WO2024075588A1 - Multilayered film - Google Patents

Multilayered film Download PDF

Info

Publication number
WO2024075588A1
WO2024075588A1 PCT/JP2023/034853 JP2023034853W WO2024075588A1 WO 2024075588 A1 WO2024075588 A1 WO 2024075588A1 JP 2023034853 W JP2023034853 W JP 2023034853W WO 2024075588 A1 WO2024075588 A1 WO 2024075588A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
aluminum oxide
oxide layer
laminate
laminated
Prior art date
Application number
PCT/JP2023/034853
Other languages
French (fr)
Japanese (ja)
Inventor
奈津美 横田
敦史 山崎
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Publication of WO2024075588A1 publication Critical patent/WO2024075588A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes

Definitions

  • the present invention relates to a laminate film used in the packaging fields of foods, medicines, industrial products, etc. More specifically, the present invention relates to a gas barrier laminate film having an aluminum oxide layer and a protective layer, which, by controlling the physical properties of the film, can ultimately exhibit good gas barrier properties and adhesion.
  • Packaging materials used for food, medicines, etc. are required to have gas barrier properties, that is, properties that block gases such as oxygen and water vapor, in order to inhibit oxidation of proteins and fats and oils, preserve flavor and freshness, and maintain the efficacy of medicines.
  • gas barrier materials used for electronic devices and electronic components such as solar cells and organic electroluminescence (EL) devices require even higher gas barrier properties than packaging materials for food, etc.
  • gas barrier laminate films which have a thin metal film made of aluminum or a thin inorganic film made of inorganic oxides such as silicon oxide or aluminum oxide formed on the surface of a plastic base film.
  • inorganic oxides such as silicon oxide, aluminum oxide, or mixtures of these are widely used because they are transparent and allow the contents to be checked.
  • Silica Silicon oxide (hereafter referred to as silica) and aluminum oxide (hereafter sometimes referred to as alumina) are often used as materials for inorganic thin films.
  • silica which has good gas barrier properties, has a slightly brown color and is insufficient as a transparent gas barrier film.
  • the evaporation temperature of the raw material for alumina is high, and the evaporation rate during the deposition process is slow.
  • the film formation time is long, which reduces production efficiency and increases costs.
  • Patent Document 1 proposes a technology that suppresses the production of alumina hydroxide and improves hot water resistance by removing moisture contained in the reaction space where the oxidation reaction between evaporated aluminum and oxygen gas occurs during deposition.
  • Patent Document 1 proposes a technology that suppresses the production of alumina hydroxide and improves hot water resistance by removing moisture contained in the reaction space where the oxidation reaction between evaporated aluminum and oxygen gas occurs during deposition.
  • Patent Document 2 also proposes a technology that allows the gas barrier properties to be maintained even after bending by specifying the depth ratio of SiOH and Si in the inorganic layer.
  • the inventors have found that alumina hydroxide is formed near the interface between the plastic film and the alumina vapor deposition, resulting in a problem of reduced moist heat resistance.
  • the present invention aims to provide a gas barrier film having an alumina layer with excellent moist heat resistance.
  • the inventors discovered that by carefully examining the plasma treatment and thin film thickness during the formation of the aluminum oxide layer, it is possible to provide a gas barrier film with moisture and heat resistance.
  • the present invention comprises the following: (1) A laminate film having gas barrier properties, comprising a base film and an aluminum oxide layer laminated on at least one side of the base film, and characterized in that the laminate film satisfies the following requirements (A) and (B): (A) When the aluminum oxide layer is etched from the surface side by time-of-flight secondary ion mass spectrometry (TOF-SIMS), the position at which the intensity of the fragment ion of mass number 102 (Al 2 O 3 ) is 80% of the maximum intensity is defined as the interface with the substrate film, and at that interface, the ratio b/a of the intensity a of mass number 102 (derived from Al 2 O 3 ) to the intensity b of mass number 119 (derived from Al 2 O 4 H) is 0.10 or less.
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • a 15 ⁇ m biaxially oriented nylon film and a 70 ⁇ m unoriented polypropylene film are laminated by a dry lamination method using a polyurethane-based two-component curing adhesive applied to the surface of the aluminum oxide layer of the laminated film so that the thickness after drying is 4 ⁇ m, and the film is aged at a temperature of 40° C. for 4 days and then subjected to a wet heat treatment at 130° C. for 30 minutes. After this, the water-exposed laminate strength is 1.5 N/15 mm or more and the water vapor permeability is 2.5 g/ m2 ⁇ day or less.
  • the present invention regardless of the surface condition of the substrate, by introducing oxygen gas when forming the aluminum oxide layer or by making the thin film layer thicker and increasing the energy of the thin film itself, it is possible to provide a gas barrier film with excellent resistance to moist heat without forming aluminum hydroxide near the substrate film interface.
  • the laminated film of the present invention is a laminated film comprising a substrate film and an aluminum oxide layer laminated on at least one side of the substrate film, and when etching is performed from the surface side of the aluminum oxide layer by time-of-flight secondary ion mass spectrometry (TOF-SIMS), the position at which the intensity of the fragment ion of mass number 102 (Al 2 O 3 ) is 80% of the maximum intensity is defined as the interface with the substrate film, and at the interface, the intensity a of the fragment ion of mass number 102 (derived from Al 2 O 3 ) and the intensity b of the fragment ion of mass number 119 (derived from Al 2 O 4 and the ratio b/a of the strength b of the aluminum oxide layer of the laminated film to the strength b of the aluminum oxide layer of the laminated film (derived from H) is 0.10 or less, and a 15 ⁇ m biaxially oriented nylon film and a 70 ⁇ m unoriented polypropylene film are laminated by a dry
  • the plastic substrate film will be described, and then the aluminum oxide layer and protective layer, and other layers to be laminated thereon will be described.
  • the substrate film used in the present invention may be, for example, a stretched film obtained by melt-extruding a plastic and, if necessary, stretching the plastic in the longitudinal direction (MD direction) and/or the transverse direction (TD direction), cooling, and heat setting.
  • MD direction longitudinal direction
  • TD direction transverse direction
  • a biaxially stretched film stretched in the longitudinal direction and the transverse direction is preferred.
  • plastics examples include polyamides such as nylon 4.6, nylon 6, nylon 6.6, and nylon 12; polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene-2,6-naphthalate; polyolefins such as polyethylene, polypropylene, and polybutene; as well as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, wholly aromatic polyamide, polyamideimide, polyimide, polyetherimide, polysulfone, polystyrene, and polylactic acid.
  • polyesters are preferred in terms of heat resistance, dimensional stability, and transparency, and in particular polyethylene terephthalate and copolymers obtained by copolymerizing polyethylene terephthalate with other components are preferred.
  • Plastic resins may be made from biomass-derived or recycled materials.
  • the base film can be of any thickness depending on the desired purpose and application, such as mechanical strength and transparency. There are no particular limitations on the thickness, but a thickness of 5 to 250 ⁇ m is usually recommended, and when used as a packaging material, a thickness of 10 to 60 ⁇ m is desirable. From the viewpoints of handling during processing, post-processing, and machine costs, the width of the base film is preferably 1000 mm or more and 5,000 mm or less, more preferably 3,000 mm or less, and even more preferably 2,000 mm or less. There are no particular limitations on the transparency of the base film, but when used as a packaging material requiring transparency, it is desirable for the film to have a light transmittance of 50% or more.
  • the base film may be a monolayer film made of one type of plastic, or a laminated film in which two or more types of plastic films are laminated.
  • the type of laminated film, the number of layers, the lamination method, etc. are not particularly limited, and can be arbitrarily selected from known methods depending on the purpose.
  • the base film may be subjected to surface treatments such as corona discharge treatment, glow discharge, flame treatment, surface roughening treatment, etc., as long as they do not impair the purpose of the present invention, and may also be subjected to known anchor coat treatment, printing, decoration, etc.
  • the laminate film of the present invention has an aluminum oxide layer on the substrate film.
  • the thickness of the aluminum oxide layer is usually 1 to 100 nm, preferably 3 to 50 nm, and more preferably 5 to 30 nm. If the thickness of the aluminum oxide layer is less than 1 nm, it may be difficult to obtain satisfactory gas barrier properties. On the other hand, even if the thickness is made excessively thick, exceeding 100 nm, the corresponding improvement in gas barrier properties cannot be obtained, and it is actually disadvantageous in terms of flex resistance and manufacturing costs.
  • any known deposition method may be used, such as physical deposition methods (PVD methods) such as vacuum deposition, sputtering, and ion plating, or chemical deposition (CVD).
  • PVD methods physical deposition methods
  • CVD chemical deposition
  • a typical method for forming an aluminum oxide layer is described below.
  • PVD methods physical deposition methods
  • aluminum is preferably used as the deposition raw material.
  • Particles are usually used as these deposition raw materials, and in this case, it is desirable that the size of each particle is large enough that the pressure during deposition does not change, and the preferred particle diameter is 1 mm to 5 mm.
  • Heating can be performed by resistance heating, high-frequency induction heating, electron beam heating, laser heating, or other methods.
  • oxygen is preferable as a reactive gas, and it is also possible to introduce nitrogen, hydrogen, argon, carbon dioxide, water vapor, etc., or to use means such as adding ozone or ion assist.
  • the film formation conditions can be changed arbitrarily, such as applying a bias to the deposition target (laminated film to be subjected to deposition) or heating or cooling the deposition target.
  • the deposition material, reaction gas, bias of the deposition target, heating/cooling, etc. can be changed in the same way when using sputtering or CVD methods.
  • a plasma treatment may be carried out before forming the thin film layer.
  • Known pretreatment methods such as bipolar sputtering, magnetron sputtering, DC (direct current) sputtering, RF (radio frequency) sputtering, dual magnetron, hollow cathode, hollow anode, etc. may be appropriately adopted.
  • an atmospheric gas is required for discharging, and oxygen is most preferable, but nitrogen, hydrogen, carbon dioxide, etc. may also be introduced.
  • the amount of the introduced gas is preferably 500 sccm or more, more preferably 750 sccm or more, and even more preferably 1000 sccm or more. If it is less than 500 sccm, plasma discharge does not occur.
  • the plasma output is preferably 15 A or more, more preferably 20 A or more, and even more preferably 25 A or more. If it is less than 15 A, plasma discharge does not occur. It is preferable to combine all of the above-mentioned preferable types of gases to be introduced, amounts of gases to be introduced, and plasma output.
  • Time-of-flight secondary ion mass spectrometry is one method for analyzing aluminum oxide layers.
  • the surface of the aluminum oxide layer on the substrate film is etched with sputtered ions, and primary ions are irradiated onto the area, and secondary ions generated by collisions between the ions and the solid surface are detected by a mass spectrometer. By repeating etching and detection, information on the depth direction can be obtained.
  • fragment ions with mass numbers of 86 (Al 2 O 2 ), 102 (Al 2 O 3 ), 118 (Al 2 O 4 ), and 145 (Al 3 O 4 ) that can be assumed to be derived from Al oxide are detected.
  • fragment ions with mass numbers of 103 (Al 2 O 3 H) and 119 (Al 2 O 4 H) that can be assumed to be derived from Al hydroxide are detected.
  • the fragment ions derived from the complete oxide of Al detected near the surface of the aluminum oxide layer attenuate as they approach the interface with the substrate film.
  • the inventors have found that the position where the maximum intensity of the fragment ion with mass number 102 (Al 2 O 3 ), which is representative of the complete oxide of Al, becomes 80% when etching is performed from the thin film surface is defined as the interface with the substrate film, and that the intensity ratio between the Al hydroxide and the Al oxide, which have a mass number difference of 17, at that portion can be correlated with the moist heat resistance.
  • the ratio b/a of the intensity a of mass number 102 ( derived from Al2O3 ) to the intensity b of mass number 119 (derived from Al2O4H ) is preferably 0.10 or less, more preferably 0.80 or less, and even more preferably 0.60 or less. If it is 0.10 or less, there is almost no Al hydroxide in the vicinity of the interface, and water cannot be present at the interface when a wet heat treatment is performed, improving adhesion.
  • a protective layer on the aluminum oxide layer.
  • the aluminum oxide layer laminated on the plastic film is not a completely dense film, but has minute defects scattered therein.
  • a protective layer by applying a specific resin composition for protective layer, which will be described later, on the aluminum oxide layer, the resin in the resin composition for protective layer penetrates into the defective parts of the aluminum oxide layer, resulting in an effect of stabilizing the gas barrier properties.
  • the gas barrier performance of the laminated film is also greatly improved.
  • the coating amount of the protective layer is preferably 0.05 to 0.60 g/m 2. This reduces unevenness and defects in the coating due to uniformity, while enhancing adhesion due to the anchor effect. In addition, the cohesive force of the protective layer itself is improved, and the adhesion between the aluminum oxide layer and the protective layer is strengthened, and water resistance can also be enhanced.
  • the coating amount of the protective layer is preferably 0.08 g/m 2 or more, more preferably 0.10 g/m 2 or more, and even more preferably 0.15 g/m 2 or more, and is preferably 0.50 g/m 2 or less, more preferably 0.45 g/m 2 or less, and even more preferably 0.40 g/m 2 or less.
  • the coating amount of the protective layer exceeds 0.60 g/m 2 , the gas barrier property is improved, but the cohesive force inside the protective layer becomes insufficient, and adhesion may decrease. In addition, unevenness or defects may occur in the appearance of the coat, and gas barrier property and adhesion after wet heat treatment may not be fully exhibited. On the other hand, if the thickness of the protective layer is less than 0.10 g/m 2 , sufficient gas barrier properties, interlayer adhesion, and ink permeability may not be obtained.
  • a solvent-dispersed resin As the component of the protective layer, either a solvent-dispersed resin or a water-dispersed resin may be used.
  • a solvent-dispersed resin is preferred for improving adhesion to the aluminum oxide layer.
  • a resin composed of a polyester polyol component obtained by reacting a dicarboxylic acid with a polyhydric alcohol, and a polyisocyanate component is preferred.
  • polyester component is obtained by reacting a polyvalent carboxylic acid with a polyhydric alcohol.
  • Polycarboxylic acids include aromatic polycarboxylic acids, alicyclic polycarboxylic acids, aliphatic polycarboxylic acids, etc. From the viewpoint of gas barrier properties, aromatic polycarboxylic acids are preferred. Examples include orthophthalic acid, isophthalic acid, terephthalic acid, 1,2-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, anthracene-1,2-dicarboxylic acid, and anthraquinone-2,3-dicarboxylic acid.
  • glycols ranging from low molecular weight to high molecular weight can be used, but from the standpoint of gas barrier properties and flexibility due to the amorphous portion, low molecular weight glycols such as alkylene glycols (e.g., linear or branched C2-10 alkylene glycols such as ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, pentanediol, hexanediol, neopentyl glycol, heptanediol, octanediol, etc.), (poly)oxy C2-4 alkylene glycols (diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, etc.) are used.
  • alkylene glycols e.g., linear or branched C2-10 alkylene glycols such as ethylene glycol, propylene glyco
  • Preferred glycol components are C2-8 polyol components [e.g., C2-6 alkylene glycol (particularly, ethylene glycol, 1,2- or 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol), etc.], di- or trioxy C2-3 alkylene glycol (diethylene glycol, triethylene glycol, dipropylene glycol, etc.), and particularly preferred diol components are C2-8 alkylene glycol (particularly, C2-6 alkylene glycol).
  • C2-8 polyol components e.g., C2-6 alkylene glycol (particularly, ethylene glycol, 1,2- or 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol), etc.
  • di- or trioxy C2-3 alkylene glycol diethylene glycol,
  • diol components can be used alone or in combination of two or more.
  • low molecular weight diol components such as aromatic diols (e.g., bisphenol A, bishydroxyethyl terephthalate, catechol, resorcinol, hydroquinone, 1,3- or 1,4-xylylenediol or mixtures thereof, etc.) and alicyclic diols (e.g., hydrogenated bisphenol A, xylylenediol, cyclohexanediol, cyclohexanedimethanol, etc.) may be used in combination.
  • aromatic diols e.g., bisphenol A, bishydroxyethyl terephthalate, catechol, resorcinol, hydroquinone, 1,3- or 1,4-xylylenediol or mixtures thereof, etc.
  • alicyclic diols e.g., hydrogenated bisphenol A, xylylenediol
  • trifunctional or higher polyol components such as glycerin, trimethylolethane, trimethylolpropane, polyester polyol, polycarbonate polyol, and polyether polyol may also be used in combination.
  • the polyol component preferably contains at least a C2-8 polyol component (especially a C2-6 alkylene glycol).
  • the polyisocyanate component includes aromatic polyisocyanates, alicyclic polyisocyanates, aliphatic polyisocyanates, etc.
  • a diisocyanate compound is usually used as the polyisocyanate compound.
  • aromatic diisocyanates include tolylene diisocyanate (2,4- or 2,6-tolylene diisocyanate or a mixture thereof) (TDI), phenylene diisocyanate (m-, p-phenylene diisocyanate or a mixture thereof), 4,4'-diphenyl diisocyanate, 1,5-naphthalene diisocyanate (NDI), diphenylmethane diisocyanate (4,4'-, 2,4'-, or 2,2'-diphenylmethane diisocyanate or a mixture thereof) (MDI), 4,4'-toluidine diisocyanate (TODI), 4,4'-diphenyl ether diisocyanate, etc.
  • TDI tolylene diisocyanate (2,4- or 2,6-tolylene diisocyanate or a mixture thereof)
  • NDI 1,5-naphthalene diisocyanate
  • MDI 4,4'-toluidine diiso
  • aromatic aliphatic diisocyanates examples include xylylene diisocyanate (1,3- or 1,4-xylylene diisocyanate or a mixture thereof) (XDI), tetramethyl xylylene diisocyanate (1,3- or 1,4-tetramethyl xylylene diisocyanate or a mixture thereof) (TMXDI), ⁇ , ⁇ '-diisocyanate-1,4-diethylbenzene, etc.
  • XDI xylylene diisocyanate (1,3- or 1,4-xylylene diisocyanate or a mixture thereof)
  • TXDI tetramethyl xylylene diisocyanate
  • ⁇ , ⁇ '-diisocyanate-1,4-diethylbenzene etc.
  • alicyclic diisocyanates examples include 1,3-cyclopentene diisocyanate, cyclohexane diisocyanate (1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate), 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorodiisocyanate, IPDI), methylene bis(cyclohexyl isocyanate) (4,4'-, 2,4'-, or 2,2'-methylene bis(cyclohexyl isocyanate)) (hydrogenated MDI), methylcyclohexane diisocyanate (methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate), bis(isocyanatomethyl)cyclohexane (1,3- or 1,4-bis(isocyanatomethyl)cyclohexane or a mixture thereof)
  • aliphatic diisocyanates examples include trimethylene diisocyanate, 1,2-propylene diisocyanate, butylene diisocyanate (tetramethylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate), hexamethylene diisocyanate, pendanthemethylene diisocyanate, 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate, 2,6-diisocyanate methyl caferate, etc.
  • trimethylene diisocyanate 1,2-propylene diisocyanate
  • butylene diisocyanate tetramethylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate
  • hexamethylene diisocyanate pendanthemethylene diisocyanate
  • a urethane resin is obtained by reacting the polyester component (A) with the polyisocyanate component (B).
  • the weight ratio of the polyester component to the polyisocyanate component is 9:1 to 1:9 on a solids basis. It is preferably 8:2 to 2:8, and more preferably 6:4 to 4:6.
  • the resin composition for the protective layer of the present invention preferably contains a silane coupling agent as described below, but various additives may be added as necessary to the extent that the gas barrier properties are not impaired.
  • additives include layered inorganic compounds, stabilizers (antioxidants, heat stabilizers, ultraviolet absorbers, etc.), plasticizers, antistatic agents, lubricants, antiblocking agents, colorants, fillers, crystal nucleating agents, etc.
  • Silane coupling agents are effective in improving the adhesion of the protective layer to the aluminum oxide layer.
  • silane coupling agents include hydrolyzable alkoxysilane compounds, such as halogen-containing alkoxysilanes (chloro C2-4 alkyl tri C1-4 alkoxysilanes such as 2-chloroethyl trimethoxysilane, 2-chloroethyl triethoxysilane, 3-chloropropyl trimethoxysilane, and 3-chloropropyl triethoxysilane), alkoxysilanes having epoxy groups [glycidyloxy C2-4 alkyl tri C1-4 alkoxysilanes such as 2-glycidyloxyethyl trimethoxysilane, 2-glycidyloxyethyl triethoxysilane, 3-glycidyloxypropyl trimethoxysilane, and 3-glycidyloxypropyl triethoxysilane, glycid
  • alkoxy silanes having amino groups [amino C2-4 alkyl tri C1-4 alkoxy silanes such as 2-aminoethyl trimethoxy silane, 3-aminopropyl trimethoxy silane, 3-aminopropyl triethoxy silane, etc., amino di C2-4 alkyl di C1-4 alkoxy silanes such as 3-aminopropyl methyl dimethoxy silane, 3-aminopropyl methyl diethoxy silane, etc., 2-
  • the content of the silane coupling agent in the protective layer is 5.0% by weight or less, preferably 2.0 to 4.5% by weight, and more preferably about 3.0 to 4.0% by weight.
  • a coating liquid (applied liquid) consisting of the composition and an organic solvent is prepared, applied to a substrate film, and dried.
  • the organic solvent may be a single or mixed solvent selected from alcohols such as methanol, ethanol, isopropyl alcohol (IPA), etc.; ketones such as acetone and methyl ethyl ketone, etc.; ethers such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate, etc.; and esters such as ethyl acetate and propyl acetate, and from the viewpoints of coating film processing and odor, methyl ethyl ketone and ethyl acetate are preferred.
  • the coating method for the resin composition for the protective layer is not particularly limited as long as it is a method that coats the film surface to form a layer.
  • conventional coating methods such as gravure coating, reverse roll coating, wire bar coating, and die coating can be used. From the viewpoints of productivity and coating stability, wire bar coating and gravure coating are preferably used.
  • the resin composition for the protective layer When forming the protective layer, it is preferable to apply the resin composition for the protective layer and then heat-dry it.
  • the drying temperature is preferably 110 to 210°C, more preferably 115 to 205°C, and even more preferably 120 to 200°C. If the drying temperature is less than 110°C, the protective layer may not be sufficiently dried or may not be sufficiently cohesive due to heat, and the surface hardness may be outside the specified range. As a result, the adhesion and water resistance of the protective layer when subjected to boiling treatment or retort treatment may decrease. On the other hand, if the drying temperature exceeds 210°C, the protective layer may be too cohesive, the film may become hard, the barrier layer may be destroyed, and the barrier performance may decrease.
  • the film itself which is the base material, may be too heated, making the film brittle or shrinking, resulting in poor processability.
  • adding an additional heat treatment for example, 150 to 190°C is also effective in promoting the drying of the protective layer.
  • the drying time for the protective layer is preferably within 30 seconds. If the drying time exceeds 30 seconds, not only will the protective layer not dry, but the base film will shrink, causing cracks in the gas barrier layer and reducing the gas barrier performance. On the other hand, if the drying time is shorter than 5 seconds, the protective layer will not harden, resulting in reduced adhesion and barrier properties. From the viewpoint of productivity, it is more preferably 5 to 25 seconds, and more preferably 10 to 20 seconds. If the film is heated suddenly, it will shrink significantly, causing compressive stress in the gas barrier layer and reducing the barrier performance. It is preferable to increase the temperature at a rate of 50°C/sec or less. It is more preferably 30°C/sec or less, and more preferably 20°C/sec or less.
  • the surface temperature during heating in the process of forming the protective layer is preferably 100 to 150°C, more preferably 105 to 145°C, and even more preferably 110 to 140°C.
  • the film tension during heating in the process of forming the protective layer is preferably 30 to 90 N/m. More preferably, it is 40 to 80 N/m, and even more preferably, it is 50 to 70 N/m. If it is less than 20 N/m, winding defects will occur, and if it exceeds 100 N/m, tensile stress will be generated in the gas barrier layer, reducing the barrier performance.
  • Heat seal layer When the gas barrier laminate film having an inorganic thin film layer is used as a packaging material, it is preferable to form a heat seal layer called a sealant.
  • the heat seal layer is usually provided on the aluminum oxide layer, but may also be provided on the outside of the base film (the surface opposite to the surface on which the protective layer is formed).
  • the heat seal layer may be laminated on the surface of the protective layer.
  • the heat sealable resin is usually formed by extrusion lamination or dry lamination.
  • the thermoplastic polymer forming the heat sealable resin layer may be any polymer capable of sufficiently exhibiting sealant adhesiveness, and may be polyethylene resins such as HDPE, LDPE, and LLDPE, polypropylene resin, ethylene-vinyl acetate copolymer, ethylene- ⁇ -olefin random copolymer, ionomer resin, or the like.
  • a moist heat treatment such as retort treatment is to be performed, it is preferable to form the heat sealable resin by the dry lamination method using a polypropylene resin.
  • the heat seal layer is usually recommended to be 20 to 250 ⁇ m, and when used as a packaging material, it is desirable to be 40 to 100 ⁇ m.
  • polyurethane resin, polyisocyanate resin, polyester resin, ether resin, etc. are used for bonding the protective layer and the heat seal layer.
  • a reaction product of polyurethane resin and polyisocyanate resin is used as an adhesive.
  • the amount of application varies depending on the material of the film to be laminated, but is preferably 1 to 20 g/ m2 , more preferably 2 to 10 g/ m2 , and more preferably 3 to 6 g/ m2 .
  • the adhesion temperature is set depending on the thickness of the heat seal layer and the thickness of the adhesive, but is preferably 50 to 120°C, more preferably 55 to 100°C, and more preferably 60 to 80°C.
  • the laminate film of the present invention has excellent water vapor barrier properties and appearance both in its normal state and after retort treatment, and has good adhesion even when processed by printing, lamination, etc., and is a gas barrier laminate film (laminate film) that is easy to manufacture and has excellent economical properties.
  • gas barrier laminate film having an aluminum oxide layer formed by using the laminate film of the present invention in addition to the above-mentioned base film, aluminum oxide layer, and protective layer, various layers that are provided in known gas barrier laminate films can be provided as necessary.
  • a polyamide resin can be provided as an intermediate layer between the gas barrier laminate film and the heat seal layer to improve the adhesion and flexibility of the laminate.
  • a coating layer may be provided to react with oxygen-deficient parts of inorganic oxides and metal hydroxides generated during the formation of the aluminum oxide layer to improve adhesion.
  • the gas barrier laminate film having an aluminum oxide layer may have at least one or more layers of a printed layer, other plastic substrate, and/or paper substrate laminated between or on the outside of the aluminum oxide layer or substrate film and the heat sealable resin layer.
  • the printing ink for forming the printing layer water-based and solvent-based resin-containing printing inks can be preferably used.
  • resins used in the printing ink include acrylic resins, urethane resins, polyester resins, vinyl chloride resins, vinyl acetate copolymer resins, and mixtures thereof.
  • the printing ink may contain known additives such as antistatic agents, light blocking agents, ultraviolet absorbers, plasticizers, lubricants, fillers, colorants, stabilizers, lubricants, defoamers, crosslinking agents, anti-blocking agents, and antioxidants.
  • known printing methods such as offset printing, gravure printing, and screen printing can be used.
  • known drying methods such as hot air drying, hot roll drying, and infrared drying can be used.
  • plastic and paper substrates from the viewpoint of obtaining sufficient rigidity and strength of the laminated film, paper, polyester resin, polyamide resin, biodegradable resin, etc. are preferably used. Also, in order to obtain a film with excellent mechanical strength, oriented films such as biaxially oriented polyester film and biaxially oriented nylon film are preferred.
  • a gas barrier laminate film with an aluminum oxide layer when used as a packaging material, it is preferable to laminate a nylon film between the aluminum oxide layer and the heat sealable resin layer in order to improve mechanical properties such as pinhole resistance and puncture strength.
  • the types of nylon typically used here include nylon 6, nylon 66, and metaxylene adipamide.
  • the thickness of the nylon film is usually 10 to 30 ⁇ m, preferably 15 to 25 ⁇ m. If the nylon film is thinner than 10 ⁇ m, it may lack strength, while if it exceeds 30 ⁇ m, it may be too stiff and unsuitable for processing.
  • a biaxially oriented film with a stretch ratio in both the length and width directions is usually 2 times or more, preferably about 2.5 to 4 times.
  • the laminated film of the present invention also includes embodiments having the above-mentioned layers other than the substrate layer, aluminum oxide layer, and protective layer.
  • the water vapor permeability of the laminated film of the present invention is preferably 2.5 g/ m2 ⁇ day or less, more preferably 2.0 g/ m2 ⁇ day or less, and even more preferably 1.5 g/ m2 ⁇ day or less.
  • the water vapor permeability after retort treatment is preferably 2.5 g/ m2 ⁇ day or less, more preferably 2.0 g/ m2 ⁇ day or less, and even more preferably 1.5 g/ m2 ⁇ day or less.
  • a wavelength dispersive small-sized fluorescent X-ray analyzer (Rigaku Corporation, "Supermini 200") was used to measure the film thickness of the aluminum oxide layer.
  • the density of the aluminum oxide layer was calculated as 0.74 times (2.94/cm 3 ) the bulk density (3.97 g/cm 3 ). The reason for using 0.74 times is that it closely matches the actual film thickness calculated by TEM or the like.
  • the sample used for creating the fluorescent X-ray calibration curve was one in which the amount of aluminum attached per unit area was identified by inductively coupled plasma emission spectroscopy, and the film thickness was measured by converting the density of the aluminum oxide layer into a film thickness.
  • Time-of-flight secondary ion mass spectrometry (TOF-SIMS) measurement conditions
  • TOF.SIMS5 manufactured by ION-TOF was used.
  • the surface of aluminum oxide was the measurement target.
  • the conditions were as follows: Primary ion: Bi3 ++ approx. 0.2 pA (100 ⁇ sec.)
  • polyester resin having a number average molecular weight of 450 to 3,000 polyester resin having a number average molecular weight of 450 to 3,000 (polyester mainly composed of a polyvalent carboxylic acid component containing at least one of ortho-oriented aromatic dicarboxylic acid or its anhydride, and a polyhydric alcohol component) was dissolved in 70% methyl ethyl ketone (polyester solution).
  • a solution of a silane coupling agent ("KBM-603" manufactured by Shin-Etsu Chemical Co., Ltd.) dissolved in acetone and a trimethylolpropane adduct of meta-xylylene diisocyanate ("Takenate D-110N” manufactured by Mitsui Chemical Co., Ltd.: solid content concentration 75%) were mixed and stirred for 10 minutes using a magnetic stirrer.
  • the obtained mixture was diluted with methyl ethyl ketone, and the polyester solution was further added to obtain polyester urethane coating solution a having a solid content concentration of 5%.
  • a polyester resin having a weight average molecular weight of 35,000 a polyester mainly composed of terephthalic acid, isophthalic acid, ethylene glycol, and propylene glycol
  • Example 1 A 12 ⁇ m thick biaxially oriented polyester film was used, and the roll was set in an electron gun heating type deposition apparatus having a roll-to-roll type film running system so that deposition was performed on the corona-treated surface, to prepare a barrier film.
  • a pre-deposition treatment a plasma treatment was performed in a vacuum system. During the treatment, oxygen gas was introduced at 1000 sccm, the current was set to 30 A, and plasma was generated. Thereafter, aluminum was evaporated by electron gun heating, oxygen gas was introduced, and deposition of an aluminum oxide layer was performed.
  • the deposited plastic film (a laminated film of "substrate film/aluminum oxide layer") was moved to an optical film thickness meter in the deposition machine, and the total light transmittance was measured. After the measurement, the laminated film was wound up on a take-up roll. After the vacuum was released, the film thickness of the aluminum oxide layer and the fragment ion intensity in the depth direction were measured by TOF-SIMS. The results were as shown in Table 1.
  • a laminated laminate was prepared from the obtained laminated film as described in (3) above. The laminated body was subjected to a retort treatment at 130°C for 30 minutes, and the laminate strength, water vapor permeability, and oxygen permeability after the treatment were evaluated.
  • the obtained plastic film on which the aluminum oxide layer was formed (laminated film of "substrate film/aluminum oxide layer") was used to apply the coating liquid a by a roll method, and the temperature was raised and lowered at a temperature rise rate of 20°C/sec or less so that the residence time in the oven was 10 seconds, and the film was dried so that the film surface temperature reached 130°C, thereby obtaining a protective layer.
  • the coating amount after drying was 0.3 g/ m2 .
  • the tension after passing through the dryer was set to 50 N/m by adjusting the rotation speed ratio of the rolls before and after the oven. In this manner, a laminated film having a substrate film/aluminum oxide layer/protective layer was produced.
  • a laminated film having the obtained laminated film (laminated film having a substrate film/aluminum oxide layer/protective layer) was produced as described in (3) above.
  • the laminate was subjected to a retort treatment at 130° C. for 30 minutes, and the laminate strength, water vapor permeability, and oxygen permeability after the treatment were evaluated.
  • Example 3 A laminate was produced and evaluated in the same manner as in Example 1, except that the amount of gas introduced and the output during the plasma treatment were changed and the thickness of the aluminum oxide layer was changed as shown in Table 1.
  • Example 4 A laminate was produced and evaluated in the same manner as in Example 1, except that a biaxially oriented polyester film that had not been subjected to corona treatment was used and the amount of gas introduced and the output during the plasma treatment were changed as shown in Table 1.
  • Example 5 A laminate was produced and evaluated in the same manner as in Example 21, except that the amount of gas introduced and the output during the plasma treatment and the coating material of the protective layer were changed as shown in Table 1.
  • Example 1 A laminate was produced and evaluated in the same manner as in Example 1, except that Ar gas was introduced during the plasma treatment.
  • Example 4 A laminate was produced and evaluated in the same manner as in Example 1, except that the thickness of the aluminum oxide layer was changed as shown in Table 1.
  • the present invention has made it possible to provide a laminate film that has excellent adhesiveness not only under normal conditions but also after retort treatment. Therefore, the gas barrier laminate film of the present invention can be widely used not only for food packaging for retort treatment, but also for packaging various foods, pharmaceuticals, industrial products, etc., as well as industrial applications such as solar cells, electronic paper, organic EL elements, and semiconductor elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

A multilayered film which comprises a base film and an aluminum oxide layer disposed on at least one side of the base film and satisfies the following requirements (A) and (B). (A) When the multilayered film is etched from the surface of the aluminum oxide layer by time-of-flight secondary ion mass spectrometry and when a position at which the intensity for a fragment ion having a mass number of 102 is 80% of a maximum intensity is taken as the boundary between the aluminum oxide layer and the base film, then the ratio between the intensity a for the mass number 102 (derived from Al2O3) and the intensity b for mass number 119 (derived from Al2O4H), b/a, is 0.10 or less. (B) When a 15-μm, biaxially stretched nylon film and a 70-μm, unstretched polypropylene film are bonded to the surface of the aluminum oxide layer with a polyurethane-based two-pack curable adhesive applied in a dry thickness of 4 μm and the laminate is aged at a temperature of 40°C for 4 days and then subjected to a wet heat treatment at 130°C for 30 minutes, then the resultant wet laminate has a strength of 1.5 N/15 mm or greater and a water vapor permeability of 2.5 g/m2·day or less.

Description

積層フィルムLaminated Film
 本発明は、食品、医薬品、工業製品等の包装分野に用いられる積層フィルムに関する。更に詳しくは、酸化アルミニウム層および保護層を備えたガスバリア性積層フィルムとした際に、フィルムの物理特性を制御することで、結果として良好なガスバリア性と密着性を発現させ得る積層フィルムに関する。 The present invention relates to a laminate film used in the packaging fields of foods, medicines, industrial products, etc. More specifically, the present invention relates to a gas barrier laminate film having an aluminum oxide layer and a protective layer, which, by controlling the physical properties of the film, can ultimately exhibit good gas barrier properties and adhesion.
 食品、医薬品等に用いられる包装材料は、蛋白質、油脂の酸化抑制、味、鮮度の保持、医薬品の効能維持のために、酸素や水蒸気等のガスを遮断する性質、すなわちガスバリア性を備えることが求められている。また、太陽電池や有機EL等の電子デバイスや電子部品等に使用されるガスバリア性材料は、食品等の包装材料以上に高いガスバリア性を必要とする。 Packaging materials used for food, medicines, etc. are required to have gas barrier properties, that is, properties that block gases such as oxygen and water vapor, in order to inhibit oxidation of proteins and fats and oils, preserve flavor and freshness, and maintain the efficacy of medicines. In addition, gas barrier materials used for electronic devices and electronic components such as solar cells and organic electroluminescence (EL) devices require even higher gas barrier properties than packaging materials for food, etc.
 従来から、水蒸気や酸素等の各種ガスの遮断を必要とする食品用途においては、プラスチックからなる基材フィルムの表面に、アルミニウム等からなる金属薄膜、酸化ケイ素や酸化アルミニウム等の無機酸化物からなる無機薄膜を形成したガスバリア性積層フィルムが、一般的に用いられている。中でも、酸化ケイ素や酸化アルミニウム、これらの混合物等の無機酸化物の薄膜を形成したものは、透明であり内容物の確認が可能であることから、広く使用されている。 Conventionally, for food applications that require blocking various gases such as water vapor and oxygen, gas barrier laminate films have been commonly used, which have a thin metal film made of aluminum or a thin inorganic film made of inorganic oxides such as silicon oxide or aluminum oxide formed on the surface of a plastic base film. Among these, those with a thin film of inorganic oxides such as silicon oxide, aluminum oxide, or mixtures of these are widely used because they are transparent and allow the contents to be checked.
 無機薄膜の材料としては、酸化ケイ素(以下、シリカとする)や酸化アルミニウム(以下、アルミナと称する場合がある)がしばしば用いられる。しかしながら、ガスバリア性の良好なシリカはやや褐色を有しており、透明ガスバリアフィルムとしては不十分なものである。また、アルミナは、原材料の蒸発温度が高く、蒸着工程における蒸発速度が遅くなる。そのため、ガスバリア性を発現させる程度の十分な膜厚を付着させるには、成膜時間が長くなり、生産効率が悪く高コスト化してしまう。 Silicon oxide (hereafter referred to as silica) and aluminum oxide (hereafter sometimes referred to as alumina) are often used as materials for inorganic thin films. However, silica, which has good gas barrier properties, has a slightly brown color and is insufficient as a transparent gas barrier film. In addition, the evaporation temperature of the raw material for alumina is high, and the evaporation rate during the deposition process is slow. As a result, in order to deposit a film of sufficient thickness to exhibit gas barrier properties, the film formation time is long, which reduces production efficiency and increases costs.
 このような背景のもと、特許文献1では、蒸発させたアルミニウムと、酸素ガスとの酸化反応が生じる反応空間に含まれる水分を蒸着時に除去することにより、アルミナ水酸化物の生成を抑制し、耐熱水性を改善するという技術が提案されている。しかし、耐熱水性としてどのような特性がどの程度改良されているのか、具体的に記載されていない。 Against this background, Patent Document 1 proposes a technology that suppresses the production of alumina hydroxide and improves hot water resistance by removing moisture contained in the reaction space where the oxidation reaction between evaporated aluminum and oxygen gas occurs during deposition. However, there is no specific description of what properties have been improved in terms of hot water resistance and to what extent.
 また、特許文献2では、無機層中のSiOHとSiの深さ方向の比率を規定することにより、耐屈曲後にもガスバリア性が維持できるという技術が提案されている。 Patent Document 2 also proposes a technology that allows the gas barrier properties to be maintained even after bending by specifying the depth ratio of SiOH and Si in the inorganic layer.
 しかしながら、ラミネート積層体において、熱水処理後に、デラミネーションの発生等、密着性が低下するという事例が多くあるが、これらの文献には、密着性に関しては言及されていない。 However, there are many cases where adhesion of laminated bodies is reduced after hot water treatment, such as delamination, but these documents make no mention of adhesion.
特許6547946号公報Patent No. 6547946 特開2018-140552号公報JP 2018-140552 A
 プラスチックフィルムとアルミナ蒸着界面との近傍にアルミナ水酸化物が形成され、耐湿熱性が低下するという問題点があることを本発明者らは見出した。本発明は、耐湿熱性に優れるアルミナ層を有するガスバリア性フィルムを提供することを課題とするものである。 The inventors have found that alumina hydroxide is formed near the interface between the plastic film and the alumina vapor deposition, resulting in a problem of reduced moist heat resistance. The present invention aims to provide a gas barrier film having an alumina layer with excellent moist heat resistance.
 本発明者らは、酸化アルミニウム層形成時のプラズマ処理や薄膜の厚さを精査することで、耐湿熱性を有するガスバリア性フィルムを提供できることを見出した。 The inventors discovered that by carefully examining the plasma treatment and thin film thickness during the formation of the aluminum oxide layer, it is possible to provide a gas barrier film with moisture and heat resistance.
 すなわち、本発明は以下の構成からなる。
(1)基材フィルムと、前記基材フィルムの少なくとも片面側に積層された酸化アルミニウム層とを備え、以下の(A)、(B)の要件を満たすことを特徴とするガスバリア性を有する積層フィルム。
(A)酸化アルミニウム層の表面側から、飛行時間型二次イオン質量分析法(TOF-SIMS)によりエッチングした際に、質量数102(Al)のフラグメントイオンの強度が、最大強度の80%になる位置を、基材フィルムとの界面とし、その界面において、質量数102(Al由来)の強度aと質量数119(AlH由来)の強度bとの比b/aが0.10以下であること。
(B)前記積層フィルムの酸化アルミニウム層表面に15μmの二軸延伸ナイロンフィルムおよび70μmの未延伸ポリプロピレンフィルムを、ポリウレタン系2液硬化型接着剤を乾燥後に4μmの厚さとなるように塗布して用いてドライラミネート法により貼り合わせて積層し、40℃の温度下で4日間エージングした後、130℃で30分湿熱処理した後の水付けラミネート強度が1.5N/15mm以上、水蒸気透過度が2.5g/m・day以下であること。
(2)前記酸化アルミニウム層の厚さが、5~30nmである、(1)に記載の積層フィルム。
(3) 保護層を備え、
 前記基材フィルムと、前記酸化アルミニウム層と、前記保護層とは、この順に積層され、前記保護層が、ウレタン樹脂あるいはエステル樹脂を少なくとも1種類以上含有する、(1)又は(2)に記載の積層フィルム。
(4)前記保護層は、シランカップリング剤を含有する、(3)に記載の積層フィルム。
(5)前記(1)~(4)のいずれかに記載の積層フィルムの保護層表面にヒートシール層を積層した積層体。
(6)前記(5)に記載の積層体を少なくとも一部に用いたことを特徴とする包装袋。
That is, the present invention comprises the following:
(1) A laminate film having gas barrier properties, comprising a base film and an aluminum oxide layer laminated on at least one side of the base film, and characterized in that the laminate film satisfies the following requirements (A) and (B):
(A) When the aluminum oxide layer is etched from the surface side by time-of-flight secondary ion mass spectrometry (TOF-SIMS), the position at which the intensity of the fragment ion of mass number 102 (Al 2 O 3 ) is 80% of the maximum intensity is defined as the interface with the substrate film, and at that interface, the ratio b/a of the intensity a of mass number 102 (derived from Al 2 O 3 ) to the intensity b of mass number 119 (derived from Al 2 O 4 H) is 0.10 or less.
(B) A 15 μm biaxially oriented nylon film and a 70 μm unoriented polypropylene film are laminated by a dry lamination method using a polyurethane-based two-component curing adhesive applied to the surface of the aluminum oxide layer of the laminated film so that the thickness after drying is 4 μm, and the film is aged at a temperature of 40° C. for 4 days and then subjected to a wet heat treatment at 130° C. for 30 minutes. After this, the water-exposed laminate strength is 1.5 N/15 mm or more and the water vapor permeability is 2.5 g/ m2 ·day or less.
(2) The laminate film according to (1), wherein the aluminum oxide layer has a thickness of 5 to 30 nm.
(3) having a protective layer;
The laminate film according to (1) or (2), wherein the base film, the aluminum oxide layer, and the protective layer are laminated in this order, and the protective layer contains at least one type of urethane resin or ester resin.
(4) The laminate film according to (3), wherein the protective layer contains a silane coupling agent.
(5) A laminate comprising a heat seal layer laminated on the surface of the protective layer of the laminate film according to any one of (1) to (4) above.
(6) A packaging bag, comprising at least a portion of the laminate according to (5).
 本発明によれば、どのような表面状態の基材であっても、酸化アルミニウム層の形成時に、酸素ガスを導入する、あるいは、薄膜層を厚くし薄膜自体のエネルギーを高めることで、基材フィルム界面近傍にAl水酸化物を形成させず、耐湿熱性の優れたガスバリア性フィルムを提供することができる。 According to the present invention, regardless of the surface condition of the substrate, by introducing oxygen gas when forming the aluminum oxide layer or by making the thin film layer thicker and increasing the energy of the thin film itself, it is possible to provide a gas barrier film with excellent resistance to moist heat without forming aluminum hydroxide near the substrate film interface.
 本発明の積層フィルムは、基材フィルムと、前記基材フィルムの少なくとも片面側に積層された酸化アルミニウム層とを備えた積層フィルムであって、酸化アルミニウム層の表面側から、飛行時間型二次イオン質量分析法(TOF-SIMS)によりエッチングした際に、質量数102(Al)のフラグメントイオンの強度が、最大強度の80%になる位置を、基材フィルムとの界面とし、その界面において、質量数102(Al由来)の強度aと質量数119(AlH由来)の強度bとの比b/aが0.10以下であり、かつ、前記積層フィルムの酸化アルミニウム層表面に15μmの二軸延伸ナイロンフィルムおよび70μmの未延伸ポリプロピレンフィルムを、ポリウレタン系2液硬化型接着剤を乾燥後に4μmの厚さとなるように塗布して用いてドライラミネート法により貼り合わせて積層し、40℃の温度下で4日間エージングした後、130℃で30分湿熱処理した後の水付けラミネート強度が1.5N/15mm以上、好ましくは2.0N/15mm以上、水蒸気透過度が2.5g/m・day以下、好ましくは2.0g/m・day以下である、積層フィルムである。まずプラスチック基材フィルムについて説明し、次いでこれに積層する酸化アルミニウム層および保護層、さらにはその他の層について説明する。 The laminated film of the present invention is a laminated film comprising a substrate film and an aluminum oxide layer laminated on at least one side of the substrate film, and when etching is performed from the surface side of the aluminum oxide layer by time-of-flight secondary ion mass spectrometry (TOF-SIMS), the position at which the intensity of the fragment ion of mass number 102 (Al 2 O 3 ) is 80% of the maximum intensity is defined as the interface with the substrate film, and at the interface, the intensity a of the fragment ion of mass number 102 (derived from Al 2 O 3 ) and the intensity b of the fragment ion of mass number 119 (derived from Al 2 O 4 and the ratio b/a of the strength b of the aluminum oxide layer of the laminated film to the strength b of the aluminum oxide layer of the laminated film (derived from H) is 0.10 or less, and a 15 μm biaxially oriented nylon film and a 70 μm unoriented polypropylene film are laminated by a dry lamination method using a polyurethane-based two-component curing adhesive applied to the surface of the aluminum oxide layer of the laminated film so that the thickness after drying is 4 μm, and the laminated film is aged at a temperature of 40° C. for 4 days and then subjected to a wet heat treatment at 130° C. for 30 minutes, after which the water-added lamination strength is 1.5 N/15 mm or more, preferably 2.0 N/15 mm or more, and the water vapor permeability is 2.5 g/ m2 ·day or less, preferably 2.0 g/ m2 ·day or less. First, the plastic substrate film will be described, and then the aluminum oxide layer and protective layer, and other layers to be laminated thereon will be described.
[基材フィルム]
 本発明で用いる基材フィルムとしては、例えば、プラスチックを溶融押し出しし、必要に応じ、長手方向(MD方向)および/または幅方向(TD方向)に延伸、冷却、熱固定を施した延伸フィルムを用いることができる。機械的強度が得られる点で、長手方向および幅方向に延伸を施した2軸延伸フィルムが好ましい。プラスチックとしては、ナイロン4・6、ナイロン6、ナイロン6・6、ナイロン12等に代表されるポリアミド;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート等に代表されるポリエステル;ポリエチレン、ポリプロピレン、ポリブテン等に代表されるポリオレフィン;のほか、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、全芳香族ポリアミド、ポリアミドイミド、ポリイミド、ポリエーテルイミド、ポリスルホン、ポリスチレン、ポリ乳酸等が挙げられる。これらの中でも、耐熱性、寸歩安定性、透明性の点でポリエステルが好ましく、特にポリエチレンテレフタレートやポリエチレンテレフタレートに他の成分を共重合した共重合体が好ましい。
[Base film]
The substrate film used in the present invention may be, for example, a stretched film obtained by melt-extruding a plastic and, if necessary, stretching the plastic in the longitudinal direction (MD direction) and/or the transverse direction (TD direction), cooling, and heat setting. In terms of obtaining mechanical strength, a biaxially stretched film stretched in the longitudinal direction and the transverse direction is preferred. Examples of plastics include polyamides such as nylon 4.6, nylon 6, nylon 6.6, and nylon 12; polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene-2,6-naphthalate; polyolefins such as polyethylene, polypropylene, and polybutene; as well as polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, wholly aromatic polyamide, polyamideimide, polyimide, polyetherimide, polysulfone, polystyrene, and polylactic acid. Among these, polyesters are preferred in terms of heat resistance, dimensional stability, and transparency, and in particular polyethylene terephthalate and copolymers obtained by copolymerizing polyethylene terephthalate with other components are preferred.
 プラスチック樹脂には、バイオマス由来の原料、あるいは、リサイクル原料を用いてもよい。 Plastic resins may be made from biomass-derived or recycled materials.
 基材フィルムとしては、機械強度、透明性等所望の目的や用途に応じて任意の膜厚のものを使用することができ、その膜厚は特に限定されないが、通常は5~250μmであることが推奨され、包装材料として用いる場合は10~60μmであることが望ましい。基材フィルムの幅は、加工時のハンドリング、後工程、機械コストの観点から、1000mm以上、5,000mm以下が好ましく、3,000mm以下がさらに好ましく、2,000mm以下がより好ましい。基材フィルムの透明度は、特に限定されるものではないが、透明性が求められる包装材料として使用する場合には、50%以上の光線透過率をもつものが望ましい。 The base film can be of any thickness depending on the desired purpose and application, such as mechanical strength and transparency. There are no particular limitations on the thickness, but a thickness of 5 to 250 μm is usually recommended, and when used as a packaging material, a thickness of 10 to 60 μm is desirable. From the viewpoints of handling during processing, post-processing, and machine costs, the width of the base film is preferably 1000 mm or more and 5,000 mm or less, more preferably 3,000 mm or less, and even more preferably 2,000 mm or less. There are no particular limitations on the transparency of the base film, but when used as a packaging material requiring transparency, it is desirable for the film to have a light transmittance of 50% or more.
 基材フィルムは、1種のプラスチックからなる単層型フィルムであってもよいし、2種以上のプラスチックフィルムが積層された積層型フィルムであってもよい。積層型フィルムとする場合の積層フィルムの種類、積層数、積層方法等は特に限定されず、目的に応じて公知の方法から任意に選択することができる。また基材フィルムには、本発明の目的を損なわない限りにおいて、コロナ放電処理、グロー放電、火炎処理、表面粗面化処理等の表面処理が施されていてもよく、また、公知のアンカーコート処理、印刷、装飾等が施されてもよい。 The base film may be a monolayer film made of one type of plastic, or a laminated film in which two or more types of plastic films are laminated. When a laminated film is used, the type of laminated film, the number of layers, the lamination method, etc. are not particularly limited, and can be arbitrarily selected from known methods depending on the purpose. In addition, the base film may be subjected to surface treatments such as corona discharge treatment, glow discharge, flame treatment, surface roughening treatment, etc., as long as they do not impair the purpose of the present invention, and may also be subjected to known anchor coat treatment, printing, decoration, etc.
[酸化アルミニウム層]
 本発明の積層フィルムは、前記基材フィルムの上に酸化アルミニウム層を有する。
[Aluminum oxide layer]
The laminate film of the present invention has an aluminum oxide layer on the substrate film.
 酸化アルミニウム層の膜厚は、通常1~100nm、好ましくは3~50nm、さらに好ましくは5~30nmである。酸化アルミニウム層の膜厚が1nm未満であると、満足のいくガスバリア性が得られ難くなる場合があり、一方、100nmを超えて過度に厚くしても、それに相当するガスバリア性の向上効果は得られず、耐屈曲性や製造コストの点でかえって不利となる。 The thickness of the aluminum oxide layer is usually 1 to 100 nm, preferably 3 to 50 nm, and more preferably 5 to 30 nm. If the thickness of the aluminum oxide layer is less than 1 nm, it may be difficult to obtain satisfactory gas barrier properties. On the other hand, even if the thickness is made excessively thick, exceeding 100 nm, the corresponding improvement in gas barrier properties cannot be obtained, and it is actually disadvantageous in terms of flex resistance and manufacturing costs.
 酸化アルミニウム層を形成する方法としては、特に制限はなく、例えば真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法(PVD法)、あるいは化学蒸着法(CVD法)等、公知の蒸着法を適宜採用すればよい。以下、酸化アルミニウム層を形成する典型的な方法を説明する。例えば、真空蒸着法を採用する場合は、蒸着原料としてアルミニウムが好ましく用いられる。これら蒸着原料としては通常粒子が用いられるが、その際、各粒子の大きさは蒸着時の圧力が変化しない程度の大きさであることが望ましく、好ましい粒子径は1mm~5mmである。加熱には、抵抗加熱、高周波誘導加熱、電子ビーム加熱、レーザー加熱などの方式を採用することができる。また、反応ガスとして酸素が好ましく、窒素、水素、アルゴン、炭酸ガス、水蒸気等を導入したり、オゾン添加、イオンアシスト等の手段を用いることも可能である。さらに、被蒸着体(蒸着に供する積層フィルム)にバイアスを印加したり、被蒸着体を加熱もしくは冷却するなど、成膜条件も任意に変更することができる。このような蒸着材料、反応ガス、被蒸着体のバイアス、加熱・冷却等は、スパッタリング法やCVD法を採用する場合にも同様に変更可能である。 There are no particular limitations on the method for forming the aluminum oxide layer, and any known deposition method may be used, such as physical deposition methods (PVD methods) such as vacuum deposition, sputtering, and ion plating, or chemical deposition (CVD). A typical method for forming an aluminum oxide layer is described below. For example, when vacuum deposition is used, aluminum is preferably used as the deposition raw material. Particles are usually used as these deposition raw materials, and in this case, it is desirable that the size of each particle is large enough that the pressure during deposition does not change, and the preferred particle diameter is 1 mm to 5 mm. Heating can be performed by resistance heating, high-frequency induction heating, electron beam heating, laser heating, or other methods. In addition, oxygen is preferable as a reactive gas, and it is also possible to introduce nitrogen, hydrogen, argon, carbon dioxide, water vapor, etc., or to use means such as adding ozone or ion assist. Furthermore, the film formation conditions can be changed arbitrarily, such as applying a bias to the deposition target (laminated film to be subjected to deposition) or heating or cooling the deposition target. The deposition material, reaction gas, bias of the deposition target, heating/cooling, etc. can be changed in the same way when using sputtering or CVD methods.
 薄膜層を形成する前にプラズマ処理を実施しても良い。2極スパッタリング法、マグネトロンスパッタリング法、DC(直流)スパッタリング法、RF(高周波)スパッタリング法、デュアルマグネトロン法、ホロカソード法、ホロアノード法等、公知の前処理法を適宜採用すればよい。これらの処理時には、放電させるための雰囲気ガスが必要であり、最も好ましいのは酸素であり、窒素、水素、炭酸ガス、等を導入することもできる。
 導入ガスの量は、500sccm以上が好ましく、より好ましくは750sccm以上、さらに好ましくは1000sccm以上である。500sccmより少ないと、プラズマ放電しない。また、プラズマ出力は、15A以上が好ましく、より好ましくは20A以上、さらに好ましくは25A以上である。15Aより小さいとプラズマ放電しない。
 上記の好ましい導入ガスの種類、導入ガス量、プラズマ出力を全て組み合わせることが好ましい。
A plasma treatment may be carried out before forming the thin film layer. Known pretreatment methods such as bipolar sputtering, magnetron sputtering, DC (direct current) sputtering, RF (radio frequency) sputtering, dual magnetron, hollow cathode, hollow anode, etc. may be appropriately adopted. During these treatments, an atmospheric gas is required for discharging, and oxygen is most preferable, but nitrogen, hydrogen, carbon dioxide, etc. may also be introduced.
The amount of the introduced gas is preferably 500 sccm or more, more preferably 750 sccm or more, and even more preferably 1000 sccm or more. If it is less than 500 sccm, plasma discharge does not occur. Furthermore, the plasma output is preferably 15 A or more, more preferably 20 A or more, and even more preferably 25 A or more. If it is less than 15 A, plasma discharge does not occur.
It is preferable to combine all of the above-mentioned preferable types of gases to be introduced, amounts of gases to be introduced, and plasma output.
 酸化アルミニウム層を分析する手段として、飛行時間型二次イオン質量分析法(TOF-SIMS)がある。基材フィルム上の酸化アルミニウム層の表面を、スパッタイオンでエッチングした部分に、一次イオンを照射し、そのイオンと固体表面の衝突によって発生する二次イオンを質量分析計で検出する方法である。エッチングと検出を繰り返していき、深さ方向の情報を得ることができる。 Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is one method for analyzing aluminum oxide layers. In this method, the surface of the aluminum oxide layer on the substrate film is etched with sputtered ions, and primary ions are irradiated onto the area, and secondary ions generated by collisions between the ions and the solid surface are detected by a mass spectrometer. By repeating etching and detection, information on the depth direction can be obtained.
 酸化アルミニウム層の表面からエッチングした際に、Al酸化物由来と推定できる、質量数86(Al)、質量数102(Al)、質量数118(Al)、質量数145(Al)のフラグメントイオンが検出される。また、Al水酸化物由来と推定できる、質量数103(AlH)、質量数119(AlH)のフラグメントイオンが検出される。酸化アルミニウム層表面近傍で検出されていたAl完全酸化物由来のフラグメントイオンは、基材フィルムとの界面に近付くにつれて減衰していく。薄膜表面からエッチングした際にAl完全酸化物の代表である質量数102(Al)のフラグメントイオンの最大強度が80%になる位置を、基材フィルムとの界面と定義し、その部分における、質量数が17異なるAl水酸化物とAl酸化物との強度比は、耐湿熱性と相関づけることができることを本発明らは見出した。 When etching is performed from the surface of the aluminum oxide layer, fragment ions with mass numbers of 86 (Al 2 O 2 ), 102 (Al 2 O 3 ), 118 (Al 2 O 4 ), and 145 (Al 3 O 4 ) that can be assumed to be derived from Al oxide are detected. In addition, fragment ions with mass numbers of 103 (Al 2 O 3 H) and 119 (Al 2 O 4 H) that can be assumed to be derived from Al hydroxide are detected. The fragment ions derived from the complete oxide of Al detected near the surface of the aluminum oxide layer attenuate as they approach the interface with the substrate film. The inventors have found that the position where the maximum intensity of the fragment ion with mass number 102 (Al 2 O 3 ), which is representative of the complete oxide of Al, becomes 80% when etching is performed from the thin film surface is defined as the interface with the substrate film, and that the intensity ratio between the Al hydroxide and the Al oxide, which have a mass number difference of 17, at that portion can be correlated with the moist heat resistance.
 本発明において、質量数102(Al由来)の強度aと質量数119(AlH由来)の強度bとの比b/aは、0.10以下が好ましく、より好ましくは0.80以下、さらに好ましくは0.60以下である。0.10以下であれば、界面近傍にAl水酸化物がほとんど存在せず、湿熱処理を行った際に、界面に水が介在することができず、密着性が向上する。 In the present invention, the ratio b/a of the intensity a of mass number 102 ( derived from Al2O3 ) to the intensity b of mass number 119 (derived from Al2O4H ) is preferably 0.10 or less, more preferably 0.80 or less, and even more preferably 0.60 or less. If it is 0.10 or less, there is almost no Al hydroxide in the vicinity of the interface, and water cannot be present at the interface when a wet heat treatment is performed, improving adhesion.
[保護層]
 本発明においては、前記酸化アルミニウム層の上に保護層を有することが好ましい。プラスチックフィルム上に積層した酸化アルミニウム層は完全に密な膜ではなく、微小な欠損部分が点在している。酸化アルミニウム層上に後述する特定の保護層用樹脂組成物を塗工して保護層を形成することにより、酸化アルミニウム層の欠損部分に保護層用樹脂組成物中の樹脂が浸透し、結果としてガスバリア性が安定するという効果が得られる。加えて、保護層そのものにもガスバリア性を持つ材料を使用することで、積層フィルムのガスバリア性能も大きく向上することになる。
[Protective Layer]
In the present invention, it is preferable to have a protective layer on the aluminum oxide layer. The aluminum oxide layer laminated on the plastic film is not a completely dense film, but has minute defects scattered therein. By forming a protective layer by applying a specific resin composition for protective layer, which will be described later, on the aluminum oxide layer, the resin in the resin composition for protective layer penetrates into the defective parts of the aluminum oxide layer, resulting in an effect of stabilizing the gas barrier properties. In addition, by using a material having gas barrier properties for the protective layer itself, the gas barrier performance of the laminated film is also greatly improved.
 本発明においては、保護層の塗布量を0.05~0.60g/mとすることが好ましい。これにより、均一性によりコートムラや欠陥を減少させつつ、アンカー効果で接着性を高めることができる。また保護層自体の凝集力が向上し、酸化アルミニウム層-保護層間の密着性が強固になり、耐水性を高めることもできる。保護層の塗布量は、好ましくは0.08g/m以上、より好ましくは0.10g/m以上、さらに好ましくは0.15g/m以上であり、好ましくは0.50g/m以下、より好ましくは0.45g/m以下、さらに好ましくは0.40g/m以下である。保護層の塗布量が0.60g/mを超えると、ガスバリア性は向上するが、保護層内部の凝集力が不充分となり、密着が低下するおそれがある。またコート外観にムラや欠陥が生じたり、湿熱処理後のガスバリア性・接着性を充分に発現できない場合がある。一方、保護層の膜厚が0.10g/m未満であると、充分なガスバリア性および層間密着性またインクの浸透性が得られないおそれがある。 In the present invention, the coating amount of the protective layer is preferably 0.05 to 0.60 g/m 2. This reduces unevenness and defects in the coating due to uniformity, while enhancing adhesion due to the anchor effect. In addition, the cohesive force of the protective layer itself is improved, and the adhesion between the aluminum oxide layer and the protective layer is strengthened, and water resistance can also be enhanced. The coating amount of the protective layer is preferably 0.08 g/m 2 or more, more preferably 0.10 g/m 2 or more, and even more preferably 0.15 g/m 2 or more, and is preferably 0.50 g/m 2 or less, more preferably 0.45 g/m 2 or less, and even more preferably 0.40 g/m 2 or less. If the coating amount of the protective layer exceeds 0.60 g/m 2 , the gas barrier property is improved, but the cohesive force inside the protective layer becomes insufficient, and adhesion may decrease. In addition, unevenness or defects may occur in the appearance of the coat, and gas barrier property and adhesion after wet heat treatment may not be fully exhibited. On the other hand, if the thickness of the protective layer is less than 0.10 g/m 2 , sufficient gas barrier properties, interlayer adhesion, and ink permeability may not be obtained.
 保護層の成分としては、溶剤分散樹脂、水分散樹脂のどちらを用いても構わない。特に、酸化アルミニウム層との密着性を向上させるためには、溶剤分散樹脂が好ましい。さらに、高いガスバリア性を得るためにジカルボン酸および多価アルコールを反応させて得られるポリエステルポリオール成分、および、ポリイソシアネート成分から成る樹脂が好ましい。 As the component of the protective layer, either a solvent-dispersed resin or a water-dispersed resin may be used. In particular, a solvent-dispersed resin is preferred for improving adhesion to the aluminum oxide layer. Furthermore, in order to obtain high gas barrier properties, a resin composed of a polyester polyol component obtained by reacting a dicarboxylic acid with a polyhydric alcohol, and a polyisocyanate component is preferred.
(A)ポリエステル成分
 ポリエステル成分は、多価カルボン酸および多価アルコールを反応させて得られる。
(A) Polyester Component The polyester component is obtained by reacting a polyvalent carboxylic acid with a polyhydric alcohol.
 多価カルボン酸としては、芳香族多価カルボン酸、脂環族多価カルボン酸、脂肪族多価カルボン酸等が含まれる。ガスバリア性の観点から、芳香族多価カルボン酸が好ましい。例えば、オルトフタル酸、イソフタル酸、テレフタル酸、1,2-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、アントラセン-1,2-ジカルボン酸、アントラキノン-2,3-ジカルボン酸である。 Polycarboxylic acids include aromatic polycarboxylic acids, alicyclic polycarboxylic acids, aliphatic polycarboxylic acids, etc. From the viewpoint of gas barrier properties, aromatic polycarboxylic acids are preferred. Examples include orthophthalic acid, isophthalic acid, terephthalic acid, 1,2-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, anthracene-1,2-dicarboxylic acid, and anthraquinone-2,3-dicarboxylic acid.
 多価アルコールとしては、低分子量のグリコールから高分子量のものまで用いることはできるが、ガスバリア性および非晶部による柔軟性の観点から、アルキレングリコール(例えば、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール、ヘプタンジオール、オクタンジオール等の直鎖状または分岐鎖状C2-10アルキレングリコール)、(ポリ)オキシC2-4アルキレングリコール(ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール等)等の低分子量グリコールが使用される。好ましいグリコール成分は、C2-8ポリオール成分[例えば、C2-6アルキレングリコール(特に、エチレングリコール、1,2-または1,3-プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール)等]、ジまたはトリオキシC2-3アルキレングリコール(ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール等)であり、特に好ましいジオール成分はC2-8アルキレングリコール(特にC2-6アルキレングリコール)である。 As polyhydric alcohols, glycols ranging from low molecular weight to high molecular weight can be used, but from the standpoint of gas barrier properties and flexibility due to the amorphous portion, low molecular weight glycols such as alkylene glycols (e.g., linear or branched C2-10 alkylene glycols such as ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, pentanediol, hexanediol, neopentyl glycol, heptanediol, octanediol, etc.), (poly)oxy C2-4 alkylene glycols (diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, etc.) are used. Preferred glycol components are C2-8 polyol components [e.g., C2-6 alkylene glycol (particularly, ethylene glycol, 1,2- or 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol), etc.], di- or trioxy C2-3 alkylene glycol (diethylene glycol, triethylene glycol, dipropylene glycol, etc.), and particularly preferred diol components are C2-8 alkylene glycol (particularly, C2-6 alkylene glycol).
 これらのジオール成分は単独でまたは2種以上組み合わせて使用できる。さらに必要に応じて、芳香族ジオール(例えば、ビスフェノールA、ビスヒドロキシェチルテレフタレート、カテコール、レゾルシン、ハイドロキノン、1,3-または1,4-キシリレンジオールもしくはその混合物等)、脂環族ジオール(例えば、水添ビスフェノールA、キシリレンジオール、シクロヘキサンジオール、シクロヘキサンジメタノール等)等の低分子量ジオール成分を併用してもよい。さらに、必要により、3官能以上のポリオール成分、例えば、グリセリン、トリメチロールエタン、トリメチロールプロパン、ポリエステルポリオール、ポリカーボネートポリオール、ポリエーテルポリオールも併用することができる。ポリオール成分は、少なくともC2-8ポリオール成分(特に、C2-6アルキレングリコール)を含むのが好ましい。 These diol components can be used alone or in combination of two or more. If necessary, low molecular weight diol components such as aromatic diols (e.g., bisphenol A, bishydroxyethyl terephthalate, catechol, resorcinol, hydroquinone, 1,3- or 1,4-xylylenediol or mixtures thereof, etc.) and alicyclic diols (e.g., hydrogenated bisphenol A, xylylenediol, cyclohexanediol, cyclohexanedimethanol, etc.) may be used in combination. If necessary, trifunctional or higher polyol components such as glycerin, trimethylolethane, trimethylolpropane, polyester polyol, polycarbonate polyol, and polyether polyol may also be used in combination. The polyol component preferably contains at least a C2-8 polyol component (especially a C2-6 alkylene glycol).
(B)ポリイソシアネート成分
 ポリイソシアネート成分としては、芳香族ポリイソシアネート、脂環族ポリイソシアネート、脂肪族ポリイソシアネート等が含まれる。ポリイソシアネート化合物としては、通常、ジイソシアネート化合物が使用される。
(B) Polyisocyanate Component The polyisocyanate component includes aromatic polyisocyanates, alicyclic polyisocyanates, aliphatic polyisocyanates, etc. As the polyisocyanate compound, a diisocyanate compound is usually used.
 芳香族ジイソシアネートとしては、例えば、トリレンジイソシアネート(2,4-または2,6-トリレンジイソシアネートもしくはその混合物)(TDI)、フェニレンジイソシアネート(m-、p-フェニレンジイソシアネートもしくはその混合物)、4,4'-ジフェニルシイソシアネート、1,5-ナフタレンジイソシアネート(NDI)、ジフェニルメタンジイソシネート(4,4'-、2,4'-、または2,2'-ジフェニルメタンジイソシネートもしくはその混合物)(MDI)、4,4'-トルイジンジイソシアネート(TODI)、4,4'-ジフェニルエーテルシイソシアネート等が例示できる。芳香脂肪族ジイソシアネートとしては、例えば、キシリレンジイソシアネート(1,3-または1,4-キシリレンジイソシアネートもしくはその混合物)(XDI)、テトラメチルキシリレンジイソシアネート(1,3-または1,4-テトラメチルキシリレンジイソシアネートもしくはその混合物)(TMXDI)、ω,ω'-ジイソシアネート-1,4-ジエチルベンゼン等が例示できる。 Examples of aromatic diisocyanates include tolylene diisocyanate (2,4- or 2,6-tolylene diisocyanate or a mixture thereof) (TDI), phenylene diisocyanate (m-, p-phenylene diisocyanate or a mixture thereof), 4,4'-diphenyl diisocyanate, 1,5-naphthalene diisocyanate (NDI), diphenylmethane diisocyanate (4,4'-, 2,4'-, or 2,2'-diphenylmethane diisocyanate or a mixture thereof) (MDI), 4,4'-toluidine diisocyanate (TODI), 4,4'-diphenyl ether diisocyanate, etc. Examples of aromatic aliphatic diisocyanates include xylylene diisocyanate (1,3- or 1,4-xylylene diisocyanate or a mixture thereof) (XDI), tetramethyl xylylene diisocyanate (1,3- or 1,4-tetramethyl xylylene diisocyanate or a mixture thereof) (TMXDI), ω,ω'-diisocyanate-1,4-diethylbenzene, etc.
 脂環族ジイソシアネートとしては、例えば、1,3-シクロペンテンジイソシアネート、シクロヘキサンジイソシアネート(1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート)、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロジイソシアネート、IPDI)、メチレンビス(シクロヘキシルイソシアネート)(4,4'-、2,4'-または2,2’-メチレンビス(シクロヘキシルイソシアネート))(水添MDI)、メチルシクロヘキサンジイソシアネート(メチルー2,4-シクロヘキサンジイソシアネート、メチルー2,6-シクロヘキサンジイソシアネート)、ビス(イソシアネートメチル)シクロヘキサン(1,3-または1,4-ビス(イソシアネートメチル)シクロヘキサンもしくはその混合物)(水添XDI)等を挙げることができる。 Examples of alicyclic diisocyanates include 1,3-cyclopentene diisocyanate, cyclohexane diisocyanate (1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate), 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (isophorodiisocyanate, IPDI), methylene bis(cyclohexyl isocyanate) (4,4'-, 2,4'-, or 2,2'-methylene bis(cyclohexyl isocyanate)) (hydrogenated MDI), methylcyclohexane diisocyanate (methyl-2,4-cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate), bis(isocyanatomethyl)cyclohexane (1,3- or 1,4-bis(isocyanatomethyl)cyclohexane or a mixture thereof) (hydrogenated XDI), etc.
 脂肪族ジイソシアネートとしては、例えば、トリメチレンジイソシアネート、1,2-プロピレンジイソシアネート、ブチレンジイソシアネート(テトラメチレンジイソシアネート、1,2-ブチレンジイソシアネート、2,3-ブチレンジイソシアネート、1,3-ブチレンジイソシアネート)、ヘキサメチレンジイソシアネート、ペンダメチレンジイソシアネート、2,4,4-または2,2,4-トリメチルヘキサメチレンジイソシアネート、2,6-ジイソシアネートメチルカフェート等を挙げることができる。 Examples of aliphatic diisocyanates include trimethylene diisocyanate, 1,2-propylene diisocyanate, butylene diisocyanate (tetramethylene diisocyanate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate), hexamethylene diisocyanate, pendanthemethylene diisocyanate, 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate, 2,6-diisocyanate methyl caferate, etc.
 ポリエステル成分(A)およびポリイソシアネート成分(B)を反応させることにより、ウレタン樹脂が得られる。ポリエステル成分およびポリイソシアネート成分の重量比は固形分で、9:1~1:9である。好ましくは8:2~2:8であり、さらに好ましくは6:4~4:6である。 A urethane resin is obtained by reacting the polyester component (A) with the polyisocyanate component (B). The weight ratio of the polyester component to the polyisocyanate component is 9:1 to 1:9 on a solids basis. It is preferably 8:2 to 2:8, and more preferably 6:4 to 4:6.
 本発明の保護層用樹脂組成物には、後述のようにシランカップリング剤を含有することが好ましいが、必要に応じて、ガスバリア性を損なわない範囲で、各種の添加剤を配合してもよい。添加剤としては、例えば、層状無機化合物、安定剤(酸化防止剤、熱安定剤、紫外線吸収剤等)、可塑剤、帯電防止剤、滑剤、ブロッキング防止剤、着色剤、フィラー、結晶核剤等が例示できる。 The resin composition for the protective layer of the present invention preferably contains a silane coupling agent as described below, but various additives may be added as necessary to the extent that the gas barrier properties are not impaired. Examples of additives include layered inorganic compounds, stabilizers (antioxidants, heat stabilizers, ultraviolet absorbers, etc.), plasticizers, antistatic agents, lubricants, antiblocking agents, colorants, fillers, crystal nucleating agents, etc.
 シランカップリング剤は、酸化アルミニウム層に対する保護層の密着性を改良するのに有効である。シランカップリング剤としては、加水分解性アルコキシシラン化合物、例えば、ハロゲン含有アルコキシシラン(2-クロロエチルトリメトキシシラン、2-クロロエチルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン等のクロロC2-4アルキルトリC1-4アルコキシシランなど)、エポキシ基を有するアルコキシシラン[2-グリシジルオキシエチルトリメトキシシラン、2-グリシジルオキシエチルトリエトキシシラン、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン等のグリシジルオキシC2-4アルキルトリC1-4アルコキシシラン、3-グリシジルオキシプロピルメチルジメトキシシラン、3-グリシジルオキシプロピルメチルジエトキシシラン等のグリシジルオキシジC2-4アルキルジC1-4アルコキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン等の(エポキシシクロアルキル)C2-4アルキルトリC1-4アルコキシシラン等]、アミノ基を有するアルコキシシラン[2-アミノエチルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン等のアミノC2-4アルキルトリC1-4アルコキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン等のアミノジC2-4アルキルジC1-4アルコシシラン、2-[N-(2-アミノエチル)アミノ]エチルトリメトキシシラン、3-[N-(2-アミノエチル)アミノ]プロピルトリメトキシシラン、3-[N-(2-アミノエチル)アミノ]プロピルトリエトキシシラン等の(2-アミノC2-4アルキル)アミノC2-4アルキルトリC1-4アルコキシシラン、3-[N-(2-アミノエチル)アミノ]プロピルメチルジメトキシシラン、3-[N-(2-アミノエチル)アミノ]プロピルメチルジエトキシシラン等の(アミノC2-4アルキル)アミノジC2-4アルキルジC1-4アルコキシシラン等]、メルカプト基を有するアルコキシシラン(2-メルカプトエチルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン等のメルカプトC2-4アルキルトリC1-4アルコキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン等のメルカプトジC2-4アルキルジC1-4アルコキシシラン等)、ビニル基を有するアルコキシシラン(ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニルトリC1-4アルコキシシラン等)、エチレン性不飽和結合基を有するアルコキシシラン[2-(メタ)アクリロキシエチルトリメトキシシラン、2-(メタ)アクリロキシエチルトリエトキシシラン、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン等の(メタ)アクリロキシC2-4アルキルトリC1-4アルコキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン等の(メタ)アクリロキシジC2-4アルキルジC1-4アルコキシシラン等)等が例示できる。前記のシランカップリング剤のうちで、アミノ基を有するアルコキシシラン化合物が好ましく、アミノプロピルトリメトキシシランが特に好ましい。これらのシランカップリング剤は、単独で又は二種以上組み合わせて使用できる。 Silane coupling agents are effective in improving the adhesion of the protective layer to the aluminum oxide layer. Examples of silane coupling agents include hydrolyzable alkoxysilane compounds, such as halogen-containing alkoxysilanes (chloro C2-4 alkyl tri C1-4 alkoxysilanes such as 2-chloroethyl trimethoxysilane, 2-chloroethyl triethoxysilane, 3-chloropropyl trimethoxysilane, and 3-chloropropyl triethoxysilane), alkoxysilanes having epoxy groups [glycidyloxy C2-4 alkyl tri C1-4 alkoxysilanes such as 2-glycidyloxyethyl trimethoxysilane, 2-glycidyloxyethyl triethoxysilane, 3-glycidyloxypropyl trimethoxysilane, and 3-glycidyloxypropyl triethoxysilane, glycidyloxy di C such as 3-glycidyloxypropyl methyl dimethoxysilane and 3-glycidyloxypropyl methyl diethoxysilane]. 2-4 alkyl di C1-4 alkoxy silanes, (epoxy cycloalkyl) C2-4 alkyl tri C1-4 alkoxy silanes such as 2-(3,4-epoxy cyclohexyl) ethyl trimethoxy silane, 2-(3,4-epoxy cyclohexyl) ethyl triethoxy silane, 3-(3,4-epoxy cyclohexyl) propyl trimethoxy silane, etc.], alkoxy silanes having amino groups [amino C2-4 alkyl tri C1-4 alkoxy silanes such as 2-aminoethyl trimethoxy silane, 3-aminopropyl trimethoxy silane, 3-aminopropyl triethoxy silane, etc., amino di C2-4 alkyl di C1-4 alkoxy silanes such as 3-aminopropyl methyl dimethoxy silane, 3-aminopropyl methyl diethoxy silane, etc., 2-[N-(2-aminoethyl) amino] ethyl trimethoxy silane, 3-[N- (2-amino C2-4 alkyl)amino C2-4 alkyl tri C1-4 alkoxysilanes such as (2-aminoethyl)amino]propyl trimethoxysilane and 3-[N-(2-aminoethyl)amino]propyl triethoxysilane; (amino C2-4 alkyl)amino di C2-4 alkyl di C1-4 alkoxysilanes such as 3-[N-(2-aminoethyl)amino]propyl methyl dimethoxysilane and 3-[N-(2-aminoethyl)amino]propyl methyl diethoxysilane; alkoxysilanes having a mercapto group (mercapto C2-4 alkyl tri C1-4 alkoxysilanes such as 2-mercaptoethyl trimethoxysilane, 3-mercaptopropyl trimethoxysilane and 3-mercaptopropyl triethoxysilane; 3-mercaptopropyl methyl dimethoxysilane and 3-mercaptopropyl methyl Examples of the silane coupling agent include mercaptodiC2-4 alkyldiC1-4 alkoxysilanes such as diethoxysilane, etc.), alkoxysilanes having a vinyl group (vinyltrimethoxysilane, vinyltriethoxysilane, etc., vinyltriC1-4 alkoxysilanes, etc.), alkoxysilanes having an ethylenically unsaturated bond group [(meth)acryloxyC2-4 alkyltriC1-4 alkoxysilanes such as 2-(meth)acryloxyethyltrimethoxysilane, 2-(meth)acryloxyethyltriethoxysilane, 3-(meth)acryloxypropyltrimethoxysilane, 3-(meth)acryloxypropyltriethoxysilane, etc., (meth)acryloxydiC2-4 alkyldiC1-4 alkoxysilanes such as 3-(meth)acryloxypropylmethyldimethoxysilane, 3-(meth)acryloxypropylmethyldiethoxysilane, etc.], etc. Among the above-mentioned silane coupling agents, alkoxysilane compounds having an amino group are preferred, and aminopropyltrimethoxysilane is particularly preferred. These silane coupling agents can be used alone or in combination.
 シランカップリング剤の含有量の割合は、保護層に対して、5.0重量%以下、好ましくは2.0~4.5重量%、さらに好ましくは3.0~4.0重量%程度である。 The content of the silane coupling agent in the protective layer is 5.0% by weight or less, preferably 2.0 to 4.5% by weight, and more preferably about 3.0 to 4.0% by weight.
 保護層用樹脂組成物により保護層を形成する場合、前記組成物および有機溶剤からなる塗工液(塗布液)を用意し、基材フィルムに塗布、乾燥すればよい。有機溶剤としては、メタノール、エタノール、イソプロピルアルコール(IPA)等のアルコール類、アセトン、メチルエチルケトン等のケトン類、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のエーテル類、酢酸エチル、酢酸プロピル等のエステル類から選択される単独または混合溶剤を使用することができ、塗膜加工および臭気の観点からはメチルエチルケトン、酢酸エチルが好ましい。 When forming a protective layer using a resin composition for a protective layer, a coating liquid (applied liquid) consisting of the composition and an organic solvent is prepared, applied to a substrate film, and dried. The organic solvent may be a single or mixed solvent selected from alcohols such as methanol, ethanol, isopropyl alcohol (IPA), etc.; ketones such as acetone and methyl ethyl ketone, etc.; ethers such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate, etc.; and esters such as ethyl acetate and propyl acetate, and from the viewpoints of coating film processing and odor, methyl ethyl ketone and ethyl acetate are preferred.
 保護層用樹脂組成物の塗工方式は、フィルム表面に塗工して層を形成させる方法であれば特に限定されるものではない。例えば、グラビアコーティング、リバースロールコーティング、ワイヤーバーコーティング、ダイコーティング等の通常のコーティング方法を採用することができる。生産性と塗工安定性の観点から、ワイヤーバーコーティング、グラビアコーティングが好適に用いられる。 The coating method for the resin composition for the protective layer is not particularly limited as long as it is a method that coats the film surface to form a layer. For example, conventional coating methods such as gravure coating, reverse roll coating, wire bar coating, and die coating can be used. From the viewpoints of productivity and coating stability, wire bar coating and gravure coating are preferably used.
 保護層を形成する際には、保護層用樹脂組成物を塗布した後、加熱乾燥することが好ましく、その際の乾燥温度は110~210℃が好ましく、より好ましくは115~205℃、さらに好ましくは120~200℃である。乾燥温度が110℃未満であると、保護層に乾燥不足または熱による凝集不足が生じ、表面硬度が所定範囲外となるおそれがある。その結果、密着性およびボイル処理、レトルト処理を施した際の保護層の耐水性が低下するおそれがある。一方、乾燥温度が210℃を超えると、保護層の凝集が進みすぎて膜が硬くなりバリア層が破壊されバリア性能が低下するおそれがある。また、基材であるフィルム自体に熱がかかりすぎてしまいフィルムが脆くなったり、収縮して加工性が悪くなる虞がある。なお、乾燥とは別に、追加の熱処理(例えば、150~190℃)を加えることも、保護層の乾燥を進行させる上で、効果的である。 When forming the protective layer, it is preferable to apply the resin composition for the protective layer and then heat-dry it. The drying temperature is preferably 110 to 210°C, more preferably 115 to 205°C, and even more preferably 120 to 200°C. If the drying temperature is less than 110°C, the protective layer may not be sufficiently dried or may not be sufficiently cohesive due to heat, and the surface hardness may be outside the specified range. As a result, the adhesion and water resistance of the protective layer when subjected to boiling treatment or retort treatment may decrease. On the other hand, if the drying temperature exceeds 210°C, the protective layer may be too cohesive, the film may become hard, the barrier layer may be destroyed, and the barrier performance may decrease. In addition, the film itself, which is the base material, may be too heated, making the film brittle or shrinking, resulting in poor processability. In addition to drying, adding an additional heat treatment (for example, 150 to 190°C) is also effective in promoting the drying of the protective layer.
 保護層の乾燥時間は、30秒以内が好ましい。乾燥時間が30秒を超えると、保護層の乾燥のみでなく、基材フィルムの収縮が起こり、ガスバリア層に割れが生じ、ガスバリア性能が低下する。一方で、5秒より短い場合、保護層が硬化せず、密着性やバリア性の低下が生じる。生産性の観点から、さらに好ましくは5~25秒、より好ましくは10~20秒である。フィルムが急激に加熱されるとフィルムが大きく収縮され、ガスバリア層に圧縮応力が生じ、バリア性能が低下する。50℃/秒以下の速度で温度を上昇させていくことが好ましい。さらに好ましくは30℃/秒以下であり、より好ましくは20℃/秒以下である。 The drying time for the protective layer is preferably within 30 seconds. If the drying time exceeds 30 seconds, not only will the protective layer not dry, but the base film will shrink, causing cracks in the gas barrier layer and reducing the gas barrier performance. On the other hand, if the drying time is shorter than 5 seconds, the protective layer will not harden, resulting in reduced adhesion and barrier properties. From the viewpoint of productivity, it is more preferably 5 to 25 seconds, and more preferably 10 to 20 seconds. If the film is heated suddenly, it will shrink significantly, causing compressive stress in the gas barrier layer and reducing the barrier performance. It is preferable to increase the temperature at a rate of 50°C/sec or less. It is more preferably 30°C/sec or less, and more preferably 20°C/sec or less.
 保護層を形成する工程での加熱時の表面温度は、100~150℃が好ましく、さらに好ましくは105~145℃であり、より好ましくは110~140℃である。 The surface temperature during heating in the process of forming the protective layer is preferably 100 to 150°C, more preferably 105 to 145°C, and even more preferably 110 to 140°C.
 保護層を形成する工程での加熱時のフィルム張力は、30~90N/mが好ましい。さらに好ましくは、40~80N/mであり、より好ましくは50~70N/mである。20N/m未満の場合、巻き不良が生じ、100N/mを超えると、ガスバリア層に引張応力が生じ、バリア性能が低下する。 The film tension during heating in the process of forming the protective layer is preferably 30 to 90 N/m. More preferably, it is 40 to 80 N/m, and even more preferably, it is 50 to 70 N/m. If it is less than 20 N/m, winding defects will occur, and if it exceeds 100 N/m, tensile stress will be generated in the gas barrier layer, reducing the barrier performance.
[ヒートシール層]
 無機薄薄膜層を備えたガスバリア性積層フィルムを包装材料として用いる場合には、シーラントと呼ばれるヒートシール層を形成することが好ましい。ヒートシール層は通常、酸化アルミニウム層上に設けられるが、基材フィルムの外側(保護層形成面の反対側の面)に設けることもある。保護層が設けられている場合、ヒートシール層は、保護層表面に積層されていてもよい。
ヒートシール性樹脂の形成は、通常押出しラミネート法あるいはドライラミネート法によりなされる。ヒートシール性樹脂層を形成する熱可塑性重合体としては、シーラント接着性が充分に発現できるものであればよく、HDPE、LDPE、LLDPEなどのポリエチレン樹脂類、ポリプロピレン樹脂、エチレン-酢酸ビニル共重合体、エチレン-α-オレフィンランダム共重合体、アイオノマー樹脂等を使用できる。レトルト処理のような湿熱処理を施す場合には、ポリプロピレン樹脂を用いてドライラミネート法で形成させるのが好ましい。ヒートシール層は、通常は20~250μmであることが推奨され、包装材料として用いる場合は40~100μmであることが望ましい。
[Heat seal layer]
When the gas barrier laminate film having an inorganic thin film layer is used as a packaging material, it is preferable to form a heat seal layer called a sealant. The heat seal layer is usually provided on the aluminum oxide layer, but may also be provided on the outside of the base film (the surface opposite to the surface on which the protective layer is formed). When a protective layer is provided, the heat seal layer may be laminated on the surface of the protective layer.
The heat sealable resin is usually formed by extrusion lamination or dry lamination. The thermoplastic polymer forming the heat sealable resin layer may be any polymer capable of sufficiently exhibiting sealant adhesiveness, and may be polyethylene resins such as HDPE, LDPE, and LLDPE, polypropylene resin, ethylene-vinyl acetate copolymer, ethylene-α-olefin random copolymer, ionomer resin, or the like. When a moist heat treatment such as retort treatment is to be performed, it is preferable to form the heat sealable resin by the dry lamination method using a polypropylene resin. The heat seal layer is usually recommended to be 20 to 250 μm, and when used as a packaging material, it is desirable to be 40 to 100 μm.
 保護層とヒートシール層の接着には、ポリウレタン樹脂、ポリイソシアネート樹脂、ポリエステル樹脂、エーテル樹脂等が用いられる。レトルト処理のような湿熱処理を施す場合には、ポリウレタン樹脂とポリイソシアネート樹脂の反応物を接着剤として用いるのが好ましい。塗布量は、貼り合わせるフィルムの材質によって異なるが、1~20g/mが好ましく、さらに好ましくは2~10g/mであり、より好ましくは3~6g/mである。接着温度は、ヒートシール層の厚みと接着剤の厚みによって設定されるが、50~120℃が好ましく、さらに好ましくは55~100℃であり、より好ましくは60~80℃である。 For bonding the protective layer and the heat seal layer, polyurethane resin, polyisocyanate resin, polyester resin, ether resin, etc. are used. When performing a wet heat treatment such as retort treatment, it is preferable to use a reaction product of polyurethane resin and polyisocyanate resin as an adhesive. The amount of application varies depending on the material of the film to be laminated, but is preferably 1 to 20 g/ m2 , more preferably 2 to 10 g/ m2 , and more preferably 3 to 6 g/ m2 . The adhesion temperature is set depending on the thickness of the heat seal layer and the thickness of the adhesive, but is preferably 50 to 120°C, more preferably 55 to 100°C, and more preferably 60 to 80°C.
 以上より本発明の積層フィルムは、常態およびレトルト処理を施した後にも水蒸気バリア性および外観に優れ、かつ印刷・ラミネート等の加工を施した際も良好な接着性を有し、しかも製造が容易で経済性にも優れたガスバリア性積層フィルム(積層フィルム)となる。 As described above, the laminate film of the present invention has excellent water vapor barrier properties and appearance both in its normal state and after retort treatment, and has good adhesion even when processed by printing, lamination, etc., and is a gas barrier laminate film (laminate film) that is easy to manufacture and has excellent economical properties.
[その他の層]
 本発明の積層フィルムを用いてなる酸化アルミニウム層を備えたガスバリア性積層フィルムには、上記基材フィルム、酸化アルミニウム層、保護層のほかに、必要に応じて、公知のガスバリア性積層フィルムが備えている種々の層を設けることができる。例えば、ガスバリア性積層フィルムおよびヒートシール層の間に、中間層としてポリアミド樹脂を備え、積層体の密着性や柔軟性を向上させることができる。また、酸化アルミニウム層形成時に発生する無機酸化物の酸素欠損部分や金属水酸化物と反応させ密着性を向上させるため、被覆層があってもよい。
[Other layers]
In the gas barrier laminate film having an aluminum oxide layer formed by using the laminate film of the present invention, in addition to the above-mentioned base film, aluminum oxide layer, and protective layer, various layers that are provided in known gas barrier laminate films can be provided as necessary. For example, a polyamide resin can be provided as an intermediate layer between the gas barrier laminate film and the heat seal layer to improve the adhesion and flexibility of the laminate. In addition, a coating layer may be provided to react with oxygen-deficient parts of inorganic oxides and metal hydroxides generated during the formation of the aluminum oxide layer to improve adhesion.
 さらに、酸化アルミニウム層を備えたガスバリア性積層フィルムには、酸化アルミニウム層または基材フィルムとヒートシール性樹脂層との間またはその外側に、印刷層や他のプラスチック基材および/または紙基材を少なくとも1層以上積層していてもよい。 Furthermore, the gas barrier laminate film having an aluminum oxide layer may have at least one or more layers of a printed layer, other plastic substrate, and/or paper substrate laminated between or on the outside of the aluminum oxide layer or substrate film and the heat sealable resin layer.
 印刷層を形成する印刷インクとしては、水性および溶媒系の樹脂含有印刷インクが好ましく使用できる。ここで印刷インクに使用される樹脂としては、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂、酢酸ビニル共重合樹脂およびこれらの混合物が例示される。印刷インクには、帯電防止剤、光線遮断剤、紫外線吸収剤、可塑剤、滑剤、フィラー、着色剤、安定剤、潤滑剤、消泡剤、架橋剤、耐ブロッキング剤、酸化防止剤等の公知の添加剤を含有させてもよい。印刷層を設けるための印刷方法としては、特に限定されず、オフセット印刷法、グラビア印刷法、スクリーン印刷法等の公知の印刷方法が使用できる。印刷後の溶媒の乾燥には、熱風乾燥、熱ロール乾燥、赤外線乾燥等公知の乾燥方法が使用できる。 As the printing ink for forming the printing layer, water-based and solvent-based resin-containing printing inks can be preferably used. Examples of resins used in the printing ink include acrylic resins, urethane resins, polyester resins, vinyl chloride resins, vinyl acetate copolymer resins, and mixtures thereof. The printing ink may contain known additives such as antistatic agents, light blocking agents, ultraviolet absorbers, plasticizers, lubricants, fillers, colorants, stabilizers, lubricants, defoamers, crosslinking agents, anti-blocking agents, and antioxidants. There are no particular limitations on the printing method for providing the printing layer, and known printing methods such as offset printing, gravure printing, and screen printing can be used. To dry the solvent after printing, known drying methods such as hot air drying, hot roll drying, and infrared drying can be used.
 他方、他のプラスチック基材や紙基材としては、充分な積層フィルムの剛性および強度を得る観点から、紙、ポリエステル樹脂、ポリアミド樹脂および生分解性樹脂等が好ましく用いられる。また、機械的強度の優れたフィルムとする上では、二軸延伸ポリエステルフィルム、二軸延伸ナイロンフィルム等の延伸フィルムが好ましい。 On the other hand, as other plastic and paper substrates, from the viewpoint of obtaining sufficient rigidity and strength of the laminated film, paper, polyester resin, polyamide resin, biodegradable resin, etc. are preferably used. Also, in order to obtain a film with excellent mechanical strength, oriented films such as biaxially oriented polyester film and biaxially oriented nylon film are preferred.
 特に、酸化アルミニウム層を備えたガスバリア性積層フィルムを包装材料として用いる場合、酸化アルミニウム層とヒートシール性樹脂層との間に、ピンホール性や突き刺し強度等の機械的物性を向上させるため、ナイロンフィルムを積層することが好ましい。ここでナイロンの種類としては、通常、ナイロン6、ナイロン66、メタキシレンアジパミド等が用いられる。ナイロンフィルムの厚さは、通常10~30μm、好ましくは15~25μmである。ナイロンフィルムが10μmより薄いと、強度不足になるおそれがあり、一方、30μmを超えると、腰が強く加工に適さない場合がある。ナイロンフィルムとしては、縦横の各方向の延伸倍率が、通常2倍以上、好ましくは2.5~4倍程度の二軸延伸フィルムが好ましい。 In particular, when a gas barrier laminate film with an aluminum oxide layer is used as a packaging material, it is preferable to laminate a nylon film between the aluminum oxide layer and the heat sealable resin layer in order to improve mechanical properties such as pinhole resistance and puncture strength. The types of nylon typically used here include nylon 6, nylon 66, and metaxylene adipamide. The thickness of the nylon film is usually 10 to 30 μm, preferably 15 to 25 μm. If the nylon film is thinner than 10 μm, it may lack strength, while if it exceeds 30 μm, it may be too stiff and unsuitable for processing. As the nylon film, a biaxially oriented film with a stretch ratio in both the length and width directions is usually 2 times or more, preferably about 2.5 to 4 times.
 本発明の積層フィルムは、基材層、酸化アルミニウム層、および保護層以外の上述した各層を有する態様をも包含する。 The laminated film of the present invention also includes embodiments having the above-mentioned layers other than the substrate layer, aluminum oxide layer, and protective layer.
 本発明の積層フィルムの水蒸気透過度は、2.5g/m・day以下であることが好ましく、より好ましくは2.0g/m・day以下であり、さらに好ましくは1.5g/m・day以下である。また、レトルト処理を施した際の水蒸気透過度は、2.5g/m・day以下であることが好ましく、より好ましくは2.0g/m・day以下であり、さらに好ましくは1.5g/m・day以下である。 The water vapor permeability of the laminated film of the present invention is preferably 2.5 g/ m2 ·day or less, more preferably 2.0 g/ m2 ·day or less, and even more preferably 1.5 g/ m2 ·day or less. The water vapor permeability after retort treatment is preferably 2.5 g/ m2 ·day or less, more preferably 2.0 g/ m2 ·day or less, and even more preferably 1.5 g/ m2 ·day or less.
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、特に断りのない限り、「%」は「質量%」を意味する。 The present invention will be explained in more detail below with reference to examples. However, the present invention is not limited to the following examples, and can be modified as appropriate within the scope of the above and below-mentioned aims, and all such modifications are included in the technical scope of the present invention. Unless otherwise specified, "%" means "% by mass."
 各実施例、比較例で用いた加工方法および評価・物性測定方法は以下の通りである。 The processing methods and evaluation/physical property measurement methods used in each example and comparative example are as follows:
(1)酸化アルミニウム層の膜厚
 酸化アルミニウム層の膜厚測定には、波長分散小型蛍光X線分析装置(リガク社製「Supermini200」)を用いた。酸化アルミニウム層の密度を、バルク密度(3.97g/cm)の0.74倍(2.94/cm)として、求めた。0.74倍とするのはTEM等により求めた実際の膜厚とよく合致するためである。蛍光X線装置により膜厚を求めるためには、予め既知の膜厚のサンプルを測定し、サンプルから出てくる蛍光X線量を求め、膜厚と蛍光X線強度との検量線を作成しておく必要がある。蛍光X線の検量線を作成するためのサンプルは、誘導結合プラズマ発光分光法により、単位面積当たりのアルミニウム付着量を同定し、酸化アルミニウム層の密度により膜厚に換算して膜厚を測定しておいたものを使用した。
(1) Film Thickness of Aluminum Oxide Layer A wavelength dispersive small-sized fluorescent X-ray analyzer (Rigaku Corporation, "Supermini 200") was used to measure the film thickness of the aluminum oxide layer. The density of the aluminum oxide layer was calculated as 0.74 times (2.94/cm 3 ) the bulk density (3.97 g/cm 3 ). The reason for using 0.74 times is that it closely matches the actual film thickness calculated by TEM or the like. In order to calculate the film thickness using a fluorescent X-ray analyzer, it is necessary to measure a sample with a known film thickness in advance, calculate the amount of fluorescent X-rays emitted from the sample, and create a calibration curve of film thickness and fluorescent X-ray intensity. The sample used for creating the fluorescent X-ray calibration curve was one in which the amount of aluminum attached per unit area was identified by inductively coupled plasma emission spectroscopy, and the film thickness was measured by converting the density of the aluminum oxide layer into a film thickness.
(2)飛行時間型二次イオン質量分析法(TOF-SIMS)測定条件
 装置には、ION-TOF社製 飛行時間型二次イオン質量分析装置 TOF.SIMS5を用いた。酸化アルミニウムの表面を測定対象とした。条件は以下通りとした。
一次イオン:Bi ++ 約0.2pA(100μsec.)
一次イオン照射エリア:150μm角
スパッタイオン:Cs 1kV 約60nA
スパッタイオン照射エリア:600μm角
スパッタ時間:10sec./cycle
(2) Time-of-flight secondary ion mass spectrometry (TOF-SIMS) measurement conditions The time-of-flight secondary ion mass spectrometer TOF.SIMS5 manufactured by ION-TOF was used. The surface of aluminum oxide was the measurement target. The conditions were as follows:
Primary ion: Bi3 ++ approx. 0.2 pA (100 μsec.)
Primary ion irradiation area: 150 μm square Sputter ions: Cs 1 kV approx. 60 nA
Sputter ion irradiation area: 600 μm square Sputter time: 10 sec./cycle
(3)評価用ラミネート積層体の作製
 各積層フィルムの上に、ポリウレタン系2液硬化型接着剤(三井化学社製「タケラック(登録商標)A525S」と「タケネート(登録商標)A50」を13.5:1(質量比)の割合で配合)を用いて、厚さ15μmの二軸延伸ナイロンフィルム(東洋紡株式会社製「ハーデンフィルムN1102」)およびヒートシール性樹脂層として厚さ70μmの無延伸ポリプロピレンフィルム(東洋紡株式会社製「P1146」)をこの順でドライラミネート法により貼り合わせ、40℃にて4日間エージングを施すことにより、評価用のラミネートガスバリア性積層フィルムを得た。なお、ウレタン系2液硬化型接着剤で形成される接着剤層の乾燥後の厚みはいずれも約4μmであった。
(3) Preparation of Laminated Film for Evaluation On each laminated film, a 15 μm thick biaxially oriented nylon film (Toyobo Co., Ltd.'s "Harden Film N1102") and a 70 μm thick non-oriented polypropylene film (Toyobo Co., Ltd.'s "P1146") as a heat sealable resin layer were laminated in this order by dry lamination using a polyurethane-based two-component curing adhesive (Mitsui Chemicals'"Takelac (registered trademark) A525S" and "Takenate (registered trademark) A50" were blended in a ratio of 13.5:1 (mass ratio)) and aged at 40 ° C for 4 days to obtain a laminated gas barrier laminated film for evaluation. The thickness of the adhesive layer formed with the urethane-based two-component curing adhesive after drying was about 4 μm in each case.
(4)レトルト処理方法
 前記(2)で得られた積層体に対して、熱水スプレー式レトルト殺菌装置(日阪製作所社製「RCS-60SPXTG」)を用いて、130℃で30分間レトルト処理を行った。その後、40℃室にて1日間乾燥させ、積層体を得た。
(4) Retort Treatment Method The laminate obtained in (2) above was subjected to a retort treatment at 130° C. for 30 minutes using a hot water spray type retort sterilizer ("RCS-60SPXTG" manufactured by Hisaka Works, Ltd.) and then dried for 1 day in a 40° C. room to obtain a laminate.
(5)ラミネート強度(湿熱処理前後)の評価方法
 前記(3)および(4)で得られた積層体に対して、基材フィルムのMD方向に対して幅15mm、長さ200mmに切り出して試験片とし、温度23℃、相対湿度65%の条件下で、卓上形精密万能試験機(島津製作所社製「オートグラフAGS-X」)を用いてラミネート強度を測定した。なお、ラミネート強度の測定は、引張速度を200mm/分とし、実施例および比較例で得られた積層フィルムとヒートシール性樹脂層との相関に水をつけて剥離角度90°および180で剥離させたときの強度を測定した。測定は、前期(3)の処理前後で実施した。
(5) Evaluation method of laminate strength (before and after moist heat treatment) The laminates obtained in (3) and (4) above were cut into test pieces with a width of 15 mm and a length of 200 mm in the MD direction of the base film, and the laminate strength was measured using a tabletop precision universal testing machine (Shimadzu Corporation's "Autograph AGS-X") under conditions of a temperature of 23°C and a relative humidity of 65%. The laminate strength was measured at a tensile speed of 200 mm/min, and the strength was measured when the laminate film and the heat-sealable resin layer obtained in the examples and comparative examples were peeled off at peel angles of 90° and 180° after soaking in water. The measurement was carried out before and after the treatment in (3).
(6)水蒸気透過度(湿熱処理前後)の評価方法
 前記(3)および(4)で得られた積層体に対して、JIS-K7129に準じて、水蒸気透過度測定装置(MOCON社製「PERMATRAN-3/33MW」)を用い、温度40℃、相対湿度90%の雰囲気下で、水蒸気透過度を測定した。なお、水蒸気透過度の測定は、酸化アルミニウム層を積層していない基材フィルム側から酸化アルミニウム層側に水蒸気が透過する方向で行った。
(6) Evaluation method for water vapor permeability (before and after moist heat treatment) The water vapor permeability of the laminates obtained in (3) and (4) above was measured in accordance with JIS-K7129 using a water vapor permeability measuring device ("PERMATRAN-3/33MW" manufactured by MOCON Corp.) in an atmosphere at a temperature of 40° C. and a relative humidity of 90%. The water vapor permeability was measured in the direction in which water vapor permeated from the substrate film side on which no aluminum oxide layer was laminated to the aluminum oxide layer side.
(7)酸素透過度(湿熱処理前後)の評価方法
 前記(3)および(4)で得られた積層体に対して、JIS-K7126-2に準じて、酸素透過度測定装置(MOCON社製「OXTRAN-2/20」)を用い、温度23℃、相対湿度65%の雰囲気下で、酸素透過度を測定した。なお、酸素透過度の測定は、酸化アルミニウム層を積層していない基材フィルム側から酸化アルミニウム層側に酸素が透過する方向で行った。
(7) Evaluation method of oxygen permeability (before and after moist heat treatment) The oxygen permeability of the laminates obtained in (3) and (4) above was measured in accordance with JIS-K7126-2 using an oxygen permeability measuring device ("OXTRAN-2/20" manufactured by MOCON Corp.) in an atmosphere at a temperature of 23° C. and a relative humidity of 65%. The oxygen permeability was measured in the direction in which oxygen permeates from the substrate film side on which no aluminum oxide layer is laminated to the aluminum oxide layer side.
 各実施例、比較例において保護層の形成に用いた各材料は以下のようにして調製した。 The materials used to form the protective layer in each of the examples and comparative examples were prepared as follows.
<保護層A形成に用いた材料の調製(塗工液a)>
 数平均分子量450~3,000のポリエステル樹脂(オルト配向芳香族ジカルボン酸又はその無水物の少なくとも1種を含む多価カルボン酸成分と、多価アルコール成分を主成分としてなるポリエステル)30%を、メチルエチルケトン70%に溶解した(ポリエステル溶液)。シランカップリング剤(信越化学社製「KBM-603」)をアセトンに溶解した溶液およびメタキシリレンジイソシアネートのトリメチロールプロパンアダクト体(三井化学社製「タケネートD-110N」:固形分濃度75%)を混合させ、10分間マグネチックスターラ―を用いて撹拌した。得られた調合液をメチルエチルケトンで希釈し、さらにポリエステル溶液を添加し、固形分濃度が5%となるようなポリエステルウレタン塗工液aを得た。
<保護層B形成に用いた材料の調製(塗工液b)>
 重量平均分子量35,000のポリエステル樹脂(テレフタル酸、イソフタル酸、エチレングリコールおよびプロピレングリコールを主成分としてなるポリエステル)25%を、酢酸プロピル35%および酢酸エチル40%に溶解した(ポリエステル溶液)。該溶液14.00%および、酢酸エチル41.40%、酢酸プロピル43.10%、イソシアネート基を有するポリイソシアネート(コロネートL、日本ポリウレタン(株)製)1.30%、シランカップリング剤(信越化学社製「KBM-903」)0.2%を混合し、固形分濃度が5%となるようなポリエステルウレタン塗工液bを得た。
<保護層C形成に用いた材料の調製(塗工液c)>
 重量平均分子量30,000のポリメタクリル酸を、酢酸エチル/イソプロピルアルコール混合溶剤(酢酸エチル/イソプロピルアルコール=1:1(質量比))で希釈して、固形分濃度が5%となるようなポリメタクリル酸塗工液cを得た。
<Preparation of material used to form protective layer A (coating liquid a)>
30% of polyester resin having a number average molecular weight of 450 to 3,000 (polyester mainly composed of a polyvalent carboxylic acid component containing at least one of ortho-oriented aromatic dicarboxylic acid or its anhydride, and a polyhydric alcohol component) was dissolved in 70% methyl ethyl ketone (polyester solution). A solution of a silane coupling agent ("KBM-603" manufactured by Shin-Etsu Chemical Co., Ltd.) dissolved in acetone and a trimethylolpropane adduct of meta-xylylene diisocyanate ("Takenate D-110N" manufactured by Mitsui Chemical Co., Ltd.: solid content concentration 75%) were mixed and stirred for 10 minutes using a magnetic stirrer. The obtained mixture was diluted with methyl ethyl ketone, and the polyester solution was further added to obtain polyester urethane coating solution a having a solid content concentration of 5%.
<Preparation of material used to form protective layer B (coating liquid b)>
25% of a polyester resin having a weight average molecular weight of 35,000 (a polyester mainly composed of terephthalic acid, isophthalic acid, ethylene glycol, and propylene glycol) was dissolved in 35% propyl acetate and 40% ethyl acetate (polyester solution). 14.00% of the solution was mixed with 41.40% ethyl acetate, 43.10% propyl acetate, 1.30% of a polyisocyanate having an isocyanate group (Coronate L, manufactured by Nippon Polyurethane Co., Ltd.), and 0.2% of a silane coupling agent ("KBM-903" manufactured by Shin-Etsu Chemical Co., Ltd.) to obtain a polyester urethane coating solution b having a solid content concentration of 5%.
<Preparation of material used in forming protective layer C (coating liquid c)>
Polymethacrylic acid having a weight average molecular weight of 30,000 was diluted with a mixed solvent of ethyl acetate/isopropyl alcohol (ethyl acetate/isopropyl alcohol=1:1 (mass ratio)) to obtain polymethacrylic acid coating solution c having a solid content concentration of 5%.
(実施例1)
 厚さ12μmの二軸延伸ポリエステルフィルムを用い、コロナ処理面に蒸着されるように、ロールtoロールタイプフィルム走行系を持つ電子銃加熱タイプの蒸着装置にロールをセットし、バリアフィルムを作製した。蒸着前処理として、真空系の中でプラズマ処理を実施した。処理時には酸素ガスを1000sccm導入し、電流を30Aに設定し、プラズマを発生させた。その後、電子銃加熱によりアルミニウムを蒸発させ、酸素ガスを導入し、酸化アルミニウム層の蒸着を行った。蒸着したプラスチックフィルム(「基材フィルム/酸化アルミニウム層」の積層フィルム)は、蒸着機の中で光学式膜厚計に移動され、全光線透過率が測定された。測定後の積層フィルムは巻取りロールに巻き取られた。真空解放後、酸化アルミニウム層の膜厚、また、TOF-SIMSにより深さ方向のフラグメントイオン強度を測定した。結果は表1に示す通りであった。得られた積層フィルムについて、前記の(3)の通りラミネート積層体を作製した。ラミネート積層体を130℃30分のレトルト処理を施し、処理後のラミネート強度、水蒸気透過度、酸素透過度について評価した。さらに、得られた酸化アルミニウム層が形成されたプラスチックフィルム(「基材フィルム/酸化アルミニウム層」の積層フィルム)を用いて、塗工液aをロール法によって塗布し、20℃/秒以下の昇温速度でオーブン炉内滞在時間が10秒となるように昇温・降温し、フィルム表面温度が130℃になるように乾燥させ、保護層を得た。乾燥後の塗布量は0.3g/mであった。ドライヤー通過後の張力は、オーブン前後のロールの回転速度比を調整させ、50N/mとした。以上のようにして、基材フィルム/酸化アルミニウム層/保護層を備えた積層フィルムを作製した。得られた積層フィルム(基材フィルム/酸化アルミニウム層/保護層を備えた積層フィルム)について、前記の(3)の通りラミネート積層体を作製した。ラミネート積層体を130℃30分のレトルト処理を施し、処理後のラミネート強度、水蒸気透過度、酸素透過度について評価した。
Example 1
A 12 μm thick biaxially oriented polyester film was used, and the roll was set in an electron gun heating type deposition apparatus having a roll-to-roll type film running system so that deposition was performed on the corona-treated surface, to prepare a barrier film. As a pre-deposition treatment, a plasma treatment was performed in a vacuum system. During the treatment, oxygen gas was introduced at 1000 sccm, the current was set to 30 A, and plasma was generated. Thereafter, aluminum was evaporated by electron gun heating, oxygen gas was introduced, and deposition of an aluminum oxide layer was performed. The deposited plastic film (a laminated film of "substrate film/aluminum oxide layer") was moved to an optical film thickness meter in the deposition machine, and the total light transmittance was measured. After the measurement, the laminated film was wound up on a take-up roll. After the vacuum was released, the film thickness of the aluminum oxide layer and the fragment ion intensity in the depth direction were measured by TOF-SIMS. The results were as shown in Table 1. A laminated laminate was prepared from the obtained laminated film as described in (3) above. The laminated body was subjected to a retort treatment at 130°C for 30 minutes, and the laminate strength, water vapor permeability, and oxygen permeability after the treatment were evaluated. Furthermore, the obtained plastic film on which the aluminum oxide layer was formed (laminated film of "substrate film/aluminum oxide layer") was used to apply the coating liquid a by a roll method, and the temperature was raised and lowered at a temperature rise rate of 20°C/sec or less so that the residence time in the oven was 10 seconds, and the film was dried so that the film surface temperature reached 130°C, thereby obtaining a protective layer. The coating amount after drying was 0.3 g/ m2 . The tension after passing through the dryer was set to 50 N/m by adjusting the rotation speed ratio of the rolls before and after the oven. In this manner, a laminated film having a substrate film/aluminum oxide layer/protective layer was produced. A laminated film having the obtained laminated film (laminated film having a substrate film/aluminum oxide layer/protective layer) was produced as described in (3) above. The laminate was subjected to a retort treatment at 130° C. for 30 minutes, and the laminate strength, water vapor permeability, and oxygen permeability after the treatment were evaluated.
(実施例2~3)
 プラズマ処理時の導入ガス量と出力を変更し、酸化アルミニウム層の厚みを表1に示す通りとなるように変更したこと以外は、実施例1と同様にして積層体を作製、評価した。
(Examples 2 to 3)
A laminate was produced and evaluated in the same manner as in Example 1, except that the amount of gas introduced and the output during the plasma treatment were changed and the thickness of the aluminum oxide layer was changed as shown in Table 1.
(実施例4)
 コロナ処理が施されていない二軸延伸ポリエステルフィルムを用いて、プラズマ処理時の導入ガス量と出力を表1になるように変更したこと以外は、実施例1と同様にして積層体を作製、評価した。
Example 4
A laminate was produced and evaluated in the same manner as in Example 1, except that a biaxially oriented polyester film that had not been subjected to corona treatment was used and the amount of gas introduced and the output during the plasma treatment were changed as shown in Table 1.
(実施例5)
 プラズマ処理時の導入ガス量と出力、また、保護層のコート材料を表1に示す通りとなるように変更したこと以外は、実施例21と同様にして積層体を作製、評価した。
Example 5
A laminate was produced and evaluated in the same manner as in Example 21, except that the amount of gas introduced and the output during the plasma treatment and the coating material of the protective layer were changed as shown in Table 1.
(比較例1)
 プラズマ処理時にArガスを導入したこと以外は、実施例1と同様にして積層体を作製、評価した。
(Comparative Example 1)
A laminate was produced and evaluated in the same manner as in Example 1, except that Ar gas was introduced during the plasma treatment.
(比較例2~3)
 プラズマ処理時の導入ガス量と出力を変更し、酸化アルミニウム層の厚みを表1になるように変更したこと以外は、実施例1と同様にして積層体を作製、評価した。
(Comparative Examples 2 to 3)
A laminate was produced and evaluated in the same manner as in Example 1, except that the amount of gas introduced and the output during the plasma treatment were changed and the thickness of the aluminum oxide layer was changed as shown in Table 1.
(比較例4)
 酸化アルミニウム層の厚みを表1に示す通りとなるように変更したこと以外は、実施例1と同様にして積層体を作製、評価した。
(Comparative Example 4)
A laminate was produced and evaluated in the same manner as in Example 1, except that the thickness of the aluminum oxide layer was changed as shown in Table 1.
(参考例1)
 保護層のコート材料を表1に示す通りとなるように変更したこと以外は、実施例1と同様にして積層体を作製、評価した。
(Reference Example 1)
A laminate was produced and evaluated in the same manner as in Example 1, except that the coating material of the protective layer was changed as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明により、常態においては勿論のことレトルト処理を施した後にも、接着性に優れる積層フィルムを提供することができた。従って、本発明のガスバリア性積層フィルムは、レトルト処理用の食品包装に止まらず、各種食品や医薬品、工業製品等の包装用途の他、太陽電池、電子ペーパー、有機EL素子、半導体素子等の工業用途にも広く用いることができる。 The present invention has made it possible to provide a laminate film that has excellent adhesiveness not only under normal conditions but also after retort treatment. Therefore, the gas barrier laminate film of the present invention can be widely used not only for food packaging for retort treatment, but also for packaging various foods, pharmaceuticals, industrial products, etc., as well as industrial applications such as solar cells, electronic paper, organic EL elements, and semiconductor elements.

Claims (6)

  1.  基材フィルムと、前記基材フィルムの少なくとも片面側に積層された酸化アルミニウム層とを備え、以下の(A)、(B)の要件を満たすことを特徴とするガスバリア性を有する積層フィルム。
    (A)酸化アルミニウム層の表面側から、飛行時間型二次イオン質量分析法(TOF-SIMS)によりエッチングした際に、質量数102(Al)のフラグメントイオンの強度が、最大強度の80%になる位置を、基材フィルムとの界面とし、その界面において、質量数102(Al由来)の強度aと質量数119(AlH由来)の強度bとの比b/aが0.10以下であること。
    (B)前記積層フィルムの酸化アルミニウム層表面に15μmの二軸延伸ナイロンフィルムおよび70μmの未延伸ポリプロピレンフィルムを、ポリウレタン系2液硬化型接着剤を乾燥後に4μmの厚さとなるように塗布して用いてドライラミネート法により貼り合わせて積層し、40℃の温度下で4日間エージングした後、130℃で30分湿熱処理した後の水付けラミネート強度が1.5N/15mm以上、水蒸気透過度が2.5g/m・day以下であること。
    A laminate film having gas barrier properties, comprising a base film and an aluminum oxide layer laminated on at least one side of the base film, and characterized in that the laminate film satisfies the following requirements (A) and (B):
    (A) When the aluminum oxide layer is etched from the surface side by time-of-flight secondary ion mass spectrometry (TOF-SIMS), the position at which the intensity of the fragment ion of mass number 102 (Al 2 O 3 ) is 80% of the maximum intensity is defined as the interface with the substrate film, and at that interface, the ratio b/a of the intensity a of mass number 102 (derived from Al 2 O 3 ) to the intensity b of mass number 119 (derived from Al 2 O 4 H) is 0.10 or less.
    (B) A 15 μm biaxially oriented nylon film and a 70 μm unoriented polypropylene film are laminated by a dry lamination method using a polyurethane-based two-component curing adhesive applied to the surface of the aluminum oxide layer of the laminated film so that the thickness after drying is 4 μm, and the film is aged at a temperature of 40° C. for 4 days and then subjected to a wet heat treatment at 130° C. for 30 minutes. After this, the water-exposed laminate strength is 1.5 N/15 mm or more and the water vapor permeability is 2.5 g/ m2 ·day or less.
  2.  前記酸化アルミニウム層の厚さが、5~30nmである、請求項1に記載の積層フィルム。 The laminated film according to claim 1, wherein the thickness of the aluminum oxide layer is 5 to 30 nm.
  3.  保護層を備え、
     前記基材フィルムと、前記酸化アルミニウム層と、前記保護層とは、この順に積層され、前記保護層が、ウレタン樹脂あるいはエステル樹脂を少なくとも1種類以上含有する、請求項1に記載の積層フィルム。
    Provided with a protective layer;
    2. The laminate film according to claim 1, wherein the base film, the aluminum oxide layer, and the protective layer are laminated in this order, and the protective layer contains at least one type of urethane resin or ester resin.
  4.  前記保護層は、シランカップリング剤を含有する、請求項3に記載の積層フィルム。 The laminated film according to claim 3, wherein the protective layer contains a silane coupling agent.
  5.  請求項1~4のいずれかに記載の積層フィルムの保護層表面にヒートシール層を積層した積層体。 A laminate in which a heat seal layer is laminated on the surface of the protective layer of the laminate film according to any one of claims 1 to 4.
  6.  請求項5に記載の積層体を少なくとも一部に用いたことを特徴とする包装袋。 A packaging bag characterized in that at least a portion of the bag is made of the laminate described in claim 5.
PCT/JP2023/034853 2022-10-04 2023-09-26 Multilayered film WO2024075588A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-160511 2022-10-04
JP2022160511 2022-10-04

Publications (1)

Publication Number Publication Date
WO2024075588A1 true WO2024075588A1 (en) 2024-04-11

Family

ID=90608304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034853 WO2024075588A1 (en) 2022-10-04 2023-09-26 Multilayered film

Country Status (1)

Country Link
WO (1) WO2024075588A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201628A (en) * 2009-02-27 2010-09-16 Dainippon Printing Co Ltd Gas-barrier laminated film and method for manufacturing the same
JP2017100392A (en) * 2015-12-03 2017-06-08 東洋紡株式会社 Laminated film
JP2020044708A (en) * 2018-09-19 2020-03-26 大日本印刷株式会社 Gas battier vapor-deposited film, gas barrier laminate, gas barrier packaging material, and gas barrier package
JP2020075480A (en) * 2018-11-09 2020-05-21 大日本印刷株式会社 Barrier film
JP2022142333A (en) * 2021-03-16 2022-09-30 大日本印刷株式会社 Laminate and reflection type display device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201628A (en) * 2009-02-27 2010-09-16 Dainippon Printing Co Ltd Gas-barrier laminated film and method for manufacturing the same
JP2017100392A (en) * 2015-12-03 2017-06-08 東洋紡株式会社 Laminated film
JP2020044708A (en) * 2018-09-19 2020-03-26 大日本印刷株式会社 Gas battier vapor-deposited film, gas barrier laminate, gas barrier packaging material, and gas barrier package
JP2020075480A (en) * 2018-11-09 2020-05-21 大日本印刷株式会社 Barrier film
JP2022142333A (en) * 2021-03-16 2022-09-30 大日本印刷株式会社 Laminate and reflection type display device using the same

Similar Documents

Publication Publication Date Title
EP2060391B1 (en) Multilayer body
US7678448B2 (en) Gas barrier film and gas barrier laminate
CN108698372B (en) Laminated film
JP6631098B2 (en) Laminated film
JP7480810B2 (en) Laminated Film
JP6927336B2 (en) Gas barrier laminated film and its manufacturing method
EP4371770A1 (en) Laminated film for forming inorganic thin film layer
WO2024075588A1 (en) Multilayered film
JP7231004B2 (en) laminate laminate
JP5831025B2 (en) Gas barrier film
JP7468747B2 (en) Laminated film, laminate and packaging material
JP2004202843A (en) Polyester film and its manufacturing method
JP6641942B2 (en) Laminated film
JP7355019B2 (en) laminated film
JP7380916B2 (en) laminated film
JP7218577B2 (en) laminated film
JP4992324B2 (en) Transparent gas barrier packaging material and method for producing the same
WO2023074508A1 (en) Multilayer film, multilayer body and packaging material
WO2024058167A1 (en) Packaging material
JP2023096393A (en) Laminated film and package
JP2023136727A (en) Laminate film, package, and manufacturing method of laminate film
JP2018167505A (en) Laminated film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874716

Country of ref document: EP

Kind code of ref document: A1