WO2023053902A1 - Gas detection method, gas detection device, gas detection system, control program, and recording medium - Google Patents

Gas detection method, gas detection device, gas detection system, control program, and recording medium Download PDF

Info

Publication number
WO2023053902A1
WO2023053902A1 PCT/JP2022/033855 JP2022033855W WO2023053902A1 WO 2023053902 A1 WO2023053902 A1 WO 2023053902A1 JP 2022033855 W JP2022033855 W JP 2022033855W WO 2023053902 A1 WO2023053902 A1 WO 2023053902A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
detected
concentration
sample
detection
Prior art date
Application number
PCT/JP2022/033855
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 上山
真一 阿部
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2023550521A priority Critical patent/JPWO2023053902A1/ja
Publication of WO2023053902A1 publication Critical patent/WO2023053902A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/40ICT specially adapted for the handling or processing of patient-related medical or healthcare data for data related to laboratory analysis, e.g. patient specimen analysis

Definitions

  • the present disclosure relates to a gas detection method, a gas detection device, a gas detection system, and the like for analyzing gas.
  • Patent Document 1 it is possible to detect hydrogen gas and odorous gas contained in defecation gas discharged into a toilet bowl, and output detection data in which the influence of hydrogen contained in the defecation gas is separated.
  • a biometric information measurement system is disclosed.
  • a gas detection method includes a first collection of collecting a first sample gas released from a subject after the subject discharges the specimen. a first detection step of respectively detecting concentrations of a first gas to be detected and a second gas to be detected contained in the first sample gas; a second sampling step of sampling after the step; a second detecting step of detecting the concentration of the first gas to be detected contained in the second sample gas; Further, the first sample gas is collected after being released from the specimen discharged from the subject based on the change in the concentration of the first gas to be detected calculated from the concentration of the first gas to be detected. and a calculating step of calculating the concentrations of the first detectable gas and the second detectable gas during the period from .
  • a gas detection device collects a sample gas released from a subject after the subject discharges the specimen, and collects the first gas to be detected contained in the sample gas. and a second gas to be detected, respectively, the concentration of the first gas to be detected and the concentration of the second gas to be detected contained in the first sample gas sampled for the first time; a detection unit for detecting the concentration of the first gas to be detected contained in a second sample gas released from the same specimen after the first sampling; and the first gas to be detected detected from the first sample gas.
  • the specimen discharged from the subject a calculation unit that calculates concentrations of the first gas to be detected and the second gas to be detected during a period from when the gas is released from the gas to when the first sample gas is sampled.
  • a gas detection system includes the gas detection device according to ⁇ 2> above, and the first sample gas is collected after being released from the specimen discharged from the subject.
  • an estimating device comprising an estimating unit that estimates information about the health condition of the subject who discharged the specimen based on the concentrations of the first detectable gas and the second detectable gas until the The estimating unit calculates the ratio of the concentration of the first detected gas to the concentration of the second detected gas contained in the past sample gas emitted from the past specimen discharged from each of the plurality of subjects. is input data, and learning is performed using information about the health condition of each of the plurality of subjects at the time when the past specimen was discharged by each of the plurality of subjects as teacher data. is used to make the estimation.
  • the gas detection system includes a first sample gas emitted from a specimen discharged from a subject, and a gas emitted from the specimen after the first sample gas is emitted.
  • Each of the second sample gases is sampled, and the concentrations of the first gas to be detected and the second gas to be detected contained in the first sample gas and the concentration of the first gas to be detected contained in the second sample gas are determined.
  • the concentration of the first detectable gas detected from the first sample gas and the concentration of the first detectable gas detected from the second sample gas.
  • the gas detection device and gas detection system according to each aspect of the present disclosure may be implemented by a computer.
  • a control program for a gas detection device that implements the gas detection device and the gas detection system on a computer by operating a computer as each part (software element) included in the gas detection device and the gas detection system.
  • a computer-readable recording medium recording it are also included in the scope of the present disclosure.
  • FIG. 1 is a schematic diagram showing an example of the configuration of a gas detection system according to one embodiment
  • FIG. FIG. 4 is a diagram showing an example of the data structure of density information
  • It is a figure which shows an example of the data structure of detection data.
  • FIG. 4 is a diagram showing an example of the data structure of uncorrected density information
  • FIG. 7 is a diagram showing an example of the data structure of post-correction density information
  • 2 is a diagram showing the appearance of a gas detection device included in the gas detection system shown in FIG. 1;
  • FIG. 1 is a schematic diagram showing an example of the configuration of a gas detection system according to one embodiment
  • FIG. FIG. 4 is a diagram showing an example of the data structure of density information
  • FIG. 4 is a diagram showing an example
  • FIG. 1 is a block diagram showing the configuration of a main part of a gas detection system
  • FIG. 1 is a schematic diagram showing an example of the configuration of a gas detection device
  • FIG. 4 is a flow chart showing an example of the flow of processing performed in the gas detection system
  • Fig. 10 is a graph plotting the decay amount of the concentration of H 2 released from the specimen and the mass of the specimen (stool volume) after a predetermined time has passed.
  • FIG. 10 is a graph plotting the amount of CO 2 concentration decay emitted from a sample after a predetermined period of time has elapsed, and the mass of the sample (stool volume);
  • FIG. 11 is a block diagram showing the configuration of a gas detection system provided with a gas detection device according to another embodiment
  • 16 is a schematic diagram showing the configuration of the gas detection device shown in FIG. 15
  • FIG. FIG. 11 is a block diagram showing the configuration of a gas detection system provided with a gas detection device according to another embodiment
  • 18 is a schematic diagram showing the configuration of the gas detection device shown in FIG. 17
  • FIG. 18 is a flow chart showing an example of the flow of processing performed in the gas detection system shown in FIG. 17
  • FIG. 4 is a schematic diagram showing a modification of the gas detection system
  • FIG. 4 is a schematic diagram showing a modification of the gas detection system;
  • Embodiment 1 ⁇ Scope of Application of Gas Detection System 100> Conventional systems have room for improvement in terms of analytical accuracy with respect to the measurement of collected gases.
  • One aspect of the present disclosure provides a gas detection method, a gas detection device, a gas detection system, and the like, with improved gas analysis accuracy.
  • sample gas a plurality of gas components to be detected (hereinafter referred to as "detected gas") contained in the gas emitted from the specimen of the subject (hereinafter referred to as “sample gas”) include at least the following We have found that (1) and (2) are involved.
  • a detected gas (hereinafter referred to as a first detected gas) whose concentration in the sample gas emitted from the specimen greatly fluctuates (for example, decreases) over time.
  • a detectable gas whose concentration in the sample gas emitted from the specimen does not fluctuate greatly over time (hereinafter referred to as a second detectable gas).
  • the inventors focused on the concentrations of the first detectable gas and the second detectable gas, and the concentration ratio between the detectable gases, and focused on the gas detection method, the gas detection system 100, and the gas detection according to the present disclosure. I came to invent the device 1 and the like.
  • a “subject” is intended to be a person who uses the gas detection system 100 described later and whose health condition is managed and monitored.
  • a “specimen” may be excrement excreted by a subject.
  • the sample gas may be bowel gas.
  • a “specimen” may also be a subject's secretion.
  • the sample gas may be the subject's body odor.
  • a “specimen” may also be a portion of a subject's tissue.
  • the "detected gas” is intended to be a chemical substance to be detected and a chemical substance that can exist as a gas.
  • Detected gas concentration means the concentration of the detected gas in the sample gas.
  • the gas to be detected is referred to as a “gas to be detected” or “each gas to be detected” unless it is specified whether it is the first gas to be detected or the second gas to be detected.
  • a gas detection system 100 is a system capable of detecting the concentrations of a first detection target gas and a second detection target gas contained in a sample gas and correcting the concentrations of the detected detection target gases. .
  • the corrected concentration of each gas to be detected can be used to estimate the health condition of the subject.
  • "correcting the concentration” means correcting the detected concentration (detection result) of each gas to be detected.
  • the concentration of each gas to be detected can be corrected from the detection results of the first gas to be detected and the second gas to be detected contained in the sample gas emitted from feces discharged (excreted) from the subject.
  • the gas detection system 100 will be described as an example.
  • FIG. 1 is a schematic diagram showing an example of the configuration of a gas detection system 100 according to one embodiment.
  • FIG. 1 is a schematic diagram showing only a part of members in a simplified manner for describing the embodiment for convenience of explanation. Accordingly, gas detection system 100 may include optional components not shown in the figures to which this specification refers. Also, the dimensions of the members in each drawing do not faithfully represent the actual dimensions of the constituent members, the dimensional ratios of the respective members, and the like.
  • the gas detection system 100 includes a gas detection device 1, a server device 2, and an electronic device 3.
  • the gas detection device 1, the server device 2, and the electronic device 3 may be communicably connected to each other.
  • the server device 2 may be communicably connected to the gas detection device 1 and the electronic device 3 via a communication network.
  • the gas detection device 1 and the server device 2, and the electronic device 3 and the server device 2 may be connected by wireless communication, or may be connected by wired communication.
  • the gas detection device 1 collects at least twice a sample gas discharged from a subject's stool, and detects the concentration of each gas to be detected contained in each of the collected sample gases.
  • the gas detection device 1 corrects the concentration of each gas to be detected, and is a device capable of calculating the concentrations of the first gas to be detected and the concentration of the second gas to be detected emitted from the specimen discharged from the subject. is.
  • the gas detection device 1 may be a device that can be attached to the toilet bowl 4 used by the subject.
  • the gas detection device 1 transmits concentration information including the corrected concentration of the first gas to be detected and the concentration of the second gas to be detected to the server device 2 .
  • the gas detection device 1 may calculate the mass of the sample discharged by the subject based on changes in the concentration of the first gas to be detected, and transmit information indicating the mass together with the concentration information to the server device 2 .
  • Concentration information output from the gas detection device 1 will be described with reference to FIG.
  • FIG. 2 is a diagram showing an example of the data structure of concentration information output from the gas detection device 1.
  • the concentration information may include subject ID, detection data D1, sample gas ID, uncorrected concentration information D2, and corrected concentration information D3.
  • the target person ID is identification information unique to the target person.
  • the subject ID may be the subject's name and identification information unique to each subject. If the subject is a user who uses the gas detection system 100 , the subject ID may be a user ID given to each user who uses the gas detection system 100 .
  • the gas detection device 1 collects the sample gas multiple times (at least twice) at predetermined time intervals (eg, 30 seconds or 1 minute) for each bowel movement of the subject.
  • a sample gas ID may be assigned to each of the collected sample gases.
  • FIG. 2 illustrates concentration information output from the gas detection device 1 used by a subject whose subject ID is "xxxx".
  • the sample gas sampled at "8:24 AM on dd, mm, 2021” has a sample ID of "samp1", and the sample gas sampled one minute later has a sample ID of "samp2". Granted.
  • the detection data D1 includes data indicating the concentration of the detected first gas to be detected and the concentration of the second gas to be detected for each sample gas.
  • Gases to be detected may include hydrogen (H 2 ), carbon dioxide (CO 2 ), methane (CH 4 ), sulfuric gases, and the like.
  • Sulfurized gases may include hydrogen sulfide (H 2 S), methyl mercaptan (CH 3 SH), and the like.
  • H 2 or CO 2 corresponds to the first gas to be detected
  • CH 4 , sulfide-based gas, etc. correspond to the second gas to be detected.
  • the detection data D1 may be a detection signal output from the gas sensor 143, which will be described later, or may include a numerical value indicating the concentration calculated from the detection signal.
  • FIG. 3 is a diagram showing an example of the data structure of detection data D1.
  • the detection data D1 may include: The concentration d11 of the first gas to be detected and the concentration d12 of the second gas to be detected detected from the sample gas with the sample ID "samp1". The concentration d21 of the first gas to be detected and the concentration d22 of the second gas to be detected detected from the sample gas with the sample ID "samp2".
  • the concentration information may further include a gas detection device ID unique to the gas detection device 1 .
  • FIG. 2 shows concentration information including the gas detection device ID "ppp" of the gas detection device 1 used by a subject whose subject ID is "xxxx".
  • the uncorrected concentration information D2 is the uncorrected concentration of the first detected gas and the uncorrected concentration of the second detected gas, which are calculated from the detection data D1 without correction.
  • FIG. 4 is a diagram showing an example of the data structure of uncorrected density information D2.
  • the uncorrected density information D2 may include the following.
  • the post-correction concentration information D3 is post-correction concentrations of the first gas to be detected and the second gas to be detected calculated based on the detection data D1.
  • FIG. 7 is a diagram showing an example of the data structure of the post-correction density information D3.
  • the corrected density information D3 may include the following.
  • the server device 2 shown in FIG. 1 may be a computer managed by an administrator of the gas detection system 100 .
  • the server device 2 generates analysis result information based on the concentration information acquired from the gas detection device 1 .
  • the server device 2 holds subject information in which the ID of each subject, the gas detection device ID of the gas detection device 1 used by each subject, and the contact information of each subject are associated with each other. good too.
  • FIG. 5 is a diagram showing an example of the data structure of subject information held in the server device 2.
  • the subject's contact information may be the subject's email address.
  • the server device 2 refers to the subject information, identifies the subject who uses the gas detection device 1, which is the source of the concentration information, from the subject ID included in the concentration information, 3 to send analysis result information.
  • the gas detection device ID of the gas detection device 1 used by the subject with the subject ID "xxxx" is "ppp"
  • the subject's contact information is "xxxx@xxx.xxx”. ”.
  • the server device 2 may be configured to create a unique web page for each subject and allow each subject to view this web page. Each subject may be allowed to set a unique password or the like for viewing his/her own web page.
  • the server device 2 refers to the target person information, identifies the target person from the target person ID, and transmits the URL of the web page or the like to the target person's electronic device 3 .
  • the server device 2 may have a function of estimating the subject's health condition from the concentration of the first gas to be detected and the concentration of the second gas to be detected.
  • FIG. 6 is a diagram showing an example of the data structure of analysis result information.
  • the analysis result information may include a subject ID, post-correction concentration information D3, and health information D4.
  • the analysis result information may include the sample gas ID.
  • FIG. 8 is a diagram showing an example of the data structure of the health information D4.
  • health information D4 may include evaluation, useful information, and remarks. Also, the health information ID assigned to each piece of health information may be included.
  • the evaluation is based on the determination result of the subject's health condition estimated by the server device 2 based on the corrected densities c11 and c21 of the first gas to be detected and the corrected densities c12 and c22 of the second gas to be detected.
  • the evaluation is based on the corrected concentrations c11 and c21 of the first detectable gas and the corrected concentrations c12 and c22 of the second detectable gas. It may be a determination result about the state of For the evaluation of the subject's health condition, for example, three grades of A (good), B (within acceptable range), and C (caution required) may be applied.
  • FIG. 8 shows an example in which the subject's health condition is evaluated as "B".
  • the server device 2 may be configured to estimate the subject's health condition based on the uncorrected concentration of the first gas to be detected and the uncorrected concentration of the second gas to be detected. That is, the evaluation is based on the health condition of the subject estimated by the server device 2 based on the uncorrected concentrations g11 and g21 of the first gas to be detected and the uncorrected concentrations g12 and g22 of the second gas to be detected. may be the determination result.
  • Useful information may be useful information that contributes to improving the subject's health condition.
  • the useful information may include recommended foods (ingredients and dishes) for the subject, information on exercise, information on improving lifestyle habits, and the like.
  • Remarks can include various information provided to the subject.
  • the remarks may include, for example, the following information.
  • the electronic device 3 may be a computer used by the subject.
  • the electronic device 3 may be a computer used by a person (for example, a family member) who monitors the subject's health condition.
  • the electronic device 3 may be, for example, a personal computer, a tablet terminal, a smart phone, or the like.
  • the electronic device 3 has a communication function and can receive analysis result information from the server device 2 .
  • the electronic device 3 may have, for example, a keyboard, a touch panel, an input unit such as a microphone, and a display unit such as a monitor.
  • the electronic device 3 may be installed inside the toilet room in which the toilet bowl 4 is installed. In this case, the electronic device 3 may be taken outside the toilet room.
  • the gas detection device 1 collects a sample gas emitted from a specimen discharged from a subject, and determines the types and concentrations of the first gas to be detected and the second gas to be detected contained in the sample gas. It is a device that detects each. Further, the gas detection device 1 collects a sample gas and detects each gas to be detected at least twice, corrects the concentration and the like of each gas to be detected based on each result, and transmits the result to the server device 2 . .
  • the gas detection device 1 will be described below with reference to FIGS. 9 to 11.
  • FIG. FIG. 9 is a diagram showing the appearance of the gas detection device 1 included in the gas detection system 100.
  • FIG. 10 is a block diagram showing the essential configuration of the gas detection system 100 shown in FIG.
  • FIG. 11 is a schematic diagram showing an example of the configuration of the gas detection device 1. As shown in FIG.
  • the gas detection device 1 is installed, for example, in a flush toilet bowl 4, as shown in FIG.
  • the toilet 4 includes a toilet bowl 4A and a toilet seat 4B.
  • the toilet bowl 4 can be installed in a toilet room such as a house or a hospital.
  • the gas detection device 1 may be installed at any location on the toilet bowl 4 .
  • the gas detection device 1 may be arranged from between the toilet bowl 4A and the toilet seat 4B to the outside of the toilet 4, as shown in FIG. Part of the gas detection device 1 may be embedded in the toilet seat 4B.
  • a subject's stool can be discharged into the toilet bowl 4A of the toilet bowl 4.
  • the gas detection device 1 can obtain a sample gas in which the gas generated from stool discharged into the toilet bowl 4A is mixed with the outside air.
  • the gas detection device 1 can detect the type and concentration of each gas to be detected contained in the sample gas.
  • the gas detection device 1 includes a control unit 10, a subject detection unit 11, a bowel movement detection unit 12, a collection system 13, an analysis system 14, a storage unit 15, and a communication unit 16.
  • the control unit 10 controls the operation of each unit of the gas detection device 1 to detect each gas to be detected contained in the sample gas. Details of the control unit 10 will be described later.
  • the subject detection unit 11 may include at least one of an image camera, a personal identification switch, an infrared sensor, a pressure sensor, and the like.
  • the subject detection unit 11 outputs the detection result to the control unit 10 .
  • the subject detection unit 11 may include any sensor for authenticating the subject. Examples of such sensors include a load sensor that detects body weight, a sensor that detects sitting height, a sensor that detects pulse, a sensor that detects blood flow, a sensor that detects face, and a sensor that detects voice.
  • the object person detection unit 11 detects that the target person has entered the toilet room by detecting infrared light reflected from the object irradiated by the infrared sensor. can be detected.
  • the target person detection unit 11 outputs a signal indicating that the target person has entered the toilet room to the control unit 10 as a detection result.
  • the subject detection unit 11 when the subject detection unit 11 includes a pressure sensor, it detects that the subject has sat on the toilet seat 4B by detecting the pressure applied to the toilet seat 4B as shown in FIG. obtain.
  • the target person detection unit 11 outputs a signal indicating that the target person has sat on the toilet seat 4B to the control unit 10 as a detection result.
  • the subject detection unit 11 includes a pressure sensor, it detects that the subject has stood up from the toilet seat 4B by detecting a decrease in the pressure applied to the toilet seat 4B as shown in FIG. can be detected.
  • the target person detection unit 11 outputs a signal indicating that the target person has stood up from the toilet seat 4B to the control unit 10 as a detection result.
  • the target person detection unit 11 when the target person detection unit 11 includes an image camera, etc., it collects data such as face images, sitting height, and weight. The target person detection unit 11 identifies and detects an individual from the collected data. The target person detection unit 11 outputs a signal indicating the identified individual to the control unit 10 as a detection result.
  • the subject detection unit 11 if it includes an individual identification switch or the like, it identifies (detects) an individual based on the operation of the individual identification switch. In this case, personal information may be registered (stored) in advance in the control unit 10 .
  • the target person detection unit 11 outputs a signal indicating the specified individual to the control unit 10 as a detection result.
  • the defecation detection unit 12 is a member that detects the discharge of the specimen from the subject.
  • “specimen” is stool, and “exhaustion of specimen” is intended to defecate.
  • the defecation detection unit 12 starts operating under the control of the main control unit 101, and upon detecting that the sample has been discharged into the toilet bowl 4A, sends a signal indicating that the sample has been discharged into the toilet bowl 4A to the control unit 10. Output.
  • the defecation detection unit 12 may be, for example, a sensor that detects a sound when the specimen lands on the water stored in the toilet bowl 4A. In this case, the defecation detection unit 12 outputs a signal indicating information indicating the detected sound to the control unit 10 .
  • the defecation detector 12 may be a pressure sensor capable of detecting that the specimen has fallen into the toilet bowl 4A.
  • the collection system 13 collects and stores the sample gas together with the outside air from the space inside the toilet bowl 4A.
  • the collection system 13 may collect the sample gas, for example, by sucking the sample gas.
  • the analysis system 14 uses the sample gas collected by the collection system 13 to detect the type and concentration of each gas to be detected contained in the sample gas. The details of the collection system 13 and analysis system 14 will be described later.
  • the storage unit 15 is composed of, for example, a semiconductor memory or a magnetic memory.
  • the storage unit 15 stores various information, a program for operating the gas detection device 1, and the like.
  • the storage unit 15 may function as a work memory.
  • the storage unit 15 may also store estimation models used for various estimations performed by the control unit 10 .
  • the communication unit 16 may be capable of communicating with the server device 2.
  • the communication method used for communication between the communication unit 16 and the server device 2 may be a short-range wireless communication standard, a wireless communication standard for connecting to a mobile phone network, or a wired communication standard.
  • Near field communication standards may include, for example, WiFi (registered trademark), Bluetooth (registered trademark), infrared and NFC (Near Field Communication), and the like.
  • a wireless communication standard for connecting to a mobile phone network may include, for example, LTE (Long Term Evolution) or a mobile communication system of fourth generation or higher.
  • the communication method used for communication between the communication unit 16 and the server device 2 may be a communication standard such as LPWA (Low Power Wide Area) or LPWAN (Low Power Wide Area Network).
  • the housing 30 accommodates various parts of the gas detection device 1 .
  • Housing 30 may be constructed of any material.
  • the housing 30 may be made of a material such as metal or resin.
  • the collection system 13 has a first valve 131 and a first pump 132 .
  • each part of the collection system 13 is connected by channels 31 and 32 .
  • the first valve 131 included in the collection system 13 is located on the flow path 31 and is a valve that operates under the control of the main controller 101 .
  • the first valve 131 may be configured by an electromagnetically-driven, piezo-driven, motor-driven valve, or the like.
  • the first valve 131 adjusts the degree of opening (degree of communication) of each channel according to the control of the main control unit 101, so that the space between the channel 31 and the channel 32 and between the channel 32 and the channel 36 (described later) can be adjusted.
  • the flow of sample gas and purge gas into flow path 32 and sensor chamber 144 discussed below
  • the first pump 132 is provided between the flow paths 31 and 32 and is connected to the sensor chamber 144 via the flow path 32 .
  • the first pump 132 operates under the control of the main controller 101 .
  • the first pump 132 sucks the sample gas in the toilet bowl 4A through the opening of the channel 31 that opens into the toilet bowl 4A and supplies it to the channel 32 .
  • the first pump 132 shown in FIG. 11 may be composed of a piezo pump, a motor pump, or the like.
  • the first pump 132 may also be used when supplying the purge gas to the flow path 32, as will be described later.
  • the channel 31 is a tubular member provided to connect between the toilet bowl 4A and the first pump 132. One end of the channel 31 has an opening that opens into the toilet bowl 4A and the opposite end is connected to the first pump 132 .
  • Channel 32 is a channel provided between first pump 132 and sensor chamber 144 .
  • analysis system 14 includes second valve 141 , second pump 142 , gas sensor 143 and sensor chamber 144 . Further, as shown in FIG. 11, the analysis system 14 is connected to the outside through a discharge channel 33 and a channel 34 . Also, each part of the analysis system is connected by a channel 37 .
  • the second valve 141 is a valve provided on the channel 34 .
  • the second valve 141 operates under the control of the main control unit 101, and can switch between a state in which the flow paths 34 and 36 communicate with each other and a state in which the flow paths 34 and 37 communicate with each other.
  • the second pump 142 is a pump provided on the channel 37 and connected to the sensor chamber 144 via the channel 37 .
  • the second pump 142 operates under the control of the main controller 101 and can supply the outside air sucked from the flow path 34 to the sensor chamber 144 .
  • the gas sensor 143 may be any sensor that outputs different detection signals according to the concentration of the gas to be detected.
  • the gas sensor 143 a sensor in which the intensity of the detection signal changes according to the concentration of the gas to be detected will be described as an example, but the gas sensor 143 is not limited to this.
  • the gas sensor 143 can output a detection signal with an intensity corresponding to the concentration of the gas to be detected that can be contained in the sample gas.
  • a plurality of gas sensors 143 may be positioned in the gas detection device 1 . Further, the plurality of gas sensors 143 may be capable of outputting detection signals corresponding to concentrations of different types of gas to be detected. Thereby, the gas detection device 1 can analyze the concentration of a plurality of kinds of gases to be detected.
  • Gas sensor 143 includes a sensor element and a resistance element.
  • the sensor element and the resistive element are connected in series between the power terminal and the ground terminal.
  • a constant voltage value VC is applied between the power terminal and the ground terminal.
  • the same current value IS flows through each of the sensor element and the resistance element.
  • the current value I S can be determined according to the resistance value R S of the sensor element and the resistance value R L of the resistive element.
  • the voltage output by the gas sensor 143 may be the voltage value VS applied to the sensor element or the voltage value VRL applied to the resistance element.
  • the power terminal is connected to a power source such as a battery provided in the gas detection device 1 .
  • a ground terminal is connected to the ground of the gas detection device 1 .
  • One end of the sensor element is connected to a power terminal.
  • the opposite end of the sensor element is connected to one end of the resistive element.
  • the sensor element is a semiconductor sensor.
  • the sensor element is not limited to a semiconductor sensor.
  • the sensor element may be a catalytic combustion sensor, a solid electrolyte sensor, or the like.
  • the sensor element includes a gas sensitive portion.
  • the gas sensitive portion contains a metal oxide semiconductor material corresponding to the type of gas sensor 143 .
  • metal oxide semiconductor materials include tin oxide (such as SnO2 ), indium oxide (such as In2O3 ), zinc oxide (such as ZnO ), tungsten oxide (such as WO3 ) and iron oxide (such as Fe2O3 ) . ) and the like.
  • the gas to be detected contained in the sample gas is replaced with oxygen adsorbed on the surface of the gas sensitive portion of the sensor element, and a reduction reaction can occur.
  • Oxygen adsorbed on the surface of the gas-sensitive portion can be removed by the reduction reaction.
  • the resistance value R s of the sensor element decreases, and the voltage value V s applied to the sensor element can decrease. That is, when the sample gas is supplied to the gas sensor 143, the voltage value VS applied to the sensor element can decrease according to the concentration of the gas to be detected contained in the sample gas.
  • the sum of the voltage value VS and the voltage value VRL is constant. Therefore, when the sample gas is supplied to the gas sensor 143, the voltage value VRL can increase according to the concentration of the gas to be detected contained in the sample gas.
  • the resistance element is a variable resistance element.
  • a resistance value RL of the resistance element can be changed by a control signal from the control section 10 .
  • One end of the resistive element is connected to the opposite end of the sensor element.
  • the opposite end of the resistive element is connected to the ground terminal.
  • the voltage value V S applied to the sensor element can be adjusted. For example, if the resistance value RL is made equal to the resistance value RS of the sensor element, the amplitude of the voltage value VS applied to the sensor element can be close to the maximum value.
  • the sensor chamber 144 is a chamber that houses the gas sensor 143 inside. As shown in FIG. 11, sensor chamber 144 is connected to one end of channel 32 . In other words, sensor chamber 144 is connected to first pump 132 via flow path 32 . One end of the discharge path 33 and one end of the flow path 37 are connected to the sensor chamber 144 .
  • the discharge path 33 may be composed of a tubular member such as a resin tube or a metal or glass pipe. One end (first end) of the discharge path 33 is connected to the sensor chamber 144 , and the opposite end (second end) of the discharge path 33 is connected to the housing 30 of the gas detection device 1 . It is open to the outside.
  • the discharge path 33 discharges the exhaust from the sensor chamber 144 to the outside of the gas detection device 1 by the operation of the first pump 132 . A part of the discharge passage 33 on the opening side can be exposed to the outside of the toilet bowl 4A as shown in FIG.
  • the channel 34 is a tubular member.
  • One end of the flow path 34 has an opening that opens toward a space outside the toilet bowl 4A, and the opposite end of the flow path 34 is connected to the second valve 141.
  • the outside is the surroundings of the space in which the gas detection device 1 is located, such as the space inside the toilet room.
  • the filter 35 is a filter provided on the channel 34 .
  • the filter 35 may be a filter capable of adsorbing unnecessary components contained in the outside air sucked from the opening of the flow path 34, such as each gas to be detected contained in the outside air. Since the filter 35 is a filter as described above, the outside air (purge gas) passing through the flow path 34 can be reduced in the contents of the components of each gas to be detected by passing through the filter 35 .
  • the flow path 36 has one end connected to the second valve 141 and the opposite end connected to the first valve 131 .
  • One end of the flow path 37 is connected to the second valve 141 , and the opposite end is connected to the sensor chamber 144 .
  • the first pump 132 operates to cause the flow from the first end of the flow path 34 to Air (purge gas) in the toilet room is sucked. Also, the sucked purge gas is purified by passing through the filter 35 , the purified purge gas passes through the flow paths 36 and 32 , is supplied to the sensor chamber 144 , and then is discharged from the discharge path 33 . The purge gas passes through the channel 32 and is discharged together with the sample gas remaining in the channel 32, thereby cleaning the channel 32 through which the sample gas has passed.
  • Air purge gas
  • the second pump 142 operates to suck the purge gas in the toilet room from the opening of the flow path 34 . Also, the sucked purge gas is purified by passing through the filter 35 , and the purified purge gas passes through the flow path 37 and is supplied to the sensor chamber 144 .
  • control unit 10 includes a main control unit 101, a detection unit 102, a first calculation unit 103, a sample estimation unit 104, and a second calculation unit 105 (calculation unit).
  • the main control section 101 controls the operation of each section of the gas detection device 1 . Specifically, the main control unit 101 controls operations of the subject detection unit 11 , the defecation detection unit 12 , the first valve 131 , the first pump 132 , the second valve 141 and the second pump 142 .
  • the main control unit 101 operates the subject detection unit 11 while power is being supplied to the gas detection device 1, and outputs a signal from the subject detection unit 11 indicating that the subject is seated on the toilet seat 4B. When acquired, the operation of the defecation detection unit 12 is started.
  • the main control unit 101 When the main control unit 101 acquires a signal from the defecation detection unit 12 indicating that the specimen has been discharged into the toilet bowl 4A, the main control unit 101 performs the first sampling of the sample gas in the toilet bowl 4A and the detection of each gas to be detected. let it start.
  • first sample gas the sample gas that is sampled for the first time after the discharge of the specimen is detected.
  • the main control unit 101 opens the first valve 131 so that the channel 31 and the channel 32 are in communication. Further, the main control unit 101 opens the second valve 141 so that the flow path 34 and the flow path 37 are in communication. In this state, the main control unit 101 alternately operates the first pump 132 and the second pump 142 for a predetermined period of time. As a result, the sample gas in the toilet bowl 4A is collected from the opening at the end of the flow path 31 on the toilet bowl 4A side, passes through the flow path 32 and is supplied to the sensor chamber 144 . Also, a purge gas is sucked from the outside and supplied to the sensor chamber 144 via the channels 34 and 37 .
  • the main controller 101 may cause the sample gas and the purge gas to be supplied to the sensor chamber 144 for, for example, 10 seconds, and then stop the operation of the first pump 132 and the second pump 142 .
  • the main control unit 101 acquires from the detection unit 102 the information indicating that the detection of the concentrations of the first target gas and the second target gas contained in the first sample gas has been completed, the main control unit 101 detects the first sample gas. It is determined whether a predetermined time has passed since the collection of the data.
  • a predetermined time is set, for example, within a range of 30 seconds to 1 minute.
  • the main control unit 101 operates the first pump 132 and the second pump 142 again to alternately supply the sample gas and the purge gas to the sensor chamber 144. You may let As a result, sampling of the sample gas for the second time and detection of the first gas to be detected are performed in the detection unit 102 .
  • a sample gas sampled for the second time is referred to as a "second sample gas.”
  • the second sample gas is a gas emitted from the same sample as the sample from which the first sample gas was sampled, and is a gas sampled after the timing at which the first sample gas was sampled.
  • the main control unit 101 controls each unit to 32 cleaning. Specifically, the main control unit 101 controls the first valve 131 and the second valve 141 so that the flow path 34 , the flow path 36 , and the flow path 32 are in communication, and the first pump 132 is operated. As a result, the purge gas is supplied to the channel 32, and the sample gas remaining in the channel 32 passes through the sensor chamber 144 together with the purge gas and is discharged from the discharge channel 33, thereby cleaning the channel 32. FIG. Further, the main control unit 101 causes the sensor chamber 144 to be cleaned by controlling each unit.
  • the main control unit 101 controls the second valve 141 to bring the flow path 34 and the flow path 37 into communication with each other, and operates the second pump 142 .
  • the purge gas is supplied to the sensor chamber 144 and exhausted from the exhaust path 33 to accomplish cleaning of the sensor chamber 144 .
  • the main control unit 101 cleans the flow path 32 and the sensor chamber 144 as described above, and after the detection of each gas to be detected using the first sample gas is completed, sampling of the second sample gas is started. You can go before.
  • the detection unit 102 detects the type and concentration of each gas to be detected contained in the sample gas.
  • the gas to be detected includes a first gas to be detected and a second gas to be detected, which is a gas other than the first gas to be detected and is a gas emitted from a specimen.
  • the detection unit 102 acquires a signal corresponding to the concentration of each gas to be detected contained in the first sample gas from the gas sensor 143 .
  • the intensity of the signal acquired by the detection unit 102 is , to become waveform data indicating the concentration of the gas to be detected.
  • the detection unit 102 estimates the type and concentration of the gas to be detected based on the waveform data.
  • the estimation includes a trained estimation model that has been trained using a data set that includes multiple sets of waveform data as input data for learning and information indicating the type and concentration of the gas to be detected as teacher data. may be used.
  • This estimation model learning process may be configured to be performed by the server device 2 or may be configured to be performed by an external computer different from the server device 2 .
  • the detection unit 102 outputs information indicating the type and concentration of the detected gas to be detected to the first calculation unit 103 and the second calculation unit 105, and mainly outputs information indicating that the detection using the first sample gas has been completed. Output to the control unit 101 .
  • the detection unit 102 acquires a signal corresponding to the concentration of the first target gas contained in the second sample gas from the gas sensor 143, and detects the first target gas contained in the second sample gas in the same manner as the first time. Detects the type and concentration of the detected gas.
  • the detection unit 102 outputs information indicating the type and concentration of the first detected gas to be detected to the first calculation unit 103 and the second calculation unit 105, and information indicating that the detection using the second sample gas is completed. is output to the main control unit 101 . Further, the detection unit 102 may cause the storage unit 15 to store detection data D1 including each detected information.
  • the detection data D1 contains information indicating the concentrations of the first detected gas and the second detected gas contained in the first sample gas, and information indicating the concentration of the first detected gas contained in the second sample gas. may be included. Further, the detection unit 102 may cause the storage unit 15 to store the detection data D1 and various types of information related to the detection data D1 in association with each other. Specifically, as shown in FIG. 2, the detection unit 102 collects the detection data D1, the subject ID and sample gas ID indicating the subject from whom the sample gas was collected, and the date and time when these sample gases were collected. , and a gas detection device ID indicating the gas detection device 1 may be stored in association with each other.
  • the detection data D1 may include the following.
  • the first calculation unit 103 first acquires information indicating the type and concentration of each gas to be detected from the detection unit 102 for two times. Next, the first calculator 103 calculates the concentration of the first detected gas contained in each of the detected gases in the detection using the first sample gas and the concentration in the detection using the second sample gas. Calculate the change between Specifically, the first calculator 103 calculates the difference between the concentration of the first gas to be detected contained in the first sample gas and the concentration of the first gas to be detected contained in the second sample gas. The first calculator 103 outputs information indicating a change between the concentration of the first gas to be detected contained in the first sample gas and the concentration of the first gas to be detected contained in the second sample gas to the analyte estimating unit. 104.
  • the first calculator 103 calculates the ratio of these concentrations. You may In this case, in subsequent processes, instead of the difference between the concentration of the first gas to be detected contained in the first sample gas and the concentration of the first gas to be detected contained in the second sample gas, the ratio of these concentrations is used. Used.
  • the analyte estimating unit 104 acquires, from the first calculating unit 103, information indicating changes in concentration of the first gas to be detected detected using the first sample gas and the second sample gas.
  • the specimen estimation unit 104 estimates the mass of the specimen based on the change in the concentration of the first gas to be detected.
  • the analyte estimating unit 104 determines the difference between the concentration of H 2 as the first detected gas in detection using the first sample gas and the concentration in detection using the second sample gas (H 2 ), the mass of the analyte is estimated.
  • a trained estimation model that has been learned in advance using input data and teacher data described below may be used.
  • ⁇ Input data Depending on the time of the concentration of the first detected gas contained in each sample gas (past sample gas) collected from past specimens of a plurality of subjects (subjects may be included) Data indicating the amount of attenuation.
  • ⁇ Training data Mass data obtained by actually measuring the mass of the specimen corresponding to each past sample gas.
  • subject means a person who has undergone analysis of the past sample gas released from the past sample gas, and who has measured the mass of the past sample gas at the time when the past sample gas was collected. are doing.
  • This estimation model learning process may be configured to be performed by the gas detection device 1 or may be configured to be performed by an external computer different from the gas detection device 1 .
  • the specimen estimation unit 104 outputs information indicating the estimated mass of the specimen to the second calculation unit 105 . Further, the specimen estimation unit 104 may store the information indicating the estimated mass of the specimen in association with the concentration information as shown in FIG.
  • the second calculator 105 calculates the concentrations of the first gas to be detected and the second gas to be detected based on the information indicating the mass of the specimen, and generates corrected concentration information D3. Specifically, the second calculator 105 acquires information indicating the type and concentration of each gas to be detected from the detector 102 .
  • the respective detected gases include a first detected gas and a second detected gas, which is a gas other than the first detected gas and emitted from the specimen.
  • the second calculator 105 acquires information indicating the mass of the specimen from the specimen estimator 104 .
  • the second calculator 105 calculates the concentrations of the first gas to be detected and the second gas to be detected during the period from when the gas is released from the specimen discharged from the subject until when the first sample gas is collected.
  • the second calculation unit 105 calculates the concentrations of the first gas to be detected and the second gas to be detected during the period from when the specimen discharged from the subject is discharged to when the first sample gas is collected. and the change in the concentration of the first gas to be detected contained in the second sample gas.
  • the second calculator 105 may correct the concentration of each of the first gas to be detected and the second gas to be detected contained in the first sample gas based on the mass of the specimen.
  • the information indicating the concentrations of the first gas to be detected and the second gas to be detected calculated by the second calculator 105 is also referred to as post-correction concentration information D3.
  • the second calculation unit 105 may store the calculated post-correction density information D3 in the storage unit 15 in association with the density information.
  • the second calculation unit 105 transmits the post-correction concentration information, the information indicating the type of gas detected as each gas to be detected, the information indicating the mass of the specimen, and the subject ID to the server device 2 via the communication unit 16. Send.
  • the second calculation unit 105 corrects the concentration of each of the plurality of types of detection target gas based on the change in the concentration of the first detection target gas, and determines the amount of the sample discharged from the subject.
  • the concentration of the first gas to be detected and the concentration of the second gas to be detected are calculated during the period from to when the first sample gas is sampled.
  • the second calculator 105 may correct the concentration of the second gas to be detected contained in the second sample gas using the concentration of CO 2 as the first gas to be detected. Specifically, the second calculator 105 calculates the first sample gas based on the difference between the concentration of CO 2 detected using the first sample gas and the concentration of CO 2 detected using the second sample gas. A degree of attenuation of the concentration of each gas to be detected in the detection using the second sample gas with respect to the concentration of each gas to be detected in the detection used may be estimated. The second calculation unit 105 calculates the concentration of each gas to be detected in the detection using the first sample gas based on the degree of attenuation of the concentration of the first gas to be detected by the estimation. It may be corrected to correspond to the gas concentration.
  • the concentration before attenuation of the concentration of each gas to be detected can be calculated.
  • the detection unit 102 may detect the concentration of the second gas to be detected contained in the second sample gas, and the second calculation unit 105 may detect the concentration of the second gas to be detected contained in the second sample gas. can be corrected.
  • the second calculation unit 105 uses either the calculated concentration of the detected gas contained in the first sample gas or the calculated concentration of the detected gas contained in the second sample gas as corrected concentration information. It may be transmitted to the server device 2 .
  • the second calculation unit 105 sets the concentration of H 2 in the detection using the first sample gas as the concentration of H 2 emitted from the specimen, and sets the concentration of H 2 released from the specimen to the concentration of H 2 in the detection using the corrected second sample gas. may be the concentration of the sulfide-based gas released from the specimen.
  • Known gas sensors include gas sensors that react to H 2 and gas sensors that do not react to H 2 .
  • a gas sensor that reacts to H 2 may be employed as the gas sensor 143 .
  • the gas sensor 143 may react greatly to H 2 contained in the sample gas, making it difficult to read the reaction to substances other than H 2 . Therefore, the second calculator 105 calculates the first sample gas contained in the first sample gas or the second sample gas based on the change between the concentration of the first detected gas in the first sample gas and the concentration in the second sample gas. It may be possible to correct the concentrations of the gas to be detected and the second gas to be detected.
  • the change is the concentration of the first gas to be detected and the second gas to be detected contained in the first sample gas, and the concentration of the first gas to be detected and the second gas to be detected contained in the second sample gas. It may be a difference from the concentration or a ratio.
  • the gas detection device 1 may correct the concentration of each gas to be detected contained in an arbitrary sample gas out of the first sample gas and the second sample gas. As a result, from the result of the first detection, it is possible to accurately identify the concentration of a substance such as H2 that decays quickly and reacts at a low concentration. Moreover, since the concentration of H 2 is attenuated when the second sample gas is sampled, the concentration of other substances such as sulfide-based gas can be accurately specified from the second detection result.
  • the second calculation unit 105 may have a learning model generated by performing machine learning using the first teacher data.
  • This learning model receives as input data the concentration of the first gas to be detected detected in the first sample gas and the second sample gas. Then, the learning model outputs the concentration of the first gas to be detected and the concentration of the second gas to be detected during the period from the release of the sample discharged from the subject until the collection of the first sample gas.
  • the first teacher data may include (1) to (3a) shown below.
  • first detection data and second detection data obtained by detecting a first detection gas contained in a first sample gas sampled after the past specimens were discharged, which are sample gases emitted from a plurality of past specimens; Second detection data obtained by detecting the gas to be detected.
  • the first teacher data further includes first correction data calculated based on the first detection data and the third detection data, and second correction data calculated based on the second detection data and the fourth detection data. may contain.
  • the second calculation unit 105 may have a learning model generated by performing machine learning using the second teacher data.
  • This learning model receives as input data the concentration of the first gas to be detected detected in the first sample gas and the second sample gas. Then, the learning model outputs the concentration of the first gas to be detected and the concentration of the second gas to be detected during the period from the release of the sample discharged from the subject until the collection of the first sample gas.
  • the second teacher data may include (1) to (3b) shown below.
  • first detection data and second detection data obtained by detecting a first detection gas contained in a first sample gas sampled after the past specimens were discharged, which are sample gases emitted from a plurality of past specimens; Second detection data obtained by detecting the gas to be detected.
  • the server device 2 includes a communication module 21 , a control section 22 , and a storage section 23 , which are communication modules for communicating with the gas detection device 1 and the electronic device 3 .
  • the control unit 22 controls the operation of each unit of the server device 2 .
  • the control unit 22 also includes an estimation unit 221 .
  • the estimation unit 221 estimates the intestinal environment of the subject who excreted the specimen or information that can be estimated from the intestinal environment based on the types and concentrations of the multiple types of detected gases, and generates analysis result information. Specifically, the estimation unit 221 receives information such as the type of the gas to be detected, the concentration after correction, the mass of the specimen, and the subject ID from the gas detection device 1 via the communication unit 21 . Based on the information, the estimator 221 calculates the concentration ratio (composition ratio) between the plural kinds of detected gases.
  • concentration ratio composition ratio
  • the estimation unit 221 performs estimation using an estimation model stored in the storage unit 23 based on the type of each gas to be detected, the concentration ratio between a plurality of types of gas to be detected, and the mass of the specimen.
  • the estimation model may be a trained estimation model that has been pre-learned using input data (1), at least one of input data (2) and (3), and teacher data described below.
  • ⁇ Input data (1) sample gas (past sample gas) collected from past specimens (past specimens) discharged from each of a plurality of subjects (subjects may be included)
  • the type of each detected gas contained in each of - Input data (2) Information indicating the concentration ratio between each detected gas contained in the past sample gas.
  • Input data (3) information indicating the mass of the specimen corresponding to each of the past sample gases.
  • Teacher data information indicating at least one of the composition of bacteria measured from the specimen corresponding to each past sample gas and the composition of metabolites of the bacteria.
  • the "subject” is a person who has undergone analysis of the past sample gas released from the specimen in the past, and the health condition and the composition of bacteria etc. at the time when the past sample gas was collected were analyzed. intended for those who Further, when the above-described input data (3) is used as input data, the estimation model may be learned using information indicating the concentration value of each gas to be detected contained in the past sample gas as input data. good. In this case, the estimating unit 221 uses information indicating the concentration of each detected gas after correction calculated based on the first sample gas and the second sample gas emitted from the specimen of the subject in the above estimation. may
  • the above-mentioned teacher data is not limited to information indicating the composition of bacteria, and may be an index indicating the physical condition of the subject, an index indicating the state of the intestinal environment of the subject, etc., by each of a plurality of subjects. It may be information about the health condition of each subject at the time when the past sample was discharged. The information about the health condition may be information indicating the physical condition of each subject at the time when the specimen was discharged in the past by each of the plurality of subjects.
  • the index indicating the physical condition of the subject may be an index set based on information measurable from the subject, such as body temperature, blood pressure, and heart rate of the subject.
  • the health condition of the subject is at least one of the composition of bacteria in the intestinal flora of the subject and the composition of metabolites of bacteria in the intestinal flora of the subject. good. That is, the "information about the subject's health condition" output by estimation is, for example, information indicating the state of the subject's intestinal environment, specifically whether the intestinal environment is in a good state or a bad state. It may be an index indicating.
  • the composition of bacteria in the specimen reflects the composition of bacteria in the intestinal flora of the subject who excreted the specimen. Therefore, the estimation unit 221 may estimate the composition of bacteria in the intestinal flora estimated from the composition of bacteria contained in the specimen of the subject, for example, an index indicating the balance between good bacteria and bad bacteria.
  • the estimation unit 221 may estimate an index indicating the subject's physical condition, health condition, immunity, susceptibility to gaining weight, etc., which can be estimated from the subject's intestinal environment, based on the above-described information. Furthermore, the estimating unit 221 may output information indicating advice that encourages eating and exercising in order to improve the intestinal environment of the subject. In addition, the estimated information may include evaluation, useful information, and remarks.
  • the estimation unit 221 transmits analysis result information including each estimated information to the electronic device 3 via the communication unit 21 .
  • the estimation unit 221 may store the health information including the analysis result information in the storage unit 23 in association with the subject ID, the sample gas ID, and the post-correction concentration information D3.
  • the storage unit 23 is composed of, for example, a semiconductor memory or a magnetic memory.
  • the storage unit 23 stores various information, programs for operating the server device 2, and the like.
  • the storage unit 23 may function as a work memory.
  • the storage unit 23 stores a learned estimation model used in estimation performed by the estimation unit 221 .
  • the electronic device 3 includes a communication section 311 which is a communication module for communicating with the server device 2 , a control section 312 which controls the operation of each section of the electronic device 3 , and a display section 313 .
  • the control unit 312 can receive the estimation result from the server device 2 via the communication unit 311 by wireless communication or wired communication.
  • the electronic device 3 can display the received estimation result on the display unit 313 .
  • the display unit 313 may include a display capable of displaying characters and the like, and a touch screen capable of detecting contact with a user's (subject's) finger or the like.
  • the display may include a display device such as a liquid crystal display (LCD), an organic electroluminescence display (OELD) or an inorganic electroluminescence display (IELD).
  • a display device such as a liquid crystal display (LCD), an organic electroluminescence display (OELD) or an inorganic electroluminescence display (IELD).
  • the detection method of the touch screen may be an arbitrary method such as a capacitance method, a resistive film method, a surface acoustic wave method (or an ultrasonic method), an infrared method, an electromagnetic induction method, or a load detection method.
  • FIG. 12 is a flow chart showing an example of the flow of processing performed in the gas detection system 100.
  • the gas detection device 1 is configured to include pressure sensors as the subject detection unit 11 and the defecation detection unit 12, respectively.
  • the subject detection unit 11 mainly controls a signal indicating that the subject has been seated on the toilet seat 4B. Output to the unit 101 .
  • the main control unit 101 detects that the subject has sat on the toilet seat 4B (S1), starts the operation of the defecation detection unit 12, and waits until defecation of the subject is detected (S2). ).
  • the defecation detection unit 12 outputs to the main control unit 101 a signal indicating that the subject's excretion of the sample (that is, defecation) has been detected.
  • the main control unit 101 When the main control unit 101 acquires the signal (YES in S2), the main control unit 101 controls the first valve 131 so that the flow path 31 and the flow path 32 are in communication. Further, the main control unit 101 operates the first pump 132 to collect the first sample gas from the opening of the flow path 31 on the toilet bowl 4A side (S3: first collection step), and the first sample gas is detected by the sensor. It is supplied to the chamber 144 (S4). Further, the main control unit 101 operates the first pump 132 for a predetermined period of time to supply a predetermined amount of the first sample gas to the sensor chamber 144, and then stops the first pump 132. Further, the main control unit 101 controls the first valve 131 so that the channel 31 and the channel 32 are not communicated with each other.
  • the main control unit 101 controls the second valve 141 and the second pump 142 to suck the purge gas in the toilet room from the flow path 34 and supply it to the sensor chamber 144 .
  • the main controller 101 alternately supplies the first sample gas to the sensor chamber 144 by the first pump 132 and the purge gas to the sensor chamber 144 by the second pump 142 for about 10 seconds in total.
  • the gas sensor 143 When the first sample gas or purge gas is supplied to the sensor chamber 144, the gas sensor 143 outputs a signal with an intensity corresponding to the type and concentration of each gas to be detected contained in these gases.
  • the detection unit 102 detects the type and concentration of each gas to be detected contained in the first sample gas (S5: first detection step).
  • the detection unit 102 outputs information indicating the type and concentration of each gas to be detected contained in the detected first sample gas to the first calculation unit 103 and the second calculation unit 105 . Further, the detection unit 102 outputs information indicating that the first detection step has been completed to the main control unit 101 .
  • the main control unit 101 When the main control unit 101 acquires information indicating that the first detection step is completed, the main control unit 101 controls the first valve 131, the first pump 132, the second valve 141, and the second pump 142, and controls the flow path 32 and the sensor. Cleaning of the chamber 144 is performed.
  • the main control unit 101 determines whether or not a predetermined time period, for example, about 30 seconds, has elapsed since the sampling of the first sample gas (S6 ). If the predetermined time has passed since the sampling of the first sample gas, the main control unit 101 starts sampling of the second sample gas in the same manner as in the first sampling step (S3) (S7: second sampling step ).
  • the second sample gas and the purge gas are alternately supplied to the sensor chamber 144 (S8), and the detector 102 detects the first gas to be detected contained in the second sample gas in the same manner as in the first detection step (S5).
  • the type and concentration are detected (S9: second detection step).
  • the detection unit 102 outputs information indicating the type and concentration of the first gas to be detected contained in the second sample gas detected in the second detection step to the first calculation unit 103 and the second calculation unit 105 .
  • the detection unit 102 outputs information indicating that the second detection step has been completed to the main control unit 101 .
  • the main control unit 101 controls the first valve 131 , the first pump 132 , the second valve 141 and the second pump 142 to clean the flow path 32 and the sensor chamber 144 .
  • the first calculator 103 calculates changes in the concentration of the first gas to be detected, for example, H2 among the gas to be detected in each of the first detection step and the second detection step (S10).
  • the first calculator 103 outputs information indicating the calculated change in concentration of the first gas to be detected to the analyte estimator 104 .
  • the specimen estimating unit 104 acquires the information indicating the change in the concentration of the first gas to be detected
  • the specimen estimating unit 104 estimates the mass of the specimen using the estimation model stored in the storage unit 15 based on the information (S11: Estimation step).
  • the specimen estimation unit 104 outputs information indicating the estimated mass of the specimen to the second calculation unit 105 .
  • the estimation step (S11) does not have to be executed when the gas detection device 1 does not include the analyte estimation unit 104.
  • the gas detection system 100 uses other information that can be substituted for the information indicating the mass of the specimen, such as information indicating the difference in concentration of the first gas to be detected contained in the first sample gas and the second sample gas. may be
  • the second calculation unit 105 acquires from the detection unit 102 information indicating the type and concentration of each gas to be detected detected in each of the first detection step and the second detection step. Get information indicating Based on the mass of the specimen, the second calculation unit 105 calculates each of the first gas to be detected and the second gas to be detected during the period from when the specimen discharged from the subject is released to when the first sample gas is collected. is calculated (S12: calculation step). The second calculation unit 105 transmits information indicating the calculated type and concentration of each gas to be detected and information indicating the mass of the sample to the server device 2 via the communication unit 16 .
  • the estimation unit 221 of the server device 2 receives information indicating the type and concentration of each detected gas calculated via the communication unit 21 from the gas detection device 1 .
  • the estimation unit 221 may also be configured to receive information indicating the mass of the specimen from the gas detection device 1 .
  • the server device 2 having a configuration for receiving the mass of the sample in addition to the information indicating the type and concentration of each gas to be detected will be described as an example, but the present invention is not limited to this.
  • the estimating section 221 can also estimate the subject's health condition, specifically the intestinal environment, etc., based only on the information indicating the type and concentration of each gas to be detected.
  • the estimating unit 221 estimates the subject's health condition, specifically the intestinal environment, etc., using the received information indicating the type and concentration of each gas to be detected and the information indicating the mass of the sample (S13). ).
  • the estimation unit 221 transmits information indicating the estimated health condition of the subject to the electronic device 3 via the communication unit 21 .
  • the control unit 312 of the electronic device 3 receives from the server device 2 via the communication unit 311 information indicating the health condition of the subject estimated based on the concentration of each gas to be detected contained in the sample gas emitted from the specimen. receive.
  • the control unit 312 notifies the subject of the received information indicating the health condition of the subject by displaying it on the display unit 313, for example.
  • the gas detection method includes the first collection step (S3) of collecting the first sample gas released from the specimen discharged from the subject, and the first sample gas contained in the first sample gas.
  • the gas detection apparatus 1 for executing the gas detection method described above collects a sample gas emitted from a specimen discharged from a subject, and detects a first gas to be detected and a second gas to be detected contained in the sample gas.
  • a gas detection device for detecting the concentration of each detected gas, wherein the concentrations of the first gas to be detected and the second gas to be detected contained in the first sample gas sampled for the first time, and the concentration of the first sample gas A detection unit 102 that detects the concentration of the first detection gas contained in the second sample gas released from the same specimen after that, the concentration of the first detection gas detected from the first sample gas, and the first 2, based on the concentration of the first detected gas detected from the sample gas and the change in the concentration of the first detected gas calculated based on the first sample gas after being released from the specimen discharged from the subject. and a second calculator 105 that calculates the concentrations of the first gas to be detected and the concentration of the second gas to be detected until is sampled.
  • FIG. 13 is a graph plotting the attenuation amount of the concentration of H 2 released from the specimen and the mass of the specimen (stool volume) after a predetermined time (for example, 20 minutes) has elapsed.
  • FIG. 14 is a graph plotting the attenuation amount of the concentration of CO 2 released from the specimen and the mass of the specimen (stool volume) after a predetermined time (for example, 20 minutes) has elapsed.
  • each gas to be detected H 2 , CO 2 , CH 4 , sulfide-based gas, etc.
  • the concentration of each gas to be detected detected in the first sample gas and the concentration ratio between each gas to be detected differ from those of each gas to be detected in the second sample gas.
  • the attenuation rate and the amount of attenuation vary with time depending on the type of gas to be detected.
  • H 2 released from the specimen is more easily attenuated than sulfide-based gas (such as hydrogen sulfide).
  • the concentration of each of the plurality of types of detection target gases contained in these sample gases is detected, so the change (attenuation) of the first detection target gas according to time amount/attenuation rate) can be specified.
  • the concentrations of the first gas to be detected and the second gas to be detected can be calculated from the release from the specimen discharged from the subject until the collection of the first sample gas. Therefore, according to the above configuration, the concentrations of the first detected gas and the second detected gas emitted from the specimen after being discharged from the subject (for example, immediately after discharge) can be calculated with high accuracy.
  • the difference or ratio between the concentration of the first gas to be detected contained in the first sample gas and the concentration of the first gas to be detected contained in the second sample gas is Based on this, the concentration of each of the first gas to be detected and the second gas to be detected contained in the first sample gas is corrected, and from the release from the specimen discharged from the subject until the first sample gas is collected You may calculate the density
  • the concentration of the first detected gas contained in the second sample gas is lower than the concentration of the first detected gas contained in the first sample gas. Therefore, by performing correction based on the temporal concentration change of the first gas to be detected, it is possible to more accurately identify the concentrations of the first gas to be detected and the second gas to be detected contained in the sample gas.
  • the gas detection method described above may include an estimation step of estimating the mass of the specimen based on the concentration of the first gas to be detected. Further, in the method, the correcting step may correct the concentration of each of the first gas to be detected and the second gas to be detected based on the information indicating the mass of the specimen estimated in the estimating step. Further, the gas detection device 1 estimates information indicating the mass of the specimen based on the change in the concentration of the first detection gas in the first sample gas from the concentration of the first detection gas in the second sample gas. An estimation unit 104 may be provided. The second calculator 105 may correct the concentrations of the first gas to be detected in the first sample gas and the concentration of the second gas to be detected in the first sample gas using the information indicating the mass of the specimen. By performing this correction, the second calculation unit 105 calculates the difference between the first gas to be detected and the second gas to be detected during the period from the release of the specimen discharged from the subject until the collection of the first sample gas. Concentration may be calculated.
  • the change in the concentration of the first detectable gas It is calculated as the amount of attenuation of the detected gas concentration.
  • the amount of attenuation (or rate of attenuation) of the concentration of the first gas to be detected within a predetermined period of time differs depending on the type of the first gas to be detected and also depends on the mass of the specimen. Therefore, if the relationship between the type of the first gas to be detected and the amount of attenuation of the concentration of the first gas to be detected (see FIGS. 13 and 14) is known, it is possible to generate an estimation model through machine learning of this relationship. .
  • the concentration of the first detected gas in the first sample gas emitted from the subject's specimen and the concentration of the first detected gas in the second sample gas are calculated.
  • the information indicating the mass of the specimen is output by the estimation model. is.
  • the information indicating the mass of the specimen is derived using a specific relational expression from the concentration of the first detectable gas in the first sample gas and the concentration of the first detectable gas in the second sample gas. isn't it. Therefore, the information indicative of the mass of the analyte can be treated as an independent explanatory variable.
  • the concentration of each gas to be detected is corrected using information indicating the mass of the specimen in addition to the attenuation amount of the first gas to be detected, the same effect as increasing the number of explanatory variables in the regression calculation can be expected. . Thereby, the measurement accuracy of each gas to be detected can be further improved.
  • the second sample gas in the second sampling step, may be sampled after a period of time of 30 seconds or more and 1 minute or less has elapsed after the end of the first sampling step.
  • the predetermined time may be any time set in the range of about 30 seconds to 1 minute.
  • the first sampling step and the second sampling step are performed at approximately the same time intervals each time. By detecting each gas to be detected at the same time intervals each time, the mass of the specimen can be estimated relatively easily, and the accuracy of measurement can be improved.
  • the sample may be stool excreted by the subject.
  • the first gas to be detected may include at least one of hydrogen and carbon dioxide
  • the second gas to be detected may include at least one of methane, hydrogen sulfide, and methyl mercaptan. According to this configuration, detection can be performed by using the stool excreted by the subject as a sample, and the component contained in the gas released from the stool as each gas to be detected.
  • the gas detection system 100 includes, in addition to the gas detection device 1 that executes the gas detection method described above, the amount of gas released from the specimen after being discharged from the subject, calculated by the gas detection device 1 .
  • a server device (estimating device) 2 comprising an estimating unit 221 for estimating information related to the health condition of the subject who discharged the specimen based on the concentrations of the first detectable gas and the second detectable gas that have been detected; may be provided.
  • the server device 2 determines the ratio of the concentration of the first detected gas to the concentration of the second detected gas contained in the past sample gas emitted from the past specimen after being discharged from each of the plurality of subjects.
  • the health condition of the subject who discharged the specimen for example, the intestinal environment such as the composition of bacteria in the intestinal flora of the subject, can be determined from the concentration of each gas to be detected detected by the gas detection device 1. can be estimated.
  • the estimating unit 221 calculates the ratio of the concentration of the first detected gas to the concentration of the second detected gas contained in the past sample gas emitted from the past specimen after being discharged from each of the plurality of subjects. , and information indicating the mass of past specimens as input data, and learning is performed using information about the health status of each of the plurality of subjects at the time when the past specimen was discharged by each of the plurality of subjects as teacher data. Estimation may be performed using a trained estimation model that has been learned. As a result, the amount of information used for estimation increases, so that the subject's intestinal condition and the like can be estimated more accurately.
  • the concentration and attenuation of each gas to be detected also change depending on the mass of the specimen.
  • the mass of the sample was not considered.
  • the concentration ratio between each gas to be detected was used.
  • the mass of the specimen can be calculated, and the information indicating the mass can be used for estimation. Therefore, in the estimation, the mass of the specimen and the concentration of each detectable gas are taken into account in the estimation, so that the value of the concentration of each detectable gas itself can be used when estimating the subject's health condition. . Therefore, the gas detection device 1 can more accurately estimate the subject's intestinal condition and the like.
  • FIG. 15 is a block diagram showing the configuration of a gas detection system 100A including a gas detection device 1A according to another embodiment.
  • FIG. 16 is a schematic diagram showing an example of the configuration of the gas detection device 1A.
  • the gas detection apparatus 1A includes a control section 10A, a collection system 13A, and an analysis system 14A instead of the control section 10, collection system 13, and analysis system 14. different from 1.
  • the controller 10A differs from the main controller 101 in that it includes a main controller 101A.
  • the collection system 13A includes a first sample chamber (first reservoir) 38 in addition to the configuration of the collection system 13 .
  • the analysis system 14A also includes a third valve 145 and a third pump 146 in addition to the configuration of the analysis system 14 .
  • the first sample chamber 38 is a chamber that can temporarily store the sample gas sampled by the operation of the first pump 132 . As shown in FIG. 16, first sample chamber 38 is provided between first pump 132 and sensor chamber 144 . First pump 132 and first sample chamber 38 are connected by channel 39 instead of channel 32 . Also, the first sample chamber 38 and the sensor chamber 144 are connected by a channel 40 .
  • the first sample chamber 38 may be constructed of a flexible material that expands, contracts, or deforms to change its internal volume depending on the amount of gas stored therein.
  • the third valve 145 is a valve provided on the flow path 40 and operates under the control of the main control section 101A.
  • the third pump 146 is a pump provided between the third valve 145 and the sensor chamber 144 on the flow path 40, and operates under the control of the main controller 101A.
  • the main control section 101A controls the operations of the third valve 145 and the third pump 146 in addition to the sections controlled by the main control section 101 . Also, the processing performed by the main control unit 101A is partially different from that of the main control unit 101, as will be described later. Specifically, the main control unit 101A controls the third valve 145 in addition to the first valve 131 and the first pump 132 in the first sampling step or the second sampling step. As a result, the first sample gas or the second sample gas is collected while the first sample chamber 38 and the sensor chamber 144 are not in communication with each other in the channel 40 . Thereby, the first sample gas or the second sample gas is stored in the first sample chamber 38 .
  • the main control unit 101A controls the third valve 145 so that the first sample chamber 38 and the sensor chamber 144 are in communication. Also, the main control unit 101A operates the third pump 146 instead of the first pump 132 . Thereby, the sensor chamber 144 is supplied with the first sample gas or the second sample gas stored in the first sample chamber 38 . After supplying the first sample gas to the sensor chamber 144, the main controller 101A may start the second sampling step without waiting for the completion of the first detection step if a predetermined time has passed. This allows the second sample gas to accumulate in the first sample chamber 38 after the first sample gas has been exhausted from the first sample chamber 38 .
  • the main control unit 101A controls the third valve 145 so that the first sample chamber 38 and the sensor chamber 144 are in communication with each other, and then the third pump is operated. 146 is activated. This cleans the first sample chamber 38 as well as the channels 39 and 40 . Further, when cleaning the sensor chamber 144, the main control unit 101A controls the third valve 145 so that the first sample chamber 38 and the sensor chamber 144 are not communicated with each other. This reduces the possibility of backflow of purge gas from the sensor chamber 144 into the first sample chamber 38 .
  • the gas detection system 100A includes the gas detection device 1A having the third valve 145 and the third pump 146. As shown in FIG.
  • the gas detection device 1A also includes a first sample chamber (first storage tank) 38 capable of storing a first sample gas, and after discharging the first sample gas from the first storage tank, A second sample gas is stored in the chamber 38 .
  • the gas detection device 1A can sample the second sample gas after the first sampling step and before the first detection step is completed. Therefore, according to this configuration, even if the completion of the first detection step is delayed, the second sample gas can be collected, so that the detection can be performed twice more reliably.
  • FIG. 17 is a block diagram showing the configuration of a gas detection system 100B including a gas detection device 1B according to another embodiment.
  • FIG. 18 is a schematic diagram showing an example of the configuration of the gas detection device 1B.
  • the gas detection apparatus 1B includes a control section 10B, a collection system 13B, and an analysis system 14B instead of the control section 10, collection system 13, and analysis system 14. different from 1.
  • the controller 10B differs from the main controller 101 in that it includes a main controller 101B.
  • the collection system 13B includes, in addition to the configuration of the collection system 13, a first sample chamber (first reservoir) 38B, a second sample chamber (second reservoir) 41, and a fourth valve 133.
  • the analysis system 14A includes a third valve 145B and a third pump 146 in addition to the configuration of the analysis system 14 .
  • the main control unit 101B controls the fourth valve 133 in addition to each unit controlled by the main control unit 101A. Further, the processing performed in main control unit 101B is different from that in main control units 101 and 101A, as will be described later.
  • the first sample chamber 38B is provided between the first pump 132 and the sensor chamber 144, like the first sample chamber 38.
  • the first sample chamber 38B differs from the first sample chamber 38 in that only the first sample gas can be stored.
  • the second sample chamber 41 is a chamber provided between the first pump 132 and the sensor chamber 144.
  • the second sample chamber 41 is a chamber made of the same material as the first sample chamber 38B, and can store only the second sample gas.
  • the second sample chamber 41 is connected with the first pump 132 by the channel 42 and with the sensor chamber 144 by the channel 43 .
  • the fourth valve 133 is a valve provided on the flow path 39 and the flow path 42, and operates under the control of the main control section 101B.
  • the flow path 39 and the flow path 42 may be one flow path between the first pump 132 and the fourth valve 133 as shown in FIG. 18, or may be separate flow paths.
  • the fourth valve 133 may be switchable between a state in which the first pump 132 and the first sample chamber 38 are in communication and a state in which the first pump 132 and the second sample chamber 41 are in communication.
  • the third valve 145B is a valve provided on the flow path 40 and the flow path 43, and operates under the control of the main control section 101B.
  • Channel 40 and channel 43 may be a single channel or separate channels between sensor chamber 144 and fourth valve 133, as shown in FIG.
  • the fourth valve 133 may be capable of switching between a state in which the first sample chamber 38B and the sensor chamber 144 communicate and a state in which the second sample chamber 41 and the sensor chamber 144 communicate.
  • FIG. 19 is a flow chart showing an example of the flow of processing performed in the gas detection system 100B.
  • An example of the flow of processing (gas detection method) performed in the gas detection system 100B will be described below with reference to FIG. First, the processes of S21 and S22 are performed in the gas detection device 1B. Since the processing is the same as the processing of S1 to S2 shown in FIG. 12, the description is omitted.
  • the main control unit 101B controls the first valve 131 and the fourth valve 133 so that the flow path 31 and the flow path 39 are communicated, and the flow path 31 The gas can flow into the first sample chamber 38B from the opening of .
  • the main controller 101B collects the first sample gas (S23: first collection step) and stores it in the first sample chamber 38B.
  • the main controller 101B determines whether a predetermined period of time has elapsed since the sampling of the first sample gas (S24). If the predetermined time has passed since the sampling of the first sample gas (YES in S24), the main control unit 101B switches the channel through which the sample gas flows. Specifically, the main controller 101B controls the fourth valve 133 so that the first pump 132 and the second sample chamber 41 are in communication and the first sample chamber 38B is not in communication.
  • the main control unit 101B operates the first pump 132 to sample the second sample gas (S25: second sampling step). At this time, the second sample gas is stored in the second sample chamber 41 .
  • the main controller 101B operates the first pump 132 for a predetermined time, and stops the first pump 132 when the second sample gas is sufficiently collected.
  • the main control unit 101B controls the third valve 145B and the fourth valve 133 so that the first pump 132 and the first sample chamber 38B do not communicate with each other, and the first sample chamber 38B and the sensor chamber 144 are in communication.
  • the main controller 101B controls the second pump 142, the second valve 141, and the third pump 146 to alternately supply the first sample gas and the purge gas to the sensor chamber 144 (S26).
  • the process of S27 is performed. Since the processing of S27 is the same as the processing of S9 shown in FIG. 12, the description is omitted.
  • the main control unit 101B controls the second valve 141 to operate the second pump 142 in a state in which the flow paths 34 and 37 are in communication. This cleans the sensor chamber 144 .
  • the main control unit 101B controls the third valve 145B and the fourth valve 133 so that the first pump 132 and the second sample chamber 41 are not in communication, and the second sample chamber 41 and the sensor chamber 144 are disconnected. Keep in communication.
  • the main controller 101B controls the second pump 142, the second valve 141, and the third pump 146 in this state to alternately supply the second sample gas and the purge gas to the sensor chamber 144 (S28).
  • S28 the process of S29 is performed. Since the processing of S29 is the same as the processing of S9 shown in FIG. 12, the description is omitted. After the process of S29, cleaning of the sensor chamber 144 is performed.
  • the main control unit 101B controls the first valve 131, the second valve 141, the third valve 145B, and the fourth valve 133, and the flow path 34, the flow path 36, the flow path 39, and the flow path 40 communicate with each other. state.
  • the main controller 101B operates the third pump 146 in this state. As a result, the purge gas passes through each channel, the first sample chamber 38B and the sensor chamber 144 and is exhausted to the outside through the exhaust channel 33, thereby cleaning the first sample chamber 38B, the channel 39 and the channel 40. .
  • the main control unit 101B controls the first valve 131, the second valve 141, the third valve 145B, and the fourth valve 133 so that the flow path 34, the flow path 36, the flow path 42, and the flow path 43 are Keep in communication.
  • the main controller 101B operates the third pump 146 in this state. As a result, the purge gas passes through each channel, the second sample chamber 41 and the sensor chamber 144 and is exhausted to the outside through the exhaust channel 33, thereby cleaning the second sample chamber 41, the channel 42 and the channel 43. .
  • the gas detection apparatus 1B includes a first sample chamber (first storage tank) 38B capable of storing a first sample gas and a second sample chamber (second storage tank) capable of storing a second sample gas chamber. 41.
  • first sample chamber first storage tank
  • second sample chamber second storage tank
  • the second sample gas can be collected even if the detection of the first sample gas is not completed. Therefore, it is possible to more reliably sample gas for two measurements.
  • the specimen is flushed and the sample gas cannot be collected.
  • the concentration of the first gas to be detected can be detected later.
  • the specimen estimation unit 104 does not have to estimate the mass of the specimen.
  • the second calculation unit 105 instead of the information indicating the mass of the specimen, calculates the change in the concentration of the first gas to be detected twice, specifically the information indicating the difference or the ratio of the concentrations, to the mass of the specimen. may be used as information indicating to correct the concentration of each gas to be detected. Further, the second calculator 105 may use the waveform data itself acquired in the first and second detections as information indicating the mass of the specimen. In this case, the specimen estimation unit 104 becomes unnecessary.
  • the estimation unit 221 of the server device 2 performs the estimation
  • the information indicating the mass of the specimen indicates the change in the concentration of the first gas to be detected in the two detections.
  • Information may be used.
  • information indicating changes in concentration may be used in addition to information indicating the mass of the specimen.
  • the waveform data itself obtained in the first detection and the second detection may be used as the input data. The estimation model should be learned so as to correspond appropriately.
  • gas detection devices 1, 1A, and 1B correct the concentration of each gas to be detected, and the server device 2 estimates the intestinal environment of the subject. bottom.
  • gas detection systems 100, 100A, and 100B are not limited to this configuration.
  • the gas detection device 1, 1A, or 1B may include the estimation unit 221 and perform the processing performed in the server device 2.
  • FIG. the estimation of the subject's intestinal environment and the like from the collection of the sample gas can be completed only by the gas detection device 1, 1A, or 1B.
  • gas detection system 100 , 100 A, or 100 B may not include server device 2 , and gas detection device 1 , 1 A, or 1 B may transmit estimated information to electronic device 3 .
  • FIG. 20 is a schematic diagram showing the configuration of a gas detection system 100C, which is a modified example of the gas detection system 100.
  • the gas detection system 100C includes a gas detection device 1C and a server device 2C instead of the gas detection device 1 and the server device 2.
  • the gas detection device 1C may transmit detection information to the server device 2 instead of concentration information.
  • the gas detection device 1C may transmit, as the detection information, information indicating the concentration of the first gas to be detected and the concentration of the second gas to be detected.
  • the server device 2C may correct the concentrations of the first gas to be detected and the concentration of the second gas to be detected based on the concentrations of the first gas to be detected and the concentrations of the second gas to be detected.
  • the gas detection device 1C may not include the second calculator 105, and the server device 2C may include the second calculator 105.
  • FIG. 1C the gas detection device 1C may not include the second calculator 105, and the server device 2C may include the second calculator 105.
  • FIG. 21 is a schematic diagram showing the configuration of a gas detection system 100D that is a modification of the gas detection system 100.
  • the gas detection system 100D includes a gas detection device 1D and a server device 2D instead of the gas detection device 1 and the server device 2.
  • the gas detection device 1 does not have to be communicably connected to the server device 2 via a communication network.
  • the gas detection device 1D is connected only to the electronic device 3 so as to be communicable.
  • the gas detection device 1D may transmit various information such as concentration information to the electronic device 3, and the electronic device 3 may transmit the concentration information and the like received from the gas detection device 1D to the server device 2D.
  • the gas detection device 1D transmits concentration information to the electronic device 3 via a communication device such as a LAN. Also, the electronic device 3 transmits the concentration information to the server device 2D. The server device 2D transmits the analysis result information to the electronic device 3 that is the transmission source of the concentration information.
  • system The function of the gas detection systems 100, 100A to 100D (hereinafter referred to as "system") is a program for causing a computer to function as the system, and each control block of the system (especially the control units 10, 10A, 10B , and each part included in 22) by a program for causing a computer to function.
  • the system comprises a computer having at least one control device (eg processor) and at least one storage device (eg memory) as hardware for executing the program.
  • control device eg processor
  • storage device eg memory
  • the above program may be recorded on one or more computer-readable recording media, not temporary.
  • the recording medium may or may not be included in the device.
  • the program may be supplied to the device via any transmission medium, wired or wireless.
  • part or all of the functions of the above control blocks can be realized by logic circuits.
  • an integrated circuit in which logic circuits functioning as the above control blocks are formed is also included in the scope of the present disclosure.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Epidemiology (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Primary Health Care (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The present invention improves gas detection accuracy. A gas detection method that includes: a first collection step in which a first sample gas released from a subject specimen is collected; a first detection step in which the concentrations of a first detection gas and a second detection gas that are included in the first sample gas are detected for each; a second collection step in which a second sample gas released from the specimen is collected after the first collection step; a second detection step in which the concentrations of the first detection gas and the second detection gas included in the first sample gas are detected, respectively; and a calculation step in which the concentrations of the first detection gas and the second detection gas during the period from when released from the subject specimen until the first sample gas is collected are calculated, respectively, on the basis of the change in first detection gas concentration calculated from the concentration of the first detection gas, detected in the first detection step and the second detection step.

Description

ガス検出方法、ガス検出装置、ガス検出システム、制御プログラム、記録媒体Gas detection method, gas detection device, gas detection system, control program, recording medium
 本開示は、ガスを分析するためのガス検出方法、ガス検出装置、およびガス検出システム等に関する。 The present disclosure relates to a gas detection method, a gas detection device, a gas detection system, and the like for analyzing gas.
 下記に示す特許文献1には、便器ボウル内に排出される排便ガスに含まれる水素ガスおよび臭気性ガスを検出し、当該排便ガスに含まれる水素の影響が分離された検出データを出力可能な生体情報測定システムが開示されている。 In Patent Document 1 shown below, it is possible to detect hydrogen gas and odorous gas contained in defecation gas discharged into a toilet bowl, and output detection data in which the influence of hydrogen contained in the defecation gas is separated. A biometric information measurement system is disclosed.
日本国特開2016-143171号公報Japanese Patent Application Laid-Open No. 2016-143171
 <1>上記の課題を解決するために、本開示の一態様に係るガス検出方法は、対象者から検体が排出された後に、該検体から放出された第1サンプルガスを採取する第1採取ステップと、前記第1サンプルガスに含まれる第1被検出ガスおよび第2被検出ガスの濃度をそれぞれ検出する第1検出ステップと、前記検体から放出された第2サンプルガスを、前記第1採取ステップの後に採取する第2採取ステップと、前記第2サンプルガスに含まれる前記第1被検出ガスの濃度を検出する第2検出ステップと、前記第1検出ステップおよび前記第2検出ステップにおいて検出された、前記第1被検出ガスの濃度から算出される前記第1被検出ガスの濃度の変化に基づき、前記対象者から排出された前記検体から放出されてから前記第1サンプルガスが採取されるまでの間における前記第1被検出ガスおよび前記第2被検出ガスの濃度を算出する算出ステップ、を含む。 <1> In order to solve the above problems, a gas detection method according to an aspect of the present disclosure includes a first collection of collecting a first sample gas released from a subject after the subject discharges the specimen. a first detection step of respectively detecting concentrations of a first gas to be detected and a second gas to be detected contained in the first sample gas; a second sampling step of sampling after the step; a second detecting step of detecting the concentration of the first gas to be detected contained in the second sample gas; Further, the first sample gas is collected after being released from the specimen discharged from the subject based on the change in the concentration of the first gas to be detected calculated from the concentration of the first gas to be detected. and a calculating step of calculating the concentrations of the first detectable gas and the second detectable gas during the period from .
 <2>また、本開示の一態様に係るガス検出装置は、対象者から検体が排出された後に、該検体から放出されたサンプルガスを採取し、当該サンプルガスに含まれる第1被検出ガスおよび第2被検出ガスの濃度をそれぞれ検出するガス検出装置であって、1回目に採取された第1サンプルガスに含まれる前記第1被検出ガスおよび前記第2被検出ガスの濃度と、前記1回目の採取の後に同検体から放出された第2サンプルガスに含まれる前記第1被検出ガスの濃度をそれぞれ検出する検出部と、前記第1サンプルガスから検出された前記第1被検出ガスの濃度と、前記第2サンプルガスから検出された前記第1被検出ガスの濃度とに基づいて算出される前記第1被検出ガスの濃度の変化に基づき、前記対象者から排出された前記検体から放出されてから前記第1サンプルガスが採取されるまでの間における前記第1被検出ガスおよび前記第2被検出ガスの濃度を算出する算出部と、を備える。 <2> Further, a gas detection device according to an aspect of the present disclosure collects a sample gas released from a subject after the subject discharges the specimen, and collects the first gas to be detected contained in the sample gas. and a second gas to be detected, respectively, the concentration of the first gas to be detected and the concentration of the second gas to be detected contained in the first sample gas sampled for the first time; a detection unit for detecting the concentration of the first gas to be detected contained in a second sample gas released from the same specimen after the first sampling; and the first gas to be detected detected from the first sample gas. and the concentration of the first detectable gas detected from the second sample gas, based on the change in the concentration of the first detectable gas, the specimen discharged from the subject a calculation unit that calculates concentrations of the first gas to be detected and the second gas to be detected during a period from when the gas is released from the gas to when the first sample gas is sampled.
 <3>また、本開示の一態様に係るガス検出システムは、上記<2>に記載のガス検出装置と、前記対象者から排出された前記検体から放出されてから前記第1サンプルガスが採取されるまでの間における前記第1被検出ガスおよび前記第2被検出ガスの濃度に基づき、前記検体を排出した前記対象者の健康状態に関する情報の推定を行う推定部を備える推定装置と、を備え、前記推定部は、複数の被検者の各々から排出された過去検体から放出された過去サンプルガスに含まれる前記第1被検出ガスの濃度と前記第2被検出ガスの濃度との比を入力データとし、前記複数の被検者の各々によって前記過去検体が排出された時点での前記複数の被検者の各々の健康状態に関する情報を教師データとして学習が行われた学習済み推定モデルを用いて前記推定を行う。 <3> Further, a gas detection system according to an aspect of the present disclosure includes the gas detection device according to <2> above, and the first sample gas is collected after being released from the specimen discharged from the subject. an estimating device comprising an estimating unit that estimates information about the health condition of the subject who discharged the specimen based on the concentrations of the first detectable gas and the second detectable gas until the The estimating unit calculates the ratio of the concentration of the first detected gas to the concentration of the second detected gas contained in the past sample gas emitted from the past specimen discharged from each of the plurality of subjects. is input data, and learning is performed using information about the health condition of each of the plurality of subjects at the time when the past specimen was discharged by each of the plurality of subjects as teacher data. is used to make the estimation.
 <4>また、本開示の一態様に係るガス検出システムは、対象者から排出された検体から放出された第1サンプルガス、および、前記第1サンプルガスが放出された後に同検体から放出された第2サンプルガスをそれぞれ採取して、前記第1サンプルガスに含まれる第1被検出ガスおよび第2被検出ガスの濃度、および前記第2サンプルガスに含まれる前記第1被検出ガスの濃度をそれぞれ検出するガス検出装置と、前記第1サンプルガスから検出された前記第1被検出ガスの濃度と、前記第2サンプルガスから検出された前記第1被検出ガスの濃度とに基づいて算出される前記第1被検出ガスの濃度の変化に基づき、前記対象者から排出された前記検体から放出されてから前記第1サンプルガスが採取されるまでの間における前記第1被検出ガスおよび前記第2被検出ガスの濃度を算出するサーバ装置と、を備える。 <4> Further, the gas detection system according to an aspect of the present disclosure includes a first sample gas emitted from a specimen discharged from a subject, and a gas emitted from the specimen after the first sample gas is emitted. Each of the second sample gases is sampled, and the concentrations of the first gas to be detected and the second gas to be detected contained in the first sample gas and the concentration of the first gas to be detected contained in the second sample gas are determined. , the concentration of the first detectable gas detected from the first sample gas, and the concentration of the first detectable gas detected from the second sample gas. The first gas to be detected and the and a server device for calculating the concentration of the second gas to be detected.
 本開示の各態様に係るガス検出装置およびガス検出システムは、コンピュータによって実現してもよい。この場合には、コンピュータを前記ガス検出装置および前記ガス検出システムが備える各部(ソフトウェア要素)として動作させることにより、前記ガス検出装置および前記ガス検出システムをコンピュータにて実現させるガス検出装置の制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本開示の範疇に入る。 The gas detection device and gas detection system according to each aspect of the present disclosure may be implemented by a computer. In this case, a control program for a gas detection device that implements the gas detection device and the gas detection system on a computer by operating a computer as each part (software element) included in the gas detection device and the gas detection system. , and a computer-readable recording medium recording it are also included in the scope of the present disclosure.
一実施形態に係るガス検出システムの構成の一例を示す概略図である。1 is a schematic diagram showing an example of the configuration of a gas detection system according to one embodiment; FIG. 濃度情報のデータ構造の一例を示す図である。FIG. 4 is a diagram showing an example of the data structure of density information; 検出データのデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of detection data. 未補正の濃度情報のデータ構造の一例を示す図である。FIG. 4 is a diagram showing an example of the data structure of uncorrected density information; 補正後濃度情報のデータ構造の一例を示す図である。FIG. 7 is a diagram showing an example of the data structure of post-correction density information; 対象者情報のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of object person information. 分析結果情報のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of analysis result information. 健康情報のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of health information. 図1に示すガス検出システムが備えるガス検出装置の外観を示す図である。2 is a diagram showing the appearance of a gas detection device included in the gas detection system shown in FIG. 1; FIG. ガス検出システムの要部構成を示すブロック図である。1 is a block diagram showing the configuration of a main part of a gas detection system; FIG. ガス検出装置の構成の一例を示す概略図である。1 is a schematic diagram showing an example of the configuration of a gas detection device; FIG. ガス検出システムにおいて行われる処理の流れの一例を示すフローチャートである。4 is a flow chart showing an example of the flow of processing performed in the gas detection system; 所定時間経過したときの、検体から放出されるHの濃度の減衰量と、検体の質量(便量)とをプロットしたグラフである。Fig. 10 is a graph plotting the decay amount of the concentration of H 2 released from the specimen and the mass of the specimen (stool volume) after a predetermined time has passed. 所定時間経過したときの、検体から放出されるCOの濃度の減衰量と、検体の質量(便量)とをプロットしたグラフである。FIG. 10 is a graph plotting the amount of CO 2 concentration decay emitted from a sample after a predetermined period of time has elapsed, and the mass of the sample (stool volume); FIG. 他の実施形態に係るガス検出装置を備えるガス検出システムの構成を示すブロック図である。FIG. 11 is a block diagram showing the configuration of a gas detection system provided with a gas detection device according to another embodiment; 図15に示すガス検出装置の構成を示す概略図である。16 is a schematic diagram showing the configuration of the gas detection device shown in FIG. 15; FIG. 他の実施形態に係るガス検出装置を備えるガス検出システムの構成を示すブロック図である。FIG. 11 is a block diagram showing the configuration of a gas detection system provided with a gas detection device according to another embodiment; 図17に示すガス検出装置の構成を示す概略図である。18 is a schematic diagram showing the configuration of the gas detection device shown in FIG. 17; FIG. 図17に示すガス検出システムにおいて行われる処理の流れの一例を示すフローチャートである。18 is a flow chart showing an example of the flow of processing performed in the gas detection system shown in FIG. 17; ガス検出システムの変形例を示す概略図である。FIG. 4 is a schematic diagram showing a modification of the gas detection system; ガス検出システムの変形例を示す概略図である。FIG. 4 is a schematic diagram showing a modification of the gas detection system;
 〔実施形態1〕
 <ガス検出システム100の適用範囲>
 従来のシステムでは、収集したガスの測定に関して、分析精度の観点から改善の余地がある。本開示の一態様は、ガスの分析精度が向上した、ガス検出方法、ガス検出装置、およびガス検出システム等を提供する。
[Embodiment 1]
<Scope of Application of Gas Detection System 100>
Conventional systems have room for improvement in terms of analytical accuracy with respect to the measurement of collected gases. One aspect of the present disclosure provides a gas detection method, a gas detection device, a gas detection system, and the like, with improved gas analysis accuracy.
 発明者らは、対象者の検体から放出されたガス(以下、サンプルガスと記す)に含まれる検出対象となる複数のガス成分(以下、被検出ガスと記す)には、少なくとも、下記に示す(1)および(2)が含まれることを見出した。 The inventors have found that a plurality of gas components to be detected (hereinafter referred to as "detected gas") contained in the gas emitted from the specimen of the subject (hereinafter referred to as "sample gas") include at least the following We have found that (1) and (2) are involved.
 (1)検体から放出されるサンプルガス中における濃度が、時間経過と共に大きく変動する(例えば、低下する)被検出ガス(以下、第1被検出ガスと記す)。 (1) A detected gas (hereinafter referred to as a first detected gas) whose concentration in the sample gas emitted from the specimen greatly fluctuates (for example, decreases) over time.
 (2)検体から放出されるサンプルガス中における濃度が、時間が経過しても大きく変動しない被検出ガス(以下、第2被検出ガスと記す)。 (2) A detectable gas whose concentration in the sample gas emitted from the specimen does not fluctuate greatly over time (hereinafter referred to as a second detectable gas).
 そして、発明者らは、第1被検出ガスおよび第2被検出ガスの濃度、および各被検出ガス間の濃度比に着目し、本開示に係るガス検出方法、ガス検出システム100、およびガス検出装置1等を発明するに至った。 Then, the inventors focused on the concentrations of the first detectable gas and the second detectable gas, and the concentration ratio between the detectable gases, and focused on the gas detection method, the gas detection system 100, and the gas detection according to the present disclosure. I came to invent the device 1 and the like.
 「対象者」は、後述するガス検出システム100を利用する者であって、健康状態を管理および監視される対象者を意図している。「検体」は、対象者が排出した排泄物であってもよい。例えば、「検体」が対象者の便である場合、サンプルガスは排便ガスであり得る。また、「検体」は、対象者の分泌物であってもよい。例えば、「検体」が、対象者の皮脂腺からの分泌物である場合、サンプルガスは対象者の体臭であり得る。また、「検体」は、対象者の組織の一部であってもよい。 A "subject" is intended to be a person who uses the gas detection system 100 described later and whose health condition is managed and monitored. A "specimen" may be excrement excreted by a subject. For example, if the "specimen" is the subject's stool, the sample gas may be bowel gas. A "specimen" may also be a subject's secretion. For example, if the "analyte" is secretions from the subject's sebaceous glands, the sample gas may be the subject's body odor. A "specimen" may also be a portion of a subject's tissue.
 また、「被検出ガス」は、検出対象となる化学物質であり、かつ、ガスとして存在可能な化学物質を意図している。「被検出ガスの濃度」は、サンプルガス中における被検出ガスの濃度を意図している。以下、被検出ガスについて、第1被検出ガスか、第2被検出ガスかを特に特定しない場合、「被検出ガス」または「各被検出ガス」と記す。 In addition, the "detected gas" is intended to be a chemical substance to be detected and a chemical substance that can exist as a gas. "Detected gas concentration" means the concentration of the detected gas in the sample gas. Hereinafter, the gas to be detected is referred to as a "gas to be detected" or "each gas to be detected" unless it is specified whether it is the first gas to be detected or the second gas to be detected.
 本開示の一態様に係るガス検出システム100は、サンプルガスに含まれる第1被検出ガスおよび第2被検出ガスの濃度を検出し、検出した各被検出ガスの濃度を補正可能なシステムである。補正された各被検出ガスの濃度は、対象者の健康状態の推定に用いることができる。本明細書において「濃度を補正する」とは、検出された各被検出ガスの濃度(検出結果)を補正することを意味する。 A gas detection system 100 according to an aspect of the present disclosure is a system capable of detecting the concentrations of a first detection target gas and a second detection target gas contained in a sample gas and correcting the concentrations of the detected detection target gases. . The corrected concentration of each gas to be detected can be used to estimate the health condition of the subject. In this specification, "correcting the concentration" means correcting the detected concentration (detection result) of each gas to be detected.
 本明細書では、対象者から排出(排泄)された便から放出されるサンプルガスに含まれる第1被検出ガスおよび第2被検出ガスの検出結果から、各被検出ガスの濃度を補正可能なガス検出システム100を例に挙げて説明する。 In the present specification, the concentration of each gas to be detected can be corrected from the detection results of the first gas to be detected and the second gas to be detected contained in the sample gas emitted from feces discharged (excreted) from the subject. The gas detection system 100 will be described as an example.
 <ガス検出システム100の構成>
 まず、本開示の一実施形態に係るガス検出システム100の構成を、図2~図8を参照しながら、図1を用いて説明する。図1は、一実施形態に係るガス検出システム100の構成の一例を示す概略図である。本明細書において参照する各図は、説明の便宜上、実施形態を説明するために一部の部材のみを簡略化して示した模式図である。従って、ガス検出システム100は、本明細書が参照する各図に示されていない任意の構成部材を備え得る。また、各図中の部材の寸法は、実際の構成部材の寸法および各部材の寸法比率等を忠実に表したものではない。
<Configuration of gas detection system 100>
First, the configuration of a gas detection system 100 according to an embodiment of the present disclosure will be described using FIG. 1 while referring to FIGS. 2 to 8. FIG. FIG. 1 is a schematic diagram showing an example of the configuration of a gas detection system 100 according to one embodiment. Each figure referred to in this specification is a schematic diagram showing only a part of members in a simplified manner for describing the embodiment for convenience of explanation. Accordingly, gas detection system 100 may include optional components not shown in the figures to which this specification refers. Also, the dimensions of the members in each drawing do not faithfully represent the actual dimensions of the constituent members, the dimensional ratios of the respective members, and the like.
 ガス検出システム100は、ガス検出装置1、サーバ装置2、および電子機器3を備えている。ガス検出システム100において、ガス検出装置1、サーバ装置2、および電子機器3は、互いに通信可能に接続されていてもよい。例えば、サーバ装置2は、図1に示すように、通信ネットワークを介して、ガス検出装置1および電子機器3と通信可能に接続されていてもよい。ガス検出装置1とサーバ装置2、および、電子機器3とサーバ装置2は無線通信で接続されていてもよいし、有線通信で接続されていてもよい。 The gas detection system 100 includes a gas detection device 1, a server device 2, and an electronic device 3. In the gas detection system 100, the gas detection device 1, the server device 2, and the electronic device 3 may be communicably connected to each other. For example, as shown in FIG. 1, the server device 2 may be communicably connected to the gas detection device 1 and the electronic device 3 via a communication network. The gas detection device 1 and the server device 2, and the electronic device 3 and the server device 2 may be connected by wireless communication, or may be connected by wired communication.
 (ガス検出装置1)
 ガス検出装置1は、対象者の便から放出されたサンプルガスを少なくとも2回採取し、採取された各サンプルガスに含まれる各被検出ガスの濃度を検出する。そして、ガス検出装置1は、各被検出ガスの濃度を補正して、対象者から排出された後の検体から放出された第1被検出ガスおよび第2被検出ガスの濃度を算出可能な装置である。
(Gas detector 1)
The gas detection device 1 collects at least twice a sample gas discharged from a subject's stool, and detects the concentration of each gas to be detected contained in each of the collected sample gases. The gas detection device 1 corrects the concentration of each gas to be detected, and is a device capable of calculating the concentrations of the first gas to be detected and the concentration of the second gas to be detected emitted from the specimen discharged from the subject. is.
 ガス検出装置1は、対象者が使用する便器4に取り付け可能な装置であってもよい。ガス検出装置1は、補正後の第1被検出ガスの濃度および第2被検出ガスの濃度を含む濃度情報を、サーバ装置2に送信する。ガス検出装置1は、第1被検出ガスの濃度の変化等に基づき、対象者が排出した検体の質量を算出し、濃度情報と共に当該質量を示す情報をサーバ装置2に送信してもよい。 The gas detection device 1 may be a device that can be attached to the toilet bowl 4 used by the subject. The gas detection device 1 transmits concentration information including the corrected concentration of the first gas to be detected and the concentration of the second gas to be detected to the server device 2 . The gas detection device 1 may calculate the mass of the sample discharged by the subject based on changes in the concentration of the first gas to be detected, and transmit information indicating the mass together with the concentration information to the server device 2 .
 [濃度情報]
 ガス検出装置1から出力される濃度情報について、図2を用いて説明する。図2は、ガス検出装置1から出力される濃度情報のデータ構造の一例を示す図である。図2に示すように、濃度情報は、対象者ID、検出データD1、サンプルガスID、未補正の濃度情報D2、および補正後濃度情報D3を含んでいてもよい。
[Density information]
Concentration information output from the gas detection device 1 will be described with reference to FIG. FIG. 2 is a diagram showing an example of the data structure of concentration information output from the gas detection device 1. As shown in FIG. As shown in FIG. 2, the concentration information may include subject ID, detection data D1, sample gas ID, uncorrected concentration information D2, and corrected concentration information D3.
 対象者IDは、対象者に固有の識別情報である。対象者IDは、対象者の名前、および各対象者に固有の識別情報であってもよい。対象者が、ガス検出システム100を利用する利用者である場合、対象者IDは、ガス検出システム100を利用する各利用者に付与される利用者IDであってもよい。 The target person ID is identification information unique to the target person. The subject ID may be the subject's name and identification information unique to each subject. If the subject is a user who uses the gas detection system 100 , the subject ID may be a user ID given to each user who uses the gas detection system 100 .
 ガス検出装置1は、対象者の1回の排便につき、所定の時間間隔(例えば、30秒間、または1分間等)でサンプルガスを複数回(少なくとも2回)採取する。採取されたサンプルガスには、それぞれサンプルガスIDが付与されてもよい。図2には、対象者IDが「xxxx」である対象者が使用するガス検出装置1から出力された濃度情報を例示している。「2021年mm月dd日のAM8:24」に採取されたサンプルガスには「samp1」というサンプルIDが付与されており、その1分後に採取されたサンプルガスには「samp2」というサンプルIDが付与されている。 The gas detection device 1 collects the sample gas multiple times (at least twice) at predetermined time intervals (eg, 30 seconds or 1 minute) for each bowel movement of the subject. A sample gas ID may be assigned to each of the collected sample gases. FIG. 2 illustrates concentration information output from the gas detection device 1 used by a subject whose subject ID is "xxxx". The sample gas sampled at "8:24 AM on dd, mm, 2021" has a sample ID of "samp1", and the sample gas sampled one minute later has a sample ID of "samp2". Granted.
 検出データD1は、サンプルガス毎に、検出された第1被検出ガスの濃度、および第2被検出ガスの濃度を示すデータを含んでいる。被検出ガスには、水素(H)、二酸化炭素(CO)、メタン(CH)、硫化系ガス等が含まれ得る。硫化系ガスには、硫化水素(HS)およびメチルメルカプタン(CHSH)等が含まれ得る。例えば、HまたはCOが第1被検出ガスに該当し、CH、硫化系ガス等が第2被検出ガスに該当する。検出データD1は、後述するガスセンサ143から出力される検知信号であってもよいし、検知信号から算出された濃度を示す数値を含んでいてもよい。 The detection data D1 includes data indicating the concentration of the detected first gas to be detected and the concentration of the second gas to be detected for each sample gas. Gases to be detected may include hydrogen (H 2 ), carbon dioxide (CO 2 ), methane (CH 4 ), sulfuric gases, and the like. Sulfurized gases may include hydrogen sulfide (H 2 S), methyl mercaptan (CH 3 SH), and the like. For example, H 2 or CO 2 corresponds to the first gas to be detected, and CH 4 , sulfide-based gas, etc. correspond to the second gas to be detected. The detection data D1 may be a detection signal output from the gas sensor 143, which will be described later, or may include a numerical value indicating the concentration calculated from the detection signal.
 図3は、検出データD1のデータ構造の一例を示す図である。図3に示すように、検出データD1には、下記が含まれていてもよい。
・サンプルID「samp1」のサンプルガスから検出された第1被検出ガスの濃度d11および第2被検出ガスの濃度d12。
・サンプルID「samp2」のサンプルガスから検出された第1被検出ガスの濃度d21および第2被検出ガスの濃度d22。
FIG. 3 is a diagram showing an example of the data structure of detection data D1. As shown in FIG. 3, the detection data D1 may include:
The concentration d11 of the first gas to be detected and the concentration d12 of the second gas to be detected detected from the sample gas with the sample ID "samp1".
The concentration d21 of the first gas to be detected and the concentration d22 of the second gas to be detected detected from the sample gas with the sample ID "samp2".
 また、濃度情報は、ガス検出装置1に固有のガス検出装置IDをさらに含んでいてもよい。図2には、対象者IDが「xxxx」である対象者が使用するガス検出装置1のガス検出装置ID「ppp」を含む濃度情報が示されている。 Also, the concentration information may further include a gas detection device ID unique to the gas detection device 1 . FIG. 2 shows concentration information including the gas detection device ID "ppp" of the gas detection device 1 used by a subject whose subject ID is "xxxx".
 未補正の濃度情報D2は、検出データD1から補正することなく算出される、第1被検出ガスの補正前の濃度、および第2被検出ガスの補正前の濃度である。 The uncorrected concentration information D2 is the uncorrected concentration of the first detected gas and the uncorrected concentration of the second detected gas, which are calculated from the detection data D1 without correction.
 図4は、未補正の濃度情報D2のデータ構造の一例を示す図である。図4に示すように、未補正の濃度情報D2には、下記が含まれていてもよい。
・サンプルID「samp1」のサンプルガスから検出された第1被検出ガスの未補正の濃度g11、および第2被検出ガスの未補正の濃度g12。
・サンプルID「samp2」のサンプルガスから検出された第1被検出ガスの未補正の濃度g21、および第2被検出ガスの未補正の濃度g22。
FIG. 4 is a diagram showing an example of the data structure of uncorrected density information D2. As shown in FIG. 4, the uncorrected density information D2 may include the following.
The uncorrected concentration g11 of the first detected gas and the uncorrected concentration g12 of the second detected gas detected from the sample gas with the sample ID "samp1".
The uncorrected concentration g21 of the first detected gas and the uncorrected concentration g22 of the second detected gas detected from the sample gas with the sample ID "samp2".
 補正後濃度情報D3は、検出データD1に基づいて算出された第1被検出ガスおよび第2被検出ガスの補正後濃度である。 The post-correction concentration information D3 is post-correction concentrations of the first gas to be detected and the second gas to be detected calculated based on the detection data D1.
 図7は、補正後濃度情報D3のデータ構造の一例を示す図である。図7に示すように、補正後濃度情報D3には、下記が含まれていてもよい。
・サンプルID「samp1」のサンプルガスから検出された第1被検出ガスの補正後濃度c11および第2被検出ガスの補正後濃度c12。
・サンプルID「samp2」のサンプルガスから検出された第1被検出ガスの補正後濃度c21および第2被検出ガスの補正後濃度c22。
FIG. 7 is a diagram showing an example of the data structure of the post-correction density information D3. As shown in FIG. 7, the corrected density information D3 may include the following.
The corrected concentration c11 of the first detected gas and the corrected concentration c12 of the second detected gas detected from the sample gas with the sample ID "samp1".
The corrected concentration c21 of the first detected gas and the corrected concentration c22 of the second detected gas detected from the sample gas with the sample ID "samp2".
 (サーバ装置2)
 図1に示すサーバ装置2は、ガス検出システム100の管理者によって管理されるコンピュータであってもよい。サーバ装置2は、ガス検出装置1から取得した濃度情報に基づいて、分析結果情報を生成する。
(Server device 2)
The server device 2 shown in FIG. 1 may be a computer managed by an administrator of the gas detection system 100 . The server device 2 generates analysis result information based on the concentration information acquired from the gas detection device 1 .
 例えば、サーバ装置2は、各対象者のIDと、各対象者が使用するガス検出装置1のガス検出装置IDと、各対象者の連絡先とを対応付けた対象者情報を保持していてもよい。図5は、サーバ装置2において保持されている対象者情報のデータ構造の一例を示す図である。対象者の連絡先は、対象者のメールアドレスであってもよい。サーバ装置2は、対象者情報を参照して、濃度情報に含まれている対象者IDから濃度情報の送信元であるガス検出装置1を使用する対象者を特定し、該対象者の電子機器3に分析結果情報を送信する。図6に示す対象者情報は、対象者ID「xxxx」の対象者が使用するガス検出装置1のガス検出装置IDは「ppp」であり、該対象者の連絡先は「xxxx@xxx.xxx」であることを示している。 For example, the server device 2 holds subject information in which the ID of each subject, the gas detection device ID of the gas detection device 1 used by each subject, and the contact information of each subject are associated with each other. good too. FIG. 5 is a diagram showing an example of the data structure of subject information held in the server device 2. As shown in FIG. The subject's contact information may be the subject's email address. The server device 2 refers to the subject information, identifies the subject who uses the gas detection device 1, which is the source of the concentration information, from the subject ID included in the concentration information, 3 to send analysis result information. In the subject information shown in FIG. 6, the gas detection device ID of the gas detection device 1 used by the subject with the subject ID "xxxx" is "ppp", and the subject's contact information is "xxxx@xxx.xxx". ”.
 あるいは、サーバ装置2は、各対象者に固有のウェブページを作成し、このウェブページを各対象者に閲覧させる構成であってもよい。各対象者に、自身のウェブページを閲覧するための固有パスワード等を設定させてもよい。この場合、サーバ装置2は、対象者情報を参照して、対象者IDから対象者を特定し、該対象者の電子機器3にウェブページのURL等を送信する。 Alternatively, the server device 2 may be configured to create a unique web page for each subject and allow each subject to view this web page. Each subject may be allowed to set a unique password or the like for viewing his/her own web page. In this case, the server device 2 refers to the target person information, identifies the target person from the target person ID, and transmits the URL of the web page or the like to the target person's electronic device 3 .
 サーバ装置2は、第1被検出ガスの濃度および第2被検出ガスの濃度から、対象者の健康状態を推定する機能を備えていてもよい。 The server device 2 may have a function of estimating the subject's health condition from the concentration of the first gas to be detected and the concentration of the second gas to be detected.
 [分析結果情報]
 分析結果情報について、図6を用いて説明する。図6は、分析結果情報のデータ構造の一例を示す図である。図6に示すように、分析結果情報は、対象者ID、補正後濃度情報D3、および健康情報D4を含んでいてもよい。また、分析結果情報は、サンプルガスIDを含んでいてもよい。
[Analysis result information]
Analysis result information will be described with reference to FIG. FIG. 6 is a diagram showing an example of the data structure of analysis result information. As shown in FIG. 6, the analysis result information may include a subject ID, post-correction concentration information D3, and health information D4. Also, the analysis result information may include the sample gas ID.
 図8は、健康情報D4のデータ構造の一例を示す図である。図8に示すように、健康情報D4は、評価、有用情報、および備考を含んでいてもよい。また、各健康情報に付与された健康情報IDを含んでいてもよい。 FIG. 8 is a diagram showing an example of the data structure of the health information D4. As shown in FIG. 8, health information D4 may include evaluation, useful information, and remarks. Also, the health information ID assigned to each piece of health information may be included.
 評価は、サーバ装置2が、第1被検出ガスの補正後濃度c11およびc21と、第2被検出ガスの補正後濃度c12およびc22とに基づいて推定した、対象者の健康状態についての判定結果であってもよい。評価は、第1被検出ガスの補正後濃度c11およびc21と、第2被検出ガスの補正後濃度c12およびc22とに基づいて推定された、対象者の腸内菌叢(腸内フローラとも称される)の状態についての判定結果であってもよい。対象者の健康状態の評価は、例えば、A(良好)、B(許容範囲内)、C(要注意)の3段階での判定が適用されてもよい。図8では、対象者の健康状態が「B」と評価された例を示している。 The evaluation is based on the determination result of the subject's health condition estimated by the server device 2 based on the corrected densities c11 and c21 of the first gas to be detected and the corrected densities c12 and c22 of the second gas to be detected. may be The evaluation is based on the corrected concentrations c11 and c21 of the first detectable gas and the corrected concentrations c12 and c22 of the second detectable gas. It may be a determination result about the state of For the evaluation of the subject's health condition, for example, three grades of A (good), B (within acceptable range), and C (caution required) may be applied. FIG. 8 shows an example in which the subject's health condition is evaluated as "B".
 サーバ装置2は、第1被検出ガスの未補正の濃度、および第2被検出ガスの未補正の濃度に基づいて、対象者の健康状態を推定する構成であってもよい。すなわち、評価は、サーバ装置2が、第1被検出ガスの未補正の濃度g11およびg21と、第2被検出ガスの未補正の濃度g12およびg22とに基づいて推定した、対象者の健康状態についての判定結果であってもよい。 The server device 2 may be configured to estimate the subject's health condition based on the uncorrected concentration of the first gas to be detected and the uncorrected concentration of the second gas to be detected. That is, the evaluation is based on the health condition of the subject estimated by the server device 2 based on the uncorrected concentrations g11 and g21 of the first gas to be detected and the uncorrected concentrations g12 and g22 of the second gas to be detected. may be the determination result.
 有用情報は、対象者の健康状態の向上に資する有益な情報であってもよい。有用情報は、対象者に推奨される食べ物(食材および料理)および運動に関する情報、生活習慣の改善に関する情報等を含んでいてもよい。 Useful information may be useful information that contributes to improving the subject's health condition. The useful information may include recommended foods (ingredients and dishes) for the subject, information on exercise, information on improving lifestyle habits, and the like.
 備考は、対象者に提供されるさまざまな情報を含み得る。備考には、例えば、下記のような情報が含まれていてもよい。
・健康面で相談可能な栄養士の連絡先。
・推奨される食材を用いた料理の調理法を紹介する動画へのアクセス情報。
・食材および運動器具を購入可能な通販サイトの情報。
Remarks can include various information provided to the subject. The remarks may include, for example, the following information.
・Contact information of a nutritionist who can consult on health issues.
・Access information to videos that introduce cooking methods using recommended ingredients.
・Information on mail-order sites where food and exercise equipment can be purchased.
 (電子機器3)
 図1に戻り、電子機器3は、対象者が使用するコンピュータであってもよい。あるいは、電子機器3は、対象者の健康状態を監視する者(例えば、家族等)が使用するコンピュータであってもよい。電子機器3は、例えば、パーソナルコンピュータ、タブレット端末、スマートフォン等であってもよい。
(Electronic device 3)
Returning to FIG. 1, the electronic device 3 may be a computer used by the subject. Alternatively, the electronic device 3 may be a computer used by a person (for example, a family member) who monitors the subject's health condition. The electronic device 3 may be, for example, a personal computer, a tablet terminal, a smart phone, or the like.
 電子機器3は、通信機能を有しており、サーバ装置2から分析結果情報を受信可能である。電子機器3は、例えば、キーボード、タッチパネル、およびマイク等の入力部、および、モニタ等の表示部等を有していてもよい。電子機器3は、便器4が設置されたトイレ室の内部に設置されていてもよい。この場合、電子機器3は、トイレ室の外部に持ち出し可能であってもよい。 The electronic device 3 has a communication function and can receive analysis result information from the server device 2 . The electronic device 3 may have, for example, a keyboard, a touch panel, an input unit such as a microphone, and a display unit such as a monitor. The electronic device 3 may be installed inside the toilet room in which the toilet bowl 4 is installed. In this case, the electronic device 3 may be taken outside the toilet room.
 <ガス検出装置1>
 上述のように、ガス検出装置1は、対象者から排出された検体から放出されたサンプルガスを採取し、当該サンプルガスに含まれる第1被検出ガスおよび第2被検出ガスの種類および濃度をそれぞれ検出する装置である。また、ガス検出装置1は、サンプルガスの採取および各被検出ガスの検出を少なくとも2回行い、それぞれの結果に基づき、各被検出ガスの濃度等を補正し、結果をサーバ装置2に送信する。以下、図9~図11を用いて、ガス検出装置1について説明する。図9は、ガス検出システム100が備えるガス検出装置1の外観を示す図である。図10は、図1に示すガス検出システム100の要部構成を示すブロック図である。図11は、ガス検出装置1の構成の一例を示す概略図である。
<Gas detector 1>
As described above, the gas detection device 1 collects a sample gas emitted from a specimen discharged from a subject, and determines the types and concentrations of the first gas to be detected and the second gas to be detected contained in the sample gas. It is a device that detects each. Further, the gas detection device 1 collects a sample gas and detects each gas to be detected at least twice, corrects the concentration and the like of each gas to be detected based on each result, and transmits the result to the server device 2 . . The gas detection device 1 will be described below with reference to FIGS. 9 to 11. FIG. FIG. 9 is a diagram showing the appearance of the gas detection device 1 included in the gas detection system 100. As shown in FIG. FIG. 10 is a block diagram showing the essential configuration of the gas detection system 100 shown in FIG. FIG. 11 is a schematic diagram showing an example of the configuration of the gas detection device 1. As shown in FIG.
 ガス検出装置1は、図9に示すように、例えば水洗の便器4に設置される。便器4は、便器ボウル4Aと、便座4Bとを備える。便器4は、住宅または病院等のトイレ室に設置され得る。ガス検出装置1は、便器4の任意の箇所に設置されてよい。一例として、ガス検出装置1は、図9に示すように、便器ボウル4Aと便座4Bとの間から便器4の外部にわたって配置されてよい。ガス検出装置1の一部は、便座4Bに埋め込まれていてよい。便器4の便器ボウル4Aには、対象者の便が排出され得る。ガス検出装置1は、便器ボウル4Aに排出された便から発生するガスが外気と混成されたサンプルガスを取得し得る。ガス検出装置1は、サンプルガスに含まれる各被検出ガスの種類および濃度等を検出し得る。 The gas detection device 1 is installed, for example, in a flush toilet bowl 4, as shown in FIG. The toilet 4 includes a toilet bowl 4A and a toilet seat 4B. The toilet bowl 4 can be installed in a toilet room such as a house or a hospital. The gas detection device 1 may be installed at any location on the toilet bowl 4 . As an example, the gas detection device 1 may be arranged from between the toilet bowl 4A and the toilet seat 4B to the outside of the toilet 4, as shown in FIG. Part of the gas detection device 1 may be embedded in the toilet seat 4B. A subject's stool can be discharged into the toilet bowl 4A of the toilet bowl 4. FIG. The gas detection device 1 can obtain a sample gas in which the gas generated from stool discharged into the toilet bowl 4A is mixed with the outside air. The gas detection device 1 can detect the type and concentration of each gas to be detected contained in the sample gas.
 図10に示すように、ガス検出装置1は、制御部10、対象者検知部11、排便検知部12、採取系13、分析系14、記憶部15、および通信部16を備える。制御部10は、ガス検出装置1の各部の動作を制御し、サンプルガスに含まれる各被検出ガスの検出を行う。制御部10の詳細については後述する。 As shown in FIG. 10, the gas detection device 1 includes a control unit 10, a subject detection unit 11, a bowel movement detection unit 12, a collection system 13, an analysis system 14, a storage unit 15, and a communication unit 16. The control unit 10 controls the operation of each unit of the gas detection device 1 to detect each gas to be detected contained in the sample gas. Details of the control unit 10 will be described later.
 対象者検知部11は、画像カメラ、個人識別スイッチ、赤外線センサおよび圧力センサ等の少なくとも何れかを含んで構成されていてよい。対象者検知部11は、検出結果を、制御部10に出力する。この他、対象者検知部11は、対象者を認証するための任意のセンサを含んでよい。当該センサの一例として、体重を検出する荷重センサ、座高を検出するセンサ、脈拍を検出するセンサ、血流を検出するセンサ、顔を検出するセンサおよび音声を検出するセンサ等が挙げられる。 The subject detection unit 11 may include at least one of an image camera, a personal identification switch, an infrared sensor, a pressure sensor, and the like. The subject detection unit 11 outputs the detection result to the control unit 10 . In addition, the subject detection unit 11 may include any sensor for authenticating the subject. Examples of such sensors include a load sensor that detects body weight, a sensor that detects sitting height, a sensor that detects pulse, a sensor that detects blood flow, a sensor that detects face, and a sensor that detects voice.
 例えば、対象者検知部11は、赤外線センサを含んで構成される場合には、赤外線センサが照射した赤外線の対象物からの反射光を検出することにより、対象者がトイレ室に入室したことを検出し得る。対象者検知部11は、検出結果として、対象者がトイレ室に入室したことを示す信号を制御部10に出力する。 For example, when the target person detection unit 11 includes an infrared sensor, the object person detection unit 11 detects that the target person has entered the toilet room by detecting infrared light reflected from the object irradiated by the infrared sensor. can be detected. The target person detection unit 11 outputs a signal indicating that the target person has entered the toilet room to the control unit 10 as a detection result.
 例えば、対象者検知部11は、圧力センサを含んで構成される場合には、図9に示すような便座4Bにかかる圧力を検出することにより、対象者が便座4Bに座ったことを検出し得る。対象者検知部11は、検出結果として、対象者が便座4Bに座ったことを示す信号を制御部10に出力する。 For example, when the subject detection unit 11 includes a pressure sensor, it detects that the subject has sat on the toilet seat 4B by detecting the pressure applied to the toilet seat 4B as shown in FIG. obtain. The target person detection unit 11 outputs a signal indicating that the target person has sat on the toilet seat 4B to the control unit 10 as a detection result.
 例えば、対象者検知部11は、圧力センサを含んで構成される場合には、図9に示すような便座4Bにかかる圧力の低減を検出することにより、対象者が便座4Bから立ち上がったことを検出し得る。対象者検知部11は、検出結果として、対象者が便座4Bから立ち上がったことを示す信号を制御部10に出力する。 For example, if the subject detection unit 11 includes a pressure sensor, it detects that the subject has stood up from the toilet seat 4B by detecting a decrease in the pressure applied to the toilet seat 4B as shown in FIG. can be detected. The target person detection unit 11 outputs a signal indicating that the target person has stood up from the toilet seat 4B to the control unit 10 as a detection result.
 例えば、対象者検知部11は、画像カメラ等を含んで構成される場合には、顔画像、座高および体重等のデータを収集する。対象者検知部11は、収集したデータから個人を特定して検出する。対象者検知部11は、検出結果として、特定識別した個人を示す信号を制御部10に出力する。 For example, when the target person detection unit 11 includes an image camera, etc., it collects data such as face images, sitting height, and weight. The target person detection unit 11 identifies and detects an individual from the collected data. The target person detection unit 11 outputs a signal indicating the identified individual to the control unit 10 as a detection result.
 例えば、対象者検知部11は、個人識別スイッチ等を含んで構成される場合には、個人識別スイッチの操作に基づいて、個人を特定(検出)する。この場合、制御部10には、予め個人情報が登録(記憶)されてよい。対象者検知部11は、検出結果として、特定した個人を示す信号を制御部10に出力する。 For example, if the subject detection unit 11 includes an individual identification switch or the like, it identifies (detects) an individual based on the operation of the individual identification switch. In this case, personal information may be registered (stored) in advance in the control unit 10 . The target person detection unit 11 outputs a signal indicating the specified individual to the control unit 10 as a detection result.
 排便検知部12は、対象者からの検体の排出を検知する部材である。ここで、「検体」は便であり、「検体の排出」は、排便を意図している。排便検知部12は、主制御部101の制御に従い動作を開始し、検体が便器ボウル4Aに排出されたことを検知すると、検体が便器ボウル4Aに排出されたことを示す信号を制御部10に出力する。排便検知部12は、例えば検体が便器ボウル4A内に貯留されている水に着水した時の音を検知するセンサであってもよい。この場合、排便検知部12は、検知した音を示す情報を示す信号を制御部10に出力する。または、排便検知部12は、検体が便器ボウル4A内に落下したことを検知可能な圧力センサであってもよい。 The defecation detection unit 12 is a member that detects the discharge of the specimen from the subject. Here, "specimen" is stool, and "exhaustion of specimen" is intended to defecate. The defecation detection unit 12 starts operating under the control of the main control unit 101, and upon detecting that the sample has been discharged into the toilet bowl 4A, sends a signal indicating that the sample has been discharged into the toilet bowl 4A to the control unit 10. Output. The defecation detection unit 12 may be, for example, a sensor that detects a sound when the specimen lands on the water stored in the toilet bowl 4A. In this case, the defecation detection unit 12 outputs a signal indicating information indicating the detected sound to the control unit 10 . Alternatively, the defecation detector 12 may be a pressure sensor capable of detecting that the specimen has fallen into the toilet bowl 4A.
 採取系13は、便器ボウル4A内の空間から、外気と共にサンプルガスを採取し、貯留する。採取系13は、例えば、サンプルガスを吸引することにより、サンプルガスを採取してもよい。分析系14は、採取系13によって採取されたサンプルガスを用いて、該サンプルガスに含まれる各被検出ガスの種類および濃度を検出する。採取系13および分析系14の詳細については後述する。 The collection system 13 collects and stores the sample gas together with the outside air from the space inside the toilet bowl 4A. The collection system 13 may collect the sample gas, for example, by sucking the sample gas. The analysis system 14 uses the sample gas collected by the collection system 13 to detect the type and concentration of each gas to be detected contained in the sample gas. The details of the collection system 13 and analysis system 14 will be described later.
 記憶部15は、例えば、半導体メモリまたは磁気メモリ等で構成される。記憶部15は、各種情報、および、ガス検出装置1を動作させるためのプログラム等を記憶する。記憶部15は、ワークメモリとして機能してよい。また、記憶部15は、制御部10において行われる各種推定に用いられる推定モデルを記憶していてよい。 The storage unit 15 is composed of, for example, a semiconductor memory or a magnetic memory. The storage unit 15 stores various information, a program for operating the gas detection device 1, and the like. The storage unit 15 may function as a work memory. The storage unit 15 may also store estimation models used for various estimations performed by the control unit 10 .
 通信部16は、サーバ装置2と通信可能であってよい。通信部16とサーバ装置2との通信において用いられる通信方式は、近距離無線通信規格または携帯電話網へ接続する無線通信規格であってよいし、有線通信規格であってよい。近距離無線通信規格は、例えば、WiFi(登録商標)、Bluetooth(登録商標)、赤外線およびNFC(Near Field Communication)等を含んでよい。携帯電話網へ接続する無線通信規格は、例えば、LTE(Long Term Evolution)または第4世代以上の移動通信システム等を含んでよい。また、通信部16とサーバ装置2との通信において用いられる通信方式は、例えばLPWA(Low Power Wide Area)またはLPWAN(Low Power Wide Area Network)等の通信規格でもよい。 The communication unit 16 may be capable of communicating with the server device 2. The communication method used for communication between the communication unit 16 and the server device 2 may be a short-range wireless communication standard, a wireless communication standard for connecting to a mobile phone network, or a wired communication standard. Near field communication standards may include, for example, WiFi (registered trademark), Bluetooth (registered trademark), infrared and NFC (Near Field Communication), and the like. A wireless communication standard for connecting to a mobile phone network may include, for example, LTE (Long Term Evolution) or a mobile communication system of fourth generation or higher. The communication method used for communication between the communication unit 16 and the server device 2 may be a communication standard such as LPWA (Low Power Wide Area) or LPWAN (Low Power Wide Area Network).
 筐体30は、ガス検出装置1の各種部品を収容する。筐体30は、任意の材料で構成されてよい。例えば、筐体30は、金属または樹脂等の材料で構成されてよい。 The housing 30 accommodates various parts of the gas detection device 1 . Housing 30 may be constructed of any material. For example, the housing 30 may be made of a material such as metal or resin.
 (採取系13)
 以下、採取系13の詳細について説明する。図11に示すように、採取系13は、第1弁131および第1ポンプ132を備える。また、図11に示すように、採取系13の各部は、流路31および流路32によって接続されている。
(collection system 13)
Details of the collection system 13 will be described below. As shown in FIG. 11, the collection system 13 has a first valve 131 and a first pump 132 . In addition, as shown in FIG. 11, each part of the collection system 13 is connected by channels 31 and 32 .
 採取系13が備える第1弁131は流路31上に位置しており、主制御部101の制御に従って動作する弁である。第1弁131は、電磁駆動、ピエゾ駆動またはモータ駆動等の弁によって構成されていてよい。第1弁131は、主制御部101の制御に従って各流路の開放の程度(連通の程度)を調節することで、流路31と流路32との間、および流路32と流路36(後述)との間の連通状態を調節できる。よって、サンプルガスおよびパージガスの流路32およびセンサチャンバ144(後述)への流入が調節され得る。 The first valve 131 included in the collection system 13 is located on the flow path 31 and is a valve that operates under the control of the main controller 101 . The first valve 131 may be configured by an electromagnetically-driven, piezo-driven, motor-driven valve, or the like. The first valve 131 adjusts the degree of opening (degree of communication) of each channel according to the control of the main control unit 101, so that the space between the channel 31 and the channel 32 and between the channel 32 and the channel 36 (described later) can be adjusted. Thus, the flow of sample gas and purge gas into flow path 32 and sensor chamber 144 (discussed below) can be regulated.
 第1ポンプ132は、流路31と流路32との間に設けられており、流路32を介してセンサチャンバ144と接続している。第1ポンプ132は、主制御部101の制御に基づいて動作する。第1ポンプ132は、便器ボウル4A内のサンプルガスを、便器ボウル4A内に向けて開口する流路31の開口部を介して吸引し、流路32に供給する。図11に示される第1ポンプ132は、ピエゾポンプまたはモータポンプ等で構成されていてよい。また、第1ポンプ132は、後述するように、流路32にパージガスを供給する際にも用いられてよい。 The first pump 132 is provided between the flow paths 31 and 32 and is connected to the sensor chamber 144 via the flow path 32 . The first pump 132 operates under the control of the main controller 101 . The first pump 132 sucks the sample gas in the toilet bowl 4A through the opening of the channel 31 that opens into the toilet bowl 4A and supplies it to the channel 32 . The first pump 132 shown in FIG. 11 may be composed of a piezo pump, a motor pump, or the like. The first pump 132 may also be used when supplying the purge gas to the flow path 32, as will be described later.
 流路31は、便器ボウル4Aと第1ポンプ132との間を接続するために設けられる管状の部材である。流路31の一方の端部は便器ボウル4A内において開口する開口部を有しており、反対側の端部は第1ポンプ132と接続している。流路32は、第1ポンプ132とセンサチャンバ144との間に設けられる流路である。第1弁131が開放された状態で第1ポンプ132が動作することで、流路31または流路36(後述)から流路32にガスが供給され得る。 The channel 31 is a tubular member provided to connect between the toilet bowl 4A and the first pump 132. One end of the channel 31 has an opening that opens into the toilet bowl 4A and the opposite end is connected to the first pump 132 . Channel 32 is a channel provided between first pump 132 and sensor chamber 144 . By operating the first pump 132 with the first valve 131 open, gas can be supplied from the flow path 31 or the flow path 36 (described later) to the flow path 32 .
 (分析系14)
 以下、分析系14の詳細について説明する。図11に示すように、分析系14は第2弁141、第2ポンプ142、ガスセンサ143、およびセンサチャンバ144を備える。また、図11に示すように、分析系14は、排出路33、および流路34によって外部と接続している。また、分析系の各部は、流路37によって接続されている。
(Analysis system 14)
Details of the analysis system 14 will be described below. As shown in FIG. 11 , analysis system 14 includes second valve 141 , second pump 142 , gas sensor 143 and sensor chamber 144 . Further, as shown in FIG. 11, the analysis system 14 is connected to the outside through a discharge channel 33 and a channel 34 . Also, each part of the analysis system is connected by a channel 37 .
 第2弁141は、流路34上に設けられる弁である。第2弁141は、主制御部101の制御に従って動作し、流路34と流路36とが連通した状態と流路34と流路37とが連通した状態とを切り替えることができる。 The second valve 141 is a valve provided on the channel 34 . The second valve 141 operates under the control of the main control unit 101, and can switch between a state in which the flow paths 34 and 36 communicate with each other and a state in which the flow paths 34 and 37 communicate with each other.
 第2ポンプ142は、流路37上に設けられ、流路37を介してセンサチャンバ144と接続しているポンプである。第2ポンプ142は、主制御部101の制御に基づき動作し、流路34から吸引された外気をセンサチャンバ144に供給し得る。 The second pump 142 is a pump provided on the channel 37 and connected to the sensor chamber 144 via the channel 37 . The second pump 142 operates under the control of the main controller 101 and can supply the outside air sucked from the flow path 34 to the sensor chamber 144 .
 ガスセンサ143は、被検出ガスの濃度に応じて異なる検知信号を出力するセンサであればよい。以下では、ガスセンサ143として、被検出ガスの濃度に応じて検知信号の強度が変化するセンサを例に挙げて説明するが、これに限定されない。一例として、ガスセンサ143は、サンプルガスに含まれ得る被検出ガスの濃度に応じた強度の検知信号を出力可能である。図11に示すように、ガス検出装置1には、複数のガスセンサ143が位置してよい。また、複数のガスセンサ143は、それぞれ異なる種類の被検出ガスの濃度に応じた検知信号を出力可能であってもよい。これにより、ガス検出装置1は、複数種類の被検出ガスの濃度を分析できる。 The gas sensor 143 may be any sensor that outputs different detection signals according to the concentration of the gas to be detected. In the following description, as the gas sensor 143, a sensor in which the intensity of the detection signal changes according to the concentration of the gas to be detected will be described as an example, but the gas sensor 143 is not limited to this. As an example, the gas sensor 143 can output a detection signal with an intensity corresponding to the concentration of the gas to be detected that can be contained in the sample gas. As shown in FIG. 11 , a plurality of gas sensors 143 may be positioned in the gas detection device 1 . Further, the plurality of gas sensors 143 may be capable of outputting detection signals corresponding to concentrations of different types of gas to be detected. Thereby, the gas detection device 1 can analyze the concentration of a plurality of kinds of gases to be detected.
 ガスセンサ143は、センサ素子および抵抗素子を備える。センサ素子と抵抗素子は、電源端子と接地端子との間において、直列接続される。電源端子と接地端子との間には、一定の電圧値Vが印加される。センサ素子および抵抗素子の各々には同じ電流値Iが流れる。電流値Iは、センサ素子の抵抗値Rおよび抵抗素子の抵抗値Rに応じて決まり得る。ガスセンサ143が出力する電圧は、センサ素子にかかる電圧値Vであってもよいし、抵抗素子にかかる電圧値VRLであってもよい。 Gas sensor 143 includes a sensor element and a resistance element. The sensor element and the resistive element are connected in series between the power terminal and the ground terminal. A constant voltage value VC is applied between the power terminal and the ground terminal. The same current value IS flows through each of the sensor element and the resistance element. The current value I S can be determined according to the resistance value R S of the sensor element and the resistance value R L of the resistive element. The voltage output by the gas sensor 143 may be the voltage value VS applied to the sensor element or the voltage value VRL applied to the resistance element.
 電源端子は、ガス検出装置1が備えるバッテリ等の電源に接続される。接地端子は、ガス検出装置1のグラウンドに接続される。センサ素子の一方の端部は、電源端子に接続される。センサ素子の反対側の端部は、抵抗素子の一方の端部に接続される。一例として、センサ素子は、半導体式センサである。ただし、センサ素子は、半導体式センサに限定されない。例えば、センサ素子は、接触燃焼式センサまたは固体電解質センサ等であってもよい。 The power terminal is connected to a power source such as a battery provided in the gas detection device 1 . A ground terminal is connected to the ground of the gas detection device 1 . One end of the sensor element is connected to a power terminal. The opposite end of the sensor element is connected to one end of the resistive element. As an example, the sensor element is a semiconductor sensor. However, the sensor element is not limited to a semiconductor sensor. For example, the sensor element may be a catalytic combustion sensor, a solid electrolyte sensor, or the like.
 センサ素子は、感ガス部を含む。感ガス部は、ガスセンサ143の種類に応じた金属酸化物半導体材料を含む。金属酸化物半導体材料の一例として、酸化スズ(SnO等)、酸化インジウム(In等)、酸化亜鉛(ZnO等)、酸化タングステン(WO等)および酸化鉄(Fe等)等から選択される1種以上を含むものが挙げられる。感ガス部の金属酸化物半導体材料に適宜不純物を添加することにより、センサ素子によって検出するガスを適宜選択できる。センサ素子は、感ガス部を加熱するヒータをさらに含んでよい。 The sensor element includes a gas sensitive portion. The gas sensitive portion contains a metal oxide semiconductor material corresponding to the type of gas sensor 143 . Examples of metal oxide semiconductor materials include tin oxide (such as SnO2 ), indium oxide (such as In2O3 ), zinc oxide (such as ZnO ), tungsten oxide (such as WO3 ) and iron oxide (such as Fe2O3 ) . ) and the like. By appropriately adding impurities to the metal oxide semiconductor material of the gas-sensitive portion, the gas to be detected by the sensor element can be appropriately selected. The sensor element may further include a heater that heats the gas sensitive portion.
 センサ素子をサンプルガスに曝すと、サンプルガスに含まれる被検出ガスと、センサ素子の感ガス部の表面に吸着した酸素とが置き換わり、還元反応が生じ得る。還元反応が生じることにより、感ガス部の表面に吸着していた酸素が除去され得る。感ガス部の表面に吸着していた酸素が除去されると、センサ素子の抵抗値Rが低下し、センサ素子にかかる電圧値Vが低下し得る。つまり、ガスセンサ143にサンプルガスを供給すると、サンプルガスに含まれる被検出ガスの濃度に応じて、センサ素子にかかる電圧値Vが低下し得る。ここで、電圧値VSと電圧値VRLとを合わせた値は一定である。そのため、ガスセンサ143にサンプルガスを供給すると、サンプルガスに含まれる被検出ガスの濃度に応じて、電圧値VRLは増加し得る。 When the sensor element is exposed to the sample gas, the gas to be detected contained in the sample gas is replaced with oxygen adsorbed on the surface of the gas sensitive portion of the sensor element, and a reduction reaction can occur. Oxygen adsorbed on the surface of the gas-sensitive portion can be removed by the reduction reaction. When the oxygen adsorbed on the surface of the gas-sensing portion is removed, the resistance value R s of the sensor element decreases, and the voltage value V s applied to the sensor element can decrease. That is, when the sample gas is supplied to the gas sensor 143, the voltage value VS applied to the sensor element can decrease according to the concentration of the gas to be detected contained in the sample gas. Here, the sum of the voltage value VS and the voltage value VRL is constant. Therefore, when the sample gas is supplied to the gas sensor 143, the voltage value VRL can increase according to the concentration of the gas to be detected contained in the sample gas.
 抵抗素子は、可変抵抗素子である。抵抗素子の抵抗値Rは、制御部10からの制御信号によって変化し得る。抵抗素子の一方の端部は、センサ素子の反対側の端部に接続される。抵抗素子の反対側の端部は、接地端子に接続される。 The resistance element is a variable resistance element. A resistance value RL of the resistance element can be changed by a control signal from the control section 10 . One end of the resistive element is connected to the opposite end of the sensor element. The opposite end of the resistive element is connected to the ground terminal.
 抵抗素子の抵抗値Rを調整することにより、センサ素子にかかる電圧値Vが調整され得る。例えば、抵抗値Rをセンサ素子の抵抗値Rと同等にすると、センサ素子にかかる電圧値Vの振れ幅は最大値に近くなり得る。 By adjusting the resistance value R L of the resistive element, the voltage value V S applied to the sensor element can be adjusted. For example, if the resistance value RL is made equal to the resistance value RS of the sensor element, the amplitude of the voltage value VS applied to the sensor element can be close to the maximum value.
 センサチャンバ144は、ガスセンサ143を内部に格納するチャンバである。図11に示すように、センサチャンバ144には、流路32の一方の端部が接続される。換言すると、センサチャンバ144は、流路32を介して第1ポンプ132に接続されている。また、センサチャンバ144には、排出路33の一方の端部および流路37の一方の端部が接続される。 The sensor chamber 144 is a chamber that houses the gas sensor 143 inside. As shown in FIG. 11, sensor chamber 144 is connected to one end of channel 32 . In other words, sensor chamber 144 is connected to first pump 132 via flow path 32 . One end of the discharge path 33 and one end of the flow path 37 are connected to the sensor chamber 144 .
 排出路33は、樹脂製チューブ或いは金属製またはガラス製配管等の管状の部材で構成されてよい。排出路33の一方の端部(第1端部)は、センサチャンバ144と接続されており、排出路33の反対側の端部(第2端部)はガス検出装置1の筐体30の外部に向かって開口している。排出路33は、第1ポンプ132の動作により、センサチャンバ144からの排気をガス検出装置1の外部に排出する。排出路33の開口部側の一部は、図9に示すように、便器ボウル4Aの外側へ露出し得る。 The discharge path 33 may be composed of a tubular member such as a resin tube or a metal or glass pipe. One end (first end) of the discharge path 33 is connected to the sensor chamber 144 , and the opposite end (second end) of the discharge path 33 is connected to the housing 30 of the gas detection device 1 . It is open to the outside. The discharge path 33 discharges the exhaust from the sensor chamber 144 to the outside of the gas detection device 1 by the operation of the first pump 132 . A part of the discharge passage 33 on the opening side can be exposed to the outside of the toilet bowl 4A as shown in FIG.
 流路34は、管状の部材である。流路34の一方の端部は、便器ボウル4A内とは異なる外部の空間に向けて開口する開口部を有しており、流路34の反対側の端部は第2弁141と接続している。一例として、外部とは、トイレ室内の空間等、ガス検出装置1が位置している空間の周辺である。 The channel 34 is a tubular member. One end of the flow path 34 has an opening that opens toward a space outside the toilet bowl 4A, and the opposite end of the flow path 34 is connected to the second valve 141. ing. As an example, the outside is the surroundings of the space in which the gas detection device 1 is located, such as the space inside the toilet room.
 フィルタ35は、流路34上に設けられるフィルタである。フィルタ35は、流路34の開口部から吸引される外気に含まれる不要な成分、例えば外気に含まれる各被検出ガス等を吸着可能なフィルタであってよい。フィルタ35が上述のようなフィルタであることにより、流路34を通過する外気(パージガス)は、フィルタ35を通過することで各被検出ガスの成分の含有量が減少し得る。 The filter 35 is a filter provided on the channel 34 . The filter 35 may be a filter capable of adsorbing unnecessary components contained in the outside air sucked from the opening of the flow path 34, such as each gas to be detected contained in the outside air. Since the filter 35 is a filter as described above, the outside air (purge gas) passing through the flow path 34 can be reduced in the contents of the components of each gas to be detected by passing through the filter 35 .
 流路36は、一方の端部が第2弁141と接続しており、反対側の端部が第1弁131と接続している。また、流路37は、一方の端部が第2弁141と接続しており、反対側の端部がセンサチャンバ144と接続している。 The flow path 36 has one end connected to the second valve 141 and the opposite end connected to the first valve 131 . One end of the flow path 37 is connected to the second valve 141 , and the opposite end is connected to the sensor chamber 144 .
 第1弁131および第2弁141が開放され、流路34、流路36、および流路32が連通した状態において、第1ポンプ132が動作することで、流路34の第1端部からトイレ室内の空気(パージガス)が吸引される。また、吸引されたパージガスはフィルタ35を通過することで浄化され、浄化されたパージガスは流路36および流路32を通過してセンサチャンバ144に供給された後、排出路33から排出される。パージガスが流路32を通過し、流路32内に残留していたサンプルガスと共に排出されることにより、サンプルガスが通過した流路32がパージガスによってクリーニングされる。また、第2弁141が開放され、流路34および流路37が連通した状態において、第2ポンプ142が動作することで、流路34の開口部からトイレ室内のパージガスが吸引される。また、吸引されたパージガスはフィルタ35を通過することで浄化され、浄化されたパージガスは流路37を通過してセンサチャンバ144に供給される。 When the first valve 131 and the second valve 141 are opened and the flow paths 34, 36, and 32 are in communication, the first pump 132 operates to cause the flow from the first end of the flow path 34 to Air (purge gas) in the toilet room is sucked. Also, the sucked purge gas is purified by passing through the filter 35 , the purified purge gas passes through the flow paths 36 and 32 , is supplied to the sensor chamber 144 , and then is discharged from the discharge path 33 . The purge gas passes through the channel 32 and is discharged together with the sample gas remaining in the channel 32, thereby cleaning the channel 32 through which the sample gas has passed. In addition, when the second valve 141 is opened and the flow path 34 and the flow path 37 are in communication, the second pump 142 operates to suck the purge gas in the toilet room from the opening of the flow path 34 . Also, the sucked purge gas is purified by passing through the filter 35 , and the purified purge gas passes through the flow path 37 and is supplied to the sensor chamber 144 .
 (制御部10)
 以下、図10を用いて、制御部10の詳細について説明する。図10に示すように、制御部10は、主制御部101、検出部102、第1算出部103、検体推定部104、および第2算出部105(算出部)を備える。主制御部101は、ガス検出装置1の各部の動作を制御する。具体的には、主制御部101は、対象者検知部11、排便検知部12、第1弁131、第1ポンプ132、第2弁141、および第2ポンプ142の動作を制御する。主制御部101は、ガス検出装置1に電力が供給されている間、対象者検知部11を動作させておき、対象者検知部11から、対象者が便座4Bに着座したことを示す信号を取得すると、排便検知部12の動作を開始させる。
(control unit 10)
Details of the control unit 10 will be described below with reference to FIG. 10 . As shown in FIG. 10, the control unit 10 includes a main control unit 101, a detection unit 102, a first calculation unit 103, a sample estimation unit 104, and a second calculation unit 105 (calculation unit). The main control section 101 controls the operation of each section of the gas detection device 1 . Specifically, the main control unit 101 controls operations of the subject detection unit 11 , the defecation detection unit 12 , the first valve 131 , the first pump 132 , the second valve 141 and the second pump 142 . The main control unit 101 operates the subject detection unit 11 while power is being supplied to the gas detection device 1, and outputs a signal from the subject detection unit 11 indicating that the subject is seated on the toilet seat 4B. When acquired, the operation of the defecation detection unit 12 is started.
 主制御部101は、排便検知部12から、検体が便器ボウル4A内に排出されたことを示す信号を取得すると、便器ボウル4A内のサンプルガスの1回目の採取および各被検出ガスの検出を開始させる。以下、検体の排出が検知されてから1回目に採取されるサンプルガスを、「第1サンプルガス」と称する。 When the main control unit 101 acquires a signal from the defecation detection unit 12 indicating that the specimen has been discharged into the toilet bowl 4A, the main control unit 101 performs the first sampling of the sample gas in the toilet bowl 4A and the detection of each gas to be detected. let it start. Hereinafter, the sample gas that is sampled for the first time after the discharge of the specimen is detected will be referred to as "first sample gas".
 具体的には、主制御部101は、第1弁131を開放させ、流路31と流路32とが連通した状態とする。また、主制御部101は、第2弁141を開放させ、流路34と流路37とが連通した状態とする。主制御部101は、この状態において第1ポンプ132および第2ポンプ142を所定時間ずつ交互に動作させる。これにより、流路31の便器ボウル4A側の端部の開口部から便器ボウル4A内のサンプルガスが採取され、流路32を通過してセンサチャンバ144に供給される。また、外部からパージガスが吸引され、流路34および流路37を経由してセンサチャンバ144に供給される。これにより、センサチャンバ144には所定量のサンプルガスとパージガスとが交互に供給され、ガスセンサ143は、それぞれのガスに含まれる各被検出ガスの種類および濃度に応じた信号を出力し得る。主制御部101は、センサチャンバ144へのサンプルガスおよびパージガスの供給を、例えば10秒間行わせ、その後第1ポンプ132および第2ポンプ142の動作を停止させてもよい。 Specifically, the main control unit 101 opens the first valve 131 so that the channel 31 and the channel 32 are in communication. Further, the main control unit 101 opens the second valve 141 so that the flow path 34 and the flow path 37 are in communication. In this state, the main control unit 101 alternately operates the first pump 132 and the second pump 142 for a predetermined period of time. As a result, the sample gas in the toilet bowl 4A is collected from the opening at the end of the flow path 31 on the toilet bowl 4A side, passes through the flow path 32 and is supplied to the sensor chamber 144 . Also, a purge gas is sucked from the outside and supplied to the sensor chamber 144 via the channels 34 and 37 . As a result, predetermined amounts of sample gas and purge gas are alternately supplied to sensor chamber 144, and gas sensor 143 can output a signal corresponding to the type and concentration of each gas to be detected contained in each gas. The main controller 101 may cause the sample gas and the purge gas to be supplied to the sensor chamber 144 for, for example, 10 seconds, and then stop the operation of the first pump 132 and the second pump 142 .
 また、主制御部101は、検出部102から、第1サンプルガスに含まれる第1被検出ガスおよび第2被検出ガスの濃度の検出が完了したことを示す情報を取得すると、第1サンプルガスの採取から所定時間が経過したかを判定する。以下、「第1サンプルガスに含まれる第1被検出ガスおよび第2被検出ガスの濃度の検出」を、「第1サンプルガスを用いた検出」または「1回目の検出」とも称する。上述の所定時間は、例えば30秒~1分程度の範囲の時間から設定される。第1サンプルガスの採取から所定以上の時間が経過していた場合、主制御部101は、再度第1ポンプ132および第2ポンプ142を動作させ、センサチャンバ144にサンプルガスおよびパージガスを交互に供給させてもよい。これにより、検出部102において2回目のサンプルガスの採取および第1被検出ガスの検出が行われる。2回目に採取されるサンプルガスを、「第2サンプルガス」と称する。第2サンプルガスは、第1サンプルガスが採取された検体と同じ検体から放出されるガスであり、第1サンプルガスが採取されたタイミングよりも後のタイミングで採取されるガスである。 Further, when the main control unit 101 acquires from the detection unit 102 the information indicating that the detection of the concentrations of the first target gas and the second target gas contained in the first sample gas has been completed, the main control unit 101 detects the first sample gas. It is determined whether a predetermined time has passed since the collection of the data. Hereinafter, "detection of the concentrations of the first gas to be detected and the second gas to be detected contained in the first sample gas" is also referred to as "detection using the first sample gas" or "first detection". The predetermined time is set, for example, within a range of 30 seconds to 1 minute. If a predetermined time or more has elapsed since the sampling of the first sample gas, the main control unit 101 operates the first pump 132 and the second pump 142 again to alternately supply the sample gas and the purge gas to the sensor chamber 144. You may let As a result, sampling of the sample gas for the second time and detection of the first gas to be detected are performed in the detection unit 102 . A sample gas sampled for the second time is referred to as a "second sample gas." The second sample gas is a gas emitted from the same sample as the sample from which the first sample gas was sampled, and is a gas sampled after the timing at which the first sample gas was sampled.
 主制御部101は、検出部102から、第2サンプルガスを用いた第1被検出ガスの検出が完了したことを示す情報を取得すると、主制御部101は、各部を制御することで流路32のクリーニングを行わせる。具体的には、主制御部101は、第1弁131および第2弁141を制御し、流路34、流路36、および流路32が連通した状態とし、第1ポンプ132を動作させる。これにより、パージガスが流路32に供給され、流路32に残留したサンプルガスがパージガスと共にセンサチャンバ144を通過して排出路33から排出され、流路32のクリーニングが達成される。また、主制御部101は、各部を制御することでセンサチャンバ144のクリーニングを行わせる。具体的には、主制御部101は、第2弁141を制御し、流路34と流路37とが連通した状態とし、第2ポンプ142を動作させる。これにより、センサチャンバ144にパージガスが供給され、排出路33から排出され、センサチャンバ144のクリーニングが達成される。主制御部101は、上述した流路32およびセンサチャンバ144のクリーニングを、第1サンプルガスを用いた各被検出ガスの検出が完了した後であって、第2サンプルガスの採取が開始される前にも行ってもよい。 When the main control unit 101 acquires information indicating that the detection of the first gas to be detected using the second sample gas is completed from the detection unit 102, the main control unit 101 controls each unit to 32 cleaning. Specifically, the main control unit 101 controls the first valve 131 and the second valve 141 so that the flow path 34 , the flow path 36 , and the flow path 32 are in communication, and the first pump 132 is operated. As a result, the purge gas is supplied to the channel 32, and the sample gas remaining in the channel 32 passes through the sensor chamber 144 together with the purge gas and is discharged from the discharge channel 33, thereby cleaning the channel 32. FIG. Further, the main control unit 101 causes the sensor chamber 144 to be cleaned by controlling each unit. Specifically, the main control unit 101 controls the second valve 141 to bring the flow path 34 and the flow path 37 into communication with each other, and operates the second pump 142 . As a result, the purge gas is supplied to the sensor chamber 144 and exhausted from the exhaust path 33 to accomplish cleaning of the sensor chamber 144 . The main control unit 101 cleans the flow path 32 and the sensor chamber 144 as described above, and after the detection of each gas to be detected using the first sample gas is completed, sampling of the second sample gas is started. You can go before.
 検出部102は、サンプルガスに含まれる各被検出ガスの種類および濃度を検出する。当該被検出ガスには、第1被検出ガスと、第1被検出ガス以外のガスであり、検体から放出されるガスである第2被検出ガスとが含まれる。具体的には、まず検出部102は、ガスセンサ143から第1サンプルガスに含まれる各被検出ガスの濃度に応じた信号を取得する。ここで、センサチャンバ144には、被検出ガスを含む量が多い第1サンプルガスと被検出ガスを含む量が少ないパージガスとが交互に供給されるため、検出部102が取得する信号の強度は、被検出ガスの濃度を示す波形データとなる。検出部102は、当該波形データに基づき、被検出ガスの種類および濃度を推定する。当該推定には、学習用の入力用データとしての波形データと、教師データとしての被検出ガスの種類および濃度を示す情報との組を複数含むデータセットによる学習が行われた学習済み推定モデルが用いられてよい。この推定モデルの学習処理は、サーバ装置2によって行われる構成であってもよいし、サーバ装置2とは異なる外部のコンピュータによって行われる構成であってもよい。検出部102は、検出した被検出ガスの種類および濃度を示す情報を第1算出部103および第2算出部105に出力し、第1サンプルガスを用いた検出が完了したことを示す情報を主制御部101に出力する。 The detection unit 102 detects the type and concentration of each gas to be detected contained in the sample gas. The gas to be detected includes a first gas to be detected and a second gas to be detected, which is a gas other than the first gas to be detected and is a gas emitted from a specimen. Specifically, first, the detection unit 102 acquires a signal corresponding to the concentration of each gas to be detected contained in the first sample gas from the gas sensor 143 . Here, since the first sample gas containing a large amount of the gas to be detected and the purge gas containing a small amount of the gas to be detected are alternately supplied to the sensor chamber 144, the intensity of the signal acquired by the detection unit 102 is , to become waveform data indicating the concentration of the gas to be detected. The detection unit 102 estimates the type and concentration of the gas to be detected based on the waveform data. The estimation includes a trained estimation model that has been trained using a data set that includes multiple sets of waveform data as input data for learning and information indicating the type and concentration of the gas to be detected as teacher data. may be used. This estimation model learning process may be configured to be performed by the server device 2 or may be configured to be performed by an external computer different from the server device 2 . The detection unit 102 outputs information indicating the type and concentration of the detected gas to be detected to the first calculation unit 103 and the second calculation unit 105, and mainly outputs information indicating that the detection using the first sample gas has been completed. Output to the control unit 101 .
 また、検出部102は、ガスセンサ143から、第2サンプルガスに含まれる第1被検出ガスの濃度に応じた信号を取得し、1回目と同様の方法で第2サンプルガスに含まれる第1被検出ガスの種類および濃度を検出する。検出部102は、検出した第1被検出ガスの種類および濃度を示す情報を第1算出部103および第2算出部105に出力し、第2サンプルガスを用いた検出が完了したことを示す情報を主制御部101に出力する。さらに、検出部102は、検出した各情報を含む検出データD1を記憶部15に記憶させてもよい。検出データD1には、第1サンプルガスに含まれる第1被検出ガスの濃度および第2被験出ガスの濃度を示す情報、並びに第2サンプルガスに含まれる第1被検出ガスの濃度を示す情報が含まれていてもよい。また、検出部102は、検出データD1と、当該検出データD1に関連する各種情報とを対応付けて記憶部15に記憶させてもよい。具体的には図2に示すように、検出部102は、検出データD1と、サンプルガスが採取された対象者を示す対象者IDとサンプルガスIDと、これらのサンプルガスが採取された日時と、ガス検出装置1を示すガス検出装置IDと、を対応付けて記憶させてよい。ここで、検出データD1は、下記が含まれていてもよい。
・第1サンプルガスに含まれる第1被検出ガスを検知した第1検知データ。
・第1サンプルガスに含まれる第2被検出ガスを検知した第2検知データ。
・第1サンプルガスが採取された後に採取された第2サンプルガスに含まれる第1被検出ガスを検知した第3検知データ。
・第2サンプルガスに含まれる第2被検出ガスを検知した第4検知データ。
Further, the detection unit 102 acquires a signal corresponding to the concentration of the first target gas contained in the second sample gas from the gas sensor 143, and detects the first target gas contained in the second sample gas in the same manner as the first time. Detects the type and concentration of the detected gas. The detection unit 102 outputs information indicating the type and concentration of the first detected gas to be detected to the first calculation unit 103 and the second calculation unit 105, and information indicating that the detection using the second sample gas is completed. is output to the main control unit 101 . Further, the detection unit 102 may cause the storage unit 15 to store detection data D1 including each detected information. The detection data D1 contains information indicating the concentrations of the first detected gas and the second detected gas contained in the first sample gas, and information indicating the concentration of the first detected gas contained in the second sample gas. may be included. Further, the detection unit 102 may cause the storage unit 15 to store the detection data D1 and various types of information related to the detection data D1 in association with each other. Specifically, as shown in FIG. 2, the detection unit 102 collects the detection data D1, the subject ID and sample gas ID indicating the subject from whom the sample gas was collected, and the date and time when these sample gases were collected. , and a gas detection device ID indicating the gas detection device 1 may be stored in association with each other. Here, the detection data D1 may include the following.
- 1st detection data which detected the 1st to-be-detected gas contained in the 1st sample gas.
• Second detection data obtained by detecting the second gas to be detected contained in the first sample gas.
- Third detection data obtained by detecting the first gas to be detected contained in the second sample gas sampled after the first sample gas is sampled.
• Fourth detection data obtained by detecting the second gas to be detected contained in the second sample gas.
 第1算出部103は、まず、検出部102から2回分の各被検出ガスの種類および濃度を示す情報を取得する。次に、第1算出部103は、当該各被検出ガスに含まれる第1被検出ガスの、第1サンプルガスを用いた検出における濃度と、第2サンプルガスを用いた検出における濃度と、の間の変化とを算出する。具体的には、第1算出部103は、第1サンプルガスに含まれる第1被検出ガスの濃度と第2サンプルガスに含まれる第1被検出ガスの濃度との差を算出する。第1算出部103は、第1サンプルガスに含まれる第1被検出ガスの濃度と、第2サンプルガスに含まれる第1被検出ガスの濃度と、の間の変化を示す情報を検体推定部104に出力する。第1算出部103は、第1サンプルガスに含まれる第1被検出ガスの濃度と第2サンプルガスに含まれる第1被検出ガスの濃度との差に代えて、これらの濃度の比を算出してもよい。この場合、以降の処理において、第1サンプルガスに含まれる第1被検出ガスの濃度と第2サンプルガスに含まれる第1被検出ガスの濃度との差に代えて、これらの濃度の比が用いられる。 The first calculation unit 103 first acquires information indicating the type and concentration of each gas to be detected from the detection unit 102 for two times. Next, the first calculator 103 calculates the concentration of the first detected gas contained in each of the detected gases in the detection using the first sample gas and the concentration in the detection using the second sample gas. Calculate the change between Specifically, the first calculator 103 calculates the difference between the concentration of the first gas to be detected contained in the first sample gas and the concentration of the first gas to be detected contained in the second sample gas. The first calculator 103 outputs information indicating a change between the concentration of the first gas to be detected contained in the first sample gas and the concentration of the first gas to be detected contained in the second sample gas to the analyte estimating unit. 104. Instead of the difference between the concentration of the first gas to be detected contained in the first sample gas and the concentration of the first gas to be detected contained in the second sample gas, the first calculator 103 calculates the ratio of these concentrations. You may In this case, in subsequent processes, instead of the difference between the concentration of the first gas to be detected contained in the first sample gas and the concentration of the first gas to be detected contained in the second sample gas, the ratio of these concentrations is used. Used.
 検体推定部104は、第1算出部103から、第1サンプルガスおよび第2サンプルガスを用いて検出された第1被検出ガスの濃度の変化を示す情報を取得する。検体推定部104は、当該第1被検出ガスの濃度の変化に基づき、検体の質量を推定する。一例として、検体推定部104は、第1被検出ガスとしてのHの第1サンプルガスを用いた検出における濃度と第2サンプルガスを用いた検出における濃度との差(検体から放出されたHの減衰の程度)に基づき、当該検体の質量を推定する。当該推定には、以下に示す入力データおよび教師データを用いて予め学習された学習済み推定モデルが利用されてよい。
・入力データ:複数の被検者(対象者が含まれていてもよい)の過去検体からそれぞれ採取されたサンプルガス(過去サンプルガス)の各々に含まれる第1被検出ガスの濃度の時間による減衰量を示すデータ。
・教師データ:過去サンプルガスの各々に対応する、検体の質量を実測した質量データ。ここで「被検者」とは、過去検体から放出された過去サンプルガスの分析を受けた者であって、過去サンプルガスが採取された時点での過去検体の質量が測定された者を意図している。
The analyte estimating unit 104 acquires, from the first calculating unit 103, information indicating changes in concentration of the first gas to be detected detected using the first sample gas and the second sample gas. The specimen estimation unit 104 estimates the mass of the specimen based on the change in the concentration of the first gas to be detected. As an example, the analyte estimating unit 104 determines the difference between the concentration of H 2 as the first detected gas in detection using the first sample gas and the concentration in detection using the second sample gas (H 2 ), the mass of the analyte is estimated. For the estimation, a trained estimation model that has been learned in advance using input data and teacher data described below may be used.
・Input data: Depending on the time of the concentration of the first detected gas contained in each sample gas (past sample gas) collected from past specimens of a plurality of subjects (subjects may be included) Data indicating the amount of attenuation.
・Training data: Mass data obtained by actually measuring the mass of the specimen corresponding to each past sample gas. Here, "subject" means a person who has undergone analysis of the past sample gas released from the past sample gas, and who has measured the mass of the past sample gas at the time when the past sample gas was collected. are doing.
 この推定モデルの学習処理は、ガス検出装置1によって行われる構成であってもよいし、ガス検出装置1とは異なる外部のコンピュータによって行われる構成であってもよい。検体推定部104は、推定した検体の質量を示す情報を第2算出部105に出力する。また、検体推定部104は、推定した検体の質量を示す情報を、図2に示すような濃度情報にさらに対応づけて記憶させてもよい。 This estimation model learning process may be configured to be performed by the gas detection device 1 or may be configured to be performed by an external computer different from the gas detection device 1 . The specimen estimation unit 104 outputs information indicating the estimated mass of the specimen to the second calculation unit 105 . Further, the specimen estimation unit 104 may store the information indicating the estimated mass of the specimen in association with the concentration information as shown in FIG.
 第2算出部105は、検体の質量を示す情報に基づき、第1被検出ガスおよび第2被検出ガスの濃度を算出し、補正後濃度情報D3を生成する。具体的には、第2算出部105は、検出部102から、各被検出ガスの種類および濃度を示す情報を取得する。当該各被検出ガスには、第1被検出ガスと、第1被検出ガス以外のガスであり、検体から放出されるガスである第2被検出ガスとが含まれる。また、第2算出部105は、検体推定部104から検体の質量を示す情報を取得する。第2算出部105は、対象者から排出された検体から放出されてから第1サンプルガスが採取されるまでの間における第1被検出ガスおよび第2被検出ガスの濃度を算出する。第2算出部105は、対象者から排出された検体から放出されてから第1サンプルガスが採取されるまでの間における第1被検出ガスおよび第2被検出ガスの濃度を、第1サンプルガスおよび第2サンプルガスにそれぞれ含まれる第1被検出ガスの濃度の変化に基づいて算出する。第2算出部105は、検体の質量に基づき、第1サンプルガスに含まれる第1被検出ガスおよび第2被検出ガスのそれぞれの濃度を補正してもよい。第2算出部105によって算出された第1被検出ガスおよび第2被検出ガスの濃度を示す情報は、補正後濃度情報D3とも称される。第2算出部105は、算出した補正後濃度情報D3を、濃度情報にさらに対応づけて記憶部15に記憶させてもよい。第2算出部105は、補正後濃度情報、各被検出ガスとして検出されたガスの種類を示す情報、検体の質量を示す情報、および対象者IDを、通信部16を介してサーバ装置2に送信する。 The second calculator 105 calculates the concentrations of the first gas to be detected and the second gas to be detected based on the information indicating the mass of the specimen, and generates corrected concentration information D3. Specifically, the second calculator 105 acquires information indicating the type and concentration of each gas to be detected from the detector 102 . The respective detected gases include a first detected gas and a second detected gas, which is a gas other than the first detected gas and emitted from the specimen. Also, the second calculator 105 acquires information indicating the mass of the specimen from the specimen estimator 104 . The second calculator 105 calculates the concentrations of the first gas to be detected and the second gas to be detected during the period from when the gas is released from the specimen discharged from the subject until when the first sample gas is collected. The second calculation unit 105 calculates the concentrations of the first gas to be detected and the second gas to be detected during the period from when the specimen discharged from the subject is discharged to when the first sample gas is collected. and the change in the concentration of the first gas to be detected contained in the second sample gas. The second calculator 105 may correct the concentration of each of the first gas to be detected and the second gas to be detected contained in the first sample gas based on the mass of the specimen. The information indicating the concentrations of the first gas to be detected and the second gas to be detected calculated by the second calculator 105 is also referred to as post-correction concentration information D3. The second calculation unit 105 may store the calculated post-correction density information D3 in the storage unit 15 in association with the density information. The second calculation unit 105 transmits the post-correction concentration information, the information indicating the type of gas detected as each gas to be detected, the information indicating the mass of the specimen, and the subject ID to the server device 2 via the communication unit 16. Send.
 以上のように、第2算出部105は、第1被検出ガスの濃度の変化に基づき、複数種類の被検出ガスのそれぞれの濃度を補正して、対象者から排出された検体から放出されてから第1サンプルガスが採取されるまでの間における第1被検出ガスの濃度および第2被検出ガスの濃度を算出する。 As described above, the second calculation unit 105 corrects the concentration of each of the plurality of types of detection target gas based on the change in the concentration of the first detection target gas, and determines the amount of the sample discharged from the subject. The concentration of the first gas to be detected and the concentration of the second gas to be detected are calculated during the period from to when the first sample gas is sampled.
 また、第2算出部105は、第1被検出ガスとして、COの濃度を用いて第2サンプルガスに含まれる第2被検出ガスの濃度の補正を行ってもよい。具体的には、第2算出部105は、第1サンプルガスを用いた検出におけるCOの濃度と第2サンプルガスを用いた検出におけるCOの濃度との差に基づき、第1サンプルガスを用いた検出における各被検出ガスの濃度に対する第2サンプルガスを用いた検出における各被検出ガスの濃度の減衰の程度を推定してもよい。第2算出部105は、当該推定による第1被検出ガスの濃度の減衰の程度に基づき、第1サンプルガスを用いた検出における各被検出ガスの濃度を検体が排出された後の各被検出ガスの濃度に対応するように補正してもよい。これにより、各被検出ガスの濃度の減衰前の濃度を算出できる。また、検出部102は、第2サンプルガスに含まれる第2被検出ガスの濃度を検出してもよく、第2算出部105は、第2サンプルガスに含まれる第2被検出ガスの濃度を補正してもよい。第2算出部105は、ある被検出ガスについて、算出した第1サンプルガスに含まれる当該被検出ガスの濃度および第2サンプルガスに含まれる当該被検出ガスの濃度のいずれを補正後濃度情報としてサーバ装置2に送信してもよい。例えば、第2算出部105は、第1サンプルガスを用いた検出におけるHの濃度を、検体から放出されたHの濃度とし、補正後の第2サンプルガスを用いた検出における硫化系ガスの濃度を、検体から放出された硫化系ガスの濃度としてもよい。 The second calculator 105 may correct the concentration of the second gas to be detected contained in the second sample gas using the concentration of CO 2 as the first gas to be detected. Specifically, the second calculator 105 calculates the first sample gas based on the difference between the concentration of CO 2 detected using the first sample gas and the concentration of CO 2 detected using the second sample gas. A degree of attenuation of the concentration of each gas to be detected in the detection using the second sample gas with respect to the concentration of each gas to be detected in the detection used may be estimated. The second calculation unit 105 calculates the concentration of each gas to be detected in the detection using the first sample gas based on the degree of attenuation of the concentration of the first gas to be detected by the estimation. It may be corrected to correspond to the gas concentration. As a result, the concentration before attenuation of the concentration of each gas to be detected can be calculated. The detection unit 102 may detect the concentration of the second gas to be detected contained in the second sample gas, and the second calculation unit 105 may detect the concentration of the second gas to be detected contained in the second sample gas. can be corrected. The second calculation unit 105 uses either the calculated concentration of the detected gas contained in the first sample gas or the calculated concentration of the detected gas contained in the second sample gas as corrected concentration information. It may be transmitted to the server device 2 . For example, the second calculation unit 105 sets the concentration of H 2 in the detection using the first sample gas as the concentration of H 2 emitted from the specimen, and sets the concentration of H 2 released from the specimen to the concentration of H 2 in the detection using the corrected second sample gas. may be the concentration of the sulfide-based gas released from the specimen.
 公知のガスセンサには、Hに対して反応するガスセンサと、Hに対して反応しないガスセンサとが存在する。ガスセンサ143として、Hに対して反応するガスセンサを採用してもよい。この場合、ガスセンサ143が、サンプルガスに含まれるHに大きく反応してしまい、H以外の物質に対する反応が読取られにくくなる、という問題が生じ得る。そこで、第2算出部105は、第1被検出ガスの第1サンプルガスにおける濃度と第2サンプルガスにおける濃度との間の変化に基づき、第1サンプルガスまたは第2サンプルガスに含まれる第1被検出ガスおよび第2被検出ガスの濃度を補正可能であってもよい。当該変化は、具体的には、第1サンプルガスに含まれる第1被検出ガスおよび第2被検出ガスの濃度と、第2サンプルガスに含まれる第1被検出ガスおよび第2被検出ガスの濃度との差であってもよく、比であってもよい。ガス検出装置1では、第1サンプルガスまたは第2サンプルガスのうち、任意のサンプルガスに含まれる各被検出ガスの濃度を補正してもよい。これにより、1回目の検出結果からは、H等、減衰が早く、低濃度で反応する物質の濃度を精度よく特定可能である。また、第2サンプルガス採取時にはHの濃度が減衰しているため、2回目の検出結果からは、他の物質、例えば硫化系ガス等の濃度を精度よく特定可能である。 Known gas sensors include gas sensors that react to H 2 and gas sensors that do not react to H 2 . A gas sensor that reacts to H 2 may be employed as the gas sensor 143 . In this case, the gas sensor 143 may react greatly to H 2 contained in the sample gas, making it difficult to read the reaction to substances other than H 2 . Therefore, the second calculator 105 calculates the first sample gas contained in the first sample gas or the second sample gas based on the change between the concentration of the first detected gas in the first sample gas and the concentration in the second sample gas. It may be possible to correct the concentrations of the gas to be detected and the second gas to be detected. Specifically, the change is the concentration of the first gas to be detected and the second gas to be detected contained in the first sample gas, and the concentration of the first gas to be detected and the second gas to be detected contained in the second sample gas. It may be a difference from the concentration or a ratio. The gas detection device 1 may correct the concentration of each gas to be detected contained in an arbitrary sample gas out of the first sample gas and the second sample gas. As a result, from the result of the first detection, it is possible to accurately identify the concentration of a substance such as H2 that decays quickly and reacts at a low concentration. Moreover, since the concentration of H 2 is attenuated when the second sample gas is sampled, the concentration of other substances such as sulfide-based gas can be accurately specified from the second detection result.
 第2算出部105は、第1教師データを用いて機械学習を行うことにより生成された学習モデルを備えていてもよい。この学習モデルは、前記第1サンプルガスおよび前記第2サンプルガスにおいてそれぞれ検出された前記第1被検出ガスの濃度を入力データとして受付ける。そして、学習モデルは、対象者から排出された検体から放出されてから第1サンプルガスが採取されるまでの間における第1被検出ガスの濃度および第2被検出ガスの濃度を出力する。ここで、第1教師データは、以下に示す(1)~(3a)を含んでいてもよい。 The second calculation unit 105 may have a learning model generated by performing machine learning using the first teacher data. This learning model receives as input data the concentration of the first gas to be detected detected in the first sample gas and the second sample gas. Then, the learning model outputs the concentration of the first gas to be detected and the concentration of the second gas to be detected during the period from the release of the sample discharged from the subject until the collection of the first sample gas. Here, the first teacher data may include (1) to (3a) shown below.
 (1)複数の過去検体から放出されたサンプルガスであって、該過去検体が排出された後に採取された第1サンプルガスに含まれる第1被検出ガスを検知した第1検知データおよび第2被検出ガスを検知した第2検知データ。 (1) first detection data and second detection data obtained by detecting a first detection gas contained in a first sample gas sampled after the past specimens were discharged, which are sample gases emitted from a plurality of past specimens; Second detection data obtained by detecting the gas to be detected.
 (2)第1サンプルガスが採取された後に採取された第2サンプルガスに含まれる第1被検出ガスを検知した第3検知データおよび第2被検出ガスを検知した第4検知データ。 (2) third detection data obtained by detecting the first gas to be detected and fourth detection data obtained by detecting the second gas to be detected contained in the second sample gas sampled after the first sample gas is sampled;
 (3a)第1サンプルガスに含まれる第1被検出ガスの濃度および第2被検出ガスの濃度、および第2サンプルガスに含まれる第1被検出ガスの濃度および第2被検出ガスの濃度。 (3a) The concentration of the first gas to be detected and the concentration of the second gas to be detected contained in the first sample gas, and the concentration of the first gas to be detected and the concentration of the second gas to be detected contained in the second sample gas.
 第1教師データは、第1検知データおよび第3検知データに基づいて算出された第1補正データと、第2検知データおよび第4検知データに基づいて算出された第2補正データと、をさらに含んでいてもよい。 The first teacher data further includes first correction data calculated based on the first detection data and the third detection data, and second correction data calculated based on the second detection data and the fourth detection data. may contain.
 あるいは、第2算出部105は、第2教師データを用いて機械学習を行うことにより生成された学習モデルを備えていてもよい。この学習モデルは、前記第1サンプルガスおよび前記第2サンプルガスにおいてそれぞれ検出された前記第1被検出ガスの濃度を入力データとして受付ける。そして、学習モデルは、対象者から排出された検体から放出されてから第1サンプルガスが採取されるまでの間における第1被検出ガスの濃度および第2被検出ガスの濃度を出力する。ここで、第2教師データは、以下に示す(1)~(3b)を含んでいてもよい。 Alternatively, the second calculation unit 105 may have a learning model generated by performing machine learning using the second teacher data. This learning model receives as input data the concentration of the first gas to be detected detected in the first sample gas and the second sample gas. Then, the learning model outputs the concentration of the first gas to be detected and the concentration of the second gas to be detected during the period from the release of the sample discharged from the subject until the collection of the first sample gas. Here, the second teacher data may include (1) to (3b) shown below.
 (1)複数の過去検体から放出されたサンプルガスであって、該過去検体が排出された後に採取された第1サンプルガスに含まれる第1被検出ガスを検知した第1検知データおよび第2被検出ガスを検知した第2検知データ。 (1) first detection data and second detection data obtained by detecting a first detection gas contained in a first sample gas sampled after the past specimens were discharged, which are sample gases emitted from a plurality of past specimens; Second detection data obtained by detecting the gas to be detected.
 (2)第1サンプルガスが採取された後に採取された第2サンプルガスに含まれる第1被検出ガスを検知した第3検知データおよび第2被検出ガスを検知した第4検知データ。 (2) third detection data obtained by detecting the first gas to be detected and fourth detection data obtained by detecting the second gas to be detected contained in the second sample gas sampled after the first sample gas is sampled;
 (3b)過去検体から放出されてから第1サンプルガスが採取されるまでに採取された第3サンプルガスに含まれる第1被検出ガスの濃度および第2被検出ガスの濃度。 (3b) The concentration of the first gas to be detected and the concentration of the second gas to be detected contained in the third sample gas sampled from the past release from the specimen until the first sample gas was sampled.
 <サーバ装置2>
 図10に示すように、サーバ装置2は、ガス検出装置1および電子機器3と通信するための通信モジュールである通信部21、制御部22、および記憶部23を備える。制御部22は、サーバ装置2の各部の動作を制御する。また、制御部22は、推定部221を備える。
<Server Device 2>
As shown in FIG. 10 , the server device 2 includes a communication module 21 , a control section 22 , and a storage section 23 , which are communication modules for communicating with the gas detection device 1 and the electronic device 3 . The control unit 22 controls the operation of each unit of the server device 2 . The control unit 22 also includes an estimation unit 221 .
 推定部221は、複数種類の被検出ガスの種類および濃度に基づき、検体を排出した対象者の腸内環境、または当該腸内環境から推定可能な情報を推定し、分析結果情報生成する。具体的には、推定部221は、通信部21を介してガス検出装置1から被検出ガスの種類および補正後の濃度、検体の質量等の情報、並びに対象者IDを受信する。推定部221は、当該情報に基づき、複数種類の被検出ガス間の濃度比(組成比)を算出する。以下、推定部221によって推定される対象者の腸内環境、または当該腸内環境から推定可能な情報を、「対象者の健康状態に関する情報」と称する。 The estimation unit 221 estimates the intestinal environment of the subject who excreted the specimen or information that can be estimated from the intestinal environment based on the types and concentrations of the multiple types of detected gases, and generates analysis result information. Specifically, the estimation unit 221 receives information such as the type of the gas to be detected, the concentration after correction, the mass of the specimen, and the subject ID from the gas detection device 1 via the communication unit 21 . Based on the information, the estimator 221 calculates the concentration ratio (composition ratio) between the plural kinds of detected gases. Hereinafter, the subject's intestinal environment estimated by the estimation unit 221 or information that can be estimated from the subject's intestinal environment will be referred to as "subject's health information."
 推定部221は、各被検出ガスの種類、複数種類の被検出ガス間の濃度比および検体の質量に基づき、記憶部23に記憶されている推定モデルを用いた推定を行う。当該推定モデルは、以下に示す入力データ(1)と、入力データ(2)および(3)のうち少なくとも1つと、教師データとを用いて予め学習された学習済み推定モデルであってもよい。
・入力データ(1):複数の被検者(対象者が含まれていてもよい)の各々から排出された後の過去の検体(過去検体)からそれぞれ採取されたサンプルガス(過去サンプルガス)の各々に含まれる各被検出ガスの種類。
・入力データ(2):過去サンプルガスに含まれる各被検出ガス間の濃度比を示す情報。
・入力データ(3):過去サンプルガスの各々に対応する検体の質量を示す情報。
・教師データ:過去サンプルガスの各々に対応する検体から測定された菌の組成、および該菌の代謝物の組成、のうち少なくともいずれか一方を示す情報。
ここで「被検者」とは、過去検体から放出された過去サンプルガスの分析を受けた者であって、過去サンプルガスが採取された時点での健康状態および菌の組成等が分析された者を意図している。また、入力データとして上述の入力データ(3)が用いられる場合、当該推定モデルは、入力データとしてさらに過去サンプルガスに含まれる各被検出ガスの濃度の値を示す情報を用いて学習されてもよい。この場合、推定部221は、上述の推定において、対象者の検体から放出された第1サンプルガスおよび第2サンプルガスに基づいて算出された補正後の各被検出ガスの濃度を示す情報を用いてもよい。
The estimation unit 221 performs estimation using an estimation model stored in the storage unit 23 based on the type of each gas to be detected, the concentration ratio between a plurality of types of gas to be detected, and the mass of the specimen. The estimation model may be a trained estimation model that has been pre-learned using input data (1), at least one of input data (2) and (3), and teacher data described below.
・Input data (1): sample gas (past sample gas) collected from past specimens (past specimens) discharged from each of a plurality of subjects (subjects may be included) The type of each detected gas contained in each of
- Input data (2): Information indicating the concentration ratio between each detected gas contained in the past sample gas.
Input data (3): information indicating the mass of the specimen corresponding to each of the past sample gases.
- Teacher data: information indicating at least one of the composition of bacteria measured from the specimen corresponding to each past sample gas and the composition of metabolites of the bacteria.
Here, the "subject" is a person who has undergone analysis of the past sample gas released from the specimen in the past, and the health condition and the composition of bacteria etc. at the time when the past sample gas was collected were analyzed. intended for those who Further, when the above-described input data (3) is used as input data, the estimation model may be learned using information indicating the concentration value of each gas to be detected contained in the past sample gas as input data. good. In this case, the estimating unit 221 uses information indicating the concentration of each detected gas after correction calculated based on the first sample gas and the second sample gas emitted from the specimen of the subject in the above estimation. may
 また、上述の教師データは、菌の組成を示す情報に限られず、被検者の体調を示す指標、および被検者の腸内環境の状態を示す指標等、複数の被検者の各々によって過去検体が排出された時点での被検者の各々の健康状態に関する情報であってもよい。当該健康状態に関する情報は、複数の被検者の各々によって過去検体が排出された時点での被検者の各々の体調を示す情報であってもよい。被検者の体調を示す指標とは、例えば当該被検者の体温、血圧、心拍数等、当該被検者から測定可能な情報に基づいて設定される指標であってもよい。 In addition, the above-mentioned teacher data is not limited to information indicating the composition of bacteria, and may be an index indicating the physical condition of the subject, an index indicating the state of the intestinal environment of the subject, etc., by each of a plurality of subjects. It may be information about the health condition of each subject at the time when the past sample was discharged. The information about the health condition may be information indicating the physical condition of each subject at the time when the specimen was discharged in the past by each of the plurality of subjects. The index indicating the physical condition of the subject may be an index set based on information measurable from the subject, such as body temperature, blood pressure, and heart rate of the subject.
 ここで、対象者の健康状態は、該対象者の腸内細菌叢における菌の組成、および該対象者の腸内細菌叢における菌の代謝物の組成、のうち少なくともいずれか一方であってもよい。すなわち、推定によって出力される「対象者の健康状態に関する情報」は、例えば対象者の腸内環境の状態を示す情報、具体的には、腸内環境が良い状態であるか悪い状態であるかを示す指標であってもよい。また、検体における菌の組成は、当該検体を排出した対象者の腸内細菌叢における菌の組成を反映している。そのため、推定部221は、対象者の検体に含まれる菌の組成から推定される腸内細菌叢における菌の組成、例えば善玉菌および悪玉菌のバランスを示す指標を推定してもよい。また、推定部221は、上述の情報に基づき、対象者の腸内環境から推定可能な対象者の体調、健康状態、免疫力、および太りやすさ等を示す指標を推定してもよい。さらに、推定部221は、対象者の腸内環境を改善するために、食事および運動等を促すドバイスを示す情報を出力してもよい。また、推定される情報には、評価、有用情報、および備考が含まれていてもよい。推定部221は、推定した各情報を含む分析結果情報を、通信部21を介して電子機器3に送信する。また、推定部221は、分析結果情報を含む健康情報を、対象者ID、サンプルガスID、および補正後濃度情報D3と対応付けて記憶部23に記憶させてもよい。 Here, the health condition of the subject is at least one of the composition of bacteria in the intestinal flora of the subject and the composition of metabolites of bacteria in the intestinal flora of the subject. good. That is, the "information about the subject's health condition" output by estimation is, for example, information indicating the state of the subject's intestinal environment, specifically whether the intestinal environment is in a good state or a bad state. It may be an index indicating In addition, the composition of bacteria in the specimen reflects the composition of bacteria in the intestinal flora of the subject who excreted the specimen. Therefore, the estimation unit 221 may estimate the composition of bacteria in the intestinal flora estimated from the composition of bacteria contained in the specimen of the subject, for example, an index indicating the balance between good bacteria and bad bacteria. In addition, the estimation unit 221 may estimate an index indicating the subject's physical condition, health condition, immunity, susceptibility to gaining weight, etc., which can be estimated from the subject's intestinal environment, based on the above-described information. Furthermore, the estimating unit 221 may output information indicating advice that encourages eating and exercising in order to improve the intestinal environment of the subject. In addition, the estimated information may include evaluation, useful information, and remarks. The estimation unit 221 transmits analysis result information including each estimated information to the electronic device 3 via the communication unit 21 . The estimation unit 221 may store the health information including the analysis result information in the storage unit 23 in association with the subject ID, the sample gas ID, and the post-correction concentration information D3.
 記憶部23は、例えば、半導体メモリまたは磁気メモリ等で構成される。記憶部23は、各種情報、および、サーバ装置2を動作させるためのプログラム等を記憶する。記憶部23は、ワークメモリとして機能してよい。記憶部23は、推定部221において行われる推定において用いられる学習済み推定モデルを記憶している。 The storage unit 23 is composed of, for example, a semiconductor memory or a magnetic memory. The storage unit 23 stores various information, programs for operating the server device 2, and the like. The storage unit 23 may function as a work memory. The storage unit 23 stores a learned estimation model used in estimation performed by the estimation unit 221 .
 <電子機器3>
 図10に示すように、電子機器3は、サーバ装置2と通信を行うための通信モジュールである通信部311、電子機器3の各部の動作を制御する制御部312、および表示部313を備える。制御部312は、サーバ装置2から推定結果を、無線通信または有線通信によって、通信部311を介して受信し得る。電子機器3は、受信した推定結果を、表示部313に表示し得る。表示部313は、文字等を表示可能なディスプレイと、ユーザ(対象者)の指等の接触を検出可能なタッチスクリーンとを含んで構成されてよい。当該ディスプレイは、液晶ディスプレイ(LCD:Liquid Crystal Display)、有機ELディスプレイ(OELD:Organic Electro‐Luminescence Display)または無機ELディスプレイ(IELD:Inorganic Electro‐Luminescence Display)等の表示デバイスを含んで構成されてよい。当該タッチスクリーンの検出方式は、静電容量方式、抵抗膜方式、表面弾性波方式(または超音波方式)、赤外線方式、電磁誘導方式または荷重検出方式等の任意の方式でよい。
<Electronic device 3>
As shown in FIG. 10 , the electronic device 3 includes a communication section 311 which is a communication module for communicating with the server device 2 , a control section 312 which controls the operation of each section of the electronic device 3 , and a display section 313 . The control unit 312 can receive the estimation result from the server device 2 via the communication unit 311 by wireless communication or wired communication. The electronic device 3 can display the received estimation result on the display unit 313 . The display unit 313 may include a display capable of displaying characters and the like, and a touch screen capable of detecting contact with a user's (subject's) finger or the like. The display may include a display device such as a liquid crystal display (LCD), an organic electroluminescence display (OELD) or an inorganic electroluminescence display (IELD). . The detection method of the touch screen may be an arbitrary method such as a capacitance method, a resistive film method, a surface acoustic wave method (or an ultrasonic method), an infrared method, an electromagnetic induction method, or a load detection method.
 <ガス検出システム100の処理の流れの一例>
 次に、ガス検出システム100において行われる処理(ガス検出方法)の流れについて、図12を用いて説明する。図12は、ガス検出システム100において行われる処理の流れの一例を示すフローチャートである。以下の説明において、ガス検出装置1は、対象者検知部11および排便検知部12としてそれぞれ圧力センサを含む構成とする。
<Example of flow of processing of gas detection system 100>
Next, the flow of processing (gas detection method) performed in the gas detection system 100 will be described with reference to FIG. 12 . FIG. 12 is a flow chart showing an example of the flow of processing performed in the gas detection system 100. As shown in FIG. In the following description, the gas detection device 1 is configured to include pressure sensors as the subject detection unit 11 and the defecation detection unit 12, respectively.
 まず、対象者が便器4に検体(すなわち、便)を排出するために便座4Bに座ると、対象者検知部11は、対象者の便座4Bへの着座を検出したことを示す信号を主制御部101に出力する。主制御部101は、当該信号を取得すると、対象者が便座4Bに座ったことを検知し(S1)、排便検知部12の動作を開始させ、対象者の排便を検知するまで待機する(S2)。排便検知部12は、対象者による検体の排出(すなわち、排便)を検出したことを示す信号を主制御部101に出力する。主制御部101は、当該信号を取得すると(S2でYES)、第1弁131を制御し、流路31と流路32とが連通した状態とする。また、主制御部101は、第1ポンプ132を動作させ、流路31の便器ボウル4A側の開口部から第1サンプルガスを採取させ(S3:第1採取ステップ)、第1サンプルガスをセンサチャンバ144に供給させる(S4)。また、主制御部101は、第1ポンプ132を所定時間動作させ、所定量の第1サンプルガスをセンサチャンバ144に供給させた後第1ポンプ132を停止させる。また、主制御部101は第1弁131を制御し、流路31と流路32とが連通しない状態とする。その後、主制御部101は、第2弁141および第2ポンプ142を制御し、流路34からトイレ室内のパージガスを吸引させ、センサチャンバ144に供給させる。主制御部101は、第1ポンプ132による第1サンプルガスのセンサチャンバ144への供給と、第2ポンプ142によるパージガスのセンサチャンバ144への供給を交互に、合計10秒程度行う。 First, when the subject sits on the toilet seat 4B to discharge a specimen (ie, stool) into the toilet bowl 4, the subject detection unit 11 mainly controls a signal indicating that the subject has been seated on the toilet seat 4B. Output to the unit 101 . When acquiring the signal, the main control unit 101 detects that the subject has sat on the toilet seat 4B (S1), starts the operation of the defecation detection unit 12, and waits until defecation of the subject is detected (S2). ). The defecation detection unit 12 outputs to the main control unit 101 a signal indicating that the subject's excretion of the sample (that is, defecation) has been detected. When the main control unit 101 acquires the signal (YES in S2), the main control unit 101 controls the first valve 131 so that the flow path 31 and the flow path 32 are in communication. Further, the main control unit 101 operates the first pump 132 to collect the first sample gas from the opening of the flow path 31 on the toilet bowl 4A side (S3: first collection step), and the first sample gas is detected by the sensor. It is supplied to the chamber 144 (S4). Further, the main control unit 101 operates the first pump 132 for a predetermined period of time to supply a predetermined amount of the first sample gas to the sensor chamber 144, and then stops the first pump 132. Further, the main control unit 101 controls the first valve 131 so that the channel 31 and the channel 32 are not communicated with each other. After that, the main control unit 101 controls the second valve 141 and the second pump 142 to suck the purge gas in the toilet room from the flow path 34 and supply it to the sensor chamber 144 . The main controller 101 alternately supplies the first sample gas to the sensor chamber 144 by the first pump 132 and the purge gas to the sensor chamber 144 by the second pump 142 for about 10 seconds in total.
 センサチャンバ144に第1サンプルガスまたはパージガスが供給されると、これらのガスに含まれる各被検出ガスの種類および濃度に応じた強度の信号がガスセンサ143から出力される。検出部102は、当該信号を取得すると、第1サンプルガスに含まれる各被検出ガスの種類および濃度の検出を行う(S5:第1検出ステップ)。当該検出が完了すると、検出部102は、検出した第1サンプルガスに含まれる各被検出ガスの種類および濃度を示す情報を第1算出部103および第2算出部105に出力する。また、検出部102は、第1検出ステップが完了したことを示す情報を主制御部101に出力する。 When the first sample gas or purge gas is supplied to the sensor chamber 144, the gas sensor 143 outputs a signal with an intensity corresponding to the type and concentration of each gas to be detected contained in these gases. Upon acquiring the signal, the detection unit 102 detects the type and concentration of each gas to be detected contained in the first sample gas (S5: first detection step). When the detection is completed, the detection unit 102 outputs information indicating the type and concentration of each gas to be detected contained in the detected first sample gas to the first calculation unit 103 and the second calculation unit 105 . Further, the detection unit 102 outputs information indicating that the first detection step has been completed to the main control unit 101 .
 主制御部101は、第1検出ステップが完了したことを示す情報を取得すると、第1弁131、第1ポンプ132、第2弁141、および第2ポンプ142を制御し、流路32およびセンサチャンバ144のクリーニングを行う。 When the main control unit 101 acquires information indicating that the first detection step is completed, the main control unit 101 controls the first valve 131, the first pump 132, the second valve 141, and the second pump 142, and controls the flow path 32 and the sensor. Cleaning of the chamber 144 is performed.
 また、主制御部101は、第1検出ステップが完了したことを示す情報を取得すると、第1サンプルガスの採取から所定時間、例えば30秒程度の時間が経過したか否かを判定する(S6)。第1サンプルガスの採取から所定時間が経過していた場合、主制御部101は、第1採取ステップ(S3)と同様の方法で第2サンプルガスの採取を開始させる(S7:第2採取ステップ)。第2サンプルガスおよびパージガスは、交互にセンサチャンバ144に供給され(S8)、検出部102では、第1検出ステップ(S5)と同様の方法で第2サンプルガスに含まれる第1被検出ガスの種類および濃度の検出が行われる(S9:第2検出ステップ)。検出部102は、第2検出ステップにおいて検出された第2サンプルガスに含まれる第1被検出ガスの種類および濃度を示す情報を第1算出部103および第2算出部105に出力する。 Further, when the main control unit 101 acquires information indicating that the first detection step has been completed, the main control unit 101 determines whether or not a predetermined time period, for example, about 30 seconds, has elapsed since the sampling of the first sample gas (S6 ). If the predetermined time has passed since the sampling of the first sample gas, the main control unit 101 starts sampling of the second sample gas in the same manner as in the first sampling step (S3) (S7: second sampling step ). The second sample gas and the purge gas are alternately supplied to the sensor chamber 144 (S8), and the detector 102 detects the first gas to be detected contained in the second sample gas in the same manner as in the first detection step (S5). The type and concentration are detected (S9: second detection step). The detection unit 102 outputs information indicating the type and concentration of the first gas to be detected contained in the second sample gas detected in the second detection step to the first calculation unit 103 and the second calculation unit 105 .
 また、検出部102は、第2検出ステップが完了したことを示す情報を主制御部101に出力する。主制御部101は、当該情報を取得すると、第1弁131、第1ポンプ132、第2弁141、および第2ポンプ142を制御し、流路32およびセンサチャンバ144のクリーニングを行う。 Also, the detection unit 102 outputs information indicating that the second detection step has been completed to the main control unit 101 . After obtaining the information, the main control unit 101 controls the first valve 131 , the first pump 132 , the second valve 141 and the second pump 142 to clean the flow path 32 and the sensor chamber 144 .
 第1算出部103は、第1検出ステップおよび第2検出ステップのそれぞれで検出された被検出ガスのうち、第1被検出ガス、例えばHの濃度の変化を算出する(S10)。第1算出部103は、算出した第1被検出ガスの濃度の変化を示す情報を検体推定部104に出力する。検体推定部104は、第1被検出ガスの濃度の変化を示す情報を取得すると、当該情報に基づき、記憶部15に記憶されている推定モデルを用いて検体の質量を推定する(S11:推定ステップ)。検体推定部104は、推定した検体の質量を示す情報を第2算出部105に出力する。ただし、後述するように、ガス検出装置1は検体推定部104を備えない場合、推定ステップ(S11)は実行されなくてもよい。この場合、ガス検出システム100では、検体の質量を示す情報として代用され得る他の情報、例えば第1サンプルガスおよび第2サンプルガスに含まれる第1被検出ガスの濃度の差を示す情報が用いられてもよい。 The first calculator 103 calculates changes in the concentration of the first gas to be detected, for example, H2 among the gas to be detected in each of the first detection step and the second detection step (S10). The first calculator 103 outputs information indicating the calculated change in concentration of the first gas to be detected to the analyte estimator 104 . When the specimen estimating unit 104 acquires the information indicating the change in the concentration of the first gas to be detected, the specimen estimating unit 104 estimates the mass of the specimen using the estimation model stored in the storage unit 15 based on the information (S11: Estimation step). The specimen estimation unit 104 outputs information indicating the estimated mass of the specimen to the second calculation unit 105 . However, as will be described later, the estimation step (S11) does not have to be executed when the gas detection device 1 does not include the analyte estimation unit 104. FIG. In this case, the gas detection system 100 uses other information that can be substituted for the information indicating the mass of the specimen, such as information indicating the difference in concentration of the first gas to be detected contained in the first sample gas and the second sample gas. may be
 第2算出部105は、検出部102から第1検出ステップおよび第2検出ステップのそれぞれで検出された各被検出ガスそれぞれの種類および濃度を示す情報を取得し、検体推定部104から検体の質量を示す情報を取得する。第2算出部105は、検体の質量に基づき、対象者から排出された検体から放出されてから第1サンプルガスが採取されるまでの間における第1被検出ガスおよび第2被検出ガスのそれぞれの濃度を算出する(S12:算出ステップ)。第2算出部105は、算出した各被検出ガスの種類および濃度を示す情報、並びに検体の質量を示す情報を、通信部16を介してサーバ装置2に送信する。 The second calculation unit 105 acquires from the detection unit 102 information indicating the type and concentration of each gas to be detected detected in each of the first detection step and the second detection step. Get information indicating Based on the mass of the specimen, the second calculation unit 105 calculates each of the first gas to be detected and the second gas to be detected during the period from when the specimen discharged from the subject is released to when the first sample gas is collected. is calculated (S12: calculation step). The second calculation unit 105 transmits information indicating the calculated type and concentration of each gas to be detected and information indicating the mass of the sample to the server device 2 via the communication unit 16 .
 サーバ装置2の推定部221は、通信部21を介して算出された各被検出ガスの種類および濃度を示す情報をガス検出装置1から受信する。推定部221は、検体の質量を示す情報もガス検出装置1から受信する構成であってもよい。以下、サーバ装置2が、各被検出ガスの種類および濃度を示す情報に加え、検体の質量も受信する構成を備えるサーバ装置2を例に挙げて説明するがこれに限定されない。例えば、推定部221は、各被検出ガスの種類および濃度を示す情報のみから、対象者の健康状態、具体的には腸内環境等に関する推定を行うことも可能である。推定部221は、受信した各被検出ガスの種類および濃度を示す情報、並びに検体の質量を示す情報を用いて、対象者の健康状態、具体的には腸内環境等に関する推定を行う(S13)。推定部221は、推定した対象者の健康状態を示す情報を、通信部21を介して電子機器3に送信する。 The estimation unit 221 of the server device 2 receives information indicating the type and concentration of each detected gas calculated via the communication unit 21 from the gas detection device 1 . The estimation unit 221 may also be configured to receive information indicating the mass of the specimen from the gas detection device 1 . In the following, the server device 2 having a configuration for receiving the mass of the sample in addition to the information indicating the type and concentration of each gas to be detected will be described as an example, but the present invention is not limited to this. For example, the estimating section 221 can also estimate the subject's health condition, specifically the intestinal environment, etc., based only on the information indicating the type and concentration of each gas to be detected. The estimating unit 221 estimates the subject's health condition, specifically the intestinal environment, etc., using the received information indicating the type and concentration of each gas to be detected and the information indicating the mass of the sample (S13). ). The estimation unit 221 transmits information indicating the estimated health condition of the subject to the electronic device 3 via the communication unit 21 .
 電子機器3の制御部312は、通信部311を介してサーバ装置2から、検体から放出されたサンプルガスに含まれる各被検出ガスの濃度に基づいて推定された対象者の健康状態を示す情報を受信する。制御部312は、受信した対象者の健康状態を示す情報を、例えば表示部313に表示することで対象者に通知する。 The control unit 312 of the electronic device 3 receives from the server device 2 via the communication unit 311 information indicating the health condition of the subject estimated based on the concentration of each gas to be detected contained in the sample gas emitted from the specimen. receive. The control unit 312 notifies the subject of the received information indicating the health condition of the subject by displaying it on the display unit 313, for example.
 <ガス検出システム100の効果>
 以上のように、本実施形態に係るガス検出方法は、対象者から排出された検体から放出された第1サンプルガスを採取する第1採取ステップ(S3)と、第1サンプルガスに含まれる第1被検出ガスおよび第2被検出ガスの濃度をそれぞれ検出する第1検出ステップ(S5)と、検体から放出された第2サンプルガスを、第1採取ステップの後に採取する第2採取ステップ(S7)と、第2サンプルガスに含まれる第1被検出ガスの濃度を検出する第2検出ステップ(S9)と、第1検出ステップおよび第2検出ステップにおいて検出された、第1被検出ガスの濃度から算出される第1被検出ガスの濃度の変化に基づき、対象者から排出された検体から放出されてから第1サンプルガスが採取されるまでの間における第1被検出ガスおよび第2被検出ガスの濃度を算出する算出ステップ(S12)と、を含む。
<Effect of gas detection system 100>
As described above, the gas detection method according to the present embodiment includes the first collection step (S3) of collecting the first sample gas released from the specimen discharged from the subject, and the first sample gas contained in the first sample gas. A first detection step (S5) of respectively detecting the concentrations of the first detection gas and the second detection gas, and a second collection step (S7) of collecting the second sample gas emitted from the specimen after the first collection step (S7). ), a second detection step (S9) of detecting the concentration of the first target gas contained in the second sample gas, and the concentration of the first target gas detected in the first detection step and the second detection step Based on the change in concentration of the first detectable gas calculated from the first detectable gas and the second detectable gas during the period from the release from the specimen discharged from the subject until the first sample gas is collected and a calculation step (S12) of calculating the concentration of the gas.
 また、上述のガス検出方法を実行するためのガス検出装置1は、対象者から排出された検体から放出されたサンプルガスを採取し、当該サンプルガスに含まれる第1被検出ガスおよび第2被検出ガスの濃度をそれぞれ検出するガス検出装置であって、1回目に採取された第1サンプルガスに含まれる前記第1被検出ガスおよび前記第2被検出ガスの濃度と、前記1回目の採取の後に同検体から放出された第2サンプルガスに含まれる前記第1被検出ガスの濃度をそれぞれ検出する検出部102と、第1サンプルガスから検出された第1被検出ガスの濃度と、第2サンプルガスから検出された前記第1被検出ガスの濃度とに基づいて算出される第1被検出ガスの濃度の変化に基づき、対象者から排出された検体から放出されてから第1サンプルガスが採取されるまでの間における第1被検出ガスおよび第2被検出ガスの濃度を算出する第2算出部105と、を備える。 Further, the gas detection apparatus 1 for executing the gas detection method described above collects a sample gas emitted from a specimen discharged from a subject, and detects a first gas to be detected and a second gas to be detected contained in the sample gas. A gas detection device for detecting the concentration of each detected gas, wherein the concentrations of the first gas to be detected and the second gas to be detected contained in the first sample gas sampled for the first time, and the concentration of the first sample gas A detection unit 102 that detects the concentration of the first detection gas contained in the second sample gas released from the same specimen after that, the concentration of the first detection gas detected from the first sample gas, and the first 2, based on the concentration of the first detected gas detected from the sample gas and the change in the concentration of the first detected gas calculated based on the first sample gas after being released from the specimen discharged from the subject. and a second calculator 105 that calculates the concentrations of the first gas to be detected and the concentration of the second gas to be detected until is sampled.
 図13は、所定時間(例えば20分間)経過したときの、検体から放出されるHの濃度の減衰量と、検体の質量(便量)とをプロットしたグラフである。図14は、所定時間(例えば20分間)経過したときの、検体から放出されるCOの濃度の減衰量と、検体の質量(便量)とをプロットしたグラフである。図13および図14に示すように、検体から放出される各被検出ガス(H、CO、CH、硫化系ガス等)は、対象者によって検体が排出された時点から時間が経過するとともに減衰する場合がある。そのため、第1サンプルガスにおいて検出される各被検出ガスの濃度および各被検出ガス間の濃度比は、第2サンプルガスにおいて検出される各被検出ガスとの間で異なる。 FIG. 13 is a graph plotting the attenuation amount of the concentration of H 2 released from the specimen and the mass of the specimen (stool volume) after a predetermined time (for example, 20 minutes) has elapsed. FIG. 14 is a graph plotting the attenuation amount of the concentration of CO 2 released from the specimen and the mass of the specimen (stool volume) after a predetermined time (for example, 20 minutes) has elapsed. As shown in FIGS. 13 and 14, each gas to be detected (H 2 , CO 2 , CH 4 , sulfide-based gas, etc.) released from the specimen passes the time from the time when the specimen is discharged by the subject. may attenuate with Therefore, the concentration of each gas to be detected detected in the first sample gas and the concentration ratio between each gas to be detected differ from those of each gas to be detected in the second sample gas.
 さらに、各被検出ガスの中でも、その種類によって、時間に応じた減衰率・減衰量は異なる。例えば、検体から放出されるHは、硫化系ガス(例えば硫化水素等)よりも減衰し易い。ここで、本実施形態に係るガス検出方法によると、これらのサンプルガスに含まれる複数種類の被検出ガスの濃度のそれぞれが検出されるため、時間に応じた第1被検出ガスの変化(減衰量・減衰率)を特定できる。また、当該変化に基づき、対象者から排出された検体から放出されてから第1サンプルガスが採取されるまでの間における第1被検出ガスおよび第2被検出ガスの濃度を算出ことができる。したがって、上述の構成によると、対象者から排出された後(例えば、排出直後)の検体から放出された第1被検出ガスおよび第2被検出ガスの濃度を精度良く算出できる。 Furthermore, the attenuation rate and the amount of attenuation vary with time depending on the type of gas to be detected. For example, H 2 released from the specimen is more easily attenuated than sulfide-based gas (such as hydrogen sulfide). Here, according to the gas detection method according to the present embodiment, the concentration of each of the plurality of types of detection target gases contained in these sample gases is detected, so the change (attenuation) of the first detection target gas according to time amount/attenuation rate) can be specified. Further, based on the change, the concentrations of the first gas to be detected and the second gas to be detected can be calculated from the release from the specimen discharged from the subject until the collection of the first sample gas. Therefore, according to the above configuration, the concentrations of the first detected gas and the second detected gas emitted from the specimen after being discharged from the subject (for example, immediately after discharge) can be calculated with high accuracy.
 また、上述のガス検出方法では、算出ステップにおいて、第1サンプルガスに含まれる第1被検出ガスの濃度と、第2サンプルガスに含まれる第1被検出ガスの濃度と、の差または比に基づき、第1サンプルガスに含まれる第1被検出ガスおよび第2被検出ガスのそれぞれの濃度を補正して、対象者から排出された検体から放出されてから第1サンプルガスが採取されるまでの間における第1被検出ガスおよび第2被検出ガスの濃度を算出してもよい。 Further, in the gas detection method described above, in the calculating step, the difference or ratio between the concentration of the first gas to be detected contained in the first sample gas and the concentration of the first gas to be detected contained in the second sample gas is Based on this, the concentration of each of the first gas to be detected and the second gas to be detected contained in the first sample gas is corrected, and from the release from the specimen discharged from the subject until the first sample gas is collected You may calculate the density|concentration of the 1st to-be-detected gas and the 2nd to-be-detected gas between.
 第2サンプルガスに含まれる第1被検出ガスの濃度は、第1サンプルガスに含まれる第1被検出ガスの濃度よりも低下する。従って、第1被検出ガスの時間的な濃度変化に基づき補正を行うことで、サンプルガスに含まれる第1被検出ガスおよび第2被検出ガスの濃度をより正確に特定可能となる。 The concentration of the first detected gas contained in the second sample gas is lower than the concentration of the first detected gas contained in the first sample gas. Therefore, by performing correction based on the temporal concentration change of the first gas to be detected, it is possible to more accurately identify the concentrations of the first gas to be detected and the second gas to be detected contained in the sample gas.
 また、上述のガス検出方法は、第1被検出ガスの濃度に基づき、検体の質量を推定する推定ステップを含んでいてもよい。さらに、当該方法において、補正ステップでは、推定ステップで推定された検体の質量を示す情報に基づき、第1被検出ガスおよび第2被検出ガスのそれぞれの濃度の補正を行ってもよい。また、ガス検出装置1は、第1サンプルガスにおける第1被検出ガスの濃度から、第2サンプルガスにおける第1被検出ガスの濃度への変化に基づき、検体の質量を示す情報を推定する検体推定部104を備えていてもよい。第2算出部105は、検体の質量を示す情報を用いて、第1サンプルガスにおける第1被検出ガス、第1サンプルガスにおける第2被検出ガスのそれぞれの濃度を補正してもよい。第2算出部105は、この補正を行うことにより、対象者から排出された検体から放出されてから第1サンプルガスが採取されるまでの間における第1被検出ガスおよび第2被検出ガスの濃度を算出してもよい。 Further, the gas detection method described above may include an estimation step of estimating the mass of the specimen based on the concentration of the first gas to be detected. Further, in the method, the correcting step may correct the concentration of each of the first gas to be detected and the second gas to be detected based on the information indicating the mass of the specimen estimated in the estimating step. Further, the gas detection device 1 estimates information indicating the mass of the specimen based on the change in the concentration of the first detection gas in the first sample gas from the concentration of the first detection gas in the second sample gas. An estimation unit 104 may be provided. The second calculator 105 may correct the concentrations of the first gas to be detected in the first sample gas and the concentration of the second gas to be detected in the first sample gas using the information indicating the mass of the specimen. By performing this correction, the second calculation unit 105 calculates the difference between the first gas to be detected and the second gas to be detected during the period from the release of the specimen discharged from the subject until the collection of the first sample gas. Concentration may be calculated.
 例えば、第1サンプルガスにおける第1被検出ガスの濃度よりも、第2サンプルガスにおける第1被検出ガスの濃度が低下している場合、第1被検出ガスの濃度の変化は、第1被検出ガスの濃度の減衰量として算出される。第1被検出ガスの濃度の、所定時間内における減衰量(または、減衰速度)は、第1被検出ガスの種類によって異なり、かつ、検体の質量に依存する。そこで、第1被検出ガスの種類と第1被検出ガスの濃度の減衰量との関係性(図13、14参照)が判っていれば、この関係性を機械学習させた推定モデルを生成できる。そして、学習済みの推定モデルに、対象者の検体から放出された第1サンプルガスにおける第1被検出ガスの濃度と、第2サンプルガスにおける第1被検出ガスの濃度と、から算出される第1被検出ガスの減衰量を入力すれば、検体の質量を示す情報を推定可能である。 For example, when the concentration of the first detectable gas in the second sample gas is lower than the concentration of the first detectable gas in the first sample gas, the change in the concentration of the first detectable gas It is calculated as the amount of attenuation of the detected gas concentration. The amount of attenuation (or rate of attenuation) of the concentration of the first gas to be detected within a predetermined period of time differs depending on the type of the first gas to be detected and also depends on the mass of the specimen. Therefore, if the relationship between the type of the first gas to be detected and the amount of attenuation of the concentration of the first gas to be detected (see FIGS. 13 and 14) is known, it is possible to generate an estimation model through machine learning of this relationship. . Then, in the trained estimation model, the concentration of the first detected gas in the first sample gas emitted from the subject's specimen and the concentration of the first detected gas in the second sample gas are calculated. By inputting the attenuation amount of one gas to be detected, it is possible to estimate the information indicating the mass of the specimen.
 第1サンプルガスにおける第1被検出ガスの濃度、および第2サンプルガスにおける第1被検出ガスの濃度は実測された値であるのに対し、検体の質量を示す情報は推定モデルが出力したものである。換言すれば、検体の質量を示す情報は、第1サンプルガスにおける第1被検出ガスの濃度、および第2サンプルガスにおける第1被検出ガスの濃度から特定の関係式を用いて導出されたものではない。それゆえ、検体の質量を示す情報は、独立した説明変数として扱われ得る。したがって、第1被検出ガスの減衰量に加えて、検体の質量を示す情報を用いて各被検出ガスの濃度を補正すれば、回帰計算における説明変数を増やした場合と同様の効果が期待できる。これにより、各被検出ガスの測定精度をさらに向上させることができる。 While the concentration of the first detectable gas in the first sample gas and the concentration of the first detectable gas in the second sample gas are actually measured values, the information indicating the mass of the specimen is output by the estimation model. is. In other words, the information indicating the mass of the specimen is derived using a specific relational expression from the concentration of the first detectable gas in the first sample gas and the concentration of the first detectable gas in the second sample gas. isn't it. Therefore, the information indicative of the mass of the analyte can be treated as an independent explanatory variable. Therefore, if the concentration of each gas to be detected is corrected using information indicating the mass of the specimen in addition to the attenuation amount of the first gas to be detected, the same effect as increasing the number of explanatory variables in the regression calculation can be expected. . Thereby, the measurement accuracy of each gas to be detected can be further improved.
 また、上述のガス検出方法において、第2採取ステップでは、前記第1採取ステップが終了してから30秒以上1分以下の時間が経過後に前記第2サンプルガスを採取してもよい。また、当該所定時間は、30秒~1分程度の範囲から設定されたいずれかの時間であってもよい。当該構成によると、第1採取ステップと第2採取ステップとの間は毎回ほぼ同じ時間間隔で行われる。毎回同じ時間間隔で各被検出ガスの検出が行われることにより、検体の質量を比較的容易に推定可能となり、測定の精度を向上させることができる。 Further, in the gas detection method described above, in the second sampling step, the second sample gas may be sampled after a period of time of 30 seconds or more and 1 minute or less has elapsed after the end of the first sampling step. Also, the predetermined time may be any time set in the range of about 30 seconds to 1 minute. According to this configuration, the first sampling step and the second sampling step are performed at approximately the same time intervals each time. By detecting each gas to be detected at the same time intervals each time, the mass of the specimen can be estimated relatively easily, and the accuracy of measurement can be improved.
 また、上述のガス検出方法において、検体は、対象者が排泄した便であってもよい。さらに、第1被検出ガスは、水素および二酸化炭素の少なくともいずれかを含み、第2被検出ガスは、メタン、硫化水素、およびメチルメルカプタンの少なくともいずれかを含んでいてもよい。当該構成によると、対象者が排出した便を検体とし、当該便から放出されたガスに含まれる成分を各被検出ガスとして、検出を行うことができる。 In addition, in the gas detection method described above, the sample may be stool excreted by the subject. Furthermore, the first gas to be detected may include at least one of hydrogen and carbon dioxide, and the second gas to be detected may include at least one of methane, hydrogen sulfide, and methyl mercaptan. According to this configuration, detection can be performed by using the stool excreted by the subject as a sample, and the component contained in the gas released from the stool as each gas to be detected.
 また、本実施形態に係るガス検出システム100は、上述のガス検出方法を実行するガス検出装置1に加え、ガス検出装置1によって算出された、前記対象者から排出された後の前記検体から放出された前記第1被検出ガスおよび前記第2被検出ガスの濃度に基づき、検体を排出した対象者の健康状態に関する情報の推定を行う推定部221を備えるサーバ装置(推定装置)2と、を備えていてもよい。また、サーバ装置2は、複数の被検者の各々から排出された後の過去検体から放出された過去サンプルガスに含まれる第1被検出ガスの濃度と第2被検出ガスの濃度との比を入力データとし、複数の被検者の各々によって過去検体が排出された時点での複数の被検者の各々の健康状態に関する情報を教師データとして学習が行われた学習済み推定モデルを用いて推定を行ってもよい。当該構成によれば、ガス検出装置1によって検出された各被検出ガスの濃度から、検体を排出した対象者の健康状態、例えば対象者の腸内細菌叢における菌の組成等の腸内環境を推定できる。 Further, the gas detection system 100 according to the present embodiment includes, in addition to the gas detection device 1 that executes the gas detection method described above, the amount of gas released from the specimen after being discharged from the subject, calculated by the gas detection device 1 . a server device (estimating device) 2 comprising an estimating unit 221 for estimating information related to the health condition of the subject who discharged the specimen based on the concentrations of the first detectable gas and the second detectable gas that have been detected; may be provided. In addition, the server device 2 determines the ratio of the concentration of the first detected gas to the concentration of the second detected gas contained in the past sample gas emitted from the past specimen after being discharged from each of the plurality of subjects. is used as input data, and information on the health status of each of the plurality of subjects at the time when the specimen was discharged in the past by each of the plurality of subjects is used as teacher data. Estimates may be made. According to this configuration, the health condition of the subject who discharged the specimen, for example, the intestinal environment such as the composition of bacteria in the intestinal flora of the subject, can be determined from the concentration of each gas to be detected detected by the gas detection device 1. can be estimated.
 また、推定部221は、複数の被検者の各々から排出された後の過去検体から放出された過去サンプルガスに含まれる第1被検出ガスの濃度と第2被検出ガスの濃度との比、および過去検体の質量を示す情報を入力データとし、複数の被検者の各々によって過去検体が排出された時点での複数の被検者の各々の健康状態に関する情報を教師データとして学習が行われた学習済み推定モデルを用いて推定を行ってもよい。これにより、推定に用いられる情報の量が増加するため、より正確に対象者の腸内状態等を推定可能となる。 In addition, the estimating unit 221 calculates the ratio of the concentration of the first detected gas to the concentration of the second detected gas contained in the past sample gas emitted from the past specimen after being discharged from each of the plurality of subjects. , and information indicating the mass of past specimens as input data, and learning is performed using information about the health status of each of the plurality of subjects at the time when the past specimen was discharged by each of the plurality of subjects as teacher data. Estimation may be performed using a trained estimation model that has been learned. As a result, the amount of information used for estimation increases, so that the subject's intestinal condition and the like can be estimated more accurately.
 図13および図14に示すように、各被検出ガスの濃度および減衰量は、検体の質量によっても変化する。従来、各被検出ガスの濃度に基づき対象者の検体に含まれる菌の組成を推定する際、検体の質量は考慮されていなかったため、当該推定では、各被検出ガスの濃度の値ではなく、各被検出ガス間の濃度比を用いていた。ここで、ガス検出システム100では、検体の質量を算出し、当該質量を示す情報を用いて推定を行うことができる。従って、当該推定では、検体の質量と各被検出ガスの濃度とを考慮した推定を行うことで、対象者の健康状態を推定する際、各被検出ガスの濃度の値自体を利用可能となる。それゆえ、ガス検出装置1は、より正確に対象者の腸内状態等を推定可能となる。 As shown in FIGS. 13 and 14, the concentration and attenuation of each gas to be detected also change depending on the mass of the specimen. Conventionally, when estimating the composition of bacteria contained in a subject's sample based on the concentration of each gas to be detected, the mass of the sample was not considered. The concentration ratio between each gas to be detected was used. Here, in the gas detection system 100, the mass of the specimen can be calculated, and the information indicating the mass can be used for estimation. Therefore, in the estimation, the mass of the specimen and the concentration of each detectable gas are taken into account in the estimation, so that the value of the concentration of each detectable gas itself can be used when estimating the subject's health condition. . Therefore, the gas detection device 1 can more accurately estimate the subject's intestinal condition and the like.
 〔実施形態2〕
 本開示の他の実施形態について、以下に説明する。説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 2]
Other embodiments of the present disclosure are described below. For convenience of description, members having the same functions as those of the members described in the above embodiments are denoted by the same reference numerals, and description thereof will not be repeated.
 図15は、他の実施形態に係るガス検出装置1Aを備えるガス検出システム100Aの構成を示すブロック図である。図16は、ガス検出装置1Aの構成の一例を示す概略図である。図15および図16に示すように、ガス検出装置1Aは、制御部10、採取系13、および分析系14に代えて制御部10A、採取系13A、および分析系14Aを備える点においてガス検出装置1と異なる。制御部10Aは、主制御部101Aを備える点において主制御部101と異なる。採取系13Aは、採取系13の構成に加え、第1サンプルチャンバ(第1貯留槽)38を備える。また、分析系14Aは、分析系14の構成に加え、第3弁145および第3ポンプ146を備える。 FIG. 15 is a block diagram showing the configuration of a gas detection system 100A including a gas detection device 1A according to another embodiment. FIG. 16 is a schematic diagram showing an example of the configuration of the gas detection device 1A. As shown in FIGS. 15 and 16, the gas detection apparatus 1A includes a control section 10A, a collection system 13A, and an analysis system 14A instead of the control section 10, collection system 13, and analysis system 14. different from 1. The controller 10A differs from the main controller 101 in that it includes a main controller 101A. The collection system 13A includes a first sample chamber (first reservoir) 38 in addition to the configuration of the collection system 13 . The analysis system 14A also includes a third valve 145 and a third pump 146 in addition to the configuration of the analysis system 14 .
 第1サンプルチャンバ38は、第1ポンプ132の動作によって採取されたサンプルガスを一旦貯留できるチャンバである。図16に示すように、第1サンプルチャンバ38は、第1ポンプ132とセンサチャンバ144との間に設けられる。第1ポンプ132と第1サンプルチャンバ38とは、流路32に代えて流路39によって接続されている。また、第1サンプルチャンバ38とセンサチャンバ144との間は、流路40によって接続されている。第1サンプルチャンバ38は、内部に貯留されるガスの量に応じて膨張、収縮、または変形により内容積が変化するフレキシブルな素材によって構成されてよい。 The first sample chamber 38 is a chamber that can temporarily store the sample gas sampled by the operation of the first pump 132 . As shown in FIG. 16, first sample chamber 38 is provided between first pump 132 and sensor chamber 144 . First pump 132 and first sample chamber 38 are connected by channel 39 instead of channel 32 . Also, the first sample chamber 38 and the sensor chamber 144 are connected by a channel 40 . The first sample chamber 38 may be constructed of a flexible material that expands, contracts, or deforms to change its internal volume depending on the amount of gas stored therein.
 第3弁145は、流路40上に設けられる弁であり、主制御部101Aの制御に従って動作する。第3ポンプ146は、流路40上において、第3弁145とセンサチャンバ144との間に設けられるポンプであり、主制御部101Aの制御に従って動作する。 The third valve 145 is a valve provided on the flow path 40 and operates under the control of the main control section 101A. The third pump 146 is a pump provided between the third valve 145 and the sensor chamber 144 on the flow path 40, and operates under the control of the main controller 101A.
 主制御部101Aは、主制御部101が制御する各部に加え、第3弁145および第3ポンプ146の動作を制御する。また、主制御部101Aにおいて行われる処理は、後述のように、主制御部101とは一部異なる。具体的には、主制御部101Aは、第1採取ステップまたは第2採取ステップにおいて、第1弁131および第1ポンプ132に加え、第3弁145を制御する。これにより、流路40において第1サンプルチャンバ38とセンサチャンバ144とが連通しない状態で第1サンプルガスまたは第2サンプルガスが採取される。これにより、第1サンプルチャンバ38に第1サンプルガスまたは第2サンプルガスが貯留される。 The main control section 101A controls the operations of the third valve 145 and the third pump 146 in addition to the sections controlled by the main control section 101 . Also, the processing performed by the main control unit 101A is partially different from that of the main control unit 101, as will be described later. Specifically, the main control unit 101A controls the third valve 145 in addition to the first valve 131 and the first pump 132 in the first sampling step or the second sampling step. As a result, the first sample gas or the second sample gas is collected while the first sample chamber 38 and the sensor chamber 144 are not in communication with each other in the channel 40 . Thereby, the first sample gas or the second sample gas is stored in the first sample chamber 38 .
 また、主制御部101Aは、第3弁145を制御し、第1サンプルチャンバ38とセンサチャンバ144とが連通した状態とする。また、主制御部101Aは、第1ポンプ132に代えて第3ポンプ146を動作させる。これにより、センサチャンバ144には、第1サンプルチャンバ38に貯留された第1サンプルガスまたは第2サンプルガスが供給される。主制御部101Aは、第1サンプルガスをセンサチャンバ144に供給した後、所定時間が経過していれば、第1検出ステップの完了を待たずに第2採取ステップを開始してもよい。これにより、第1サンプルガスが第1サンプルチャンバ38から排出された後に、第1サンプルチャンバ38に第2サンプルガスが貯留され得る。 Also, the main control unit 101A controls the third valve 145 so that the first sample chamber 38 and the sensor chamber 144 are in communication. Also, the main control unit 101A operates the third pump 146 instead of the first pump 132 . Thereby, the sensor chamber 144 is supplied with the first sample gas or the second sample gas stored in the first sample chamber 38 . After supplying the first sample gas to the sensor chamber 144, the main controller 101A may start the second sampling step without waiting for the completion of the first detection step if a predetermined time has passed. This allows the second sample gas to accumulate in the first sample chamber 38 after the first sample gas has been exhausted from the first sample chamber 38 .
 また、主制御部101Aは、流路39および流路40のクリーニングを行う際、第3弁145を制御し、第1サンプルチャンバ38とセンサチャンバ144とが連通した状態とした上で第3ポンプ146を動作させる。これにより、流路39および流路40に加え、第1サンプルチャンバ38がクリーニングされる。また、主制御部101Aは、センサチャンバ144をクリーニングする際、第3弁145を制御し、第1サンプルチャンバ38とセンサチャンバ144とが連通しない状態とする。これにより、センサチャンバ144から第1サンプルチャンバ38にパージガスが逆流する可能性が低減される。 Further, when cleaning the channel 39 and the channel 40, the main control unit 101A controls the third valve 145 so that the first sample chamber 38 and the sensor chamber 144 are in communication with each other, and then the third pump is operated. 146 is activated. This cleans the first sample chamber 38 as well as the channels 39 and 40 . Further, when cleaning the sensor chamber 144, the main control unit 101A controls the third valve 145 so that the first sample chamber 38 and the sensor chamber 144 are not communicated with each other. This reduces the possibility of backflow of purge gas from the sensor chamber 144 into the first sample chamber 38 .
 <ガス検出システム100Aの効果>
 以上のようにガス検出システム100Aは、第3弁145、および第3ポンプ146を有するガス検出装置1Aを備える。また、ガス検出装置1Aは、第1サンプルガスを貯留可能な第1サンプルチャンバ(第1貯留槽)38を備え、第1サンプルガスを前記第1貯留槽から排出させた後に、該第1サンプルチャンバ38に第2サンプルガスを貯留する。当該構成によると、ガス検出装置1Aは、第1採取ステップが終わってから第1検出ステップが完了する前に第2サンプルガスを採取しておくことができる。そのため、当該構成によると、第1検出ステップの完了が遅れたとしても、第2サンプルガスを採取できるため、より確実に2回の検出を行うことが可能となる。
<Effect of gas detection system 100A>
As described above, the gas detection system 100A includes the gas detection device 1A having the third valve 145 and the third pump 146. As shown in FIG. The gas detection device 1A also includes a first sample chamber (first storage tank) 38 capable of storing a first sample gas, and after discharging the first sample gas from the first storage tank, A second sample gas is stored in the chamber 38 . According to this configuration, the gas detection device 1A can sample the second sample gas after the first sampling step and before the first detection step is completed. Therefore, according to this configuration, even if the completion of the first detection step is delayed, the second sample gas can be collected, so that the detection can be performed twice more reliably.
 〔実施形態3〕
 <ガス検出システム100Bの構成>
 図17は、他の実施形態に係るガス検出装置1Bを備えるガス検出システム100Bの構成を示すブロック図である。図18は、ガス検出装置1Bの構成の一例を示す概略図である。図17および図18に示すように、ガス検出装置1Bは、制御部10、採取系13、および分析系14に代えて制御部10B、採取系13B、および分析系14Bを備える点においてガス検出装置1と異なる。制御部10Bは、主制御部101Bを備える点において主制御部101と異なる。採取系13Bは、採取系13の構成に加え、第1サンプルチャンバ(第1貯留槽)38B、第2サンプルチャンバ(第2貯留槽)41、および第4弁133を備える。また、分析系14Aは、分析系14の構成に加え、第3弁145Bおよび第3ポンプ146を備える。主制御部101Bは、主制御部101Aが制御した各部に加え、第4弁133を制御する。また、主制御部101Bにおいて行われる処理は、後述のように、主制御部101および101Aとは異なる。
[Embodiment 3]
<Configuration of gas detection system 100B>
FIG. 17 is a block diagram showing the configuration of a gas detection system 100B including a gas detection device 1B according to another embodiment. FIG. 18 is a schematic diagram showing an example of the configuration of the gas detection device 1B. As shown in FIGS. 17 and 18, the gas detection apparatus 1B includes a control section 10B, a collection system 13B, and an analysis system 14B instead of the control section 10, collection system 13, and analysis system 14. different from 1. The controller 10B differs from the main controller 101 in that it includes a main controller 101B. The collection system 13B includes, in addition to the configuration of the collection system 13, a first sample chamber (first reservoir) 38B, a second sample chamber (second reservoir) 41, and a fourth valve 133. Also, the analysis system 14A includes a third valve 145B and a third pump 146 in addition to the configuration of the analysis system 14 . The main control unit 101B controls the fourth valve 133 in addition to each unit controlled by the main control unit 101A. Further, the processing performed in main control unit 101B is different from that in main control units 101 and 101A, as will be described later.
 第1サンプルチャンバ38Bは、第1サンプルチャンバ38と同様に第1ポンプ132とセンサチャンバ144との間に設けられる。第1サンプルチャンバ38Bは、第1サンプルガスのみを貯留可能である点において第1サンプルチャンバ38と異なる。 The first sample chamber 38B is provided between the first pump 132 and the sensor chamber 144, like the first sample chamber 38. The first sample chamber 38B differs from the first sample chamber 38 in that only the first sample gas can be stored.
 第2サンプルチャンバ41は、第1ポンプ132とセンサチャンバ144との間に設けられるチャンバである。第2サンプルチャンバ41は、第1サンプルチャンバ38Bと同様の素材によって形成されるチャンバであり、第2サンプルガスのみを貯留可能である。第2サンプルチャンバ41は、流路42によって第1ポンプ132と接続されており、流路43によってセンサチャンバ144と接続されている。 The second sample chamber 41 is a chamber provided between the first pump 132 and the sensor chamber 144. The second sample chamber 41 is a chamber made of the same material as the first sample chamber 38B, and can store only the second sample gas. The second sample chamber 41 is connected with the first pump 132 by the channel 42 and with the sensor chamber 144 by the channel 43 .
 第4弁133は、流路39および流路42上に設けられる弁であり、主制御部101Bの制御に従って動作する。流路39および流路42は、図18に示すように、第1ポンプ132と第4弁133との間では1本の流路であってもよく、別々の流路であってもよい。第4弁133は、第1ポンプ132と第1サンプルチャンバ38とが連通した状態、および第1ポンプ132と第2サンプルチャンバ41とが連通した状態を切り替え可能であってよい。 The fourth valve 133 is a valve provided on the flow path 39 and the flow path 42, and operates under the control of the main control section 101B. The flow path 39 and the flow path 42 may be one flow path between the first pump 132 and the fourth valve 133 as shown in FIG. 18, or may be separate flow paths. The fourth valve 133 may be switchable between a state in which the first pump 132 and the first sample chamber 38 are in communication and a state in which the first pump 132 and the second sample chamber 41 are in communication.
 第3弁145Bは、流路40および流路43上に設けられる弁であり、主制御部101Bの制御に従って動作する。流路40および流路43は、図18に示すように、センサチャンバ144と第4弁133との間では1本の流路であってもよく、別々の流路であってもよい。第4弁133は、第1サンプルチャンバ38Bとセンサチャンバ144とが連通した状態、および第2サンプルチャンバ41とセンサチャンバ144とが連通した状態を切り替え可能であってよい。 The third valve 145B is a valve provided on the flow path 40 and the flow path 43, and operates under the control of the main control section 101B. Channel 40 and channel 43 may be a single channel or separate channels between sensor chamber 144 and fourth valve 133, as shown in FIG. The fourth valve 133 may be capable of switching between a state in which the first sample chamber 38B and the sensor chamber 144 communicate and a state in which the second sample chamber 41 and the sensor chamber 144 communicate.
 <ガス検出システム100Bの処理の流れの一例>
 図19は、ガス検出システム100Bにおいて行われる処理の流れの一例を示すフローチャートである。以下、図19を用いてガス検出システム100Bにおいて行われる処理(ガス検出方法)の流れの一例を説明する。まず、ガス検出装置1BにおいてS21~S22の処理が行われる。当該処理は、図12に示すS1~S2の処理と同様であるため説明を割愛する。
<Example of flow of processing of gas detection system 100B>
FIG. 19 is a flow chart showing an example of the flow of processing performed in the gas detection system 100B. An example of the flow of processing (gas detection method) performed in the gas detection system 100B will be described below with reference to FIG. First, the processes of S21 and S22 are performed in the gas detection device 1B. Since the processing is the same as the processing of S1 to S2 shown in FIG. 12, the description is omitted.
 対象者からの検体の排出を検知した場合(S22においてYES)、主制御部101Bは、第1弁131および第4弁133を制御し、流路31および流路39が連通し、流路31の開口部から第1サンプルチャンバ38Bにガスが流入可能な状態とする。主制御部101Bは、この状態において第1ポンプ132を動作させることで、第1サンプルガスを採取し(S23:第1採取ステップ)、第1サンプルチャンバ38Bに貯留させる。 When the discharge of the specimen from the subject is detected (YES in S22), the main control unit 101B controls the first valve 131 and the fourth valve 133 so that the flow path 31 and the flow path 39 are communicated, and the flow path 31 The gas can flow into the first sample chamber 38B from the opening of . By operating the first pump 132 in this state, the main controller 101B collects the first sample gas (S23: first collection step) and stores it in the first sample chamber 38B.
 S23の後、主制御部101Bは、第1サンプルガスの採取から所定時間が経過したかを判定する(S24)。第1サンプルガスの採取から所定時間が経過していた場合(S24でYES)、主制御部101Bは、サンプルガスが流れる流路を切り替える。具体的には、主制御部101Bは、第4弁133を制御し、第1ポンプ132と第2サンプルチャンバ41とが連通し、第1サンプルチャンバ38Bとは連通しない状態とする。 After S23, the main controller 101B determines whether a predetermined period of time has elapsed since the sampling of the first sample gas (S24). If the predetermined time has passed since the sampling of the first sample gas (YES in S24), the main control unit 101B switches the channel through which the sample gas flows. Specifically, the main controller 101B controls the fourth valve 133 so that the first pump 132 and the second sample chamber 41 are in communication and the first sample chamber 38B is not in communication.
 続いて、主制御部101Bは、第1ポンプ132を動作させ、第2サンプルガスを採取する(S25:第2採取ステップ)。このとき、第2サンプルガスは第2サンプルチャンバ41に貯留される。主制御部101Bは、所定時間第1ポンプ132を動作させ、十分に第2サンプルガスが採取されると第1ポンプ132を停止させる。 Subsequently, the main control unit 101B operates the first pump 132 to sample the second sample gas (S25: second sampling step). At this time, the second sample gas is stored in the second sample chamber 41 . The main controller 101B operates the first pump 132 for a predetermined time, and stops the first pump 132 when the second sample gas is sufficiently collected.
 S25の後、主制御部101Bは、第3弁145Bおよび第4弁133を制御し、第1ポンプ132と第1サンプルチャンバ38Bとが連通しない状態とし、第1サンプルチャンバ38Bとセンサチャンバ144とが連通した状態とする。主制御部101Bは、この状態で第2ポンプ142、第2弁141、および第3ポンプ146を制御し、センサチャンバ144に第1サンプルガスとパージガスとを交互に供給させる(S26)。その後、S27の処理が行われる。S27の処理は、図12に示すS9の処理と同様であるため説明を割愛する。S27の処理の後、主制御部101Bは、第2弁141を制御し、流路34と流路37とが連通した状態において第2ポンプ142を動作させる。これにより、センサチャンバ144がクリーニングされる。 After S25, the main control unit 101B controls the third valve 145B and the fourth valve 133 so that the first pump 132 and the first sample chamber 38B do not communicate with each other, and the first sample chamber 38B and the sensor chamber 144 are in communication. In this state, the main controller 101B controls the second pump 142, the second valve 141, and the third pump 146 to alternately supply the first sample gas and the purge gas to the sensor chamber 144 (S26). After that, the process of S27 is performed. Since the processing of S27 is the same as the processing of S9 shown in FIG. 12, the description is omitted. After the process of S27, the main control unit 101B controls the second valve 141 to operate the second pump 142 in a state in which the flow paths 34 and 37 are in communication. This cleans the sensor chamber 144 .
 続いて、主制御部101Bは、第3弁145Bおよび第4弁133を制御し、第1ポンプ132と第2サンプルチャンバ41とが連通しない状態とし、第2サンプルチャンバ41とセンサチャンバ144とが連通した状態とする。主制御部101Bは、この状態で第2ポンプ142、第2弁141、および第3ポンプ146を制御し、センサチャンバ144に第2サンプルガスとパージガスとを交互に供給させる(S28)。その後、S29の処理が行われる。S29の処理は、図12に示すS9の処理と同様であるため説明を割愛する。S29の処理の後、センサチャンバ144のクリーニングが行われる。 Subsequently, the main control unit 101B controls the third valve 145B and the fourth valve 133 so that the first pump 132 and the second sample chamber 41 are not in communication, and the second sample chamber 41 and the sensor chamber 144 are disconnected. Keep in communication. The main controller 101B controls the second pump 142, the second valve 141, and the third pump 146 in this state to alternately supply the second sample gas and the purge gas to the sensor chamber 144 (S28). After that, the process of S29 is performed. Since the processing of S29 is the same as the processing of S9 shown in FIG. 12, the description is omitted. After the process of S29, cleaning of the sensor chamber 144 is performed.
 続いて、S30~S33の処理が行われる。S30~S33の処理は、図12に示すS10~S13の処理と同様であるため説明を割愛する。ガス検出装置1Bにおける各処理が終了した後、第1サンプルチャンバ38Bおよび第2サンプルチャンバ41のクリーニングが行われる。第1サンプルチャンバ38Bおよび第2サンプルチャンバ41のクリーニングは、このタイミングに限られず、S28が完了した後のタイミングであればいつ行われてもよい。 Subsequently, the processes of S30 to S33 are performed. Since the processing of S30 to S33 is the same as the processing of S10 to S13 shown in FIG. 12, the description is omitted. After each process in the gas detection device 1B is completed, cleaning of the first sample chamber 38B and the second sample chamber 41 is performed. The cleaning of the first sample chamber 38B and the second sample chamber 41 is not limited to this timing, and may be performed at any timing after S28 is completed.
 主制御部101Bは、第1弁131、第2弁141、第3弁145B、および第4弁133を制御し、流路34、流路36、流路39、おより流路40が連通した状態とする。主制御部101Bは、この状態で第3ポンプ146を動作させる。これにより、パージガスが各流路、第1サンプルチャンバ38Bおよびセンサチャンバ144を通過し、排出路33より外部に排気され、第1サンプルチャンバ38B、流路39、および流路40のクリーニングが行われる。また、主制御部101Bは、第1弁131、第2弁141、第3弁145B、および第4弁133を制御し、流路34、流路36、流路42、おより流路43が連通した状態とする。主制御部101Bは、この状態で第3ポンプ146を動作させる。これにより、パージガスが各流路、第2サンプルチャンバ41およびセンサチャンバ144を通過し、排出路33より外部に排気され、第2サンプルチャンバ41、流路42、および流路43のクリーニングが行われる。 The main control unit 101B controls the first valve 131, the second valve 141, the third valve 145B, and the fourth valve 133, and the flow path 34, the flow path 36, the flow path 39, and the flow path 40 communicate with each other. state. The main controller 101B operates the third pump 146 in this state. As a result, the purge gas passes through each channel, the first sample chamber 38B and the sensor chamber 144 and is exhausted to the outside through the exhaust channel 33, thereby cleaning the first sample chamber 38B, the channel 39 and the channel 40. . Further, the main control unit 101B controls the first valve 131, the second valve 141, the third valve 145B, and the fourth valve 133 so that the flow path 34, the flow path 36, the flow path 42, and the flow path 43 are Keep in communication. The main controller 101B operates the third pump 146 in this state. As a result, the purge gas passes through each channel, the second sample chamber 41 and the sensor chamber 144 and is exhausted to the outside through the exhaust channel 33, thereby cleaning the second sample chamber 41, the channel 42 and the channel 43. .
 <ガス検出システム100Bの効果>
 以上のように、ガス検出装置1Bは、第1サンプルガスを貯留可能な第1サンプルチャンバ(第1貯留槽)38Bおよび第2サンプルガスチャンバを貯留可能な第2サンプルチャンバ(第2貯留槽)41を備える。これにより、第1サンプルガスの検出が完了していなくとも第2サンプルガスを採取できる。そのため、2回分の測定用のガスをより確実に採取できる。また、対象者が便器4の使用を終え、便器4から離れるために便器4を洗浄する操作を行った後は検体が流されサンプルガスの採取ができなくなるが、検体が流される前に第2サンプルガスを貯留しておくことで、後からでも第1被検出ガスの濃度の検出を行うことができる。
<Effect of gas detection system 100B>
As described above, the gas detection apparatus 1B includes a first sample chamber (first storage tank) 38B capable of storing a first sample gas and a second sample chamber (second storage tank) capable of storing a second sample gas chamber. 41. Thereby, the second sample gas can be collected even if the detection of the first sample gas is not completed. Therefore, it is possible to more reliably sample gas for two measurements. In addition, after the subject finishes using the toilet bowl 4 and cleans the toilet bowl 4 in order to leave the toilet bowl 4, the specimen is flushed and the sample gas cannot be collected. By storing the sample gas, the concentration of the first gas to be detected can be detected later.
 <変形例>
 上述の各実施形態において、検体推定部104は、検体の質量を推定しなくてもよい。この場合、第2算出部105は、検体の質量を示す情報に代えて、2回の第1被検出ガスの濃度の変化、具体的には濃度の差または比を示す情報を、検体の質量を示す情報として用い、各被検出ガスの濃度の補正を行ってもよい。また、第2算出部105は、1回目および2回目の検出において取得された波形データ自体を検体の質量を示す情報として用いてもよい。この場合、検体推定部104は不要となる。
<Modification>
In each of the above-described embodiments, the specimen estimation unit 104 does not have to estimate the mass of the specimen. In this case, the second calculation unit 105, instead of the information indicating the mass of the specimen, calculates the change in the concentration of the first gas to be detected twice, specifically the information indicating the difference or the ratio of the concentrations, to the mass of the specimen. may be used as information indicating to correct the concentration of each gas to be detected. Further, the second calculator 105 may use the waveform data itself acquired in the first and second detections as information indicating the mass of the specimen. In this case, the specimen estimation unit 104 becomes unnecessary.
 また、サーバ装置2の推定部221は、推定を行う際、検体の質量を示す情報に代えて、検体の質量を示す情報として、2回の検出における第1被検出ガスの濃度の変化を示す情報を用いてもよい。または検体の質量を示す情報に加えて、当該濃度の変化を示す情報を用いてもよい。また、1回目の検出および2回目の検出において取得された波形データ自体を入力データとして用いてもよい。推定モデルは、適宜対応するように学習されればよい。 In addition, when the estimation unit 221 of the server device 2 performs the estimation, instead of the information indicating the mass of the specimen, the information indicating the mass of the specimen indicates the change in the concentration of the first gas to be detected in the two detections. Information may be used. Alternatively, information indicating changes in concentration may be used in addition to information indicating the mass of the specimen. Also, the waveform data itself obtained in the first detection and the second detection may be used as the input data. The estimation model should be learned so as to correspond appropriately.
 上述の各実施形態におけるガス検出システム100、100A、および100Bでは、ガス検出装置1、1A、および1Bにおいて各被検出ガスの濃度を補正し、サーバ装置2において対象者の腸内環境等を推定した。但し、ガス検出システム100、100A、および100Bはこの構成に限られない。例えば、ガス検出装置1、1A、または1Bが推定部221を備え、サーバ装置2において行った処理を行ってもよい。この場合、サンプルガスの採取から対象者の腸内環境等の推定は、ガス検出装置1、1A、または1Bのみで完結され得る。この場合、ガス検出システム100、100A、または100Bはサーバ装置2を備えていなくてもよく、ガス検出装置1、1A、または1Bは、推定した情報を電子機器3に送信してもよい。 In the gas detection systems 100, 100A, and 100B of the above-described embodiments, the gas detection devices 1, 1A, and 1B correct the concentration of each gas to be detected, and the server device 2 estimates the intestinal environment of the subject. bottom. However, gas detection systems 100, 100A, and 100B are not limited to this configuration. For example, the gas detection device 1, 1A, or 1B may include the estimation unit 221 and perform the processing performed in the server device 2. FIG. In this case, the estimation of the subject's intestinal environment and the like from the collection of the sample gas can be completed only by the gas detection device 1, 1A, or 1B. In this case, gas detection system 100 , 100 A, or 100 B may not include server device 2 , and gas detection device 1 , 1 A, or 1 B may transmit estimated information to electronic device 3 .
 図20は、ガス検出システム100の変形例であるガス検出システム100Cの構成を示す概略図である。図20に示すように、ガス検出システム100Cは、ガス検出装置1およびサーバ装置2に代えてガス検出装置1Cおよびサーバ装置2Cを備える。ガス検出システム100Cにおいて、ガス検出装置1Cは、濃度情報に代えて検出情報をサーバ装置2に送信してもよい。具体的には、ガス検出装置1Cは、検出情報として、第1被検出ガスの濃度および第2被検出ガスの濃度を示す情報を送信してもよい。この場合、サーバ装置2Cは、第1被検出ガスの濃度および第2被検出ガスの濃度に基づき、これらの被検出ガスの濃度を補正してもよい。換言すると、ガス検出システム100Cにおいて、ガス検出装置1Cは第2算出部105を備えず、サーバ装置2Cが第2算出部105を備えていてもよい。 FIG. 20 is a schematic diagram showing the configuration of a gas detection system 100C, which is a modified example of the gas detection system 100. As shown in FIG. As shown in FIG. 20, the gas detection system 100C includes a gas detection device 1C and a server device 2C instead of the gas detection device 1 and the server device 2. As shown in FIG. In the gas detection system 100C, the gas detection device 1C may transmit detection information to the server device 2 instead of concentration information. Specifically, the gas detection device 1C may transmit, as the detection information, information indicating the concentration of the first gas to be detected and the concentration of the second gas to be detected. In this case, the server device 2C may correct the concentrations of the first gas to be detected and the concentration of the second gas to be detected based on the concentrations of the first gas to be detected and the concentrations of the second gas to be detected. In other words, in the gas detection system 100C, the gas detection device 1C may not include the second calculator 105, and the server device 2C may include the second calculator 105. FIG.
 図21は、ガス検出システム100の変形例であるガス検出システム100Dの構成を示す概略図である。図21に示すように、ガス検出システム100Dは、ガス検出装置1およびサーバ装置2に代えてガス検出装置1Dおよびサーバ装置2Dを備える。図21に示すように、ガス検出装置1は、通信ネットワークを介してサーバ装置2と通信可能に接続されていなくてもよい。ガス検出システム100Dでは、ガス検出装置1Dが電子機器3のみと通信可能に接続されている。この場合、ガス検出装置1Dは、電子機器3に濃度情報等各種情報を送信し、電子機器3は、ガス検出装置1Dから受信した濃度情報等をサーバ装置2Dに送信してもよい。一例として、ガス検出装置1Dは、電子機器3に、LAN等の通信装置を介して濃度情報を送信する。また、電子機器3は、濃度情報をサーバ装置2Dに送信する。サーバ装置2Dは、濃度情報の送信元の電子機器3へ、分析結果情報を送信する。 FIG. 21 is a schematic diagram showing the configuration of a gas detection system 100D that is a modification of the gas detection system 100. FIG. As shown in FIG. 21, the gas detection system 100D includes a gas detection device 1D and a server device 2D instead of the gas detection device 1 and the server device 2. As shown in FIG. As shown in FIG. 21, the gas detection device 1 does not have to be communicably connected to the server device 2 via a communication network. In the gas detection system 100D, the gas detection device 1D is connected only to the electronic device 3 so as to be communicable. In this case, the gas detection device 1D may transmit various information such as concentration information to the electronic device 3, and the electronic device 3 may transmit the concentration information and the like received from the gas detection device 1D to the server device 2D. As an example, the gas detection device 1D transmits concentration information to the electronic device 3 via a communication device such as a LAN. Also, the electronic device 3 transmits the concentration information to the server device 2D. The server device 2D transmits the analysis result information to the electronic device 3 that is the transmission source of the concentration information.
 〔ソフトウェアによる実現例〕
 ガス検出システム100、100A~100D(以下、「システム」と呼ぶ)の機能は、当該システムとしてコンピュータを機能させるためのプログラムであって、当該システムの各制御ブロック(特に制御部10、10A、10B、および22に含まれる各部)としてコンピュータを機能させるためのプログラムにより実現できる。
[Example of realization by software]
The function of the gas detection systems 100, 100A to 100D (hereinafter referred to as "system") is a program for causing a computer to function as the system, and each control block of the system (especially the control units 10, 10A, 10B , and each part included in 22) by a program for causing a computer to function.
 この場合、上記システムは、上記プログラムを実行するためのハードウェアとして、少なくとも1つの制御装置(例えばプロセッサ)と少なくとも1つの記憶装置(例えばメモリ)を有するコンピュータを備えている。この制御装置と記憶装置により上記プログラムを実行することにより、上記各実施形態で説明した各機能が実現される。 In this case, the system comprises a computer having at least one control device (eg processor) and at least one storage device (eg memory) as hardware for executing the program. Each function described in each of the above embodiments is realized by executing the above program using the control device and the storage device.
 上記プログラムは、一時的ではなく、コンピュータ読み取り可能な、1または複数の記録媒体に記録されていてもよい。この記録媒体は、上記装置が備えていてもよいし、備えていなくてもよい。後者の場合、上記プログラムは、有線または無線の任意の伝送媒体を介して上記装置に供給されてもよい。 The above program may be recorded on one or more computer-readable recording media, not temporary. The recording medium may or may not be included in the device. In the latter case, the program may be supplied to the device via any transmission medium, wired or wireless.
 また、上記各制御ブロックの機能の一部または全部は、論理回路により実現することも可能である。例えば、上記各制御ブロックとして機能する論理回路が形成された集積回路も本開示の範疇に含まれる。この他にも、例えば量子コンピュータにより上記各制御ブロックの機能を実現することも可能である。 Also, part or all of the functions of the above control blocks can be realized by logic circuits. For example, an integrated circuit in which logic circuits functioning as the above control blocks are formed is also included in the scope of the present disclosure. In addition, it is also possible to implement the functions of the control blocks described above by, for example, a quantum computer.
 本開示は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。 The present disclosure is not limited to the above-described embodiments, and various modifications are possible within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments is also included in the technical scope of the present disclosure.
 1、1A~1D ガス検出装置
 2 サーバ装置(推定装置)
 38、38B 第1サンプルチャンバ(第1貯留槽)
 41 第2サンプルチャンバ(第2貯留槽)
 100、100A~100D ガス検出システム
 102 検出部
 103 第1算出部
 104 検体推定部
 105 第2算出部(算出部)
 221 推定部
 S3、S23 第1採取ステップ
 S5、S27 第1検出ステップ
 S7、S25 第2採取ステップ
 S9、S29 第2検出ステップ
 S11、S31 推定ステップ
 S12、S32 算出ステップ
1, 1A to 1D Gas detection device 2 Server device (estimation device)
38, 38B first sample chamber (first reservoir)
41 second sample chamber (second reservoir)
100, 100A to 100D gas detection system 102 detection unit 103 first calculation unit 104 specimen estimation unit 105 second calculation unit (calculation unit)
221 estimation unit S3, S23 first sampling step S5, S27 first detection step S7, S25 second sampling step S9, S29 second detection step S11, S31 estimation step S12, S32 calculation step

Claims (22)

  1.  対象者から検体が排出された後に、該検体から放出された第1サンプルガスを採取する第1採取ステップと、
     前記第1サンプルガスに含まれる第1被検出ガスおよび第2被検出ガスの濃度をそれぞれ検出する第1検出ステップと、
     前記検体から放出された第2サンプルガスを、前記第1採取ステップの後に採取する第2採取ステップと、
     前記第2サンプルガスに含まれる前記第1被検出ガスの濃度を検出する第2検出ステップと、
     前記第1検出ステップおよび前記第2検出ステップにおいて検出された、前記第1被検出ガスの濃度から算出される前記第1被検出ガスの濃度の変化に基づき、前記対象者から排出された前記検体から放出されてから前記第1サンプルガスが採取されるまでの間における前記第1被検出ガスおよび前記第2被検出ガスの濃度を算出する算出ステップと、
    を含むガス検出方法。
    a first collection step of collecting a first sample gas emitted from the specimen after the specimen is expelled from the subject;
    a first detection step of respectively detecting concentrations of a first gas to be detected and a second gas to be detected contained in the first sample gas;
    a second sampling step of sampling a second sample gas emitted from the specimen after the first sampling step;
    a second detection step of detecting the concentration of the first gas to be detected contained in the second sample gas;
    The specimen discharged from the subject based on a change in the concentration of the first detectable gas calculated from the concentration of the first detectable gas detected in the first detection step and the second detection step. a calculation step of calculating the concentrations of the first gas to be detected and the second gas to be detected during the period from when the gas is released from the gas to when the first sample gas is sampled;
    A gas detection method comprising:
  2.  前記算出ステップにおいて、前記第1サンプルガスに含まれる前記第1被検出ガスの濃度と、前記第2サンプルガスに含まれる前記第1被検出ガスの濃度と、の差または比に基づき、前記対象者から排出された前記検体から放出されてから前記第1サンプルガスが採取されるまでの間における前記第1被検出ガスおよび前記第2被検出ガスの濃度を算出する、請求項1に記載のガス検出方法。 In the calculating step, based on the difference or ratio between the concentration of the first gas to be detected contained in the first sample gas and the concentration of the first gas to be detected contained in the second sample gas, the target 2. The method according to claim 1, wherein the concentration of the first gas to be detected and the concentration of the second gas to be detected are calculated during a period from the release from the specimen discharged from the human body to the sampling of the first sample gas. Gas detection method.
  3.  前記算出ステップにおいて、前記第1サンプルガスにおける前記第1被検出ガスの濃度と、前記第2サンプルガスにおける前記第1被検出ガスの濃度と、の差または比に基づき、前記第2サンプルガスにおける前記第2被検出ガスの濃度をさらに算出する、請求項1に記載のガス検出方法。 In the calculating step, based on the difference or ratio between the concentration of the first detectable gas in the first sample gas and the concentration of the first detectable gas in the second sample gas, 2. The gas detection method according to claim 1, further comprising calculating the concentration of said second gas to be detected.
  4.  前記第1検出ステップおよび前記第2検出ステップにおいて検出された前記第1被検出ガスの濃度に基づき、前記検体の質量を推定する推定ステップをさらに含み、
     前記算出ステップにおいて、前記推定ステップで推定された前記検体の質量に基づき、前記第1被検出ガスおよび前記第2被検出ガスのそれぞれの濃度の補正を行う、請求項1から3のいずれか1項に記載のガス検出方法。
    further comprising an estimation step of estimating the mass of the specimen based on the concentration of the first gas to be detected detected in the first detection step and the second detection step;
    4. Any one of claims 1 to 3, wherein in said calculating step, the respective concentrations of said first gas to be detected and said second gas to be detected are corrected based on the mass of said specimen estimated in said estimating step. The gas detection method according to the item.
  5.  前記検体は、前記対象者が排泄した便である、請求項1から4のいずれか1項に記載のガス検出方法。 The gas detection method according to any one of claims 1 to 4, wherein the specimen is stool excreted by the subject.
  6.  前記第1被検出ガスは、水素および二酸化炭素の少なくともいずれかを含み、
     前記第2被検出ガスは、メタン、硫化水素、およびメチルメルカプタンの少なくともいずれかを含む、請求項1から5のいずれか1項に記載のガス検出方法。
    the first gas to be detected includes at least one of hydrogen and carbon dioxide;
    The gas detection method according to any one of claims 1 to 5, wherein the second gas to be detected includes at least one of methane, hydrogen sulfide, and methyl mercaptan.
  7.  前記算出ステップは、
      (1)複数の過去検体から放出されたサンプルガスであって、該過去検体が排出された後に採取された前記第1サンプルガスに含まれる前記第1被検出ガスを検知した第1検知データおよび第2被検出ガスを検知した第2検知データと、(2)前記第1サンプルガスが採取された後に採取された前記第2サンプルガスに含まれる前記第1被検出ガスを検知した第3検知データおよび前記第2被検出ガスを検知した第4検知データと、(3)前記第1サンプルガスに含まれる前記第1被検出ガスの濃度および前記第2被検出ガスの濃度、および前記第2サンプルガスに含まれる前記第1被検出ガスの濃度および前記第2被検出ガスの濃度と、を含む第1教師データを用いて機械学習を行うことにより生成された学習モデルによって実行される処理を含み、
      前記学習モデルは、前記第1サンプルガスおよび前記第2サンプルガスにおいてそれぞれ検出された前記第1被検出ガスの濃度を入力データとして受付けて、前記対象者から排出された検体から放出されてから前記第1サンプルガスが採取されるまでの間における前記第1被検出ガスの濃度および前記第2被検出ガスの濃度を出力する、請求項1から6のいずれか1項に記載のガス検出方法。
    The calculating step includes:
    (1) first detection data obtained by detecting the first gas to be detected contained in the first sample gas sampled after the discharge of the past specimens, which are sample gases emitted from a plurality of past specimens; and (2) second detection data for detecting a second gas to be detected; and (2) third detection data for detecting the first gas to be detected contained in the second sample gas sampled after the first sample gas is sampled. (3) the concentration of the first gas to be detected and the concentration of the second gas to be detected contained in the first sample gas; A process executed by a learning model generated by performing machine learning using first teacher data including the concentration of the first gas to be detected and the concentration of the second gas to be detected contained in the sample gas. including
    The learning model receives, as input data, the concentration of the first gas to be detected detected in the first sample gas and the second sample gas, and the 7. The gas detection method according to any one of claims 1 to 6, wherein the concentration of said first gas to be detected and the concentration of said second gas to be detected are output until the first sample gas is sampled.
  8.  前記第1教師データは、前記第1検知データおよび前記第3検知データに基づいて算出された第1補正データと、前記第2検知データおよび前記第4検知データに基づいて算出された第2補正データと、をさらに含む、請求項7に記載のガス検出方法。 The first teacher data includes first correction data calculated based on the first detection data and the third detection data, and second correction data calculated based on the second detection data and the fourth detection data. 8. The gas detection method of claim 7, further comprising: data.
  9.  前記算出ステップは、
      (1)複数の過去検体から放出されたサンプルガスであって、該過去検体が排出された後に採取された前記第1サンプルガスに含まれる前記第1被検出ガスを検知した第1検知データおよび前記第2被検出ガスを検知した第2検知データと、(2)前記第1サンプルガスが採取された後に採取された前記第2サンプルガスに含まれる前記第1被検出ガスを検知した第3検知データおよび前記第2被検出ガスを検知した第4検知データと、(3)前記過去検体から放出されてから前記第1サンプルガスが採取されるまでに採取された第3サンプルガスに含まれる前記第1被検出ガスの濃度および前記第2被検出ガスの濃度と、を含む第2教師データを用いて機械学習を行うことにより生成された学習モデルによって実行される処理を含み、
      前記学習モデルは、前記第1サンプルガスおよび前記第2サンプルガスにおいてそれぞれ検出された前記第1被検出ガスの濃度を入力データとして受付けて、前記対象者から排出された検体から放出されてから前記第1サンプルガスが採取されるまでの間における前記第1被検出ガスの濃度および前記第2被検出ガスの濃度を出力する、請求項1から6のいずれか1項に記載のガス検出方法。
    The calculating step includes:
    (1) first detection data obtained by detecting the first gas to be detected contained in the first sample gas sampled after the discharge of the past specimens, which are sample gases emitted from a plurality of past specimens; and (2) second detection data for detecting the second gas to be detected; and (2) third data for detecting the first gas to be detected contained in the second sample gas sampled after the first sample gas is sampled. Included in the detection data and the fourth detection data obtained by detecting the second gas to be detected, and (3) the third sample gas sampled from the past release from the specimen until the first sample gas is sampled including processing executed by a learning model generated by performing machine learning using second teacher data including the concentration of the first detectable gas and the concentration of the second detectable gas,
    The learning model receives, as input data, the concentration of the first gas to be detected detected in the first sample gas and the second sample gas, and the 7. The gas detection method according to any one of claims 1 to 6, wherein the concentration of said first gas to be detected and the concentration of said second gas to be detected are output until the first sample gas is sampled.
  10.  対象者から検体が排出された後に、該検体から放出されたサンプルガスを採取し、当該サンプルガスに含まれる第1被検出ガスおよび第2被検出ガスの濃度をそれぞれ検出するガス検出装置であって、
     1回目に採取された第1サンプルガスに含まれる前記第1被検出ガスおよび前記第2被検出ガスの濃度と、前記1回目の採取の後に同検体から放出された第2サンプルガスに含まれる前記第1被検出ガスの濃度をそれぞれ検出する検出部と、
     前記第1サンプルガスから検出された前記第1被検出ガスの濃度と、前記第2サンプルガスから検出された前記第1被検出ガスの濃度とに基づいて算出される前記第1被検出ガスの濃度の変化に基づき、前記対象者から排出された前記検体から放出されてから前記第1サンプルガスが採取されるまでの間における前記第1被検出ガスおよび前記第2被検出ガスの濃度を算出する算出部と、を備えるガス検出装置。
    A gas detection device for sampling a sample gas released from a specimen after the specimen is discharged from a subject, and detecting concentrations of a first gas to be detected and a second gas to be detected contained in the sample gas. hand,
    Concentrations of the first gas to be detected and the second gas to be detected contained in the first sample gas sampled for the first time, and contained in the second sample gas released from the same specimen after the first sampling a detection unit that detects the concentration of the first gas to be detected;
    of the first gas to be detected calculated based on the concentration of the first gas to be detected detected from the first sample gas and the concentration of the first gas to be detected detected from the second sample gas Concentrations of the first gas to be detected and the concentration of the second gas to be detected during a period from the release from the specimen discharged from the subject to the sampling of the first sample gas are calculated based on the change in concentration. and a gas detection device.
  11.  前記第1サンプルガスにおける前記第1被検出ガスの濃度から、前記第2サンプルガスにおける前記第1被検出ガスの濃度への変化に基づき、前記検体の質量を示す情報を推定する検体推定部を備え、
     前記算出部は、前記検体の質量を示す情報を用いて、前記第1サンプルガスにおける前記第1被検出ガス、前記第1サンプルガスにおける前記第2被検出ガスのそれぞれの濃度を補正して、前記対象者から排出された前記検体から放出されてから前記第1サンプルガスが採取されるまでの間における前記第1被検出ガスおよび前記第2被検出ガスの濃度を算出する、請求項10に記載のガス検出装置。
    an analyte estimating unit for estimating information indicating the mass of the analyte based on a change in concentration of the first gas to be detected in the first sample gas from concentration of the first gas to be detected in the second sample gas; prepared,
    The calculation unit uses information indicating the mass of the specimen to correct the concentrations of the first gas to be detected in the first sample gas and the concentration of the second gas to be detected in the first sample gas, 11. The method according to claim 10, wherein the concentration of said first gas to be detected and said second gas to be detected are calculated during a period from being emitted from said specimen discharged from said subject until said first sample gas is collected. A gas detection device as described.
  12.  前記第1サンプルガスを貯留可能な第1貯留槽を備え、
     前記第1サンプルガスを前記第1貯留槽から排出させた後に、該第1貯留槽に前記第2サンプルガスを貯留する、請求項10または11に記載のガス検出装置。
    A first storage tank capable of storing the first sample gas,
    12. The gas detection device according to claim 10, wherein the second sample gas is stored in the first reservoir after discharging the first sample gas from the first reservoir.
  13.  前記第1サンプルガスを貯留可能な第1貯留槽と、前記第2サンプルガスを貯留可能な第2貯留槽と、をさらに備える、請求項10または11に記載のガス検出装置。 12. The gas detection device according to claim 10, further comprising a first storage tank capable of storing said first sample gas, and a second storage tank capable of storing said second sample gas.
  14.  前記算出部は、
      (1)複数の過去検体から放出されたサンプルガスであって、該過去検体が排出された後に採取された前記第1サンプルガスに含まれる前記第1被検出ガスを検知した第1検知データおよび第2被検出ガスを検知した第2検知データと、(2)前記第1サンプルガスが採取された後に採取された前記第2サンプルガスに含まれる前記第1被検出ガスを検知した第3検知データおよび前記第2被検出ガスを検知した第4検知データと、(3)前記第1サンプルガスに含まれる前記第1被検出ガスの濃度および前記第2被検出ガスの濃度、および前記第2サンプルガスに含まれる前記第1被検出ガスの濃度および前記第2被検出ガスの濃度と、を含む第1教師データを用いて機械学習を行うことにより生成された学習モデルを備え、
      前記学習モデルは、前記第1サンプルガスおよび前記第2サンプルガスにおいてそれぞれ検出された前記第1被検出ガスの濃度を入力データとして受付けて、対象者から排出された検体から放出されてから前記第1サンプルガスが採取されるまでの間における前記第1被検出ガスの濃度および前記第2被検出ガスの濃度を出力する、請求項10から13のいずれか1項に記載のガス検出装置。
    The calculation unit
    (1) first detection data obtained by detecting the first gas to be detected contained in the first sample gas sampled after the discharge of the past specimens, which are sample gases emitted from a plurality of past specimens; and (2) second detection data for detecting a second gas to be detected; and (2) third detection data for detecting the first gas to be detected contained in the second sample gas sampled after the first sample gas is sampled. (3) the concentration of the first gas to be detected and the concentration of the second gas to be detected contained in the first sample gas; a learning model generated by performing machine learning using first teacher data including the concentration of the first detectable gas and the concentration of the second detectable gas contained in the sample gas;
    The learning model receives, as input data, the concentrations of the first gas to be detected detected in the first sample gas and the second sample gas, respectively, and detects the concentration of the first gas after being emitted from the specimen discharged from the subject. 14. The gas detection device according to any one of claims 10 to 13, wherein the concentration of said first gas to be detected and the concentration of said second gas to be detected are output until one sample gas is sampled.
  15.  前記第1教師データは、前記第1検知データおよび前記第3検知データに基づいて算出された第1補正データと、前記第2検知データおよび前記第4検知データに基づいて算出された第2補正データと、をさらに含む、
    請求項14に記載のガス検出装置。
    The first teacher data includes first correction data calculated based on the first detection data and the third detection data, and second correction data calculated based on the second detection data and the fourth detection data. data and further comprising
    15. The gas detection device according to claim 14.
  16.  (1)複数の過去検体から放出されたサンプルガスであって、該過去検体が排出された後に採取された前記第1サンプルガスに含まれる前記第1被検出ガスを検知した第1検知データおよび第2被検出ガスを検知した第2検知データと、(2)前記第1サンプルガスが採取された後に採取された前記第2サンプルガスに含まれる前記第1被検出ガスを検知した第3検知データおよび前記第2被検出ガスを検知した第4検知データと、(3)前記過去検体から放出されてから前記第1サンプルガスが採取されるまでに採取された第3サンプルガスに含まれる前記第1被検出ガスの濃度および前記第2被検出ガスの濃度と、を含む第2教師データを用いて機械学習を行うことにより生成された学習モデルを備え、
      前記学習モデルは、前記第1サンプルガスおよび前記第2サンプルガスにおいてそれぞれ検出された前記第1被検出ガスの濃度を入力データとして受付けて、対象者から排出された検体から放出されてから前記第1サンプルガスが採取されるまでの間における前記第1被検出ガスの濃度および前記第2被検出ガスの濃度を出力する、請求項10から13のいずれか1項に記載のガス検出装置。
    (1) first detection data obtained by detecting the first gas to be detected contained in the first sample gas sampled after the discharge of the past specimens, which are sample gases emitted from a plurality of past specimens; and (2) second detection data for detecting a second gas to be detected; and (2) third detection data for detecting the first gas to be detected contained in the second sample gas sampled after the first sample gas is sampled. data and fourth detection data obtained by detecting the second gas to be detected; a learning model generated by performing machine learning using second teacher data including the concentration of the first gas to be detected and the concentration of the second gas to be detected;
    The learning model receives, as input data, the concentrations of the first gas to be detected detected in the first sample gas and the second sample gas, respectively, and detects the concentration of the first gas after being emitted from the specimen discharged from the subject. 14. The gas detection device according to any one of claims 10 to 13, wherein the concentration of said first gas to be detected and the concentration of said second gas to be detected are output until one sample gas is sampled.
  17.  請求項10から16のいずれか1項に記載のガス検出装置と、
     前記ガス検出装置によって算出された、前記対象者から排出された前記検体から放出されてから前記第1サンプルガスが採取されるまでの間における前記第1被検出ガスおよび前記第2被検出ガスの濃度に基づき、前記検体を排出した前記対象者の健康状態に関する情報の推定を行う推定部を備える推定装置と、を備え、
     前記推定部は、
      複数の被検者の各々から排出された過去検体から放出された過去サンプルガスに含まれる前記第1被検出ガスの濃度と前記第2被検出ガスの濃度との比を入力データとし、前記複数の被検者の各々によって前記過去検体が排出された時点での前記複数の被検者の各々の健康状態に関する情報を教師データとして学習が行われた学習済み推定モデルを用いて前記推定を行う、ガス検出システム。
    a gas detection device according to any one of claims 10 to 16;
    The ratio of the first gas to be detected and the second gas to be detected between the time when the gas is discharged from the subject and the time when the first sample gas is collected, calculated by the gas detection device an estimating device comprising an estimating unit that estimates information about the health condition of the subject who discharged the specimen based on the concentration;
    The estimation unit
    The ratio of the concentration of the first gas to be detected and the concentration of the second gas to be detected contained in the past sample gas emitted from the past specimen discharged from each of the plurality of subjects is used as input data, and the plurality of performing the estimation using a trained estimation model that has been trained using information about the health condition of each of the plurality of subjects at the time the subject expelled the past specimen as teacher data , gas detection system.
  18.  前記推定部は、複数の被検者の各々から排出された過去検体から放出された過去サンプルガスに含まれる前記第1被検出ガスの濃度と前記第2被検出ガスの濃度との比、および前記過去検体の質量を示す情報を入力データとし、前記複数の被検者の各々によって前記過去検体が排出された時点での前記複数の被検者の各々の健康状態に関する情報を教師データとして学習が行われた学習済み推定モデルを用いて前記推定を行う、請求項17に記載のガス検出システム。 The estimating unit calculates a ratio of the concentration of the first gas to be detected and the concentration of the second gas to be detected contained in the past sample gas emitted from the past specimen discharged from each of a plurality of subjects, and Learning using information indicating the mass of the past specimen as input data and information about the health condition of each of the plurality of subjects at the time when the past specimen was discharged by each of the plurality of subjects as teacher data. 18. The gas detection system of claim 17, wherein the estimation is performed using a trained estimation model on which
  19.  前記対象者の健康状態は、前記対象者の腸内細菌叢における菌の組成、および該対象者の腸内細菌叢における菌の代謝物の組成、のうち少なくともいずれか一方である、請求項17または18に記載のガス検出システム。 17. The health condition of the subject is at least one of composition of bacteria in the intestinal flora of the subject and composition of metabolites of bacteria in the intestinal flora of the subject. Or the gas detection system according to 18.
  20.  対象者から排出された検体から放出された第1サンプルガス、および、前記第1サンプルガスが放出された後に同検体から放出された第2サンプルガスをそれぞれ採取して、前記第1サンプルガスに含まれる第1被検出ガスおよび第2被検出ガスの濃度、および前記第2サンプルガスに含まれる前記第1被検出ガスの濃度をそれぞれ検出するガス検出装置と、
     前記第1サンプルガスから検出された前記第1被検出ガスの濃度と、前記第2サンプルガスから検出された前記第1被検出ガスの濃度とに基づいて算出される前記第1被検出ガスの濃度の変化に基づき、前記対象者から排出された前記検体から放出されてから前記第1サンプルガスが採取されるまでの間における前記第1被検出ガスおよび前記第2被検出ガスの濃度を算出するサーバ装置と、を備えるガス検出システム。
    A first sample gas emitted from a specimen discharged from a subject and a second sample gas emitted from the same specimen after the first sample gas was emitted are respectively sampled and converted into the first sample gas. a gas detection device for detecting concentrations of a first detected gas and a second detected gas contained and a concentration of the first detected gas contained in the second sample gas;
    of the first gas to be detected calculated based on the concentration of the first gas to be detected detected from the first sample gas and the concentration of the first gas to be detected detected from the second sample gas Concentrations of the first gas to be detected and the concentration of the second gas to be detected during a period from the release from the specimen discharged from the subject to the sampling of the first sample gas are calculated based on the change in concentration. A gas detection system comprising: a server device that
  21.  請求項10から16のいずれか1項に記載のガス検出装置としてコンピュータを機能させるための制御プログラムであって、前記検出部および前記算出部としてコンピュータを機能させるための制御プログラム。 A control program for causing a computer to function as the gas detection device according to any one of claims 10 to 16, the control program for causing the computer to function as the detection section and the calculation section.
  22.  請求項21に記載の制御プログラムを記録したコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium recording the control program according to claim 21.
PCT/JP2022/033855 2021-09-30 2022-09-09 Gas detection method, gas detection device, gas detection system, control program, and recording medium WO2023053902A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023550521A JPWO2023053902A1 (en) 2021-09-30 2022-09-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-161260 2021-09-30
JP2021161260 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023053902A1 true WO2023053902A1 (en) 2023-04-06

Family

ID=85782374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033855 WO2023053902A1 (en) 2021-09-30 2022-09-09 Gas detection method, gas detection device, gas detection system, control program, and recording medium

Country Status (2)

Country Link
JP (1) JPWO2023053902A1 (en)
WO (1) WO2023053902A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145809A (en) * 2015-01-30 2016-08-12 Toto株式会社 Biological information measurement system
JP2017067749A (en) * 2015-09-30 2017-04-06 Toto株式会社 Defecation gas recovery system
JP2017067538A (en) * 2015-09-29 2017-04-06 Toto株式会社 Biological information measurement system
JP2021092443A (en) * 2019-12-10 2021-06-17 京セラ株式会社 Gas detection device and gas detection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145809A (en) * 2015-01-30 2016-08-12 Toto株式会社 Biological information measurement system
JP2017067538A (en) * 2015-09-29 2017-04-06 Toto株式会社 Biological information measurement system
JP2017067749A (en) * 2015-09-30 2017-04-06 Toto株式会社 Defecation gas recovery system
JP2021092443A (en) * 2019-12-10 2021-06-17 京セラ株式会社 Gas detection device and gas detection method

Also Published As

Publication number Publication date
JPWO2023053902A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
JP6899084B2 (en) Biological information measurement system
JP5131646B2 (en) Biological information measuring device
KR101929916B1 (en) Biological information measurement system
KR20130016995A (en) System to diagnostic health using urine ans feces
JP6659689B2 (en) Gas sensor system and gas sensing method
US20160223549A1 (en) Biological information measurement system
JP2018109597A (en) Health monitoring system, health monitoring method and health monitoring program
JP6610941B2 (en) Biological information measurement system
JP4329123B2 (en) Urine analysis method
WO2023053902A1 (en) Gas detection method, gas detection device, gas detection system, control program, and recording medium
WO2016121247A1 (en) Biological information measurement system
WO2024075811A1 (en) Intestinal information estimation system, intestinal information estimation method, control program, and recording medium
JP2017062221A (en) Biological information measurement system
JP6906117B1 (en) Information processing equipment, odor measurement systems and programs
KR20080063704A (en) A system for providing result of urine analysis
JP6674623B2 (en) Biological information measurement system
JP6425089B2 (en) Biological information measurement system
WO2023145501A1 (en) Gas detection device and gas detection system
JP6390849B2 (en) Biological information measurement system
JP2022161298A (en) Gas detection device, gas detection method, control program, and recording medium
JP2016143171A (en) Biological information measurement system
JP2005172647A (en) Biological information measuring system at toilet seat
US20220412908A1 (en) Stress measurement system and stress measurement method
WO2023042786A1 (en) Excretion data management system and excretion data management method
WO2022221770A1 (en) Exhaled breath and liquid sample analyzer and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875774

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023550521

Country of ref document: JP