口内。
在上述技术方案中,通过将泄压机构在第一壁部的厚度方向上的投影设置为落入排气口内,即排气口能够覆盖泄压机构,采用这种结构的储能设备能够有效保证泄压机构释放的排放物直接通过排气口进入至集气仓的容纳空间内,以减少泄压机构在释放排放物时受到第一壁部阻挡的现象。
在一些实施例中,电池具有第一侧壁,第一侧壁与第一壁部相对设置,泄压机构设置于第一侧壁上。
在上述技术方案中,电池在第一壁部的厚度方向上与第一壁部面向设置的第一侧壁,通过将泄压机构设置于第一侧壁上能够便于将泄压机构设置为与第一壁部上的排气口相对设置的结构,这种结构简单,且便于装配。
在一些实施例中,储能设备还包括第二密封件;第二密封件设置于第一侧壁与第一壁部之间,且第二密封件沿排气口的周向设置,第二密封件用于密封第一侧壁与第一壁部。
在上述技术方案中,通过在电池安装有泄压机构的第一侧壁与第一壁部之间设置第二密封件,且第二密封件为沿排气口的周向延伸的环形结构,使得第二密封件能够密封第一壁部和电池的第一侧壁之间的间隙,以缓解泄压机构释放的排放物从第一壁部和第一侧壁之间的间隙泄漏至柜体内的现象,从而能够减少排放物在柜体内堆积而引发的起火爆炸现象,以提升储能设备的使用安全性。
在一些实施例中,第二密封件环绕于泄压机构的外侧。
在上述技术方案中,通过将第二密封件环绕设置于泄压机构的外侧,从而使得第二密封件能够将泄压机构与柜体内的空间进行有效分隔,以降低泄压机构释放的排放物进入至柜体内的风险。
在一些实施例中,第二密封件的宽度为D 2,满足,D 2≥5mm。
在上述技术方案中,通过将第二密封件的宽度设置为大于或等于5mm,即环形结构的第二密封件的内边缘与外边缘之间的间距为大于或等于5mm,采用这种结构的第二密封件能够降低第二密封件出现密封失效的风险。
在一些实施例中,D 2≥8mm。
在上述技术方案中,通过进一步将第二密封件的宽度设置为大于或等于8mm,采用这种结构的第二密封件能够有效保证第二密封件对第一壁部和电池的第一侧壁的密封效果,以进一步提升第一壁部与电池的第一侧壁之间的密封质量。
在一些实施例中,储能设备包括多个电池,多个电池沿第一方向排布,第一方向垂直 于第一壁部的厚度方向;第一壁部设置有沿第一方向排布的多个排气口,每个排气口与一个泄压机构对应设置。
在上述技术方案中,储能设备设置有多个电池,且每个电池的泄压机构均对应设置有一个排气口,使得每个电池的泄压机构在释放排放物时相互不影响,采用这种结构在提升储能设备的储电能力的同时能够保证储能设备的使用安全。
在一些实施例中,集气仓设置有与容纳空间连通的出气口,出气口被配置为排出容纳空间内的排放物。
在上述技术方案中,集气仓还设置有用于供容纳空间内的排放物排出的出气口,从而一方面能够缓解因容纳空间内的排放物堆积过多而出现压力增加的现象,另一方面便于将集气仓的容纳空间内的排放物导出后进行统一处理。
在一些实施例中,储能设备还包括泄压件;泄压件设置于第一壁部,泄压件被配置为将柜体内的排放物释放至容纳空间内。
在上述技术方案中,通过在柜体的第一壁部上设置泄压件,使得泄压件能够对柜体的内部压力进行释放,采用这种结构的储能设备能够缓解柜体内因出现排放物堆积而导致柜体内部压力突增的现象,以降低柜体出现爆炸的风险。
在一些实施例中,储能设备还包括报警装置;报警装置设置于柜体内,报警装置被配置为检测柜体的内部的温度和/或烟雾浓度,并在柜体的内部的温度和/或烟雾浓度到达阈值时报警。
在上述技术方案中,柜体内还设置有报警装置,通过报警装置能够检测柜体内的温度和/或烟雾浓度,并在柜体内的温度和/或烟雾浓度达到阈值时进行报警,从而能够提醒工作人员进行及时处理,以降低储能设备进一步引发的安全隐患。
第二方面,本申请实施例还提供一种储能系统,包括多个上述的储能设备。
在一些实施例中,储能系统还包括排气管和处理设备;排气管与多个储能设备的容纳空间均连通;处理设备与排气管连通,排气管用于将容纳空间内的排放物输送至处理设备,且处理设备被配置为处理排气管输送的排放物。
在上述技术方案中,储能系统还设置有与多个储能设备的集气仓的容纳空间连通的排气管,使得多个储能设备的电池产生的排放物能够通过排气管输送至处理设备进行集中统一处理,以减少排放物在储能设备的柜体内处理不完善的现象,有利于提升储能设备的使用安全性,且能够降低储能系统的后期使用成本。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一些实施例提供的储能设备的结构示意图;
图2为本申请一些实施例提供的储能设备的结构爆炸图;
图3为本申请一些实施例提供的储能设备的柜体的结构示意图;
图4为本申请一些实施例提供的储能设备的集气仓的结构示意图;
图5为本申请一些实施例提供的储能设备的第一密封件的结构示意图;
图6为本申请一些实施例提供的储能设备的电池与第二密封件的连接示意图;
图7为本申请一些实施例提供的储能设备的第二密封件的结构示意图;
图8为本申请一些实施例提供的储能设备的电池与柜体的连接示意图;
图9为本申请一些实施例提供的储能设备的电池的俯视图;
图10为本申请一些实施例提供的储能设备的集气仓的正视图;
图11为本申请一些实施例提供的储能设备的集气仓的俯视图;
图12为本申请一些实施例提供的储能系统的结构示意图。
图标:1000-储能系统;100-储能设备;10-柜体;11-第一壁部;111-排气口;12-安装架;20-电池;21-泄压机构;22-第一侧壁;30-集气仓;31-容纳空间;32-开口;33-翻边部;34-出气口;40-第一密封件;50-第二密封件;60-泄压件;70-报警装置;71-第一检测件;72-第二检测件;200-排气管;300-处理设备;X-第一壁部的厚度方向;Y-第一方向;Z-第二方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模组或电池包等。电池一般包括用于封装一个或多个电池单体或多个电池模组的箱体。箱体可以避免液体或其他异物影响电 池单体的充电或放电。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
近些年,随着科技的飞跃式发展,各大基站也得到了大力推广,比如,5G基站等。其中,在基站的基础运行设备中,储能设备在用于储能和供能方面有着重要的意义,然而,储能设备在安全方面也有着较高的使用要求。
发明人发现,对于一般的储能设备而言,储能设备内部的电池上通常设置有泄压阀,泄压阀被配置为在电池内部的温度或压力达到阈值时释放电池的内部压力,以减少电池在使用过程中因热失控而出现爆炸的风险。但是,在储能设备的应用过程中,由于天气原因、电池老化、过度充电等异常原因常常会造成储能设备的电池出现热失控的现象,而电池排放的热失控气体极容易引发起火爆炸等安全隐患。为了降低储能设备发生起火爆炸的风险,在现有技术中,通常在储能设备的柜体内设置有点燃装置,且每个点燃装置与一个电池对应设置,通过将点燃装置与电池的泄压阀连通,使得点燃装置能够将泄压阀释放的烟气进行点燃后燃烧处理,以降低泄压阀释放的烟气在柜体内堆积后出现起火爆炸等风险。然而,这种结构的储能设置一方面由于柜体内的含氧量较低,从而极容易出现泄压阀释放的烟气燃烧处理不完善的现象,且烟气的燃烧空间有限,进而使得储能设备依旧存在烟气在柜体内堆积后引发的起火爆炸等风险,另一方面点燃装置在对泄压阀释放的烟气处理后依旧会存在有毒有害的气体,若气体直接排放至外部环境中,极容易对环境造成污染,不利于储能设备的推广和使用。
基于上述考虑,为了解决储能设备在使用过程中的使用安全性较低的问题,发明人经过深入研究,设计了一种储能设备,储能设备包括柜体、电池和集气仓。柜体具有第一壁部。电池容纳于柜体内。集气仓设置于第一壁部,且集气仓位于柜体的外侧,集气仓的内部形成有容纳空间。第一壁部上设置有与容纳空间连通的排气口,容纳空间用于容纳电池释放的排放物。
在这种结构的储能设备中,通过将集气仓设置于第一壁部背离柜体内部的一侧,且在第一壁部上设置有与集气仓的容纳空间连通的排气口,使得电池在热失控时释放的排放物能够通过排气口进入至集气仓的容纳空间内,以使集气仓能够收集并容纳电池在出现异常时释放的排放物,便于对电池释放的排放物进行集中处理,采用这种结构的储能设备一方面能够减少电池释放的排放物排放至外部环境的现象,有利于降低对环境的污染,另一方面能够便于后续对排放物进行集中处理,以减少排放物在储能设备的柜体内处理不完善的现象,且能够降低排放物在柜体内堆积而引发的起火或爆炸风险,从而有利于提升储能设备的使用安全性。
本申请实施例提供一种储能设备,其能够改善现有的储能设备在电池出现热失控现象时极容易发生爆燃或炸裂等风险,从而由此引发大面积起火爆炸等安全隐患,且极容易对外部环境造成污染,进而不利于推广和使用的问题,以下结合附图对储能设备的具体结构进行详细阐述。
根据本申请的一些实施例,请参照图1-图4,图1为本申请一些实施例提供的储能设备100的结构示意图,图2为本申请一些实施例提供的储能设备100的结构爆炸图,图3为本申请一些实施例提供的储能设备100的柜体10的结构示意图,图4为本申请一些实施例提供的储能设备100的集气仓30的结构示意图。本申请提供了一种储能设备100,储能设备100包括柜体10、电池20和集气仓30。柜体10具有第一壁部11。电池20容纳于柜体10内。集气仓30设置于第一壁部11,且集气仓30位于柜体10的外侧,集气仓30的内部形成有容纳空间31。其中,第一壁部11上设置有与容纳空间31连通的排气口111,容纳空间31用于容纳电池20释放的排放物。
其中,柜体10由多个侧壁围合而成,以在柜体10的内部形成用于装配电池20的装配空间,第一壁部11为柜体10的多个侧壁中的一个侧壁。
柜体10和容纳于柜体10内的电池20的形状均可以是多种,比如,长方体结构、三棱柱结构或圆柱体结构等。示例性的,在图2和图3中,柜体10和电池20均为长方体结构。
参见图1-图3,集气仓30设置于第一壁部11,且集气仓30位于柜体10的外侧,即集气仓30设置于第一壁部11背离柜体10内部的一侧,这种结构便于对集气仓30进行设计和装配,且能够根据实际需求设置不同大小的集气仓30,此外,便于将集气仓30内容纳的排放出导出进行统一处理。
可选地,集气仓30设置于第一壁部11上的结构可以是多种,比如,集气仓30可以是与第一壁部11为一体式结构,也可以是分体式结构。当集气仓30与第一壁部11为一体式结构时,集气仓30与第一壁部11可以采用铸造、冲压等工艺制成;当集气仓30与第一壁部11为分体式结构时,集气仓30可以采用焊接、粘接或螺栓螺接等方式连接于第一壁部11上。示例性的,在本申请实施例中,集气仓30通过螺栓螺接于第一壁部11上。
参见图2和图4,第一壁部11上设置有与容纳空间31连通的排气口111,即设置于第一壁部11上的排气口111能够连通集气仓30的容纳空间31和柜体10的内部,以使电池20在热失控时释放的排放物能够通过排气口111进入至集气仓30的容纳空间31内。
通过将集气仓30设置于第一壁部11背离柜体10内部的一侧,且在第一壁部11上设置有与集气仓30的容纳空间31连通的排气口111,使得电池20在热失控时释放的排放物能够通过排气口111进入至集气仓30的容纳空间31内,以使集气仓30能够收集并容纳电池20在出现异常时释放的排放物,便于对电池20释放的排放物进行集中处理,采用这种结构的储能设备100一方面能够减少电池20释放的排放物排放至外部环境的现象,有利于降低对环境的污染,另一方面能够便于后续对排放物进行集中处理,以减少排放物在储能设备100的柜体10内处理不完善的现象,且能够降低排放物在柜体10内堆积而引发的起火或爆炸风险,从而有利于提升储能设备100的使用安全性。
根据本申请的一些实施例,参见图2、图3和图4所示,集气仓30的一侧形成与容纳空间31连通的开口32,第一壁部11封闭开口32。
其中,集气仓30的一侧形成与容纳空间31连通的开口32,第一壁部11封闭开,即集气仓30设置为一侧开放的结构,且将集气仓30盖合于第一壁部11上。
示例性的,在第一壁部的厚度方向X上,集气仓30面向第一壁部11的一侧形成有翻边部33,翻边部33沿开口32的周向延伸并环绕开口32设置,翻边部33用于与第一壁部11相连,以实现集气仓30连接于第一壁部11上。
集气仓30的结构可以是多种,比如,长方体结构、三棱柱结构或六棱柱结构等。示例性的,在图4中,集气仓30为一侧形成开口32的长方体结构。
通过在集气仓30的一侧上设置开口32,且第一壁部11能够封闭开口32,以使集气仓30安装于第一壁部11上,从而能够实现第一壁部11上的排气口111与集气仓30的容纳空间31连接,这种结构简单,且便于制造和装配。
根据本申请的一些实施例,参照图2,并请进一步参照图5,图5为本申请一些实施例提供的储能设备100的第一密封件40的结构示意图。储能设备100还包括第一密封件40。第一密封件40设置于集气仓30与第一壁部11之间,且第一密封件40沿开口32的周向设置,第一密封件40用于密封集气仓30与第一壁部11。
其中,第一密封件40沿开口32的周向设置,即第一密封件40为沿开口32的周向延伸的环形结构。沿第一壁部的厚度方向X,第一密封件40设置于第一壁部11与集气仓30的翻边部33之间,以密封集气仓30与第一壁部11之间的间隙。
示例性的,开口32为长方形,对应的,第一密封件40为长方形环状结构。
第一密封件40的材质可以是多种,比如,橡胶、硅胶、塑料或泡棉等。示例性的,在本申请实施例中,第一密封件40的材质为泡棉,第一密封件40呈压缩状态设置于第一壁部11与集气仓30的翻边部33之间,且第一密封件40在压缩前和压缩后的压缩比为40%-60%,这种结构有利于提升第一密封件40对集气仓30和第一壁部11之间的间隙的密封效果。
通过在集气仓30与第一壁部11之间设置第一密封件40,且将第一密封件40设置为沿集气仓30的开口32的周向延伸的环形结构,使得第一密封件40能够密封集气仓30与第一壁部11之间的间隙,以减少容纳空间31内的排放物出现从集气仓30与第一壁部11之间的间隙处泄露的现象,从而有利于提升集气仓30对电池20的泄压机构21释放的排放物的收集效果。
根据本申请的一些实施例,参见图5所示,第一密封件40的宽度为D 1,满足,D 1≥5mm。
其中,第一密封件40的宽度D 1为环形结构的第一密封件40的内边缘与外边缘之间的间距。
通过将第一密封件40的宽度设置为大于或等于5mm,即将环形结构的第一密封件40的内边缘与外边缘之间的间距设置为大于或等于5mm,采用这种结构的第一密封件40能够便于集气仓30通过第一密封件40连接在第一壁部11上,比如,在第一密封件40上打孔进行螺栓连接等,以降低第一密封件40出现密封失效的风险。比如,由于需要在第一密封件40上打孔供连接集气仓30和第一壁部11的螺栓穿过,若第一密封件40的宽度小于5mm,则极容易造成第一密封件40在设置有螺栓的位置的宽度过小,从而极容易出现密封失效的现象。
根据本申请的一些实施例,请参见图2和图5所示,D 1≥8mm。
示例性的,第一密封件40的宽度D 1可以为8mm、8.5mm、9mm、10mm、11mm或15mm等。
当第一密封件40的宽度小于8mm时,第一密封件40的密封效果不佳,无法有效对集气仓30和第一壁部11之间的间隙进行封堵,从而通过进一步将第一密封件40的宽度设置为大于或等于8mm,采用这种结构的第一密封件40能够有效保证第一密封件40对集气仓30和第一壁部11的密封效果,以进一步提升集气仓30与第一壁部11之间的密封质量。
根据本申请的一些实施例,参见图2和图3所示,电池20具有泄压机构21,泄压机构21与排气口111相对设置,泄压机构21被配置为释放电池20单体的内部压力。排气口111用于连通容纳空间31和泄压机构21,容纳空间31用于容纳泄压机构21释放的排放物。
其中,泄压机构21与排气口111相对设置,即在第一壁部的厚度方向X上,泄压机构21面向第一壁部11设置,且排气口111覆盖泄压机构21的至少部分。
泄压机构21用于在电池20的内部压力或温度达到预定值时释放电池20内部的压力。示例性的,泄压机构21可以是诸如防爆阀、防爆片、气阀、泄压阀或安全阀等部件。
电池20上设置有用于释放电池20单体内部压力的泄压机构21,通过将泄压机构21与排气口111相对设置,使得泄压机构21释放的排放物能够通过排气口111直接排放至集气仓30的容纳空间31内,以减少电池20的泄压机构21释放的排放物在柜体10内堆积的现象,从而有利于降低排放物在柜体10内堆积而引发的起火或爆炸风险,以提升储能设备100的使用安全性。
根据本申请的一些实施例,参见图2、图3和图4所示,沿第一壁部的厚度方向X,泄压机构21在第一壁部11上的投影位于排气口111内。
其中,泄压机构21在第一壁部11上的投影位于排气口111内,即在第一壁部的厚度 方向X上,排气口111能够覆盖泄压机构21。
通过将泄压机构21在第一壁部的厚度方向X上的投影设置为落入排气口111内,采用这种结构的储能设备100能够有效保证泄压机构21释放的排放物直接通过排气口111进入至集气仓30的容纳空间31内,以减少泄压机构21在释放排放物时受到第一壁部11阻挡的现象。
根据本申请的一些实施例,参照图2,并请进一步参照图6,图6为本申请一些实施例提供的储能设备100的电池20与第二密封件50的连接示意图。电池20具有第一侧壁22,第一侧壁22与第一壁部11相对设置,泄压机构21设置于第一侧壁22上。
其中,第一侧壁22与第一壁部11相对设置,即电池20的第一侧壁22在第一壁部的厚度方向X上与第一壁部11面向设置。
电池20在第一壁部的厚度方向X上与第一壁部11面向设置的第一侧壁22,通过将泄压机构21设置于第一侧壁22上能够便于将泄压机构21设置为与第一壁部11上的排气口111相对设置的结构,这种结构简单,且便于装配。
在一些实施例中,请继续参见图2和图6所示,储能设备100还可以包括第二密封件50。第二密封件50设置于第一侧壁22与第一壁部11之间,且第二密封件50沿排气口111的周向设置,第二密封件50用于密封第一侧壁22与第一壁部11。
其中,第二密封件50沿排气口111的周向设置,即第二密封件50为沿排气口111的周向延伸的环形结构。
示例性的,排气口111为圆形,对应的,第二密封件50为圆形环状结构。
第二密封件50的材质可以是多种,比如,橡胶、硅胶、塑料或泡棉等。示例性的,在本申请实施例中,第二密封件50的材质为泡棉,第二密封件50呈压缩状态设置于第一壁部11与第一侧壁22之间,且第二密封件50在压缩前和压缩后的压缩比为40%-60%,这种结构有利于提升第二密封件50对第一侧壁22和第一壁部11之间的间隙的密封效果。
通过在电池20安装有泄压机构21的第一侧壁22与第一壁部11之间设置第二密封件50,且第二密封件50为沿排气口111的周向延伸的环形结构,使得第二密封件50能够密封第一壁部11和电池20的第一侧壁22之间的间隙,以缓解泄压机构21释放的排放物从第一壁部11和第一侧壁22之间的间隙泄漏至柜体10内的现象,从而能够减少排放物在柜体10内堆积而引发的起火爆炸现象,以提升储能设备100的使用安全性。
根据本申请的一些实施例,参见图2和图6所示,第二密封件50环绕于泄压机构21的外侧。也就是说,第二密封件50环绕泄压机构21设置,使得泄压机构21位于第二密封件50的内侧。
通过将第二密封件50环绕设置于泄压机构21的外侧,从而使得第二密封件50能够将泄压机构21与柜体10内的空间进行有效分隔,以降低泄压机构21释放的排放物进入至柜体10内的风险。
根据本申请的一些实施例,参照图6,并请进一步参照图7,图7为本申请一些实施例提供的储能设备100的第二密封件50的结构示意图。第二密封件50的宽度为D 2,满足,D 2≥5mm。
其中,第二密封件50的宽度D 2为环形结构的第二密封件50的内边缘与外边缘之间的间距。
通过将第二密封件50的宽度设置为大于或等于5mm,即环形结构的第二密封件50的内边缘与外边缘之间的间距为大于或等于5mm,采用这种结构的第二密封件50能够降低第二密封件50出现密封失效的风险。比如,若需要在第二密封件50上打孔供连接第一壁部11和 第一侧壁22的螺栓穿过,当第二密封件50的宽度小于5mm,则极容易造成第二密封件50在设置有螺栓的位置的宽度过小,从而极容易出现密封失效的现象。
根据本申请的一些实施例,请参见图2、图6和图7所示,D 2≥8mm。
示例性的,第二密封件50的宽度D 2可以为8mm、8.5mm、9mm、10mm、11mm或15mm等。
当第二密封件50的宽度小于8mm时,第二密封件50的密封效果不佳,无法有效对第一壁部11和第一侧壁22之间的间隙进行封堵,从而通过进一步将第二密封件50的宽度设置为大于或等于8mm,采用这种结构的第二密封件50能够有效保证第二密封件50对第一壁部11和电池20的第一侧壁22的密封效果,以进一步提升第一壁部11与电池20的第一侧壁22之间的密封质量。
根据本申请的一些实施例,参照图2和图3,并请进一步参照图8,图8为本申请一些实施例提供的储能设备100的电池20与柜体10的连接示意图。储能设备100包括多个电池20,多个电池20沿第一方向Y排布,第一方向Y垂直于第一壁部的厚度方向X。第一壁部11设置有沿第一方向Y排布的多个排气口111,每个排气口111与一个泄压机构21对应设置。
其中,每个排气口111与一个泄压机构21对应设置,即第一壁部11上对应电池20的数量设置有对应数量的排气口111,且每个电池20的泄压机构21通过一个排气口111与集气仓30的容纳空间31连通。同样的,在储能设备100设置有第二密封件50的实施例中,第二密封件50与排气口111一一对应,每个电池20的泄压机构21对应设置一个第二密封件50。
示例性的,在图8中,设置于柜体10内的电池20的数量为七个,在其他实施例中,电池20也可以为两个、三个、四个、五个、六个、八个等。
需要说明的是,在图8中,多个电池20沿第一方向Y排布,在其他实施例中,多个电池20的排布方向可以是多种,比如,多个电池20也可以沿第二方向Z排布。
在一些实施例中,参见图2和图8所示,柜体10内设置有多个安装架12,多个安装架12沿第一方向Y间隔设置,且安装件连接于柜体10的内表壁上,安装架12用于安装和放置电池20,以实现多个电池20在柜体10内沿第一方向Y排布。
电池20安装于安装架12上的结构可以是多种,示例性的,电池20可以通过螺栓螺接、卡接、粘接或焊接等方式安装于安装架12上。
储能设备100设置有多个电池20,且每个电池20的泄压机构21均对应设置有一个排气口111,使得每个电池20的泄压机构21在释放排放物时相互不影响,采用这种结构在提升储能设备100的储电能力的同时能够保证储能设备100的使用安全。
根据本申请的一些实施例,参见图1和图4所示,集气仓30设置有与容纳空间31连通的出气口34,出气口34被配置为排出容纳空间31内的排放物。
示例性的,出气口34设置于集气仓30在第一方向Y上的一侧。当然,在其他实施例中,出气口34也可以设置于集气仓30在第二方向Z上的一侧。
集气仓30还设置有用于供容纳空间31内的排放物排出的出气口34,从而一方面能够缓解因容纳空间31内的排放物堆积过多而出现压力增加的现象,另一方面便于将集气仓30的容纳空间31内的排放物导出后进行统一处理。
根据本申请的一些实施例,参见图3所示,储能设备100还可以包括泄压件60。泄压件60设置于第一壁部11,泄压件60被配置为将柜体10内的排放物释放至容纳空间31内。
其中,第一壁部11盖合于集气仓30的开口32后,泄压件60位于集气仓30的容纳 空间31内,以使泄压件60能够将柜体10内的排放物释放至容纳空间31内。
示例性的,泄压件60可以是诸如防爆阀、防爆片、气阀、泄压阀或安全阀等部件。
通过在柜体10的第一壁部11上设置泄压件60,使得泄压件60能够对柜体10的内部压力进行释放,采用这种结构的储能设备100能够缓解柜体10内因出现排放物堆积而导致柜体10内部压力突增的现象,以降低柜体10出现爆炸的风险。
根据本申请的一些实施例,参见图2和图8所示,储能设备100还可以包括报警装置70。报警装置70设置于柜体10内,报警装置70被配置为检测柜体10的内部的温度和/或烟雾浓度,并在柜体10的内部的温度和/或烟雾浓度到达阈值时报警。
其中,报警装置70可以包括第一检测件71、第二检测件72和报警器(图中未示出),第一检测件71和第二检测件72均与报警器电连接,第一检测件71用于检测柜体10的内部的温度,第二检测件72用于检测检测柜体10的内部的烟雾浓度,当第一检测件71检测到的温度和/或第二检测件72检测到的烟雾浓度达到阈值时,报警器能够进行报警。报警器的具体结构可以参见相关技术,在此不再赘述。
示例性的,第一检测件71可以为热敏电阻传感器、热电偶传感器或电阻温度检测器等,第二检测件72可以为离子式烟雾传感器、光电式烟雾传感器或气敏式烟雾传感器等。
柜体10内还设置有报警装置70,通过报警装置70能够检测柜体10内的温度和/或烟雾浓度,并在柜体10内的温度和/或烟雾浓度达到阈值时进行报警,从而能够提醒工作人员进行及时处理,以降低储能设备100进一步引发的安全隐患。
根据本申请的一些实施例,参照图3,并请进一步参照图9,图9为本申请一些实施例提供的储能设备100的电池20的俯视图。沿第一壁部的厚度方向X,柜体10的长度为L 1,电池20的长度为L 2,满足,50%≤L 2/L 1≤95%,即在第一壁部的厚度方向X上,电池20的长度为柜体10的长度的50%到95%,以减少电池20在第一壁部的厚度方向X上与柜体10发生干涉的现象,从而便于将电池20装配至柜体10内。
沿第一方向Y,柜体10的高度为H 1,满足,500mm≤H 1≤3000mm。
沿第二方向Z,柜体10的宽度为W 1,电池20的宽度为W 2,满足,60%≤W 2/W 1≤95%,即在第二方向Z上,电池20的宽度为柜体10的宽度的60%到95%,以减少电池20在第一方向Y上与柜体10发生干涉的现象,从而便于将电池20装配至柜体10内。
需要说明的是,第一壁部的厚度方向X、第一方向Y和第二方向Z两两相互垂直,也就是说,第一壁部的厚度方向X即为柜体10的长度方向,第一方向Y即为柜体10的高度方向,第二方向Z即为柜体10的宽度方向。
在一些实施例中,参照图10和图11,图10为本申请一些实施例提供的储能设备100的集气仓30的正视图,图11为本申请一些实施例提供的储能设备100的集气仓30的俯视图。沿第一方向Y,集气仓30的高度为H 2,满足,400mm≤H 2≤2900mm。沿第二方向Z,集气仓30的宽度为W 3,满足,200mm≤W 3≤1500mm。沿第一壁部的厚度方向X,集气仓30的厚度为L 3,满足,50mm≤L 3≤500mm。
根据本申请的一些实施例,参照图2和图4,并请进一步参照图12,图12为本申请一些实施例提供的储能系统1000的结构示意图。本申请实施例还提供了一种储能系统1000,包括多个上述的储能设备100。
示例性的,储能系统1000设置有三个储能设备100,在其他实施例中,储能设备100的数量也可以为两个、四个、五个或六个等。
在一些实施例中,储能系统1000还包括排气管200和处理设备300。排气管200与多个储能设备100的容纳空间31均连通。处理设备300与排气管200连通,排气管200用于将 容纳空间31内的排放物输送至处理设备300,且处理设备300被配置为处理排气管200输送的排放物。处理设备300的具体结构可参见相关技术,在此不再赘述。
其中,排气管200与处理设备300连通,且排气管200与每个储能设备100的集气仓30的出气口34连通,以实现排气管200连通处理设备300和集气仓30的容纳空间31。
储能系统1000还设置有与多个储能设备100的集气仓30的容纳空间31连通的排气管200,使得多个储能设备100的电池20产生的排放物能够通过排气管200输送至处理设备300进行集中统一处理,以减少排放物在储能设备100的柜体10内处理不完善的现象,有利于提升储能设备100的使用安全性,且能够降低储能系统1000的后期使用成本。
根据本申请的一些实施例,参见图1至图11所示,本申请提供了一种储能设备100,储能设备100包括柜体10、多个电池20、集气仓30、第一密封件40、多个第二密封件50、泄压件60和报警装置70。柜体10具有第一壁部11。多个电池20均容纳于柜体10内,且多个电池20沿第一方向Y排布。电池20具有泄压机构21,泄压机构21被配置为释放电池20单体的内部压力。电池20具有第一侧壁22,第一侧壁22与第一壁部11相对设置,泄压机构21设置于第一侧壁22上。集气仓30设置于第一壁部11,且集气仓30位于柜体10的外侧,集气仓30的内部形成有容纳空间31,且集气仓30的一侧形成与容纳空间31连通的开口32,第一壁部11封闭开口32。第一壁部11上设置有与容纳空间31连通的多个排气口111,每个排气口111与一个泄压机构21相对设置。沿第一壁部的厚度方向X,泄压机构21在第一壁部11上的投影位于排气口111内,容纳空间31用于容纳泄压机构21释放的排放物。第一密封件40设置于集气仓30与第一壁部11之间,且第一密封件40沿开口32的周向设置,第一密封件40用于密封集气仓30与第一壁部11。第二密封件50与泄压机构21一一对应,第二密封件50设置于第一侧壁22与第一壁部11之间,且第二密封件50沿排气口111的周向设置,第二密封件50用于密封第一侧壁22与第一壁部11。泄压件60设置于第一壁部11,泄压件60被配置为将柜体10内的排放物释放至容纳空间31内。报警装置70设置于柜体10内,报警装置70被配置为检测柜体10的内部的温度和/或烟雾浓度,并在柜体10的内部的温度和/或烟雾浓度到达阈值时报警。其中,第一密封件40的宽度为D 1,第二密封件50的宽度为D 2,满足,D 1≥8mm,D 2≥8mm。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种储能设备,包括:
    柜体,具有第一壁部;
    电池,容纳于所述柜体内;以及
    集气仓,设置于所述第一壁部,且所述集气仓位于所述柜体的外侧,所述集气仓的内部形成有容纳空间;
    其中,所述第一壁部上设置有与所述容纳空间连通的排气口,所述容纳空间用于容纳所述电池释放的排放物。
  2. 根据权利要求1所述的储能设备,其中,所述集气仓的一侧形成与所述容纳空间连通的开口,所述第一壁部封闭所述开口。
  3. 根据权利要求2所述的储能设备,其中,所述储能设备还包括:
    第一密封件,设置于所述集气仓与所述第一壁部之间,且所述第一密封件沿所述开口的周向设置,所述第一密封件用于密封所述集气仓与所述第一壁部。
  4. 根据权利要求3所述的储能设备,其中,所述第一密封件的宽度为D 1,满足,D 1≥5mm。
  5. 根据权利要求4所述的储能设备,其中,D 1≥8mm。
  6. 根据权利要求1-5任一项所述的储能设备,其中,所述电池具有泄压机构,所述泄压机构与所述排气口相对设置,所述泄压机构被配置为释放所述电池单体的内部压力;
    所述排气口用于连通所述容纳空间和所述泄压机构,所述容纳空间用于容纳所述泄压机构释放的排放物。
  7. 根据权利要求6所述的储能设备,其中,沿所述第一壁部的厚度方向,所述泄压机构在所述第一壁部上的投影位于所述排气口内。
  8. 根据权利要求6或7所述的储能设备,其中,所述电池具有第一侧壁,所述第一侧壁与所述第一壁部相对设置,所述泄压机构设置于所述第一侧壁上。
  9. 根据权利要求8所述的储能设备,其中,所述储能设备还包括:
    第二密封件,设置于所述第一侧壁与所述第一壁部之间,且所述第二密封件沿所述排气口的周向设置,所述第二密封件用于密封所述第一侧壁与所述第一壁部。
  10. 根据权利要求9所述的储能设备,其中,所述第二密封件环绕于所述泄压机构的外侧。
  11. 根据权利要求9或10所述的储能设备,其中,所述第二密封件的宽度为D 2,满足,D 2≥5mm。
  12. 根据权利要求11所述的储能设备,其中,D 2≥8mm。
  13. 根据权利要求6-12任一项所述的储能设备,其中,所述储能设备包括多个所述电池,多个所述电池沿第一方向排布,所述第一方向垂直于所述第一壁部的厚度方向;
    所述第一壁部设置有沿所述第一方向排布的多个所述排气口,每个所述排气口与一个所述泄压机构对应设置。
  14. 根据权利要求1-13任一项所述的储能设备,其中,所述集气仓设置有与所述容纳空间连通的出气口,所述出气口被配置为排出所述容纳空间内的排放物。
  15. 根据权利要求1-14任一项所述的储能设备,其中,所述储能设备还包括:
    泄压件,设置于所述第一壁部,所述泄压件被配置为将所述柜体内的排放物释放至所述容纳空间内。
  16. 根据权利要求1-15任一项所述的储能设备,其中,所述储能设备还包括:
    报警装置,设置于所述柜体内,所述报警装置被配置为检测所述柜体的内部的温度和/或烟雾浓度,并在所述柜体的内部的温度和/或烟雾浓度到达阈值时报警。
  17. 一种储能系统,包括多个如权利要求1-16任一项所述的储能设备。
  18. 根据权利要求17所述的储能系统,其中,所述储能系统还包括:
    排气管,与多个所述储能设备的所述容纳空间均连通;
    处理设备,与所述排气管连通,所述排气管用于将所述容纳空间内的排放物输送至所述处理设备,且所述处理设备被配置为处理所述排气管输送的排放物。
PCT/CN2022/124427 2022-10-10 2022-10-10 储能设备及储能系统 WO2024077450A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/124427 WO2024077450A1 (zh) 2022-10-10 2022-10-10 储能设备及储能系统
CN202280089818.8A CN118715665A (zh) 2022-10-10 2022-10-10 储能设备及储能系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/124427 WO2024077450A1 (zh) 2022-10-10 2022-10-10 储能设备及储能系统

Publications (1)

Publication Number Publication Date
WO2024077450A1 true WO2024077450A1 (zh) 2024-04-18

Family

ID=90668548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124427 WO2024077450A1 (zh) 2022-10-10 2022-10-10 储能设备及储能系统

Country Status (2)

Country Link
CN (1) CN118715665A (zh)
WO (1) WO2024077450A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013017204A1 (de) * 2011-08-02 2013-02-07 Daimler Ag Hochvolt-batterie für fahrzeuganwendungen
CN110148692A (zh) * 2019-05-10 2019-08-20 北京新能源汽车股份有限公司 电池模组及具有其的车辆
CN209401662U (zh) * 2019-03-28 2019-09-17 宁德时代新能源科技股份有限公司 电池包
CN113488875A (zh) * 2021-08-06 2021-10-08 阳光电源股份有限公司 一种机柜及泄压方法
CN216354512U (zh) * 2021-11-24 2022-04-19 蜂巢能源科技有限公司 电池模组和电池包
CN217009462U (zh) * 2021-12-23 2022-07-19 蜂巢能源科技(无锡)有限公司 一种储能装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013017204A1 (de) * 2011-08-02 2013-02-07 Daimler Ag Hochvolt-batterie für fahrzeuganwendungen
CN209401662U (zh) * 2019-03-28 2019-09-17 宁德时代新能源科技股份有限公司 电池包
CN110148692A (zh) * 2019-05-10 2019-08-20 北京新能源汽车股份有限公司 电池模组及具有其的车辆
CN113488875A (zh) * 2021-08-06 2021-10-08 阳光电源股份有限公司 一种机柜及泄压方法
CN216354512U (zh) * 2021-11-24 2022-04-19 蜂巢能源科技有限公司 电池模组和电池包
CN217009462U (zh) * 2021-12-23 2022-07-19 蜂巢能源科技(无锡)有限公司 一种储能装置

Also Published As

Publication number Publication date
CN118715665A (zh) 2024-09-27

Similar Documents

Publication Publication Date Title
WO2022143088A1 (zh) 电池箱体和电池包
US12074338B2 (en) Battery pack
US20140308550A1 (en) Battery pack
WO2011000267A1 (zh) 一种可提高电池容量的圆柱形电池制造方法
WO2020215443A1 (zh) 上盖组件和电池包
US12113236B2 (en) Exhaust filter system for battery pack
WO2023134501A1 (zh) 储能集装箱
JP6722294B2 (ja) 単セルバッテリー、バッテリーモジュール、電源バッテリー、および電気自動車
WO2023020571A1 (zh) 带有泄爆装置的电池、电池模组及具有泄爆通道的电池箱
CN212874694U (zh) 一种电池防爆阀及电池
CN218548570U (zh) 一种电池组件
CN102324479A (zh) 一种动力锂离子电池防爆阀
WO2024065210A1 (zh) 储能装置
WO2024125375A2 (zh) 保护构件及电池单体的制备方法
WO2024077450A1 (zh) 储能设备及储能系统
US20240204326A1 (en) Battery module, battery pack, and electronic device
WO2022134123A1 (zh) 阀、电池、用电设备、阀的制造设备和方法
CN209841087U (zh) 一种电公交密闭电池舱气体监测装置
WO2024001771A1 (zh) 电池及电池箱
CN115911622B (zh) 一种电池包、用电装置和电池包的热失控检测与控制方法
CN216488362U (zh) 一种新能源汽车消防引导装置及电池箱
CN215771431U (zh) 电池防爆阀、电池及电池包
CN113540676A (zh) 一种新能源汽车消防引导装置及电池箱
CN219610653U (zh) 电池箱盖、电池模组和储能系统
CN221483621U (zh) 一种热失控烟气安全处理系统及储能设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961645

Country of ref document: EP

Kind code of ref document: A1