WO2024075723A1 - Drug administration device - Google Patents

Drug administration device Download PDF

Info

Publication number
WO2024075723A1
WO2024075723A1 PCT/JP2023/036051 JP2023036051W WO2024075723A1 WO 2024075723 A1 WO2024075723 A1 WO 2024075723A1 JP 2023036051 W JP2023036051 W JP 2023036051W WO 2024075723 A1 WO2024075723 A1 WO 2024075723A1
Authority
WO
WIPO (PCT)
Prior art keywords
semipermeable membrane
administration device
drug administration
main body
chamber
Prior art date
Application number
PCT/JP2023/036051
Other languages
French (fr)
Japanese (ja)
Inventor
吉川弘樹
密岡拓心
佐々木駿
有延学
岩瀬陽一郎
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2024075723A1 publication Critical patent/WO2024075723A1/en

Links

Images

Definitions

  • the present invention relates to a drug administration device that continuously and gradually releases a drug.
  • Osmotically driven drug administration devices have been proposed as a drug administration device that continuously administers drugs (for example, Patent No. 4176832).
  • a water-swellable substance sealed in a semipermeable membrane swells due to liquid components that have permeated the semipermeable membrane, gradually administering the drug into the living body.
  • the drug administration device described in Patent Publication No. 4176832 is driven by the inflow of water through a semipermeable membrane. Therefore, there is a problem that it does not operate reliably in places where there is little bodily fluid and it is difficult for water to flow into the semipermeable membrane. For example, in tissues such as the surface of the eye, the nasal cavity, the ear (middle ear or inner ear), the digestive tract, the endometrium, inside bones, inside tumors, the lungs, the bronchi, or subcutaneous fat, a sufficient amount of water is not supplied, making it difficult for the drug administration device to operate reliably.
  • the present invention aims to solve the above problems.
  • the first aspect of the disclosure below is a drug administration device that includes a main body having a hollow portion therein, a partition wall that divides the hollow portion into a first chamber and a second chamber, a drug contained in the first chamber, an ejection portion provided in the first chamber that ejects the drug, a pressure-generating agent contained in the second chamber that expands upon contact with water and pushes the partition wall toward the first chamber, a semipermeable membrane provided in the second chamber that seals the pressure-generating agent in the second chamber, and a water transport mechanism that guides water from a site away from the semipermeable membrane to the semipermeable membrane.
  • the drug administration device described in item (1) above can draw water into the semipermeable membrane using a water transport mechanism, allowing the drug to be continuously and slowly released even in areas with low bodily fluids.
  • the water transport mechanism may have a fine flow path that utilizes capillary action to guide water to the semipermeable membrane.
  • the drug administration device described in item (2) above is capable of drawing water into the semipermeable membrane through fine flow paths formed by cylinders, grooves, gaps between fibers, etc., enabling stable administration operations.
  • the microchannel may be covered with a membrane made of a hydrophilic material.
  • the drug administration device of item (3) above can increase the surface tension between the microchannel and the water, and can more effectively guide water to the semipermeable membrane.
  • the microchannel may include a microgroove formed on the outer circumferential surface of the main body.
  • the drug administration device of item (4) above allows for a compact water transport mechanism.
  • this drug administration device is easy to process, so the product can be provided at low cost.
  • the main body has a membrane holding part that holds the semipermeable membrane, the membrane holding part has an opening into which the semipermeable membrane is inserted and an end face that surrounds the opening, the semipermeable membrane has a small diameter part that is inserted into the opening and a large diameter part that is larger in diameter than the small diameter part, the large diameter part abuts against the end face of the main body, and one end of the fine groove may open at the end face of the main body.
  • the drug administration device described in item (5) above can efficiently draw water into the semipermeable membrane by connecting the ends of the fine grooves to the large diameter portion of the semipermeable membrane.
  • the main body portion has a long cylindrical shape
  • the ejection portion is formed at one end of the main body portion in the long direction
  • the semipermeable membrane is formed at the other end of the main body portion in the long direction
  • the fine grooves may extend from the other end of the outer circumferential surface to the one end.
  • the drug administration device of item (6) above can draw water into the semipermeable membrane if any part of the body portion in the range from one end to the other end can come into contact with water such as a body fluid.
  • the water transport mechanism may include a semipermeable membrane member extending from the semipermeable membrane.
  • the drug administration device of item (7) above can draw in water through the semipermeable membrane member, allowing for more stable administration operations.
  • the semipermeable membrane member may extend along the main body portion.
  • the drug administration device described in item (8) above can draw the water required for operation into the semipermeable membrane by bringing any part of the semipermeable membrane member into contact with a part rich in water (body fluid).
  • the semipermeable membrane member may be fixed to the main body portion.
  • the drug administration device described in item (9) above can draw the water required for operation into the semipermeable membrane if any part of the main body is in contact with an area rich in water (body fluid).
  • the semipermeable membrane may be made of any one of plasticized cellulose, hydroxyethyl methacrylate, polyurethane, polyamide, polyether-polyamide copolymer, and thermoplastic copolyester.
  • the drug administration device of item (10) above allows for more stable administration by drawing water into the semipermeable membrane through the hydrophilic material.
  • FIG. 1A is a cross-sectional view of a drug injection device according to a first embodiment
  • FIG. 1B is a plan view of the outer periphery of the drug injection device of FIG. 1A.
  • FIG. 2 is a cross-sectional view taken along line II-II of FIG. 1B.
  • FIG. 3A is a plan view of a pharmaceutical injection device according to a second embodiment
  • FIG. 3B is a plan view of a pharmaceutical injection device according to a third embodiment.
  • FIG. 4A is a plan view of a drug injection device according to a fourth embodiment
  • FIG. 4B is a cross-sectional view of a drug injection device according to a fifth embodiment.
  • FIG. 5 is a perspective view of a medicine injection device according to a sixth embodiment.
  • FIG. 6 is a cross-sectional view of the drug delivery device of FIG.
  • FIG. 7 is an explanatory diagram of the operation of the medicine injection device of FIG.
  • FIG. 8 is a perspective view of
  • the drug administration device 10 is used by being wholly or partially embedded inside a living body.
  • This drug administration device 10 can continuously administer liquid drug 12 contained therein for a relatively long period of time, such as several weeks to several years.
  • the drug administration device 10 can reduce the frequency of invasive drug administration, thereby reducing the burden on the patient.
  • the drug administration device 10 is an osmotic pressure-driven device.
  • the drug administration device 10 has a main body 14, a partition wall 16, an ejection section 18, a semipermeable membrane 20, a drug 12, a pressure-generating agent 22, and a water transport mechanism 24 (see FIG. 1B).
  • the main body 14 is formed as a straight tube having a cylindrical shape.
  • the main body 14 has an inner peripheral surface 14a that extends in the axial direction with a constant inner diameter.
  • the inner peripheral surface 14a is configured by a smoothly curved surface.
  • the main body 14 has a cavity 26 surrounded by the inner peripheral surface 14a.
  • the cavity 26 extends from one end 14b to the other end 14c in the axial direction of the main body 14, and opens at the one end 14b as a first opening 28 and at the other end 14c as a second opening 30.
  • the other end 14c of the main body 14 has an end surface 31 that surrounds the second opening 30.
  • the main body 14 is made of metal materials such as stainless steel, titanium alloy, aluminum alloy, etc., or various hard resin materials, etc.
  • the main body 14 may also be structured so that the partition wall 16, which will be described later, does not operate as a piston.
  • the main body 14 may adopt various shapes capable of accommodating the desired amount of drug 12 and pressure-generating agent 22.
  • the partition wall 16 is housed in the cavity 26.
  • the partition wall 16 is made of an elastic material such as rubber or elastomer.
  • the partition wall 16 is configured as a piston. That is, the partition wall 16 can move along the axial direction while sliding against the inner circumferential surface 14a of the main body 14 in a liquid-tight and airtight contact.
  • the partition wall 16 liquid-tightly and airtightly divides the cavity 26 into a first chamber 32 on the one end 14b side and a second chamber 34 on the other end 14c side.
  • the partition wall 16 moves toward the one end 14b side to reduce the volume of the first chamber 32, and expels the drug 12 housed in the first chamber 32 from the first chamber 32.
  • the partition wall 16 is not limited to a piston. If the shape of the main body 14 is not suitable for the movement of a piston, the partition wall 16 may be made of a soft and flexible film.
  • the ejection part 18 is located at one end 14b of the main body part 14 and closes the first opening 28.
  • the ejection part 18 is a cylindrical member housed in the hollow part 26.
  • the ejection part 18 has a plug 38 that abuts against the inner circumferential surface 14a of the main body part 14.
  • the plug 38 has a spiral ejection groove 38a on its outer periphery.
  • the ejection groove 38a connects the outside to the first chamber 32.
  • the ejection groove 38a forms a flow path between the plug 38 and the inner circumferential surface 14a for discharging the drug 12.
  • the ejection part 18 is not limited to the above example, and may be a needle tube 50 (see FIG. 6) or a tube.
  • the drug 12 is contained in the first chamber 32.
  • the drug 12 is contained in the first chamber 32 as a liquid (medicinal liquid).
  • the drug 12 is pushed out of the first chamber 32 as the partition wall 16 moves, and is administered into the living body through the ejection portion 18.
  • the semipermeable membrane 20 is located at the other end 14c of the main body 14 and blocks the second opening 30.
  • the other end 14c is a membrane holding portion that holds the semipermeable membrane 20.
  • the semipermeable membrane 20 seals the second chamber 34.
  • the semipermeable membrane 20 has a small diameter portion 20a that is inserted into the hollow portion 26 (second opening 30) of the main body 14 and a large diameter portion 20b that protrudes from the other end 14c of the main body 14.
  • the small diameter portion 20a is in close contact with the inner surface 14a of the main body 14.
  • the large diameter portion 20b has approximately the same diameter as the outer surface 14d of the main body 14. As shown in FIG. 1B, the large diameter portion 20b is connected to the groove portion 40 that constitutes the water transport mechanism 24.
  • the semipermeable membrane 20 is formed of a semipermeable membrane member that allows water to pass through while preventing the pressure generating agent 22 from passing through.
  • semipermeable membrane members include those made of plasticized cellulose, hydroxyethyl methacrylate, polyurethane, polyamide, polyether-polyamide copolymer, or thermoplastic copolyester.
  • the pressure generating agent 22 is sealed in the second chamber 34 as a powder (solid) or an aqueous solution.
  • the pressure generating agent 22 is a substance that expands in volume when it comes into contact with water, generating sufficient pressure inside the second chamber 34.
  • Examples of the pressure generating agent 22 include various substances that generate osmotic pressure.
  • Examples of the pressure generating agent 22 that generate osmotic pressure include table salt (sodium chloride), potassium chloride, magnesium chloride, calcium chloride, and highly water-absorbent polymers. Considering safety in the event of leakage, table salt (sodium chloride) may be used as the pressure generating agent 22.
  • table salt sodium chloride
  • the pressure generating agent 22 may also be a substance that reacts with water to generate gas.
  • the pressure-generating agent 22 increases the pressure and volume of the second chamber 34 by coming into contact with the water that has permeated the semipermeable membrane 20 and flowed into the second chamber 34.
  • the pressure-generating agent 22 generates pressure in the second chamber 34 that corresponds to, for example, the difference between the salt concentration in the body and the osmotic pressure in the second chamber 34.
  • a pressure difference occurs between the second chamber 34 and the first chamber 32, and this pressure difference creates a driving force that displaces the partition wall 16 toward one end 14b.
  • the water transport mechanism 24 of this embodiment is formed on the outer circumferential surface 14d of the main body 14.
  • the water transport mechanism 24 has a groove 40 that extends from one end 14b of the main body 14 to the other end 14c.
  • the groove 40 is formed by engraving the outer circumferential surface 14d of the main body 14.
  • Such a groove 40 can be formed, for example, by a laser processing method in which a laser beam is irradiated onto the outer circumferential surface 14d of the main body 14.
  • the groove 40 is a microchannel that has a width and depth at which surface tension acts, and that guides bodily fluids to the semipermeable membrane 20 by capillary action.
  • the capillary force surface tension increases as the width of the groove 40 becomes narrower, while the amount of water transported decreases if the width of the groove 40 becomes too narrow. Therefore, the width and depth of the groove 40 are appropriately set according to the administration speed of the drug 12.
  • the width and depth of the groove 40 can be, for example, 0.01 to 0.1 mm.
  • the groove 40 has a V-shaped cross section. Note that the cross-sectional shape of the groove 40 is not limited to the illustrated example, and may be rectangular or U-shaped. Note that in this embodiment, the number of grooves 40 constituting the water transport mechanism 24 does not need to be limited to one, and may be composed of multiple grooves 40.
  • the water transport mechanism 24 may also have multiple grooves 40 that intersect in a mesh shape.
  • the groove portion 40 may have a hydrophilic coating layer 42.
  • the hydrophilic coating layer 42 is formed so as to cover at least the inner surface of the groove portion 40.
  • materials for the hydrophilic coating layer 42 include phosphobetaine polymer, sulfobetaine polymer, and carboxybetaine polymer. Note that if the main body portion 14 is formed of a highly hydrophilic material, the hydrophilic coating layer 42 may not be formed on the groove portion 40.
  • the drug administration device 10 of this embodiment is configured as described above, and its operation will be explained below.
  • the drug administration device 10 is placed so as to straddle an area with a relatively small amount of bodily fluid and an area where a supply of bodily fluid is expected.
  • the semipermeable membrane 20 of the drug administration device 10 is placed in an area with a small amount of bodily fluid, at least a portion of the groove portion 40 constituting the water transport mechanism 24 comes into contact with the bodily fluid.
  • the bodily fluid in contact with the groove portion 40 spreads over the entire area of the groove portion 40 due to surface tension. As a result, the bodily fluid containing water is guided to the semipermeable membrane 20 through the groove portion 40.
  • the water from the bodily fluid in contact with the semipermeable membrane 20 passes through the semipermeable membrane 20 and flows into the second chamber 34, where it comes into contact with the pressure generating agent 22 (table salt) in the second chamber 34.
  • the pressure generating agent 22 table salt
  • a portion of the pressure generating agent 22 dissolves in water and expands, increasing the pressure inside the second chamber 34.
  • the partition wall 16 moves toward the one end 14b and presses the first chamber 32, causing the drug 12 contained in the first chamber 32 to be released from the discharge portion 18 into the inside of the living body. Water is slowly supplied to the second chamber 34 through the semipermeable membrane 20, so the drug administration device 10 can administer the drug 12 continuously for a long period of time.
  • the drug administration device 10 of this embodiment can administer the drug 12 by drawing water into the semipermeable membrane 20 through the water transport mechanism 24, even if the placement position of the semipermeable membrane 20 is located in a region with a relatively small amount of water (body fluid). Therefore, the drug administration device 10 of this embodiment can be implanted in a wide range of locations, and can administer the drug 12 to tissues with a small amount of water.
  • FIG. 3A A pharmaceutical injection device 10A according to the present embodiment is shown in Figure 3A.
  • the same components as those of the pharmaceutical injection device 10 described with reference to Figures 1A to 2 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the drug administration device 10A has a water transport mechanism 24A on the outer circumferential surface 14d of the main body 14.
  • the water transport mechanism 24A has a groove 40A formed on the outer circumferential surface 14d of the main body 14.
  • the groove 40A is formed as a fine groove having a rectangular, V-shaped or U-shaped cross section.
  • the groove 40A extends from one end 14b to the other end 14c of the main body 14 while spirally circling the outer circumferential surface 14d of the main body 14.
  • the groove 40A is connected to the semipermeable membrane 20.
  • the groove portion 40A in this embodiment is formed in a spiral shape, and therefore can come into contact with bodily fluids in various directions around the circumference of the main body portion 14. Therefore, the drug administration device 10A can operate more reliably because the groove portion 40A can draw water into the semipermeable membrane 20 from areas rich in bodily fluids throughout the entire circumference of the main body portion 14.
  • the number of groove portions 40A constituting the water transport mechanism 24A does not need to be limited to one, and may be composed of multiple groove portions 40A.
  • the water transport mechanism 24A may also have multiple groove portions 40A that intersect in a mesh pattern.
  • the drug administration device 10B of this embodiment has a tube 44 connected to the semipermeable membrane 20 as a water transport mechanism 24B.
  • the tube 44 has a fine flow path inside. An end of the tube 44 is connected to the semipermeable membrane 20, and a free end of the tube 44 extends to a site away from the semipermeable membrane 20.
  • the internal flow path of the tube 44 opens at the free end.
  • the water transport mechanism 24B can take in water such as body fluids from the free end of the tube 44 into the flow path.
  • the water taken in by the tube 44 is guided to the semipermeable membrane 20 by capillary force and is used to drive the partition wall 16.
  • the drug administration device 10B of this embodiment can draw water such as body fluids into the semipermeable membrane 20 from a site away from the main body 14.
  • the medicine administration device 10C of this embodiment has, as the water transport mechanism 24C, a cloth 46 connected to the semipermeable membrane 20.
  • the cloth 46 is made of hydrophilic fibers, and capillary force acts in the fine gaps between the fibers. Therefore, the cloth 46 can draw water into the semipermeable membrane 20 through the gaps in the fibers.
  • the drug administration device 10D of this embodiment has a semipermeable membrane member 48 as a water transport mechanism 24D.
  • the semipermeable membrane member 48 is made of the same material as the semipermeable membrane 20.
  • the semipermeable membrane member 48 and the semipermeable membrane 20 may be integrally connected to each other.
  • the semipermeable membrane member 48 extends from the other end 14c to the one end 14b of the main body 14.
  • the semipermeable membrane member 48 is joined to the outer peripheral surface 14d of the main body 14 by a joining means such as an adhesive.
  • the semipermeable membrane member 48 can increase the contact area with an area wetted with bodily fluids by increasing the surface area of the semipermeable membrane material including the semipermeable membrane 20.
  • the semipermeable membrane member 48 can also draw water into the semipermeable membrane 20 from areas distant from the semipermeable membrane 20. Therefore, the drug administration device 10D of this embodiment can be driven even in areas with little bodily fluid.
  • an osmotically driven drug administration device 10E that is placed on an ocular surface 80 (see FIG. 7) is shown.
  • the drug administration device 10E of this embodiment has a main body 14 that is annular in shape.
  • this drug administration device 10E is disposed so as to surround the periphery of the cornea 82, and is used in a state in which a needle tube 50 connected to a discharge portion 18 is inserted into an eyeball 84.
  • the main body 14 has one end 14b and the other end 14c connected to each other to form a ring.
  • the discharge section 18 attached to one end 14b of the main body 14 has a needle tube 50.
  • the needle tube 50 is located near the semipermeable membrane 20 attached to the other end 14c of the main body 14.
  • a partition wall 16 is arranged in the hollow section 26 inside the main body 14. The partition wall 16 liquid-tightly and air-tightly separates the hollow section 26 into a first chamber 32 communicating with the needle tube 50 and a second chamber 34 on the semipermeable membrane 20 side.
  • the first chamber 32 contains a liquid drug 12
  • the second chamber 34 contains a pressure-generating agent 22.
  • the drug administration device 10E of this embodiment is placed in the pocket-like space between the eyeball 84 and the eyelid so as to surround the cornea 82.
  • bodily fluids such as tears 86 come into contact with the semipermeable membrane 20
  • water flows into the second chamber 34 through the semipermeable membrane 20.
  • the pressure-generating agent 22 expands and operates to push the partition wall 16 towards the first chamber 32.
  • the drug administration device 10E of this embodiment In order for the drug administration device 10E of this embodiment to stably administer the drug 12, a sufficient amount of tear fluid 86 must be supplied to the semipermeable membrane 20. On the ocular surface 80, the tear fluid 86 secreted from the lacrimal gland 88 accumulates in the tear meniscus 92 located along the lower eyelid 90 of the eye. Therefore, from the viewpoint of stable operation of the drug administration device 10E, it is preferable to place the semipermeable membrane 20 in the tear meniscus 92.
  • the needle tube 50 is also placed near the tear meniscus 92.
  • the puncture site of the needle tube 50 is located near the tear meniscus 92. Leaving the needle tube 50 near the tear meniscus 92 for a long period of time increases the risk of infection due to bacteria being introduced into the eyeball 84.
  • the placement site of the semipermeable membrane 20 and the puncture site of the needle tube 50 are located away from the tear meniscus 92 near the upper eyelid 94.
  • a site away from the tear meniscus 92 has less tear fluid 86 on the ocular surface 80. Therefore, if the semipermeable membrane 20 and the needle tube 50 are placed in a position that reduces the risk of infection, there is a problem in that it becomes difficult to operate the drug administration device 10E.
  • the drug administration device 10E of this embodiment has a water transport mechanism 24E on the outer circumferential surface 14d of the main body 14, as shown in FIG. 5.
  • the water transport mechanism 24E has a groove 40B that extends annularly along the central axis of the annular main body 14.
  • the groove 40B is in contact with the semipermeable membrane 20. Similar to the groove 40 described with reference to FIG. 2, the groove 40B of this embodiment is a fine groove having a width at which capillary force acts. When the tear fluid 86 comes into contact with the groove 40B, the groove 40B can draw the tear fluid 86 into the entire groove 40B.
  • the drug administration device 10E of this embodiment can operate reliably even if the semipermeable membrane 20 and needle tube 50 are placed at a location away from the tear meniscus 92. In this way, the drug administration device 10E of this embodiment enables stable administration operations while reducing the risk of eye infection.
  • a medicine injection device 10F of this embodiment shown in FIG. 8 differs from the medicine injection device 10E described with reference to FIGS. 5 to 7 in a water transport mechanism 24F.
  • the water transport mechanism 24F of this embodiment has a semipermeable membrane member 48A.
  • the semipermeable membrane member 48A is a band-shaped member made of the same material as the semipermeable membrane 20, and is connected to the semipermeable membrane 20.
  • the semipermeable membrane member 48A may be formed integrally with the semipermeable membrane 20.
  • the semipermeable membrane member 48A is bonded to the outer peripheral surface 14d of the main body portion 14. In the illustrated example, the semipermeable membrane member 48A extends over a range of half the circumference of the main body portion 14, but it may also extend over the entire circumference of the main body portion 14.
  • this drug administration device 10F is attached to the eyeball 84 with the main body 14 surrounding the cornea 82.
  • the drug administration device 10F can draw the tear 86 from the tear meniscus 92 into the semipermeable membrane 20 through the semipermeable membrane member 48A. Therefore, the drug administration device 10F can position the puncture position of the semipermeable membrane 20 and the needle tube 50 away from the tear meniscus 92.
  • the drug administration device 10 may include both a semipermeable membrane member 48 and a groove portion 40 as the water transport mechanism 24.

Abstract

This drug administration device (10, 10A-10F) comprises: a body part (14) which has a hollow portion (26) therein; a partition wall (16) which divides the hollow portion (26) into a first chamber (32) and a second chamber (34); a drug (12) which is housed in the first chamber (32); a discharging part (18) which is provided to the first chamber (32) and which discharges the drug (12); a pressure-generating agent (22) which is housed in the second chamber (34) and which expands upon contact with water so as to push the partition wall (16) outward to the first chamber (32); a semipermeable membrane (20) which is provided to the second chamber (34) and which encapsulates the pressure-generating agent (22) within the second chamber (34); and a water transport mechanism (24, 24A-24F) which guides water to the semipermeable membrane (20) from an area apart from the semipermeable membrane (20).

Description

薬剤投与装置Drug administration device
 本発明は、薬剤を継続的に徐放する薬剤投与装置に関する。 The present invention relates to a drug administration device that continuously and gradually releases a drug.
 薬剤を継続的に投与する薬剤投与装置として、浸透圧駆動型の薬剤投与装置が提案されている(例えば、特許第4176832号公報)。この薬剤投与装置は、半透膜を透過した液体成分によって半透膜で封止された水膨潤性物質が膨潤して、薬剤を生体内に徐々に投与する。 Osmotically driven drug administration devices have been proposed as a drug administration device that continuously administers drugs (for example, Patent No. 4176832). In this drug administration device, a water-swellable substance sealed in a semipermeable membrane swells due to liquid components that have permeated the semipermeable membrane, gradually administering the drug into the living body.
 特許第4176832号公報に記載された薬剤投与装置は、半透膜から水が流入することで駆動する。そのため、体液が少なく、半透膜への水の流入が困難な箇所では、確実に動作しないという問題がある。例えば、眼表面、鼻腔、耳(中耳又は内耳)、消化管、子宮内膜、骨内部、腫瘍内部、肺、気管支、又は皮下脂肪等の組織では、十分な量の水が供給されず、薬剤投与装置は確実な動作が難しい。 The drug administration device described in Patent Publication No. 4176832 is driven by the inflow of water through a semipermeable membrane. Therefore, there is a problem that it does not operate reliably in places where there is little bodily fluid and it is difficult for water to flow into the semipermeable membrane. For example, in tissues such as the surface of the eye, the nasal cavity, the ear (middle ear or inner ear), the digestive tract, the endometrium, inside bones, inside tumors, the lungs, the bronchi, or subcutaneous fat, a sufficient amount of water is not supplied, making it difficult for the drug administration device to operate reliably.
 したがって、従来の浸透圧駆動型の薬剤投与装置は、埋植箇所が限定されるという問題がある。 Therefore, conventional osmotically driven drug administration devices have the problem that they can only be implanted in limited locations.
 本発明は、上記した課題を解決することを目的とする。 The present invention aims to solve the above problems.
 (1)以下の開示の第1の態様は、内部に空洞部を有する本体部と、前記空洞部を第1室と第2室とに仕切る仕切壁と、前記第1室に収容された薬剤と、前記第1室に設けられ、前記薬剤を吐出する吐出部と、前記第2室に収容され、水に接することで膨張して前記仕切壁を前記第1室に向けて押し出す圧発生剤と、前記第2室に設けられ、前記圧発生剤を前記第2室に封止する半透膜と、前記半透膜から離れた部位から水を前記半透膜に誘導する水輸送機構と、を備えた、薬剤投与装置である。 (1) The first aspect of the disclosure below is a drug administration device that includes a main body having a hollow portion therein, a partition wall that divides the hollow portion into a first chamber and a second chamber, a drug contained in the first chamber, an ejection portion provided in the first chamber that ejects the drug, a pressure-generating agent contained in the second chamber that expands upon contact with water and pushes the partition wall toward the first chamber, a semipermeable membrane provided in the second chamber that seals the pressure-generating agent in the second chamber, and a water transport mechanism that guides water from a site away from the semipermeable membrane to the semipermeable membrane.
 上記項目(1)の薬剤投与装置は、水輸送機構により半透膜に水を呼び込むことができるため、体液が少ない箇所でも薬剤を継続的に徐放できる。 The drug administration device described in item (1) above can draw water into the semipermeable membrane using a water transport mechanism, allowing the drug to be continuously and slowly released even in areas with low bodily fluids.
 (2)上記項目(1)記載の薬剤投与装置であって、前記水輸送機構は、毛細管現象を利用して前記半透膜に水を誘導する微細流路を有してもよい。 (2) In the drug administration device described in (1) above, the water transport mechanism may have a fine flow path that utilizes capillary action to guide water to the semipermeable membrane.
 上記項目(2)の薬剤投与装置は、筒状、溝状、繊維間の隙間等で構成される微細流路で半透膜に水を呼び込むことができ、安定した投与動作を可能とする。 The drug administration device described in item (2) above is capable of drawing water into the semipermeable membrane through fine flow paths formed by cylinders, grooves, gaps between fibers, etc., enabling stable administration operations.
 (3)上記項目(2)記載の薬剤投与装置であって、前記微細流路は、親水性材料の膜で覆われてもよい。 (3) In the drug administration device described in item (2) above, the microchannel may be covered with a membrane made of a hydrophilic material.
 上記項目(3)の薬剤投与装置は、微細流路と水との間の表面張力をより大きくすることができ、より効果的に水を半透膜に導くことができる。 The drug administration device of item (3) above can increase the surface tension between the microchannel and the water, and can more effectively guide water to the semipermeable membrane.
 (4)上記項目(2)又は(3)記載の薬剤投与装置であって、前記微細流路は、前記本体部の外周面に形成された微細溝を含んでもよい。 (4) In the drug administration device described in item (2) or (3) above, the microchannel may include a microgroove formed on the outer circumferential surface of the main body.
 上記項目(4)の薬剤投与装置は、水輸送機構の小型化が可能である。また、この薬剤投与装置は、加工も容易であるため、製品を安価に提供できる。 The drug administration device of item (4) above allows for a compact water transport mechanism. In addition, this drug administration device is easy to process, so the product can be provided at low cost.
 (5)上記項目(4)記載の薬剤投与装置であって、前記本体部は、前記半透膜を保持する膜保持部を有し、前記膜保持部は、前記半透膜が挿入された開口部と、前記開口部を囲む端面とを有し、前記半透膜は、前記開口部に挿入された小径部と、前記小径部よりも大径の大径部とを有し、前記大径部は、前記本体部の前記端面に当接し、前記微細溝の一端は、前記本体部の前記端面で開口してもよい。 (5) In the drug administration device described in item (4) above, the main body has a membrane holding part that holds the semipermeable membrane, the membrane holding part has an opening into which the semipermeable membrane is inserted and an end face that surrounds the opening, the semipermeable membrane has a small diameter part that is inserted into the opening and a large diameter part that is larger in diameter than the small diameter part, the large diameter part abuts against the end face of the main body, and one end of the fine groove may open at the end face of the main body.
 上記項目(5)記載の薬剤投与装置は、微細溝の端部が半透膜の大径部に接続することで、効率よく水を半透膜に呼び込むことができる。 The drug administration device described in item (5) above can efficiently draw water into the semipermeable membrane by connecting the ends of the fine grooves to the large diameter portion of the semipermeable membrane.
 (6)上記項目(5)記載の薬剤投与装置であって、前記本体部は、長尺な筒状の形状を有し、前記吐出部は前記本体部の長尺な方向の一端に形成され、前記半透膜は前記本体部の長尺な方向の他端に形成され、前記微細溝は、前記外周面の前記他端から前記一端に延在してもよい。 (6) In the drug administration device described in item (5) above, the main body portion has a long cylindrical shape, the ejection portion is formed at one end of the main body portion in the long direction, the semipermeable membrane is formed at the other end of the main body portion in the long direction, and the fine grooves may extend from the other end of the outer circumferential surface to the one end.
 上記項目(6)の薬剤投与装置は、本体部の一端から他端の範囲のいずれかの部分で体液等の水と接触することができれば、水を半透膜に呼び込むことができる。 The drug administration device of item (6) above can draw water into the semipermeable membrane if any part of the body portion in the range from one end to the other end can come into contact with water such as a body fluid.
 (7)上記項目(1)~(6)のいずれか1項に記載の薬剤投与装置であって、前記水輸送機構は、前記半透膜から延出した半透膜部材を含んでもよい。 (7) In the drug administration device described in any one of items (1) to (6) above, the water transport mechanism may include a semipermeable membrane member extending from the semipermeable membrane.
 上記項目(7)の薬剤投与装置は、半透膜部材を通じて水を呼び込むことができるため、より安定した投与動作を可能とする。 The drug administration device of item (7) above can draw in water through the semipermeable membrane member, allowing for more stable administration operations.
 (8)上記項目(7)記載の薬剤投与装置であって、前記半透膜部材は、前記本体部に沿って延在してもよい。 (8) In the drug administration device described in item (7) above, the semipermeable membrane member may extend along the main body portion.
 上記項目(8)記載の薬剤投与装置は、半透膜部材のいずれかの部位が水(体液)に富む部分に接することで、動作に必要な水を半透膜に呼び込むことができる。 The drug administration device described in item (8) above can draw the water required for operation into the semipermeable membrane by bringing any part of the semipermeable membrane member into contact with a part rich in water (body fluid).
 (9)上記項目(8)記載の薬剤投与装置であって、前記半透膜部材は、前記本体部に固定されてもよい。 (9) In the drug administration device described in item (8) above, the semipermeable membrane member may be fixed to the main body portion.
 上記項目(9)記載の薬剤投与装置は、本体部のいずれかの部位が水(体液)に富む部分に接していれば、動作に必要な水を半透膜に呼び込むことができる。 The drug administration device described in item (9) above can draw the water required for operation into the semipermeable membrane if any part of the main body is in contact with an area rich in water (body fluid).
 (10)上記項目(1)~(9)のいずれか1項に記載の薬剤投与装置であって、前記半透膜は、可塑化されたセルロース、ヒドロキシエチルメタクリレート、ポリウレタン、ポリアミド、ポリエーテル-ポリアミド共重合体、熱可塑性コポリエステル製のいずれか1つを含んでもよい。 (10) In the drug administration device described in any one of items (1) to (9) above, the semipermeable membrane may be made of any one of plasticized cellulose, hydroxyethyl methacrylate, polyurethane, polyamide, polyether-polyamide copolymer, and thermoplastic copolyester.
 上記項目(10)の薬剤投与装置は、上記の親水性の材料を通じて水を半透膜に呼び込むことでより安定した投与動作を可能とする。 The drug administration device of item (10) above allows for more stable administration by drawing water into the semipermeable membrane through the hydrophilic material.
図1Aは、第1実施形態に係る薬剤投与装置の断面図であり、図1Bは図1Aの薬剤投与装置の外周部の平面図である。FIG. 1A is a cross-sectional view of a drug injection device according to a first embodiment, and FIG. 1B is a plan view of the outer periphery of the drug injection device of FIG. 1A. 図2は、図1BのII-II線に沿った断面図である。FIG. 2 is a cross-sectional view taken along line II-II of FIG. 1B. 図3Aは、第2実施形態に係る薬剤投与装置の平面図であり、図3Bは第3実施形態に係る薬剤投与装置の平面図である。FIG. 3A is a plan view of a pharmaceutical injection device according to a second embodiment, and FIG. 3B is a plan view of a pharmaceutical injection device according to a third embodiment. 図4Aは、第4実施形態に係る薬剤投与装置の平面図であり、図4Bは第5実施形態に係る薬剤投与装置の断面図である。FIG. 4A is a plan view of a drug injection device according to a fourth embodiment, and FIG. 4B is a cross-sectional view of a drug injection device according to a fifth embodiment. 図5は、第6実施形態に係る薬剤投与装置の斜視図である。FIG. 5 is a perspective view of a medicine injection device according to a sixth embodiment. 図6は、図5の薬剤投与装置の断面図である。FIG. 6 is a cross-sectional view of the drug delivery device of FIG. 図7は、図5の薬剤投与装置の作用の説明図である。FIG. 7 is an explanatory diagram of the operation of the medicine injection device of FIG. 図8は、第7実施形態に係る薬剤投与装置の斜視図である。FIG. 8 is a perspective view of a medicine injection device according to the seventh embodiment.
(第1実施形態)
 図1Aに示される本実施形態に係る薬剤投与装置10は、その全体又は一部が生体の内部に埋め込まれて使用される。この薬剤投与装置10は、内部に収容した液状の薬剤12を数週間~数年と比較的長期間にわたって持続的に投与することができる。薬剤投与装置10は、侵襲をともなう薬剤投与の頻度を減らすことで、患者の負担を軽減できる。
First Embodiment
The drug administration device 10 according to this embodiment shown in Figure 1A is used by being wholly or partially embedded inside a living body. This drug administration device 10 can continuously administer liquid drug 12 contained therein for a relatively long period of time, such as several weeks to several years. The drug administration device 10 can reduce the frequency of invasive drug administration, thereby reducing the burden on the patient.
 薬剤投与装置10は、浸透圧駆動型の装置である。薬剤投与装置10は、本体部14と、仕切壁16と、吐出部18と、半透膜20と、薬剤12と、圧発生剤22と、水輸送機構24(図1B参照)とを有する。このうち、本体部14は、円筒形状を有する直管として形成されている。本体部14は、一定の内径で軸線方向に延びる内周面14aを有する。内周面14aは、滑らかな曲面によって構成されている。本体部14は、内周面14aに囲まれた空洞部26を有する。空洞部26は、本体部14の軸線方向の一端14bから他端14cに延在し、一端14bにおいて第1開口部28として開口し、他端14cにおいて第2開口部30として開口する。本体部14の他端14cは、第2開口部30を囲む端面31を有する。 The drug administration device 10 is an osmotic pressure-driven device. The drug administration device 10 has a main body 14, a partition wall 16, an ejection section 18, a semipermeable membrane 20, a drug 12, a pressure-generating agent 22, and a water transport mechanism 24 (see FIG. 1B). Of these, the main body 14 is formed as a straight tube having a cylindrical shape. The main body 14 has an inner peripheral surface 14a that extends in the axial direction with a constant inner diameter. The inner peripheral surface 14a is configured by a smoothly curved surface. The main body 14 has a cavity 26 surrounded by the inner peripheral surface 14a. The cavity 26 extends from one end 14b to the other end 14c in the axial direction of the main body 14, and opens at the one end 14b as a first opening 28 and at the other end 14c as a second opening 30. The other end 14c of the main body 14 has an end surface 31 that surrounds the second opening 30.
 本体部14は、ステンレス鋼、チタン合金、アルミ合金等の金属材料、又は各種硬質樹脂材料等によって形成される。 The main body 14 is made of metal materials such as stainless steel, titanium alloy, aluminum alloy, etc., or various hard resin materials, etc.
 なお、本体部14は、後述する仕切壁16をピストンとして動作させない構造とすることもできる。この場合には、本体部14は、所望量の薬剤12及び圧発生剤22を収容可能な様々な形状を採用できる。 The main body 14 may also be structured so that the partition wall 16, which will be described later, does not operate as a piston. In this case, the main body 14 may adopt various shapes capable of accommodating the desired amount of drug 12 and pressure-generating agent 22.
 仕切壁16は、空洞部26に収容される。仕切壁16は、ゴム又はエラストマー等弾性材料によって形成される。本実施形態の仕切壁16は、ピストンとして構成されている。すなわち、仕切壁16は、本体部14の内周面14aと液密及び気密に接触しつつ軸線方向に沿って内周面14aと摺動しながら移動することができる。仕切壁16は、空洞部26を一端14b側の第1室32と、他端14c側の第2室34とに液密及び気密に仕切る。仕切壁16は、一端14b側に移動することで第1室32の容積を減少させ、第1室32に収容された薬剤12を第1室32から排出させる。 The partition wall 16 is housed in the cavity 26. The partition wall 16 is made of an elastic material such as rubber or elastomer. In this embodiment, the partition wall 16 is configured as a piston. That is, the partition wall 16 can move along the axial direction while sliding against the inner circumferential surface 14a of the main body 14 in a liquid-tight and airtight contact. The partition wall 16 liquid-tightly and airtightly divides the cavity 26 into a first chamber 32 on the one end 14b side and a second chamber 34 on the other end 14c side. The partition wall 16 moves toward the one end 14b side to reduce the volume of the first chamber 32, and expels the drug 12 housed in the first chamber 32 from the first chamber 32.
 なお、仕切壁16は、ピストンに限定されない。本体部14の形状がピストンの動作に適さない場合には、仕切壁16は、柔軟で可撓性を有する膜で構成されてもよい。 The partition wall 16 is not limited to a piston. If the shape of the main body 14 is not suitable for the movement of a piston, the partition wall 16 may be made of a soft and flexible film.
 吐出部18は、本体部14の一端14bに位置し、第1開口部28を塞ぐ。吐出部18は、空洞部26に収容される円筒状の部材である。吐出部18は、本体部14の内周面14aに当接するプラグ38を有する。プラグ38は、外周にらせん状の吐出溝38aを有する。吐出溝38aは、外部と第1室32とを連通させる。吐出溝38aは、プラグ38と内周面14aとの間に薬剤12を流出させる流路を形成する。なお、吐出部18は上記の例に限定されず、針管50(図6参照)やチューブであってもよい。 The ejection part 18 is located at one end 14b of the main body part 14 and closes the first opening 28. The ejection part 18 is a cylindrical member housed in the hollow part 26. The ejection part 18 has a plug 38 that abuts against the inner circumferential surface 14a of the main body part 14. The plug 38 has a spiral ejection groove 38a on its outer periphery. The ejection groove 38a connects the outside to the first chamber 32. The ejection groove 38a forms a flow path between the plug 38 and the inner circumferential surface 14a for discharging the drug 12. Note that the ejection part 18 is not limited to the above example, and may be a needle tube 50 (see FIG. 6) or a tube.
 薬剤12は、第1室32に収容される。薬剤12は、液体(薬液)として第1室32に収容されている。薬剤12は、仕切壁16の移動にともなって第1室32から押し出され、吐出部18を通じて生体内部に投与される。 The drug 12 is contained in the first chamber 32. The drug 12 is contained in the first chamber 32 as a liquid (medicinal liquid). The drug 12 is pushed out of the first chamber 32 as the partition wall 16 moves, and is administered into the living body through the ejection portion 18.
 半透膜20は、本体部14の他端14cに位置し、第2開口部30を塞ぐ。他端14cは、半透膜20を保持する膜保持部である。半透膜20は、第2室34を封止する。半透膜20は、本体部14の空洞部26(第2開口部30)に挿入される小径部20aと、本体部14の他端14cから突出した大径部20bとを有する。小径部20aは、本体部14の内周面14aと密着する。大径部20bは、本体部14の外周面14dと略同じ直径を有する。図1Bに示すように、大径部20bは、水輸送機構24を構成する溝部40と接続する。半透膜20は、水を透過させる一方で、圧発生剤22の透過を阻止する半透膜部材によって形成される。半透膜部材としては、例えば、可塑化されたセルロース、ヒドロキシエチルメタクリレート、ポリウレタン、ポリアミド、ポリエーテル-ポリアミド共重合体、又は熱可塑性コポリエステル製のものが挙げられる。 The semipermeable membrane 20 is located at the other end 14c of the main body 14 and blocks the second opening 30. The other end 14c is a membrane holding portion that holds the semipermeable membrane 20. The semipermeable membrane 20 seals the second chamber 34. The semipermeable membrane 20 has a small diameter portion 20a that is inserted into the hollow portion 26 (second opening 30) of the main body 14 and a large diameter portion 20b that protrudes from the other end 14c of the main body 14. The small diameter portion 20a is in close contact with the inner surface 14a of the main body 14. The large diameter portion 20b has approximately the same diameter as the outer surface 14d of the main body 14. As shown in FIG. 1B, the large diameter portion 20b is connected to the groove portion 40 that constitutes the water transport mechanism 24. The semipermeable membrane 20 is formed of a semipermeable membrane member that allows water to pass through while preventing the pressure generating agent 22 from passing through. Examples of semipermeable membrane members include those made of plasticized cellulose, hydroxyethyl methacrylate, polyurethane, polyamide, polyether-polyamide copolymer, or thermoplastic copolyester.
 圧発生剤22は、粉末(固体)又は水溶液として第2室34に封入されている。圧発生剤22は、水と接触すると体積が膨張し、第2室34の内部に十分な圧力を発生させる物質が用いられる。圧発生剤22としては、例えば浸透圧を発生させる各種物質が挙げられる。浸透圧を発生させる圧発生剤22としては、例えば、食塩(塩化ナトリウム)、塩化カリウム、塩化マグネシウム、塩化カルシウム、及び高吸水性ポリマー等が挙げられる。漏洩時の安全性を考慮して、圧発生剤22は、食塩(塩化ナトリウム)を採用し得る。なお、圧発生剤22は、水と反応してガスを発生させる物質を用いることもできる。 The pressure generating agent 22 is sealed in the second chamber 34 as a powder (solid) or an aqueous solution. The pressure generating agent 22 is a substance that expands in volume when it comes into contact with water, generating sufficient pressure inside the second chamber 34. Examples of the pressure generating agent 22 include various substances that generate osmotic pressure. Examples of the pressure generating agent 22 that generate osmotic pressure include table salt (sodium chloride), potassium chloride, magnesium chloride, calcium chloride, and highly water-absorbent polymers. Considering safety in the event of leakage, table salt (sodium chloride) may be used as the pressure generating agent 22. Note that the pressure generating agent 22 may also be a substance that reacts with water to generate gas.
 圧発生剤22は、半透膜20を透過して第2室34に流入した水に接することで、第2室34の圧力及び容積を増加させる。圧発生剤22は、例えば体内の塩分濃度と第2室34内の浸透圧差に応じた圧力を第2室34に発生させる。その結果、第2室34と第1室32との間に圧力差が生じ、圧力差により、仕切壁16を一端14b側に向けて変位させる駆動力が生まれる。 The pressure-generating agent 22 increases the pressure and volume of the second chamber 34 by coming into contact with the water that has permeated the semipermeable membrane 20 and flowed into the second chamber 34. The pressure-generating agent 22 generates pressure in the second chamber 34 that corresponds to, for example, the difference between the salt concentration in the body and the osmotic pressure in the second chamber 34. As a result, a pressure difference occurs between the second chamber 34 and the first chamber 32, and this pressure difference creates a driving force that displaces the partition wall 16 toward one end 14b.
 図1Bに示されるように、本実施形態の水輸送機構24は本体部14の外周面14dに形成されている。水輸送機構24は、本体部14の一端14bから他端14cに延びた溝部40を有する。図2に示されるように、溝部40は本体部14の外周面14dを彫り込んで形成される。このような溝部40は、例えばレーザビームを本体部14の外周面14dに照射するレーザ加工法により形成できる。 As shown in FIG. 1B, the water transport mechanism 24 of this embodiment is formed on the outer circumferential surface 14d of the main body 14. The water transport mechanism 24 has a groove 40 that extends from one end 14b of the main body 14 to the other end 14c. As shown in FIG. 2, the groove 40 is formed by engraving the outer circumferential surface 14d of the main body 14. Such a groove 40 can be formed, for example, by a laser processing method in which a laser beam is irradiated onto the outer circumferential surface 14d of the main body 14.
 溝部40(微細流路)は、表面張力が働く幅及び深さを有し、毛細管現象によって体液を半透膜20に導く微細溝である。毛細管力(表面張力)は、溝部40の幅が狭くなるほど増大する一方で、溝部40の幅が狭くなりすぎると水の輸送量が低下する。したがって、溝部40の幅及び深さは、薬剤12の投与スピードに応じて適宜設定される。溝部40の幅及び深さは、例えば、0.01~0.1mmとすることができる。図示の例では、溝部40は、断面がV字形状を有する。なお、溝部40の断面形状は、図示の例に限定されず、矩形状又はU字状でもよい。なお、本実施形態において、水輸送機構24を構成する溝部40の本数は1本に限定される必要は無く、複数本の溝部40で構成されてもよい。また、水輸送機構24は、メッシュ状に交差する複数の溝部40を有してもよい。 The groove 40 (microchannel) is a microchannel that has a width and depth at which surface tension acts, and that guides bodily fluids to the semipermeable membrane 20 by capillary action. The capillary force (surface tension) increases as the width of the groove 40 becomes narrower, while the amount of water transported decreases if the width of the groove 40 becomes too narrow. Therefore, the width and depth of the groove 40 are appropriately set according to the administration speed of the drug 12. The width and depth of the groove 40 can be, for example, 0.01 to 0.1 mm. In the illustrated example, the groove 40 has a V-shaped cross section. Note that the cross-sectional shape of the groove 40 is not limited to the illustrated example, and may be rectangular or U-shaped. Note that in this embodiment, the number of grooves 40 constituting the water transport mechanism 24 does not need to be limited to one, and may be composed of multiple grooves 40. The water transport mechanism 24 may also have multiple grooves 40 that intersect in a mesh shape.
 また、図2に示されるように、溝部40は、親水コート層42を有してもよい。親水コート層42は、少なくとも溝部40の内表面を覆うように形成される。親水コート層42の材料としては、例えばホスホベタインポリマー、スルホベタインポリマー、カルボキシベタインポリマー等が挙げられる。なお、本体部14が親水性の高い材料で形成されている場合には、溝部40に親水コート層42が形成されなくてもよい。 Also, as shown in FIG. 2, the groove portion 40 may have a hydrophilic coating layer 42. The hydrophilic coating layer 42 is formed so as to cover at least the inner surface of the groove portion 40. Examples of materials for the hydrophilic coating layer 42 include phosphobetaine polymer, sulfobetaine polymer, and carboxybetaine polymer. Note that if the main body portion 14 is formed of a highly hydrophilic material, the hydrophilic coating layer 42 may not be formed on the groove portion 40.
 本実施形態の薬剤投与装置10は以上のように構成され、以下、その作用について説明する。 The drug administration device 10 of this embodiment is configured as described above, and its operation will be explained below.
 薬剤投与装置10は、比較的体液の少ない部位と、体液の供給が期待できる部位とを跨ぐように留置される。その結果、薬剤投与装置10は、半透膜20の部分が体液の少ない部位に配置された場合であっても、水輸送機構24を構成する溝部40の少なくとも一部が体液に接触する。溝部40と接した体液は、表面張力によって溝部40の全域に広がる。その結果、溝部40を通じて、水を含む体液が半透膜20に導かれる。半透膜20に接した体液は、その水が半透膜20を通過して、第2室34に流入し、第2室34の圧発生剤22(食塩)と接触する。これにより、圧発生剤22の一部が水に溶解することで膨張し、第2室34の内部の圧力を増加させる。仕切壁16は、第2室34の圧力の増加により一端14b側に移動して第1室32を押圧し、第1室32に収容された薬剤12を吐出部18から生体の内部に放出させる。第2室34への水の供給は、半透膜20を通じてゆっくりと行われるため、薬剤投与装置10は長期間、継続的に薬剤12を投与することができる。 The drug administration device 10 is placed so as to straddle an area with a relatively small amount of bodily fluid and an area where a supply of bodily fluid is expected. As a result, even if the semipermeable membrane 20 of the drug administration device 10 is placed in an area with a small amount of bodily fluid, at least a portion of the groove portion 40 constituting the water transport mechanism 24 comes into contact with the bodily fluid. The bodily fluid in contact with the groove portion 40 spreads over the entire area of the groove portion 40 due to surface tension. As a result, the bodily fluid containing water is guided to the semipermeable membrane 20 through the groove portion 40. The water from the bodily fluid in contact with the semipermeable membrane 20 passes through the semipermeable membrane 20 and flows into the second chamber 34, where it comes into contact with the pressure generating agent 22 (table salt) in the second chamber 34. As a result, a portion of the pressure generating agent 22 dissolves in water and expands, increasing the pressure inside the second chamber 34. When the pressure in the second chamber 34 increases, the partition wall 16 moves toward the one end 14b and presses the first chamber 32, causing the drug 12 contained in the first chamber 32 to be released from the discharge portion 18 into the inside of the living body. Water is slowly supplied to the second chamber 34 through the semipermeable membrane 20, so the drug administration device 10 can administer the drug 12 continuously for a long period of time.
 以上のように、本実施形態の薬剤投与装置10は、半透膜20の留置位置が比較的水(体液)の少ない部位に配置された場合であっても、水輸送機構24を通じて水を半透膜20に呼び込むことで、薬剤12の投与を行える。したがって、本実施形態の薬剤投与装置10は、埋植可能な部位が広がり、水の少ない組織に対して薬剤12の投与を行える。 As described above, the drug administration device 10 of this embodiment can administer the drug 12 by drawing water into the semipermeable membrane 20 through the water transport mechanism 24, even if the placement position of the semipermeable membrane 20 is located in a region with a relatively small amount of water (body fluid). Therefore, the drug administration device 10 of this embodiment can be implanted in a wide range of locations, and can administer the drug 12 to tissues with a small amount of water.
(第2実施形態)
 図3Aに本実施形態の薬剤投与装置10Aが示される。なお、本実施形態及び以下の薬剤投与装置10B~10Fの構成において、図1A~図2を参照しつつ説明した薬剤投与装置10と同様の構成については、同一符号を付してその詳細な説明は省略される。
Second Embodiment
A pharmaceutical injection device 10A according to the present embodiment is shown in Figure 3A. In the configuration of this embodiment and the following pharmaceutical injection devices 10B to 10F, the same components as those of the pharmaceutical injection device 10 described with reference to Figures 1A to 2 are denoted by the same reference numerals, and detailed description thereof will be omitted.
 薬剤投与装置10Aは、本体部14の外周面14dに、水輸送機構24Aを有する。本実施形態の水輸送機構24Aは、本体部14の外周面14dに形成された溝部40Aを有する。溝部40Aは、断面が矩形、V字状又はU字状の微細溝として形成されている。溝部40Aは、本体部14の外周面14dをらせん状に周回しながら、本体部14の一端14bから他端14cに向けて延びる。溝部40Aは、半透膜20に接続する。 The drug administration device 10A has a water transport mechanism 24A on the outer circumferential surface 14d of the main body 14. In this embodiment, the water transport mechanism 24A has a groove 40A formed on the outer circumferential surface 14d of the main body 14. The groove 40A is formed as a fine groove having a rectangular, V-shaped or U-shaped cross section. The groove 40A extends from one end 14b to the other end 14c of the main body 14 while spirally circling the outer circumferential surface 14d of the main body 14. The groove 40A is connected to the semipermeable membrane 20.
 本実施形態の溝部40Aは、らせん状に形成されているため、本体部14の周方向の様々な方向で体液と接することができる。したがって、薬剤投与装置10Aは、溝部40Aが本体部14の周方向の全域で体液に富む部位から水を半透膜20に呼び込めるため、より確実な動作を可能とする。なお、本実施形態において、水輸送機構24Aを構成する溝部40Aの本数は1本に限定される必要は無く、複数本の溝部40Aで構成されてもよい。また、水輸送機構24Aは、メッシュ状に交差する複数の溝部40Aを有してもよい。 The groove portion 40A in this embodiment is formed in a spiral shape, and therefore can come into contact with bodily fluids in various directions around the circumference of the main body portion 14. Therefore, the drug administration device 10A can operate more reliably because the groove portion 40A can draw water into the semipermeable membrane 20 from areas rich in bodily fluids throughout the entire circumference of the main body portion 14. Note that in this embodiment, the number of groove portions 40A constituting the water transport mechanism 24A does not need to be limited to one, and may be composed of multiple groove portions 40A. The water transport mechanism 24A may also have multiple groove portions 40A that intersect in a mesh pattern.
(第3実施形態)
 図3Bに示されるように、本実施形態の薬剤投与装置10Bは、水輸送機構24Bとして、半透膜20に接続されたチューブ44を有する。チューブ44は、内部に微細な流路を有する。チューブ44の端部は、半透膜20に接続されており、チューブ44の自由端は半透膜20から離れた部位に延びる。チューブ44は、内部の流路が自由端で開口する。水輸送機構24Bは、チューブ44の自由端から体液等の水を流路内に取り込むことができる。チューブ44に取り込まれた水は、毛細管力よって半透膜20に導かれ、仕切壁16の駆動に利用される。本実施形態の薬剤投与装置10Bは、本体部14から離れた部位から体液等の水を半透膜20に呼び込める。
Third Embodiment
As shown in FIG. 3B, the drug administration device 10B of this embodiment has a tube 44 connected to the semipermeable membrane 20 as a water transport mechanism 24B. The tube 44 has a fine flow path inside. An end of the tube 44 is connected to the semipermeable membrane 20, and a free end of the tube 44 extends to a site away from the semipermeable membrane 20. The internal flow path of the tube 44 opens at the free end. The water transport mechanism 24B can take in water such as body fluids from the free end of the tube 44 into the flow path. The water taken in by the tube 44 is guided to the semipermeable membrane 20 by capillary force and is used to drive the partition wall 16. The drug administration device 10B of this embodiment can draw water such as body fluids into the semipermeable membrane 20 from a site away from the main body 14.
(第4実施形態)
 図4Aに示されるように、本実施形態の薬剤投与装置10Cは、水輸送機構24Cとして、半透膜20に接続された布46を有する。布46は、親水性の繊維によって形成されており、繊維の間の微細な隙間に毛細管力が働く。したがって、布46は、繊維の隙間を通じて水を半透膜20に呼び込むことができる。
Fourth Embodiment
As shown in Fig. 4A, the medicine administration device 10C of this embodiment has, as the water transport mechanism 24C, a cloth 46 connected to the semipermeable membrane 20. The cloth 46 is made of hydrophilic fibers, and capillary force acts in the fine gaps between the fibers. Therefore, the cloth 46 can draw water into the semipermeable membrane 20 through the gaps in the fibers.
(第5実施形態)
 図4Bに示されるように、本実施形態の薬剤投与装置10Dは、水輸送機構24Dとして、半透膜部材48を有する。半透膜部材48は、半透膜20と同様の材料によって形成される。半透膜部材48と半透膜20とは一体的に繋がって形成されてもよい。半透膜部材48は、本体部14の他端14cから一端14bにまで延在する。この半透膜部材48は、接着剤等の接合手段により、本体部14の外周面14dに接合されている。
Fifth Embodiment
As shown in Fig. 4B, the drug administration device 10D of this embodiment has a semipermeable membrane member 48 as a water transport mechanism 24D. The semipermeable membrane member 48 is made of the same material as the semipermeable membrane 20. The semipermeable membrane member 48 and the semipermeable membrane 20 may be integrally connected to each other. The semipermeable membrane member 48 extends from the other end 14c to the one end 14b of the main body 14. The semipermeable membrane member 48 is joined to the outer peripheral surface 14d of the main body 14 by a joining means such as an adhesive.
 半透膜部材48は、半透膜20を含む半透膜材料の表面積を増やすことで、体液で湿潤した部位との接触面積を増やすことができる。そして、半透膜部材48は、半透膜20から離れた部位から、半透膜20に水を呼び込むことができる。したがって、本実施形態の薬剤投与装置10Dは、体液の少ない箇所でも駆動できる。 The semipermeable membrane member 48 can increase the contact area with an area wetted with bodily fluids by increasing the surface area of the semipermeable membrane material including the semipermeable membrane 20. The semipermeable membrane member 48 can also draw water into the semipermeable membrane 20 from areas distant from the semipermeable membrane 20. Therefore, the drug administration device 10D of this embodiment can be driven even in areas with little bodily fluid.
(第6実施形態)
 本実施形態では、眼表面80(図7参照)に留置される浸透圧駆動型の薬剤投与装置10Eが示される。本実施形態の薬剤投与装置10Eは、図5及び図6に示されるように、本体部14が円環状の形状を有する。このような薬剤投与装置10Eは、図7に示されるように、角膜82の周囲を取り囲むように配置され、吐出部18に接続された針管50を眼球84に穿刺した状態で使用される。
Sixth Embodiment
In this embodiment, an osmotically driven drug administration device 10E that is placed on an ocular surface 80 (see FIG. 7) is shown. As shown in FIG. 5 and FIG. 6, the drug administration device 10E of this embodiment has a main body 14 that is annular in shape. As shown in FIG. 7, this drug administration device 10E is disposed so as to surround the periphery of the cornea 82, and is used in a state in which a needle tube 50 connected to a discharge portion 18 is inserted into an eyeball 84.
 図6に示されるように、本体部14は、一端14bと他端14cとが互いに接続されてリングを形成する。本体部14の一端14bに取り付けられた吐出部18は、針管50を有する。針管50は、本体部14の他端14cに取り付けられた半透膜20の近傍に位置する。本体部14の内部の空洞部26には、仕切壁16が配置されている。仕切壁16は、空洞部26を針管50に連通する第1室32と、半透膜20側の第2室34とに液密及び気密に仕切る。第1室32には、液体状の薬剤12が封入されており、第2室34には圧発生剤22が封入されている。 As shown in FIG. 6, the main body 14 has one end 14b and the other end 14c connected to each other to form a ring. The discharge section 18 attached to one end 14b of the main body 14 has a needle tube 50. The needle tube 50 is located near the semipermeable membrane 20 attached to the other end 14c of the main body 14. A partition wall 16 is arranged in the hollow section 26 inside the main body 14. The partition wall 16 liquid-tightly and air-tightly separates the hollow section 26 into a first chamber 32 communicating with the needle tube 50 and a second chamber 34 on the semipermeable membrane 20 side. The first chamber 32 contains a liquid drug 12, and the second chamber 34 contains a pressure-generating agent 22.
 本実施形態の薬剤投与装置10Eは図7に示されるように、角膜82を取り囲むようにして眼球84と瞼との隙間のポケット状の空間に留置される。涙液86等の体液が半透膜20と接すると、半透膜20を通じて水が第2室34に流入する。その結果、圧発生剤22が膨張して仕切壁16を第1室32側に押し出すようにして動作する。 As shown in FIG. 7, the drug administration device 10E of this embodiment is placed in the pocket-like space between the eyeball 84 and the eyelid so as to surround the cornea 82. When bodily fluids such as tears 86 come into contact with the semipermeable membrane 20, water flows into the second chamber 34 through the semipermeable membrane 20. As a result, the pressure-generating agent 22 expands and operates to push the partition wall 16 towards the first chamber 32.
 ところで、本実施形態の薬剤投与装置10Eが安定して薬剤12を投与するためには、半透膜20に十分な涙液86が供給される必要がある。眼表面80において、涙腺88から分泌された涙液86は、目の下眼瞼90に沿って位置する涙液メニスカス92に溜まる。したがって、薬剤投与装置10Eの安定動作の観点からは、半透膜20を涙液メニスカス92に留置することが好ましい。 In order for the drug administration device 10E of this embodiment to stably administer the drug 12, a sufficient amount of tear fluid 86 must be supplied to the semipermeable membrane 20. On the ocular surface 80, the tear fluid 86 secreted from the lacrimal gland 88 accumulates in the tear meniscus 92 located along the lower eyelid 90 of the eye. Therefore, from the viewpoint of stable operation of the drug administration device 10E, it is preferable to place the semipermeable membrane 20 in the tear meniscus 92.
 ところが、薬剤投与装置10Eの半透膜20を涙液メニスカス92に配置すると、針管50も涙液メニスカス92の近傍に留置される。この場合には、針管50の穿刺部位が、涙液メニスカス92の近傍に位置することとなる。涙液メニスカス92近傍への長期間にわたる針管50の留置は、眼球84の内部への菌混入による感染リスクが高まるという問題がある。 However, when the semipermeable membrane 20 of the drug administration device 10E is placed at the tear meniscus 92, the needle tube 50 is also placed near the tear meniscus 92. In this case, the puncture site of the needle tube 50 is located near the tear meniscus 92. Leaving the needle tube 50 near the tear meniscus 92 for a long period of time increases the risk of infection due to bacteria being introduced into the eyeball 84.
 そのため、図7に示されるように、半透膜20の配置部位及び針管50の穿刺部位は、上眼瞼94の近くの涙液メニスカス92から離れた位置とすることが好ましい。ところが、このような涙液メニスカス92から離れた部位は、眼表面80の涙液86が少ない。そのため、感染リスクを低減できる位置に半透膜20及び針管50を留置すると、薬剤投与装置10Eの動作が難しくなるという問題がある。 Therefore, as shown in FIG. 7, it is preferable that the placement site of the semipermeable membrane 20 and the puncture site of the needle tube 50 are located away from the tear meniscus 92 near the upper eyelid 94. However, such a site away from the tear meniscus 92 has less tear fluid 86 on the ocular surface 80. Therefore, if the semipermeable membrane 20 and the needle tube 50 are placed in a position that reduces the risk of infection, there is a problem in that it becomes difficult to operate the drug administration device 10E.
 そこで、本実施形態の薬剤投与装置10Eは、図5に示されるように、本体部14の外周面14dに水輸送機構24Eを有する。水輸送機構24Eは、円環状の本体部14の中心軸線に沿って環状に延びる溝部40Bを有する。溝部40Bは、半透膜20に接している。図2を参照しつつ説明した溝部40と同様に、本実施形態の溝部40Bは毛細管力が働く幅を有する微細溝である。涙液86が溝部40Bに接すると、溝部40Bは涙液86を溝部40Bの全体に呼び込むことができる。 The drug administration device 10E of this embodiment has a water transport mechanism 24E on the outer circumferential surface 14d of the main body 14, as shown in FIG. 5. The water transport mechanism 24E has a groove 40B that extends annularly along the central axis of the annular main body 14. The groove 40B is in contact with the semipermeable membrane 20. Similar to the groove 40 described with reference to FIG. 2, the groove 40B of this embodiment is a fine groove having a width at which capillary force acts. When the tear fluid 86 comes into contact with the groove 40B, the groove 40B can draw the tear fluid 86 into the entire groove 40B.
 図7に示されるように、薬剤投与装置10Eが配置されると、本体部14の一部は、涙液メニスカス92の近傍に配置される。水輸送機構24E(図5参照)は、涙液メニスカス92で涙液86と接触することで、涙液86を半透膜20に呼び込む。したがって、本実施形態の薬剤投与装置10Eは、半透膜20及び針管50が涙液メニスカス92から離れた部位に留置された場合であっても、確実に動作できる。このように、本実施形態の薬剤投与装置10Eは、眼の感染リスクを減らしつつ、安定した投与動作を可能とする。 As shown in FIG. 7, when the drug administration device 10E is positioned, a portion of the main body 14 is positioned near the tear meniscus 92. The water transport mechanism 24E (see FIG. 5) comes into contact with the tear 86 at the tear meniscus 92, thereby drawing the tear 86 into the semipermeable membrane 20. Therefore, the drug administration device 10E of this embodiment can operate reliably even if the semipermeable membrane 20 and needle tube 50 are placed at a location away from the tear meniscus 92. In this way, the drug administration device 10E of this embodiment enables stable administration operations while reducing the risk of eye infection.
(第7実施形態)
 図8に示される本実施形態の薬剤投与装置10Fは、水輸送機構24Fにおいて図5~図7を参照しつつ説明した薬剤投与装置10Eと異なる。
Seventh Embodiment
A medicine injection device 10F of this embodiment shown in FIG. 8 differs from the medicine injection device 10E described with reference to FIGS. 5 to 7 in a water transport mechanism 24F.
 本実施形態の水輸送機構24Fは、半透膜部材48Aを有する。半透膜部材48Aは、半透膜20と同一の材料によって形成された帯状の部材であり、半透膜20に接続される。半透膜部材48Aは、半透膜20と一体的に形成されてもよい。半透膜部材48Aは、本体部14の外周面14dに接着されている。図示の例では半透膜部材48Aは、本体部14の半周分の範囲に延びているが、本体部14の全周に亘って延在してもよい。 The water transport mechanism 24F of this embodiment has a semipermeable membrane member 48A. The semipermeable membrane member 48A is a band-shaped member made of the same material as the semipermeable membrane 20, and is connected to the semipermeable membrane 20. The semipermeable membrane member 48A may be formed integrally with the semipermeable membrane 20. The semipermeable membrane member 48A is bonded to the outer peripheral surface 14d of the main body portion 14. In the illustrated example, the semipermeable membrane member 48A extends over a range of half the circumference of the main body portion 14, but it may also extend over the entire circumference of the main body portion 14.
 この薬剤投与装置10Fは、図7を参照しつつ説明したように、本体部14が角膜82の周囲を取り囲むようにして眼球84に取り付けられる。薬剤投与装置10Fは、半透膜部材48Aを通じて涙液メニスカス92の涙液86を半透膜20に呼び込むことができる。したがって、薬剤投与装置10Fは、半透膜20及び針管50の穿刺位置を、涙液メニスカス92から離れた位置に配置することができる。 As described with reference to FIG. 7, this drug administration device 10F is attached to the eyeball 84 with the main body 14 surrounding the cornea 82. The drug administration device 10F can draw the tear 86 from the tear meniscus 92 into the semipermeable membrane 20 through the semipermeable membrane member 48A. Therefore, the drug administration device 10F can position the puncture position of the semipermeable membrane 20 and the needle tube 50 away from the tear meniscus 92.
 なお、本発明は、上記した開示に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得る。例えば、薬剤投与装置10は、水輸送機構24として、半透膜部材48と、溝部40との両方を備えてもよい。 The present invention is not limited to the above disclosure, and various configurations may be adopted without departing from the gist of the present invention. For example, the drug administration device 10 may include both a semipermeable membrane member 48 and a groove portion 40 as the water transport mechanism 24.

Claims (10)

  1.  内部に空洞部を有する本体部と、
     前記空洞部を第1室と第2室とに仕切る仕切壁と、
     前記第1室に収容された薬剤と、
     前記第1室に設けられ、前記薬剤を吐出する吐出部と、
     前記第2室に収容され、水に接することで膨張して前記仕切壁を前記第1室に向けて押し出す圧発生剤と、
     前記第2室に設けられ、前記圧発生剤を前記第2室に封止する半透膜と、
     前記半透膜から離れた部位から水を前記半透膜に誘導する水輸送機構と、を備えた、薬剤投与装置。
    A main body having a hollow portion therein;
    a partition wall that divides the cavity into a first chamber and a second chamber;
    A drug contained in the first chamber;
    an ejection portion provided in the first chamber and configured to eject the medicine;
    a pressure-generating agent that is accommodated in the second chamber and expands when it comes into contact with water to push the partition wall toward the first chamber;
    a semipermeable membrane provided in the second chamber and sealing the pressure generating agent in the second chamber;
    A drug administration device comprising: a water transport mechanism that guides water from a site away from the semipermeable membrane to the semipermeable membrane.
  2.  請求項1記載の薬剤投与装置であって、前記水輸送機構は、毛細管現象を利用して前記半透膜に水を誘導する微細流路を有する、薬剤投与装置。 The drug administration device according to claim 1, wherein the water transport mechanism has a fine flow path that utilizes capillary action to guide water to the semipermeable membrane.
  3.  請求項2記載の薬剤投与装置であって、前記微細流路は、親水性材料の膜で覆われている、薬剤投与装置。 The drug administration device according to claim 2, wherein the microchannel is covered with a membrane made of a hydrophilic material.
  4.  請求項2又は3記載の薬剤投与装置であって、前記微細流路は、前記本体部の外周面に形成された微細溝を含む、薬剤投与装置。 The drug administration device according to claim 2 or 3, wherein the microchannel includes a microgroove formed on the outer circumferential surface of the main body.
  5.  請求項4記載の薬剤投与装置であって、
     前記本体部は、前記半透膜を保持する膜保持部を有し、
     前記膜保持部は、前記半透膜が挿入された開口部と、前記開口部を囲む端面とを有し、
     前記半透膜は、前記開口部に挿入された小径部と、前記小径部よりも大径の大径部とを有し、
     前記大径部は、前記本体部の前記端面に当接し、
     前記微細溝の一端は、前記本体部の前記端面で開口する、薬剤投与装置。
    5. The drug administration device according to claim 4,
    The main body portion has a membrane holding portion that holds the semipermeable membrane,
    The membrane holding portion has an opening into which the semipermeable membrane is inserted and an end surface surrounding the opening,
    The semipermeable membrane has a small diameter portion inserted into the opening and a large diameter portion having a diameter larger than that of the small diameter portion,
    The large diameter portion abuts against the end surface of the main body portion,
    A medicine administration device, wherein one end of the microgroove opens at the end face of the main body portion.
  6.  請求項5記載の薬剤投与装置であって、
     前記本体部は、長尺な筒状の形状を有し、
     前記吐出部は前記本体部の長尺な方向の一端に形成され、
     前記半透膜は前記本体部の長尺な方向の他端に形成され、
     前記微細溝は、前記外周面の前記他端から前記一端に延在する、薬剤投与装置。
    6. The drug administration device according to claim 5,
    The main body has a long cylindrical shape,
    The discharge portion is formed at one end of the main body portion in a longitudinal direction,
    The semipermeable membrane is formed at the other end of the main body in the longitudinal direction,
    The microgroove extends from the other end to the one end of the outer circumferential surface.
  7.  請求項1記載の薬剤投与装置であって、前記水輸送機構は、前記半透膜から延出した半透膜部材を含む、薬剤投与装置。 The drug administration device according to claim 1, wherein the water transport mechanism includes a semipermeable membrane member extending from the semipermeable membrane.
  8.  請求項7記載の薬剤投与装置であって、前記半透膜部材は、前記本体部に沿って延在する、薬剤投与装置。 The drug administration device according to claim 7, wherein the semipermeable membrane member extends along the main body portion.
  9.  請求項8記載の薬剤投与装置であって、前記半透膜部材は、前記本体部に固定されている、薬剤投与装置。 The drug administration device according to claim 8, wherein the semipermeable membrane member is fixed to the main body portion.
  10.  請求項1記載の薬剤投与装置であって、前記半透膜は、可塑化されたセルロース、ヒドロキシエチルメタクリレート、ポリウレタン、ポリアミド、ポリエーテル-ポリアミド共重合体、熱可塑性コポリエステル製のいずれか1つを含む、薬剤投与装置。 The drug administration device according to claim 1, wherein the semipermeable membrane is made of any one of plasticized cellulose, hydroxyethyl methacrylate, polyurethane, polyamide, polyether-polyamide copolymer, and thermoplastic copolyester.
PCT/JP2023/036051 2022-10-07 2023-10-03 Drug administration device WO2024075723A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-162014 2022-10-07
JP2022162014 2022-10-07

Publications (1)

Publication Number Publication Date
WO2024075723A1 true WO2024075723A1 (en) 2024-04-11

Family

ID=90608123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036051 WO2024075723A1 (en) 2022-10-07 2023-10-03 Drug administration device

Country Status (1)

Country Link
WO (1) WO2024075723A1 (en)

Similar Documents

Publication Publication Date Title
US5672167A (en) Controlled release osmotic pump
US5279608A (en) Osmotic pumps
US5257987A (en) Controlled release osmotic infusion system
JP4426594B2 (en) Liquid supply device
ES2402904T3 (en) Device and method for producing therapeutic foam
JP4401779B2 (en) Medical dosing system
JPS63260575A (en) Portable permeable injection apparatus controlled in release of drug
JP2000501967A (en) Drug capsule for needle-free injector and filling method thereof
JP2019523095A (en) Chemical injection device that can inject additional fluid after chemical injection is complete
JPH03218772A (en) Liquid outflow quantity control member and its production
JP2020533120A (en) Sliding syringe cap for separate filling and delivery
JP2023526352A (en) A medical scope that delivers therapeutic agents
WO2024075723A1 (en) Drug administration device
ES2246914T3 (en) OSMOTIC SUPPLY SYSTEM OF BENEFICIENT AGENT.
WO2024075724A1 (en) Medicine administration device
KR100472577B1 (en) Liquid supply apparatus
US20080154243A1 (en) Delivery device for a fluid
JP2004275466A (en) Medical solution injector
JP5631599B2 (en) Catheter and drug delivery device
JP2006223570A (en) Medical container
CN112153995B (en) Gas trap member for chemical solution injection device and chemical solution injection device including the same
JP2637579B2 (en) Balloon infuser
JP2019154982A (en) Medicine administration device
JP2021153848A (en) Treatment device
WO2021177217A1 (en) Hemostatic agent injection device