WO2024075374A1 - Rotary machine - Google Patents

Rotary machine Download PDF

Info

Publication number
WO2024075374A1
WO2024075374A1 PCT/JP2023/027824 JP2023027824W WO2024075374A1 WO 2024075374 A1 WO2024075374 A1 WO 2024075374A1 JP 2023027824 W JP2023027824 W JP 2023027824W WO 2024075374 A1 WO2024075374 A1 WO 2024075374A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
housing
partition member
space
rotating shaft
Prior art date
Application number
PCT/JP2023/027824
Other languages
French (fr)
Japanese (ja)
Inventor
海 飯嶋
達哉 福井
達身 猪俣
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2024075374A1 publication Critical patent/WO2024075374A1/en

Links

Images

Definitions

  • This disclosure relates to rotating machinery.
  • a known technology for rotating machines is to fill the gaps in the rotor or stator with a filler to seal at least a portion of the exposed surface of the rotor or stator (e.g., the magnet) and prevent rust (e.g., Patent Document 1).
  • the case of an electric motor equipped with a stator and rotor may be filled with a resin material.
  • the case has a first housing space that houses the stator and a second housing space that houses the rotor.
  • a known method is to fill the first housing space with resin material using a core placed in the second housing space, from a state in which the first housing space and the second housing space are in communication with each other. With this method, the distance (magnetic gap) between the rotor and stator, which face each other in a cross-sectional view including the axis of the rotating shaft, tends to increase according to the draft angle of the core.
  • This disclosure describes a rotating machine that can fill the first storage space with resin material without creating a magnetic gap caused by the core draft when the first storage space and the second storage space are in communication with each other.
  • a rotating machine includes an electric motor with a stator and a rotor, a rotating shaft that rotates when driven by the electric motor, an impeller attached to the rotating shaft, and a case that surrounds the stator and to which the stator is fixed.
  • the case has a first housing space that houses the stator and a second housing space that houses the rotor so as to face the stator in the first housing space in a cross-sectional view including the axis of the rotating shaft.
  • the first housing space is filled with a resin material in a state where it is partitioned from the second housing space by a partition member arranged along the inner peripheral edge of the stator.
  • the resin material when filling the first storage space with resin material from a state in which the first storage space and the second storage space are in communication with each other, the resin material can be filled without creating a magnetic gap due to the core draft.
  • FIG. 1 is a cross-sectional view of an example of a rotating machine according to an embodiment.
  • FIG. 2 is a cross-sectional view showing a first accommodating space and a second accommodating space of the rotary machine of FIG.
  • FIG. 3 is an enlarged cross-sectional view of a main portion of the rotary machine of FIG.
  • FIG. 4 is a cross-sectional view showing a process of arranging the stator.
  • FIG. 5 is a cross-sectional view showing a process of forming the first accommodation space and the second accommodation space.
  • FIG. 6 is a cross-sectional view showing a partitioning process using a partition member.
  • FIG. 7 is a cross-sectional view showing the resin filling step.
  • FIG. 8 is a perspective view of a split core of a rotary machine according to a modified example.
  • FIG. 9 is a front view of the split core of FIG.
  • a rotating machine includes an electric motor with a stator and a rotor, a rotating shaft that rotates when driven by the electric motor, an impeller attached to the rotating shaft, and a case that surrounds the stator and to which the stator is fixed.
  • the case has a first housing space that houses the stator and a second housing space that houses the rotor so as to face the stator in the first housing space in a cross-sectional view including the axis of the rotating shaft.
  • the first housing space is filled with a resin material in a state where it is partitioned from the second housing space by a partition member arranged along the inner peripheral edge of the stator.
  • the first storage space and the second storage space are partitioned by a partition member.
  • the resin material when the resin material is filled into the first storage space, there is no need to seal the first storage space with a core, and therefore no magnetic gap is generated due to the core's draw gradient. Therefore, when the resin material is filled into the first storage space from a state in which the first storage space and the second storage space are connected, the resin material can be filled without generating a magnetic gap due to the core's draw gradient.
  • the partition member may be a pipe member having an outer peripheral surface that conforms to the inner peripheral end of the stator. With this configuration, the partition member can be easily constructed using a pipe member.
  • the case may have an injection hole that communicates with the first storage space.
  • the resin material can be filled into the first storage space through the injection hole of the case while the first storage space and the second storage space are separated by the partition member.
  • FIG. 1 is a cross-sectional view of an example of a rotary machine according to an embodiment.
  • the rotary machine 1 is an electric turbocharger used to supply air to a vehicle fuel cell.
  • the rotary machine 1 includes a turbine 2 and a compressor 3.
  • the turbine 2 includes a turbine impeller 22 arranged in a turbine housing 21.
  • the compressor 3 includes a compressor impeller 32 arranged in a compressor housing 31.
  • a motor housing (case) 4 is installed between the turbine housing 21 and the compressor housing 31.
  • the motor housing 4 has a two-piece structure, for example, a first housing 41 on the turbine housing 21 side and a second housing 42 on the compressor housing 31 side.
  • the electric motor 5 is disposed between the turbine 2 and the compressor 3.
  • the electric motor 5 includes a stator 51 and a rotor 52.
  • the stator 51 is fixed to the motor housing 4 so as to surround the rotor 52.
  • the motor housing 4 surrounds the stator 51.
  • the stator 51 includes a coil 51a for generating a magnetic field and a stator core 51b around which the coil 51a is wound.
  • the electric motor 5 includes a rotating shaft 6 that is rotatably supported within the motor housing 4.
  • a rotor 52 is attached to the rotating shaft 6.
  • the rotor 52 includes one or more permanent magnets (not shown).
  • the electric motor 5 drives the rotating shaft 6 by the interaction of the magnetic forces of the stator 51 and the rotor 52. In other words, the rotating shaft 6 rotates when driven by the electric motor 5.
  • the turbine impeller 22 and the compressor impeller 32 are fixed to the rotating shaft 6.
  • the turbine impeller 22 rotates the compressor impeller 32 via the rotating shaft 6.
  • the turbine impeller 22 drives the compressor impeller 32 in cooperation with the electric motor 5.
  • the rotating shaft 6 is supported for free rotation by a number of bearings.
  • two radial bearings 61, 62 are provided inside the motor housing 4, arranged axially on either side of the rotor 52.
  • the rotating shaft 6 is supported in the radial direction by these radial bearings 61, 62.
  • a pair of thrust air bearings 63, 64 and a thrust collar 65 are provided between the radial bearing 62 and the compressor impeller 32.
  • the thrust collar 65 is a disc-shaped member that protrudes like a brim around the rotating shaft 6.
  • the rotating shaft 6 is supported in the thrust direction by these thrust air bearings 63, 64.
  • the motor housing 4 has a first housing space 11 and a second housing space 12.
  • the first housing space 11 is a space that houses the stator 51.
  • the first housing space 11 is formed, for example, inside the motor housing 4 by a first inner wall surface 43 on the turbine 2 side, a second inner wall surface 44 on the compressor 3 side, and a third inner wall surface 45 that connects the first inner wall surface 43 and the second inner wall surface 44.
  • the first inner wall surface 43 and the third inner wall surface 45 are inner wall surfaces of the first housing 41.
  • the second inner wall surface 44 is an inner wall surface of the second housing 42.
  • the first housing space 11 may be a substantially cylindrical space formed inside the motor housing 4 so as to surround the rotating shaft 6 and the rotor 52.
  • the second accommodation space 12 is a space that accommodates the rotating shaft 6 and the rotor 52.
  • the second accommodation space 12 is formed, for example, inside the motor housing 4 by being surrounded by the radial bearing 61, the radial bearing 62, and the inner peripheral end 51c of the stator 51.
  • the second accommodation space 12 is a substantially cylindrical space that extends along the axis L inside the motor housing 4, with the bearing support portion 41a that supports the radial bearing 61 and the bearing support portion 42a that supports the radial bearing 62 at both ends.
  • the second accommodation space 12 may penetrate the center of the motor housing 4 along the axis L.
  • the first housing space 11 and the second housing space 12 are connected.
  • the rotor 52 accommodated in the second housing space 12 faces the stator 51 accommodated in the first housing space 11 via the partition member 10 in a cross-sectional view including the axis L of the rotating shaft 6.
  • the first housing space 11 is filled with a resin material 7.
  • the resin material 7 is filled in the first housing space 11 in a state where it is partitioned from the second housing space 12 by a partition member 10 arranged along the inner circumferential end 51c of the stator 51.
  • the resin material 7 can be, for example, an epoxy resin.
  • the partition member 10 is, for example, a pipe member having an outer peripheral surface 10a that is aligned with the inner peripheral end 51c of the stator 51.
  • a material for the partition member 10 a material other than metal, for example, a resin, can be used from the viewpoint of suppressing magnetic leakage.
  • the partition member 10 may be a heat-resistant and water-resistant (low water absorption) resin pipe such as polyphenylene sulfide (PPS), taking into consideration that the gas flowing into the turbine 2 contains a large amount of moisture.
  • PPS polyphenylene sulfide
  • the partition member 10 may be a glass fiber reinforced plastic (GFRP) with two or less layers of laminated glass sheets from the viewpoint of suppressing the gap (magnetic gap) between the stator 51 and the rotor 52.
  • GFRP glass fiber reinforced plastic
  • the partition member 10 may be a pipe made of injection molding or extrusion material. Note that the end faces of the cut parts of the partition member 10 are shown in FIG. 2 and FIG. 6.
  • FIG. 3 is an enlarged cross-sectional view of a main part of the rotary machine of FIG. 1.
  • the partition member 10 is provided to connect the radial bearing 61 and the radial bearing 62.
  • the partition member 10 is provided to connect the bearing support portion 41a supporting the radial bearing 61 and the bearing support portion 42a supporting the radial bearing 62.
  • the outer peripheral surface of the radial bearing 61 abuts against the bearing support portion 41a of the first housing 41.
  • the first housing 41 includes a lip portion 41b that protrudes radially inward from the compressor 3 side end of the bearing support portion 41a.
  • the inner peripheral end surface 41c of the lip portion 41b forms a cylindrical surface centered on the axis L.
  • the outer peripheral surface of the radial bearing 62 abuts against the bearing support portion 42a of the second housing 42.
  • the second housing 42 includes a lip portion 42b that protrudes radially inward from the turbine 2 side end of the bearing support portion 42a.
  • the inner peripheral end surface 42c of the lip portion 42b forms a cylindrical surface centered on the axis L.
  • the inner peripheral end surface 41c of the lip portion 41b, the inner peripheral end surface 42c of the lip portion 42b, and the inner peripheral end 51c of the stator 51 are located on a common cylindrical surface centered on the axis L, for example.
  • the outer peripheral surface 10a of the partition member 10 here abuts against the inner peripheral end surface 41c of the lip portion 41b, the inner peripheral end surface 42c of the lip portion 42b, and the inner peripheral end 51c of the stator 51.
  • the outer peripheral surface 10a of the partition member 10 does not necessarily have to abut against the inner peripheral end 51c of the stator 51.
  • the partition member 10 partitions the first storage space 11 and the second storage space 12 so that the resin material 7 can be filled therein.
  • “Fillably partitioned” means that the partitioning member 10 does not necessarily have to liquid-tightly seal the first storage space 11 and the second storage space 12. For example, even if a small gap exists, when the resin material 7 is filled, the heated resin material 7 cools and hardens to close the small gap, and this is included in "fillably partitioned.”
  • the motor housing 4 has an injection hole 47 that communicates with the first housing space 11.
  • the injection hole 47 may be, for example, a through hole provided in the wall portion 46 on the turbine 2 side of the first housing 41.
  • the injection hole 47 communicates between the inside and outside of the first housing 41 when the turbine housing 21 is removed.
  • the resin material 7 is filled into the first housing space 11 through the injection hole 47 in a state where it is partitioned from the second housing space 12 by the partition member 10.
  • the second housing 42 is attached to the first housing 41. This forms the first housing space 11 and the second housing space 12.
  • the mating portion 42d of the second housing 42 is fitted into the opening 41d of the first housing 41 and fastened with a fixing bolt (not shown).
  • the wiring from the stator 51 is connected to the connector 51d, and the connector 51d is inserted into the connector mounting portion 42e of the second housing 42. This allows the space inside the connector mounting portion 42e to be sealed as part of the first housing space 11.
  • the partition member 10 is arranged so as to partition the first housing space 11 and the second housing space 12 (partitioning process).
  • the partition member 10 is arranged so as to connect the bearing support portion 42a of the second housing 42 and the bearing support portion 41a of the first housing 41.
  • the partition member 10 is arranged so that the outer peripheral surface 10a of the partition member 10 abuts the inner peripheral end surface 41c of the lip portion 41b, the inner peripheral end surface 42c of the lip portion 42b, and the inner peripheral end 51c of the stator 51 (see FIG. 3).
  • the partition member 10 is arranged along the inner peripheral end 51c of the stator 51.
  • the partition member 10 partitions the first housing space 11 and the second housing space 12 so that the resin material 7 can be filled in the first housing space 11.
  • an adhesive may be interposed between the inner peripheral end surface 41c and the partition member 10, and between the inner peripheral end surface 42c and the partition member 10.
  • the first housing space 11 is filled with the resin material 7 (filling process).
  • the first housing space 11 is filled with the resin material 7 through the injection hole 47 that connects the inside and outside of the first housing 41.
  • the motor housing 4 on the injection side may be preheated (for example, 80°C). A vacuum environment is created, and liquid epoxy resin as the resin material 7 is injected into the first housing space 11 through the injection hole 47.
  • the resin material 7 is heated to 100°C to 120°C using a curing furnace to cure the resin material 7 for a predetermined time (for example, 4 hours).
  • a radial bearing 61 is attached to the bearing support portion 41a of the first housing 41.
  • the rotating shaft 6 to which the rotor 52 is fixed is accommodated in the second housing space 12.
  • a radial bearing 62 is attached to the bearing support portion 42a of the second housing 42. While attaching the thrust collar 65 to the rotating shaft 6, attach the thrust air bearings 63, 64 to the second housing 42.
  • the rotating machine 1 is thus manufactured. Thereafter, as shown in FIG. 1, the turbine impeller 22 and the compressor impeller 32 may be fixed to the rotating shaft 6. The turbine housing 21 and the compressor housing 31 may be attached to the motor housing 4.
  • the resin material 7 when the resin material 7 is filled into the first housing space 11, the first housing space 11 and the second housing space 12 are partitioned by the partition member 10. In other words, when the resin material 7 is filled into the first housing space 11, there is no need to seal the first housing space 11 with a core, so no magnetic gap is generated due to the core's draw gradient. Therefore, when the resin material 7 is filled into the first housing space 11 from a state in which the first housing space 11 and the second housing space 12 are connected, the resin material 7 can be filled without generating a magnetic gap due to the core's draw gradient.
  • the core could not be removed before the resin material 7 was filled and hardened, and the core could not be used to fill another rotating machine with resin material 7.
  • the rotating machine 1 is completed without removing the partition member 10. This makes it possible to suppress the increase in costs associated with preparing many cores. In addition, the effort and cost associated with the process of removing the cores can be reduced.
  • the partition member 10 is a pipe member having an outer peripheral surface 10a that fits along the inner peripheral end 51c of the stator 51. With this configuration, the partition member 10 can be easily constructed using a pipe member.
  • the motor housing 4 has an injection hole 47 that communicates with the first housing space 11.
  • the resin material 7 can be filled into the first housing space 11 through the injection hole 47 of the motor housing 4 while the first housing space 11 and the second housing space 12 are separated by the partition member 10.
  • the partition member 10 is constructed from a single resin pipe, but it may be divided into multiple parts in the axial direction to form a pipe shape as a whole.
  • the partition member 10 is a pipe member, but this is not limited to this example.
  • the inner peripheral end 51c of the stator 51 is arranged discretely around the axis L, and a separate partition member 10 is provided, but the inner peripheral end of the stator may be configured as an inner peripheral surface that is continuous around the axis L to provide the partition member function.
  • the stator 53 may have a split core 53X in which the stator core 53b is split into a plurality of divided parts (e.g., six parts) around the axis L.
  • the dashed lines in Figure 9 are division lines that virtually extend radially according to the number of divided parts.
  • the inner peripheral end of the stator 53 may be provided with a resin bobbin 54 whose inner peripheral surface 54a is an arc surface with a central angle corresponding to the number of divided parts of the split core 53X.
  • a resin bobbin 54 whose inner peripheral surface 54a is an arc surface with a central angle corresponding to the number of divided parts of the split core 53X.
  • the inner circumferential surfaces 54a of the divided resin bobbins 54 become continuous, and the inner circumferential surfaces 54a as a whole form a cylindrical partition member 10X.
  • the end faces of adjacent resin bobbins 54 may be shaped to engage with each other (for example, shapes in which the projections and recesses correspond to each other).
  • adhesive is applied between the inner peripheral end face 41c and the partition member 10, and between the inner peripheral end face 42c and the partition member 10, but adhesive may be omitted.
  • the resin of the partition member 10 may have a larger thermal expansion than the metal motor housing 4.
  • the inner peripheral end face 41c and the partition member 10, and the inner peripheral end face 42c and the partition member 10 may be in contact with each other at tapered surfaces inclined relative to the axis L, thereby improving adhesion due to expansion.
  • the motor housing 4 has an injection hole 47 that communicates with the first housing space 11, but the injection hole 47 is not essential.
  • An injection hole may be provided in a member other than the motor housing 4, for example, in the partition member 10.
  • the turbine impeller 22 and the compressor impeller 32 are fixed to the rotating shaft 6, but the turbine impeller 22 and the compressor impeller 32 may be omitted.
  • an electric motor having a stator and a rotor; A rotating shaft that is rotated by the driving of the electric motor; a case surrounding the stator and to which the stator is fixed, the case has a first accommodating space that accommodates the stator, and a second accommodating space that accommodates the rotor so as to face the stator in the first accommodating space in a cross-sectional view including an axis of the rotating shaft, a partition member disposed along an inner circumferential end of the stator, the partition member separating the first accommodating space from the second accommodating space and filling the first accommodating space with resin material; [2] The rotating machine according to [1], wherein the partition member is a pipe member having an outer circumferential surface that conforms to an inner circumferential end of the stator.
  • a method for manufacturing a rotary machine including an electric motor including a stator and a rotor, a rotary shaft that rotates by driving the electric motor, and a case that surrounds the stator and to which the stator is fixed, comprising the steps of: a stator placement step of placing the stator in the case; a partitioning step of disposing a partition member along an inner circumferential end of the stator; a filling process for filling a resin material into a first accommodating space that accommodates the stator and a second accommodating space that accommodates the rotor so as to face the stator in the first accommodating space in a cross-sectional view including the axis of the rotating shaft, the first accommodating space being partitioned by the partition member.
  • Rotating machine Motor housing (case) Reference Signs List 5 Electric motor 6 Rotating shaft 7 Resin material 10, 10X Partition member 10a Outer circumferential surface 11 First accommodation space 12 Second accommodation space 47 Injection holes 51, 53 Stator 51c Inner circumferential end 52 Rotor L Axis

Abstract

This rotary machine comprises: an electric motor provided with a stator and a rotor; a rotating shaft that rotates due to driving by the electric motor; an impeller that is attached to the rotating shaft; and a case that surrounds the stator, the stator being fixed to the case. The case has a first accommodation space for accommodating the stator, and a second accommodation space for accommodating the rotor so as to face the stator in the first accommodation space in a cross-sectional view that includes the axis of the rotating shaft. The first accommodation space is filled with a resin material in a state of being partitioned from the second accommodation space by a partition member disposed along the inner peripheral edge of the stator.

Description

回転機械Rotating Machinery
 本開示は、回転機械に関する。 This disclosure relates to rotating machinery.
 回転機械に関する技術として、ロータ又はステータの空隙に充填剤を充填することでロータ又はステータの少なくとも一部(例えばマグネット)の露出面を封止して防錆を図ることが知られている(例えば特許文献1) A known technology for rotating machines is to fill the gaps in the rotor or stator with a filler to seal at least a portion of the exposed surface of the rotor or stator (e.g., the magnet) and prevent rust (e.g., Patent Document 1).
特開2009-254204号公報JP 2009-254204 A
 防水、防錆、及び熱伝導性を高めるため、ステータ及びロータを備えた電動モータのケースに樹脂材を充填する場合がある。例えば、ケースは、ステータを収容する第1収容空間とロータを収容する第2収容空間とを有している。このようなケースでは、第1収容空間と第2収容空間とが連通する状態から、第2収容空間に配置する中子を用いて第1収容空間に樹脂材を充填する手法が知られている。この手法では、回転軸の軸線を含む断面視で互いに対向するロータとステータとの間隔(磁気ギャップ)が、中子の抜き勾配に応じて増大する傾向がある。 In order to improve waterproofing, rust prevention, and thermal conductivity, the case of an electric motor equipped with a stator and rotor may be filled with a resin material. For example, the case has a first housing space that houses the stator and a second housing space that houses the rotor. In such a case, a known method is to fill the first housing space with resin material using a core placed in the second housing space, from a state in which the first housing space and the second housing space are in communication with each other. With this method, the distance (magnetic gap) between the rotor and stator, which face each other in a cross-sectional view including the axis of the rotating shaft, tends to increase according to the draft angle of the core.
 本開示は、第1収容空間と第2収容空間とが連通する状態から第1収容空間に樹脂材を充填する場合に、中子の抜き勾配に起因する磁気ギャップを生じさせずに樹脂材を充填することができる回転機械を説明する。 This disclosure describes a rotating machine that can fill the first storage space with resin material without creating a magnetic gap caused by the core draft when the first storage space and the second storage space are in communication with each other.
 本開示の一例に係る回転機械は、ステータ及びロータを備えた電動モータと、電動モータの駆動によって回転する回転軸と、回転軸に取り付けられたインペラと、ステータを包囲すると共に、ステータが固定されたケースと、を備え、ケースは、ステータを収容する第1収容空間と、回転軸の軸線を含む断面視で第1収容空間のステータと対向するようにロータを収容する第2収容空間とを有し、第1収容空間には、ステータの内周端に沿って配置された区画部材によって第2収容空間と区画された状態で樹脂材が充填されている。 A rotating machine according to one example of the present disclosure includes an electric motor with a stator and a rotor, a rotating shaft that rotates when driven by the electric motor, an impeller attached to the rotating shaft, and a case that surrounds the stator and to which the stator is fixed. The case has a first housing space that houses the stator and a second housing space that houses the rotor so as to face the stator in the first housing space in a cross-sectional view including the axis of the rotating shaft. The first housing space is filled with a resin material in a state where it is partitioned from the second housing space by a partition member arranged along the inner peripheral edge of the stator.
 本開示のいくつかの例によれば、第1収容空間と第2収容空間とが連通する状態から第1収容空間に樹脂材を充填する場合に、中子の抜き勾配に起因する磁気ギャップを生じさせずに樹脂材を充填することができる。 According to some examples of the present disclosure, when filling the first storage space with resin material from a state in which the first storage space and the second storage space are in communication with each other, the resin material can be filled without creating a magnetic gap due to the core draft.
図1は、一実施形態に係る回転機械の一例の断面図である。FIG. 1 is a cross-sectional view of an example of a rotating machine according to an embodiment. 図2は、図1の回転機械の第1収容空間及び第2収容空間を示す断面図である。FIG. 2 is a cross-sectional view showing a first accommodating space and a second accommodating space of the rotary machine of FIG. 図3は、図1の回転機械の要部の拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a main portion of the rotary machine of FIG. 図4は、ステータの配置工程を示す断面図である。FIG. 4 is a cross-sectional view showing a process of arranging the stator. 図5は、第1収容空間及び第2収容空間の形成工程を示す断面図である。FIG. 5 is a cross-sectional view showing a process of forming the first accommodation space and the second accommodation space. 図6は、区画部材による区画工程を示す断面図である。FIG. 6 is a cross-sectional view showing a partitioning process using a partition member. 図7は、樹脂材の充填工程を示す断面図である。FIG. 7 is a cross-sectional view showing the resin filling step. 図8は、変形例に係る回転機械の分割コアの斜視図である。FIG. 8 is a perspective view of a split core of a rotary machine according to a modified example. 図9は、図8の分割コアの正面図である。FIG. 9 is a front view of the split core of FIG.
 本開示の一例に係る回転機械は、ステータ及びロータを備えた電動モータと、電動モータの駆動によって回転する回転軸と、回転軸に取り付けられたインペラと、ステータを包囲すると共に、ステータが固定されたケースと、を備え、ケースは、ステータを収容する第1収容空間と、回転軸の軸線を含む断面視で第1収容空間のステータと対向するようにロータを収容する第2収容空間とを有し、第1収容空間には、ステータの内周端に沿って配置された区画部材によって第2収容空間と区画された状態で樹脂材が充填されている。 A rotating machine according to one example of the present disclosure includes an electric motor with a stator and a rotor, a rotating shaft that rotates when driven by the electric motor, an impeller attached to the rotating shaft, and a case that surrounds the stator and to which the stator is fixed. The case has a first housing space that houses the stator and a second housing space that houses the rotor so as to face the stator in the first housing space in a cross-sectional view including the axis of the rotating shaft. The first housing space is filled with a resin material in a state where it is partitioned from the second housing space by a partition member arranged along the inner peripheral edge of the stator.
 本開示の一例に係る回転機械によれば、樹脂材を第1収容空間に充填する際、第1収容空間と第2収容空間とは、区画部材で区画された状態である。すなわち、樹脂材を第1収容空間に充填する際、第1収容空間を中子で封止する必要がないため、中子の抜き勾配に起因する磁気ギャップが生じない。したがって、第1収容空間と第2収容空間とが連通する状態から第1収容空間に樹脂材を充填する場合に、中子の抜き勾配に起因する磁気ギャップを生じさせずに樹脂材を充填することができる。 In a rotating machine according to one example of the present disclosure, when the resin material is filled into the first storage space, the first storage space and the second storage space are partitioned by a partition member. In other words, when the resin material is filled into the first storage space, there is no need to seal the first storage space with a core, and therefore no magnetic gap is generated due to the core's draw gradient. Therefore, when the resin material is filled into the first storage space from a state in which the first storage space and the second storage space are connected, the resin material can be filled without generating a magnetic gap due to the core's draw gradient.
 いくつかの例において、区画部材は、ステータの内周端に沿う外周面を有するパイプ部材であってもよい。この構成によれば、区画部材をパイプ部材を用いて容易に構成することができる。 In some examples, the partition member may be a pipe member having an outer peripheral surface that conforms to the inner peripheral end of the stator. With this configuration, the partition member can be easily constructed using a pipe member.
 いくつかの例において、ケースは、第1収容空間に連通する注入孔を有してもよい。この構成によれば、第1収容空間と第2収容空間とを区画部材で区画した状態でケースの注入孔を介して樹脂材を第1収容空間に充填することができる。 In some examples, the case may have an injection hole that communicates with the first storage space. With this configuration, the resin material can be filled into the first storage space through the injection hole of the case while the first storage space and the second storage space are separated by the partition member.
 以下、例示的な実施形態について図面を参照しながら説明する。各図において、同一又は相当する要素同士には同一符号を付し、重複する説明を省略する。 Below, exemplary embodiments will be described with reference to the drawings. In each drawing, identical or corresponding elements are given the same reference numerals, and duplicate explanations will be omitted.
 図1は、一実施形態に係る回転機械の一例の断面図である。回転機械1は、一例として、車両用燃料電池の空気の供給に用いられる電動ターボチャージャーである。回転機械1は、タービン2とコンプレッサ3とを備えている。タービン2は、タービンハウジング21内に配置されたタービンインペラ22を備えている。コンプレッサ3は、コンプレッサハウジング31内に配置されたコンプレッサインペラ32を備えている。タービンハウジング21とコンプレッサハウジング31との間には、モータハウジング(ケース)4が設置されている。モータハウジング4は、例えば、タービンハウジング21側の第1ハウジング41と、コンプレッサハウジング31側の第2ハウジング42と、の2ピース構造となっている。 FIG. 1 is a cross-sectional view of an example of a rotary machine according to an embodiment. As an example, the rotary machine 1 is an electric turbocharger used to supply air to a vehicle fuel cell. The rotary machine 1 includes a turbine 2 and a compressor 3. The turbine 2 includes a turbine impeller 22 arranged in a turbine housing 21. The compressor 3 includes a compressor impeller 32 arranged in a compressor housing 31. A motor housing (case) 4 is installed between the turbine housing 21 and the compressor housing 31. The motor housing 4 has a two-piece structure, for example, a first housing 41 on the turbine housing 21 side and a second housing 42 on the compressor housing 31 side.
 タービン2とコンプレッサ3との間には、電動モータ5が配置されている。電動モータ5は、ステータ51及びロータ52を備えている。ステータ51は、ロータ52を包囲するようにモータハウジング4に固定されている。モータハウジング4は、ステータ51を包囲している。ステータ51は、磁場を発生するためのコイル51aと、コイル51aが巻き付けられるステータコア51bを含む。 The electric motor 5 is disposed between the turbine 2 and the compressor 3. The electric motor 5 includes a stator 51 and a rotor 52. The stator 51 is fixed to the motor housing 4 so as to surround the rotor 52. The motor housing 4 surrounds the stator 51. The stator 51 includes a coil 51a for generating a magnetic field and a stator core 51b around which the coil 51a is wound.
 電動モータ5は、モータハウジング4内に回転可能に支持された回転軸6を含んでいる。回転軸6には、ロータ52が取付けられている。ロータ52は、一又は複数の永久磁石(図示省略)を含む。電動モータ5は、ステータ51及びロータ52の磁力の相互作用により回転軸6を駆動する。つまり、回転軸6は、電動モータ5の駆動によって回転する。 The electric motor 5 includes a rotating shaft 6 that is rotatably supported within the motor housing 4. A rotor 52 is attached to the rotating shaft 6. The rotor 52 includes one or more permanent magnets (not shown). The electric motor 5 drives the rotating shaft 6 by the interaction of the magnetic forces of the stator 51 and the rotor 52. In other words, the rotating shaft 6 rotates when driven by the electric motor 5.
 回転軸6には、タービンインペラ22及びコンプレッサインペラ32が固定されている。タービンインペラ22は、回転軸6を介してコンプレッサインペラ32を回転させる。タービンインペラ22は、電動モータ5と協働してコンプレッサインペラ32を駆動する。 The turbine impeller 22 and the compressor impeller 32 are fixed to the rotating shaft 6. The turbine impeller 22 rotates the compressor impeller 32 via the rotating shaft 6. The turbine impeller 22 drives the compressor impeller 32 in cooperation with the electric motor 5.
 回転軸6は、複数の軸受によって回転自在に支持されている。例えば、ロータ52を軸方向に挟む配置でモータハウジング4内に2つのラジアル軸受61,62が設けられている。これらのラジアル軸受61,62によって回転軸6がラジアル方向に支持される。ラジアル軸受62とコンプレッサインペラ32との間の位置に、一対のスラスト空気軸受63,64及びスラストカラー65が設けられている。スラストカラー65は、回転軸6の周囲に鍔状に張出す円板状の部材である。これらのスラスト空気軸受63,64によって回転軸6がスラスト方向に支持される。 The rotating shaft 6 is supported for free rotation by a number of bearings. For example, two radial bearings 61, 62 are provided inside the motor housing 4, arranged axially on either side of the rotor 52. The rotating shaft 6 is supported in the radial direction by these radial bearings 61, 62. A pair of thrust air bearings 63, 64 and a thrust collar 65 are provided between the radial bearing 62 and the compressor impeller 32. The thrust collar 65 is a disc-shaped member that protrudes like a brim around the rotating shaft 6. The rotating shaft 6 is supported in the thrust direction by these thrust air bearings 63, 64.
 図1及び図2に示されるように、モータハウジング4は、第1収容空間11と第2収容空間12とを有している。第1収容空間11は、ステータ51を収容する空間である。第1収容空間11は、例えば、モータハウジング4内部において、タービン2側の第1内壁面43、コンプレッサ3側の第2内壁面44、及び、第1内壁面43と第2内壁面44とを接続する第3内壁面45、によって画成されることで形成されている。第1内壁面43及び第3内壁面45は、第1ハウジング41の内壁面である。第2内壁面44は、第2ハウジング42の内壁面である。第1収容空間11は、回転軸6及びロータ52を取り囲むようにモータハウジング4の内部に形成された略円筒状の空間をなしていてもよい。 1 and 2, the motor housing 4 has a first housing space 11 and a second housing space 12. The first housing space 11 is a space that houses the stator 51. The first housing space 11 is formed, for example, inside the motor housing 4 by a first inner wall surface 43 on the turbine 2 side, a second inner wall surface 44 on the compressor 3 side, and a third inner wall surface 45 that connects the first inner wall surface 43 and the second inner wall surface 44. The first inner wall surface 43 and the third inner wall surface 45 are inner wall surfaces of the first housing 41. The second inner wall surface 44 is an inner wall surface of the second housing 42. The first housing space 11 may be a substantially cylindrical space formed inside the motor housing 4 so as to surround the rotating shaft 6 and the rotor 52.
 第2収容空間12は、回転軸6及びロータ52を収容する空間である。第2収容空間12は、例えば、モータハウジング4内部において、ラジアル軸受61、ラジアル軸受62、及び、ステータ51の内周端51c、によって囲まれることで形成されている。第2収容空間12は、モータハウジング4内部において、ラジアル軸受61を支持する軸受支持部41aとラジアル軸受62を支持する軸受支持部42aとを両端として軸線Lに沿って延びる略円柱状の空間である。第2収容空間12は、軸線Lに沿ってモータハウジング4の中心部分を貫通していてもよい。 The second accommodation space 12 is a space that accommodates the rotating shaft 6 and the rotor 52. The second accommodation space 12 is formed, for example, inside the motor housing 4 by being surrounded by the radial bearing 61, the radial bearing 62, and the inner peripheral end 51c of the stator 51. The second accommodation space 12 is a substantially cylindrical space that extends along the axis L inside the motor housing 4, with the bearing support portion 41a that supports the radial bearing 61 and the bearing support portion 42a that supports the radial bearing 62 at both ends. The second accommodation space 12 may penetrate the center of the motor housing 4 along the axis L.
 図2に示されるように、モータハウジング4にステータ51、回転軸6、及びロータ52が配置される前の状態で、第1収容空間11と第2収容空間12とは連通している。図1に示されるように、モータハウジング4にステータ51、回転軸6、及びロータ52が配置されると、第2収容空間12に収容されたロータ52は、第1収容空間11に収容されたステータ51と、回転軸6の軸線Lを含む断面視で区画部材10を介して対向する状態となる。 As shown in FIG. 2, before the stator 51, the rotating shaft 6, and the rotor 52 are arranged in the motor housing 4, the first housing space 11 and the second housing space 12 are connected. As shown in FIG. 1, when the stator 51, the rotating shaft 6, and the rotor 52 are arranged in the motor housing 4, the rotor 52 accommodated in the second housing space 12 faces the stator 51 accommodated in the first housing space 11 via the partition member 10 in a cross-sectional view including the axis L of the rotating shaft 6.
 回転機械1では、第1収容空間11に樹脂材7が充填されている。樹脂材7は、ステータ51の内周端51cに沿って配置された区画部材10によって第2収容空間12と区画された状態で第1収容空間11に充填されている。樹脂材7は、例えば、エポキシ樹脂等を用いることができる。 In the rotating machine 1, the first housing space 11 is filled with a resin material 7. The resin material 7 is filled in the first housing space 11 in a state where it is partitioned from the second housing space 12 by a partition member 10 arranged along the inner circumferential end 51c of the stator 51. The resin material 7 can be, for example, an epoxy resin.
 区画部材10は、一例として、ステータ51の内周端51cに沿う外周面10aを有するパイプ部材である。区画部材10の材料としては、磁漏を抑制する観点で、金属以外の材料、例えば樹脂を採用することができる。区画部材10は、例えば回転機械1を車両用燃料電池の空気の供給に用いる場合、タービン2に流入するガスの水分が多いことを考慮して、ポリフェニレンサルファイド(PPS)等の耐熱性及び耐水性(吸水性が小さい)樹脂パイプであってもよい。区画部材10は、ステータ51とロータ52との間隔(磁気ギャップ)を抑制する観点で、積層するガラスシートが2層以下のガラス繊維強化樹脂(GFRP)であってもよい。その他、区画部材10としては、射出成形又は押し出し材のパイプを用いてもよい。なお、図2及び図6における区画部材10は、その切断部の端面が示されている。 The partition member 10 is, for example, a pipe member having an outer peripheral surface 10a that is aligned with the inner peripheral end 51c of the stator 51. As a material for the partition member 10, a material other than metal, for example, a resin, can be used from the viewpoint of suppressing magnetic leakage. For example, when the rotating machine 1 is used to supply air to a vehicle fuel cell, the partition member 10 may be a heat-resistant and water-resistant (low water absorption) resin pipe such as polyphenylene sulfide (PPS), taking into consideration that the gas flowing into the turbine 2 contains a large amount of moisture. The partition member 10 may be a glass fiber reinforced plastic (GFRP) with two or less layers of laminated glass sheets from the viewpoint of suppressing the gap (magnetic gap) between the stator 51 and the rotor 52. Alternatively, the partition member 10 may be a pipe made of injection molding or extrusion material. Note that the end faces of the cut parts of the partition member 10 are shown in FIG. 2 and FIG. 6.
 図3は、図1の回転機械の要部の拡大断面図である。図3に示されるように、区画部材10は、ラジアル軸受61とラジアル軸受62とを結ぶように設けられている。区画部材10は、ラジアル軸受61を支持する軸受支持部41aと、ラジアル軸受62を支持する軸受支持部42aと、を結ぶように設けられている。ラジアル軸受61の外周面は、第1ハウジング41の軸受支持部41aに当接している。第1ハウジング41は、軸受支持部41aのコンプレッサ3側の端部から径方向内側に突出するリップ部41bを含む。リップ部41bの内周端面41cは、軸線Lを中心とする円筒面をなしている。ラジアル軸受62の外周面は、第2ハウジング42の軸受支持部42aに当接している。第2ハウジング42は、軸受支持部42aのタービン2側の端部から径方向内側に突出するリップ部42bを含む。リップ部42bの内周端面42cは、軸線Lを中心とする円筒面をなしている。 3 is an enlarged cross-sectional view of a main part of the rotary machine of FIG. 1. As shown in FIG. 3, the partition member 10 is provided to connect the radial bearing 61 and the radial bearing 62. The partition member 10 is provided to connect the bearing support portion 41a supporting the radial bearing 61 and the bearing support portion 42a supporting the radial bearing 62. The outer peripheral surface of the radial bearing 61 abuts against the bearing support portion 41a of the first housing 41. The first housing 41 includes a lip portion 41b that protrudes radially inward from the compressor 3 side end of the bearing support portion 41a. The inner peripheral end surface 41c of the lip portion 41b forms a cylindrical surface centered on the axis L. The outer peripheral surface of the radial bearing 62 abuts against the bearing support portion 42a of the second housing 42. The second housing 42 includes a lip portion 42b that protrudes radially inward from the turbine 2 side end of the bearing support portion 42a. The inner peripheral end surface 42c of the lip portion 42b forms a cylindrical surface centered on the axis L.
 図1及び図3に示されるように、リップ部41bの内周端面41cと、リップ部42bの内周端面42cと、ステータ51の内周端51cとは、例えば、軸線Lを中心とする共通の円筒面上に位置している。ここでの区画部材10の外周面10aは、リップ部41bの内周端面41cと、リップ部42bの内周端面42cと、ステータ51の内周端51cと、に当接している。区画部材10の外周面10aは、必ずしもステータ51の内周端51cと当接していなくてもよい。区画部材10の外周面10aは、少なくとも、タービン2側の封止面である内周端面41cと、コンプレッサ3側の封止面である内周端面42cと、に当接していればよい。したがって、区画部材10は、第1収容空間11と第2収容空間12とを、樹脂材7を充填可能に区画する。「充填可能に区画」とは、区画部材10が必ずしも第1収容空間11と第2収容空間12とを液密に封止しなくてもよいことを意味する。例えば、僅かな隙間が存在しても、樹脂材7を充填する際に、熱した樹脂材7が冷えて固まることで僅かな隙間が塞がれるような例は「充填可能に区画」に含まれる。 1 and 3, the inner peripheral end surface 41c of the lip portion 41b, the inner peripheral end surface 42c of the lip portion 42b, and the inner peripheral end 51c of the stator 51 are located on a common cylindrical surface centered on the axis L, for example. The outer peripheral surface 10a of the partition member 10 here abuts against the inner peripheral end surface 41c of the lip portion 41b, the inner peripheral end surface 42c of the lip portion 42b, and the inner peripheral end 51c of the stator 51. The outer peripheral surface 10a of the partition member 10 does not necessarily have to abut against the inner peripheral end 51c of the stator 51. It is sufficient that the outer peripheral surface 10a of the partition member 10 abuts at least the inner peripheral end surface 41c, which is the sealing surface on the turbine 2 side, and the inner peripheral end surface 42c, which is the sealing surface on the compressor 3 side. Therefore, the partition member 10 partitions the first storage space 11 and the second storage space 12 so that the resin material 7 can be filled therein. "Fillably partitioned" means that the partitioning member 10 does not necessarily have to liquid-tightly seal the first storage space 11 and the second storage space 12. For example, even if a small gap exists, when the resin material 7 is filled, the heated resin material 7 cools and hardens to close the small gap, and this is included in "fillably partitioned."
 図1及び図2に示されるように、モータハウジング4は、第1収容空間11に連通する注入孔47を有している。注入孔47は、例えば、第1ハウジング41のタービン2側の壁部46に設けられた貫通孔であってもよい。注入孔47は、タービンハウジング21が外された状態において、第1ハウジング41の内外を連通させる。樹脂材7は、タービンハウジング21が外された状態において、区画部材10によって第2収容空間12と区画された状態で、注入孔47を介して第1収容空間11に充填される。 As shown in Figures 1 and 2, the motor housing 4 has an injection hole 47 that communicates with the first housing space 11. The injection hole 47 may be, for example, a through hole provided in the wall portion 46 on the turbine 2 side of the first housing 41. The injection hole 47 communicates between the inside and outside of the first housing 41 when the turbine housing 21 is removed. When the turbine housing 21 is removed, the resin material 7 is filled into the first housing space 11 through the injection hole 47 in a state where it is partitioned from the second housing space 12 by the partition member 10.
 図1,図4~図7を参照し、第1収容空間11への樹脂材7の充填方法(回転機械の製造方法)の一例について説明する。まず、図4に示されるように、第2ハウジング42及びコンプレッサハウジング31を取り外した状態で、ステータコア51bにコイル51aを巻き付けたステータ51を第1ハウジング41内に配置する(ステータ配置工程)。なお、図4~図6において、断面視以外のステータ51の図示は省略している。 An example of a method for filling the first housing space 11 with the resin material 7 (a manufacturing method for a rotating machine) will be described with reference to Figures 1 and 4 to 7. First, as shown in Figure 4, with the second housing 42 and the compressor housing 31 removed, the stator 51, with the coil 51a wound around the stator core 51b, is placed in the first housing 41 (stator placement process). Note that in Figures 4 to 6, the stator 51 is not shown except in cross-sectional views.
 次に、図5に示されるように、第1ハウジング41に第2ハウジング42を取り付ける。これにより、第1収容空間11及び第2収容空間12が形成される。第1ハウジング41の開口部41dに第2ハウジング42の嵌合部42dを嵌め込んで、固定ボルト(図示省略)で締結する。このとき、ステータ51からの配線をコネクタ51dに結線し、第2ハウジング42のコネクタ取付部42eにコネクタ51dを差し込む。これにより、コネクタ取付部42eの内部の空間が第1収容空間11の一部として封止され得る。 Next, as shown in FIG. 5, the second housing 42 is attached to the first housing 41. This forms the first housing space 11 and the second housing space 12. The mating portion 42d of the second housing 42 is fitted into the opening 41d of the first housing 41 and fastened with a fixing bolt (not shown). At this time, the wiring from the stator 51 is connected to the connector 51d, and the connector 51d is inserted into the connector mounting portion 42e of the second housing 42. This allows the space inside the connector mounting portion 42e to be sealed as part of the first housing space 11.
 続いて、図6に示されるように、第1収容空間11と第2収容空間12とを区画するように区画部材10を配置する(区画工程)。例えば、第2ハウジング42の軸受支持部42aと、第1ハウジング41の軸受支持部41aと、を結ぶように区画部材10を配置する。リップ部41bの内周端面41cと、リップ部42bの内周端面42cと、ステータ51の内周端51cと、に区画部材10の外周面10aが当接ように区画部材10を配置する(図3参照)。これにより、区画部材10がステータ51の内周端51cに沿って配置された状態となる。つまり、区画部材10により、第1収容空間11に樹脂材7を充填可能に第1収容空間11と第2収容空間12とが区画される。なお、内周端面41cと区画部材10との間、及び、内周端面42cと区画部材10との間に接着剤を介在させてもよい。 Next, as shown in FIG. 6, the partition member 10 is arranged so as to partition the first housing space 11 and the second housing space 12 (partitioning process). For example, the partition member 10 is arranged so as to connect the bearing support portion 42a of the second housing 42 and the bearing support portion 41a of the first housing 41. The partition member 10 is arranged so that the outer peripheral surface 10a of the partition member 10 abuts the inner peripheral end surface 41c of the lip portion 41b, the inner peripheral end surface 42c of the lip portion 42b, and the inner peripheral end 51c of the stator 51 (see FIG. 3). As a result, the partition member 10 is arranged along the inner peripheral end 51c of the stator 51. In other words, the partition member 10 partitions the first housing space 11 and the second housing space 12 so that the resin material 7 can be filled in the first housing space 11. Note that an adhesive may be interposed between the inner peripheral end surface 41c and the partition member 10, and between the inner peripheral end surface 42c and the partition member 10.
 続いて、図7に示されるように、ステータ51の内周端51cに沿って配置された区画部材10によって第1収容空間11と第2収容空間12とが区画された状態で、第1収容空間11に樹脂材7を充填する(充填工程)。タービンハウジング21が外された状態において、第1ハウジング41の内外を連通させる注入孔47を介して、第1収容空間11に樹脂材7を充填する。このとき、注入される側のモータハウジング4等を予熱してもよい(例えば80℃)。真空環境とし、樹脂材7としての液状のエポキシ樹脂を注入孔47から第1収容空間11に注入する。その後、硬化炉を用いて100℃~120℃に加熱して所定時間(例えば4時間)樹脂材7を硬化させる。第1ハウジング41の軸受支持部41aにラジアル軸受61を取り付ける。ロータ52を固定した回転軸6を第2収容空間12に収容する。第2ハウジング42の軸受支持部42aにラジアル軸受62を取り付ける。回転軸6にスラストカラー65を取り付けつつ、第2ハウジング42にスラスト空気軸受63,64を取り付ける。 Next, as shown in FIG. 7, in a state in which the first housing space 11 and the second housing space 12 are partitioned by the partition member 10 arranged along the inner peripheral end 51c of the stator 51, the first housing space 11 is filled with the resin material 7 (filling process). In a state in which the turbine housing 21 is removed, the first housing space 11 is filled with the resin material 7 through the injection hole 47 that connects the inside and outside of the first housing 41. At this time, the motor housing 4 on the injection side may be preheated (for example, 80°C). A vacuum environment is created, and liquid epoxy resin as the resin material 7 is injected into the first housing space 11 through the injection hole 47. Thereafter, the resin material 7 is heated to 100°C to 120°C using a curing furnace to cure the resin material 7 for a predetermined time (for example, 4 hours). A radial bearing 61 is attached to the bearing support portion 41a of the first housing 41. The rotating shaft 6 to which the rotor 52 is fixed is accommodated in the second housing space 12. A radial bearing 62 is attached to the bearing support portion 42a of the second housing 42. While attaching the thrust collar 65 to the rotating shaft 6, attach the thrust air bearings 63, 64 to the second housing 42.
 以上により、回転機械1が製造される。その後、図1に示されるように、タービンインペラ22及びコンプレッサインペラ32を回転軸6に固定してもよい。タービンハウジング21及びコンプレッサハウジング31をモータハウジング4に取り付けてもよい。 The rotating machine 1 is thus manufactured. Thereafter, as shown in FIG. 1, the turbine impeller 22 and the compressor impeller 32 may be fixed to the rotating shaft 6. The turbine housing 21 and the compressor housing 31 may be attached to the motor housing 4.
 以上説明したような回転機械1によれば、樹脂材7を第1収容空間11に充填する際、第1収容空間11と第2収容空間12とは、区画部材10で区画された状態である。すなわち、樹脂材7を第1収容空間11に充填する際、第1収容空間11を中子で封止する必要がないため、中子の抜き勾配に起因する磁気ギャップが生じない。したがって、第1収容空間11と第2収容空間12とが連通する状態から第1収容空間11に樹脂材7を充填する場合に、中子の抜き勾配に起因する磁気ギャップを生じさせずに樹脂材7を充填することができる。 In the rotating machine 1 as described above, when the resin material 7 is filled into the first housing space 11, the first housing space 11 and the second housing space 12 are partitioned by the partition member 10. In other words, when the resin material 7 is filled into the first housing space 11, there is no need to seal the first housing space 11 with a core, so no magnetic gap is generated due to the core's draw gradient. Therefore, when the resin material 7 is filled into the first housing space 11 from a state in which the first housing space 11 and the second housing space 12 are connected, the resin material 7 can be filled without generating a magnetic gap due to the core's draw gradient.
 なお、従来の中子を用いた手法では、樹脂材7を充填して硬化するまでに中子を除去できず、当該中子を別の回転機械の樹脂材7の充填に使用できなかった。この点、本例の区画部材10を用いた手法によれば、区画部材10を除去せずに回転機械1を完成させる。よって、多くの中子を用意するためのコスト増大を抑制できる。また、中子の除去の工程に関する手間及びコストを削減できる。 In addition, with the conventional method using a core, the core could not be removed before the resin material 7 was filled and hardened, and the core could not be used to fill another rotating machine with resin material 7. In this regard, with the method using the partition member 10 of this example, the rotating machine 1 is completed without removing the partition member 10. This makes it possible to suppress the increase in costs associated with preparing many cores. In addition, the effort and cost associated with the process of removing the cores can be reduced.
 回転機械1では、区画部材10は、ステータ51の内周端51cに沿う外周面10aを有するパイプ部材である。この構成によれば、区画部材10をパイプ部材を用いて容易に構成することができる。 In the rotating machine 1, the partition member 10 is a pipe member having an outer peripheral surface 10a that fits along the inner peripheral end 51c of the stator 51. With this configuration, the partition member 10 can be easily constructed using a pipe member.
 回転機械1では、モータハウジング4は、第1収容空間11に連通する注入孔47を有している。この構成によれば、第1収容空間11と第2収容空間12とを区画部材10で区画した状態でモータハウジング4の注入孔47を介して樹脂材7を第1収容空間11に充填することができる。 In the rotating machine 1, the motor housing 4 has an injection hole 47 that communicates with the first housing space 11. With this configuration, the resin material 7 can be filled into the first housing space 11 through the injection hole 47 of the motor housing 4 while the first housing space 11 and the second housing space 12 are separated by the partition member 10.
 以上、本開示の実施形態について説明したが、本開示は上記実施形態に限られない。 The above describes embodiments of the present disclosure, but the present disclosure is not limited to the above embodiments.
 上記実施形態では、区画部材10は、1本の樹脂パイプで構成したが、軸方向に複数の部分に分割されて全体としてパイプ状になってもよい。 In the above embodiment, the partition member 10 is constructed from a single resin pipe, but it may be divided into multiple parts in the axial direction to form a pipe shape as a whole.
 上記実施形態では、区画部材10は、パイプ部材であったが、この例に限定されない。例えば、ステータ51の内周端51cは軸線L周りに離散的に配置され、別体の区画部材10を設ける構成であったが、ステータの内周端を軸線L周りに連続した内周面として構成することで区画部材の機能を与えてもよい。例えば、図8及び図9に示されるように、ステータ53は、ステータコア53bが軸線L周りに複数の分割個数(例えば6個)の部分に分割された分割コア53Xを有していてもよい。図9の破線は、複数の分割個数に応じて径方向に仮想的に延在する分割線である。ステータ53の内周端には、分割コア53Xの分割個数に対応した中心角の円弧面を内周面54aとする樹脂ボビン54が設けられていてもよい。この構成によれば、分割個数の分割コア53Xを軸線L周りに円筒状に並べることで、分割個数の樹脂ボビン54の内周面54aが連続した状態となり、内周面54aが全体として円筒状の区画部材10Xを構成する。なお、隣り合う樹脂ボビン54の端面同士には、互いに係合する形状(例えば凹凸が対応するような形状)とされていてもよい。 In the above embodiment, the partition member 10 is a pipe member, but this is not limited to this example. For example, the inner peripheral end 51c of the stator 51 is arranged discretely around the axis L, and a separate partition member 10 is provided, but the inner peripheral end of the stator may be configured as an inner peripheral surface that is continuous around the axis L to provide the partition member function. For example, as shown in Figures 8 and 9, the stator 53 may have a split core 53X in which the stator core 53b is split into a plurality of divided parts (e.g., six parts) around the axis L. The dashed lines in Figure 9 are division lines that virtually extend radially according to the number of divided parts. The inner peripheral end of the stator 53 may be provided with a resin bobbin 54 whose inner peripheral surface 54a is an arc surface with a central angle corresponding to the number of divided parts of the split core 53X. According to this configuration, by arranging the divided cores 53X in a cylindrical shape around the axis L, the inner circumferential surfaces 54a of the divided resin bobbins 54 become continuous, and the inner circumferential surfaces 54a as a whole form a cylindrical partition member 10X. Note that the end faces of adjacent resin bobbins 54 may be shaped to engage with each other (for example, shapes in which the projections and recesses correspond to each other).
 上記実施形態では、内周端面41cと区画部材10との間、及び、内周端面42cと区画部材10との間に接着剤を介在させたが、接着剤を省いてもよい。この場合、区画部材10の樹脂の、金属のモータハウジング4よりも大きい熱膨張を利用してもよい。この場合、内周端面41cと区画部材10との間、及び、内周端面42cと区画部材10との間を、軸線Lに対し傾斜するテーパ面で互いに当接するようにして、膨張による密着性を高めてもよい。 In the above embodiment, adhesive is applied between the inner peripheral end face 41c and the partition member 10, and between the inner peripheral end face 42c and the partition member 10, but adhesive may be omitted. In this case, the resin of the partition member 10 may have a larger thermal expansion than the metal motor housing 4. In this case, the inner peripheral end face 41c and the partition member 10, and the inner peripheral end face 42c and the partition member 10 may be in contact with each other at tapered surfaces inclined relative to the axis L, thereby improving adhesion due to expansion.
 上記実施形態では、モータハウジング4は、第1収容空間11に連通する注入孔47を有していたが、注入孔47は必須ではない。モータハウジング4以外の部材、例えば区画部材10に注入孔を設けてもよい。 In the above embodiment, the motor housing 4 has an injection hole 47 that communicates with the first housing space 11, but the injection hole 47 is not essential. An injection hole may be provided in a member other than the motor housing 4, for example, in the partition member 10.
 上記実施形態の回転機械1では、タービンインペラ22及びコンプレッサインペラ32が回転軸6に固定されていたが、タービンインペラ22及びコンプレッサインペラ32は省略されてもよい。 In the rotary machine 1 of the above embodiment, the turbine impeller 22 and the compressor impeller 32 are fixed to the rotating shaft 6, but the turbine impeller 22 and the compressor impeller 32 may be omitted.
 なお、以下、本開示のいくつかの態様の構成要件を記載する。
[1]
 ステータ及びロータを備えた電動モータと、
 前記電動モータの駆動によって回転する回転軸と、
 前記ステータを包囲すると共に、前記ステータが固定されたケースと、を備え、
 前記ケースは、前記ステータを収容する第1収容空間と、前記回転軸の軸線を含む断面視で前記第1収容空間の前記ステータと対向するように前記ロータを収容する第2収容空間とを有し、
 前記第1収容空間には、前記ステータの内周端に沿って配置された区画部材によって前記第2収容空間と区画された状態で樹脂材が充填されている、回転機械。
[2]
 前記区画部材は、前記ステータの内周端に沿う外周面を有するパイプ部材である、[1]に記載の回転機械。
[3]
 前記ケースは、前記第1収容空間に連通する注入孔を有する、[1]又は[2]に記載の回転機械。
[4]
 ステータ及びロータを備える電動モータと、前記電動モータの駆動によって回転する回転軸と、前記ステータを包囲すると共に前記ステータが固定されるケースと、を備える回転機械を製造する回転機械の製造方法であって、
 前記ステータを前記ケース内に配置するステータ配置工程と、
 前記ステータの内周端に沿って区画部材を配置する区画工程と、
 前記ステータを収容する第1収容空間と、前記回転軸の軸線を含む断面視で前記第1収容空間の前記ステータと対向するように前記ロータを収容する第2収容空間と、が前記区画部材によって区画された状態で、前記第1収容空間に樹脂材を充填する充填工程と、を備える、回転機械の製造方法。
The following describes the constituent elements of several aspects of the present disclosure.
[1]
an electric motor having a stator and a rotor;
A rotating shaft that is rotated by the driving of the electric motor;
a case surrounding the stator and to which the stator is fixed,
the case has a first accommodating space that accommodates the stator, and a second accommodating space that accommodates the rotor so as to face the stator in the first accommodating space in a cross-sectional view including an axis of the rotating shaft,
a partition member disposed along an inner circumferential end of the stator, the partition member separating the first accommodating space from the second accommodating space and filling the first accommodating space with resin material;
[2]
The rotating machine according to [1], wherein the partition member is a pipe member having an outer circumferential surface that conforms to an inner circumferential end of the stator.
[3]
The rotary machine according to [1] or [2], wherein the case has an injection hole communicating with the first accommodating space.
[4]
A method for manufacturing a rotary machine including an electric motor including a stator and a rotor, a rotary shaft that rotates by driving the electric motor, and a case that surrounds the stator and to which the stator is fixed, comprising the steps of:
a stator placement step of placing the stator in the case;
a partitioning step of disposing a partition member along an inner circumferential end of the stator;
a filling process for filling a resin material into a first accommodating space that accommodates the stator and a second accommodating space that accommodates the rotor so as to face the stator in the first accommodating space in a cross-sectional view including the axis of the rotating shaft, the first accommodating space being partitioned by the partition member.
1 回転機械
4 モータハウジング(ケース)
5 電動モータ
6 回転軸
7 樹脂材
10,10X 区画部材
10a 外周面
11 第1収容空間
12 第2収容空間
47 注入孔
51,53 ステータ
51c 内周端
52 ロータ
L 軸線

 
1 Rotating machine 4 Motor housing (case)
Reference Signs List 5 Electric motor 6 Rotating shaft 7 Resin material 10, 10X Partition member 10a Outer circumferential surface 11 First accommodation space 12 Second accommodation space 47 Injection holes 51, 53 Stator 51c Inner circumferential end 52 Rotor L Axis

Claims (3)

  1.  ステータ及びロータを備えた電動モータと、
     前記電動モータの駆動によって回転する回転軸と、
     前記回転軸に取り付けられたインペラと、
     前記ステータを包囲すると共に、前記ステータが固定されたケースと、を備え、
     前記ケースは、前記ステータを収容する第1収容空間と、前記回転軸の軸線を含む断面視で前記第1収容空間の前記ステータと対向するように前記ロータを収容する第2収容空間とを有し、
     前記第1収容空間には、前記ステータの内周端に沿って配置された区画部材によって前記第2収容空間と区画された状態で樹脂材が充填されている、回転機械。
    an electric motor having a stator and a rotor;
    A rotating shaft that is rotated by the driving of the electric motor;
    An impeller attached to the rotating shaft;
    a case surrounding the stator and to which the stator is fixed,
    the case has a first accommodating space that accommodates the stator, and a second accommodating space that accommodates the rotor so as to face the stator in the first accommodating space in a cross-sectional view including an axis of the rotating shaft,
    a partition member disposed along an inner circumferential end of the stator, the partition member separating the first accommodating space from the second accommodating space and filling the first accommodating space with resin material;
  2.  前記区画部材は、前記ステータの内周端に沿う外周面を有するパイプ部材である、請求項1に記載の回転機械。 The rotating machine according to claim 1, wherein the partition member is a pipe member having an outer peripheral surface that conforms to the inner peripheral end of the stator.
  3.  前記ケースは、前記第1収容空間に連通する注入孔を有する、請求項1又は2に記載の回転機械。

     
    The rotary machine according to claim 1 , wherein the case has an injection hole communicating with the first accommodating space.

PCT/JP2023/027824 2022-10-04 2023-07-28 Rotary machine WO2024075374A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022160033 2022-10-04
JP2022-160033 2022-10-04

Publications (1)

Publication Number Publication Date
WO2024075374A1 true WO2024075374A1 (en) 2024-04-11

Family

ID=90607994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027824 WO2024075374A1 (en) 2022-10-04 2023-07-28 Rotary machine

Country Status (1)

Country Link
WO (1) WO2024075374A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893442A (en) * 1981-11-26 1983-06-03 Hitachi Ltd Stator for canned motor and manufacture thereof
JP2012223063A (en) * 2011-04-14 2012-11-12 Nikkiso Co Ltd Canned motor pump and method for filling stator chamber of the canned motor pump with filler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893442A (en) * 1981-11-26 1983-06-03 Hitachi Ltd Stator for canned motor and manufacture thereof
JP2012223063A (en) * 2011-04-14 2012-11-12 Nikkiso Co Ltd Canned motor pump and method for filling stator chamber of the canned motor pump with filler

Similar Documents

Publication Publication Date Title
US6069421A (en) Electric motor having composite encapsulated stator and rotor
US6181038B1 (en) Electric motor or generator
US10476322B2 (en) Electrical machine
EP3576259B1 (en) Axial gap-type rotary electric machine and method for producing same
EP1367700A2 (en) Method for manufacturing an encapsulated rotor of a permanent magnet motor
CN104079109A (en) Axial flux permanent magnet motor
TW200832867A (en) Rotor for motor and manufacturing method thereof
US10855151B2 (en) Rotor balancing/fixation via injection or compression molding
KR20180068105A (en) Rotor structure of wrsm motor
EP2555387A1 (en) Electrical steel sheet formed body, rotating element core, rotating element, rotary electric device, and vehicle
CN109617273A (en) The rotor of rotating electric machine
WO2017141412A1 (en) Axial gap rotary electric machine
WO2024075374A1 (en) Rotary machine
EP3413438B1 (en) Salient-pole rotor, and rotor manufacturing method
US11233430B2 (en) Rotor of synchronous motor with reinforcement member for pressing magnet
WO2020183801A1 (en) Rotating machine and insulator
CN110417134A (en) Stator unit, motor and air supply device
EP1326320A2 (en) Composite canning arrangement for motors
CN213093947U (en) Submersible permanent magnet synchronous motor
TW201907645A (en) Axial gap type rotary electric machine
WO2020195398A1 (en) Motor
CN111769661A (en) Submersible permanent magnet synchronous motor
JP2011101513A (en) Motor unit and manufacturing method of the same
US20230034210A1 (en) Rotor assembly, method for manufacturing rotor assembly, and motor including rotor assembly
US20220166297A1 (en) Motor and assembling method of motor rotor structure