WO2024075811A1 - Intestinal information estimation system, intestinal information estimation method, control program, and recording medium - Google Patents

Intestinal information estimation system, intestinal information estimation method, control program, and recording medium Download PDF

Info

Publication number
WO2024075811A1
WO2024075811A1 PCT/JP2023/036346 JP2023036346W WO2024075811A1 WO 2024075811 A1 WO2024075811 A1 WO 2024075811A1 JP 2023036346 W JP2023036346 W JP 2023036346W WO 2024075811 A1 WO2024075811 A1 WO 2024075811A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
gas
intestinal
subject
concentration
Prior art date
Application number
PCT/JP2023/036346
Other languages
French (fr)
Japanese (ja)
Inventor
慎伍 寺西
大輔 上山
真一 阿部
広高 小池
凛太郎 冨士川
Original Assignee
京セラ株式会社
AuB株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社, AuB株式会社 filed Critical 京セラ株式会社
Publication of WO2024075811A1 publication Critical patent/WO2024075811A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath

Definitions

  • This disclosure relates to an intestinal information estimation system that estimates intestinal information of a subject.
  • Patent Document 1 describes an intestinal condition notification device that notifies a user of information related to the intestinal condition corresponding to a signal value output from a gas sensor that detects a specific gas component in excreted gas.
  • the intestinal condition notification device stores correspondence data that indicates the correspondence between the signal value output from the gas sensor and information related to the user's intestinal condition, and notifies the user of information related to the intestinal condition corresponding to the signal value output from the gas sensor based on the correspondence data.
  • the intestinal information estimation system includes a detection control unit that detects a predetermined component from gas originating from a subject and outputs a detection signal corresponding to the concentration of the predetermined component, and an estimation unit that inputs a first comparison result obtained by comparing a first detection signal, which is the detection signal corresponding to the gas collected at a first time point, with a second detection signal, which is the detection signal corresponding to the gas collected at a second time point a predetermined period of time has elapsed since the first time point, or a second comparison result obtained by comparing a first concentration, which is the concentration of the predetermined component corresponding to the first detection signal, with a second concentration, which is the concentration of the predetermined component corresponding to the second detection signal, into an estimation model to estimate intestinal information of the subject.
  • the intestinal information estimation method includes a detection control step of detecting a predetermined component from a gas originating from a subject and outputting a detection signal corresponding to the concentration of the predetermined component, and an estimation step of inputting a first comparison result obtained by comparing a first detection signal, which is the detection signal corresponding to the gas collected at a first time point, with a second detection signal, which is the detection signal corresponding to the gas collected at a second time point a predetermined period of time has elapsed since the first time point, or a second comparison result obtained by comparing a first concentration, which is the concentration of the predetermined component corresponding to the first detection signal, with a second concentration, which is the concentration of the predetermined component corresponding to the second detection signal, into an estimation model to estimate the intestinal information of the subject.
  • the intestinal information estimation system may be realized by a computer.
  • the control program that causes the computer to operate as each part (software element) of the intestinal information estimation system to realize the intestinal information estimation system on a computer, and the computer-readable recording medium on which the control program is recorded also fall within the scope of the present disclosure.
  • FIG. 1 is a schematic diagram showing an example of a schematic configuration of an intestinal information estimation system according to an embodiment.
  • FIG. FIG. 11 is a diagram illustrating an example of a data structure of detection information.
  • FIG. 4 is a diagram illustrating an example of a data structure of detection data.
  • FIG. 2 is a diagram illustrating an example of a data structure of subject information.
  • FIG. 13 is a diagram illustrating an example of a data structure of estimation result information.
  • FIG. 2 is a diagram showing an example of a data structure of intestinal information.
  • FIG. 4 is a diagram illustrating an example of a data structure of health information.
  • FIG. 1 is a diagram showing the appearance of a gas detection device.
  • FIG. 1 is a schematic diagram showing an example of the configuration of a gas detection device.
  • FIG. 11 is a diagram illustrating an example of a data structure of detection information.
  • FIG. 4 is a diagram illustrating an example of a data structure of detection data.
  • FIG. 2 is
  • FIG. 2 is a block diagram showing a configuration of a main part of the intestinal information estimation system.
  • 1 is a sequence diagram showing an example of a processing flow performed in the intestinal information estimation system.
  • FIG. 11 is a schematic diagram showing another example of the configuration of the gas detection device.
  • FIG. 13 is a schematic diagram showing the configuration of an intestinal information estimation system according to a fourth embodiment.
  • FIG. 11 is a diagram showing the correlation between the concentration ratio of sulfur-based gases contained in a sample gas and health level information (proneness to gain weight).
  • FIG. 13 is a graph showing the correlation between the concentration ratio of hydrogen contained in a sample gas and the amount of acetic acid contained in feces.
  • FIG. 11 is a diagram showing the correlation between the inverse of the concentration of carbon dioxide contained in a sample gas and health level information (immunity). This figure compares health information (immunity) of a group of subjects whose carbon dioxide concentration contained in sample gas increased over a specified period of time with health information (immunity) of a group of subjects whose carbon dioxide concentration decreased over a specified period of time.
  • the intestinal information estimation system and intestinal information estimation method can estimate the intestinal information of a subject with high accuracy from the components contained in the gas originating from the subject.
  • the inventors have found that it is possible to estimate intestinal information related to the intestinal environment of a subject by analyzing the concentration of a specific component detected from a sample gas (gas) originating from the subject. Furthermore, the inventors have found that it is possible to estimate more detailed intestinal information for the same subject based on the following (1) or (2), and have invented an intestinal information estimation system 100 according to one embodiment of the present disclosure.
  • (1) A first comparison result obtained by comparing a first detection signal, which is a detection signal corresponding to a sample gas collected at a first point in time, with a second detection signal, which is a detection signal corresponding to a sample gas collected at a second point in time a predetermined period of time after the first point in time.
  • a second comparison result obtained by comparing a first concentration, which is the concentration of the predetermined component corresponding to the first detection signal, with a second concentration, which is the concentration of the predetermined component corresponding to the second detection signal.
  • sample gas is the gas to be detected.
  • sample gas may be gas resulting from the subject's stool obtained during the subject's act of defecation, but is not limited to this.
  • sample gas may be gas resulting from the subject's urine, sweat, etc.
  • “Intestinal information” may be, but is not limited to, information regarding at least one of the amount and the proportion of short-chain fatty acid producing bacteria and/or metabolic substances of short-chain fatty acid producing bacteria contained in the stool of the subject.
  • “intestinal information” may be information regarding at least one of the amount and the proportion of intestinal bacteria and/or metabolic substances of intestinal bacteria of the subject.
  • the "predetermined period” may be, for example, one day or more and one month or less, but is not limited to this.
  • the intestinal environment can change in a relatively short period of time due to the influence of strenuous exercise such as a marathon.
  • the intestinal environment improves or deteriorates in the medium to long term due to the influence of diet and stress. Therefore, when monitoring changes in the intestinal environment over a relatively short period of time, the predetermined period may be one day, two days, three days, etc., and when monitoring changes in the intestinal environment over the medium to long term, the predetermined period may be one week, two weeks, three weeks, etc.
  • FIG. 1 is a schematic diagram showing an example of a schematic configuration of an intestinal information estimation system 100 according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram showing only some members simplified to explain the embodiment for convenience of explanation. Therefore, the intestinal information estimation system 100 may include any component member not shown in each figure referred to in this specification.
  • the dimensions of the components in each figure do not faithfully represent the dimensions of the actual components and the dimensional ratios of each component.
  • the intestinal information estimation system 100 includes a gas detection device 1, an intestinal information estimation device 2, and an electronic device 3.
  • the gas detection device 1, the intestinal information estimation device 2, and the electronic device 3 may be connected to each other so that they can communicate with each other.
  • the gas detection device 1 and the intestinal information estimation device 2, and the electronic device 3 and the intestinal information estimation device 2 may be connected by wireless communication or by wired communication.
  • the intestinal information estimation system 100 may be a system that detects specific components from gas released from the subject's stool in a toilet, in which case the gas detection device 1 may be installed in the toilet bowl 4 as shown in FIG. 1.
  • the gas detection device 1 When the gas detection device 1 is installed in the toilet bowl 4, the intestinal information estimation system 100 performs a process in the toilet to detect specific components from gas released from the subject's stool. Therefore, a user who uses the intestinal information estimation system 100 does not need to perform troublesome tasks such as stool testing, but can simply use the toilet.
  • the gas detection device 1 does not have to be fixedly installed in one location, and may be portable by the subject, for example.
  • the subject may carry the gas detection device 1 of the intestinal information estimation system 100, and attach the gas detection device 1 to the toilet bowl and use it every time the subject uses the toilet.
  • the user it is possible for the user to use the intestinal information estimation system 100 in any location (for example, while out and about, etc.).
  • the gas detection device 1 detects a predetermined component from the gas released from the subject's stool and outputs a detection signal corresponding to the concentration of the predetermined component.
  • the gas detection device 1 may also calculate the concentration of the predetermined component corresponding to the detection signal and output information on the calculated concentration.
  • the information output by the gas detection device 1 is referred to as "detection information.”
  • the gas detection device 1 transmits the detection information to the intestinal information estimation device 2.
  • Detection information The detection information output from the gas detection device 1 will be described with reference to Fig. 2.
  • Fig. 2 is a diagram showing an example of a data structure of the detection information output from the gas detection device 1.
  • the detection information may include a subject ID, detection data D1, a sample gas ID, and a sample gas collection date and time.
  • the subject ID is identification information unique to the subject.
  • the subject ID may be the subject's name and identification information unique to each subject. If the subject is a user who uses the intestinal information estimation system 100, the subject ID may be a user ID assigned to each user who uses the intestinal information estimation system 100.
  • the gas detection device 1 may collect sample gas multiple times at a predetermined time interval (e.g., 30 seconds, 1 minute, etc.) for each defecation of the subject.
  • a sample gas ID may be assigned to each collected sample gas.
  • Figure 2 shows an example of detection information output from the gas detection device 1 used by a subject with a subject ID of "xxxx". As an example, the sample gas collected at "7:32 AM on mm/dd/2021" is assigned the sample ID "samp1".
  • the detection information may further include a gas detection device ID that is unique to the gas detection device 1.
  • FIG. 2 shows detection information that includes the gas detection device ID "ppp" of the gas detection device 1 used by a subject with a subject ID of "xxxx".
  • the detection data D1 may include data indicating the concentration of a predetermined component for each sample based on a detection signal output by the gas sensor 143 (detection unit).
  • the predetermined component includes at least one of methyl mercaptan (CH 3 SH), hydrogen sulfide (H 2 S), hydrogen (H 2 ), and carbon dioxide (CO 2 ).
  • the predetermined component may further include, for example, 2-propanol.
  • the detection data D1 may be a detection signal output by the gas sensor 143, or may be a numerical value indicating a concentration calculated from the detection signal.
  • the concentration of the predetermined component may be the concentration of the predetermined component in the gas collected by the gas detection device 1.
  • the predetermined component may include multiple components, and the concentration may be the sum of the multiple components relative to the total amount of the sample gas.
  • the unit of concentration may be ppm, for example.
  • the gas detection device 1 may collect sample gas each time the subject defecates and detect a specific component contained in the sample gas. Alternatively, the gas detection device 1 may be configured not to collect sample gas from the subject's stool or detect a specific component until a specific period of time has elapsed since the time the sample gas is collected from the subject's stool. Here, the specific period of time may be one day or more and one month or less. The gas detection device 1 may store the detection information in the memory unit 15, which will be described later.
  • the gas detection device 1 may be configured to determine whether or not a predetermined period of time has elapsed since the first time point each time the subject defecates after the first time point. If the gas detection device 1 determines that a predetermined period of time has elapsed since the first time point, it detects a predetermined component from the gas at the time of the defecation and outputs a second detection signal corresponding to the concentration of the predetermined component. For example, the gas detection device 1 may determine whether or not a predetermined period of time has elapsed since the time sample gas was collected from the subject's stool based on the subject ID and the date and time of sample gas collection in the detection information.
  • the gas detection device 1 may be configured to determine whether or not a predetermined period of time has elapsed since the previous date and time of sample gas collection from the same subject, and collect sample gas from the subject's stool and detect the predetermined component only if the predetermined period of time has elapsed.
  • the detection data D1 may include the following detected from the sample gas with the sample ID "samp1".
  • the intestinal information estimation device 2 shown in FIG. 1 may be a computer managed by an administrator of the intestinal information estimation system 100, or may be a server device.
  • the intestinal information estimation device 2 inputs the first comparison result or the second comparison result into the estimation model M1, and estimates at least one of information regarding the amount and the presence ratio of at least one of the short-chain fatty acid producing bacteria and the metabolites contained in the subject's stool.
  • the intestinal information estimation device 2 outputs intestinal information that is an estimation result regarding the intestinal environment of the subject and/or regarding the change in the intestinal environment.
  • information including intestinal information is referred to as "estimated result information”.
  • the estimated result information may further include health degree information regarding the health degree of the subject calculated based on the estimated result information.
  • the health degree information will be described later.
  • the intestinal information estimation device 2 may input, for example, the first detection signal or the second detection signal into the estimation model M1 together with the first comparison result or the second comparison result.
  • the intestinal information estimation device 2 may input the following first concentration or second concentration to the estimation model M1 together with the first comparison result or the second comparison result.
  • First concentration the concentration of a predetermined component calculated from the first detection signal and corresponding to the first detection signal.
  • Second concentration the concentration of a predetermined component calculated from the second detection signal and corresponding to the second detection signal.
  • Short-chain fatty acid producing bacteria are a type of intestinal bacteria that produce short-chain fatty acids.
  • short-chain fatty acid producing bacteria may be at least one of butyric acid producing bacteria and acetic acid producing bacteria.
  • butyric acid producing bacteria include Bacillus faecalis, Lachnospira spp., and Coprococcus spp.
  • acetic acid-producing bacteria examples include bifidobacteria.
  • the metabolic substance estimated by the intestinal information estimation device 2 may be at least one of butyric acid and acetic acid. Both butyric acid and acetic acid are substances involved in the metabolic system of the intestinal bacteria of the subject. Examples of metabolic substances other than butyric acid and acetic acid include propionic acid, formic acid, succinic acid, ornithine, trimethylamine, glucose 6-phosphate, etc.
  • the intestinal information estimation device 2 may store subject information that associates, for example, the ID of each subject, the gas detection device ID of the gas detection device 1 used by each subject, and the contact information of each subject.
  • FIG. 4 is a diagram showing an example of the data structure of subject information held in the intestinal information estimation device 2.
  • the contact information of the subject may be the subject's email address.
  • the intestinal information estimation device 2 refers to the subject information, identifies the subject using the gas detection device 1 that is the sender of the detection information from the subject ID included in the detection information, and transmits estimation result information to the electronic device 3 of the subject.
  • the subject information shown in FIG. 4 indicates that the gas detection device ID of the gas detection device 1 used by a subject with subject ID "xxxx" is "ppp", and the contact information of the subject is "xxxx@xxx.xxx".
  • the intestinal information estimation device 2 may be configured to create a unique web page for each subject and have each subject view this web page. Each subject may be required to set a unique password or the like for viewing their own web page.
  • the intestinal information estimation device 2 refers to the subject information, identifies the subject from the subject ID, and transmits the URL of the web page or the like to the electronic device 3 of the subject.
  • the intestinal information estimation device 2 may have a function for calculating health information indicating the subject's health from the intestinal information (health information calculation unit 222 described below).
  • Fig. 5 is a diagram showing an example of a data structure of the estimation result information.
  • the estimation result information may include a subject ID and intestinal information D2.
  • Fig. 5 shows an example of estimation result information including health degree information D3 in addition to intestinal information D2.
  • FIG. 6 is a diagram showing an example of the data structure of intestinal information D2.
  • intestinal information D2 includes information regarding the amount or abundance ratio c11 of short-chain fatty acid producing bacteria, and the amount or abundance ratio c12 of metabolic substances.
  • the amount of short-chain fatty acid producing bacteria may be the number of short-chain fatty acid producing bacteria contained in a given mass of a subject's stool, or may be the mass of the short-chain fatty acid producing bacteria.
  • the unit of amount may be, for example, "pieces,” “g,” or “mg.”
  • the proportion of short-chain fatty acid producing bacteria may be a ratio to the total number of short-chain fatty acid producing bacteria contained in a given mass of a subject's stool.
  • the proportion of short-chain fatty acid producing bacteria may be, for example, the sum of the masses of two or more short-chain fatty acid producing bacteria contained in a given mass of a subject's stool.
  • the amount of a metabolite may be the mass of the metabolite contained in a given mass of a subject's stool, or may be the molecular weight.
  • the abundance ratio of a metabolite may be a ratio to the total mass of the metabolite contained in a given mass of a subject's stool.
  • the abundance ratio of a metabolite may be, for example, the sum of the masses of two or more metabolites contained in a given mass of a subject's stool.
  • the unit of amount may be, for example, "g" or "mg".
  • FIG. 7 is a diagram showing an example of the data structure of health information D3.
  • health information D3 may include an evaluation, useful information, and notes. It may also include a health information ID assigned to each piece of health information D3.
  • the health information D3 may be, for example, information on at least one of the subject's physical condition, immunity, tendency to gain muscle, tendency to gain weight, stress, concentration, anti-aging, beautiful skin, mental health, and sleep.
  • Information on the subject's physical condition may include, for example, information on the subject's nutritional state and possible diseases.
  • Information on the subject's immunity may include information on the subject's ability to recover from fatigue and the presence or absence of allergies.
  • Information on the subject's sleep may include information on the amount of sleep the subject gets, and the quality of the sleep.
  • the health information D3 may be, for example, an evaluation of at least one of the subject's physical condition, immunity, tendency to gain muscle, tendency to gain weight, stress, concentration, anti-aging, beautiful skin, mental health, and sleep.
  • the evaluation may be, for example, one of three levels: A (good), B (acceptable range), and C (needs caution).
  • Figure 7 shows an example in which the subject's health has been evaluated as "B.”
  • the health level information may include information indicating the probability of improvement or deterioration of health level. For example, for a subject with a health level of "B,” health level information including information such as "80% probability of becoming C” may provide the subject with an opportunity to pay more attention to their intestinal environment and reconsider their diet, etc., so as to prevent their health level from deteriorating.
  • the useful information may be information that is beneficial for improving the subject's health.
  • the useful information may include information about foods (ingredients and dishes) and exercise recommended for the subject, information about improving lifestyle habits, etc.
  • the notes may include various information provided to the subject.
  • the notes may include the following information: - Contact details of a nutritionist who can provide health advice. - Access to videos showing how to prepare dishes using the recommended ingredients. - Information on online shopping sites where you can purchase food ingredients and exercise equipment.
  • the electronic device 3 may be a computer used by the subject.
  • the electronic device 3 may be a computer used by a person (e.g., a family member) who monitors the subject's health condition.
  • the electronic device 3 may be, for example, a personal computer, a tablet terminal, a smartphone, or the like.
  • the electronic device 3 has a communication function and is capable of receiving estimation result information from the intestinal information estimation device 2.
  • the electronic device 3 may have, for example, an input unit such as a keyboard, a touch panel, and a microphone, and a display unit such as a monitor.
  • the electronic device 3 may be installed inside a toilet room in which the toilet 4 is installed. In this case, the electronic device 3 may be capable of being taken outside the toilet room.
  • Fig. 8 is a diagram showing the external appearance of the gas detection device 1.
  • Fig. 9 is a schematic diagram showing an example of the configuration of the gas detection device 1.
  • Fig. 10 is a block diagram showing the main configuration of the intestinal information estimation system 100.
  • the gas detection device 1 is a device that collects sample gases emitted from the stool of a subject, detects a predetermined component from each collected sample gas, and outputs a detection signal corresponding to the concentration of the predetermined component.
  • the gas detection device 1 may collect sample gases and detect a predetermined component multiple times, and may transmit detection results to the intestinal information estimation device 2 based on each result.
  • the gas detection device 1 is installed in, for example, a flush toilet 4, as shown in FIG. 8.
  • the toilet 4 includes a toilet bowl 4A and a toilet seat 4B.
  • the toilet 4 may be installed in a toilet room in a house, a hospital, or the like.
  • the gas detection device 1 may be installed at any location in the toilet 4.
  • the gas detection device 1 may be disposed between the toilet bowl 4A and the toilet seat 4B and outside the toilet 4, as shown in FIG. 8.
  • a part of the gas detection device 1 may be embedded in the toilet seat 4B.
  • the subject's stool may be discharged into the toilet bowl 4A of the toilet 4.
  • the gas detection device 1 may collect a sample gas in which gas generated from the stool discharged into the toilet bowl 4A is mixed with outside air.
  • the gas detection device 1 may detect the type and concentration of a predetermined component contained in the sample gas.
  • the flow path 31 is a tubular member provided to connect between the toilet bowl 4A and the first pump 132 described below.
  • One end of the flow path 31 has an opening that opens into the toilet bowl 4A, and the opposite end is connected to the first pump 132.
  • a portion of the opening side of the flow path 31 may be exposed to the inside of the toilet bowl 4A, as shown in Figure 8.
  • the flow path 31 is included in the sampling system 13 of the gas detection device 1, as described below. The sampling system 13 will be described later.
  • the exhaust passage 33 is a tubular member for discharging exhaust gas from the sensor chamber 144 to the outside of the gas detection device 1 by the operation of the first pump 132. A portion of the opening side of the exhaust passage 33 may be exposed to the outside of the toilet bowl 4A as shown in FIG. 8.
  • the exhaust passage 33 may be composed of a tubular member such as a resin tube or metal, rubber, or glass piping. One end (first end) of the exhaust passage 33 is connected to the sensor chamber 144 described below, and the opposite end (second end) of the exhaust passage 33 opens toward the outside of the housing 30 of the gas detection device 1.
  • the flow path 34 is a tubular member for supplying air (purge gas) from inside the toilet room to the sensor chamber 144 from outside the gas detection device 1 by the operation of the second pump 142.
  • One end of the flow path 34 has an opening that opens toward an external space different from the inside of the toilet bowl 4A, and the opposite end of the flow path 34 is connected to the second valve 141.
  • the outside is the periphery of the space in which the gas detection device 1 is located, such as the space inside the toilet room.
  • the exhaust path 33 and the flow path 34 are included in the analysis system 14 of the gas detection device 1, as described below. The analysis system 14 will be described later.
  • the gas detection device 1 includes a control unit 10, a subject detection unit 11, a defecation detection unit 12, a sampling system 13, an analysis system 14, a memory unit 15, and a communication unit 16.
  • the control unit 10 controls the operation of each unit of the gas detection device 1, and detects each detectable gas contained in the sample gas. Details of the control unit 10 will be described later.
  • the subject detection unit 11 may be configured to include at least one of an image camera, a personal identification switch, an infrared sensor, and a pressure sensor.
  • the subject detection unit 11 outputs the detection result to the control unit 10.
  • the subject detection unit 11 may include any sensor for authenticating the subject. Examples of such sensors include a load sensor that detects weight, a sensor that detects sitting height, a sensor that detects pulse, a sensor that detects blood flow, a sensor that detects a face, and a sensor that detects voice.
  • the subject detection unit 11 can detect that a subject has entered the toilet by detecting the reflected light from an object of infrared light irradiated by the infrared sensor. As a detection result, the subject detection unit 11 outputs a signal indicating that a subject has entered the toilet to the control unit 10.
  • the subject detection unit 11 can detect that the subject has sat on the toilet seat 4B by detecting the pressure on the toilet seat 4B as shown in FIG. 8. As a detection result, the subject detection unit 11 outputs a signal indicating that the subject has sat on the toilet seat 4B to the control unit 10.
  • the subject detection unit 11 can detect that the subject has stood up from the toilet seat 4B by detecting a reduction in pressure on the toilet seat 4B as shown in FIG. 8. As a detection result, the subject detection unit 11 outputs a signal indicating that the subject has stood up from the toilet seat 4B to the control unit 10.
  • the subject detection unit 11 is configured to include an image camera and a personal identification switch, etc., it collects data such as facial images, sitting height, and weight.
  • the subject detection unit 11 identifies and detects individuals from the collected data. As a detection result, the subject detection unit 11 outputs a signal indicating the identified individual to the control unit 10.
  • the subject detection unit 11 if it is configured to include a personal identification switch or the like, it identifies (detects) an individual based on the operation of the personal identification switch. In this case, personal information may be registered (stored) in advance in the memory unit 15. The subject detection unit 11 outputs a signal indicating the identified individual to the control unit 10 as the detection result.
  • the defecation detection unit 12 is a component that detects the discharge (defecation) of a sample (feces) from the subject.
  • the defecation detection unit 12 starts operating under the control of the main control unit 101, and when it detects that the sample has been discharged into the toilet bowl 4A, it outputs a signal to the control unit 10 indicating that the sample has been discharged into the toilet bowl 4A.
  • the defecation detection unit 12 may be, for example, a sensor that detects the sound made when the sample hits the water stored in the toilet bowl 4A. In this case, the defecation detection unit 12 outputs a signal indicating information indicating the detected sound to the control unit 10.
  • the defecation detection unit 12 may be a pressure sensor that can detect that the sample has fallen into the toilet bowl 4A.
  • the storage unit 15 is composed of, for example, a semiconductor memory or a magnetic memory.
  • the storage unit 15 stores various information and programs for operating the gas detection device 1.
  • the storage unit 15 may function as a work memory.
  • the storage unit 15 may also store an estimation model M1 used for various estimations performed by the control unit 10.
  • the communication unit 16 may be capable of communicating with the intestinal information estimation device 2.
  • the communication method used in the communication between the communication unit 16 and the intestinal information estimation device 2 may be a short-range wireless communication standard or a wireless communication standard connecting to a mobile phone network, or may be a wired communication standard.
  • the short-range wireless communication standard may include, for example, WiFi (registered trademark), Bluetooth (registered trademark), infrared, and NFC (Near Field Communication).
  • the wireless communication standard connecting to a mobile phone network may include, for example, LTE (Long Term Evolution) or a fourth-generation or higher mobile communication system.
  • the communication method used in the communication between the communication unit 16 and the intestinal information estimation device 2 may be, for example, a communication standard such as LPWA (Low Power Wide Area) or LPWAN (Low Power Wide Area Network).
  • the gas detection device 1 includes a sampling system 13 that sucks (collects) and stores sample gas together with outside air from the space within the toilet bowl 4A, and an analysis system 14 that uses the sample gas collected by the sampling system 13 to detect the type and concentration of each detectable gas contained in the sample gas.
  • the sampling system 13 and analysis system 14 are described below with reference to FIG. 9.
  • the collection system 13 includes a first valve 131 and a first pump 132. Furthermore, as shown in FIG. 9, each part of the collection system 13 is connected by a flow path 31 and a flow path 32.
  • the first valve 131 provided in the sampling system 13 is located on the flow path 31 and is a valve that operates according to the control of the main control unit 101.
  • the first valve 131 may be configured as an electromagnetically driven, piezoelectrically driven, motor-driven, or other valve.
  • the first valve 131 can adjust the degree of opening (degree of communication) of each flow path according to the control of the main control unit 101, thereby adjusting the state of communication between the flow paths 31 and 32, and between the flow paths 32 and 36 (described later).
  • the inflow of the sample gas and purge gas into the flow paths and the sensor chamber 144 (described later) can be adjusted.
  • the first pump 132 is provided between the flow paths 31 and 32, and is connected to the sensor chamber 144 via the flow path 32.
  • the first pump 132 operates under the control of the main control unit 101.
  • the first pump 132 draws in the sample gas in the toilet bowl 4A through the opening of the flow path 31 that opens toward the inside of the toilet bowl 4A, and supplies it to the flow path 32.
  • the first pump 132 shown in FIG. 10 may be configured as a piezoelectric pump, a motor pump, or the like.
  • the first pump 132 may also be used to supply purge gas to the flow path 32, as described below.
  • the flow path 31 is a tubular member provided to connect between the toilet bowl 4A and the first pump 132.
  • One end of the flow path 31 has an opening that opens into the toilet bowl 4A, and the opposite end is connected to the first pump 132.
  • the flow path 32 is a flow path provided between the first pump 132 and the sensor chamber 144.
  • the analytical system 14 includes a second valve 141, a second pump 142, a gas sensor 143, and a sensor chamber 144. As shown in FIG. 9, the analytical system 14 is connected to the outside via a discharge path 33 and a flow path 34. Each part of the analytical system is connected to each other via a flow path 37.
  • the second valve 141 is a valve provided on the flow path 34.
  • the second valve 141 operates under the control of the main control unit 101, and can switch between a state in which the flow paths 34 and 36 are connected to each other and a state in which the flow paths 34 and 37 are connected to each other.
  • the second pump 142 is a pump that is provided on the flow path 37 and is connected to the sensor chamber 144 via the flow path 37.
  • the second pump 142 operates based on the control of the main control unit 101, and can supply outside air sucked from the flow path 34 to the sensor chamber 144.
  • the gas sensor 143 may be a sensor that outputs a detection signal that varies depending on the concentration of the detectable gas.
  • the gas sensor 143 will be described using an example of a sensor whose detection signal intensity changes depending on the concentration of the detectable gas, but is not limited to this.
  • the gas sensor 143 can output a detection signal whose intensity corresponds to the concentration of the detectable gas that may be contained in the sample gas.
  • the gas detection device 1 may be provided with multiple gas sensors 143.
  • the multiple gas sensors 143 may each be capable of outputting a detection signal corresponding to the concentration of a different type of detectable gas. This allows the gas detection device 1 to analyze the concentrations of multiple types of detectable gas.
  • the gas sensor 143 includes a sensor element and a resistor element.
  • the sensor element and resistor element are connected in series between a power supply terminal and a ground terminal.
  • a constant voltage value VC is applied between the power supply terminal and the ground terminal.
  • the same current value IS flows through each of the sensor element and the resistor element.
  • the current value IS can be determined according to the resistance value RS of the sensor element and the resistance value RL of the resistor element.
  • the voltage output by the gas sensor 143 may be the voltage value VS applied to the sensor element or the voltage value VRL applied to the resistor element.
  • the power supply terminal is connected to a power supply such as a battery provided in the gas detection device 1.
  • the ground terminal is connected to the ground of the gas detection device 1.
  • One end of the sensor element is connected to the power supply terminal.
  • the opposite end of the sensor element is connected to one end of the resistive element.
  • the sensor element is an electrochemical sensor, a photoacoustic sensor, or a semiconductor sensor.
  • the sensor element is not limited to a semiconductor sensor.
  • the sensor element may be a catalytic combustion sensor or a solid electrolyte sensor, etc.
  • the sensor element includes a gas-sensing portion.
  • the gas-sensing portion includes a metal oxide semiconductor material according to the type of the gas sensor 143.
  • An example of the metal oxide semiconductor material includes one or more selected from tin oxide ( SnO2 , etc.), indium oxide ( In2O3 , etc.), zinc oxide (ZnO, etc.), tungsten oxide ( WO3 , etc.), and iron oxide ( Fe2O3 , etc.).
  • the sensor element may further include a heater for heating the gas-sensing portion.
  • the detectable gas contained in the sample gas is replaced by oxygen adsorbed to the surface of the gas-sensing portion of the sensor element, and a reduction reaction may occur.
  • the reduction reaction may remove the oxygen adsorbed to the surface of the gas-sensing portion.
  • the resistance value RS of the sensor element may decrease, and the voltage value VS applied to the sensor element may decrease.
  • the voltage value VS applied to the sensor element may decrease depending on the concentration of the detectable gas contained in the sample gas.
  • the sum of the voltage value VS and the voltage value VRL is constant. Therefore, when sample gas is supplied to the gas sensor 143, the voltage value VRL may increase depending on the concentration of the detectable gas contained in the sample gas.
  • the resistive element is a variable resistive element.
  • the resistance value RL of the resistive element can be changed by a control signal from the control unit 10.
  • One end of the resistive element is connected to the opposite end of the sensor element.
  • the opposite end of the resistive element is connected to the ground terminal.
  • the voltage value VS applied to the sensor element can be adjusted. For example, if the resistance value RL is set equal to the resistance value RS of the sensor element, the amplitude of the voltage value VS applied to the sensor element can be close to the maximum value.
  • the sensor chamber 144 is a chamber that houses the gas sensor 143 inside. As shown in FIG. 10, one end of the flow path 32 is connected to the sensor chamber 144. In other words, the sensor chamber 144 is connected to the first pump 132 via the flow path 32. In addition, one end of the discharge path 33 and one end of the flow path 37 are connected to the sensor chamber 144.
  • the exhaust path 33 may be composed of a tubular member such as a resin tube or a metal or glass pipe.
  • One end (first end) of the exhaust path 33 is connected to the sensor chamber 144, and the opposite end (second end) of the exhaust path 33 opens toward the outside of the housing 30 of the gas detection device 1.
  • the flow path 34 is a tubular member. One end of the flow path 34 has an opening that opens toward an external space different from the inside of the toilet bowl 4A, and the opposite end of the flow path 34 is connected to the second valve 141.
  • the filter 35 is a filter provided on the flow path 34.
  • the filter 35 may be a filter capable of adsorbing unnecessary components contained in the outside air sucked in from the opening of the flow path 34, such as each detectable gas contained in the outside air.
  • flow path 36 One end of flow path 36 is connected to second valve 141, and the opposite end is connected to first valve 131. Also, one end of flow path 37 is connected to second valve 141, and the opposite end is connected to sensor chamber 144.
  • the first pump 132 When the first valve 131 and the second valve 141 are open and the flow paths 34, 36, and 32 are connected, the first pump 132 operates to suck air (purge gas) from the toilet room through the first end of the flow path 34.
  • the sucked purge gas is purified by passing through the filter 35, and the purified purge gas passes through the flow paths 36 and 32 to be supplied to the sensor chamber 144, and then is discharged from the discharge path 33.
  • the purge gas passes through the flow path 32 and is discharged together with the sample gas remaining in the flow path 32, so that the flow path 32 through which the sample gas passed is cleaned by the purge gas.
  • the second pump 142 When the second valve 141 is open and the flow paths 34 and 37 are connected, the second pump 142 operates to suck purge gas from the toilet room through the opening of the flow path 34.
  • the sucked purge gas is purified by passing through the filter 35, and the purified purge gas passes through the flow path 37 to be supplied to the sensor chamber 144.
  • the control unit 10 includes a main control unit 101 and a detection control unit 102.
  • the main control unit 101 controls the operation of each unit of the gas detection device 1. Specifically, the main control unit 101 controls the operation of the subject detection unit 11, the defecation detection unit 12, the first valve 131, the first pump 132, the second valve 141, and the second pump 142.
  • the main control unit 101 operates the subject detection unit 11 while power is being supplied to the gas detection device 1, and when it acquires a signal from the subject detection unit 11 indicating that the subject has sat on the toilet seat 4B, it starts the operation of the defecation detection unit 12.
  • the main control unit 101 When the main control unit 101 receives a signal from the defecation detection unit 12 indicating that stool has been discharged into the toilet bowl 4A, it starts collecting sample gas in the toilet bowl 4A and detecting specific components contained in the gas.
  • the main control unit 101 opens the first valve 131 to bring flow path 31 and flow path 32 into communication.
  • the main control unit 101 also opens the second valve 141 to bring flow path 34 and flow path 37 into communication.
  • the main control unit 101 alternately operates the first pump 132 and the second pump 142 for a predetermined time each.
  • sample gas in the toilet bowl 4A is collected from the opening at the end of flow path 31 on the toilet bowl 4A side, passes through flow path 32, and is supplied to the sensor chamber 144.
  • purge gas is sucked in from the outside and supplied to the sensor chamber 144 via flow paths 34 and 37.
  • the main control unit 101 may supply the sample gas and purge gas to the sensor chamber 144 for, for example, 10 seconds, and then stop the operation of the first pump 132 and the second pump 142.
  • the main control unit 101 controls each unit to clean the flow path 32. Specifically, the main control unit 101 controls the first valve 131 and the second valve 141 to bring the flow paths 34, 36, and 32 into communication with each other, and operates the first pump 132. As a result, the purge gas is supplied to the flow path 32, and the sample gas remaining in the flow path 32 passes through the sensor chamber 144 together with the purge gas and is discharged from the discharge path 33, thereby achieving cleaning of the flow path 32. The main control unit 101 also controls each unit to clean the sensor chamber 144.
  • the main control unit 101 controls the second valve 141 to bring the flow paths 34 and 37 into communication with each other, and operates the second pump 142. This allows purge gas to be supplied to the sensor chamber 144 and discharged through the exhaust path 33, thereby cleaning the sensor chamber 144.
  • the detection control unit 102 acquires a signal corresponding to the concentration of a predetermined component of each detected gas contained in the sample gas from the gas sensor 143.
  • the intensity of the signal acquired by the detection control unit 102 becomes waveform data indicating the concentration of the predetermined component.
  • the detection control unit 102 estimates the type and concentration of the predetermined component based on the waveform data. For this estimation, a learned estimation model M1 that has been trained using a data set including multiple pairs of waveform data as input data for learning and information indicating the type and concentration of the detected gas as teacher data may be used.
  • the learning process of this estimation model M1 may be configured to be performed by the intestinal information estimation device 2, or may be configured to be performed by an external computer different from the intestinal information estimation device 2.
  • the detection control unit 102 outputs information indicating the type and concentration of the detected predetermined component to the communication unit 16, and outputs information indicating that the detection of the predetermined component has been completed to the main control unit 101.
  • the detection control unit 102 may store detection data D1 including each piece of detected information in the storage unit 15.
  • the detection control unit 102 may create detection data each time it detects the type and concentration of a specific component contained in the sample gas, and store the detection data in the storage unit 15.
  • the detection control unit 102 may store the detection data D1 in association with various pieces of information related to the detection data D1 in the storage unit 15. Specifically, as shown in FIG. 2, the detection control unit 102 may store the detection data D1 in association with a subject ID and sample gas ID indicating the subject from whom the sample gas was collected, the date and time when the sample gas was collected, and a gas detection device ID indicating the gas detection device 1.
  • the intestinal information estimation device 2 includes a communication unit 21, which is a communication module for communicating with the gas detection device 1 and the electronic device 3, a control unit 22, and a storage unit 23.
  • the control unit 22 controls the operation of each unit of the intestinal information estimation device 2.
  • the control unit 22 also includes an estimation unit 221 and a health degree information calculation unit 222.
  • the storage unit 23 is composed of, for example, a semiconductor memory or a magnetic memory.
  • the storage unit 23 may store detection information 231 acquired from the gas detection device 1, a program for operating the gas detection device 1, and a learned estimation model M1 used in the estimation performed by the estimation unit 221.
  • the storage unit 23 may further store subject information 232.
  • the storage unit 23 may also function as a work memory.
  • the intestinal information estimation device 2 may include a learning unit 24 that performs machine learning to construct an estimation model M1.
  • the memory unit 23 may store learning data 233 used to generate the estimation model M1.
  • the estimation model M1 does not have to be generated by the intestinal information estimation device 2.
  • an estimation model M1 generated by a computer different from the intestinal information estimation device 2 by executing a machine learning process using the learning data 233 may be installed in the intestinal information estimation device 2.
  • the training data may include a combination of the first sample comparison results or the second sample results and sample measurement information, as described below.
  • First sample comparison result A result of comparing a first sample signal, which is a detection signal corresponding to sample gas when each of the sample providers defecates at a third time point, with a second sample signal, which is a detection signal corresponding to sample gas when each of the sample providers defecates at a fourth time point a predetermined period of time after the third time point.
  • Second sample comparison result A result of comparing a first sample concentration, which is the concentration of a predetermined component corresponding to the first sample signal, with a second sample concentration, which is the concentration of a predetermined component corresponding to the second sample signal.
  • Sample measurement information Information including at least one of information regarding the quantity and abundance ratio of at least one of short-chain fatty acid producing bacteria and metabolic substances contained in the stool of each sample donor, obtained by prior analysis.
  • Information prepared for learning including at least one of the information regarding the amount and the proportion of at least one of the short-chain fatty acid producing bacteria and the metabolic substances actually contained in the stool of each sample donor, may be obtained using various methods.
  • the information regarding the short-chain fatty acid producing bacteria may be obtained using a next-generation sequencer, and the information regarding the metabolic substances may be obtained using CE-MS.
  • Other analytical methods such as GC-MS, LC-MS, and NMR may be used to measure the metabolic substances.
  • the estimation unit 221 inputs the first comparison result or the second comparison result shown below into an estimation model M1, and estimates intestinal information regarding at least one of the amount and abundance ratio of at least one of short-chain fatty acid producing bacteria and metabolic substances contained in the subject's stool.
  • - First comparison result A result of comparing a first detection signal, which is a detection signal corresponding to sample gas during defecation performed at a first time point, with a second detection signal, which is a detection signal corresponding to sample gas during defecation performed at a second time point a predetermined period of time after the first time point.
  • Second comparison result a result of comparing a first concentration, which is the concentration of a predetermined component corresponding to the first detection signal, with a second concentration, which is the concentration of a predetermined component corresponding to the second detection signal.
  • the intestinal information estimated in this manner can be information regarding at least one of the changes in the amount and the changes in the proportion of short-chain lipid-producing bacteria and metabolic substances contained in the subject's stool during the period from the first time point to the second time point.
  • the health information calculation unit 222 calculates health information indicating the health of the subject from the intestinal information.
  • the intestinal information is information regarding at least one of the changes in the amount and the changes in the presence ratio of short-chain fat-producing bacteria and metabolic substances contained in the subject's stool during the period from the first time point to the second time point
  • the health information calculation unit 222 calculates health information indicating the change in the subject's health.
  • the health information is useful for estimating the subject's health condition, and may be, for example, information regarding at least one of the subject's physical condition, immunity, tendency to gain muscle, tendency to gain weight, stress, concentration, anti-aging, skin beauty, mental health, and sleep.
  • the intestinal information estimation system 100 provides health information to medical professionals, caregivers who manage and monitor the subject's health, and the subject, so that they can quickly learn of any changes in the subject's health condition. This allows medical professionals, caregivers, and the subject to consider early on the need for medical intervention to prevent disease.
  • the electronic device 3 includes a communication unit 311, which is a communication module for communicating with the intestinal information estimation device 2, a control unit 312 that controls the operation of each unit of the electronic device 3, and a display unit 313.
  • the control unit 312 may receive the estimation result information or health degree information D3 output by the intestinal information estimation device 2 via the communication unit 311.
  • the electronic device 3 may display the received estimation result information or health degree information D3 on the display unit 313.
  • the display unit 313 may include a display capable of displaying characters and the like, and a touch screen capable of detecting contact by a finger or the like of a user (subject).
  • the display may include a display device such as a liquid crystal display (LCD), an organic electroluminescence display (OELD), or an inorganic electroluminescence display (IELD).
  • a display device such as a liquid crystal display (LCD), an organic electroluminescence display (OELD), or an inorganic electroluminescence display (IELD).
  • the detection method of the touch screen may be any method, such as a capacitance method, a resistive film method, a surface acoustic wave method (or an ultrasonic method), an infrared method, an electromagnetic induction method, or a load detection method.
  • Fig. 11 is a sequence diagram showing an example of the flow of processing performed by the intestinal information estimation system 100.
  • the gas detection device 1 detects a specific component from the collected sample gas and outputs a detection signal corresponding to the concentration of the specific component (step S1: detection control step).
  • the intestinal information estimation device 2 inputs the first comparison result or the second comparison result into the estimation model M1 to estimate the intestinal information (step S2: estimation step).
  • the control unit 312 of the electronic device 3 causes the display unit 313 to display the estimation result information acquired from the intestinal information estimation device 2 (step S3).
  • the intestinal information estimated by the intestinal information estimation system 100 is information regarding at least one of the amount and the abundance ratio of at least one of the short-chain fatty acid producing bacteria and metabolic substances contained in the stool of the same subject.
  • the intestinal information estimation system 100 can estimate changes in the intestinal environment of the subject over a predetermined period of time (e.g., a period from a first time point to a second time point).
  • the intestinal information estimation system 100 can estimate the health condition of the subject and provide intestinal information that is useful information that can lead to early detection of abnormalities in the subject's mind and body.
  • Fig. 12 is a schematic diagram showing another example of the configuration of gas detection apparatus 1.
  • members having the same functions as members already explained are denoted by the same reference numerals, and explanations thereof will not be repeated.
  • the gas detection device 1 shown in FIG. 12 includes a sampling system 13 and an analysis system 14a.
  • the sampling system 13 includes a first valve 131 and a first pump 132
  • the analysis system 14a includes a second valve 141, a third valve 145, a sensor chamber 144, and a third pump 146.
  • the first pump 132 is provided between the flow path 31 and the flow path 32, and is connected to a storage tank 38 capable of storing sample gas via the flow path 32.
  • the first pump 132 operates under the control of the main control unit 101.
  • the first pump 132 draws in the sample gas in the toilet bowl 4A via the opening of the flow path 31 that opens toward the inside of the toilet bowl 4A, and supplies it to the storage tank 38.
  • the storage tank 38 is connected to the sensor chamber 144 via the flow path 39, the third valve 145, and the flow path 37.
  • the flow path 39 is a tubular member provided to connect the reservoir 38 and the third pump 145. One end of the flow path 39 is connected to the reservoir 38, and the opposite end is connected to the sensor chamber 144.
  • the reservoir 38 may be a column, a bag, or the like made of resin, metal, or rubber.
  • the third valve 145 is located on the flow path 37 and is a valve that operates according to the control of the main control unit 101.
  • the third valve 145 may be configured as an electromagnetically driven, piezoelectrically driven, motor-driven, or other valve.
  • the third valve 145 can adjust the degree of opening (degree of communication) of each flow path according to the control of the main control unit 101, thereby adjusting the state of communication between flow paths 37 and 37a, and between flow paths 39 and 37a.
  • the inflow of sample gas and purge gas into the sensor chamber 144 can be adjusted.
  • the third pump 146 is located on the discharge path 33 and is a pump that operates under the control of the main control unit 101.
  • the third pump 146 operates based on the control of the main control unit 101, and can supply the sample gas or purge gas sucked from the flow path 37a into the sensor chamber 144.
  • the third pump 146 can also discharge the sample gas or purge gas from within the sensor chamber 144 to the outside of the sensor chamber 144.
  • the collected sample gas is not directly supplied to the sensor chamber 144, but is temporarily stored in the storage tank 38, whereby the concentration of the specific components contained therein is averaged, and a stable sample gas is supplied to the sensor chamber 144.
  • This allows the gas detection device 1 to output a detection signal with high accuracy that corresponds to the concentration of the specific components detected in the sample gas.
  • the gas detection device 1 detects a predetermined component contained in the gas and outputs a detection signal corresponding to the concentration of the predetermined component.
  • the intestinal information estimation device 2 estimates at least one of the information on the amount and the presence ratio of at least one of the short-chain fatty acid producing bacteria and the metabolite contained in the subject's stool.
  • the intestinal information estimation system 100 is not limited to this configuration.
  • the gas detection device 1 may include an estimation unit 221 and perform the processing performed in the intestinal information estimation device 2.
  • the estimation of the information on the amount and the presence ratio of at least one of the short-chain fatty acid producing bacteria and the metabolite contained in the subject's stool from the collection of the sample gas can be completed only by the gas detection device 1.
  • the intestinal information estimation system 100 does not need to include the intestinal information estimation device 2, and the gas detection device 1 may transmit the estimated information to the electronic device 3.
  • FIG. 13 is a schematic diagram showing a configuration of an intestinal information estimation system 100A according to a fourth embodiment.
  • the intestinal information estimation system 100A includes a gas detection device 1A and an intestinal information estimation device 2A instead of the gas detection device 1 and the intestinal information estimation device 2.
  • the gas detection device 1A does not need to be communicatively connected to the intestinal information estimation device 2A via a communication network.
  • the gas detection device 1A is communicatively connected only to the electronic device 3.
  • the gas detection device 1A may transmit various information such as concentration information to the electronic device 3, and the electronic device 3 may transmit the concentration information received from the gas detection device 1A to the intestinal information estimation device 2A.
  • the gas detection device 1A transmits concentration information to the electronic device 3 via a communication device such as a LAN.
  • the electronic device 3 transmits the detection information to the intestinal information estimation device 2A.
  • the intestinal information estimation device 2A transmits estimation result information to the electronic device 3 that is the source of the detection information.
  • the intestinal information estimation system 100A there may be a plurality of electronic devices 3 communicatively connected to the intestinal information estimation device 2A. Also, in the intestinal information estimation system 100A, there may be a plurality of gas detection devices 1A communicatively connected to the electronic device 3.
  • the intestinal information estimation device 2A can output estimation result information based on the detection information from each of the multiple gas detection devices 1A, and transmit the estimation result information to the electronic device 3 that is the source of each detection information.
  • the intestinal information estimation system 100A can provide estimation result information individually to each of the subjects who belong to different households or different facilities.
  • the intestinal information estimation device 2 estimates at least one of information on the amount and the abundance ratio of at least one of short-chain fatty acid producing bacteria and metabolites contained in the stool of the subject, and outputs the intestinal information.
  • an estimation model M1 is used.
  • the intestinal information estimation device 2 inputs the first comparison result or the second comparison result to the estimation model M1 to estimate the intestinal information.
  • the health degree information calculation unit 222 calculates health degree information indicating the health degree of the subject from the intestinal information.
  • the device that outputs health level information may output the information without going through intestinal information. That is, for example, the first detection signal or the second detection signal may be input to the estimation model M1 together with the first comparison result or the second comparison result, the health level may be estimated, and the health level information may be output.
  • the estimation model M1 may be a trained estimation model that has been trained using a data set that includes multiple pairs of waveform data as input data for learning and health level information as teacher data.
  • the functions of the intestinal information estimation system 100, 100A can be realized by a program for causing a computer to function as the system, and a program for causing a computer to function as each control block of the system (particularly each part included in the control units 10, 10A, and 22).
  • the system includes a computer having at least one control device (e.g., a processor) and at least one storage device (e.g., a memory) as hardware for executing the program.
  • the program is executed by the control device and storage device, thereby realizing each of the functions described in each of the above embodiments.
  • the above program may be recorded on one or more computer-readable recording media, not on a temporary basis.
  • the recording media may or may not be included in the device. In the latter case, the above program may be supplied to the device via any wired or wireless transmission medium.
  • each of the above control blocks can be realized by a logic circuit.
  • the scope of this disclosure also includes an integrated circuit in which a logic circuit that functions as each of the above control blocks is formed.
  • the intestinal information estimation system includes a detection control unit that detects a predetermined component from gas originating from a subject and outputs a detection signal corresponding to the concentration of the predetermined component, and an estimation unit that inputs a first comparison result obtained by comparing a first detection signal, which is the detection signal corresponding to the gas collected at a first time point, with a second detection signal, which is the detection signal corresponding to the gas collected at a second time point a predetermined period of time has elapsed from the first time point, or a second comparison result obtained by comparing a first concentration, which is the concentration of the predetermined component corresponding to the first detection signal, with a second concentration, which is the concentration of the predetermined component corresponding to the second detection signal, into an estimation model to estimate intestinal information of the subject.
  • the gas may be gas resulting from the subject's stool obtained during the subject's defecation act.
  • the intestinal information may be information regarding at least either the amount or the proportion of at least either one of short-chain fatty acid producing bacteria and metabolic substances contained in the stool of the subject.
  • the predetermined period may be one day or more and one month or less.
  • the estimation model may be generated by machine learning using learning data including a combination of: (1A) a first sample comparison result obtained by comparing a first sample signal, which is the detection signal corresponding to the gas during a defecation performed by each of the sample providers at a third time point, with a second sample signal, which is the detection signal corresponding to the gas during a defecation performed by each of the sample providers at a fourth time point a predetermined period of time has elapsed since the third time point; or (1B) a second sample result obtained by comparing a first sample concentration, which is the concentration of the predetermined component corresponding to the first sample signal, with a second sample concentration, which is the concentration of the predetermined component corresponding to the second sample signal; and (2) sample measurement information, which is obtained in advance by analyzing the stool of the sample provider during defecation performed at the third time point and the fourth time point, and which includes at least one of
  • the detection control unit may determine whether the predetermined period of time has elapsed since the first time point each time the subject defecates after the first time point, and if it is determined that the predetermined period of time has elapsed since the first time point, detect the predetermined component from the gas at the time of defecation and output the second detection signal corresponding to the concentration of the predetermined component.
  • the specified component may be at least one of methyl mercaptan, hydrogen sulfide, hydrogen, and carbon dioxide.
  • the intestinal information estimation system is any one of aspects 1 to 7 above, in which the intestinal information may be information relating to at least one of the change in the amount and the change in the presence ratio of short-chain fat-producing bacteria and metabolic substances contained in the stool of the subject during the period from the first time point to the second time point.
  • the intestinal information estimation system may further include a health information calculation unit that calculates health information indicating the health of the subject from the intestinal information in any of aspects 1 to 8 above.
  • the health information may be information on at least one of the subject's physical condition, immunity, tendency to gain muscle, tendency to gain weight, stress, concentration, anti-aging, beauty of the skin, mental health, and sleep.
  • the short-chain fatty acid producing bacteria may be at least one of butyric acid producing bacteria and acetic acid producing bacteria.
  • the metabolic substance may be at least one of butyric acid and acetic acid.
  • the intestinal information estimation method includes a detection control step of detecting a predetermined component from gas originating from a subject and outputting a detection signal corresponding to the concentration of the predetermined component, and an estimation step of inputting a first comparison result obtained by comparing a first detection signal, which is the detection signal corresponding to the gas collected at a first time point, with a second detection signal, which is the detection signal corresponding to the gas collected at a second time point a predetermined period of time has elapsed since the first time point, or a second comparison result obtained by comparing a first concentration, which is the concentration of the predetermined component corresponding to the first detection signal, with a second concentration, which is the concentration of the predetermined component corresponding to the second detection signal, into an estimation model to estimate the intestinal information of the subject.
  • the control program according to aspect 14 of the present disclosure is a control program for causing a computer to function as the intestinal information estimation system described in any one of aspects 1 to 12 above, and is a control program for causing a computer to function as the estimation unit.
  • the storage medium according to aspect 15 of the present disclosure is a computer-readable recording medium on which the control program described in aspect 14 above is recorded.
  • Example 1 Fig. 14 is a diagram showing the correlation between the change in the concentration ratio of sulfur-based gases contained in sample gases within a predetermined period and health level information (change in the fatness tendency score).
  • the correlation diagram shown in Fig. 14 is based on the results of analyzing sample gases and feces provided by each of 11 specimen donors.
  • the "weight gain score” shown on the vertical axis of FIG. 14 is a score calculated by a predetermined calculation from the abundance ratio of bifidobacteria, faecali bacteria, etc., and is a value indicating the subject's degree of weight gain.
  • the "weight gain score” may be a value calculated based on the maximum value of the sum of the abundance ratios of bifidobacteria, faecali bacteria, etc. from all sample donors, and the sum of the abundance ratios of bifidobacteria, faecali bacteria, etc. from each sample donor divided by this maximum value.
  • the "sulfur-based gas concentration ratio" shown on the horizontal axis of Figure 14 is a value that indicates the amount of change in the concentration ratio of sulfur-based gases, such as methyl mercaptan, in the sample gas within a specified period.
  • the concentration ratio of sulfur-based gases contained in the sample gas has not changed within the specified period.
  • the concentration ratio of sulfur-based gases contained in the sample gas has decreased within the specified period, and when it is positive, it means that the concentration ratio of sulfur-based gases contained in the sample gas has increased within the specified period.
  • Example 2 Fig. 15 is a diagram showing the correlation between the rate of change in the concentration ratio of hydrogen contained in the sample gas and the amount of change in the amount of acetic acid contained in the feces over a given period of time.
  • the correlation diagram shown in Fig. 15 is based on the results of analyzing the sample gas and feces provided by each of 11 specimen donors.
  • the “amount of acetic acid” shown on the vertical axis of FIG. 15 is the change in the amount of acetic acid (mg) contained in 1 g of stool provided by each of the specimen donors. It is known that the amount of acetic acid contained in stool reflects the quality of the intestinal environment of the subject.
  • the “H 2 concentration ratio” shown on the horizontal axis of FIG. 15 is a value indicating the change in the concentration ratio of hydrogen gas contained in the sample gas provided by each of the specimen donors within a specified period. When the "H 2 concentration ratio" is "0", it means that the concentration ratio of hydrogen gas contained in the sample gas has not changed within the specified period. When the "H 2 concentration ratio” is negative, it means that the concentration ratio of hydrogen gas contained in the sample gas has decreased within the specified period, and when it is positive, it means that the concentration ratio of hydrogen gas contained in the sample gas has increased within the specified period.
  • Example 3 Fig. 16 is a diagram showing the correlation between the inverse of the concentration of carbon dioxide contained in the sample gas and health level information (immunity). The correlation diagram shown in Fig. 16 is based on the results of analyzing the sample gas and feces provided by each of 39 specimen donors.
  • the "Immunity Score” shown on the vertical axis of Fig. 16 is a score calculated by a predetermined calculation from the amounts of Faecalis, Eubacterium, Ruminococcus, butyric acid bacteria, etc., and is a value indicating the strength of the subject's immunity. The higher the “Immunity Score", the stronger the immune system of the subject. Meanwhile, “1/ CO2 " shown on the horizontal axis of Fig. 16 is a value indicating the reciprocal (ppm -1 ) of the carbon dioxide content in the sample gas.
  • FIG. 17 is a diagram comparing the health information (change in immunity score) of a specimen donor whose carbon dioxide concentration in the sample gas increased over a specified period of time with the health information (change in immunity score) of a group of subjects whose carbon dioxide concentration decreased over a specified period of time.
  • FIG. 16 it was confirmed that the immunity scores of specimen donors whose carbon dioxide concentration in the sample gas increased over a specified period of time increased, and the immunity scores of specimen donors whose carbon dioxide concentration decreased decreased. Therefore, it was found that if it is possible to accurately estimate how the concentration ratio of carbon dioxide contained in the sample gas collected during a subject's defecation has changed over a specified period of time, it is possible to estimate the health information of the subject.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The present invention estimates intestinal information about a subject with high accuracy from components contained in gas generated from excrement of the subject. This intestinal information estimation system comprises a detection control unit and an estimation unit. A gas sensor detects a prescribed component from gas originating from the subject, and outputs a detection signal corresponding to the concentration of the prescribed component. The estimation unit estimates intestinal information about the subject by inputting, to an estimation model, the following: a first comparison result obtained by comparing a first detection signal, which is a detection signal corresponding to sample gas collected at a first point in time, with a second detection signal, which is a detection signal corresponding to sample gas collected at a second point in time which comes after a prescribed period has elapsed from the first point in time; or a second comparison result obtained by comparing a first concentration, which is the concentration of the prescribed component corresponding to the first detection signal, with a second concentration, which is the concentration of the prescribed component corresponding to the second detection signal.

Description

腸内情報推定システム、腸内情報推定方法、制御プログラム、記録媒体Intestinal information estimation system, intestinal information estimation method, control program, and recording medium
 本開示は、対象者の腸内情報を推定する腸内情報推定システムに関する。 This disclosure relates to an intestinal information estimation system that estimates intestinal information of a subject.
 特許文献1には、排泄ガス中の所定ガス成分を検出するガスセンサから出力された信号値に対応した腸内状態に関する情報をユーザに報知する腸内状態報知装置について記載されている。腸内状態報知装置は、ガスセンサから出力される信号値と、ユーザの腸内状態に関する情報との対応関係を表す対応データを記憶し、該対応データに基づき、ガスセンサから出力された信号値に対応した腸内状態に関する情報をユーザに報知する。 Patent Document 1 describes an intestinal condition notification device that notifies a user of information related to the intestinal condition corresponding to a signal value output from a gas sensor that detects a specific gas component in excreted gas. The intestinal condition notification device stores correspondence data that indicates the correspondence between the signal value output from the gas sensor and information related to the user's intestinal condition, and notifies the user of information related to the intestinal condition corresponding to the signal value output from the gas sensor based on the correspondence data.
日本国特開2007-89857号公報Japanese Patent Publication No. 2007-89857
 開示の一態様に係る腸内情報推定システムは、対象者に起因するガスから所定成分を検出して、該所定成分の濃度に応じた検出信号を出力する検出制御部と、第1時点に採取された前記ガスに対応する前記検出信号である第1検出信号と、前記第1時点から所定期間経過した第2時点に採取された前記ガスに対応する前記検出信号である第2検出信号と、を比較した第1比較結果、又は、前記第1検出信号に対応する前記所定成分の濃度である第1濃度と、前記第2検出信号に対応する前記所定成分の濃度である第2濃度と、を比較した第2比較結果を推定モデルに入力して、前記対象者の腸内情報を推定する推定部と、を備える。 The intestinal information estimation system according to one embodiment of the disclosure includes a detection control unit that detects a predetermined component from gas originating from a subject and outputs a detection signal corresponding to the concentration of the predetermined component, and an estimation unit that inputs a first comparison result obtained by comparing a first detection signal, which is the detection signal corresponding to the gas collected at a first time point, with a second detection signal, which is the detection signal corresponding to the gas collected at a second time point a predetermined period of time has elapsed since the first time point, or a second comparison result obtained by comparing a first concentration, which is the concentration of the predetermined component corresponding to the first detection signal, with a second concentration, which is the concentration of the predetermined component corresponding to the second detection signal, into an estimation model to estimate intestinal information of the subject.
 本開示の一態様に係る腸内情報推定方法は、対象者に起因するガスから所定成分を検出して、該所定成分の濃度に応じた検出信号を出力する検出制御ステップと、第1時点に採取された前記ガスに対応する前記検出信号である第1検出信号と、前記第1時点から所定期間経過した第2時点に採取された前記ガスに対応する前記検出信号である第2検出信号と、を比較した第1比較結果、又は、前記第1検出信号に対応する前記所定成分の濃度である第1濃度と、前記第2検出信号に対応する前記所定成分の濃度である第2濃度と、を比較した第2比較結果を推定モデルに入力して、前記対象者の腸内情報を推定する推定ステップと、を含む。 The intestinal information estimation method according to one aspect of the present disclosure includes a detection control step of detecting a predetermined component from a gas originating from a subject and outputting a detection signal corresponding to the concentration of the predetermined component, and an estimation step of inputting a first comparison result obtained by comparing a first detection signal, which is the detection signal corresponding to the gas collected at a first time point, with a second detection signal, which is the detection signal corresponding to the gas collected at a second time point a predetermined period of time has elapsed since the first time point, or a second comparison result obtained by comparing a first concentration, which is the concentration of the predetermined component corresponding to the first detection signal, with a second concentration, which is the concentration of the predetermined component corresponding to the second detection signal, into an estimation model to estimate the intestinal information of the subject.
 本開示の各態様に係る腸内情報推定システムは、コンピュータによって実現してもよく、この場合には、コンピュータを前記腸内情報推定システムが備える各部(ソフトウェア要素)として動作させることにより前記腸内情報推定システムをコンピュータにて実現させる制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本開示の範疇に入る。 The intestinal information estimation system according to each aspect of the present disclosure may be realized by a computer. In this case, the control program that causes the computer to operate as each part (software element) of the intestinal information estimation system to realize the intestinal information estimation system on a computer, and the computer-readable recording medium on which the control program is recorded, also fall within the scope of the present disclosure.
一実施形態に係る腸内情報推定システムの概略構成の一例を示す概略図である。1 is a schematic diagram showing an example of a schematic configuration of an intestinal information estimation system according to an embodiment. FIG. 検出情報のデータ構造の一例を示す図である。FIG. 11 is a diagram illustrating an example of a data structure of detection information. 検出データのデータ構造の一例を示す図である。FIG. 4 is a diagram illustrating an example of a data structure of detection data. 対象者情報のデータ構造の一例を示す図である。FIG. 2 is a diagram illustrating an example of a data structure of subject information. 推定結果情報のデータ構造の一例を示す図である。FIG. 13 is a diagram illustrating an example of a data structure of estimation result information. 腸内情報のデータ構造の一例を示す図である。FIG. 2 is a diagram showing an example of a data structure of intestinal information. 健康情報のデータ構造の一例を示す図である。FIG. 4 is a diagram illustrating an example of a data structure of health information. ガス検出装置の外観を示す図である。FIG. 1 is a diagram showing the appearance of a gas detection device. ガス検出装置の構成の一例を示す概略図である。FIG. 1 is a schematic diagram showing an example of the configuration of a gas detection device. 腸内情報推定システムの要部構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of a main part of the intestinal information estimation system. 腸内情報推定システムにおいて行われる処理の流れの一例を示すシーケンス図である。1 is a sequence diagram showing an example of a processing flow performed in the intestinal information estimation system. FIG. ガス検出装置の構成の別の例を示す概略図である。FIG. 11 is a schematic diagram showing another example of the configuration of the gas detection device. 実施形態4に係る腸内情報推定システムの構成を示す概略図である。FIG. 13 is a schematic diagram showing the configuration of an intestinal information estimation system according to a fourth embodiment. サンプルガスに含まれる硫黄系ガスの濃度比率と、健康度情報(太りやすさ)との相関を示す図である。FIG. 11 is a diagram showing the correlation between the concentration ratio of sulfur-based gases contained in a sample gas and health level information (proneness to gain weight). サンプルガスに含まれる水素の濃度比率と、便に含まれる酢酸量との相関関係を示す図である。FIG. 13 is a graph showing the correlation between the concentration ratio of hydrogen contained in a sample gas and the amount of acetic acid contained in feces. サンプルガスに含まれる二酸化炭素の濃度の逆数と、健康度情報(免疫力)との相関関係を示す図である。FIG. 11 is a diagram showing the correlation between the inverse of the concentration of carbon dioxide contained in a sample gas and health level information (immunity). サンプルガスに含まれる二酸化炭素の濃度が、所定期間の間に増加した被検者群の健康度情報(免疫力)と、所定期間の間に減少した被検者群の健康度情報(免疫力)とを比較した図である。This figure compares health information (immunity) of a group of subjects whose carbon dioxide concentration contained in sample gas increased over a specified period of time with health information (immunity) of a group of subjects whose carbon dioxide concentration decreased over a specified period of time.
 対象者に起因するガスに含まれる成分から、該対象者の腸内情報を精度高く推定することが求められる。 It is necessary to estimate the intestinal information of a subject with high accuracy from the components contained in the gas originating from the subject.
 本開示の一態様に係る腸内情報推定システムおよび腸内情報推定方法によれば、対象者に起因するガスに含まれる成分から、該対象者の腸内情報を精度高く推定することができる。 The intestinal information estimation system and intestinal information estimation method according to one embodiment of the present disclosure can estimate the intestinal information of a subject with high accuracy from the components contained in the gas originating from the subject.
 〔実施形態1〕
 以下、本開示の一実施形態について、詳細に説明する。
[Embodiment 1]
Hereinafter, one embodiment of the present disclosure will be described in detail.
 (腸内情報推定システム100の概要)
 発明者らは、対象者に起因するサンプルガス(ガス)から検出された所定成分の濃度を解析することにより、該対象者の腸内環境に関する腸内情報を推定可能であることを見出した。さらに、発明者らは、同一の対象者について、下記の(1)又は(2)に基づいて、より詳細な腸内情報を推定可能であることを見出し、本開示の一態様に係る腸内情報推定システム100を発明するに至った。
(1)第1時点に採取されたサンプルガスに対応する検出信号である第1検出信号と、第1時点から所定期間経過した第2時点に採取されたサンプルガスに対応する検出信号である第2検出信号と、を比較した第1比較結果。
(2)第1検出信号に対応する前記所定成分の濃度である第1濃度と、第2検出信号に対応する前記所定成分の濃度である第2濃度と、を比較した第2比較結果。
(Outline of intestinal information estimation system 100)
The inventors have found that it is possible to estimate intestinal information related to the intestinal environment of a subject by analyzing the concentration of a specific component detected from a sample gas (gas) originating from the subject. Furthermore, the inventors have found that it is possible to estimate more detailed intestinal information for the same subject based on the following (1) or (2), and have invented an intestinal information estimation system 100 according to one embodiment of the present disclosure.
(1) A first comparison result obtained by comparing a first detection signal, which is a detection signal corresponding to a sample gas collected at a first point in time, with a second detection signal, which is a detection signal corresponding to a sample gas collected at a second point in time a predetermined period of time after the first point in time.
(2) A second comparison result obtained by comparing a first concentration, which is the concentration of the predetermined component corresponding to the first detection signal, with a second concentration, which is the concentration of the predetermined component corresponding to the second detection signal.
 ここで、「対象者」は、腸内情報推定システム100を利用する者であって、健康度を管理及び監視される対象者を意図している。「サンプルガス」は、検出対象のガスである。「サンプルガス」は、一例としては、対象者の排便行為中に取得された対象者の便に起因するガスであってもよいがこれに限定されない。例えば、「サンプルガス」は、対象者の尿および汗などに起因するガスであってもよい。 Here, the "subject" is intended to mean a person who uses the intestinal information estimation system 100 and whose health is managed and monitored. The "sample gas" is the gas to be detected. As an example, the "sample gas" may be gas resulting from the subject's stool obtained during the subject's act of defecation, but is not limited to this. For example, the "sample gas" may be gas resulting from the subject's urine, sweat, etc.
 「腸内情報」は、対象者の便に含まれる短鎖脂肪酸産生菌及び短鎖脂肪酸産生菌の代謝物質の少なくとも何れか一方の、量及び存在割合の少なくとも何れか一方に関する情報であってもよいがこれに限定されない。例えば、「腸内情報」は、対象者の腸内細菌及び腸内細菌の代謝物質の少なくとも何れか一方の、量及び存在割合の少なくとも何れか一方に関する情報であってもよい。 "Intestinal information" may be, but is not limited to, information regarding at least one of the amount and the proportion of short-chain fatty acid producing bacteria and/or metabolic substances of short-chain fatty acid producing bacteria contained in the stool of the subject. For example, "intestinal information" may be information regarding at least one of the amount and the proportion of intestinal bacteria and/or metabolic substances of intestinal bacteria of the subject.
 「所定期間」は、例えば、1日以上及び1か月以下であってもよいがこれに限定されない。腸内環境は、マラソンなど激しい運動の影響等を受けて、比較的短期間に変化し得る。また、腸内環境は、食生活及びストレスの影響等を受けて中・長期的に改善あるいは悪化する。それゆえ、比較的短期間での腸内環境の変化をモニターする場合には、所定期間を1日間、2日間、3日間等とすればよく、中・長期的な腸内環境の変化をモニターする場合には、所定期間を1週間、2週間、3週間等とすればよい。 The "predetermined period" may be, for example, one day or more and one month or less, but is not limited to this. The intestinal environment can change in a relatively short period of time due to the influence of strenuous exercise such as a marathon. In addition, the intestinal environment improves or deteriorates in the medium to long term due to the influence of diet and stress. Therefore, when monitoring changes in the intestinal environment over a relatively short period of time, the predetermined period may be one day, two days, three days, etc., and when monitoring changes in the intestinal environment over the medium to long term, the predetermined period may be one week, two weeks, three weeks, etc.
 (腸内情報推定システム100の概略構成)
 以下、本開示の一実施形態に係る腸内情報推定システム100の概略構成について、図1を用いて説明する。図1は、本開示の一実施形態に係る腸内情報推定システム100の概略構成の一例を示す概略図である。本明細書において参照する各図は、説明の便宜上、実施形態を説明するために一部の部材のみを簡略化して示した模式図である。従って、腸内情報推定システム100は、本明細書が参照する各図に示されていない任意の構成部材を備え得る。また、各図中の部材の寸法は、実際の構成部材の寸法及び各部材の寸法比率等を忠実に表したものではない。
(Schematic configuration of intestinal information estimation system 100)
Hereinafter, a schematic configuration of an intestinal information estimation system 100 according to an embodiment of the present disclosure will be described with reference to FIG. 1. FIG. 1 is a schematic diagram showing an example of a schematic configuration of an intestinal information estimation system 100 according to an embodiment of the present disclosure. Each figure referred to in this specification is a schematic diagram showing only some members simplified to explain the embodiment for convenience of explanation. Therefore, the intestinal information estimation system 100 may include any component member not shown in each figure referred to in this specification. In addition, the dimensions of the components in each figure do not faithfully represent the dimensions of the actual components and the dimensional ratios of each component.
 腸内情報推定システム100は、ガス検出装置1、腸内情報推定装置2、及び電子機器3を備えている。腸内情報推定システム100において、ガス検出装置1、腸内情報推定装置2、及び電子機器3は、互いに通信可能に接続されていてもよい。ガス検出装置1と腸内情報推定装置2、及び電子機器3と腸内情報推定装置2は無線通信で接続されていてもよいし、有線通信で接続されていてもよい。 The intestinal information estimation system 100 includes a gas detection device 1, an intestinal information estimation device 2, and an electronic device 3. In the intestinal information estimation system 100, the gas detection device 1, the intestinal information estimation device 2, and the electronic device 3 may be connected to each other so that they can communicate with each other. The gas detection device 1 and the intestinal information estimation device 2, and the electronic device 3 and the intestinal information estimation device 2 may be connected by wireless communication or by wired communication.
 腸内情報推定システム100は、一例として、トイレにおいて対象者の便から放出されるガスから所定成分を検出するシステムであってもよく、この場合、ガス検出装置1は、図1に示すように、トイレの便器4に設置されてもよい。ガス検出装置1をトイレの便器4に設置した場合、腸内情報推定システム100は、対象者の便から放出されるガスから所定成分を検出する処理をトイレにおいて行う。それゆえ、腸内情報推定システム100を利用する利用者は、検便等の煩わしい作業をする必要が無く、単にトイレを利用すればよい。 As an example, the intestinal information estimation system 100 may be a system that detects specific components from gas released from the subject's stool in a toilet, in which case the gas detection device 1 may be installed in the toilet bowl 4 as shown in FIG. 1. When the gas detection device 1 is installed in the toilet bowl 4, the intestinal information estimation system 100 performs a process in the toilet to detect specific components from gas released from the subject's stool. Therefore, a user who uses the intestinal information estimation system 100 does not need to perform troublesome tasks such as stool testing, but can simply use the toilet.
 また、ガス検出装置1は、一つの場所に固定設置されていなくてもよく、例えば、対象者によって、携帯可能であってもよい。具体的には、対象者が、腸内情報推定システム100のガス検出装置1を携帯し、対象者がトイレを利用する度にガス検出装置1をトイレの便器に取り付けて使用する態様であってもよい。上記の構成によれば、任意の場所(例えば、外出先等)において、利用者に腸内情報推定システム100を利用させることができる。 In addition, the gas detection device 1 does not have to be fixedly installed in one location, and may be portable by the subject, for example. Specifically, the subject may carry the gas detection device 1 of the intestinal information estimation system 100, and attach the gas detection device 1 to the toilet bowl and use it every time the subject uses the toilet. With the above configuration, it is possible for the user to use the intestinal information estimation system 100 in any location (for example, while out and about, etc.).
 (ガス検出装置1)
 次に、ガス検出装置1について説明する。ガス検出装置1は、対象者の便から放出されるガスから所定成分を検出して、該所定成分の濃度に応じた検出信号を出力する。また、ガス検出装置1は、検出信号に対応する所定成分の濃度を算出して、算出後の濃度の情報を出力してもよい。本開示において、ガス検出装置1が出力する情報を「検出情報」と称する。ガス検出装置1は、検出情報を、腸内情報推定装置2に送信する。
(Gas detection device 1)
Next, the gas detection device 1 will be described. The gas detection device 1 detects a predetermined component from the gas released from the subject's stool and outputs a detection signal corresponding to the concentration of the predetermined component. The gas detection device 1 may also calculate the concentration of the predetermined component corresponding to the detection signal and output information on the calculated concentration. In the present disclosure, the information output by the gas detection device 1 is referred to as "detection information." The gas detection device 1 transmits the detection information to the intestinal information estimation device 2.
 [検出情報]
 ガス検出装置1から出力される検出情報について、図2を用いて説明する。図2は、ガス検出装置1から出力される検出情報のデータ構造の一例を示す図である。図2に示すように検出情報は、対象者ID、検出データD1、サンプルガスID、及びサンプルガス採取日時を含んでいてもよい。
[Detection information]
The detection information output from the gas detection device 1 will be described with reference to Fig. 2. Fig. 2 is a diagram showing an example of a data structure of the detection information output from the gas detection device 1. As shown in Fig. 2, the detection information may include a subject ID, detection data D1, a sample gas ID, and a sample gas collection date and time.
 対象者IDは、対象者に固有の識別情報である。対象者IDは、対象者の名前、及び各対象者に固有の識別情報であってもよい。対象者が、腸内情報推定システム100を利用する利用者である場合、対象者IDは、腸内情報推定システム100を利用する各利用者に付与される利用者IDであってもよい。 The subject ID is identification information unique to the subject. The subject ID may be the subject's name and identification information unique to each subject. If the subject is a user who uses the intestinal information estimation system 100, the subject ID may be a user ID assigned to each user who uses the intestinal information estimation system 100.
 ガス検出装置1は、対象者の1回の排便につき、所定の時間間隔(例えば、30秒間、又は1分間等)でサンプルガスを複数回採取してもよい。採取されたサンプルガスには、それぞれサンプルガスIDが付与されてもよい。図2には、対象者IDが「xxxx」である対象者が使用するガス検出装置1から出力された検出情報を例示している。「2021年mm月dd日のAM7:32」に採取されたサンプルガスには一例として「samp1」というサンプルIDが付与されている。 The gas detection device 1 may collect sample gas multiple times at a predetermined time interval (e.g., 30 seconds, 1 minute, etc.) for each defecation of the subject. A sample gas ID may be assigned to each collected sample gas. Figure 2 shows an example of detection information output from the gas detection device 1 used by a subject with a subject ID of "xxxx". As an example, the sample gas collected at "7:32 AM on mm/dd/2021" is assigned the sample ID "samp1".
 また、検出情報は、ガス検出装置1に固有のガス検出装置IDをさらに含んでいてもよい。図2には、一例として、対象者IDが「xxxx」である対象者が使用するガス検出装置1のガス検出装置ID「ppp」を含む検出情報が示されている。 The detection information may further include a gas detection device ID that is unique to the gas detection device 1. As an example, FIG. 2 shows detection information that includes the gas detection device ID "ppp" of the gas detection device 1 used by a subject with a subject ID of "xxxx".
 検出データD1は、ガスセンサ143(検出部)が出力する検出信号に基づく、サンプル毎の所定成分の濃度を示すデータを含んでいてもよい。所定成分には、メチルメルカプタン(CHSH)、硫化水素(HS)、水素(H)、及び二酸化炭素(CO)のうち少なくとも1つが含まれる。また、所定成分には、例えば、2-プロパノールがさらに含まれていてもよい。検出データD1は、ガスセンサ143から出力される検出信号であってもよいし、検出信号から算出された濃度を示す数値であってもよい。ここで、所定成分の濃度とは、ガス検出装置1が採取したガス中の所定成分の濃度であってよい。また、所定成分は、複数の成分を含むものであってもよく、濃度はサンプルガスの総量に対する複数成分の和の濃度であってよい。濃度の単位は、一例としてppmであってよい。 The detection data D1 may include data indicating the concentration of a predetermined component for each sample based on a detection signal output by the gas sensor 143 (detection unit). The predetermined component includes at least one of methyl mercaptan (CH 3 SH), hydrogen sulfide (H 2 S), hydrogen (H 2 ), and carbon dioxide (CO 2 ). The predetermined component may further include, for example, 2-propanol. The detection data D1 may be a detection signal output by the gas sensor 143, or may be a numerical value indicating a concentration calculated from the detection signal. Here, the concentration of the predetermined component may be the concentration of the predetermined component in the gas collected by the gas detection device 1. The predetermined component may include multiple components, and the concentration may be the sum of the multiple components relative to the total amount of the sample gas. The unit of concentration may be ppm, for example.
 ガス検出装置1は、対象者が排便を行う度にサンプルガスを採取し、サンプルガスに含まれる所定成分を検出してもよい。あるいは、ガス検出装置1は、対象者の便からのサンプルガスを採取した時点から、所定期間が経過するまでの間は、当該対象者の便からのサンプルガスの採取及び所定成分の検出を行わない構成であってもよい。ここで、所定期間は、1日以上1か月以下であってもよい。ガス検出装置1は、検出情報を後述する記憶部15に格納してもよい。 The gas detection device 1 may collect sample gas each time the subject defecates and detect a specific component contained in the sample gas. Alternatively, the gas detection device 1 may be configured not to collect sample gas from the subject's stool or detect a specific component until a specific period of time has elapsed since the time the sample gas is collected from the subject's stool. Here, the specific period of time may be one day or more and one month or less. The gas detection device 1 may store the detection information in the memory unit 15, which will be described later.
 ガス検出装置1(例えば、後述する検出制御部102)は、対象者が第1時点以後に排便を行う度に、第1時点からの経過時間が所定期間経過しているか否かを判定する構成であってもよい。ガス検出装置1は、第1時点から所定期間経過していると判定した場合、当該排便時のガスから所定成分を検出して、該所定成分の濃度に応じた第2検出信号を出力する。例えば、ガス検出装置1は、検出情報の対象者ID、及びサンプルガス採取日時などに基づいて、対象者の便からのサンプルガスを採取した時点から、所定期間が経過しているか否かを判定してもよい。例えば、ガス検出装置1は、同一の対象者の前回のサンプルガス採取日時から所定期間が経過しているか否かを判定し、所定期間が経過している場合にのみ、当該対象者の便からのサンプルガスの採取、及び所定成分の検出を行う構成であってもよい。 The gas detection device 1 (for example, the detection control unit 102 described later) may be configured to determine whether or not a predetermined period of time has elapsed since the first time point each time the subject defecates after the first time point. If the gas detection device 1 determines that a predetermined period of time has elapsed since the first time point, it detects a predetermined component from the gas at the time of the defecation and outputs a second detection signal corresponding to the concentration of the predetermined component. For example, the gas detection device 1 may determine whether or not a predetermined period of time has elapsed since the time sample gas was collected from the subject's stool based on the subject ID and the date and time of sample gas collection in the detection information. For example, the gas detection device 1 may be configured to determine whether or not a predetermined period of time has elapsed since the previous date and time of sample gas collection from the same subject, and collect sample gas from the subject's stool and detect the predetermined component only if the predetermined period of time has elapsed.
 図3は、検出データD1のデータ構造の一例を示す図である。図3に示すように、検出データD1には、サンプルID「samp1」のサンプルガスから検出された、下記が含まれていてもよい。
・メチルメルカプタンの濃度d11
・硫化水素の濃度d12
・水素の濃度d13
・二酸化炭素の濃度d14。
3 is a diagram showing an example of the data structure of the detection data D1. As shown in FIG. 3, the detection data D1 may include the following detected from the sample gas with the sample ID "samp1".
Methyl mercaptan concentration d11
Hydrogen sulfide concentration d12
Hydrogen concentration d13
- Carbon dioxide concentration d14.
 (腸内情報推定装置2)
 次に、腸内情報推定装置2について説明する。図1に示す腸内情報推定装置2は、腸内情報推定システム100の管理者に管理されるコンピュータであってもよく、サーバ装置であってもよい。腸内情報推定装置2は、第1比較結果、又は第2比較結果を推定モデルM1に入力し、対象者の便に含まれる短鎖脂肪酸産生菌及び代謝物質の少なくとも何れか一方の、量及び存在割合に関する情報の少なくとも何れか一方を推定する。腸内情報推定装置2は、対象者の腸内環境に関する、及び/又は、腸内環境の変化に関する推定結果である腸内情報を出力する。本開示において、腸内情報を含む情報を「推定結果情報」と称する。推定結果情報は、推定結果情報に基づいて算出された対象者の健康度に関する健康度情報をさらに含んでいてもよい。健康度情報については、後に説明する。腸内情報推定装置2は、第1比較結果又は第2比較結果と併せて、例えば、第1検出信号又は第2検出信号を推定モデルM1に入力してもよい。腸内情報推定装置2は、第1比較結果又は第2比較結果と併せて、下記の第1濃度又は第2濃度を推定モデルM1に入力してもよい。
・第1濃度:第1検出信号から算出された、第1検出信号に対応する所定成分の濃度。・第2濃度:第2検出信号から算出された、第2検出信号に対応する所定成分の濃度。
(Intestinal information estimation device 2)
Next, the intestinal information estimation device 2 will be described. The intestinal information estimation device 2 shown in FIG. 1 may be a computer managed by an administrator of the intestinal information estimation system 100, or may be a server device. The intestinal information estimation device 2 inputs the first comparison result or the second comparison result into the estimation model M1, and estimates at least one of information regarding the amount and the presence ratio of at least one of the short-chain fatty acid producing bacteria and the metabolites contained in the subject's stool. The intestinal information estimation device 2 outputs intestinal information that is an estimation result regarding the intestinal environment of the subject and/or regarding the change in the intestinal environment. In the present disclosure, information including intestinal information is referred to as "estimated result information". The estimated result information may further include health degree information regarding the health degree of the subject calculated based on the estimated result information. The health degree information will be described later. The intestinal information estimation device 2 may input, for example, the first detection signal or the second detection signal into the estimation model M1 together with the first comparison result or the second comparison result. The intestinal information estimation device 2 may input the following first concentration or second concentration to the estimation model M1 together with the first comparison result or the second comparison result.
First concentration: the concentration of a predetermined component calculated from the first detection signal and corresponding to the first detection signal. Second concentration: the concentration of a predetermined component calculated from the second detection signal and corresponding to the second detection signal.
 短鎖脂肪酸産生菌は、腸内細菌の一種であり、短鎖脂肪酸を産生する菌である。短鎖脂肪酸産生菌は、具体的には、酪酸産生菌及び酢酸産生菌の少なくとも何れか一方であってよい。酪酸産生菌としては、例えば、フィーカリ菌、ラクノスピラ菌、コプロコッカス菌等が挙げられる。 Short-chain fatty acid producing bacteria are a type of intestinal bacteria that produce short-chain fatty acids. Specifically, short-chain fatty acid producing bacteria may be at least one of butyric acid producing bacteria and acetic acid producing bacteria. Examples of butyric acid producing bacteria include Bacillus faecalis, Lachnospira spp., and Coprococcus spp.
 酢酸産生菌としては、例えば、ビフィズス菌等が挙げられる。 Examples of acetic acid-producing bacteria include bifidobacteria.
 また、腸内情報推定装置2が推定する代謝物質は、酪酸及び酢酸の少なくとも何れか一方であってもよい。酪酸及び酢酸はいずれも、対象者の腸内細菌の代謝系に関与する物質である。酪酸及び酢酸以外の代謝物質としては、例えば、プロピオン酸、ギ酸、コハク酸、オルニチン、トリメチルアミン、グルコース6-リン酸(Glucose 6-phosphate)等が挙げられる。 The metabolic substance estimated by the intestinal information estimation device 2 may be at least one of butyric acid and acetic acid. Both butyric acid and acetic acid are substances involved in the metabolic system of the intestinal bacteria of the subject. Examples of metabolic substances other than butyric acid and acetic acid include propionic acid, formic acid, succinic acid, ornithine, trimethylamine, glucose 6-phosphate, etc.
 腸内情報推定装置2は、例えば、各対象者のIDと、各対象者が使用するガス検出装置1のガス検出装置IDと、各対象者の連絡先とを対応付けた対象者情報を保持していてもよい。 The intestinal information estimation device 2 may store subject information that associates, for example, the ID of each subject, the gas detection device ID of the gas detection device 1 used by each subject, and the contact information of each subject.
 [対象者情報]
 図4は、腸内情報推定装置2において保持されている対象者情報のデータ構造の一例を示す図である。対象者の連絡先は、対象者のメールアドレスであってもよい。腸内情報推定装置2は、対象者情報を参照して、検出情報に含まれている対象者IDから検出情報の送信元であるガス検出装置1を使用する対象者を特定し、該対象者の電子機器3に推定結果情報を送信する。図4に示す対象者情報は、対象者ID「xxxx」の対象者が使用するガス検出装置1のガス検出装置IDは「ppp」であり、該対象者の連絡先は「xxxx@xxx.xxx」であることを示している。
[Target information]
FIG. 4 is a diagram showing an example of the data structure of subject information held in the intestinal information estimation device 2. The contact information of the subject may be the subject's email address. The intestinal information estimation device 2 refers to the subject information, identifies the subject using the gas detection device 1 that is the sender of the detection information from the subject ID included in the detection information, and transmits estimation result information to the electronic device 3 of the subject. The subject information shown in FIG. 4 indicates that the gas detection device ID of the gas detection device 1 used by a subject with subject ID "xxxx" is "ppp", and the contact information of the subject is "xxxx@xxx.xxx".
 あるいは、腸内情報推定装置2は、各対象者に固有のウェブページを作成し、このウェブページを各対象者に閲覧させる構成であってもよい。各対象者に、自身のウェブページを閲覧するための固有パスワード等を設定させてもよい。この場合、腸内情報推定装置2は、対象者情報を参照して、対象者IDから対象者を特定し、該対象者の電子機器3にウェブページのURL等を送信する。 Alternatively, the intestinal information estimation device 2 may be configured to create a unique web page for each subject and have each subject view this web page. Each subject may be required to set a unique password or the like for viewing their own web page. In this case, the intestinal information estimation device 2 refers to the subject information, identifies the subject from the subject ID, and transmits the URL of the web page or the like to the electronic device 3 of the subject.
 腸内情報推定装置2は、腸内情報から対象者の健康度を示す健康度情報を算出する機能を備えていてもよい(後述の健康度情報算出部222)。 The intestinal information estimation device 2 may have a function for calculating health information indicating the subject's health from the intestinal information (health information calculation unit 222 described below).
 [推定結果情報]
 推定結果情報について、図5を用いて説明する。図5は、推定結果情報のデータ構造の一例を示す図である。推定結果情報は、対象者ID、及び腸内情報D2を含んでいてもよい。図5は、腸内情報D2に加え、健康度情報D3も含む推定結果情報の例を示している。
[Estimation result information]
The estimation result information will be described with reference to Fig. 5. Fig. 5 is a diagram showing an example of a data structure of the estimation result information. The estimation result information may include a subject ID and intestinal information D2. Fig. 5 shows an example of estimation result information including health degree information D3 in addition to intestinal information D2.
 図6は、腸内情報D2のデータ構造の一例を示す図である。図6に示すように、腸内情報D2は、短鎖脂肪酸産生菌の量又は存在割合c11、及び代謝物質の量又は存在割合c12に関する情報が含まれている。 FIG. 6 is a diagram showing an example of the data structure of intestinal information D2. As shown in FIG. 6, intestinal information D2 includes information regarding the amount or abundance ratio c11 of short-chain fatty acid producing bacteria, and the amount or abundance ratio c12 of metabolic substances.
 ここで、短鎖脂肪酸産生菌の量は、所定質量の対象者の便に含まれる短鎖脂肪酸産生菌の数であってよく、短鎖脂肪酸産生菌の質量であってもよい。量の単位は、例えば、「個」、「g」、「mg」であってよい。 Here, the amount of short-chain fatty acid producing bacteria may be the number of short-chain fatty acid producing bacteria contained in a given mass of a subject's stool, or may be the mass of the short-chain fatty acid producing bacteria. The unit of amount may be, for example, "pieces," "g," or "mg."
 また、短鎖脂肪酸産生菌の存在割合は、所定質量の対象者の便に含まれる短鎖脂肪酸産生菌の総数に対する比率であってもよい。また、短鎖脂肪酸産生菌の存在割合は、例えば、所定質量の対象者の便に含まれる2以上の短鎖脂肪酸産生菌の質量の和であってもよい。 The proportion of short-chain fatty acid producing bacteria may be a ratio to the total number of short-chain fatty acid producing bacteria contained in a given mass of a subject's stool. The proportion of short-chain fatty acid producing bacteria may be, for example, the sum of the masses of two or more short-chain fatty acid producing bacteria contained in a given mass of a subject's stool.
 代謝物質の量は、所定質量の対象者の便に含まれる代謝物質の質量であってよく、分子量であってもよい。また、代謝物質の存在割合は、所定質量の対象者の便に含まれる代謝物質の総質量に対する比率であってもよい。代謝物質の存在割合は、例えば、所定質量の対象者の便に含まれる2以上の代謝物質の質量の和であってもよい。量の単位は、例えば、「g」、「mg」であってよい。 The amount of a metabolite may be the mass of the metabolite contained in a given mass of a subject's stool, or may be the molecular weight. The abundance ratio of a metabolite may be a ratio to the total mass of the metabolite contained in a given mass of a subject's stool. The abundance ratio of a metabolite may be, for example, the sum of the masses of two or more metabolites contained in a given mass of a subject's stool. The unit of amount may be, for example, "g" or "mg".
 図7は、健康度情報D3のデータ構造の一例を示す図である。図7に示すように、健康度情報D3は、評価、有用情報、及び備考を含んでいてもよい。また、各健康度情報D3に付与された健康度情報IDを含んでいてもよい。 FIG. 7 is a diagram showing an example of the data structure of health information D3. As shown in FIG. 7, health information D3 may include an evaluation, useful information, and notes. It may also include a health information ID assigned to each piece of health information D3.
 健康度情報D3は、例えば、対象者の体調、免疫力、筋肉の増えやすさ、太りやすさ、ストレス、集中力、アンチエイジング、美肌力、メンタルヘルス、及び睡眠のうちの少なくとも何れか1つに関する情報であってもよい。対象者の体調に関する情報には、例えば、対象者の栄養状態、及び罹患している可能性のある疾患等に関する情報が含まれ得る。対象者の免疫力に関する情報には、対象者の疲労からの回復力、及びアレルギーの有無等に関する情報が含まれ得る。対象者の睡眠に関する情報には、対象者の睡眠の量、及び睡眠の質の良否等に関する情報が含まれ得る。 The health information D3 may be, for example, information on at least one of the subject's physical condition, immunity, tendency to gain muscle, tendency to gain weight, stress, concentration, anti-aging, beautiful skin, mental health, and sleep. Information on the subject's physical condition may include, for example, information on the subject's nutritional state and possible diseases. Information on the subject's immunity may include information on the subject's ability to recover from fatigue and the presence or absence of allergies. Information on the subject's sleep may include information on the amount of sleep the subject gets, and the quality of the sleep.
 健康度情報D3は、例えば、対象者の体調、免疫力、筋肉の増えやすさ、太りやすさ、ストレス、集中力、アンチエイジング、美肌力、メンタルヘルス、及び睡眠のうちの少なくとも何れか1つに関する評価であってもよい。評価は、例えば、A(良好)、B(許容範囲内)、C(要注意)の3段階での判定が適用されてもよい。図7では、対象者の健康度が「B」と評価された例を示している。 The health information D3 may be, for example, an evaluation of at least one of the subject's physical condition, immunity, tendency to gain muscle, tendency to gain weight, stress, concentration, anti-aging, beautiful skin, mental health, and sleep. The evaluation may be, for example, one of three levels: A (good), B (acceptable range), and C (needs caution). Figure 7 shows an example in which the subject's health has been evaluated as "B."
 健康度情報は、健康度が改善する確率、又は悪化する確率を示す情報を含んでいてもよい。例えば、健康度が「B」である対象者に関して、「Cになる確率80%」という情報を含む健康度情報は、当該対象者は健康度が悪化しないように、これまで以上に腸内環境に関心を寄せて、自身の食生活等を見直す契機を対象者に与えることができる。 The health level information may include information indicating the probability of improvement or deterioration of health level. For example, for a subject with a health level of "B," health level information including information such as "80% probability of becoming C" may provide the subject with an opportunity to pay more attention to their intestinal environment and reconsider their diet, etc., so as to prevent their health level from deteriorating.
 有用情報は、対象者の健康度の向上に資する有益な情報であってもよい。有用情報は、対象者に推奨される食べ物(食材及び料理)及び運動に関する情報、生活習慣の改善に関する情報等を含んでいてもよい。 The useful information may be information that is beneficial for improving the subject's health. The useful information may include information about foods (ingredients and dishes) and exercise recommended for the subject, information about improving lifestyle habits, etc.
 備考は、対象者に提供されるさまざまな情報を含み得る。備考には、例えば、下記のような情報が含まれていてもよい。
・健康面で相談可能な栄養士の連絡先。
・推奨される食材を用いた料理の調理法を紹介する動画へのアクセス情報。
・食材及び運動器具を購入可能な通販サイトの情報。
The notes may include various information provided to the subject. For example, the notes may include the following information:
- Contact details of a nutritionist who can provide health advice.
- Access to videos showing how to prepare dishes using the recommended ingredients.
- Information on online shopping sites where you can purchase food ingredients and exercise equipment.
 (電子機器3)
 図1に戻り、次に、電子機器3について説明する。電子機器3は、対象者が使用するコンピュータであってもよい。あるいは、電子機器3は、対象者の健康状態を監視する者(例えば、家族等)が使用するコンピュータであってもよい。電子機器3は、例えば、パーソナルコンピュータ、タブレット端末、スマートフォン等であってもよい。
(Electronic device 3)
Returning to Fig. 1, the electronic device 3 will now be described. The electronic device 3 may be a computer used by the subject. Alternatively, the electronic device 3 may be a computer used by a person (e.g., a family member) who monitors the subject's health condition. The electronic device 3 may be, for example, a personal computer, a tablet terminal, a smartphone, or the like.
 電子機器3は、通信機能を有しており、腸内情報推定装置2から推定結果情報を受信することが可能である。電子機器3は、例えば、キーボード、タッチパネル、及びマイク等の入力部、及びモニター等の表示部等を有していてもよい。電子機器3は、便器4が設置されたトイレ室の内部に設置されていてもよい。この場合、電子機器3は、トイレ室の外部に持ち出し可能であってもよい。 The electronic device 3 has a communication function and is capable of receiving estimation result information from the intestinal information estimation device 2. The electronic device 3 may have, for example, an input unit such as a keyboard, a touch panel, and a microphone, and a display unit such as a monitor. The electronic device 3 may be installed inside a toilet room in which the toilet 4 is installed. In this case, the electronic device 3 may be capable of being taken outside the toilet room.
 (腸内情報推定システム100の構成)
 次に、腸内情報推定システム100の構成について、図8及び図9を参照しながら、図10を用いて説明する。図8は、ガス検出装置1の外観を示す図である。図9は、ガス検出装置1の構成の一例を示す概略図である。図10は、腸内情報推定システム100の要部構成を示すブロック図である。
(Configuration of intestinal information estimation system 100)
Next, the configuration of the intestinal information estimation system 100 will be described using Fig. 10 while referring to Figs. 8 and 9. Fig. 8 is a diagram showing the external appearance of the gas detection device 1. Fig. 9 is a schematic diagram showing an example of the configuration of the gas detection device 1. Fig. 10 is a block diagram showing the main configuration of the intestinal information estimation system 100.
 [ガス検出装置1の構成]
 まず、ガス検出装置1の構成例について説明する。ガス検出装置1は、対象者の便から放出されるサンプルガスを採取し、採取された各サンプルガスから所定成分を検出して該所定成分の濃度に応じた検出信号を出力する装置である。また、ガス検出装置1は、サンプルガスの採取及び所定成分の検出を複数回行ってもよく、それぞれの結果に基づき、検出結果を腸内情報推定装置2に送信してもよい。
[Configuration of gas detection device 1]
First, a configuration example of the gas detection device 1 will be described. The gas detection device 1 is a device that collects sample gases emitted from the stool of a subject, detects a predetermined component from each collected sample gas, and outputs a detection signal corresponding to the concentration of the predetermined component. In addition, the gas detection device 1 may collect sample gases and detect a predetermined component multiple times, and may transmit detection results to the intestinal information estimation device 2 based on each result.
 ガス検出装置1は、図8に示すように、例えば水洗の便器4に設置される。便器4は、便器ボウル4Aと、便座4Bとを備える。便器4は、住宅又は病院等のトイレ室に設置され得る。ガス検出装置1は、便器4の任意の箇所に設置されてよい。一例として、ガス検出装置1は、図8に示すように、便器ボウル4Aと便座4Bとの間から便器4の外部にわたって配置されてよい。ガス検出装置1の一部は、便座4Bに埋め込まれていてよい。便器4の便器ボウル4Aには、対象者の便が排出され得る。ガス検出装置1は、便器ボウル4Aに排出された便から発生するガスが外気と混成されたサンプルガスを採取し得る。ガス検出装置1は、サンプルガスに含まれる所定成分の種類及び濃度等を検出し得る。 The gas detection device 1 is installed in, for example, a flush toilet 4, as shown in FIG. 8. The toilet 4 includes a toilet bowl 4A and a toilet seat 4B. The toilet 4 may be installed in a toilet room in a house, a hospital, or the like. The gas detection device 1 may be installed at any location in the toilet 4. As an example, the gas detection device 1 may be disposed between the toilet bowl 4A and the toilet seat 4B and outside the toilet 4, as shown in FIG. 8. A part of the gas detection device 1 may be embedded in the toilet seat 4B. The subject's stool may be discharged into the toilet bowl 4A of the toilet 4. The gas detection device 1 may collect a sample gas in which gas generated from the stool discharged into the toilet bowl 4A is mixed with outside air. The gas detection device 1 may detect the type and concentration of a predetermined component contained in the sample gas.
 流路31は、便器ボウル4Aと後述する第1ポンプ132との間を接続するために設けられる管状の部材である。流路31の一方の端部は便器ボウル4A内において開口する開口部を有しており、反対側の端部は第1ポンプ132と接続している。流路31の開口部側の一部は、図8に示すように、便器ボウル4Aの内側へ露出し得る。流路31は、後述するようにガス検出装置1の採取系13に含まれる。採取系13については後述する。 The flow path 31 is a tubular member provided to connect between the toilet bowl 4A and the first pump 132 described below. One end of the flow path 31 has an opening that opens into the toilet bowl 4A, and the opposite end is connected to the first pump 132. A portion of the opening side of the flow path 31 may be exposed to the inside of the toilet bowl 4A, as shown in Figure 8. The flow path 31 is included in the sampling system 13 of the gas detection device 1, as described below. The sampling system 13 will be described later.
 排出路33は、第1ポンプ132の動作により、センサチャンバ144からの排気をガス検出装置1の外部に排出するための管状の部材である。排出路33の開口部側の一部は、図8に示すように、便器ボウル4Aの外側へ露出し得る。排出路33は、樹脂製チューブ或いは金属製、ゴム製、又はガラス製配管等の管状の部材で構成されてよい。排出路33の一方の端部(第1端部)は、後述するセンサチャンバ144と接続されており、排出路33の反対側の端部(第2端部)はガス検出装置1の筐体30の外部に向かって開口している。 The exhaust passage 33 is a tubular member for discharging exhaust gas from the sensor chamber 144 to the outside of the gas detection device 1 by the operation of the first pump 132. A portion of the opening side of the exhaust passage 33 may be exposed to the outside of the toilet bowl 4A as shown in FIG. 8. The exhaust passage 33 may be composed of a tubular member such as a resin tube or metal, rubber, or glass piping. One end (first end) of the exhaust passage 33 is connected to the sensor chamber 144 described below, and the opposite end (second end) of the exhaust passage 33 opens toward the outside of the housing 30 of the gas detection device 1.
 流路34は、第2ポンプ142の動作により、ガス検出装置1の外部からトイレ室内の空気(パージガス)をセンサチャンバ144に供給するための管状の部材である。流路34の一方の端部は、便器ボウル4A内とは異なる外部の空間に向けて開口する開口部を有しており、流路34の反対側の端部は第2弁141と接続している。一例として、外部とは、トイレ室内の空間等、ガス検出装置1が位置している空間の周辺である。排出路33及び流路34は、後述するようにガス検出装置1の分析系14に含まれる。分析系14については後述する。 The flow path 34 is a tubular member for supplying air (purge gas) from inside the toilet room to the sensor chamber 144 from outside the gas detection device 1 by the operation of the second pump 142. One end of the flow path 34 has an opening that opens toward an external space different from the inside of the toilet bowl 4A, and the opposite end of the flow path 34 is connected to the second valve 141. As an example, the outside is the periphery of the space in which the gas detection device 1 is located, such as the space inside the toilet room. The exhaust path 33 and the flow path 34 are included in the analysis system 14 of the gas detection device 1, as described below. The analysis system 14 will be described later.
 ガス検出装置1は、図10に示すように、制御部10、対象者検知部11、排便検知部12、採取系13、分析系14、記憶部15、及び通信部16を備える。制御部10は、ガス検出装置1の各部の動作を制御し、サンプルガスに含まれる各被検出ガスの検出を行う。制御部10の詳細については後述する。 As shown in FIG. 10, the gas detection device 1 includes a control unit 10, a subject detection unit 11, a defecation detection unit 12, a sampling system 13, an analysis system 14, a memory unit 15, and a communication unit 16. The control unit 10 controls the operation of each unit of the gas detection device 1, and detects each detectable gas contained in the sample gas. Details of the control unit 10 will be described later.
 対象者検知部11は、画像カメラ、個人識別スイッチ、赤外線センサ及び圧力センサ等の少なくとも何れかを含んで構成されていてよい。対象者検知部11は、検出結果を、制御部10に出力する。この他、対象者検知部11は、対象者を認証するための任意のセンサを含んでよい。当該センサの一例として、体重を検出する荷重センサ、座高を検出するセンサ、脈拍を検出するセンサ、血流を検出するセンサ、顔を検出するセンサ及び音声を検出するセンサ等が挙げられる。 The subject detection unit 11 may be configured to include at least one of an image camera, a personal identification switch, an infrared sensor, and a pressure sensor. The subject detection unit 11 outputs the detection result to the control unit 10. In addition, the subject detection unit 11 may include any sensor for authenticating the subject. Examples of such sensors include a load sensor that detects weight, a sensor that detects sitting height, a sensor that detects pulse, a sensor that detects blood flow, a sensor that detects a face, and a sensor that detects voice.
 例えば、対象者検知部11は、赤外線センサを含んで構成される場合には、赤外線センサが照射した赤外線の対象物からの反射光を検出することにより、対象者がトイレ室に入室したことを検出し得る。対象者検知部11は、検出結果として、対象者がトイレ室に入室したことを示す信号を制御部10に出力する。 For example, if the subject detection unit 11 is configured to include an infrared sensor, it can detect that a subject has entered the toilet by detecting the reflected light from an object of infrared light irradiated by the infrared sensor. As a detection result, the subject detection unit 11 outputs a signal indicating that a subject has entered the toilet to the control unit 10.
 例えば、対象者検知部11は、圧力センサを含んで構成される場合には、図8に示すような便座4Bにかかる圧力を検出することにより、対象者が便座4Bに座ったことを検出し得る。対象者検知部11は、検出結果として、対象者が便座4Bに座ったことを示す信号を制御部10に出力する。 For example, if the subject detection unit 11 is configured to include a pressure sensor, it can detect that the subject has sat on the toilet seat 4B by detecting the pressure on the toilet seat 4B as shown in FIG. 8. As a detection result, the subject detection unit 11 outputs a signal indicating that the subject has sat on the toilet seat 4B to the control unit 10.
 例えば、対象者検知部11は、圧力センサを含んで構成される場合には、図8に示すような便座4Bにかかる圧力の低減を検出することにより、対象者が便座4Bから立ち上がったことを検出し得る。対象者検知部11は、検出結果として、対象者が便座4Bから立ち上がったことを示す信号を制御部10に出力する。 For example, if the subject detection unit 11 is configured to include a pressure sensor, it can detect that the subject has stood up from the toilet seat 4B by detecting a reduction in pressure on the toilet seat 4B as shown in FIG. 8. As a detection result, the subject detection unit 11 outputs a signal indicating that the subject has stood up from the toilet seat 4B to the control unit 10.
 例えば、対象者検知部11は、画像カメラ及び個人識別スイッチ等を含んで構成される場合には、顔画像、座高及び体重等のデータを収集する。対象者検知部11は、収集したデータから個人を特定して検出する。対象者検知部11は、検出結果として、特定識別した個人を示す信号を制御部10に出力する。 For example, if the subject detection unit 11 is configured to include an image camera and a personal identification switch, etc., it collects data such as facial images, sitting height, and weight. The subject detection unit 11 identifies and detects individuals from the collected data. As a detection result, the subject detection unit 11 outputs a signal indicating the identified individual to the control unit 10.
 例えば、対象者検知部11は、個人識別スイッチ等を含んで構成される場合には、個人識別スイッチの操作に基づいて、個人を特定(検出)する。この場合、記憶部15には、予め個人情報が登録(記憶)されてよい。対象者検知部11は、検出結果として、特定した個人を示す信号を制御部10に出力する。 For example, if the subject detection unit 11 is configured to include a personal identification switch or the like, it identifies (detects) an individual based on the operation of the personal identification switch. In this case, personal information may be registered (stored) in advance in the memory unit 15. The subject detection unit 11 outputs a signal indicating the identified individual to the control unit 10 as the detection result.
 排便検知部12は、対象者からの検体(便)の排出(排便)を検知する部材である。排便検知部12は、主制御部101の制御に従い動作を開始し、検体が便器ボウル4Aに排出されたことを検知すると、検体が便器ボウル4Aに排出されたことを示す信号を制御部10に出力する。排便検知部12は、例えば検体が便器ボウル4A内に貯留されている水に着水した時の音を検知するセンサであってもよい。この場合、排便検知部12は、検知した音を示す情報を示す信号を制御部10に出力する。又は、排便検知部12は、検体が便器ボウル4A内に落下したことを検知可能な圧力センサであってもよい。 The defecation detection unit 12 is a component that detects the discharge (defecation) of a sample (feces) from the subject. The defecation detection unit 12 starts operating under the control of the main control unit 101, and when it detects that the sample has been discharged into the toilet bowl 4A, it outputs a signal to the control unit 10 indicating that the sample has been discharged into the toilet bowl 4A. The defecation detection unit 12 may be, for example, a sensor that detects the sound made when the sample hits the water stored in the toilet bowl 4A. In this case, the defecation detection unit 12 outputs a signal indicating information indicating the detected sound to the control unit 10. Alternatively, the defecation detection unit 12 may be a pressure sensor that can detect that the sample has fallen into the toilet bowl 4A.
 記憶部15は、例えば、半導体メモリ又は磁気メモリ等で構成される。記憶部15は、各種情報、及び、ガス検出装置1を動作させるためのプログラム等を記憶する。記憶部15は、ワークメモリとして機能してよい。また、記憶部15は、制御部10において行われる各種推定に用いられる推定モデルM1を記憶していてよい。 The storage unit 15 is composed of, for example, a semiconductor memory or a magnetic memory. The storage unit 15 stores various information and programs for operating the gas detection device 1. The storage unit 15 may function as a work memory. The storage unit 15 may also store an estimation model M1 used for various estimations performed by the control unit 10.
 通信部16は、腸内情報推定装置2と通信可能であってよい。通信部16と腸内情報推定装置2との通信において用いられる通信方式は、近距離無線通信規格又は携帯電話網へ接続する無線通信規格であってよいし、有線通信規格であってよい。近距離無線通信規格は、例えば、WiFi(登録商標)、Bluetooth(登録商標)、赤外線及びNFC(Near Field Communication)等を含んでよい。携帯電話網へ接続する無線通信規格は、例えば、LTE(Long Term Evolution)又は第4世代以上の移動通信システム等を含んでよい。また、通信部16と腸内情報推定装置2との通信において用いられる通信方式は、例えばLPWA(Low Power Wide Area)又はLPWAN(Low Power Wide Area Network)等の通信規格でもよい。 The communication unit 16 may be capable of communicating with the intestinal information estimation device 2. The communication method used in the communication between the communication unit 16 and the intestinal information estimation device 2 may be a short-range wireless communication standard or a wireless communication standard connecting to a mobile phone network, or may be a wired communication standard. The short-range wireless communication standard may include, for example, WiFi (registered trademark), Bluetooth (registered trademark), infrared, and NFC (Near Field Communication). The wireless communication standard connecting to a mobile phone network may include, for example, LTE (Long Term Evolution) or a fourth-generation or higher mobile communication system. In addition, the communication method used in the communication between the communication unit 16 and the intestinal information estimation device 2 may be, for example, a communication standard such as LPWA (Low Power Wide Area) or LPWAN (Low Power Wide Area Network).
 ガス検出装置1は、便器ボウル4A内の空間から外気と共にサンプルガスを吸引(採取)して貯留する採取系13、及び、採取系13によって採取されたサンプルガスを用いて、該サンプルガスに含まれる各被検出ガスの種類及び濃度を検出する分析系14を含んでいる。以下、採取系13及び分析系14について、図9を用いて説明する。 The gas detection device 1 includes a sampling system 13 that sucks (collects) and stores sample gas together with outside air from the space within the toilet bowl 4A, and an analysis system 14 that uses the sample gas collected by the sampling system 13 to detect the type and concentration of each detectable gas contained in the sample gas. The sampling system 13 and analysis system 14 are described below with reference to FIG. 9.
 <採取系13>
 図9に示すように、採取系13は、第1弁131及び第1ポンプ132を備える。また、図9に示すように、採取系13の各部は、流路31及び流路32によって接続されている。
<Collection system 13>
9, the collection system 13 includes a first valve 131 and a first pump 132. Furthermore, as shown in FIG. 9, each part of the collection system 13 is connected by a flow path 31 and a flow path 32.
 採取系13が備える第1弁131は流路31上に位置しており、主制御部101の制御に従って動作する弁である。第1弁131は、電磁駆動、ピエゾ駆動又はモータ駆動等の弁によって構成されていてよい。第1弁131は、主制御部101の制御に従って各流路の開放の程度(連通の程度)を調節することで、流路31と流路32との間、及び流路32と流路36(後述)との間の連通状態を調節することができる。よって、サンプルガス及びパージガスの流路及びセンサチャンバ144(後述)への流入が調節され得る。 The first valve 131 provided in the sampling system 13 is located on the flow path 31 and is a valve that operates according to the control of the main control unit 101. The first valve 131 may be configured as an electromagnetically driven, piezoelectrically driven, motor-driven, or other valve. The first valve 131 can adjust the degree of opening (degree of communication) of each flow path according to the control of the main control unit 101, thereby adjusting the state of communication between the flow paths 31 and 32, and between the flow paths 32 and 36 (described later). Thus, the inflow of the sample gas and purge gas into the flow paths and the sensor chamber 144 (described later) can be adjusted.
 第1ポンプ132は、流路31と流路32との間に設けられており、流路32を介してセンサチャンバ144と接続している。第1ポンプ132は、主制御部101の制御に基づいて動作する。第1ポンプ132は、便器ボウル4A内のサンプルガスを、便器ボウル4A内に向けて開口する流路31の開口部を介して吸引し、流路32に供給する。図10に示される第1ポンプ132は、ピエゾポンプ又はモータポンプ等で構成されていてよい。また、第1ポンプ132は、後述するように、流路32にパージガスを供給する際にも用いられてよい。 The first pump 132 is provided between the flow paths 31 and 32, and is connected to the sensor chamber 144 via the flow path 32. The first pump 132 operates under the control of the main control unit 101. The first pump 132 draws in the sample gas in the toilet bowl 4A through the opening of the flow path 31 that opens toward the inside of the toilet bowl 4A, and supplies it to the flow path 32. The first pump 132 shown in FIG. 10 may be configured as a piezoelectric pump, a motor pump, or the like. The first pump 132 may also be used to supply purge gas to the flow path 32, as described below.
 流路31は、前述のように、便器ボウル4Aと第1ポンプ132との間を接続するために設けられる管状の部材である。流路31の一方の端部は便器ボウル4A内において開口する開口部を有しており、反対側の端部は第1ポンプ132と接続している。他方、流路32は、第1ポンプ132とセンサチャンバ144との間に設けられる流路である。第1弁131が開放された状態で第1ポンプ132が動作することで、流路31又は流路36(後述)から流路32にガスが供給され得る。 As described above, the flow path 31 is a tubular member provided to connect between the toilet bowl 4A and the first pump 132. One end of the flow path 31 has an opening that opens into the toilet bowl 4A, and the opposite end is connected to the first pump 132. On the other hand, the flow path 32 is a flow path provided between the first pump 132 and the sensor chamber 144. When the first pump 132 operates with the first valve 131 open, gas can be supplied from the flow path 31 or the flow path 36 (described below) to the flow path 32.
 <分析系14>
 図9に示すように、分析系14は第2弁141、第2ポンプ142、ガスセンサ143、及びセンサチャンバ144を備える。また、図9に示すように、分析系14は、排出路33、及び流路34によって外部と接続している。また、分析系の各部は、流路37によって接続されている。
<Analysis System 14>
9, the analytical system 14 includes a second valve 141, a second pump 142, a gas sensor 143, and a sensor chamber 144. As shown in FIG. 9, the analytical system 14 is connected to the outside via a discharge path 33 and a flow path 34. Each part of the analytical system is connected to each other via a flow path 37.
 第2弁141は、流路34上に設けられる弁である。第2弁141は、主制御部101の制御に従って動作し、流路34と流路36とが連通した状態と流路34と流路37とが連通した状態とを切り替えることができる。 The second valve 141 is a valve provided on the flow path 34. The second valve 141 operates under the control of the main control unit 101, and can switch between a state in which the flow paths 34 and 36 are connected to each other and a state in which the flow paths 34 and 37 are connected to each other.
 第2ポンプ142は、流路37上に設けられ、流路37を介してセンサチャンバ144と接続しているポンプである。第2ポンプ142は、主制御部101の制御に基づき動作し、流路34から吸引された外気をセンサチャンバ144に供給し得る。 The second pump 142 is a pump that is provided on the flow path 37 and is connected to the sensor chamber 144 via the flow path 37. The second pump 142 operates based on the control of the main control unit 101, and can supply outside air sucked from the flow path 34 to the sensor chamber 144.
 ガスセンサ143は、被検出ガスの濃度に応じて異なる検知信号を出力するセンサであればよい。以下では、ガスセンサ143として、被検出ガスの濃度に応じて検知信号の強度が変化するセンサを例に挙げて説明するが、これに限定されない。一例として、ガスセンサ143は、サンプルガスに含まれ得る被検出ガスの濃度に応じた強度の検知信号を出力可能である。図9に示すように、ガス検出装置1には、複数のガスセンサ143が位置してよい。また、複数のガスセンサ143は、それぞれ異なる種類の被検出ガスの濃度に応じた検知信号を出力可能であってもよい。これにより、ガス検出装置1は、複数種類の被検出ガスの濃度を分析することができる。 The gas sensor 143 may be a sensor that outputs a detection signal that varies depending on the concentration of the detectable gas. In the following, the gas sensor 143 will be described using an example of a sensor whose detection signal intensity changes depending on the concentration of the detectable gas, but is not limited to this. As an example, the gas sensor 143 can output a detection signal whose intensity corresponds to the concentration of the detectable gas that may be contained in the sample gas. As shown in FIG. 9, the gas detection device 1 may be provided with multiple gas sensors 143. Furthermore, the multiple gas sensors 143 may each be capable of outputting a detection signal corresponding to the concentration of a different type of detectable gas. This allows the gas detection device 1 to analyze the concentrations of multiple types of detectable gas.
 ガスセンサ143は、センサ素子及び抵抗素子を備える。センサ素子と抵抗素子は、電源端子と接地端子との間において、直列接続される。電源端子と接地端子との間には、一定の電圧値VCが印加される。センサ素子及び抵抗素子の各々には同じ電流値ISが流れる。電流値ISは、センサ素子の抵抗値RS及び抵抗素子の抵抗値RLに応じて決まり得る。ガスセンサ143が出力する電圧は、センサ素子にかかる電圧値VSであってもよいし、抵抗素子にかかる電圧値VRLであってもよい。 The gas sensor 143 includes a sensor element and a resistor element. The sensor element and resistor element are connected in series between a power supply terminal and a ground terminal. A constant voltage value VC is applied between the power supply terminal and the ground terminal. The same current value IS flows through each of the sensor element and the resistor element. The current value IS can be determined according to the resistance value RS of the sensor element and the resistance value RL of the resistor element. The voltage output by the gas sensor 143 may be the voltage value VS applied to the sensor element or the voltage value VRL applied to the resistor element.
 電源端子は、ガス検出装置1が備えるバッテリ等の電源に接続される。接地端子は、ガス検出装置1のグラウンドに接続される。センサ素子の一方の端部は、電源端子に接続される。センサ素子の反対側の端部は、抵抗素子の一方の端部に接続される。一例として、センサ素子は、電気化学式センサ、光音響方式センサ、及び半導体式センサのいずれかである。ただし、センサ素子は、半導体式センサに限定されない。例えば、センサ素子は、接触燃焼式センサ又は固体電解質センサ等であってもよい。 The power supply terminal is connected to a power supply such as a battery provided in the gas detection device 1. The ground terminal is connected to the ground of the gas detection device 1. One end of the sensor element is connected to the power supply terminal. The opposite end of the sensor element is connected to one end of the resistive element. As an example, the sensor element is an electrochemical sensor, a photoacoustic sensor, or a semiconductor sensor. However, the sensor element is not limited to a semiconductor sensor. For example, the sensor element may be a catalytic combustion sensor or a solid electrolyte sensor, etc.
 センサ素子は、感ガス部を含む。感ガス部は、ガスセンサ143の種類に応じた金属酸化物半導体材料を含む。金属酸化物半導体材料の一例として、酸化スズ(SnO等)、酸化インジウム(In等)、酸化亜鉛(ZnO等)、酸化タングステン(WO等)及び酸化鉄(Fe等)等から選択される1種以上を含むものが挙げられる。感ガス部の金属酸化物半導体材料に適宜不純物を添加することにより、センサ素子によって検出するガスを適宜選択することができる。センサ素子は、感ガス部を加熱するヒータをさらに含んでよい。 The sensor element includes a gas-sensing portion. The gas-sensing portion includes a metal oxide semiconductor material according to the type of the gas sensor 143. An example of the metal oxide semiconductor material includes one or more selected from tin oxide ( SnO2 , etc.), indium oxide ( In2O3 , etc.), zinc oxide (ZnO, etc.), tungsten oxide ( WO3 , etc.), and iron oxide ( Fe2O3 , etc.). By appropriately adding impurities to the metal oxide semiconductor material of the gas-sensing portion, the gas to be detected by the sensor element can be appropriately selected. The sensor element may further include a heater for heating the gas-sensing portion.
 センサ素子をサンプルガスに曝すと、サンプルガスに含まれる被検出ガスと、センサ素子の感ガス部の表面に吸着した酸素とが置き換わり、還元反応が生じ得る。還元反応が生じることにより、感ガス部の表面に吸着していた酸素が除去され得る。感ガス部の表面に吸着していた酸素が除去されると、センサ素子の抵抗値RSが低下し、センサ素子にかかる電圧値VSが低下し得る。つまり、ガスセンサ143にサンプルガスを供給すると、サンプルガスに含まれる被検出ガスの濃度に応じて、センサ素子にかかる電圧値VSが低下し得る。ここで、電圧値VSと電圧値VRLとを合わせた値は一定である。そのため、ガスセンサ143にサンプルガスを供給すると、サンプルガスに含まれる被検出ガスの濃度に応じて、電圧値VRLは増加し得る。 When the sensor element is exposed to sample gas, the detectable gas contained in the sample gas is replaced by oxygen adsorbed to the surface of the gas-sensing portion of the sensor element, and a reduction reaction may occur. The reduction reaction may remove the oxygen adsorbed to the surface of the gas-sensing portion. When the oxygen adsorbed to the surface of the gas-sensing portion is removed, the resistance value RS of the sensor element may decrease, and the voltage value VS applied to the sensor element may decrease. In other words, when sample gas is supplied to the gas sensor 143, the voltage value VS applied to the sensor element may decrease depending on the concentration of the detectable gas contained in the sample gas. Here, the sum of the voltage value VS and the voltage value VRL is constant. Therefore, when sample gas is supplied to the gas sensor 143, the voltage value VRL may increase depending on the concentration of the detectable gas contained in the sample gas.
 抵抗素子は、可変抵抗素子である。抵抗素子の抵抗値RLは、制御部10からの制御信号によって変化し得る。抵抗素子の一方の端部は、センサ素子の反対側の端部に接続される。抵抗素子の反対側の端部は、接地端子に接続される。 The resistive element is a variable resistive element. The resistance value RL of the resistive element can be changed by a control signal from the control unit 10. One end of the resistive element is connected to the opposite end of the sensor element. The opposite end of the resistive element is connected to the ground terminal.
 抵抗素子の抵抗値RLを調整することにより、センサ素子にかかる電圧値VSが調整され得る。例えば、抵抗値RLをセンサ素子の抵抗値RSと同等にすると、センサ素子にかかる電圧値VSの振れ幅は最大値に近くなり得る。 By adjusting the resistance value RL of the resistive element, the voltage value VS applied to the sensor element can be adjusted. For example, if the resistance value RL is set equal to the resistance value RS of the sensor element, the amplitude of the voltage value VS applied to the sensor element can be close to the maximum value.
 センサチャンバ144は、ガスセンサ143を内部に格納するチャンバである。図10に示すように、センサチャンバ144には、流路32の一方の端部が接続される。換言すると、センサチャンバ144は、流路32を介して第1ポンプ132に接続されている。また、センサチャンバ144には、排出路33の一方の端部及び流路37の一方の端部が接続される。 The sensor chamber 144 is a chamber that houses the gas sensor 143 inside. As shown in FIG. 10, one end of the flow path 32 is connected to the sensor chamber 144. In other words, the sensor chamber 144 is connected to the first pump 132 via the flow path 32. In addition, one end of the discharge path 33 and one end of the flow path 37 are connected to the sensor chamber 144.
 排出路33は、前述のように、樹脂製チューブ或いは金属製又はガラス製配管等の管状の部材で構成されてよい。排出路33の一方の端部(第1端部)は、センサチャンバ144と接続されており、排出路33の反対側の端部(第2端部)はガス検出装置1の筐体30の外部に向かって開口している。 As described above, the exhaust path 33 may be composed of a tubular member such as a resin tube or a metal or glass pipe. One end (first end) of the exhaust path 33 is connected to the sensor chamber 144, and the opposite end (second end) of the exhaust path 33 opens toward the outside of the housing 30 of the gas detection device 1.
 流路34は、前述のように、管状の部材である。流路34の一方の端部は、便器ボウル4A内とは異なる外部の空間に向けて開口する開口部を有しており、流路34の反対側の端部は第2弁141と接続している。 As described above, the flow path 34 is a tubular member. One end of the flow path 34 has an opening that opens toward an external space different from the inside of the toilet bowl 4A, and the opposite end of the flow path 34 is connected to the second valve 141.
 フィルタ35は、流路34上に設けられるフィルタである。フィルタ35は、流路34の開口部から吸引される外気に含まれる不要な成分、例えば外気に含まれる各被検出ガス等を吸着可能なフィルタであってよい。フィルタ35が上述のようなフィルタであることにより、流路34を通過する外気(パージガス)は、フィルタ35を通過することで各被検出ガスの成分の含有量が減少し得る。 The filter 35 is a filter provided on the flow path 34. The filter 35 may be a filter capable of adsorbing unnecessary components contained in the outside air sucked in from the opening of the flow path 34, such as each detectable gas contained in the outside air. By using the filter 35 as described above, the content of each detectable gas component in the outside air (purge gas) passing through the flow path 34 can be reduced by passing through the filter 35.
 流路36は、一方の端部が第2弁141と接続しており、反対側の端部が第1弁131と接続している。また、流路37は、一方の端部が第2弁141と接続しており、反対側の端部がセンサチャンバ144と接続している。 One end of flow path 36 is connected to second valve 141, and the opposite end is connected to first valve 131. Also, one end of flow path 37 is connected to second valve 141, and the opposite end is connected to sensor chamber 144.
 第1弁131及び第2弁141が開放され、流路34、流路36、及び流路32が連通した状態において、第1ポンプ132が動作することで、流路34の第1端部からトイレ室内の空気(パージガス)が吸引される。また、吸引されたパージガスはフィルタ35を通過することで浄化され、浄化されたパージガスは流路36及び流路32を通過してセンサチャンバ144に供給された後、排出路33から排出される。パージガスが流路32を通過し、流路32内に残留していたサンプルガスと共に排出されることにより、サンプルガスが通過した流路32がパージガスによってクリーニングされる。また、第2弁141が開放され、流路34及び流路37が連通した状態において、第2ポンプ142が動作することで、流路34の開口部からトイレ室内のパージガスが吸引される。また、吸引されたパージガスはフィルタ35を通過することで浄化され、浄化されたパージガスは流路37を通過してセンサチャンバ144に供給される。 When the first valve 131 and the second valve 141 are open and the flow paths 34, 36, and 32 are connected, the first pump 132 operates to suck air (purge gas) from the toilet room through the first end of the flow path 34. The sucked purge gas is purified by passing through the filter 35, and the purified purge gas passes through the flow paths 36 and 32 to be supplied to the sensor chamber 144, and then is discharged from the discharge path 33. The purge gas passes through the flow path 32 and is discharged together with the sample gas remaining in the flow path 32, so that the flow path 32 through which the sample gas passed is cleaned by the purge gas. When the second valve 141 is open and the flow paths 34 and 37 are connected, the second pump 142 operates to suck purge gas from the toilet room through the opening of the flow path 34. The sucked purge gas is purified by passing through the filter 35, and the purified purge gas passes through the flow path 37 to be supplied to the sensor chamber 144.
 [制御部10]
 続いて、制御部10の構成について図10を用いて説明する。図10に示すように、制御部10は、主制御部101、検出制御部102を備える。主制御部101は、ガス検出装置1の各部の動作を制御する。具体的には、主制御部101は、対象者検知部11、排便検知部12、第1弁131、第1ポンプ132、第2弁141、及び第2ポンプ142の動作を制御する。主制御部101は、ガス検出装置1に電力が供給されている間、対象者検知部11を動作させておき、対象者検知部11から、対象者が便座4Bに着座したことを示す信号を取得すると、排便検知部12の動作を開始させる。
[Control unit 10]
Next, the configuration of the control unit 10 will be described with reference to Fig. 10. As shown in Fig. 10, the control unit 10 includes a main control unit 101 and a detection control unit 102. The main control unit 101 controls the operation of each unit of the gas detection device 1. Specifically, the main control unit 101 controls the operation of the subject detection unit 11, the defecation detection unit 12, the first valve 131, the first pump 132, the second valve 141, and the second pump 142. The main control unit 101 operates the subject detection unit 11 while power is being supplied to the gas detection device 1, and when it acquires a signal from the subject detection unit 11 indicating that the subject has sat on the toilet seat 4B, it starts the operation of the defecation detection unit 12.
 主制御部101は、排便検知部12から、便が便器ボウル4A内に排出されたことを示す信号を取得すると、便器ボウル4A内のサンプルガスの採取及びガスに含まれる所定成分の検出を開始させる。 When the main control unit 101 receives a signal from the defecation detection unit 12 indicating that stool has been discharged into the toilet bowl 4A, it starts collecting sample gas in the toilet bowl 4A and detecting specific components contained in the gas.
 具体的には、主制御部101は、第1弁131を開放させ、流路31と流路32とが連通した状態とする。また、主制御部101は、第2弁141を開放させ、流路34と流路37とが連通した状態とする。主制御部101は、この状態において第1ポンプ132及び第2ポンプ142を所定時間ずつ交互に動作させる。これにより、流路31の便器ボウル4A側の端部の開口部から便器ボウル4A内のサンプルガスが採取され、流路32を通過してセンサチャンバ144に供給される。また、外部からパージガスが吸引され、流路34及び流路37を経由してセンサチャンバ144に供給される。これにより、センサチャンバ144には所定量のサンプルガスとパージガスとが交互に供給され、ガスセンサ143は、それぞれのガスに含まれる各被検出ガスの所定成分を検出して、該所定成分の濃度に応じた信号を出力し得る。主制御部101は、センサチャンバ144へのサンプルガス及びパージガスの供給を、例えば10秒間行わせ、その後第1ポンプ132及び第2ポンプ142の動作を停止させてもよい。 Specifically, the main control unit 101 opens the first valve 131 to bring flow path 31 and flow path 32 into communication. The main control unit 101 also opens the second valve 141 to bring flow path 34 and flow path 37 into communication. In this state, the main control unit 101 alternately operates the first pump 132 and the second pump 142 for a predetermined time each. As a result, sample gas in the toilet bowl 4A is collected from the opening at the end of flow path 31 on the toilet bowl 4A side, passes through flow path 32, and is supplied to the sensor chamber 144. In addition, purge gas is sucked in from the outside and supplied to the sensor chamber 144 via flow paths 34 and 37. As a result, a predetermined amount of sample gas and purge gas are alternately supplied to the sensor chamber 144, and the gas sensor 143 can detect a predetermined component of each detection gas contained in each gas and output a signal according to the concentration of the predetermined component. The main control unit 101 may supply the sample gas and purge gas to the sensor chamber 144 for, for example, 10 seconds, and then stop the operation of the first pump 132 and the second pump 142.
 主制御部101は、検出制御部102から、所定成分の検出が完了したことを示す情報を取得すると、主制御部101は、各部を制御することで流路32のクリーニングを行わせる。具体的には、主制御部101は、第1弁131及び第2弁141を制御し、流路34、流路36、及び流路32が連通した状態とし、第1ポンプ132を動作させる。これにより、パージガスが流路32に供給され、流路32に残留したサンプルガスがパージガスと共にセンサチャンバ144を通過して排出路33から排出され、流路32のクリーニングが達成される。また、主制御部101は、各部を制御することでセンサチャンバ144のクリーニングを行わせる。具体的には、主制御部101は、第2弁141を制御し、流路34と流路37とが連通した状態とし、第2ポンプ142を動作させる。これにより、センサチャンバ144にパージガスが供給され、排出路33から排出され、センサチャンバ144のクリーニングが達成される。 When the main control unit 101 acquires information indicating that the detection of a predetermined component has been completed from the detection control unit 102, the main control unit 101 controls each unit to clean the flow path 32. Specifically, the main control unit 101 controls the first valve 131 and the second valve 141 to bring the flow paths 34, 36, and 32 into communication with each other, and operates the first pump 132. As a result, the purge gas is supplied to the flow path 32, and the sample gas remaining in the flow path 32 passes through the sensor chamber 144 together with the purge gas and is discharged from the discharge path 33, thereby achieving cleaning of the flow path 32. The main control unit 101 also controls each unit to clean the sensor chamber 144. Specifically, the main control unit 101 controls the second valve 141 to bring the flow paths 34 and 37 into communication with each other, and operates the second pump 142. This allows purge gas to be supplied to the sensor chamber 144 and discharged through the exhaust path 33, thereby cleaning the sensor chamber 144.
 検出制御部102は、ガスセンサ143からサンプルガスに含まれる各被検出ガスの所定成分の濃度に応じた信号を取得する。ここで、センサチャンバ144には、所定成分を含む量が多いサンプルガスと被検出ガスを含む量が少ないパージガスとが交互に供給されるため、検出制御部102が取得する信号の強度は、所定成分の濃度を示す波形データとなる。検出制御部102は、当該波形データに基づき、所定成分の種類及び濃度を推定する。当該推定には、学習用の入力用データとしての波形データと、教師データとしての被検出ガスの種類及び濃度を示す情報との組を複数含むデータセットによる学習が行われた学習済み推定モデルM1が用いられてよい。この推定モデルM1の学習処理は、腸内情報推定装置2によって行われる構成であってもよいし、腸内情報推定装置2とは異なる外部のコンピュータによって行われる構成であってもよい。検出制御部102は、検出した所定成分の種類及び濃度を示す情報を通信部16に出力し、所定成分の検出が完了したことを示す情報を主制御部101に出力する。 The detection control unit 102 acquires a signal corresponding to the concentration of a predetermined component of each detected gas contained in the sample gas from the gas sensor 143. Here, since the sample gas containing a large amount of the predetermined component and the purge gas containing a small amount of the detected gas are alternately supplied to the sensor chamber 144, the intensity of the signal acquired by the detection control unit 102 becomes waveform data indicating the concentration of the predetermined component. The detection control unit 102 estimates the type and concentration of the predetermined component based on the waveform data. For this estimation, a learned estimation model M1 that has been trained using a data set including multiple pairs of waveform data as input data for learning and information indicating the type and concentration of the detected gas as teacher data may be used. The learning process of this estimation model M1 may be configured to be performed by the intestinal information estimation device 2, or may be configured to be performed by an external computer different from the intestinal information estimation device 2. The detection control unit 102 outputs information indicating the type and concentration of the detected predetermined component to the communication unit 16, and outputs information indicating that the detection of the predetermined component has been completed to the main control unit 101.
 検出制御部102は、検出した各情報を含む検出データD1を記憶部15に記憶させてもよい。検出制御部102は、サンプルガスに含まれる所定成分の種類及び濃度を検出する度に検出データを作成し、該検出データを記憶部15に記憶させてもよい。検出制御部102は、検出データD1と、当該検出データD1に関連する各種情報とを対応付けて記憶部15に記憶させてもよい。具体的には、図2に示すように、検出制御部102は、検出データD1と、サンプルガスが採取された対象者を示す対象者IDとサンプルガスIDと、これらのサンプルガスが採取された日時と、ガス検出装置1を示すガス検出装置IDと、を対応付けて記憶させてよい。 The detection control unit 102 may store detection data D1 including each piece of detected information in the storage unit 15. The detection control unit 102 may create detection data each time it detects the type and concentration of a specific component contained in the sample gas, and store the detection data in the storage unit 15. The detection control unit 102 may store the detection data D1 in association with various pieces of information related to the detection data D1 in the storage unit 15. Specifically, as shown in FIG. 2, the detection control unit 102 may store the detection data D1 in association with a subject ID and sample gas ID indicating the subject from whom the sample gas was collected, the date and time when the sample gas was collected, and a gas detection device ID indicating the gas detection device 1.
 [腸内情報推定装置2の構成]
 続いて、腸内情報推定装置2の構成例について説明する。図10に示すように、腸内情報推定装置2は、ガス検出装置1及び電子機器3と通信するための通信モジュールである通信部21、制御部22、及び記憶部23を備える。制御部22は、腸内情報推定装置2の各部の動作を制御する。また、制御部22は、推定部221及び健康度情報算出部222を備える。
[Configuration of intestinal information estimation device 2]
Next, a description will be given of an example configuration of the intestinal information estimation device 2. As shown in Fig. 10, the intestinal information estimation device 2 includes a communication unit 21, which is a communication module for communicating with the gas detection device 1 and the electronic device 3, a control unit 22, and a storage unit 23. The control unit 22 controls the operation of each unit of the intestinal information estimation device 2. The control unit 22 also includes an estimation unit 221 and a health degree information calculation unit 222.
 記憶部23は、例えば、半導体メモリ又は磁気メモリ等で構成される。記憶部23には、ガス検出装置1から取得した検出情報231、ガス検出装置1を動作させるためのプログラム、及び推定部221において行われる推定において用いられる学習済み推定モデルM1が格納されていてもよい。また、記憶部23には、対象者情報232がさらに格納されていてもよい。また、記憶部23は、ワークメモリとして機能してよい。 The storage unit 23 is composed of, for example, a semiconductor memory or a magnetic memory. The storage unit 23 may store detection information 231 acquired from the gas detection device 1, a program for operating the gas detection device 1, and a learned estimation model M1 used in the estimation performed by the estimation unit 221. The storage unit 23 may further store subject information 232. The storage unit 23 may also function as a work memory.
 腸内情報推定装置2は、機械学習を行って推定モデルM1を構築する学習部24を備えていてもよい。この場合、記憶部23には、推定モデルM1を生成するために用いる学習データ233が格納されていてもよい。ここで、推定モデルM1は、腸内情報推定装置2が生成したものでなくてもよい。例えば、腸内情報推定装置2とは異なるコンピュータが、学習データ233を用いた機械学習処理を実行することによって生成した推定モデルM1を、腸内情報推定装置2にインストールしてもよい。 The intestinal information estimation device 2 may include a learning unit 24 that performs machine learning to construct an estimation model M1. In this case, the memory unit 23 may store learning data 233 used to generate the estimation model M1. Here, the estimation model M1 does not have to be generated by the intestinal information estimation device 2. For example, an estimation model M1 generated by a computer different from the intestinal information estimation device 2 by executing a machine learning process using the learning data 233 may be installed in the intestinal information estimation device 2.
 学習データは、下記に示す、第1標本比較結果、又は第2標本結果と、標本測定情報との組み合わせを含んでいてもよい。
・第1標本比較結果:任意の標本提供者の各々が第3時点に行った排便時のサンプルガスに対応する検出信号である第1標本信号と、該標本提供者の各々が第3時点から所定期間経過した第4時点に行った排便時のサンプルガスに対応する検出信号である第2標本信号と、を比較した結果。
・第2標本比較結果:第1標本信号に対応する所定成分の濃度である第1標本濃度と、第2標本信号に対応する所定成分の濃度である第2標本濃度とを比較した結果。
・標本測定情報:予め分析することによって得た、標本提供者の各々の便に含まれる短鎖脂肪酸産生菌及び代謝物質の少なくとも何れか一方の、量及び存在割合に関する情報の少なくとも何れか一方を含む情報。
The training data may include a combination of the first sample comparison results or the second sample results and sample measurement information, as described below.
First sample comparison result: A result of comparing a first sample signal, which is a detection signal corresponding to sample gas when each of the sample providers defecates at a third time point, with a second sample signal, which is a detection signal corresponding to sample gas when each of the sample providers defecates at a fourth time point a predetermined period of time after the third time point.
Second sample comparison result: A result of comparing a first sample concentration, which is the concentration of a predetermined component corresponding to the first sample signal, with a second sample concentration, which is the concentration of a predetermined component corresponding to the second sample signal.
- Sample measurement information: Information including at least one of information regarding the quantity and abundance ratio of at least one of short-chain fatty acid producing bacteria and metabolic substances contained in the stool of each sample donor, obtained by prior analysis.
 学習用に用意された、標本提供者の各々の便に実際に含まれる短鎖脂肪酸産生菌及び代謝物質の少なくとも何れか一方の、量及び存在割合に関する情報の少なくとも何れか一方を含む情報は、種々の方法を用いて求めてもよい。例えば、短鎖脂肪酸産生菌に関しては次世代シーケンサを用いて求めてもよく、代謝物質に関してはCE-MSを用いて求めてもよい。代謝物質の測定に関してGC-MS、LC-MS、NMR等別の分析手法を用いてもよい。 Information prepared for learning, including at least one of the information regarding the amount and the proportion of at least one of the short-chain fatty acid producing bacteria and the metabolic substances actually contained in the stool of each sample donor, may be obtained using various methods. For example, the information regarding the short-chain fatty acid producing bacteria may be obtained using a next-generation sequencer, and the information regarding the metabolic substances may be obtained using CE-MS. Other analytical methods such as GC-MS, LC-MS, and NMR may be used to measure the metabolic substances.
 推定部221は、下記に示す、第1比較結果、又は、第2比較結果を推定モデルM1に入力して、対象者の便に含まれる短鎖脂肪酸産生菌及び代謝物質の少なくとも何れか一方の、量及び存在割合の少なくとも何れか一方に関する腸内情報を推定する。
・第1比較結果:第1時点に行った排便時のサンプルガスに対応する検出信号である第1検出信号と、第1時点から所定期間経過した第2時点に行った排便時のサンプルガスに対応する検出信号である第2検出信号と、を比較した結果。
・第2比較結果:第1検出信号に対応する所定成分の濃度である第1濃度と、第2検出信号に対応する所定成分の濃度である第2濃度と、を比較した結果。
The estimation unit 221 inputs the first comparison result or the second comparison result shown below into an estimation model M1, and estimates intestinal information regarding at least one of the amount and abundance ratio of at least one of short-chain fatty acid producing bacteria and metabolic substances contained in the subject's stool.
- First comparison result: A result of comparing a first detection signal, which is a detection signal corresponding to sample gas during defecation performed at a first time point, with a second detection signal, which is a detection signal corresponding to sample gas during defecation performed at a second time point a predetermined period of time after the first time point.
Second comparison result: a result of comparing a first concentration, which is the concentration of a predetermined component corresponding to the first detection signal, with a second concentration, which is the concentration of a predetermined component corresponding to the second detection signal.
 このように推定された腸内情報は、第1時点から第2時点までの期間における、対象者の便に含まれる短鎖脂肪産生菌及び代謝物質の量の変化及び存在割合の変化の少なくとも何れか一方に関する情報であり得る。 The intestinal information estimated in this manner can be information regarding at least one of the changes in the amount and the changes in the proportion of short-chain lipid-producing bacteria and metabolic substances contained in the subject's stool during the period from the first time point to the second time point.
 健康度情報算出部222は、腸内情報から、対象者の健康度を示す健康度情報を算出する。腸内情報が、第1時点から第2時点までの期間における、対象者の便に含まれる短鎖脂肪産生菌及び代謝物質の量の変化及び存在割合の変化の少なくとも何れか一方に関する情報である場合、健康度情報算出部222は、対象者の健康度変化を示す健康度情報を算出する。 The health information calculation unit 222 calculates health information indicating the health of the subject from the intestinal information. When the intestinal information is information regarding at least one of the changes in the amount and the changes in the presence ratio of short-chain fat-producing bacteria and metabolic substances contained in the subject's stool during the period from the first time point to the second time point, the health information calculation unit 222 calculates health information indicating the change in the subject's health.
 健康度情報は、対象者の健康状態を推定するために有用な情報であり、例えば、対象者の体調、免疫力、筋肉の増えやすさ、太りやすさ、ストレス、集中力、アンチエイジング、美肌力、メンタルヘルス、及び睡眠のうちの少なくとも何れか1つに関する情報であり得る。腸内情報推定システム100は、対象者の健康を管理及び監視する医療関係者、介護関係者、及び対象者に健康度情報を提供することによって、対象者の健康状態が変化したことを速やかに知ることができる。よって、医療関係者、介護関係者、及び対象者は、疾患を未然に防ぐための医療的な介入の必要性を早期に検討することができる。 The health information is useful for estimating the subject's health condition, and may be, for example, information regarding at least one of the subject's physical condition, immunity, tendency to gain muscle, tendency to gain weight, stress, concentration, anti-aging, skin beauty, mental health, and sleep. The intestinal information estimation system 100 provides health information to medical professionals, caregivers who manage and monitor the subject's health, and the subject, so that they can quickly learn of any changes in the subject's health condition. This allows medical professionals, caregivers, and the subject to consider early on the need for medical intervention to prevent disease.
 <電子機器3>
 次に、電子機器3の構成例について説明する。電子機器3は、図10に示すように、腸内情報推定装置2と通信を行うための通信モジュールである通信部311、電子機器3の各部の動作を制御する制御部312、及び表示部313を備える。制御部312は、腸内情報推定装置2が出力する推定結果情報又は健康度情報D3を、通信部311を介して受信し得る。電子機器3は、受信した推定結果情報又は健康度情報D3を、表示部313に表示し得る。表示部313は、文字等を表示可能なディスプレイと、ユーザ(対象者)の指等の接触を検出可能なタッチスクリーンとを含んで構成されてよい。当該ディスプレイは、液晶ディスプレイ(LCD:Liquid Crystal Display)、有機ELディスプレイ(OELD:Organic Electro‐Luminescence Display)又は無機ELディスプレイ(IELD:Inorganic Electro‐Luminescence Display)等の表示デバイスを含んで構成されてよい。当該タッチスクリーンの検出方式は、静電容量方式、抵抗膜方式、表面弾性波方式(又は超音波方式)、赤外線方式、電磁誘導方式又は荷重検出方式等の任意の方式でよい。
<Electronic device 3>
Next, a configuration example of the electronic device 3 will be described. As shown in FIG. 10, the electronic device 3 includes a communication unit 311, which is a communication module for communicating with the intestinal information estimation device 2, a control unit 312 that controls the operation of each unit of the electronic device 3, and a display unit 313. The control unit 312 may receive the estimation result information or health degree information D3 output by the intestinal information estimation device 2 via the communication unit 311. The electronic device 3 may display the received estimation result information or health degree information D3 on the display unit 313. The display unit 313 may include a display capable of displaying characters and the like, and a touch screen capable of detecting contact by a finger or the like of a user (subject). The display may include a display device such as a liquid crystal display (LCD), an organic electroluminescence display (OELD), or an inorganic electroluminescence display (IELD). The detection method of the touch screen may be any method, such as a capacitance method, a resistive film method, a surface acoustic wave method (or an ultrasonic method), an infrared method, an electromagnetic induction method, or a load detection method.
 (腸内情報推定システム100の処理の流れ)
 次に、腸内情報推定システム100の処理の流れについて、図11を用いて説明する。図11は、腸内情報推定システム100において行われる処理の流れの一例を示すシーケンス図である。
(Processing flow of the intestinal information estimation system 100)
Next, the flow of processing performed by the intestinal information estimation system 100 will be described with reference to Fig. 11. Fig. 11 is a sequence diagram showing an example of the flow of processing performed by the intestinal information estimation system 100.
 まず、ガス検出装置1は、採取されたサンプルガスから、所定成分を検出して、該所定成分の濃度に応じた検出信号を出力する(ステップS1:検出制御ステップ)。 First, the gas detection device 1 detects a specific component from the collected sample gas and outputs a detection signal corresponding to the concentration of the specific component (step S1: detection control step).
 次に、腸内情報推定装置2は、第1比較結果、又は第2比較結果を推定モデルM1に入力して、腸内情報を推定する(ステップS2:推定ステップ)。 Next, the intestinal information estimation device 2 inputs the first comparison result or the second comparison result into the estimation model M1 to estimate the intestinal information (step S2: estimation step).
 電子機器3の制御部312は、腸内情報推定装置2から取得した推定結果情報を表示部313に表示させる(ステップS3)。 The control unit 312 of the electronic device 3 causes the display unit 313 to display the estimation result information acquired from the intestinal information estimation device 2 (step S3).
 腸内情報推定システム100が推定する腸内情報は、同一の対象者の便に含まれる短鎖脂肪酸産生菌及び代謝物質の少なくとも何れか一方の、量及び存在割合の少なくとも何れか一方に関する情報である。すなわち、腸内情報推定システム100は、対象者の所定期間(例えば、第1時点から第2時点までの期間)における腸内環境の変化を推定し得る。上記の構成によれば、腸内情報推定システム100は、対象者の健康状態を推定し、対象者の心身の異常を早期発見に繋がる有用な情報である腸内情報を提供することができる。 The intestinal information estimated by the intestinal information estimation system 100 is information regarding at least one of the amount and the abundance ratio of at least one of the short-chain fatty acid producing bacteria and metabolic substances contained in the stool of the same subject. In other words, the intestinal information estimation system 100 can estimate changes in the intestinal environment of the subject over a predetermined period of time (e.g., a period from a first time point to a second time point). According to the above configuration, the intestinal information estimation system 100 can estimate the health condition of the subject and provide intestinal information that is useful information that can lead to early detection of abnormalities in the subject's mind and body.
 〔実施形態2〕
 ガス検出装置1の採取系13及び分析系14は、図9に示す構成に限定されず、例えば、図12に示すような構成を採用してもよい。図12は、ガス検出装置1の構成の別の例を示す概略図である。説明の便宜上、既に説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 2]
Sampling system 13 and analysis system 14 of gas detection apparatus 1 are not limited to the configuration shown in Fig. 9 and may adopt, for example, a configuration as shown in Fig. 12. Fig. 12 is a schematic diagram showing another example of the configuration of gas detection apparatus 1. For convenience of explanation, members having the same functions as members already explained are denoted by the same reference numerals, and explanations thereof will not be repeated.
 図12に示すガス検出装置1は、採取系13、分析系14aを備えている。採取系13は、第1弁131及び第1ポンプ132を備え、分析系14aは、第2弁141、第3弁145、センサチャンバ144、及び第3ポンプ146を備える。 The gas detection device 1 shown in FIG. 12 includes a sampling system 13 and an analysis system 14a. The sampling system 13 includes a first valve 131 and a first pump 132, and the analysis system 14a includes a second valve 141, a third valve 145, a sensor chamber 144, and a third pump 146.
 図12において、第1ポンプ132は、流路31と流路32との間に設けられており、流路32を介して、サンプルガスを貯留可能な貯留槽38と接続している。第1ポンプ132は、主制御部101の制御に基づいて動作する。第1ポンプ132は、便器ボウル4A内のサンプルガスを、便器ボウル4A内に向けて開口する流路31の開口部を介して吸引し、貯留槽38に供給する。貯留槽38は、流路39、第3弁145、及び流路37を介してセンサチャンバ144に接続している。 In FIG. 12, the first pump 132 is provided between the flow path 31 and the flow path 32, and is connected to a storage tank 38 capable of storing sample gas via the flow path 32. The first pump 132 operates under the control of the main control unit 101. The first pump 132 draws in the sample gas in the toilet bowl 4A via the opening of the flow path 31 that opens toward the inside of the toilet bowl 4A, and supplies it to the storage tank 38. The storage tank 38 is connected to the sensor chamber 144 via the flow path 39, the third valve 145, and the flow path 37.
 流路39は、貯留槽38と第3ポンプ145との間を接続するために設けられる管状の部材である。流路39の一方の端部は貯留槽38と接続しており、反対側の端部はセンサチャンバ144と接続している。貯留槽38は、樹脂製、金属製、又はゴム製の、カラムおよび袋などであってよい。 The flow path 39 is a tubular member provided to connect the reservoir 38 and the third pump 145. One end of the flow path 39 is connected to the reservoir 38, and the opposite end is connected to the sensor chamber 144. The reservoir 38 may be a column, a bag, or the like made of resin, metal, or rubber.
 第3弁145は、流路37上に位置しており、主制御部101の制御に従って動作する弁である。第3弁145は、電磁駆動、ピエゾ駆動又はモータ駆動等の弁によって構成されていてよい。第3弁145は、主制御部101の制御に従って各流路の開放の程度(連通の程度)を調節することで、流路37と流路37aとの間、及び流路39と流路37aとの間の連通状態を調節することができる。よって、サンプルガス及びパージガスのセンサチャンバ144への流入が調節され得る。 The third valve 145 is located on the flow path 37 and is a valve that operates according to the control of the main control unit 101. The third valve 145 may be configured as an electromagnetically driven, piezoelectrically driven, motor-driven, or other valve. The third valve 145 can adjust the degree of opening (degree of communication) of each flow path according to the control of the main control unit 101, thereby adjusting the state of communication between flow paths 37 and 37a, and between flow paths 39 and 37a. Thus, the inflow of sample gas and purge gas into the sensor chamber 144 can be adjusted.
 第3ポンプ146は、排出路33上に位置しており、主制御部101の制御に従って動作するポンプである。第3ポンプ146は、主制御部101の制御に基づき動作し、流路37aから吸引されたサンプルガス又はパージガスをセンサチャンバ144内に供給し得る。また、第3ポンプ146は、センサチャンバ144内からサンプルガス又はパージガスをセンサチャンバ144外に排出し得る。 The third pump 146 is located on the discharge path 33 and is a pump that operates under the control of the main control unit 101. The third pump 146 operates based on the control of the main control unit 101, and can supply the sample gas or purge gas sucked from the flow path 37a into the sensor chamber 144. The third pump 146 can also discharge the sample gas or purge gas from within the sensor chamber 144 to the outside of the sensor chamber 144.
 この構成によれば、採取したサンプルガスを直接センサチャンバ144に供給するのではなく、貯留槽38に一旦貯留されることにより含まれる所定成分の濃度が平均化され安定したサンプルガスをセンサチャンバ144に供給する。これにより、ガス検出装置1は、サンプルガスから検出される所定成分の濃度に応じた検出信号を高精度で出力することができる。 With this configuration, the collected sample gas is not directly supplied to the sensor chamber 144, but is temporarily stored in the storage tank 38, whereby the concentration of the specific components contained therein is averaged, and a stable sample gas is supplied to the sensor chamber 144. This allows the gas detection device 1 to output a detection signal with high accuracy that corresponds to the concentration of the specific components detected in the sample gas.
 〔実施形態3〕
 上述の実施形態1における腸内情報推定システム100では、ガス検出装置1においてガスに含まれる所定成分を検出し、所定成分の濃度に応じた検出信号を出力した。また、腸内情報推定装置2において対象者の便に含まれる短鎖脂肪酸産生菌及び代謝物質の少なくとも何れか一方の、量及び存在割合に関する情報の少なくとも何れか一方を推定した。但し、腸内情報推定システム100はこの構成に限られない。例えば、ガス検出装置1が推定部221を備え、腸内情報推定装置2において行った処理を行ってもよい。この場合、サンプルガスの採取から対象者の便に含まれる短鎖脂肪酸産生菌及び代謝物質の少なくとも何れか一方の、量及び存在割合に関する情報の推定は、ガス検出装置1のみで完結され得る。この場合、腸内情報推定システム100は腸内情報推定装置2を備えずともよく、ガス検出装置1は、推定した情報を電子機器3に送信してもよい。
[Embodiment 3]
In the intestinal information estimation system 100 in the above-mentioned embodiment 1, the gas detection device 1 detects a predetermined component contained in the gas and outputs a detection signal corresponding to the concentration of the predetermined component. In addition, the intestinal information estimation device 2 estimates at least one of the information on the amount and the presence ratio of at least one of the short-chain fatty acid producing bacteria and the metabolite contained in the subject's stool. However, the intestinal information estimation system 100 is not limited to this configuration. For example, the gas detection device 1 may include an estimation unit 221 and perform the processing performed in the intestinal information estimation device 2. In this case, the estimation of the information on the amount and the presence ratio of at least one of the short-chain fatty acid producing bacteria and the metabolite contained in the subject's stool from the collection of the sample gas can be completed only by the gas detection device 1. In this case, the intestinal information estimation system 100 does not need to include the intestinal information estimation device 2, and the gas detection device 1 may transmit the estimated information to the electronic device 3.
 〔実施形態4〕
 図13は、実施形態4に係る腸内情報推定システム100Aの構成を示す概略図である。図13に示すように、腸内情報推定システム100Aは、ガス検出装置1及び腸内情報推定装置2に代えてガス検出装置1A及び腸内情報推定装置2Aを備える。図13に示すように、ガス検出装置1Aは、通信ネットワークを介して腸内情報推定装置2Aと通信可能に接続されていなくてもよい。腸内情報推定システム100Aでは、ガス検出装置1Aが電子機器3のみと通信可能に接続されている。この場合、ガス検出装置1Aは、電子機器3に濃度情報等の各種情報を送信し、電子機器3は、ガス検出装置1Aから受信した濃度情報等を腸内情報推定装置2Aに送信してもよい。一例として、ガス検出装置1Aは、電子機器3に、LAN等の通信装置を介して濃度情報を送信する。また、電子機器3は、検出情報を腸内情報推定装置2Aに送信する。腸内情報推定装置2Aは、検出情報の送信元の電子機器3へ、推定結果情報を送信する。
[Embodiment 4]
FIG. 13 is a schematic diagram showing a configuration of an intestinal information estimation system 100A according to a fourth embodiment. As shown in FIG. 13, the intestinal information estimation system 100A includes a gas detection device 1A and an intestinal information estimation device 2A instead of the gas detection device 1 and the intestinal information estimation device 2. As shown in FIG. 13, the gas detection device 1A does not need to be communicatively connected to the intestinal information estimation device 2A via a communication network. In the intestinal information estimation system 100A, the gas detection device 1A is communicatively connected only to the electronic device 3. In this case, the gas detection device 1A may transmit various information such as concentration information to the electronic device 3, and the electronic device 3 may transmit the concentration information received from the gas detection device 1A to the intestinal information estimation device 2A. As an example, the gas detection device 1A transmits concentration information to the electronic device 3 via a communication device such as a LAN. In addition, the electronic device 3 transmits the detection information to the intestinal information estimation device 2A. The intestinal information estimation device 2A transmits estimation result information to the electronic device 3 that is the source of the detection information.
 腸内情報推定システム100Aにおいて、腸内情報推定装置2Aと通信可能に接続される電子機器3は、複数台であってもよい。また、腸内情報推定システム100Aにおいて、電子機器3と通信可能に接続されるガス検出装置1Aは、複数であってもよい。 In the intestinal information estimation system 100A, there may be a plurality of electronic devices 3 communicatively connected to the intestinal information estimation device 2A. Also, in the intestinal information estimation system 100A, there may be a plurality of gas detection devices 1A communicatively connected to the electronic device 3.
 この構成を採用すれば、腸内情報推定装置2Aは、複数のガス検出装置1Aのそれぞれからの検出情報に基づき推定結果情報を出力し、各検出情報の送信元の電子機器3に送信することができる。例えば、腸内情報推定システム100Aは、異なる家庭又は異なる施設に属する対象者の各々に、推定結果情報を個別に提供することができる。 By adopting this configuration, the intestinal information estimation device 2A can output estimation result information based on the detection information from each of the multiple gas detection devices 1A, and transmit the estimation result information to the electronic device 3 that is the source of each detection information. For example, the intestinal information estimation system 100A can provide estimation result information individually to each of the subjects who belong to different households or different facilities.
 〔実施形態5〕
 上述の実施形態1における腸内情報推定システム100では、腸内情報推定装置2は、対象者の便に含まれる短鎖脂肪酸産生菌及び代謝物質の少なくとも何れか一方の、量及び存在割合に関する情報の少なくとも何れか一方を推定し、腸内情報を出力する。当該推定には、推定モデルM1が用いられる。腸内情報推定装置2は、第1比較結果、又は、第2比較結果を推定モデルM1に入力して、腸内情報を推定する。また、腸内情報推定装置2において、健康度情報算出部222は、腸内情報から対象者の健康度を示す健康度情報を算出する。
[Embodiment 5]
In the intestinal information estimation system 100 in the above-mentioned first embodiment, the intestinal information estimation device 2 estimates at least one of information on the amount and the abundance ratio of at least one of short-chain fatty acid producing bacteria and metabolites contained in the stool of the subject, and outputs the intestinal information. For this estimation, an estimation model M1 is used. The intestinal information estimation device 2 inputs the first comparison result or the second comparison result to the estimation model M1 to estimate the intestinal information. In the intestinal information estimation device 2, the health degree information calculation unit 222 calculates health degree information indicating the health degree of the subject from the intestinal information.
 上記に代えて、健康度情報を出力する装置は、腸内情報を介することなく出力されるものであってもよい。すなわち、第1比較結果又は第2比較結果と併せて、例えば、第1検出信号又は第2検出信号を推定モデルM1に入力し、健康度を推定し、健康度情報を出力する構成でもよい。この場合、推定モデルM1は、学習用の入力用データとしての波形データと、教師データとしての健康度情報との組を複数含むデータセットによる学習が行われた学習済み推定モデルであってよい。 Alternatively, the device that outputs health level information may output the information without going through intestinal information. That is, for example, the first detection signal or the second detection signal may be input to the estimation model M1 together with the first comparison result or the second comparison result, the health level may be estimated, and the health level information may be output. In this case, the estimation model M1 may be a trained estimation model that has been trained using a data set that includes multiple pairs of waveform data as input data for learning and health level information as teacher data.
 〔ソフトウェアによる実現例〕
 腸内情報推定システム100、100A(以下、「システム」と呼ぶ)の機能は、当該システムとしてコンピュータを機能させるためのプログラムであって、当該システムの各制御ブロック(特に制御部10、10A、及び22に含まれる各部)としてコンピュータを機能させるためのプログラムにより実現することができる。
[Software implementation example]
The functions of the intestinal information estimation system 100, 100A (hereinafter referred to as the "system") can be realized by a program for causing a computer to function as the system, and a program for causing a computer to function as each control block of the system (particularly each part included in the control units 10, 10A, and 22).
 この場合、上記システムは、上記プログラムを実行するためのハードウェアとして、少なくとも1つの制御装置(例えばプロセッサ)と少なくとも1つの記憶装置(例えばメモリ)を有するコンピュータを備えている。この制御装置と記憶装置により上記プログラムを実行することにより、上記各実施形態で説明した各機能が実現される。 In this case, the system includes a computer having at least one control device (e.g., a processor) and at least one storage device (e.g., a memory) as hardware for executing the program. The program is executed by the control device and storage device, thereby realizing each of the functions described in each of the above embodiments.
 上記プログラムは、一時的ではなく、コンピュータ読み取り可能な、1又は複数の記録媒体に記録されていてもよい。この記録媒体は、上記装置が備えていてもよいし、備えていなくてもよい。後者の場合、上記プログラムは、有線又は無線の任意の伝送媒体を介して上記装置に供給されてもよい。 The above program may be recorded on one or more computer-readable recording media, not on a temporary basis. The recording media may or may not be included in the device. In the latter case, the above program may be supplied to the device via any wired or wireless transmission medium.
 また、上記各制御ブロックの機能の一部又は全部は、論理回路により実現することも可能である。例えば、上記各制御ブロックとして機能する論理回路が形成された集積回路も本開示の範疇に含まれる。この他にも、例えば量子コンピュータにより上記各制御ブロックの機能を実現することも可能である。 Furthermore, some or all of the functions of each of the above control blocks can be realized by a logic circuit. For example, the scope of this disclosure also includes an integrated circuit in which a logic circuit that functions as each of the above control blocks is formed. In addition, it is also possible to realize the functions of each of the above control blocks by, for example, a quantum computer.
 以上、本開示に係る発明について、諸図面及び実施例に基づいて説明してきた。しかし、本開示に係る発明は上述した各実施形態に限定されるものではない。すなわち、本開示に係る発明は本開示で示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示に係る発明の技術的範囲に含まれる。つまり、当業者であれば本開示に基づき種々の変形又は修正を行うことが容易であることに注意されたい。また、これらの変形又は修正は本開示の範囲に含まれることに留意されたい。 The invention according to this disclosure has been described above based on the drawings and examples. However, the invention according to this disclosure is not limited to the above-mentioned embodiments. In other words, the invention according to this disclosure can be modified in various ways within the scope of this disclosure, and embodiments obtained by appropriately combining the technical means disclosed in different embodiments are also included in the technical scope of the invention according to this disclosure. In other words, it should be noted that a person skilled in the art could easily make various modifications or corrections based on this disclosure. It should also be noted that these modifications or corrections are included in the scope of this disclosure.
 〔まとめ〕
 以上のように、本開示の態様1に係る腸内情報推定システムは、対象者に起因するガスから所定成分を検出して、該所定成分の濃度に応じた検出信号を出力する検出制御部と、第1時点に採取された前記ガスに対応する前記検出信号である第1検出信号と、前記第1時点から所定期間経過した第2時点に採取された前記ガスに対応する前記検出信号である第2検出信号と、を比較した第1比較結果、又は、前記第1検出信号に対応する前記所定成分の濃度である第1濃度と、前記第2検出信号に対応する前記所定成分の濃度である第2濃度と、を比較した第2比較結果を推定モデルに入力して、前記対象者の腸内情報を推定する推定部と、を備える。
〔summary〕
As described above, the intestinal information estimation system according to aspect 1 of the present disclosure includes a detection control unit that detects a predetermined component from gas originating from a subject and outputs a detection signal corresponding to the concentration of the predetermined component, and an estimation unit that inputs a first comparison result obtained by comparing a first detection signal, which is the detection signal corresponding to the gas collected at a first time point, with a second detection signal, which is the detection signal corresponding to the gas collected at a second time point a predetermined period of time has elapsed from the first time point, or a second comparison result obtained by comparing a first concentration, which is the concentration of the predetermined component corresponding to the first detection signal, with a second concentration, which is the concentration of the predetermined component corresponding to the second detection signal, into an estimation model to estimate intestinal information of the subject.
 本開示の態様2に係る腸内情報推定システムは、上記態様1において、前記ガスは、前記対象者の排便行為中に取得された前記対象者の便に起因するガスであってもよい。 In the intestinal information estimation system according to aspect 2 of the present disclosure, in the above aspect 1, the gas may be gas resulting from the subject's stool obtained during the subject's defecation act.
 本開示の態様3に係る腸内情報推定システムは、上記態様1または2において、前記腸内情報は、前記対象者の便に含まれる短鎖脂肪酸産生菌及び代謝物質の少なくとも何れか一方の、量及び存在割合の少なくとも何れか一方に関する情報であってもよい。 In the intestinal information estimation system according to aspect 3 of the present disclosure, in the above aspect 1 or 2, the intestinal information may be information regarding at least either the amount or the proportion of at least either one of short-chain fatty acid producing bacteria and metabolic substances contained in the stool of the subject.
 本開示の態様4に係る腸内情報推定システムは、上記態様1から3の何れかにおいて、前記所定期間は、1日以上1か月以下であってもよい。 In the intestinal information estimation system according to aspect 4 of the present disclosure, in any of aspects 1 to 3 above, the predetermined period may be one day or more and one month or less.
 本開示の態様5に係る腸内情報推定システムは、上記態様1から4の何れかにおいて、前記推定モデルは、(1A)任意の標本提供者の各々が第3時点に行った排便時の前記ガスに対応する前記検出信号である第1標本信号と、該標本提供者の各々が前記第3時点から所定期間経過した第4時点に行った排便時の前記ガスに対応する前記検出信号である第2標本信号と、を比較した第1標本比較結果、又は、(1B)前記第1標本信号に対応する前記所定成分の濃度である第1標本濃度と、前記第2標本信号に対応する前記所定成分の濃度である第2標本濃度とを比較した第2標本結果と、(2)予め前記標本提供者の、前記第3時点及び前記第4時点に行った排便時の便を分析することによって得た、前記標本提供者の各々の便に含まれる短鎖脂肪酸産生菌及び代謝物質の少なくとも何れか一方の、量及び存在割合に関する情報の少なくとも何れか一方を含む標本測定情報と、の組み合わせを含む学習データを用いた機械学習によって生成されてもよい。 In the intestinal information estimation system according to aspect 5 of the present disclosure, in any one of aspects 1 to 4 above, the estimation model may be generated by machine learning using learning data including a combination of: (1A) a first sample comparison result obtained by comparing a first sample signal, which is the detection signal corresponding to the gas during a defecation performed by each of the sample providers at a third time point, with a second sample signal, which is the detection signal corresponding to the gas during a defecation performed by each of the sample providers at a fourth time point a predetermined period of time has elapsed since the third time point; or (1B) a second sample result obtained by comparing a first sample concentration, which is the concentration of the predetermined component corresponding to the first sample signal, with a second sample concentration, which is the concentration of the predetermined component corresponding to the second sample signal; and (2) sample measurement information, which is obtained in advance by analyzing the stool of the sample provider during defecation performed at the third time point and the fourth time point, and which includes at least one of information regarding the amount and abundance ratio of at least one of short-chain fatty acid producing bacteria and metabolites contained in the stool of each of the sample providers.
 本開示の態様6に係る腸内情報推定システムは、上記態様1から5の何れかにおいて、前記検出制御部は、前記対象者が前記第1時点以後に排便を行う度に、前記第1時点からの経過時間が前記所定期間経過しているか否かを判定し、前記第1時点から前記所定期間経過していると判定した場合、該排便時の前記ガスから前記所定成分を検出して、該所定成分の濃度に応じた前記第2検出信号を出力してもよい。 In the intestinal information estimation system according to aspect 6 of the present disclosure, in any of aspects 1 to 5 above, the detection control unit may determine whether the predetermined period of time has elapsed since the first time point each time the subject defecates after the first time point, and if it is determined that the predetermined period of time has elapsed since the first time point, detect the predetermined component from the gas at the time of defecation and output the second detection signal corresponding to the concentration of the predetermined component.
 本開示の態様7に係る腸内情報推定システムは、上記態様1から6の何れかにおいて、前記所定成分は、メチルメルカプタン、硫化水素、水素、及び二酸化炭素のうち少なくとも1つであってもよい。 In the intestinal information estimation system according to aspect 7 of the present disclosure, in any one of aspects 1 to 6 above, the specified component may be at least one of methyl mercaptan, hydrogen sulfide, hydrogen, and carbon dioxide.
 本開示の態様8に係る腸内情報推定システムは、上記態様1から7の何れかにおいて、前記腸内情報は、前記第1時点から前記第2時点までの期間における、前記対象者の便に含まれる短鎖脂肪産生菌及び代謝物質の量の変化及び存在割合の変化の少なくとも何れか一方に関する情報であってもよい。 The intestinal information estimation system according to aspect 8 of the present disclosure is any one of aspects 1 to 7 above, in which the intestinal information may be information relating to at least one of the change in the amount and the change in the presence ratio of short-chain fat-producing bacteria and metabolic substances contained in the stool of the subject during the period from the first time point to the second time point.
 本開示の態様9に係る腸内情報推定システムは、上記態様1から8の何れかにおいて、前記腸内情報から、前記対象者の健康度を示す健康度情報を算出する健康度情報算出部をさらに備えていてもよい。 The intestinal information estimation system according to aspect 9 of the present disclosure may further include a health information calculation unit that calculates health information indicating the health of the subject from the intestinal information in any of aspects 1 to 8 above.
 本開示の態様10に係る腸内情報推定システムは、上記態様9において、前記健康度情報は、前記対象者の体調、免疫力、筋肉の増えやすさ、太りやすさ、ストレス、集中力、アンチエイジング、美肌力、メンタルヘルス、及び睡眠のうちの少なくとも何れか1つに関する情報であってもよい。 In the intestinal information estimation system according to aspect 10 of the present disclosure, in the above-mentioned aspect 9, the health information may be information on at least one of the subject's physical condition, immunity, tendency to gain muscle, tendency to gain weight, stress, concentration, anti-aging, beauty of the skin, mental health, and sleep.
 本開示の態様11に係る腸内情報推定システムは、上記態様3において、前記短鎖脂肪酸産生菌は、酪酸産生菌及び酢酸産生菌の少なくとも何れか一方であってもよい。 In the intestinal information estimation system according to aspect 11 of the present disclosure, in the above aspect 3, the short-chain fatty acid producing bacteria may be at least one of butyric acid producing bacteria and acetic acid producing bacteria.
 本開示の態様12に係る腸内情報推定システムは、上記態様3において、前記代謝物質は、酪酸及び酢酸の少なくとも何れか一方であってもよい。 In the intestinal information estimation system according to aspect 12 of the present disclosure, in the above aspect 3, the metabolic substance may be at least one of butyric acid and acetic acid.
 本開示の態様13に係る腸内情報推定方法は、対象者に起因するガスから所定成分を検出して、該所定成分の濃度に応じた検出信号を出力する検出制御ステップと、第1時点に採取された前記ガスに対応する前記検出信号である第1検出信号と、前記第1時点から所定期間経過した第2時点に採取された前記ガスに対応する前記検出信号である第2検出信号と、を比較した第1比較結果、又は、前記第1検出信号に対応する前記所定成分の濃度である第1濃度と、前記第2検出信号に対応する前記所定成分の濃度である第2濃度と、を比較した第2比較結果を推定モデルに入力して、前記対象者の腸内情報を推定する推定ステップと、を含む。 The intestinal information estimation method according to aspect 13 of the present disclosure includes a detection control step of detecting a predetermined component from gas originating from a subject and outputting a detection signal corresponding to the concentration of the predetermined component, and an estimation step of inputting a first comparison result obtained by comparing a first detection signal, which is the detection signal corresponding to the gas collected at a first time point, with a second detection signal, which is the detection signal corresponding to the gas collected at a second time point a predetermined period of time has elapsed since the first time point, or a second comparison result obtained by comparing a first concentration, which is the concentration of the predetermined component corresponding to the first detection signal, with a second concentration, which is the concentration of the predetermined component corresponding to the second detection signal, into an estimation model to estimate the intestinal information of the subject.
 本開示の態様14に係る制御プログラムは、上記態様1から12の何れかに記載の腸内情報推定システムとしてコンピュータを機能させるための制御プログラムであって、前記推定部としてコンピュータを機能させるための制御プログラムである。 The control program according to aspect 14 of the present disclosure is a control program for causing a computer to function as the intestinal information estimation system described in any one of aspects 1 to 12 above, and is a control program for causing a computer to function as the estimation unit.
  本開示の態様15に係る記憶媒体は、上記態様14に記載の制御プログラムを記録したコンピュータ読み取り可能な記録媒体である。 The storage medium according to aspect 15 of the present disclosure is a computer-readable recording medium on which the control program described in aspect 14 above is recorded.
 〔実施例〕
 以下、本開示の一態様に係る腸内情報推定方法に係るいくつかの実施例について説明する。
〔Example〕
Hereinafter, several examples of the intestinal information estimation method according to one aspect of the present disclosure will be described.
 <実施例1>
 図14は、所定期間内におけるサンプルガスに含まれる硫黄系ガスの濃度比率の変化量と、健康度情報(太りやすさスコアの変化量)との相関を示す図である。図14に示す相関図は、11人の標本提供者のそれぞれから提供されたサンプルガス及び便を分析した結果に基づいている。
Example 1
Fig. 14 is a diagram showing the correlation between the change in the concentration ratio of sulfur-based gases contained in sample gases within a predetermined period and health level information (change in the fatness tendency score). The correlation diagram shown in Fig. 14 is based on the results of analyzing sample gases and feces provided by each of 11 specimen donors.
 図14の縦軸に示された「太りやすさスコア」は、ビフィズス菌及びフィーカリ菌等の存在比率から所定の演算によって算出されるスコアであり、対象者の太りやすさの度合いを示す値である。例えば、「太りやすさスコア」は、全標本提供者の中からビフィズス菌及びフィーカリ菌等の存在比率の総和の最大値を決定し、各標本提供者のビフィズス菌及びフィーカリ菌等の存在比率の総和を該最大値で除算した値に基づいて算出される値であってもよい。「太りやすさスコア」が「0」である場合は、所定期間内において太りやすさは変化していないことを意味する。「太りやすさスコア」が大きくなるにつれて、所定期間内により太りやすい体質に変化したあることを意味する。「太りやすさスコア」が負の値である場合、所定期間内により太りにくい体質に変化したことを意味する。 The "weight gain score" shown on the vertical axis of FIG. 14 is a score calculated by a predetermined calculation from the abundance ratio of bifidobacteria, faecali bacteria, etc., and is a value indicating the subject's degree of weight gain. For example, the "weight gain score" may be a value calculated based on the maximum value of the sum of the abundance ratios of bifidobacteria, faecali bacteria, etc. from all sample donors, and the sum of the abundance ratios of bifidobacteria, faecali bacteria, etc. from each sample donor divided by this maximum value. When the "weight gain score" is "0", it means that the tendency to gain weight has not changed within a specified period. As the "weight gain score" increases, it means that the subject has become more prone to gain weight within the specified period. When the "weight gain score" is a negative value, it means that the subject has become less prone to gain weight within the specified period.
 一方、図14の横軸に示された「硫黄系ガス濃度比率」は、所定期間内における、サンプルガスにおけるメチルメルカプタン等の硫黄系ガスの濃度比率の変化量を示す値である。「硫黄系ガス濃度比率」が「0」である場合は、所定期間内において、サンプルガスに含まれる硫黄系ガスの濃度比率が変化していないことを意味する。「硫黄系ガス濃度比率」が負である場合は、所定期間内において、サンプルガスに含まれる硫黄系ガスの濃度比率が低下したことを意味し、正である場合は、所定期間内において、サンプルガスに含まれる硫黄系ガスの濃度比率が増加したことを意味する。 On the other hand, the "sulfur-based gas concentration ratio" shown on the horizontal axis of Figure 14 is a value that indicates the amount of change in the concentration ratio of sulfur-based gases, such as methyl mercaptan, in the sample gas within a specified period. When the "sulfur-based gas concentration ratio" is "0", it means that the concentration ratio of sulfur-based gases contained in the sample gas has not changed within the specified period. When the "sulfur-based gas concentration ratio" is negative, it means that the concentration ratio of sulfur-based gases contained in the sample gas has decreased within the specified period, and when it is positive, it means that the concentration ratio of sulfur-based gases contained in the sample gas has increased within the specified period.
 図14に示すように、サンプルガスに含まれる硫黄系ガスの濃度比率と、健康度情報(太りやすさ)との間には負の相関(pearson係数=-0.72)があることが確認された。したがって、対象者の排便時に採取されるサンプルガスに含まれる硫黄系ガスの濃度比率を精度良く推定することができれば、該対象者の健康度情報(太りやすさ)を推定することが可能であることが分かった。 As shown in Figure 14, it was confirmed that there is a negative correlation (Pearson coefficient = -0.72) between the concentration ratio of sulfur-based gases contained in the sample gas and health information (ease of gaining weight). Therefore, it was found that if the concentration ratio of sulfur-based gases contained in the sample gas collected during a subject's defecation can be accurately estimated, it is possible to estimate the subject's health information (ease of gaining weight).
 <実施例2>
 図15は、所定期間内における、サンプルガスに含まれる水素の濃度比率の変化率と、便に含まれる酢酸量の変化量との相関関係を示す図である。図15に示す相関図は、11人の標本提供者のそれぞれから提供されたサンプルガス及び便を分析した結果に基づいている。
Example 2
Fig. 15 is a diagram showing the correlation between the rate of change in the concentration ratio of hydrogen contained in the sample gas and the amount of change in the amount of acetic acid contained in the feces over a given period of time. The correlation diagram shown in Fig. 15 is based on the results of analyzing the sample gas and feces provided by each of 11 specimen donors.
 図15の縦軸に示された「酢酸量」は、標本提供者のそれぞれから提供された便1gあたりに含まれる酢酸の量(mg)の変化量である。便に含まれる酢酸量は、対象者の腸内環境の良否を反映することが知られている。一方、図15の横軸に示された「H濃度比率」は、標本提供者のそれぞれから提供された所定期間内における、サンプルガスに含まれる水素ガスの濃度比の変化量を示す値である。「H濃度比率」が「0」である場合は、所定期間内において、サンプルガスに含まれる水素ガスの濃度比率が変化していないことを意味する。「H濃度比率」が負である場合は、所定期間内において、サンプルガスに含まれる水素ガスの濃度比率が減少したことを意味し、正である場合は、所定期間内において、サンプルガスに含まれる水素ガスの濃度比率が増加したことを意味する。 The "amount of acetic acid" shown on the vertical axis of FIG. 15 is the change in the amount of acetic acid (mg) contained in 1 g of stool provided by each of the specimen donors. It is known that the amount of acetic acid contained in stool reflects the quality of the intestinal environment of the subject. On the other hand, the "H 2 concentration ratio" shown on the horizontal axis of FIG. 15 is a value indicating the change in the concentration ratio of hydrogen gas contained in the sample gas provided by each of the specimen donors within a specified period. When the "H 2 concentration ratio" is "0", it means that the concentration ratio of hydrogen gas contained in the sample gas has not changed within the specified period. When the "H 2 concentration ratio" is negative, it means that the concentration ratio of hydrogen gas contained in the sample gas has decreased within the specified period, and when it is positive, it means that the concentration ratio of hydrogen gas contained in the sample gas has increased within the specified period.
 図15に示すように、サンプルガスに含まれる水素の濃度比率と、便に含まれる酢酸量との間には正の相関(pearson係数=0.43)があることが確認された。したがって、対象者の排便時に採取されるサンプルガスに含まれる水素の濃度比率を精度良く推定することができれば、該対象者の腸内環境の良否を推定することが可能であることが分かった。 As shown in Figure 15, it was confirmed that there was a positive correlation (Pearson coefficient = 0.43) between the concentration ratio of hydrogen contained in the sample gas and the amount of acetic acid contained in the stool. Therefore, it was found that if the concentration ratio of hydrogen contained in the sample gas collected during a subject's defecation can be accurately estimated, it is possible to estimate the quality of the subject's intestinal environment.
 <実施例3>
 図16は、サンプルガスに含まれる二酸化炭素の濃度の逆数と、健康度情報(免疫力)との相関関係を示す図である。図16に示す相関図は、39人の標本提供者のそれぞれから提供されたサンプルガス及び便を分析した結果に基づいている。
Example 3
Fig. 16 is a diagram showing the correlation between the inverse of the concentration of carbon dioxide contained in the sample gas and health level information (immunity). The correlation diagram shown in Fig. 16 is based on the results of analyzing the sample gas and feces provided by each of 39 specimen donors.
 図16の縦軸に示された「免疫力スコア」は、フィーカリ菌、ユーバクテリウム、ルミノコッカス、及び酪酸酸性菌等の量から所定の演算によって算出されるスコアであり、対象者の免疫力の強弱を示す値である。「免疫力スコア」が大きくなるにつれて、より免疫力が強い体質であることを意味する。一方、図16の横軸に示された「1/CO」は、サンプルガスにおける二酸化炭素の含有量の逆数(ppm-1)を示す値である。 The "Immunity Score" shown on the vertical axis of Fig. 16 is a score calculated by a predetermined calculation from the amounts of Faecalis, Eubacterium, Ruminococcus, butyric acid bacteria, etc., and is a value indicating the strength of the subject's immunity. The higher the "Immunity Score", the stronger the immune system of the subject. Meanwhile, "1/ CO2 " shown on the horizontal axis of Fig. 16 is a value indicating the reciprocal (ppm -1 ) of the carbon dioxide content in the sample gas.
 図16に示すように、サンプルガスに含まれる二酸化炭素の濃度比率と、健康度情報(免疫力)との間には負の相関(pearson係数=-0.56)があることが確認された。したがって、対象者の排便時に採取されるサンプルガスに含まれる二酸化炭素の濃度比率を精度良く推定することができれば、該対象者の健康度情報(免疫力の強さ)を推定することが可能であることが分かった。 As shown in Figure 16, it was confirmed that there is a negative correlation (Pearson coefficient = -0.56) between the concentration ratio of carbon dioxide contained in the sample gas and health information (immunity). Therefore, it was found that if the concentration ratio of carbon dioxide contained in the sample gas collected during a subject's defecation can be accurately estimated, it is possible to estimate the subject's health information (immunity strength).
 図17は、サンプルガスに含まれる二酸化炭素の濃度が、所定期間の間に増加した標本提供者の健康度情報(免疫力スコアの変化)と、所定期間の間に減少した被検者群の健康度情報(免疫力スコアの変化)とを比較した図である。図16に示すように、所定期間の間にサンプルガスに含まれる二酸化炭素の濃度が増加した標本提供者の免疫力スコアは増加し、二酸化炭素の濃度が減少した標本提供者の免疫力スコアは減少したことが確認された。したがって、対象者の排便時に採取されるサンプルガスに含まれる二酸化炭素の濃度比率が、所定期間に間にどのように変化したか、を精度良く推定することができれば、該対象者の健康度情報を推定することが可能であることが分かった。 FIG. 17 is a diagram comparing the health information (change in immunity score) of a specimen donor whose carbon dioxide concentration in the sample gas increased over a specified period of time with the health information (change in immunity score) of a group of subjects whose carbon dioxide concentration decreased over a specified period of time. As shown in FIG. 16, it was confirmed that the immunity scores of specimen donors whose carbon dioxide concentration in the sample gas increased over a specified period of time increased, and the immunity scores of specimen donors whose carbon dioxide concentration decreased decreased. Therefore, it was found that if it is possible to accurately estimate how the concentration ratio of carbon dioxide contained in the sample gas collected during a subject's defecation has changed over a specified period of time, it is possible to estimate the health information of the subject.
 1、1A ガス検出装置
 2、2A 腸内情報推定装置
 3   電子機器
 4   便器
 143 検出制御部
 221 推定部
 222 健康情報算出部
REFERENCE SIGNS LIST 1, 1A Gas detection device 2, 2A Intestinal information estimation device 3 Electronic device 4 Toilet 143 Detection control unit 221 Estimation unit 222 Health information calculation unit

Claims (15)

  1.  対象者に起因するガスから所定成分を検出して、該所定成分の濃度に応じた検出信号を出力する検出制御部と、
     第1時点に採取された前記ガスに対応する前記検出信号である第1検出信号と、前記第1時点から所定期間経過した第2時点に採取された前記ガスに対応する前記検出信号である第2検出信号と、を比較した第1比較結果、又は、前記第1検出信号に対応する前記所定成分の濃度である第1濃度と、前記第2検出信号に対応する前記所定成分の濃度である第2濃度と、を比較した第2比較結果を推定モデルに入力して、前記対象者の腸内情報を推定する推定部と、を備える、
    腸内情報推定システム。
    a detection control unit that detects a predetermined component from a gas originating from a subject and outputs a detection signal corresponding to the concentration of the predetermined component;
    and an estimation unit that estimates intestinal information of the subject by inputting a first comparison result obtained by comparing a first detection signal, which is the detection signal corresponding to the gas collected at a first time point, with a second detection signal, which is the detection signal corresponding to the gas collected at a second time point a predetermined period of time has elapsed since the first time point, or a second comparison result obtained by comparing a first concentration, which is the concentration of the predetermined component corresponding to the first detection signal, with a second concentration, which is the concentration of the predetermined component corresponding to the second detection signal, into an estimation model.
    Intestinal information estimation system.
  2.  前記ガスは、前記対象者の排便行為中に取得された前記対象者の便に起因するガスである、
    請求項1に記載の腸内情報推定システム。
    The gas is gas resulting from the subject's feces acquired during the subject's defecation act.
    The intestinal information estimation system according to claim 1 .
  3.  前記腸内情報は、前記対象者の便に含まれる短鎖脂肪酸産生菌及び代謝物質の少なくとも何れか一方の、量及び存在割合の少なくとも何れか一方に関する情報である、
    請求項1または2に記載の腸内情報推定システム。
    The intestinal information is information regarding at least one of the amount and the ratio of at least one of short-chain fatty acid producing bacteria and metabolites contained in the stool of the subject;
    The intestinal information estimation system according to claim 1 or 2.
  4.  前記所定期間は、1日以上1か月以下である、
    請求項1から3の何れか1項に記載の腸内情報推定システム。
    The predetermined period is one day or more and one month or less.
    The intestinal information estimation system according to claim 1 .
  5.  前記推定モデルは、
      (1A)任意の標本提供者の各々が第3時点に行った排便時の前記ガスに対応する前記検出信号である第1標本信号と、該標本提供者の各々が前記第3時点から所定期間経過した第4時点に行った排便時の前記ガスに対応する前記検出信号である第2標本信号と、を比較した第1標本比較結果、又は、(1B)前記第1標本信号に対応する前記所定成分の濃度である第1標本濃度と、前記第2標本信号に対応する前記所定成分の濃度である第2標本濃度とを比較した第2標本結果と、
      (2)予め前記標本提供者の、前記第3時点及び前記第4時点に行った排便時の便を分析することによって得た、前記標本提供者の各々の便に含まれる短鎖脂肪酸産生菌及び代謝物質の少なくとも何れか一方の、量及び存在割合に関する情報の少なくとも何れか一方を含む標本測定情報と、の組み合わせを含む学習データを用いた機械学習によって生成される、
    請求項1から4の何れか1項に記載の腸内情報推定システム。
    The estimation model is
    (1A) a first sample comparison result obtained by comparing a first sample signal, which is the detection signal corresponding to the gas when each of the sample providers defecates at a third time point, with a second sample signal, which is the detection signal corresponding to the gas when each of the sample providers defecates at a fourth time point a predetermined period of time has elapsed from the third time point; or (1B) a second sample result obtained by comparing a first sample concentration, which is the concentration of the specified component corresponding to the first sample signal, with a second sample concentration, which is the concentration of the specified component corresponding to the second sample signal.
    (2) Sample measurement information including at least one of information regarding the amount and the presence ratio of at least one of short-chain fatty acid producing bacteria and metabolites contained in each stool of the sample provider, which is obtained by analyzing the stool of the sample provider at the third time point and the fourth time point in advance, and
    The intestinal information estimation system according to claim 1 .
  6.  前記検出制御部は、
      前記対象者が前記第1時点以後に排便を行う度に、前記第1時点からの経過時間が前記所定期間経過しているか否かを判定し、前記第1時点から前記所定期間経過していると判定した場合、該排便時の前記ガスから前記所定成分を検出して、該所定成分の濃度に応じた前記第2検出信号を出力する、
    請求項1から5の何れか1項に記載の腸内情報推定システム。
    The detection control unit is
    Each time the subject defecates after the first time point, it is determined whether or not the predetermined period has elapsed since the first time point, and when it is determined that the predetermined period has elapsed since the first time point, the predetermined component is detected from the gas at the time of the defecation, and the second detection signal corresponding to the concentration of the predetermined component is output.
    The intestinal information estimation system according to any one of claims 1 to 5.
  7.  前記所定成分は、メチルメルカプタン、硫化水素、水素、及び二酸化炭素のうち少なくとも1つである、
    請求項1から6の何れか1項に記載の腸内情報推定システム。
    The predetermined component is at least one of methyl mercaptan, hydrogen sulfide, hydrogen, and carbon dioxide.
    The intestinal information estimation system according to any one of claims 1 to 6.
  8.  前記腸内情報は、前記第1時点から前記第2時点までの期間における、前記対象者の便に含まれる短鎖脂肪産生菌及び代謝物質の量の変化及び存在割合の変化の少なくとも何れか一方に関する情報である、
    請求項1から7の何れか1項に記載の腸内情報推定システム。
    The intestinal information is information regarding at least one of a change in the amount and a change in the presence ratio of short-chain fat-producing bacteria and metabolites contained in the subject's stool during a period from the first time point to the second time point;
    The intestinal information estimation system according to any one of claims 1 to 7.
  9.  前記腸内情報から、前記対象者の健康度を示す健康度情報を算出する健康度情報算出部をさらに備える、
    請求項1から8の何れか1項に記載の腸内情報推定システム。
    A health information calculation unit is further provided that calculates health information indicating the health of the subject from the intestinal information.
    The intestinal information estimation system according to any one of claims 1 to 8.
  10.  前記健康度情報は、前記対象者の体調、免疫力、筋肉の増えやすさ、太りやすさ、ストレス、集中力、アンチエイジング、美肌力、メンタルヘルス、及び睡眠のうちの少なくとも何れか1つに関する情報である、
    請求項9に記載の腸内情報推定システム。
    The health information is information on at least one of the subject's physical condition, immunity, muscle gain, weight gain, stress, concentration, anti-aging, skin beauty, mental health, and sleep.
    The intestinal information estimation system according to claim 9 .
  11.  前記短鎖脂肪酸産生菌は、酪酸産生菌及び酢酸産生菌の少なくとも何れか一方である、請求項3に記載の腸内情報推定システム。 The intestinal information estimation system according to claim 3, wherein the short-chain fatty acid producing bacteria are at least one of butyric acid producing bacteria and acetic acid producing bacteria.
  12.  前記代謝物質は、酪酸及び酢酸の少なくとも何れか一方である、
    請求項3に記載の腸内情報推定システム。
    The metabolic substance is at least one of butyric acid and acetic acid;
    The intestinal information estimation system according to claim 3 .
  13.  対象者に起因するガスから所定成分を検出して、該所定成分の濃度に応じた検出信号を出力する検出制御ステップと、
     第1時点に採取された前記ガスに対応する前記検出信号である第1検出信号と、前記第1時点から所定期間経過した第2時点に採取された前記ガスに対応する前記検出信号である第2検出信号と、を比較した第1比較結果、又は、前記第1検出信号に対応する前記所定成分の濃度である第1濃度と、前記第2検出信号に対応する前記所定成分の濃度である第2濃度と、を比較した第2比較結果を推定モデルに入力して、前記対象者の腸内情報を推定する推定ステップと、を含む、
    腸内情報推定方法。
    a detection control step of detecting a predetermined component from a gas originating from a subject and outputting a detection signal corresponding to a concentration of the predetermined component;
    an estimation step of inputting a first comparison result obtained by comparing a first detection signal, which is the detection signal corresponding to the gas collected at a first time point, with a second detection signal, which is the detection signal corresponding to the gas collected at a second time point a predetermined period of time has elapsed since the first time point, or a second comparison result obtained by comparing a first concentration, which is the concentration of the predetermined component corresponding to the first detection signal, with a second concentration, which is the concentration of the predetermined component corresponding to the second detection signal, into an estimation model to estimate intestinal information of the subject.
    A method for estimating intestinal information.
  14.  請求項1から12の何れか1項に記載の腸内情報推定システムとしてコンピュータを機能させるための制御プログラムであって、前記推定部としてコンピュータを機能させるための制御プログラム。 A control program for causing a computer to function as the intestinal information estimation system according to any one of claims 1 to 12, the control program causing the computer to function as the estimation unit.
  15.  請求項14に記載の制御プログラムを記録したコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium having the control program according to claim 14 recorded thereon.
PCT/JP2023/036346 2022-10-05 2023-10-05 Intestinal information estimation system, intestinal information estimation method, control program, and recording medium WO2024075811A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-161095 2022-10-05
JP2022161095 2022-10-05

Publications (1)

Publication Number Publication Date
WO2024075811A1 true WO2024075811A1 (en) 2024-04-11

Family

ID=90608499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036346 WO2024075811A1 (en) 2022-10-05 2023-10-05 Intestinal information estimation system, intestinal information estimation method, control program, and recording medium

Country Status (1)

Country Link
WO (1) WO2024075811A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007089857A (en) * 2005-09-29 2007-04-12 Toto Ltd Apparatus and method for informing intestinal condition
JP2014506149A (en) * 2010-12-14 2014-03-13 キンバリー クラーク ワールドワイド インコーポレイテッド Method and system for monitoring nutrient intake based on the concentration of gut flora product gas
WO2016121247A1 (en) * 2015-01-30 2016-08-04 Toto株式会社 Biological information measurement system
CN111103423A (en) * 2019-12-31 2020-05-05 无锡市尚沃医疗电子股份有限公司 Expiration test method for detecting metabolic gas of intestinal flora
WO2021117691A1 (en) * 2019-12-10 2021-06-17 京セラ株式会社 Health state estimating device, and health state estimating method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007089857A (en) * 2005-09-29 2007-04-12 Toto Ltd Apparatus and method for informing intestinal condition
JP2014506149A (en) * 2010-12-14 2014-03-13 キンバリー クラーク ワールドワイド インコーポレイテッド Method and system for monitoring nutrient intake based on the concentration of gut flora product gas
WO2016121247A1 (en) * 2015-01-30 2016-08-04 Toto株式会社 Biological information measurement system
WO2021117691A1 (en) * 2019-12-10 2021-06-17 京セラ株式会社 Health state estimating device, and health state estimating method
CN111103423A (en) * 2019-12-31 2020-05-05 无锡市尚沃医疗电子股份有限公司 Expiration test method for detecting metabolic gas of intestinal flora

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIN WOOSEOK: "1. Healthcare and medical diagnosis using gas sensors: Current status and prospects", ELECTROCHEMISTRY, THE ELECTROCHEMICAL SOCIETY OF JAPAN, vol. 86, 5 June 2018 (2018-06-05), pages 94 - 98, XP093154726, ISSN: 2433-3255, DOI: 10.5796/denkikagaku.18-FE0010 *

Similar Documents

Publication Publication Date Title
JP6899084B2 (en) Biological information measurement system
US11298112B2 (en) Biomonitoring devices, methods, and systems for use in a bathroom setting
US20160220170A1 (en) Biological information measurement system
TWI591571B (en) Biological information measurement system
US20190212322A1 (en) Health monitoring system, health monitoring method, and health monitoring program
US20160223549A1 (en) Biological information measurement system
US20160223519A1 (en) Biological information measurement system
EP3994697A1 (en) Biological fluid analysis and personalized hydration assessment systems
JP3558050B2 (en) Urine testing device
WO2024075811A1 (en) Intestinal information estimation system, intestinal information estimation method, control program, and recording medium
JP2017096890A (en) Biological information measurement system
JP6770677B2 (en) Biological information measurement system
JP2004038990A (en) Method and system of health management service provision for people staying at home
WO2023145624A1 (en) Intestinal information estimation system
KR101825093B1 (en) Member management method and system based on user wellness data
WO2023053902A1 (en) Gas detection method, gas detection device, gas detection system, control program, and recording medium
JP6674623B2 (en) Biological information measurement system
WO2020189019A1 (en) Information processing system and information processing method
WO2021199324A1 (en) Clinical examination item determination device, healthy behavior assisting device, clinical examination item determination method, healthy behavior assisting method, and computer program
JP3976011B2 (en) Urinalysis device
US11170888B2 (en) Capturing crowd wisdom in individualized treatment plans
JP2004004018A (en) Life managing device, lifestyle guide method, and health management system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874936

Country of ref document: EP

Kind code of ref document: A1