WO2020195398A1 - Motor - Google Patents

Motor Download PDF

Info

Publication number
WO2020195398A1
WO2020195398A1 PCT/JP2020/006705 JP2020006705W WO2020195398A1 WO 2020195398 A1 WO2020195398 A1 WO 2020195398A1 JP 2020006705 W JP2020006705 W JP 2020006705W WO 2020195398 A1 WO2020195398 A1 WO 2020195398A1
Authority
WO
WIPO (PCT)
Prior art keywords
recess
stator
axial direction
housing
opening
Prior art date
Application number
PCT/JP2020/006705
Other languages
French (fr)
Japanese (ja)
Inventor
尚 石田
梅田 智之
裕也 齋藤
藤原 英雄
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN202080013953.5A priority Critical patent/CN113439382A/en
Publication of WO2020195398A1 publication Critical patent/WO2020195398A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/08Insulating casings

Definitions

  • the present invention relates to a motor.
  • Patent Document 1 discloses a motor in which a resin portion for molding a stator constitutes a housing.
  • One of the objects of the present invention is to provide a motor capable of improving the positioning accuracy of the stator with respect to the housing in view of the above circumstances.
  • One aspect of the motor of the present invention is a housing having a shaft extending along a central axis and rotating around the central axis, a stator facing the rotor in the radial direction, and a housing in which the stator is embedded.
  • the stator has a recess provided in a stator core in which a plurality of electromagnetic steel sheets are laminated and opens on one side in the axial direction, and the housing opens on one side in the axial direction and at least a part of the inner peripheral surface of the recess is formed. Has an opening to expose.
  • a motor capable of improving the positioning accuracy of the stator with respect to the housing.
  • FIG. 1 is a cross-sectional view of the motor of one embodiment.
  • FIG. 2 is a plan view of the motor of one embodiment.
  • FIG. 3 is a bottom view of the motor of one embodiment.
  • FIG. 4 is an exploded perspective view of the split core of one embodiment.
  • FIG. 5 is a partial cross-sectional view showing a holding state of the stator in the mold for molding the housing of one embodiment.
  • FIG. 6 is a cross-sectional view showing a holding state of the stator in the mold for molding the housing of one embodiment.
  • FIG. 7 is a partial perspective view of the stator of one embodiment as viewed from diagonally above.
  • FIG. 8 is a partial perspective view of the stator of one embodiment as viewed from diagonally below.
  • FIG. 9 is a partial perspective view of the stator core of one embodiment as viewed from diagonally below.
  • FIG. 10 is a perspective view of the split core of the modified example.
  • the direction parallel to the central axis J is simply referred to as “axial direction” or “vertical direction”, and the radial direction centered on the central axis J is simply referred to as “radial direction”.
  • the circumferential direction around the axis J that is, the circumference of the central axis J is simply referred to as the "circumferential direction”.
  • one side in the axial direction along the central axis J is simply referred to as “lower side”
  • the other side is simply referred to as "upper side”.
  • the vertical direction in the present specification is merely a direction used for explanation, and does not limit the posture during use and distribution of the motor.
  • FIG. 1 is a cross-sectional view of the motor 1 of one embodiment.
  • FIG. 2 is a plan view of the motor 1.
  • FIG. 3 is a bottom view of the motor 1. Note that the rotor 10 is not shown in FIGS. 2 and 3.
  • the motor 1 is attached to an external device 9 arranged above the motor 1 by using a fixing bolt 9e.
  • the motor 1 transmits power to the external device 9.
  • the motor 1 includes a rotor 10, a stator 20 that surrounds the rotor 10, an upper bearing 15 and a lower bearing 16 that rotatably hold the rotor 10 with respect to the stator 20, and an upper bearing holder 40 that holds the upper bearing 15. It has a lower bearing holder 70 for holding the lower bearing 16, a housing 30, a plurality of nut members 50, and a plurality of bus bars 80.
  • the rotor 10 rotates about a central axis J extending in the vertical direction.
  • the rotor 10 has a shaft 11 extending along the central axis J, a rotor core 12, and a rotor magnet 13.
  • the shaft 11 is connected to the power transmission mechanism 9d of the external device 9 at the upper end portion (the end portion on the other side in the axial direction).
  • the shaft 11 is rotatably supported around the central axis J by the upper bearing 15 and the lower bearing 16.
  • the rotor core 12 is fixed to the outer peripheral surface of the shaft 11.
  • the rotor magnet 13 is fixed to the outer peripheral surface of the rotor core 12.
  • the plurality of rotor magnets 13 may be embedded inside the rotor core 12.
  • the upper bearing 15 is located above the stator 20, and the lower bearing 16 is located below the stator 20.
  • the upper bearing 15 supports the upper end of the shaft 11, and the lower bearing 16 supports the lower end of the shaft 11.
  • the upper bearing 15 and the lower bearing 16 of the present embodiment are ball bearings.
  • the upper bearing 15 and the lower bearing 16 may be other types of bearings such as needle bearings.
  • the upper bearing holder 40 is located above the stator 20.
  • the upper bearing holder 40 is made of metal.
  • the upper bearing holder 40 has a holder cylinder portion 41, an upper plate portion 42 extending radially inward from the upper end of the holder cylinder portion 41, and a holder flange portion 43 extending radially outward from the lower end of the holder cylinder portion 41. ..
  • the holder cylinder portion 41 has a cylindrical shape centered on the central axis J.
  • the upper bearing 15 is arranged inside the holder cylinder portion 41 in the radial direction.
  • the upper plate portion 42 covers the upper side of the outer ring of the upper bearing 15.
  • the upper plate portion 42 is provided with a central hole 42a penetrating in the axial direction.
  • the shaft 11 is inserted through the central hole 42a.
  • the radial outer edge of the holder flange 43 is embedded in the housing 30. That is, at least a part of the upper bearing holder 40 is embedded in the housing 30.
  • the lower bearing holder 70 is located below the stator 20.
  • the lower bearing holder 70 is made of resin.
  • the lower bearing holder 70 has a disk shape when viewed from the axial direction.
  • the lower bearing holder 70 is fixed to the housing 30 at the outer edge.
  • a central hole 72a is provided in the center of the lower bearing holder 70 when viewed from the axial direction.
  • the lower end of the shaft 11 is inserted into the central hole 72a.
  • An inner wall surface 71a that surrounds the lower bearing 16 from the outside in the radial direction and holds the lower bearing 16 is provided around the central hole 72a.
  • the stator 20 surrounds the rotor 10 from the outside in the radial direction.
  • the stator 20 faces the rotor 10 in the radial direction.
  • the stator 20 includes a stator core 21, an insulator 22, and a coil 29.
  • the stator core 21 has an annular core back portion 21a centered on the central axis J and a plurality of teeth portions 21b extending radially inward from the core back portion 21a.
  • a plurality of tooth portions 21b are provided at equal intervals in the circumferential direction around the central axis J.
  • the stator core 21 of this embodiment is divided in the circumferential direction.
  • the stator core 21 is an aggregate of 12 divided cores 21A arranged along the circumferential direction.
  • FIG. 4 is an exploded perspective view of the split core 21A of the present embodiment.
  • Each of the divided cores 21A has one tooth portion 21b and a divided core back portion 21d continuous to the radial outer side of the teeth portion 21b.
  • the teeth portion 21b has an umbrella portion 21c at an end portion on the inner side in the radial direction. That is, the split core 21A has an umbrella portion 21c.
  • the split core back portion 21d has an arc shape extending along the circumferential direction.
  • the end faces of the divided core back portions 21d in the circumferential direction face each other and come into contact with each other.
  • the divided core back portions 21d of the plurality of divided cores 21A are connected in the circumferential direction to form an annular core back portion 21a.
  • the teeth portion 21b extends radially inward from the center of the split core back portion 21d in the circumferential direction. At the tip of the teeth portion 21b, an umbrella portion 21c that is wider than the other portions of the teeth portion 21b is provided.
  • the split core 21A is configured by laminating a plurality of electromagnetic steel plates 26 along the axial direction. That is, the stator core 21 is configured by laminating a plurality of electromagnetic steel plates 26 along the axial direction.
  • the plurality of electrical steel sheets 26 is a general term including the first electrical steel sheet 26A, the second electrical steel sheet 26B, and the third electrical steel sheet 26C.
  • the plurality of electrical steel sheets 26 are classified into the first electrical steel sheet 26A, the second electrical steel sheet 26B, and the third electrical steel sheet 26C. That is, the stator core 21 has a first electrical steel sheet 26A, a second electrical steel sheet 26B, and a third electrical steel sheet 26C.
  • the split core 21A of the present embodiment includes two first electrical steel sheets 26A, two third electrical steel sheets 26C, and a large number (two or more) second electrical steel sheets 26B.
  • the plurality of first electrical steel sheets 26A are laminated on the lower end (one side in the axial direction) of the split core 21A.
  • the plurality of third electromagnetic steel sheets 26C are laminated on the upper end (the other side in the axial direction) in the split core 21A.
  • the plurality of second electrical steel sheets 26B are laminated between the first electrical steel sheet 26A and the third electrical steel sheet 26C. That is, the second electrical steel sheet 26B is laminated on the upper side (the other side in the axial direction) of the first electrical steel sheet 26A. Further, the second electrical steel sheet 26B is laminated on the lower side (one side in the axial direction) of the third electrical steel sheet 26C.
  • the first electromagnetic steel sheet 26A and the third electrical steel sheet 26C have the same shape.
  • the second electrical steel sheet 26B has a different shape from the first electrical steel sheet 26A and the third electrical steel sheet 26C.
  • the first electromagnetic steel sheet 26A and the third electrical steel sheet 26C each have two penetrating portions (inner end penetrating portion 27a and outer end penetrating portion 27b) penetrating in the axial direction.
  • the two penetrating portions are a notch-shaped inner end penetrating portion 27a that opens at the radial inner end of the electromagnetic steel sheet and a notch-shaped outer end penetrating portion 27b that opens at the radial outer end of the electromagnetic steel sheet. ,are categorized.
  • the second electromagnetic steel sheet 26B has a shape that does not have the inner end penetrating portion 27a and the outer end penetrating portion 27b as compared with the first electromagnetic steel sheet 26A and the third electromagnetic steel sheet 26C.
  • the split core 21A has a recess 28E and a sub-recess 28F. That is, the stator 20 has a recess 28E and a sub-recess 28F provided in the stator core 21.
  • the recess 28E opens to the lower side (one side in the axial direction).
  • the recess 28E is a general term including an inner recess 28a located in the umbrella portion 21c and an outer recess 28b located in the split core back portion 21d.
  • the inner recess 28a is a portion surrounded by the inner end penetrating portion 27a of the first electrical steel sheet 26A and the lower surface (the surface facing one side in the axial direction) of the second electrical steel sheet 26B on the upper side of the first electrical steel sheet 26A. .. Further, the outer recess 28b is a portion surrounded by the outer end penetrating portion 27b of the first electrical steel sheet 26A and the lower surface (the surface facing one side in the axial direction) of the second electrical steel sheet 26B above the first electrical steel sheet 26A. Is.
  • the sub-recess 28F opens on the upper side (one side in the axial direction).
  • the sub-recess 28F is a general term including an inner sub-recess 28c located in the umbrella portion 21c and an outer sub-recess 28d located in the split core back portion 21d.
  • the inner sub-concave 28c is a portion surrounded by the inner end penetrating portion 27a of the third electrical steel sheet 26C and the lower surface (the surface facing the other side in the axial direction) of the second electrical steel sheet 26B below the first electrical steel sheet 26A.
  • the outer sub-concave 28d is surrounded by the outer end penetrating portion 27b of the third electrical steel sheet 26C and the lower surface (the surface facing the other side in the axial direction) of the second electrical steel sheet 26B below the first electrical steel sheet 26A. This is the part to be used.
  • the inner recess 28a and the inner sub-recess 28c are located at the tip of the tooth portion 21b.
  • the inner recess 28a and the inner sub-recess 28c are located at the center of the umbrella portion 21c in the circumferential direction. That is, the inner recess 28a and the inner sub-recess 28c are located on the teeth center line VL extending in the radial direction through the center of the teeth portion 21b when viewed from the axial direction.
  • the inner recess 28a opens not only on the lower side but also on the inner side in the radial direction.
  • the inner sub-recess 28c opens not only on the upper side but also on the inner side in the radial direction.
  • the outer recess 28b and the outer sub-recess 28d are located at the outer edge of the core back portion 21a.
  • the outer recess 28b and the outer sub-recess 28d are located at the central portion in the circumferential direction of the split core back portion 21d. That is, the outer recess 28b and the outer sub-recess 28d are located on the tooth center line VL.
  • the outer recess 28b opens not only on the lower side but also on the outer side in the radial direction.
  • the outer sub-recess 28d opens not only on the upper side but also on the outer side in the radial direction.
  • the coil 29 is attached to the teeth portion 21b via the insulator 22.
  • the end of the coil 29 is connected to a bus bar 80 located below the stator 20.
  • the bus bar 80 is connected to a control device (not shown). Electric power is supplied to the coil 29 from the control device via the bus bar 80.
  • the insulator 22 is made of an insulating member.
  • the insulator 22 is, for example, a resin member.
  • the insulator 22 is attached to the teeth portion 21b.
  • the insulator 22 has an upper piece 22A and a lower piece 22B.
  • the upper piece 22A is attached to the stator core 21 from above.
  • the upper piece 22A surrounds the upper end surface of the core back portion 21a and the upper half region of both end faces in the circumferential direction of the teeth portion 21b.
  • the lower piece 22B is attached to the stator core 21 from below.
  • the lower piece 22B surrounds the lower end surface of the core back portion 21a and the lower half region of both end faces in the circumferential direction of the teeth portion 21b.
  • the distal end surface of the teeth portion 21b is the surface of the teeth portions 21b that are orthogonal to the radial direction and the axial direction and face the circumferential direction, and the teeth portions 21b arranged along the circumferential direction face each other. It is a face.
  • the insulator 22 has a base portion 25, an inner wall portion 23, and an outer wall portion 24, respectively.
  • the base portion 25 surrounds the entire outer peripheral surface of the teeth portion 21b.
  • the base portion 25 is interposed between the outer peripheral surface of the teeth portion 21b and the coil 29.
  • the inner wall portion 23 is located inside the base portion 25 in the radial direction and extends along the circumferential direction.
  • the inner wall portion 23 overlaps with the radial inner end portion of the teeth portion 21b when viewed from the axial direction.
  • the inner wall portion 23 is located radially inside the coil 29.
  • the inner wall portion 23 restricts the coil 29 wound around the teeth portion 21b from moving inward in the radial direction.
  • the inner wall portion 23 is provided on the upper piece 22A and the lower piece 22B, respectively.
  • the inner wall portion 23 of the upper piece 22A is referred to as the upper inner wall portion (first wall portion) 23A.
  • the inner wall portion 23 of the lower piece 22B is referred to as a lower inner wall portion (second wall portion) 23B.
  • the upper inner wall portion 23A extends upward with respect to the base portion 25.
  • the lower inner wall portion 23B extends downward with respect to the base portion 25.
  • the upper inner wall portion 23A and the lower inner wall portion 23B are each provided with an inner wall notch 23c.
  • the outer wall portion 24 is located on the radial outside of the base portion 25 and extends along the circumferential direction.
  • the outer wall portion 24 overlaps with the core back portion 21a when viewed from the axial direction.
  • the outer wall portion 24 is located radially outside the coil 29.
  • the outer wall portion 24 restricts the coil 29 wound around the teeth portion 21b from moving outward in the radial direction.
  • the outer wall portion 24 is provided on the upper piece 22A and the lower piece 22B, respectively.
  • the outer wall portion 24 of the upper piece 22A will be referred to as the upper outer wall portion 24A.
  • the outer wall portion 24 of the lower piece 22B is referred to as a lower outer wall portion 24B.
  • the upper outer wall portion 24A extends upward with respect to the base portion 25.
  • the lower outer wall portion 24B extends downward with respect to the base portion 25.
  • the lower outer wall portion 24B is provided with an outer wall penetrating portion 24c.
  • the housing 30 is made of a resin material.
  • the resin material may be a composite material reinforced with a fiber material such as glass fiber or carbon fiber. That is, the housing 30 may be a fiber reinforced resin material. Further, the housing 30 may be a thermosetting resin or a thermoplastic resin.
  • a stator 20, a bus bar 80, an upper bearing holder 40, and a nut member 50 are embedded in the housing 30.
  • the housing 30 holds the bus bar 80, the stator 20, the upper bearing holder 40, and the nut member 50.
  • the housing 30 is insert-molded with the stator 20, the bus bar 80, the upper bearing holder 40, and the nut member 50 held in the mold. That is, since the stator 20, the bus bar 80, the upper bearing holder 40, and the nut member 50 can be embedded in the housing 30 at once, the assembly process of the motor 1 is simplified.
  • the housing 30 includes a main body 31 that holds the stator 20, a plurality of ribs 3 that project upward from the upper surface of the main body 31, a bus bar holder 36 that holds the bus bar 80, and a lower surface of the main body 31. It has a lower cylinder portion 37 that extends, a plurality of flange portions 39 that project radially outward from the outer peripheral surface of the main body portion 31, and a holder holding portion 38 that holds the upper bearing holder 40.
  • the plurality of ribs 3 are a general term including an annular rib 3A and a radial rib 35. Further, the annular rib 3A is a general term including an inner annular rib 32, an intermediate annular rib 33, and an outer annular rib 34.
  • the stator 20 is embedded in the main body 31.
  • the main body 31 surrounds the upper side, the lower side, and the radial outer side with respect to the stator 20.
  • the main body 31 surrounds the teeth portion 21b and the coil 29, and is also provided between the teeth portions 21b and the coil 29 that are adjacent to each other in the circumferential direction.
  • the inner peripheral surface of the stator core 21 is exposed from the housing 30.
  • the main body 31 has a plurality of openings 6. That is, the housing 30 has a plurality of openings 6. As will be described later, the plurality of openings 6 are traces of a support portion that supports the stator 20 in the mold when the housing 30 is molded.
  • the plurality of openings 6 is a general term including a plurality of first openings 61, a plurality of second openings 62, and a plurality of third openings 63.
  • the first opening 61 extends axially from the upper surface of the main body 31 to the stator 20.
  • the first opening 61 opens on the upper side (the other side in the axial direction).
  • the first opening 61 exposes a part of the stator.
  • the first opening 61 exposes at least a part of the inner wall surface and the bottom surface of the inner sub-recess 28c provided on the upper end surface of the stator core 21.
  • the housing 30 of the present embodiment is provided with six first openings 61.
  • the distances of the plurality of first openings 61 from the central axis J coincide with each other. That is, the radial positions of the plurality of first openings 61 coincide with each other.
  • the plurality of first openings 61 are arranged at equal intervals along the circumferential direction.
  • the second opening 62 and the third opening 63 extend axially from the lower surface of the main body 31 to the stator 20.
  • the second opening 62 opens downward and radially inward.
  • the third opening 63 opens on the lower side (one side in the axial direction).
  • the second opening 62 and the third opening 63 expose a part of the stator.
  • the second opening 62 and the third opening 63 expose at least a part of the inner wall surface and the bottom surface of the recess 28E provided on the lower end surface of the stator core 21.
  • the second opening 62 exposes the inner wall surface and the bottom surface of the inner recess 28a.
  • the third opening 63 exposes a part of the inner wall surface and the bottom surface of the outer recess 28b.
  • the housing 30 of the present embodiment is provided with 12 second openings 62.
  • the plurality of second openings 62 are located on concentric circles centered on the central axis J. Further, the plurality of second openings 62 are arranged at equal intervals along the circumferential direction.
  • the housing 30 of the present embodiment is provided with six third openings 63.
  • the plurality of third openings 63 are located radially outward of the plurality of second openings 62, and are located on concentric circles centered on the central axis J. Further, the six third openings 63 are divided into two groups 63A and 63B, with the three as one group.
  • the three third openings 63 included in the group 63A are arranged at equal intervals along the circumferential direction.
  • the three third openings 63 included in the group 63B are arranged at equal intervals along the circumferential direction.
  • any one of the three third openings 63 included in the group 63A is arbitrary of the three third openings 63 included in the group 63B. Is located on the opposite side of the central axis J. A plurality of second openings 62 and a plurality of third openings 63 are provided on the lower surface of the housing.
  • FIG. 5 and 6 are partial cross-sectional views showing a holding state of the stator 20 in the mold 90 for molding the housing 30. Note that FIG. 5 shows the vicinity of the first opening 61, and FIG. 6 shows the vicinity of the second opening 62 and the third opening 63.
  • the mold 90 has a first mold 91 (see FIG. 5) and a second mold 92 (see FIG. 6) surrounding the cavity C.
  • the first type 91 and the second type 92 are arranged so as to face each other in the axial direction.
  • the first type 91 and the second type 92 can be relatively separated vertically, for example, at a parting line (not shown) located in the middle of the main body 31 in the axial direction.
  • the first type 91 has a plurality of first support portions 91a.
  • the first support portion 91a is a prism extending downward from the lower surface of the first type 91 facing the cavity C side.
  • the first support portions 91a are arranged along the circumferential direction.
  • the first support portion 91a is inserted into the inner sub-recess 28c of the stator core 21 and comes into contact with the bottom surface and the inner wall surface of the inner sub-recess 28c.
  • the second type 92 has a plurality of second support portions 92b and a plurality of third support portions 92c.
  • the second support portion 92b has a rib-like shape that projects outward in the radial direction from the surface of the second type 92 that faces the outward direction in the radial direction and extends along the axial direction.
  • the third support portion 92c is a prism extending upward from the upper surface of the second type 92 facing the cavity C side.
  • the third support portion 92c is located radially outward with respect to the second support portion 92b.
  • the second support portion 92b and the third support portion 92c are arranged along the circumferential direction, respectively.
  • the second support portion 92b is inserted into the inner recess 28a of the stator core 21 and comes into contact with the bottom surface and the inner wall surface of the inner recess 28a.
  • the third support portion 92c is inserted into the outer recess 28b of the stator core 21 and comes into contact with the bottom surface and the inner wall surface of the outer recess 28b.
  • FIG. 7 is a partial perspective view of the stator 20 as viewed from diagonally above.
  • FIG. 7 shows the first support portion 91a by a virtual line (dashed-dotted line). Note that in FIG. 7, the coil 29 is not shown.
  • the upper inner wall portion 23A of the insulator 22 has an inner wall notch portion 23c that exposes the upper surface (end face facing upward) of the stator core 21.
  • the first support portion 91a passes through the inner wall notch portion 23c and comes into contact with the surface of the stator core 21 facing upward.
  • an inner sub-recess 28c and an outer sub-recess 28d are provided on the upper surface of the stator core 21.
  • the first support portion 91a is inserted into the inner sub-recess 28c. Further, the first support portion 91a comes into contact with the wall surfaces 28ca and 28cc and the bottom surface 28cc facing the inner side in the radial direction and both sides in the circumferential direction of the inner sub-recess 28c.
  • the portion of each surface constituting the inner sub-recess 28c that comes into contact with the first support portion 91a is exposed from the housing 30 after molding.
  • the first support portion 91a positions the stator core 21 in the mold 90 in the radial direction by contacting the wall surface 28ca facing the radial inward side of the inner sub-recess 28c. Further, the first support portion 91a positions the stator core 21 in the circumferential direction in the mold 90 by contacting the pair of wall surfaces 28cc facing both sides in the circumferential direction of the inner sub-recess 28c. Further, the first support portion 91a contacts the bottom surface 28cc of the inner sub-recess 28c to position the stator core 21 in the mold 90 in the axial direction.
  • FIG. 8 is a partial perspective view of the stator 20 as viewed from diagonally below.
  • FIG. 9 is a partial perspective view of the stator core 21 as viewed from diagonally below. 8 and 9 show the second support portion 92b and the third support portion 92c by an alternate long and short dash line (dashed line). Note that in FIG. 8, the coil 29 is not shown.
  • the lower inner wall portion 23B of the insulator 22 has an inner wall notch portion 23c that exposes the lower surface (end surface facing downward) of the stator core 21.
  • the second support portion 92b passes through the inner wall notch portion 23c and comes into contact with the stator core 21.
  • the lower outer wall portion 24B of the insulator 22 has an outer wall penetrating portion 24c that exposes the lower surface (end surface facing downward) of the stator core 21.
  • the outer wall penetrating portion 24c penetrates the lower outer wall portion 24B in the axial direction.
  • the third support portion 92c passes through the outer wall penetrating portion 24c and comes into contact with the surface facing the lower side of the stator core 21.
  • an inner recess 28a and an outer recess 28b are provided on the lower surface of the stator core 21.
  • the second support portion 92b is inserted into the inner recess 28a.
  • the third support portion 92c is inserted into the outer recess 28b.
  • the second support portion 92b comes into contact with the wall surfaces 28aa and 28ab and the bottom surface 28ac facing the inner side in the radial direction and both sides in the circumferential direction of the inner recess 28a.
  • the third support portion 92c comes into contact with the wall surfaces 28ba, 28bb and the bottom surface 28bc facing the radial inside and the circumferential sides of the outer recess 28b.
  • the portion where the second support portion 92b or the third support portion 92c comes into contact is exposed from the housing 30 after molding.
  • the second support portion 92b contacts the wall surface 28aa facing the radial inward side of the inner recess 28a to position the stator core 21 in the mold 90 in the radial direction. Further, the second support portion 92b contacts the pair of wall surfaces 28ab facing both sides in the circumferential direction of the inner recess 28a to position the stator core 21 in the circumferential direction in the mold 90. Further, the second support portion 92b contacts the bottom surface 28ac of the inner recess 28a to axially position the stator core 21 in the mold 90.
  • the third support portion 92c positions the stator core 21 in the mold 90 in the radial direction by contacting the wall surface 28ba facing the radial inward side of the outer concave portion 28b. Further, the third support portion 92c contacts the pair of wall surfaces 28bb facing both sides in the circumferential direction of the outer concave portion 28b, thereby positioning the stator core 21 in the circumferential direction in the mold 90. Further, the third support portion 92c contacts the bottom surface 28bc of the outer concave portion 28b to axially position the stator core 21 in the mold 90.
  • the housing 30 is formed by curing the resin material filled in the cavity C. After the resin material is cured, the housing 30 is separated from the mold 90 by separating the first mold 91 and the second mold 92 from each other along the axial direction. Along with this, the first support portion 91a is pulled out upward with respect to the housing 30. Further, the second support portion 92b and the third support portion 92c come out downward with respect to the housing 30.
  • a first opening 61 is formed in a portion where the first support portion 91a is removed. Since the first support portion 91a passes through the inner wall notch 23c and the inner sub-recess 28c, the inner wall notch 23c and the inner sub-recess 28c are arranged coaxially with the first opening 61.
  • a second opening 62 is formed in a portion where the second support portion 92b is removed. Since the second support portion 92b passes through the inner wall notch 23c and the inner recess 28a, the inner wall notch 23c and the inner recess 28a are arranged coaxially with the second opening 62.
  • a third opening 63 is formed in a portion where the third support portion 92c is removed. Since the third support portion 92c passes through the outer wall penetrating portion 24c and the outer recess 28b, the outer wall penetrating portion 24c and the outer recess 28b are arranged coaxially with the third opening 63.
  • the first opening 61 opens upward, and the second opening 62 and the third opening 63 open downward. Therefore, the first support portion 91a supports the stator 20 from above, and the second support portion 92b and the third support portion 92c support the stator from below.
  • the stator 20 can be sandwiched and supported in the mold 90 by the second support portion 92b, the third support portion 92c, and the first support portion 91a. Therefore, the position accuracy of the stator 20 in the mold 90 can be improved.
  • the holding strength of the stator 20 in the mold 90 is increased, and the displacement of the stator 20 due to the injection pressure of the resin during molding can be suppressed.
  • the stator core 21 is provided with an inner sub-recess 28c, an inner recess 28a, and an outer recess, which are connected to the first opening 61, the second opening 62, and the third opening 63, respectively, to expose the bottom surface.
  • the first opening 61, the second opening 62, and the third opening 63 are traces of the first support portion 91a, the second support portion 92b, and the third support portion 92c that support the respective stators 20.
  • first support portion 91a, the second support portion 92b, and the third support portion 92c can be brought into contact with the bottom surface and the wall surface of the inner sub-recess 28c, the inner recess 28a, and the outer recess, and the stator 20 in the mold 90. Positioning accuracy can be improved.
  • the recess 28E is formed by providing the inner end penetrating portion 27a and the outer end penetrating portion 27b on the first electromagnetic steel plate 26A laminated on the upper end portion. Will be done.
  • the sub-concave 28F is formed by providing the inner end penetrating portion 27a and the outer end penetrating portion 27b on the third electromagnetic steel plate 26C laminated on the lower end portion. Therefore, by preparing two types of electrical steel sheets having different shapes, the recess 28E and the sub-concave 28F can be easily provided. Therefore, it is not necessary to post-process the stator core 21 in order to provide the recess 28E and the sub-recess 28F. Therefore, the manufacturing process of the stator core 21 can be performed at low cost. In addition, it is possible to suppress the generation of residual stress due to post-processing in the stator core 21, and it is possible to suppress an increase in the magnetic resistance of the stator core 21.
  • the outer recess 28b is located at the outer edge of the core back portion 21a of the stator core 21.
  • the magnetic flux density of the magnetic field generated by the coil 29 and passing through the core back portion 21a is the smallest at the outer edge portion.
  • the outer recess 28b is located at the center of the split core back portion 21d in the circumferential direction.
  • a part of the magnetic field passing through the split core back portion 21d is curved toward the teeth portion 21b. Therefore, the magnetic flux density of the magnetic field passing through the split core back portion 21d is the smallest in the circumferential central portion of the split core back portion 21d, which is the radial outside of the teeth portion 21b. Since the outer recess 28b is located at the center of the split core back portion 21d in the circumferential direction, it is possible to prevent the outer recess 28b from increasing the magnetic resistance of the core back portion 21a.
  • the outer sub-recess 28d is also arranged at the same position as the outer recess 28b to prevent the core back portion 21a from increasing the magnetic resistance.
  • the inner recess 28a is located at the umbrella portion 21c at the tip of the teeth portion 21b of the stator core 21. Further, the inner recess 28a is located at the center of the umbrella portion 21c in the circumferential direction.
  • the magnetic field passing through the teeth portion 21b is emitted to the outside of the stator core 21 at the inner edge of the umbrella portion 21c. Since the inner recess 28a is located at the center of the umbrella portion 21c in the circumferential direction, the magnetic field passing through the teeth portion 21b is emitted from the umbrella portion 21c in a well-balanced manner in the circumferential direction, and a decrease in the rotational efficiency of the motor 1 can be suppressed.
  • the inner sub-recess 28c By arranging the inner sub-recess 28c at the same position as the inner recess 28a, the magnetic field passing through the teeth portion 21b can be discharged from the umbrella portion 21c in a well-balanced manner in the circumferential direction.
  • FIG. 3 shows the first opening 61 with a broken line. As shown in FIG. 3, the first opening 61 overlaps the second opening 62 when viewed from the axial direction. Therefore, the first support portion 91a and the second support portion 92b can support the stator 20 at the same position when viewed from the axial direction in the mold, and the stator 20 can be stabilized in the mold 90. ..
  • the plurality of first openings 61 are arranged at equal intervals along the circumferential direction. That is, the plurality of first support portions 91a are arranged at equal intervals along the circumferential direction to support the stator 20 from above. Therefore, the first support portion 91a can stably support the stator 20 in the mold 90.
  • the plurality of second openings 62 are arranged at equal intervals along the circumferential direction
  • the plurality of second support portions 92b are arranged at equal intervals along the circumferential direction to support the stator 20 from below. To do. Therefore, the second support portion 92b can stably support the stator 20 in the mold 90.
  • the insulator 22 is provided with an inner wall notch 23c through which the first support 91a passes, an inner wall notch 23c through which the second support 92b passes, and an outer wall penetration 24c through which the third support 92c passes. Be done.
  • the first support portion 91a passes through the inside of the inner wall notch portion 23c and directly supports the stator core 21.
  • the second support portion 92b passes through the inside of the inner wall notch portion 23c and directly supports the stator core 21.
  • the third support portion 92c passes through the inside of the outer wall penetrating portion 24c on the outside of the second support portion 92b and directly supports the stator core 21.
  • the insulator 22 is generally made of a resin material.
  • the stator core 21 is made of a metal material, it has higher rigidity than the insulator 22.
  • the holding of the stator 20 in the mold 90 can be stabilized, and the position of the stator 20 with respect to the housing 30 can be stabilized. The accuracy can be improved.
  • the rib 3 projects upward from the upper surface of the main body 31.
  • the rib 3 is located above the stator 20.
  • the rib 3 has a plurality of annular ribs 3A extending along the circumferential direction and a plurality of radial ribs 35 extending along the radial direction and connecting to the annular rib 3A. Since the housing 30 has an annular rib 3A and a radial rib 35 that are connected to each other, the strength in the radial direction and the circumferential direction is enhanced in a well-balanced manner.
  • Each of the plurality of annular ribs 3A has a cylindrical shape centered on the central axis J.
  • the plurality of annular ribs 3A include an inner annular rib 32 having the smallest diameter, an intermediate annular rib 33 located between the inner annular rib 32 and the outer annular rib 34 in the radial direction, and an outer annular rib 34 having the largest diameter. , Have.
  • the inner annular rib 32, the intermediate annular rib 33, and the outer annular rib 34 are provided concentrically with the central axis J as the center.
  • the outer annular rib 34 is located radially outside the inner annular rib 32 and the intermediate annular rib 33.
  • the intermediate annular rib 33 is located radially outward of the inner annular rib 32.
  • the outer peripheral surface of the outer annular rib 34 is continuous with the outer peripheral surface of the main body 31.
  • a flange portion 39 is provided on the outer peripheral surface of the outer annular rib 34.
  • the plurality of radial ribs 35 extend radially with respect to the central axis J.
  • the plurality of radial ribs 35 are arranged at equal intervals along the circumferential direction.
  • the housing 30 of the present embodiment is provided with six radial ribs 35.
  • the plurality of radial ribs 35 connect the inner annular rib 32, the intermediate annular rib 33, and the outer annular rib 34, respectively. Further, the plurality of radial ribs 35 intersect and connect with the intermediate annular rib 33.
  • the inner annular rib 32 has an annular portion 32a attached to the external device 9.
  • the annular portion 32a is located at the upper end of the inner annular rib 32.
  • the annular portion 32a is a portion of the inner annular rib 32 located above the upper end surface of the other ribs (intermediate annular rib 33, outer annular rib 34, and radial rib 35). In the axial direction, the positions of the upper end surfaces of the other ribs (that is, the intermediate annular rib 33, the outer annular rib 34, and the radial rib 35) coincide with each other.
  • the annular portion 32a has a cylindrical shape extending upward from the upward facing surface of the housing 30.
  • the annular portion 32a is located on the radial outside of the first opening 61.
  • the annular portion 32a is located radially inside the outer peripheral surface of the housing 30.
  • the annular portion 32a is attached to the external device 9 and plays a part of the sealing function of the motor 1.
  • the external device 9 has a cylindrical holding cylinder portion 9a centered on the central axis J.
  • the holding cylinder portion 9a surrounds the annular portion 32a from the outside in the radial direction.
  • the inner diameter of the holding cylinder portion 9a is slightly larger than the outer diameter of the annular portion 32a.
  • the tip surface of the holding cylinder portion 9a comes into contact with the upper end surface of the radial rib 35.
  • a concave groove 9b extending along the circumferential direction is provided on the inner peripheral surface of the holding cylinder portion 9a.
  • the sealing member 9c is housed in the groove 9b.
  • the sealing member 9c is made of an elastic material such as rubber.
  • the seal member 9c extends along the circumferential direction.
  • the seal member 9c is an O-ring.
  • the seal member 9c is not limited to a member having a circular cross-sectional shape as long as it functions as a gasket.
  • the seal member 9c is sandwiched between the outer peripheral surface 32d of the annular portion 32a facing outward in the radial direction and the bottom surface of the concave groove 9b facing outward in the radial direction. As a result, the seal member 9c is compressed, and moisture is prevented from entering the inside of the holding cylinder portion 9a.
  • the seal member 9c comes into contact with the outer peripheral surface 32d of the annular portion 32a. Further, the annular portion 32a surrounds the plurality of first openings 61 from the outside in the radial direction. Since the sealing member 9c suppresses the infiltration of water into the annular portion 32a, it is possible to prevent the moisture from reaching the first opening 61 arranged inside the annular portion 32a.
  • the motor 1 of the present embodiment has an effect that it is easy to suppress the infiltration of liquid into the inside of the stator 20.
  • the annular portion 32a is in contact with the seal member 9c on the outer peripheral surface 32d to form a seal structure.
  • the annular portion 32a may be in contact with the sealing member on the inner peripheral surface of the annular portion 32a, for example, as long as it bears a part of the sealing function.
  • the upper end portion of the shaft 11 is connected to the external device 9 inside the annular portion 32a and transmits power to the external device 9. That is, the motor 1 of the present embodiment has an effect that it is easy to suppress the infiltration of liquid into the inside of the stator 20 from the output side to the external device 9.
  • the upper end surface (end surface on the other side in the axial direction) 32b of the annular portion 32a is located on the upper side (the other side in the axial direction) with respect to the opening of the first opening 61. Further, according to the present embodiment, the annular portion 32a comes into contact with the seal member 9c on the outer peripheral surface 32d. Therefore, the route from the seal portion to the opening of the first opening 61 can be complicated. As a result, even when a small amount of water passes through the seal portion due to an unexpected impact or the like, it is possible to prevent the water content from reaching the first opening 61. As described above, the motor 1 has high reliability with respect to the infiltration of the liquid into the stator 20.
  • a chamfered inclined surface 32c is provided on the outer edge of the upper end surface 32b of the annular portion 32a. That is, in the annular portion 32a, the boundary portion between the upper end surface 32b and the outer peripheral surface 32d is an inclined surface 32c that inclines outward in the radial direction toward the lower side (one side in the axial direction). Therefore, when the annular portion 32a is inserted inside the holding cylinder portion 9a, it is possible to prevent the seal member 9c held on the inner peripheral surface of the holding cylinder portion 9a from being caught on the outer edge of the annular portion 32a. As a result, when the motor 1 is attached to the external device 9, it is possible to prevent the seal member 9c from being twisted or damaged.
  • a gate mark G is provided on the outer surface of the housing 30.
  • the gate mark G is provided on the upper end surface (the surface on the other side in the axial direction) of the housing 30.
  • the gate mark G is a mark of the gate 99 formed when the cavity C of the mold 90 for molding the housing 30 is filled with the resin material.
  • the gate mark G is a portion where the cured resin is cut in the gate 99.
  • the gate mark G is provided on the upper surface, and the second opening 62 and the third opening 63 are provided on the lower surface.
  • the gate 99 of the mold 90 and the second support portion 92b and the third support portion 92c are arranged on surfaces facing each other. Therefore, the injection pressure of the resin flowing from the gate 99 into the cavity C at the time of molding the housing 30 can be received by the second support portion 92b and the third support portion 92c. As a result, it is possible to prevent the stator 20 from being displaced in the mold 90 due to the injection pressure of the resin.
  • FIG. 3 shows the gate mark G with a broken line.
  • the gate mark G is located between the second opening 62 and the third opening 63 in the radial direction when viewed from the axial direction. That is, as shown in FIGS. 5 and 6, the gate 99 is located between the second support portion 92b and the third support portion 92c in the radial direction when viewed from the axial direction. Therefore, the injection pressure of the resin flowing from the gate 99 into the mold 90 can be received by the second support portion 92b and the third support portion 92c in a well-balanced manner. As a result, it is possible to effectively prevent the stator 20 from being displaced in the mold 90 due to the injection pressure of the resin.
  • the circumferential positions of some of the gate marks G among the plurality of gate marks G overlap with the circumferential positions of the second opening 62 and the third opening 63. That is, in the radial direction, the second opening 62, the gate mark G, and the third opening 63 are arranged side by side.
  • the injection pressure of the resin flowing from the gate 99 into the mold 90 can be received by the second support portion 92b and the third support portion 92c in a more balanced manner.
  • the case where the circumferential position of a part of the gate marks G overlaps with the circumferential position of the second opening 62 and the third opening 63 has been illustrated. However, it is more preferable to satisfy the above-mentioned relationship with respect to the positional relationship of all the gate marks G, the second opening 62, and the third opening 63.
  • a plurality of gate marks G (6 in this embodiment) are provided in the housing 30.
  • the distances of the plurality of gate marks G from the central axis J coincide with each other. That is, the radial positions of the plurality of gate marks G coincide with each other.
  • the plurality of gate marks G are arranged at equal intervals along the circumferential direction. Therefore, in the molding process of the housing 30, the resin material can be injected into the mold 90 from the gates 99 arranged at equal intervals along the circumferential direction in a well-balanced manner, and the molding accuracy of the housing 30 can be improved.
  • the gate mark G is located on the rib. More specifically, the gate mark G is located at the intersection of the radial rib 35 and the intermediate annular rib 33. That is, the gate mark G is located at the intersection of the ribs extending in the radial direction and the circumferential direction. Therefore, the resin injected from the gate 99 can be efficiently distributed to the intermediate annular rib 33 and the radial rib 35. Further, the resin injected from the gate 99 can be efficiently distributed to the inner annular rib 32 and the outer annular rib 34 via the radial rib 35.
  • the holder holding portion 38 is located above the main body portion 31 and extends radially inward from the inner end of the main body portion 31. Further, the holder holding portion 38 is located inside the inner annular rib 32 in the radial direction. The holder flange portion 43 of the upper bearing holder 40 is embedded in the holder holding portion 38. As a result, the holder holding portion 38 holds the upper bearing holder 40.
  • the holder holding portion 38 is located inside the first opening 61 provided in the main body portion 31 in the radial direction. Therefore, the holder flange portion 43 embedded in the holder holding portion 38 is located inside the first opening 61 in the radial direction. That is, the first opening 61 is located inside the upper bearing holder 40 in the radial direction.
  • the flange portion 39 is provided on the outer peripheral surface of the outer annular rib 34 and the outer peripheral surface of the main body portion 31.
  • the upper end surface of the flange portion 39 is continuous with the upper end surface of the outer annular rib 34.
  • a nut member 50 is embedded in each of the plurality of flange portions 39. As a result, the housing 30 holds the nut member 50.
  • the housing 30 of the present embodiment is provided with three flange portions 39.
  • the three flange portions 39 are arranged at equal intervals along the circumferential direction.
  • One nut member 50 is embedded in each of the three flange portions 39.
  • the nut member 50 is a columnar shape extending along the axial direction.
  • the upper end surface of the nut member 50 is arranged on the same plane as the upper end surface of the flange portion 39.
  • the lower end surface of the nut member 50 is arranged on the same plane as the lower end surface of the flange portion 39.
  • the nut member 50 has a screw hole 51 that opens in the upper end surface of the nut member 50 and extends downward, and a positioning hole 52 that opens in the lower end surface of the nut member 50 and extends upward.
  • the screw hole 51 and the positioning hole 52 are arranged coaxially.
  • a fixing bolt 9e for fixing the motor 1 to the external device 9 is fastened to the screw hole 51.
  • a positioning pin (not shown) provided in the mold 90 is inserted into the positioning hole 52 in the molding process of the housing 30. That is, the positioning hole 52 is used for positioning the nut member 50 in the mold 90.
  • the bus bar holder portion 36 is located on the lower surface of the main body portion 31. As shown in FIG. 3, the housing 30 of the present embodiment is provided with two bus bar holder portions 36. Three bus bars 80 are embedded inside each bus bar holder portion 36. The bus bar 80 projects downward from the lower surface of the bus bar holder portion 36.
  • the lower cylinder portion 37 has a cylindrical shape centered on the central axis J.
  • the outer peripheral surface of the lower cylinder portion 37 is continuous with the outer peripheral surface of the main body portion 31.
  • the lower cylinder portion 37 surrounds the lower end portions of the plurality of bus bars 80 protruding from the housing 30 from the outside in the radial direction. Further, the lower cylinder portion 37 surrounds the plurality of second openings 62 and the plurality of third openings 63 from the outside in the radial direction.
  • a control device (not shown) for controlling the motor 1 is attached to the lower cylinder portion 37. Further, the bus bar 80 is connected to a socket portion (not shown) provided in the control device. The inner peripheral surface of the lower cylinder portion 37 and the control device are sealed by a seal structure (not shown). According to the present embodiment, the lower cylinder portion 37 having a sealing function surrounds the plurality of second openings 62 and the plurality of third openings 63 from the outside in the radial direction. Therefore, it is possible to prevent water from reaching the second opening 62 and the third opening 63.
  • FIG. 10 is a perspective view of the split core 121A of the modified example.
  • the split core 121A of this modified example has a different recess configuration as compared with the above-described embodiment.
  • the components having the same aspects as those of the above-described embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the split core 121A is configured by laminating a plurality of electromagnetic steel plates 126 along the axial direction. That is, the stator core 21 is configured by laminating a plurality of electromagnetic steel plates 126 along the axial direction.
  • An inner recess (recess) 102a and an outer recess (recess) 102b are provided on the upper surface of the split core 121A.
  • the inner recess 102a and the outer recess 102b are recessed downward.
  • the inner recess 102a corresponds to the inner recess 28a in the above embodiment.
  • the outer recess 102b corresponds to the outer recess 28b in the above embodiment.
  • the bottom surface of each of the inner recess 102a and the outer recess 102b is exposed by the opening of the housing 30.
  • the second support portion 92b and the third support portion 92c are inserted into the inner recess 102a and the outer recess 102b when the housing 30 is molded.
  • the second support portion 92b and the third support portion 92c position the stator core 21 in the mold 90.
  • the stator core 21 can be positioned in the mold 90 by using the hole-shaped inner recess 102a and the outer recess 102b.
  • the use of the motor unit of the above-described embodiment and its modified example is not particularly limited.
  • the motor unit of the above-described embodiment and its modification is mounted on, for example, an electric pump, an electric power steering, and the like.

Abstract

One embodiment of the motor according to the present invention is provided with: a rotor having a shaft extending along the central axis and rotating about the central axis; a stator facing the rotor in the radial direction; and a housing comprising a resin and having the stator embedded thereinto. The stator has a recess portion that is provided in a stator core formed by laminating a plurality of magnetic steel sheets and opens on one side in the axial direction. The housing has an opening portion opening on the one side in the axial direction and exposing at least a part of the inner peripheral surface of the recess portion.

Description

モータmotor
 本発明は、モータに関する。 The present invention relates to a motor.
 近年、組み立て工程を簡素化するなどの目的で、ステータを樹脂でモールドしたモータが開発されている。特許文献1には、ステータをモールドする樹脂部分がハウジングを構成するモータが開示されている。 In recent years, motors in which the stator is molded with resin have been developed for the purpose of simplifying the assembly process. Patent Document 1 discloses a motor in which a resin portion for molding a stator constitutes a housing.
日本国公開公報:特開2007-267568号公報Japanese Publication: Japanese Patent Application Laid-Open No. 2007-267568
 ステータを樹脂材料でモールドする場合、ハウジングを成形する金型内でステータを高い位置精度で保持することが困難であった。ハウジングに対するステータの位置精度が低い場合、モータの回転効率が低下する虞がある。 When molding the stator with a resin material, it was difficult to hold the stator with high position accuracy in the mold for molding the housing. If the positioning accuracy of the stator with respect to the housing is low, the rotational efficiency of the motor may decrease.
 本発明は、上記事情に鑑みて、ハウジングに対するステータの位置精度を高めることができるモータを提供することを目的の一つとする。 One of the objects of the present invention is to provide a motor capable of improving the positioning accuracy of the stator with respect to the housing in view of the above circumstances.
 本発明のモータの一つの態様は、中心軸に沿って延びるシャフトを有し前記中心軸周りに回転するロータと、前記ロータと径方向に対向するステータと、樹脂からなり前記ステータが埋め込まれるハウジングと、を備える。前記ステータは、複数の電磁鋼板が積層されたステータコアに設けられ軸方向一方側に開口する凹部を有し、前記ハウジングは、軸方向一方側に開口し前記凹部の内周面の少なくとも一部を露出させる開口部を有する。 One aspect of the motor of the present invention is a housing having a shaft extending along a central axis and rotating around the central axis, a stator facing the rotor in the radial direction, and a housing in which the stator is embedded. And. The stator has a recess provided in a stator core in which a plurality of electromagnetic steel sheets are laminated and opens on one side in the axial direction, and the housing opens on one side in the axial direction and at least a part of the inner peripheral surface of the recess is formed. Has an opening to expose.
 本発明の一つの態様によれば、ハウジングに対するステータの位置精度を高めることができるモータが提供される。 According to one aspect of the present invention, there is provided a motor capable of improving the positioning accuracy of the stator with respect to the housing.
図1は、一実施形態のモータの断面図である。FIG. 1 is a cross-sectional view of the motor of one embodiment. 図2は、一実施形態のモータの平面図である。FIG. 2 is a plan view of the motor of one embodiment. 図3は、一実施形態のモータの底面図である。FIG. 3 is a bottom view of the motor of one embodiment. 図4は、一実施形態の分割コアの分解斜視図であるFIG. 4 is an exploded perspective view of the split core of one embodiment. 図5は、一実施形態のハウジングを成形する金型内におけるステータの保持状態を示す部分断面図である。FIG. 5 is a partial cross-sectional view showing a holding state of the stator in the mold for molding the housing of one embodiment. 図6は、一実施形態のハウジングを成形する金型内におけるステータの保持状態を示す断面図である。FIG. 6 is a cross-sectional view showing a holding state of the stator in the mold for molding the housing of one embodiment. 図7は、一実施形態のステータを斜め上側から見た部分斜視図である。FIG. 7 is a partial perspective view of the stator of one embodiment as viewed from diagonally above. 図8は、一実施形態のステータを斜め下側から見た部分斜視図である。FIG. 8 is a partial perspective view of the stator of one embodiment as viewed from diagonally below. 図9は、一実施形態のステータコアを斜め下側から見た部分斜視図である。FIG. 9 is a partial perspective view of the stator core of one embodiment as viewed from diagonally below. 図10は、変形例の分割コアの斜視図でる。FIG. 10 is a perspective view of the split core of the modified example.
 以下、図面を参照して本発明を適用した実施形態について詳細に説明する。
 以下の説明において、中心軸J(図1参照)に平行な方向を単に「軸方向」又は「上下方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向、すなわち、中心軸Jの軸周りを単に「周方向」と呼ぶ。また、本明細書では、中心軸Jに沿った軸方向の一方側を単に「下側」と呼び、他方側を単に「上側」と呼ぶ。なお、本明細書における上下方向は、単に説明のために用いられる方向であって、モータの使用時および流通時の姿勢を限定するものではない。
Hereinafter, embodiments to which the present invention has been applied will be described in detail with reference to the drawings.
In the following description, the direction parallel to the central axis J (see FIG. 1) is simply referred to as "axial direction" or "vertical direction", and the radial direction centered on the central axis J is simply referred to as "radial direction". The circumferential direction around the axis J, that is, the circumference of the central axis J is simply referred to as the "circumferential direction". Further, in the present specification, one side in the axial direction along the central axis J is simply referred to as "lower side", and the other side is simply referred to as "upper side". It should be noted that the vertical direction in the present specification is merely a direction used for explanation, and does not limit the posture during use and distribution of the motor.
 図1は、一実施形態のモータ1の断面図である。図2は、モータ1の平面図である。図3は、モータ1の底面図である。なお、図2および図3において、ロータ10の図示を省略する。 FIG. 1 is a cross-sectional view of the motor 1 of one embodiment. FIG. 2 is a plan view of the motor 1. FIG. 3 is a bottom view of the motor 1. Note that the rotor 10 is not shown in FIGS. 2 and 3.
 図1に仮想線(二点鎖線)で示すように、モータ1は、固定ボルト9eを用いてモータ1の上側に配置される外部装置9に取り付けられる。モータ1は、外部装置9に動力を伝達する。
 モータ1は、ロータ10と、ロータ10を囲むステータ20と、ステータ20に対してロータ10を回転可能に保持する上側ベアリング15および下側ベアリング16と、上側ベアリング15を保持する上側ベアリングホルダ40と、下側ベアリング16を保持する下側ベアリングホルダ70と、ハウジング30と、複数のナット部材50と、複数のバスバー80と、を有する。
As shown by a virtual line (dashed line) in FIG. 1, the motor 1 is attached to an external device 9 arranged above the motor 1 by using a fixing bolt 9e. The motor 1 transmits power to the external device 9.
The motor 1 includes a rotor 10, a stator 20 that surrounds the rotor 10, an upper bearing 15 and a lower bearing 16 that rotatably hold the rotor 10 with respect to the stator 20, and an upper bearing holder 40 that holds the upper bearing 15. It has a lower bearing holder 70 for holding the lower bearing 16, a housing 30, a plurality of nut members 50, and a plurality of bus bars 80.
 ロータ10は、上下方向に沿って延びる中心軸Jを中心として回転する。ロータ10は、中心軸Jに沿って延びるシャフト11と、ロータコア12と、ロータマグネット13と、を有する。 The rotor 10 rotates about a central axis J extending in the vertical direction. The rotor 10 has a shaft 11 extending along the central axis J, a rotor core 12, and a rotor magnet 13.
 シャフト11は、上端部(軸方向他方側の端部)において外部装置9の動力伝達機構9dに接続される。シャフト11は、上側ベアリング15、および下側ベアリング16により、中心軸J周りに回転可能に支持される。シャフト11の外周面には、ロータコア12が固定される。また、ロータコア12の外周面には、ロータマグネット13が固定される。なお、複数のロータマグネット13は、ロータコア12の内部に埋め込まれていてもよい。 The shaft 11 is connected to the power transmission mechanism 9d of the external device 9 at the upper end portion (the end portion on the other side in the axial direction). The shaft 11 is rotatably supported around the central axis J by the upper bearing 15 and the lower bearing 16. The rotor core 12 is fixed to the outer peripheral surface of the shaft 11. Further, the rotor magnet 13 is fixed to the outer peripheral surface of the rotor core 12. The plurality of rotor magnets 13 may be embedded inside the rotor core 12.
 上側ベアリング15は、ステータ20の上側に位置し、下側ベアリング16は、ステータ20の下側に位置する。上側ベアリング15は、シャフト11の上端部を支持し、下側ベアリング16は、シャフト11の下端部を支持する。本実施形態の上側ベアリング15および下側ベアリング16は、ボールベアリングである。しかしながら、上側ベアリング15および下側ベアリング16は、ニードルベアリング等の他種のベアリングであってもよい。 The upper bearing 15 is located above the stator 20, and the lower bearing 16 is located below the stator 20. The upper bearing 15 supports the upper end of the shaft 11, and the lower bearing 16 supports the lower end of the shaft 11. The upper bearing 15 and the lower bearing 16 of the present embodiment are ball bearings. However, the upper bearing 15 and the lower bearing 16 may be other types of bearings such as needle bearings.
 上側ベアリングホルダ40は、ステータ20の上側に位置する。上側ベアリングホルダ40は、金属製である。上側ベアリングホルダ40は、ホルダ筒部41と、ホルダ筒部41の上端から径方向内側に延びる上板部42と、ホルダ筒部41の下端から径方向外側に延びるホルダフランジ部43と、を有する。 The upper bearing holder 40 is located above the stator 20. The upper bearing holder 40 is made of metal. The upper bearing holder 40 has a holder cylinder portion 41, an upper plate portion 42 extending radially inward from the upper end of the holder cylinder portion 41, and a holder flange portion 43 extending radially outward from the lower end of the holder cylinder portion 41. ..
 ホルダ筒部41は、中心軸Jを中心とする円筒状である。ホルダ筒部41の径方向内側には、上側ベアリング15が配置される。上板部42は、上側ベアリング15の外輪の上側を覆う。上板部42には、軸方向に貫通する中央孔42aが設けられる。中央孔42aには、シャフト11が挿通される。ホルダフランジ部43の径方向外側の縁部は、ハウジング30に埋め込まれる。すなわち、上側ベアリングホルダ40は、少なくも一部がハウジング30に埋め込まれる。 The holder cylinder portion 41 has a cylindrical shape centered on the central axis J. The upper bearing 15 is arranged inside the holder cylinder portion 41 in the radial direction. The upper plate portion 42 covers the upper side of the outer ring of the upper bearing 15. The upper plate portion 42 is provided with a central hole 42a penetrating in the axial direction. The shaft 11 is inserted through the central hole 42a. The radial outer edge of the holder flange 43 is embedded in the housing 30. That is, at least a part of the upper bearing holder 40 is embedded in the housing 30.
 下側ベアリングホルダ70は、ステータ20の下側に位置する。下側ベアリングホルダ70は、樹脂製である。下側ベアリングホルダ70は、軸方向から見て円板状である。下側ベアリングホルダ70は、外縁部においてハウジング30に固定される。 The lower bearing holder 70 is located below the stator 20. The lower bearing holder 70 is made of resin. The lower bearing holder 70 has a disk shape when viewed from the axial direction. The lower bearing holder 70 is fixed to the housing 30 at the outer edge.
 下側ベアリングホルダ70の軸方向から見た中央には、中央孔72aが設けられる。中央孔72aには、シャフト11の下端部が挿通される。中央孔72aの周囲には、下側ベアリング16を径方向外側から囲み下側ベアリング16を保持する内壁面71aが設けられる。 A central hole 72a is provided in the center of the lower bearing holder 70 when viewed from the axial direction. The lower end of the shaft 11 is inserted into the central hole 72a. An inner wall surface 71a that surrounds the lower bearing 16 from the outside in the radial direction and holds the lower bearing 16 is provided around the central hole 72a.
 ステータ20は、ロータ10を径方向外側から囲む。ステータ20は、ロータ10と径方向に対向する。ステータ20は、ステータコア21と、インシュレータ22と、コイル29と、を有する。 The stator 20 surrounds the rotor 10 from the outside in the radial direction. The stator 20 faces the rotor 10 in the radial direction. The stator 20 includes a stator core 21, an insulator 22, and a coil 29.
 ステータコア21は、中心軸Jを中心とする環状のコアバック部21aおよびコアバック部21aから径方向内側に延びる複数のティース部21bを有する。ティース部21bは、中心軸J周りの周方向に等間隔で複数設けられる。 The stator core 21 has an annular core back portion 21a centered on the central axis J and a plurality of teeth portions 21b extending radially inward from the core back portion 21a. A plurality of tooth portions 21b are provided at equal intervals in the circumferential direction around the central axis J.
 本実施形態のステータコア21は、周方向に分割されている。ステータコア21は、周方向に沿って並ぶ12個の分割コア21Aの集合体である。 The stator core 21 of this embodiment is divided in the circumferential direction. The stator core 21 is an aggregate of 12 divided cores 21A arranged along the circumferential direction.
 図4は、本実施形態の分割コア21Aの分解斜視図である。
 分割コア21Aは、それぞれ、1つのティース部21bと、ティース部21bの径方向外側に連続する分割コアバック部21dと、を有する。また、ティース部21bは、径方向内側の端部にアンブレラ部21cを有する。すなわち、分割コア21Aは、アンブレラ部21cを有する。
FIG. 4 is an exploded perspective view of the split core 21A of the present embodiment.
Each of the divided cores 21A has one tooth portion 21b and a divided core back portion 21d continuous to the radial outer side of the teeth portion 21b. Further, the teeth portion 21b has an umbrella portion 21c at an end portion on the inner side in the radial direction. That is, the split core 21A has an umbrella portion 21c.
 分割コアバック部21dは、周方向に沿って延びる円弧状である。複数の分割コア21Aが周方向に沿って並ぶと、分割コアバック部21dの周方向の端面同士は互いに対向し接触する。複数の分割コア21Aの分割コアバック部21dが周方向に連なることで円環状のコアバック部21aを構成する。 The split core back portion 21d has an arc shape extending along the circumferential direction. When a plurality of divided cores 21A are lined up along the circumferential direction, the end faces of the divided core back portions 21d in the circumferential direction face each other and come into contact with each other. The divided core back portions 21d of the plurality of divided cores 21A are connected in the circumferential direction to form an annular core back portion 21a.
 ティース部21bは、分割コアバック部21dの周方向中央から径方向内側に延びる。ティース部21bの先端には、ティース部21bの他の部分より幅広であるアンブレラ部21cが設けられる。 The teeth portion 21b extends radially inward from the center of the split core back portion 21d in the circumferential direction. At the tip of the teeth portion 21b, an umbrella portion 21c that is wider than the other portions of the teeth portion 21b is provided.
 分割コア21Aは、複数の電磁鋼板26が軸方向に沿って積層されて構成されている。すなわち、ステータコア21は、複数の電磁鋼板26が軸方向に沿って積層されて構成されている。複数の電磁鋼板26は、第1電磁鋼板26A、第2電磁鋼板26Bおよび第3電磁鋼板26Cを含む総称である。 The split core 21A is configured by laminating a plurality of electromagnetic steel plates 26 along the axial direction. That is, the stator core 21 is configured by laminating a plurality of electromagnetic steel plates 26 along the axial direction. The plurality of electrical steel sheets 26 is a general term including the first electrical steel sheet 26A, the second electrical steel sheet 26B, and the third electrical steel sheet 26C.
 複数の電磁鋼板26は、第1電磁鋼板26Aと、第2電磁鋼板26Bと、第3電磁鋼板26Cと、に分類される。すなわち、ステータコア21は、第1電磁鋼板26Aと、第2電磁鋼板26Bと、第3電磁鋼板26Cと、を有する。本実施形態の分割コア21Aは、2枚の第1電磁鋼板26Aと、2枚の第3電磁鋼板26Cと、そのほか多数枚(2枚以上)の第2電磁鋼板26Bと、を有する。 The plurality of electrical steel sheets 26 are classified into the first electrical steel sheet 26A, the second electrical steel sheet 26B, and the third electrical steel sheet 26C. That is, the stator core 21 has a first electrical steel sheet 26A, a second electrical steel sheet 26B, and a third electrical steel sheet 26C. The split core 21A of the present embodiment includes two first electrical steel sheets 26A, two third electrical steel sheets 26C, and a large number (two or more) second electrical steel sheets 26B.
 複数の第1電磁鋼板26Aは、分割コア21Aにおいて、下側(軸方向一方側)の端部に積層される。複数の第3電磁鋼板26Cは、分割コア21Aにおいて、上側(軸方向他方側)の端部に積層される。また、複数の第2電磁鋼板26Bは、第1電磁鋼板26Aと第3電磁鋼板26Cとの間に積層される。すなわち、第2電磁鋼板26Bは、第1電磁鋼板26Aより上側(軸方向他方側)に積層される。また、第2電磁鋼板26Bは、第3電磁鋼板26Cより下側(軸方向一方側)に積層される。 The plurality of first electrical steel sheets 26A are laminated on the lower end (one side in the axial direction) of the split core 21A. The plurality of third electromagnetic steel sheets 26C are laminated on the upper end (the other side in the axial direction) in the split core 21A. Further, the plurality of second electrical steel sheets 26B are laminated between the first electrical steel sheet 26A and the third electrical steel sheet 26C. That is, the second electrical steel sheet 26B is laminated on the upper side (the other side in the axial direction) of the first electrical steel sheet 26A. Further, the second electrical steel sheet 26B is laminated on the lower side (one side in the axial direction) of the third electrical steel sheet 26C.
 第1電磁鋼板26Aおよび第3電磁鋼板26Cは、同形状である。一方で、第2電磁鋼板26Bは、第1電磁鋼板26Aおよび第3電磁鋼板26Cと異なる形状である。 The first electromagnetic steel sheet 26A and the third electrical steel sheet 26C have the same shape. On the other hand, the second electrical steel sheet 26B has a different shape from the first electrical steel sheet 26A and the third electrical steel sheet 26C.
 第1電磁鋼板26Aおよび第3電磁鋼板26Cは、それぞれ軸方向に貫通する2つの貫通部(内端貫通部27aおよび外端貫通部27b)を有する。本実施形態において、2つの貫通部は、電磁鋼板の径方向内端に開口する切欠状の内端貫通部27aと、電磁鋼板の径方向外端に開口する切欠状の外端貫通部27bと、に分類される。
 なお、第2電磁鋼板26Bは、第1電磁鋼板26Aおよび第3電磁鋼板26Cを比較して、内端貫通部27aおよび外端貫通部27bを有さない形状である。
The first electromagnetic steel sheet 26A and the third electrical steel sheet 26C each have two penetrating portions (inner end penetrating portion 27a and outer end penetrating portion 27b) penetrating in the axial direction. In the present embodiment, the two penetrating portions are a notch-shaped inner end penetrating portion 27a that opens at the radial inner end of the electromagnetic steel sheet and a notch-shaped outer end penetrating portion 27b that opens at the radial outer end of the electromagnetic steel sheet. ,are categorized.
The second electromagnetic steel sheet 26B has a shape that does not have the inner end penetrating portion 27a and the outer end penetrating portion 27b as compared with the first electromagnetic steel sheet 26A and the third electromagnetic steel sheet 26C.
 分割コア21Aは、凹部28Eと、副凹部28Fと、を有する。すなわち、ステータ20は、ステータコア21に設けられる凹部28Eおよび副凹部28Fを有する。 The split core 21A has a recess 28E and a sub-recess 28F. That is, the stator 20 has a recess 28E and a sub-recess 28F provided in the stator core 21.
 凹部28Eは、下側(軸方向一方側)に開口する。凹部28Eは、アンブレラ部21cに位置する内側凹部28aと、分割コアバック部21dに位置する外側凹部28bと、を含む総称である。 The recess 28E opens to the lower side (one side in the axial direction). The recess 28E is a general term including an inner recess 28a located in the umbrella portion 21c and an outer recess 28b located in the split core back portion 21d.
 内側凹部28aは、第1電磁鋼板26Aの内端貫通部27aと、第1電磁鋼板26Aの上側の第2電磁鋼板26Bの下面(軸方向一方側を向く面)と、で囲まれる部位である。また、外側凹部28bは、第1電磁鋼板26Aの外端貫通部27bと、第1電磁鋼板26Aの上側の第2電磁鋼板26Bの下面(軸方向一方側を向く面)と、で囲まれる部位である。 The inner recess 28a is a portion surrounded by the inner end penetrating portion 27a of the first electrical steel sheet 26A and the lower surface (the surface facing one side in the axial direction) of the second electrical steel sheet 26B on the upper side of the first electrical steel sheet 26A. .. Further, the outer recess 28b is a portion surrounded by the outer end penetrating portion 27b of the first electrical steel sheet 26A and the lower surface (the surface facing one side in the axial direction) of the second electrical steel sheet 26B above the first electrical steel sheet 26A. Is.
 副凹部28Fは、上側(軸方向一方側)に開口する。副凹部28Fは、アンブレラ部21cに位置する内側副凹部28cと、分割コアバック部21dに位置する外側副凹部28dと、を含む総称である。 The sub-recess 28F opens on the upper side (one side in the axial direction). The sub-recess 28F is a general term including an inner sub-recess 28c located in the umbrella portion 21c and an outer sub-recess 28d located in the split core back portion 21d.
 内側副凹部28cは、第3電磁鋼板26Cの内端貫通部27aと、第1電磁鋼板26Aの下側の第2電磁鋼板26Bの下面(軸方向他方側を向く面)と、で囲まれる部位である。また、外側副凹部28dは、第3電磁鋼板26Cの外端貫通部27bと、第1電磁鋼板26Aの下側の第2電磁鋼板26Bの下面(軸方向他方側を向く面)と、で囲まれる部位である。 The inner sub-concave 28c is a portion surrounded by the inner end penetrating portion 27a of the third electrical steel sheet 26C and the lower surface (the surface facing the other side in the axial direction) of the second electrical steel sheet 26B below the first electrical steel sheet 26A. Is. Further, the outer sub-concave 28d is surrounded by the outer end penetrating portion 27b of the third electrical steel sheet 26C and the lower surface (the surface facing the other side in the axial direction) of the second electrical steel sheet 26B below the first electrical steel sheet 26A. This is the part to be used.
 内側凹部28aおよび内側副凹部28cは、ティース部21bの先端に位置する。内側凹部28aおよび内側副凹部28cは、アンブレラ部21cの周方向中央に位置する。すなわち、内側凹部28aおよび内側副凹部28cは、軸方向から見てティース部21bの中心を通って径方向に延びるティース中心線VL上に位置する。内側凹部28aは、下側のみならず径方向内側にも開口する。同様に、内側副凹部28cは、上側のみならず径方向内側にも開口する。 The inner recess 28a and the inner sub-recess 28c are located at the tip of the tooth portion 21b. The inner recess 28a and the inner sub-recess 28c are located at the center of the umbrella portion 21c in the circumferential direction. That is, the inner recess 28a and the inner sub-recess 28c are located on the teeth center line VL extending in the radial direction through the center of the teeth portion 21b when viewed from the axial direction. The inner recess 28a opens not only on the lower side but also on the inner side in the radial direction. Similarly, the inner sub-recess 28c opens not only on the upper side but also on the inner side in the radial direction.
 外側凹部28bおよび外側副凹部28dは、コアバック部21aの外縁部に位置する。外側凹部28bおよび外側副凹部28dは、分割コアバック部21dの周方向中央部に位置する。すなわち、外側凹部28bおよび外側副凹部28dは、ティース中心線VL上に位置する。外側凹部28bは、下側のみならず径方向外側にも開口する。同様に、外側副凹部28dは、上側のみならず径方向外側にも開口する。 The outer recess 28b and the outer sub-recess 28d are located at the outer edge of the core back portion 21a. The outer recess 28b and the outer sub-recess 28d are located at the central portion in the circumferential direction of the split core back portion 21d. That is, the outer recess 28b and the outer sub-recess 28d are located on the tooth center line VL. The outer recess 28b opens not only on the lower side but also on the outer side in the radial direction. Similarly, the outer sub-recess 28d opens not only on the upper side but also on the outer side in the radial direction.
 コイル29は、インシュレータ22を介してティース部21bに装着される。コイル29の端部は、ステータ20の下側に配置されるバスバー80に接続される。バスバー80は、図示略の制御装置に接続される。コイル29には、バスバー80を介して制御装置から電力が供給される。 The coil 29 is attached to the teeth portion 21b via the insulator 22. The end of the coil 29 is connected to a bus bar 80 located below the stator 20. The bus bar 80 is connected to a control device (not shown). Electric power is supplied to the coil 29 from the control device via the bus bar 80.
 インシュレータ22は、絶縁部材からなる。インシュレータ22は、例えば樹脂部材である。インシュレータ22は、ティース部21bに取り付けられる。インシュレータ22は、上ピース22Aおよび下ピース22Bを有する。上ピース22Aは、ステータコア21に対して上側から取り付けられる。上ピース22Aは、コアバック部21aの上端面とティース部21bの周方向両端面の上半分の領域とを囲む。下ピース22Bは、ステータコア21に対して下側から取り付けられる。下ピース22Bは、コアバック部21aの下端面とティース部21bの周方向両端面の下半分の領域とを囲む。
 なお、本明細書においてティース部21bの周方向の端面とは、径方向および軸方向と直交し周方向を向くティース部21bの面であり、周方向に沿って並ぶティース部21b同士が互いに向かい合う面である。
The insulator 22 is made of an insulating member. The insulator 22 is, for example, a resin member. The insulator 22 is attached to the teeth portion 21b. The insulator 22 has an upper piece 22A and a lower piece 22B. The upper piece 22A is attached to the stator core 21 from above. The upper piece 22A surrounds the upper end surface of the core back portion 21a and the upper half region of both end faces in the circumferential direction of the teeth portion 21b. The lower piece 22B is attached to the stator core 21 from below. The lower piece 22B surrounds the lower end surface of the core back portion 21a and the lower half region of both end faces in the circumferential direction of the teeth portion 21b.
In the present specification, the distal end surface of the teeth portion 21b is the surface of the teeth portions 21b that are orthogonal to the radial direction and the axial direction and face the circumferential direction, and the teeth portions 21b arranged along the circumferential direction face each other. It is a face.
 インシュレータ22は、それぞれ基部25と、内壁部23と、外壁部24と、を有する。基部25は、ティース部21bの外周面の全体を囲む。基部25は、ティース部21bの外周面とコイル29との間に介在する。 The insulator 22 has a base portion 25, an inner wall portion 23, and an outer wall portion 24, respectively. The base portion 25 surrounds the entire outer peripheral surface of the teeth portion 21b. The base portion 25 is interposed between the outer peripheral surface of the teeth portion 21b and the coil 29.
 内壁部23は、基部25の径方向内側に位置し、周方向に沿って延びる。内壁部23は、軸方向から見て、ティース部21bの径方向内端部と重なる。内壁部23は、コイル29に対し径方向内側に位置する。内壁部23は、ティース部21bに巻き付けられたコイル29が径方向内側に移動することを制限する。 The inner wall portion 23 is located inside the base portion 25 in the radial direction and extends along the circumferential direction. The inner wall portion 23 overlaps with the radial inner end portion of the teeth portion 21b when viewed from the axial direction. The inner wall portion 23 is located radially inside the coil 29. The inner wall portion 23 restricts the coil 29 wound around the teeth portion 21b from moving inward in the radial direction.
 内壁部23は、上ピース22Aと下ピース22Bとにそれぞれ設けられる。以下の説明において、上ピース22Aの内壁部23を上側内壁部(第1壁部)23Aと呼ぶ。また、下ピース22Bの内壁部23を下側内壁部(第2壁部)23Bと呼ぶ。上側内壁部23Aは、基部25に対して上側に延びる。下側内壁部23Bは、基部25に対して下側に延びる。なお、後段において詳しく説明するように、上側内壁部23Aおよび下側内壁部23Bには、それぞれ内壁切欠部23cが設けられる。 The inner wall portion 23 is provided on the upper piece 22A and the lower piece 22B, respectively. In the following description, the inner wall portion 23 of the upper piece 22A is referred to as the upper inner wall portion (first wall portion) 23A. Further, the inner wall portion 23 of the lower piece 22B is referred to as a lower inner wall portion (second wall portion) 23B. The upper inner wall portion 23A extends upward with respect to the base portion 25. The lower inner wall portion 23B extends downward with respect to the base portion 25. As will be described in detail later, the upper inner wall portion 23A and the lower inner wall portion 23B are each provided with an inner wall notch 23c.
 外壁部24は、基部25の径方向外側に位置し、周方向に沿って延びる。外壁部24は、軸方向から見て、コアバック部21aと重なる。外壁部24は、コイル29に対し径方向外側に位置する。外壁部24は、ティース部21bに巻き付けられたコイル29が径方向外側に移動することを制限する。 The outer wall portion 24 is located on the radial outside of the base portion 25 and extends along the circumferential direction. The outer wall portion 24 overlaps with the core back portion 21a when viewed from the axial direction. The outer wall portion 24 is located radially outside the coil 29. The outer wall portion 24 restricts the coil 29 wound around the teeth portion 21b from moving outward in the radial direction.
 外壁部24は、上ピース22Aと下ピース22Bとにそれぞれ設けられる。以下の説明において、上ピース22Aの外壁部24を上側外壁部24Aと呼ぶ。また、下ピース22Bの外壁部24を下側外壁部24Bと呼ぶ。上側外壁部24Aは、基部25に対して上側に延びる。下側外壁部24Bは、基部25に対して下側に延びる。なお、後段において詳しく説明するように、下側外壁部24Bには、外壁貫通部24cが設けられる。 The outer wall portion 24 is provided on the upper piece 22A and the lower piece 22B, respectively. In the following description, the outer wall portion 24 of the upper piece 22A will be referred to as the upper outer wall portion 24A. Further, the outer wall portion 24 of the lower piece 22B is referred to as a lower outer wall portion 24B. The upper outer wall portion 24A extends upward with respect to the base portion 25. The lower outer wall portion 24B extends downward with respect to the base portion 25. As will be described in detail later, the lower outer wall portion 24B is provided with an outer wall penetrating portion 24c.
 ハウジング30は、樹脂材料からなる。本明細書において樹脂材料とは、例えばガラス繊維や炭素繊維のような繊維材によって強化された複合材料であってもよい。すなわち、ハウジング30は、繊維強化樹脂材料であってもよい。また、ハウジング30は、熱硬化性樹脂であってもよいし、熱可塑性樹脂であってもよい。 The housing 30 is made of a resin material. In the present specification, the resin material may be a composite material reinforced with a fiber material such as glass fiber or carbon fiber. That is, the housing 30 may be a fiber reinforced resin material. Further, the housing 30 may be a thermosetting resin or a thermoplastic resin.
 ハウジング30には、ステータ20、バスバー80、上側ベアリングホルダ40およびナット部材50が埋め込まれる。これにより、ハウジング30は、バスバー80、ステータ20、上側ベアリングホルダ40およびナット部材50を保持する。ハウジング30は、ステータ20、バスバー80、上側ベアリングホルダ40およびナット部材50を金型内で保持した状態でインサート成形される。すなわち、ステータ20、バスバー80、上側ベアリングホルダ40およびナット部材50をハウジング30に対して一度に埋め込むことができるので、モータ1の組み立て工程が簡素化される。 A stator 20, a bus bar 80, an upper bearing holder 40, and a nut member 50 are embedded in the housing 30. As a result, the housing 30 holds the bus bar 80, the stator 20, the upper bearing holder 40, and the nut member 50. The housing 30 is insert-molded with the stator 20, the bus bar 80, the upper bearing holder 40, and the nut member 50 held in the mold. That is, since the stator 20, the bus bar 80, the upper bearing holder 40, and the nut member 50 can be embedded in the housing 30 at once, the assembly process of the motor 1 is simplified.
 ハウジング30は、ステータ20を保持する本体部31と、本体部31の上面から上側に突出する複数のリブ3と、バスバー80を保持するバスバーホルダ部36と、本体部31の下面から下側に延びる下筒部37と、本体部31の外周面から径方向外側に突出する複数のフランジ部39と、上側ベアリングホルダ40を保持するホルダ保持部38と、を有する。複数のリブ3は、環状リブ3Aと、径方向リブ35とを含む総称である。また、環状リブ3Aは、内側環状リブ32と、中間環状リブ33と、外側環状リブ34とを含む総称である。 The housing 30 includes a main body 31 that holds the stator 20, a plurality of ribs 3 that project upward from the upper surface of the main body 31, a bus bar holder 36 that holds the bus bar 80, and a lower surface of the main body 31. It has a lower cylinder portion 37 that extends, a plurality of flange portions 39 that project radially outward from the outer peripheral surface of the main body portion 31, and a holder holding portion 38 that holds the upper bearing holder 40. The plurality of ribs 3 are a general term including an annular rib 3A and a radial rib 35. Further, the annular rib 3A is a general term including an inner annular rib 32, an intermediate annular rib 33, and an outer annular rib 34.
 本体部31には、ステータ20が埋め込まれる。本体部31は、ステータ20に対し上側、下側および径方向外側を囲む。本体部31は、ティース部21bおよびコイル29を囲むとともに、周方向で互いに隣り合うティース部21bおよびコイル29の間にも設けられる。ステータコア21の内周面は、ハウジング30から露出する。 The stator 20 is embedded in the main body 31. The main body 31 surrounds the upper side, the lower side, and the radial outer side with respect to the stator 20. The main body 31 surrounds the teeth portion 21b and the coil 29, and is also provided between the teeth portions 21b and the coil 29 that are adjacent to each other in the circumferential direction. The inner peripheral surface of the stator core 21 is exposed from the housing 30.
 本体部31は、複数の開口部6を有する。すなわち、ハウジング30は、複数の開口部6を有する。後段において説明するように、複数の開口部6は、ハウジング30の成形時においてステータ20を金型内で支持する支持部の痕跡である。複数の開口部6は、複数の第1開口部61と複数の第2開口部62と複数の第3開口部63とを含む総称である。 The main body 31 has a plurality of openings 6. That is, the housing 30 has a plurality of openings 6. As will be described later, the plurality of openings 6 are traces of a support portion that supports the stator 20 in the mold when the housing 30 is molded. The plurality of openings 6 is a general term including a plurality of first openings 61, a plurality of second openings 62, and a plurality of third openings 63.
 図1に示すように、第1開口部61は、本体部31の上面からステータ20まで軸方向に延びる。第1開口部61は、上側(軸方向他方側)に開口する。第1開口部61は、ステータの一部を露出させる。本実施形態において、第1開口部61は、ステータコア21の上端面に設けられる内側副凹部28cの内壁面の少なくとも一部および底面を露出させる。 As shown in FIG. 1, the first opening 61 extends axially from the upper surface of the main body 31 to the stator 20. The first opening 61 opens on the upper side (the other side in the axial direction). The first opening 61 exposes a part of the stator. In the present embodiment, the first opening 61 exposes at least a part of the inner wall surface and the bottom surface of the inner sub-recess 28c provided on the upper end surface of the stator core 21.
 図2に示すように、本実施形態のハウジング30には、6個の第1開口部61が設けられる。複数の第1開口部61の中心軸Jからの距離は、互いに一致する。すなわち、複数の第1開口部61の径方向の位置は、互いに一致する。複数の第1開口部61は、周方向に沿って等間隔に並ぶ。 As shown in FIG. 2, the housing 30 of the present embodiment is provided with six first openings 61. The distances of the plurality of first openings 61 from the central axis J coincide with each other. That is, the radial positions of the plurality of first openings 61 coincide with each other. The plurality of first openings 61 are arranged at equal intervals along the circumferential direction.
 図1に示すように、第2開口部62および第3開口部63は、本体部31の下面からステータ20まで軸方向に延びる。第2開口部62は、下側および径方向内側に開口する。第3開口部63は、下側(軸方向一方側)に開口する。第2開口部62および第3開口部63は、ステータの一部を露出させる。本実施形態において、第2開口部62および第3開口部63は、ステータコア21の下端面に設けられる凹部28Eの内壁面の少なくとも一部および底面を露出させる。本実施形態において、第2開口部62が露出させるのは、内側凹部28aの内壁面と底面である。また、第3開口部63が露出させるのは、外側凹部28bの内壁面と底面の一部である。 As shown in FIG. 1, the second opening 62 and the third opening 63 extend axially from the lower surface of the main body 31 to the stator 20. The second opening 62 opens downward and radially inward. The third opening 63 opens on the lower side (one side in the axial direction). The second opening 62 and the third opening 63 expose a part of the stator. In the present embodiment, the second opening 62 and the third opening 63 expose at least a part of the inner wall surface and the bottom surface of the recess 28E provided on the lower end surface of the stator core 21. In the present embodiment, the second opening 62 exposes the inner wall surface and the bottom surface of the inner recess 28a. Further, the third opening 63 exposes a part of the inner wall surface and the bottom surface of the outer recess 28b.
 図3に示すように、本実施形態のハウジング30には、12個の第2開口部62が設けられる。複数の第2開口部62は、中心軸Jを中心とする同心円上に位置する。また、複数の第2開口部62は、周方向に沿って等間隔に並ぶ。 As shown in FIG. 3, the housing 30 of the present embodiment is provided with 12 second openings 62. The plurality of second openings 62 are located on concentric circles centered on the central axis J. Further, the plurality of second openings 62 are arranged at equal intervals along the circumferential direction.
 本実施形態のハウジング30には、6個の第3開口部63が設けられる。複数の第3開口部63は、複数の第2開口部62よりも径方向外側に位置するとともに、中心軸Jを中心とする同心円上に位置する。また、6個の第3開口部63は、3個を1つのグループとして、2つのグループ63A、63Bに分けられる。グループ63Aに含まれる3個の第3開口部63は、周方向に沿って互いに等間隔に並ぶ。グループ63Bに含まれる3個の第3開口部63は、周方向に沿って互いに等間隔に並ぶ。モータ1を軸方向下側からみた場合において、グループ63Aに含まれる3個の第3開口部63のうち任意の一つは、グループ63Bに含まれる3個の第3開口部63のうちの任意を一つと中心軸Jを挟んで反対側に位置している。ハウジングの下側の面には、複数の第2開口部62および複数の第3開口部63が設けられている。 The housing 30 of the present embodiment is provided with six third openings 63. The plurality of third openings 63 are located radially outward of the plurality of second openings 62, and are located on concentric circles centered on the central axis J. Further, the six third openings 63 are divided into two groups 63A and 63B, with the three as one group. The three third openings 63 included in the group 63A are arranged at equal intervals along the circumferential direction. The three third openings 63 included in the group 63B are arranged at equal intervals along the circumferential direction. When the motor 1 is viewed from the lower side in the axial direction, any one of the three third openings 63 included in the group 63A is arbitrary of the three third openings 63 included in the group 63B. Is located on the opposite side of the central axis J. A plurality of second openings 62 and a plurality of third openings 63 are provided on the lower surface of the housing.
 図5および図6は、ハウジング30を成形する金型90内におけるステータ20の保持状態を示す部分断面図である。なお、図5は第1開口部61の近傍を示し、図6は第2開口部62および第3開口部63の近傍を示す。 5 and 6 are partial cross-sectional views showing a holding state of the stator 20 in the mold 90 for molding the housing 30. Note that FIG. 5 shows the vicinity of the first opening 61, and FIG. 6 shows the vicinity of the second opening 62 and the third opening 63.
 金型90の内部には、ハウジング30を構成する樹脂材料が充填されるキャビティCが設けられる。金型90は、キャビティCを囲む第1型91(図5参照)と第2型92(図6参照)とを有する。第1型91と第2型92とは、軸方向に互いに向かい合って配置される。第1型91と第2型92とは、例えば本体部31の軸方向中程に位置するパーティングライン(図示略)において上下に相対的に分離可能である。 Inside the mold 90, a cavity C filled with a resin material constituting the housing 30 is provided. The mold 90 has a first mold 91 (see FIG. 5) and a second mold 92 (see FIG. 6) surrounding the cavity C. The first type 91 and the second type 92 are arranged so as to face each other in the axial direction. The first type 91 and the second type 92 can be relatively separated vertically, for example, at a parting line (not shown) located in the middle of the main body 31 in the axial direction.
 図5に示すように、第1型91は、複数の第1支持部91aを有する。第1支持部91aは、第1型91のキャビティC側を向く下面から下側に延びる角柱である。第1支持部91aは、周方向に沿って並ぶ。第1支持部91aは、ステータコア21の内側副凹部28cに挿入され、内側副凹部28cの底面および内壁面に接触する。 As shown in FIG. 5, the first type 91 has a plurality of first support portions 91a. The first support portion 91a is a prism extending downward from the lower surface of the first type 91 facing the cavity C side. The first support portions 91a are arranged along the circumferential direction. The first support portion 91a is inserted into the inner sub-recess 28c of the stator core 21 and comes into contact with the bottom surface and the inner wall surface of the inner sub-recess 28c.
 図6に示すように、第2型92は、複数の第2支持部92bと複数の第3支持部92cとを有する。第2支持部92bは、第2型92の径方向外側を向く面から径方向外側に突出するとともに軸方向に沿って延びるリブ状である。第3支持部92cは、第2型92のキャビティC側を向く上面から上側に延びる角柱である。第3支持部92cは、第2支持部92bに対し径方向外側に位置する。第2支持部92bおよび第3支持部92cは、それぞれ周方向に沿って並ぶ。第2支持部92bは、ステータコア21の内側凹部28aに挿入され、内側凹部28aの底面および内壁面に接触する。第3支持部92cは、ステータコア21の外側凹部28bに挿入され、外側凹部28bの底面および内壁面に接触する。 As shown in FIG. 6, the second type 92 has a plurality of second support portions 92b and a plurality of third support portions 92c. The second support portion 92b has a rib-like shape that projects outward in the radial direction from the surface of the second type 92 that faces the outward direction in the radial direction and extends along the axial direction. The third support portion 92c is a prism extending upward from the upper surface of the second type 92 facing the cavity C side. The third support portion 92c is located radially outward with respect to the second support portion 92b. The second support portion 92b and the third support portion 92c are arranged along the circumferential direction, respectively. The second support portion 92b is inserted into the inner recess 28a of the stator core 21 and comes into contact with the bottom surface and the inner wall surface of the inner recess 28a. The third support portion 92c is inserted into the outer recess 28b of the stator core 21 and comes into contact with the bottom surface and the inner wall surface of the outer recess 28b.
 図7は、ステータ20を斜め上側から見た部分斜視図である。図7には、仮想線(二点鎖線)によって第1支持部91aを示す。なお、図7では、コイル29の図示を省略する。 FIG. 7 is a partial perspective view of the stator 20 as viewed from diagonally above. FIG. 7 shows the first support portion 91a by a virtual line (dashed-dotted line). Note that in FIG. 7, the coil 29 is not shown.
 図7に示すように、インシュレータ22の上側内壁部23Aは、ステータコア21の上面(上側を向く端面)を露出させる内壁切欠部23cを有する。第1支持部91aは、内壁切欠部23cを通りステータコア21の上側を向く面に接触する。 As shown in FIG. 7, the upper inner wall portion 23A of the insulator 22 has an inner wall notch portion 23c that exposes the upper surface (end face facing upward) of the stator core 21. The first support portion 91a passes through the inner wall notch portion 23c and comes into contact with the surface of the stator core 21 facing upward.
 上述したように、ステータコア21の上面には、内側副凹部28cと外側副凹部28dとが設けられる。第1支持部91aは、内側副凹部28cに挿入される。また、第1支持部91aは、内側副凹部28cの径方向内側および周方向両側を向く壁面28ca、28cb、並びに底面28ccに接触する。内側副凹部28cを構成する各面のうち第1支持部91aが接触する部分は、成形後のハウジング30から露出する。 As described above, an inner sub-recess 28c and an outer sub-recess 28d are provided on the upper surface of the stator core 21. The first support portion 91a is inserted into the inner sub-recess 28c. Further, the first support portion 91a comes into contact with the wall surfaces 28ca and 28cc and the bottom surface 28cc facing the inner side in the radial direction and both sides in the circumferential direction of the inner sub-recess 28c. The portion of each surface constituting the inner sub-recess 28c that comes into contact with the first support portion 91a is exposed from the housing 30 after molding.
 本実施形態によれば、第1支持部91aは、内側副凹部28cの径方向内側を向く壁面28caに接触することで、金型90内でステータコア21を径方向に位置決めする。また、第1支持部91aは、内側副凹部28cの周方向両側を向く一対の壁面28cbに接触することで、金型90内でステータコア21を周方向に位置決めする。さらに、第1支持部91aは、内側副凹部28cの底面28ccに接触することで、金型90内でステータコア21を軸方向に位置決めする。 According to the present embodiment, the first support portion 91a positions the stator core 21 in the mold 90 in the radial direction by contacting the wall surface 28ca facing the radial inward side of the inner sub-recess 28c. Further, the first support portion 91a positions the stator core 21 in the circumferential direction in the mold 90 by contacting the pair of wall surfaces 28cc facing both sides in the circumferential direction of the inner sub-recess 28c. Further, the first support portion 91a contacts the bottom surface 28cc of the inner sub-recess 28c to position the stator core 21 in the mold 90 in the axial direction.
 図8は、ステータ20を斜め下側から見た部分斜視図である。また、図9は、ステータコア21を斜め下側から見た部分斜視図である。図8および図9には、仮想線(二点鎖線)によって第2支持部92bおよび第3支持部92cを示す。なお、図8では、コイル29の図示を省略する。 FIG. 8 is a partial perspective view of the stator 20 as viewed from diagonally below. Further, FIG. 9 is a partial perspective view of the stator core 21 as viewed from diagonally below. 8 and 9 show the second support portion 92b and the third support portion 92c by an alternate long and short dash line (dashed line). Note that in FIG. 8, the coil 29 is not shown.
 図8に示すように、インシュレータ22の下側内壁部23Bは、ステータコア21の下面(下側を向く端面)を露出させる内壁切欠部23cを有する。第2支持部92bは、内壁切欠部23cを通りステータコア21に接触する。 As shown in FIG. 8, the lower inner wall portion 23B of the insulator 22 has an inner wall notch portion 23c that exposes the lower surface (end surface facing downward) of the stator core 21. The second support portion 92b passes through the inner wall notch portion 23c and comes into contact with the stator core 21.
 同様に、インシュレータ22の下側外壁部24Bは、ステータコア21の下面(下側を向く端面)を露出させる外壁貫通部24cを有する。外壁貫通部24cは、下側外壁部24Bを軸方向に貫通する。第3支持部92cは、外壁貫通部24cを通りステータコア21の下側を向く面に接触する。 Similarly, the lower outer wall portion 24B of the insulator 22 has an outer wall penetrating portion 24c that exposes the lower surface (end surface facing downward) of the stator core 21. The outer wall penetrating portion 24c penetrates the lower outer wall portion 24B in the axial direction. The third support portion 92c passes through the outer wall penetrating portion 24c and comes into contact with the surface facing the lower side of the stator core 21.
 図9に示すように、ステータコア21の下面には、内側凹部28aと外側凹部28bとが設けられる。第2支持部92bは、内側凹部28aに挿入される。第3支持部92cは、外側凹部28bに挿入される。 As shown in FIG. 9, an inner recess 28a and an outer recess 28b are provided on the lower surface of the stator core 21. The second support portion 92b is inserted into the inner recess 28a. The third support portion 92c is inserted into the outer recess 28b.
 第2支持部92bは、内側凹部28aの径方向内側および周方向両側を向く壁面28aa、28ab、並びに底面28acに接触する。同様に、第3支持部92cは、外側凹部28bの径方向内側および周方向両側を向く壁面28ba、28bb、並びに底面28bcに接触する。内側凹部28aおよび外側凹部28bを構成する各面のうち第2支持部92b又は第3支持部92cが接触する部分は、成形後のハウジング30から露出する。 The second support portion 92b comes into contact with the wall surfaces 28aa and 28ab and the bottom surface 28ac facing the inner side in the radial direction and both sides in the circumferential direction of the inner recess 28a. Similarly, the third support portion 92c comes into contact with the wall surfaces 28ba, 28bb and the bottom surface 28bc facing the radial inside and the circumferential sides of the outer recess 28b. Of the surfaces constituting the inner recess 28a and the outer recess 28b, the portion where the second support portion 92b or the third support portion 92c comes into contact is exposed from the housing 30 after molding.
 本実施形態によれば、第2支持部92bは、内側凹部28aの径方向内側を向く壁面28aaに接触することで、金型90内でステータコア21を径方向に位置決めする。また、第2支持部92bは、内側凹部28aの周方向両側を向く一対の壁面28abに接触することで、金型90内でステータコア21を周方向に位置決めする。さらに、第2支持部92bは、内側凹部28aの底面28acに接触することで、金型90内でステータコア21を軸方向に位置決めする。 According to the present embodiment, the second support portion 92b contacts the wall surface 28aa facing the radial inward side of the inner recess 28a to position the stator core 21 in the mold 90 in the radial direction. Further, the second support portion 92b contacts the pair of wall surfaces 28ab facing both sides in the circumferential direction of the inner recess 28a to position the stator core 21 in the circumferential direction in the mold 90. Further, the second support portion 92b contacts the bottom surface 28ac of the inner recess 28a to axially position the stator core 21 in the mold 90.
 同様に、本実施形態によれば、第3支持部92cは、外側凹部28bの径方向内側を向く壁面28baに接触することで、金型90内でステータコア21を径方向に位置決めする。また、第3支持部92cは、外側凹部28bの周方向両側を向く一対の壁面28bbに接触することで、金型90内でステータコア21を周方向に位置決めする。さらに、第3支持部92cは、外側凹部28bの底面28bcに接触することで、金型90内でステータコア21を軸方向に位置決めする。 Similarly, according to the present embodiment, the third support portion 92c positions the stator core 21 in the mold 90 in the radial direction by contacting the wall surface 28ba facing the radial inward side of the outer concave portion 28b. Further, the third support portion 92c contacts the pair of wall surfaces 28bb facing both sides in the circumferential direction of the outer concave portion 28b, thereby positioning the stator core 21 in the circumferential direction in the mold 90. Further, the third support portion 92c contacts the bottom surface 28bc of the outer concave portion 28b to axially position the stator core 21 in the mold 90.
 図4および図5に示すように、ハウジング30は、キャビティC内に充填された樹脂材料が硬化することで成形される。ハウジング30は、樹脂材料が硬化した後に、第1型91と第2型92とが軸方向に沿って互い離間することで、金型90から離脱する。これに伴い、第1支持部91aは、ハウジング30に対し上側に抜ける。また、第2支持部92bおよび第3支持部92cは、ハウジング30に対し下側に抜ける。 As shown in FIGS. 4 and 5, the housing 30 is formed by curing the resin material filled in the cavity C. After the resin material is cured, the housing 30 is separated from the mold 90 by separating the first mold 91 and the second mold 92 from each other along the axial direction. Along with this, the first support portion 91a is pulled out upward with respect to the housing 30. Further, the second support portion 92b and the third support portion 92c come out downward with respect to the housing 30.
 ハウジング30において、第1支持部91aが抜けた部分には第1開口部61が形成される。第1支持部91aが内壁切欠部23cおよび内側副凹部28cを通るため、内壁切欠部23cおよび内側副凹部28cが第1開口部61と同軸上に配置される。
 ハウジング30において、第2支持部92bが抜けた部分には第2開口部62が形成される。第2支持部92bが内壁切欠部23cおよび内側凹部28aを通るため、内壁切欠部23cおよび内側凹部28aが第2開口部62と同軸上に配置される。
 ハウジング30において、第3支持部92cが抜けた部分には第3開口部63が形成され。第3支持部92cが外壁貫通部24cおよび外側凹部28bを通るため、外壁貫通部24cおよび外側凹部28bが第3開口部63と同軸上に配置される。
In the housing 30, a first opening 61 is formed in a portion where the first support portion 91a is removed. Since the first support portion 91a passes through the inner wall notch 23c and the inner sub-recess 28c, the inner wall notch 23c and the inner sub-recess 28c are arranged coaxially with the first opening 61.
In the housing 30, a second opening 62 is formed in a portion where the second support portion 92b is removed. Since the second support portion 92b passes through the inner wall notch 23c and the inner recess 28a, the inner wall notch 23c and the inner recess 28a are arranged coaxially with the second opening 62.
In the housing 30, a third opening 63 is formed in a portion where the third support portion 92c is removed. Since the third support portion 92c passes through the outer wall penetrating portion 24c and the outer recess 28b, the outer wall penetrating portion 24c and the outer recess 28b are arranged coaxially with the third opening 63.
 本実施形態によれば、ハウジング30において第1開口部61が上側に開口し、第2開口部62および第3開口部63が下側に開口する。したがって、第1支持部91aが上側からステータ20を支持し、第2支持部92bおよび第3支持部92cが下側からステータを支持する。第2支持部92bおよび第3支持部92cと第1支持部91aとによって、ステータ20を金型90内で挟み込んで支持することができる。このため、金型90内でステータ20の位置精度を高めることができる。また、金型90内でステータ20の保持強度が高まり、成形時の樹脂の射出圧によるステータ20の位置ずれを抑制できる。 According to the present embodiment, in the housing 30, the first opening 61 opens upward, and the second opening 62 and the third opening 63 open downward. Therefore, the first support portion 91a supports the stator 20 from above, and the second support portion 92b and the third support portion 92c support the stator from below. The stator 20 can be sandwiched and supported in the mold 90 by the second support portion 92b, the third support portion 92c, and the first support portion 91a. Therefore, the position accuracy of the stator 20 in the mold 90 can be improved. In addition, the holding strength of the stator 20 in the mold 90 is increased, and the displacement of the stator 20 due to the injection pressure of the resin during molding can be suppressed.
 本実施形態によれば、ステータコア21には、内側副凹部28c、内側凹部28aおよび外側凹部が設けられ、それぞれ第1開口部61、第2開口部62および第3開口部63に繋がり底面が露出される。したがって、第1開口部61、第2開口部62および第3開口部63は、それぞれのステータ20を支持する第1支持部91a、第2支持部92bおよび第3支持部92cの痕跡である。したがって、第1支持部91a、第2支持部92bおよび第3支持部92cを内側副凹部28c、内側凹部28aおよび外側凹部の底面および壁面に接触させることができ、金型90内でのステータ20の位置決め精度を高めることができる。 According to the present embodiment, the stator core 21 is provided with an inner sub-recess 28c, an inner recess 28a, and an outer recess, which are connected to the first opening 61, the second opening 62, and the third opening 63, respectively, to expose the bottom surface. Will be done. Therefore, the first opening 61, the second opening 62, and the third opening 63 are traces of the first support portion 91a, the second support portion 92b, and the third support portion 92c that support the respective stators 20. Therefore, the first support portion 91a, the second support portion 92b, and the third support portion 92c can be brought into contact with the bottom surface and the wall surface of the inner sub-recess 28c, the inner recess 28a, and the outer recess, and the stator 20 in the mold 90. Positioning accuracy can be improved.
 本実施形態のステータコア21によれば、図4に示すように、上端部に積層される第1電磁鋼板26Aに内端貫通部27aおよび外端貫通部27bが設けられることで、凹部28Eが構成される。また、下端部に積層される第3電磁鋼板26Cに内端貫通部27aおよび外端貫通部27bが設けられることで、副凹部28Fが構成される。したがって、異なる形状を有する2種類の電磁鋼板を用意することで、容易に凹部28Eおよび副凹部28Fを設けることができる。したがって、凹部28Eおよび副凹部28Fを設けるためにステータコア21に後加工をする必要がない。このため、ステータコア21の製造工程を安価に行うことができる。加えて、後加工に伴う残留応力がステータコア21に生じることを抑制でき、ステータコア21の磁気抵抗が大きくなることを抑制できる。 According to the stator core 21 of the present embodiment, as shown in FIG. 4, the recess 28E is formed by providing the inner end penetrating portion 27a and the outer end penetrating portion 27b on the first electromagnetic steel plate 26A laminated on the upper end portion. Will be done. Further, the sub-concave 28F is formed by providing the inner end penetrating portion 27a and the outer end penetrating portion 27b on the third electromagnetic steel plate 26C laminated on the lower end portion. Therefore, by preparing two types of electrical steel sheets having different shapes, the recess 28E and the sub-concave 28F can be easily provided. Therefore, it is not necessary to post-process the stator core 21 in order to provide the recess 28E and the sub-recess 28F. Therefore, the manufacturing process of the stator core 21 can be performed at low cost. In addition, it is possible to suppress the generation of residual stress due to post-processing in the stator core 21, and it is possible to suppress an increase in the magnetic resistance of the stator core 21.
 本実施形態によれば、外側凹部28bは、ステータコア21のコアバック部21aの外縁部に位置する。コイル29によって発生するしコアバック部21aを通過する磁場の磁束密度は、外縁部において最も小さくなる。外側凹部28bがコアバック部21aの外縁部に位置することで、外側凹部28bがコアバック部21aの磁気抵抗を大きくすることを抑制できる。 According to the present embodiment, the outer recess 28b is located at the outer edge of the core back portion 21a of the stator core 21. The magnetic flux density of the magnetic field generated by the coil 29 and passing through the core back portion 21a is the smallest at the outer edge portion. By locating the outer recess 28b at the outer edge of the core back portion 21a, it is possible to prevent the outer recess 28b from increasing the magnetic resistance of the core back portion 21a.
 本実施形態によれば、外側凹部28bは、分割コアバック部21dの周方向中央部に位置する。分割コアバック部21dを通過する磁場の一部は、ティース部21bに向かって湾曲する。このため、分割コアバック部21dを通過する磁場の磁束密度は、ティース部21bの径方向外側である分割コアバック部21dの周方向中央部において最も小さくなる。外側凹部28bが、分割コアバック部21dの周方向中央部に位置することで、外側凹部28bがコアバック部21aの磁気抵抗を大きくすることを抑制できる。
 なお、外側副凹部28dについても、外側凹部28bと同様の位置に配置されることで、コアバック部21aが磁気抵抗を大きくすることを抑制する。
According to this embodiment, the outer recess 28b is located at the center of the split core back portion 21d in the circumferential direction. A part of the magnetic field passing through the split core back portion 21d is curved toward the teeth portion 21b. Therefore, the magnetic flux density of the magnetic field passing through the split core back portion 21d is the smallest in the circumferential central portion of the split core back portion 21d, which is the radial outside of the teeth portion 21b. Since the outer recess 28b is located at the center of the split core back portion 21d in the circumferential direction, it is possible to prevent the outer recess 28b from increasing the magnetic resistance of the core back portion 21a.
The outer sub-recess 28d is also arranged at the same position as the outer recess 28b to prevent the core back portion 21a from increasing the magnetic resistance.
 本実施形態によれば、内側凹部28aは、ステータコア21のティース部21bの先端のアンブレラ部21cに位置する。また、内側凹部28aは、アンブレラ部21cの周方向中央部に位置する。ティース部21bを通過する磁場は、アンブレラ部21cの内縁においてステータコア21の外部に放出される。内側凹部28aがアンブレラ部21cの周方向中央部に位置することで、ティース部21bを通過する磁場をアンブレラ部21cから周方向にバランスよく放出され、モータ1の回転効率の低下を抑制できる。
 なお、内側副凹部28cについても、内側凹部28aと同様の位置に配置されることで、ティース部21bを通過する磁場をアンブレラ部21cから周方向にバランスよく放出させることができる。
According to the present embodiment, the inner recess 28a is located at the umbrella portion 21c at the tip of the teeth portion 21b of the stator core 21. Further, the inner recess 28a is located at the center of the umbrella portion 21c in the circumferential direction. The magnetic field passing through the teeth portion 21b is emitted to the outside of the stator core 21 at the inner edge of the umbrella portion 21c. Since the inner recess 28a is located at the center of the umbrella portion 21c in the circumferential direction, the magnetic field passing through the teeth portion 21b is emitted from the umbrella portion 21c in a well-balanced manner in the circumferential direction, and a decrease in the rotational efficiency of the motor 1 can be suppressed.
By arranging the inner sub-recess 28c at the same position as the inner recess 28a, the magnetic field passing through the teeth portion 21b can be discharged from the umbrella portion 21c in a well-balanced manner in the circumferential direction.
 図3に、第1開口部61を破線で示す。図3に示すように、第1開口部61は、軸方向から見て、第2開口部62に重なる。このため、金型内で第1支持部91aと第2支持部92bとが軸方向から見て同じ位置でステータ20を支持することができ、ステータ20を金型90内で安定させることができる。 FIG. 3 shows the first opening 61 with a broken line. As shown in FIG. 3, the first opening 61 overlaps the second opening 62 when viewed from the axial direction. Therefore, the first support portion 91a and the second support portion 92b can support the stator 20 at the same position when viewed from the axial direction in the mold, and the stator 20 can be stabilized in the mold 90. ..
 本実施形態によれば、複数の第1開口部61は、周方向に沿って等間隔に並ぶ。すなわち、複数の第1支持部91aは、周方向に沿って等間隔に配置されてステータ20を上側から支持する。このため、第1支持部91aは、金型90内でステータ20を安定して支持できる。同様に、複数の第2開口部62は、周方向に沿って等間隔に並ぶため、複数の第2支持部92bは、周方向に沿って等間隔に配置されてステータ20を下側から支持する。このため、第2支持部92bは、金型90内でステータ20を安定して支持できる。 According to the present embodiment, the plurality of first openings 61 are arranged at equal intervals along the circumferential direction. That is, the plurality of first support portions 91a are arranged at equal intervals along the circumferential direction to support the stator 20 from above. Therefore, the first support portion 91a can stably support the stator 20 in the mold 90. Similarly, since the plurality of second openings 62 are arranged at equal intervals along the circumferential direction, the plurality of second support portions 92b are arranged at equal intervals along the circumferential direction to support the stator 20 from below. To do. Therefore, the second support portion 92b can stably support the stator 20 in the mold 90.
 本実施形態によれば、インシュレータ22には、第1支持部91aが通る内壁切欠部23cと第2支持部92bが通る内壁切欠部23cと第3支持部92cが通る外壁貫通部24cとが設けられる。第1支持部91aは、内壁切欠部23cの内側を通りステータコア21を直接支持する。第2支持部92bは、内壁切欠部23cの内側を通りステータコア21を直接支持する。第3支持部92cは、第2支持部92bの外側で、外壁貫通部24cの内側を通りステータコア21を直接支持する。インシュレータ22は一般的に樹脂材料から構成される。これに対し、ステータコア21は、金属材料から構成されるためインシュレータ22より剛性が高い。第1支持部91a、第2支持部92bおよび第3支持部92cがステータコア21を支持することで、金型90内でのステータ20の保持を安定させることができ、ハウジング30に対するステータ20の位置精度を高めることができる。 According to the present embodiment, the insulator 22 is provided with an inner wall notch 23c through which the first support 91a passes, an inner wall notch 23c through which the second support 92b passes, and an outer wall penetration 24c through which the third support 92c passes. Be done. The first support portion 91a passes through the inside of the inner wall notch portion 23c and directly supports the stator core 21. The second support portion 92b passes through the inside of the inner wall notch portion 23c and directly supports the stator core 21. The third support portion 92c passes through the inside of the outer wall penetrating portion 24c on the outside of the second support portion 92b and directly supports the stator core 21. The insulator 22 is generally made of a resin material. On the other hand, since the stator core 21 is made of a metal material, it has higher rigidity than the insulator 22. By supporting the stator core 21 by the first support portion 91a, the second support portion 92b, and the third support portion 92c, the holding of the stator 20 in the mold 90 can be stabilized, and the position of the stator 20 with respect to the housing 30 can be stabilized. The accuracy can be improved.
 図2に示すように、リブ3は、本体部31の上面から上側に突出する。リブ3は、ステータ20に対し上側に位置する。リブ3は、周方向に沿って延びる複数の環状リブ3Aと、径方向に沿って延び環状リブ3Aに繋がる複数の径方向リブ35と、を有する。ハウジング30は、互いに繋がる環状リブ3Aと径方向リブ35とを有することで、径方向および周方向の強度がバランスよく高められる。 As shown in FIG. 2, the rib 3 projects upward from the upper surface of the main body 31. The rib 3 is located above the stator 20. The rib 3 has a plurality of annular ribs 3A extending along the circumferential direction and a plurality of radial ribs 35 extending along the radial direction and connecting to the annular rib 3A. Since the housing 30 has an annular rib 3A and a radial rib 35 that are connected to each other, the strength in the radial direction and the circumferential direction is enhanced in a well-balanced manner.
 複数の環状リブ3Aは、それぞれ中心軸Jを中心とする円筒状である。複数の環状リブ3Aは、直径が最も小さい内側環状リブ32と、径方向において内側環状リブ32と外側環状リブ34との間に位置する中間環状リブ33と、直径が最も大きい外側環状リブ34と、を有する。内側環状リブ32、中間環状リブ33および外側環状リブ34は、中心軸Jを中心とする同心円状に設けられる。 Each of the plurality of annular ribs 3A has a cylindrical shape centered on the central axis J. The plurality of annular ribs 3A include an inner annular rib 32 having the smallest diameter, an intermediate annular rib 33 located between the inner annular rib 32 and the outer annular rib 34 in the radial direction, and an outer annular rib 34 having the largest diameter. , Have. The inner annular rib 32, the intermediate annular rib 33, and the outer annular rib 34 are provided concentrically with the central axis J as the center.
 外側環状リブ34は、内側環状リブ32および中間環状リブ33の径方向外側に位置する。中間環状リブ33は、内側環状リブ32の径方向外側に位置する。外側環状リブ34の外周面は、本体部31の外周面と連続する。外側環状リブ34の外周面には、フランジ部39が設けられる。 The outer annular rib 34 is located radially outside the inner annular rib 32 and the intermediate annular rib 33. The intermediate annular rib 33 is located radially outward of the inner annular rib 32. The outer peripheral surface of the outer annular rib 34 is continuous with the outer peripheral surface of the main body 31. A flange portion 39 is provided on the outer peripheral surface of the outer annular rib 34.
 複数の径方向リブ35は、中心軸Jに対し放射状に延びる。複数の径方向リブ35は、周方向に沿って等間隔に配置される。本実施形態のハウジング30には、6つの径方向リブ35が設けられる。複数の径方向リブ35は、それぞれ内側環状リブ32と中間環状リブ33と外側環状リブ34とを繋ぐ。また、複数の径方向リブ35は、中間環状リブ33と交差して繋がる。複数の径方向リブ35が、同心円状の複数の環状リブ3Aを互いに繋ぐことで、ハウジング30の周方向および径方向の強度を高めることができる。 The plurality of radial ribs 35 extend radially with respect to the central axis J. The plurality of radial ribs 35 are arranged at equal intervals along the circumferential direction. The housing 30 of the present embodiment is provided with six radial ribs 35. The plurality of radial ribs 35 connect the inner annular rib 32, the intermediate annular rib 33, and the outer annular rib 34, respectively. Further, the plurality of radial ribs 35 intersect and connect with the intermediate annular rib 33. By connecting the plurality of concentric annular ribs 3A to each other by the plurality of radial ribs 35, the strength in the circumferential direction and the radial direction of the housing 30 can be increased.
 図1に示すように、内側環状リブ32は、外部装置9に取り付く環状部32aを有する。環状部32aは、内側環状リブ32の上端部に位置する。環状部32aは、内側環状リブ32において、他のリブ(中間環状リブ33、外側環状リブ34および径方向リブ35)の上端面より上側に位置する部位である。なお、軸方向において、他のリブ(すなわち、中間環状リブ33、外側環状リブ34および径方向リブ35)の上端面の位置は、互いに一致する。環状部32aは、ハウジング30の上側を向く面から上側に延びる円筒状である。 As shown in FIG. 1, the inner annular rib 32 has an annular portion 32a attached to the external device 9. The annular portion 32a is located at the upper end of the inner annular rib 32. The annular portion 32a is a portion of the inner annular rib 32 located above the upper end surface of the other ribs (intermediate annular rib 33, outer annular rib 34, and radial rib 35). In the axial direction, the positions of the upper end surfaces of the other ribs (that is, the intermediate annular rib 33, the outer annular rib 34, and the radial rib 35) coincide with each other. The annular portion 32a has a cylindrical shape extending upward from the upward facing surface of the housing 30.
 環状部32aは、第1開口部61の径方向外側に位置する。また、環状部32aは、ハウジング30の外周面より径方向内側に位置する。環状部32aは、外部装置9に取り付きモータ1のシール機能の一部を担う。 The annular portion 32a is located on the radial outside of the first opening 61. The annular portion 32a is located radially inside the outer peripheral surface of the housing 30. The annular portion 32a is attached to the external device 9 and plays a part of the sealing function of the motor 1.
 外部装置9は、中心軸Jを中心とする円筒状の保持筒部9aを有する。保持筒部9aは、環状部32aを径方向外側から囲む。保持筒部9aの内径は、環状部32aの外径より若干大きい。保持筒部9aの先端面は、径方向リブ35の上端面に接触する。 The external device 9 has a cylindrical holding cylinder portion 9a centered on the central axis J. The holding cylinder portion 9a surrounds the annular portion 32a from the outside in the radial direction. The inner diameter of the holding cylinder portion 9a is slightly larger than the outer diameter of the annular portion 32a. The tip surface of the holding cylinder portion 9a comes into contact with the upper end surface of the radial rib 35.
 保持筒部9aの内周面には、周方向に沿って延びる凹溝9bが設けられる。凹溝9bには、シール部材9cが収容される。シール部材9cは、ゴムなどの弾性材料から構成される。シール部材9cは、周方向に沿って延びる。本実施形態においてシール部材9cは、Oリングである。シール部材9cは、ガスケットとして機能するものであれば、断面形状が円形のものに限定されない。 A concave groove 9b extending along the circumferential direction is provided on the inner peripheral surface of the holding cylinder portion 9a. The sealing member 9c is housed in the groove 9b. The sealing member 9c is made of an elastic material such as rubber. The seal member 9c extends along the circumferential direction. In this embodiment, the seal member 9c is an O-ring. The seal member 9c is not limited to a member having a circular cross-sectional shape as long as it functions as a gasket.
 シール部材9cは、環状部32aの径方向外側を向く外周面32dと、凹溝9bの径方向外側を向く底面との間に挟み込まれる。これにより、シール部材9cが圧縮され、保持筒部9aの内側に水分が浸入することを抑制する。 The seal member 9c is sandwiched between the outer peripheral surface 32d of the annular portion 32a facing outward in the radial direction and the bottom surface of the concave groove 9b facing outward in the radial direction. As a result, the seal member 9c is compressed, and moisture is prevented from entering the inside of the holding cylinder portion 9a.
 本実施形態によれば、環状部32aの外周面32dには、シール部材9cが接触する。また、環状部32aは、複数の第1開口部61を径方向外側から囲む。シール部材9cにより環状部32aの内側への水分の浸入が抑制されるため、環状部32aの内側に配置された第1開口部61に水分が達することを抑制できる。本実施形態のモータ1は、ステータ20の内部への液体の浸入を抑制しやすいという効果を有する。 According to this embodiment, the seal member 9c comes into contact with the outer peripheral surface 32d of the annular portion 32a. Further, the annular portion 32a surrounds the plurality of first openings 61 from the outside in the radial direction. Since the sealing member 9c suppresses the infiltration of water into the annular portion 32a, it is possible to prevent the moisture from reaching the first opening 61 arranged inside the annular portion 32a. The motor 1 of the present embodiment has an effect that it is easy to suppress the infiltration of liquid into the inside of the stator 20.
 なお、本実施形態では、環状部32aは、外周面32dにおいてシール部材9cと接触してシール構造を構成する。しかしながら、環状部32aは、シール機能の一部を担うものであればよく、例えば環状部32aの内周面においてシール部材と接触してもよい。 In the present embodiment, the annular portion 32a is in contact with the seal member 9c on the outer peripheral surface 32d to form a seal structure. However, the annular portion 32a may be in contact with the sealing member on the inner peripheral surface of the annular portion 32a, for example, as long as it bears a part of the sealing function.
 本実施形態によれば、シャフト11の上端部は、環状部32aの内側で外部装置9に接続され外部装置9に動力を伝達する。すなわち、本実施形態のモータ1は、外部装置9への出力側からステータ20の内部への液体の浸入を抑制しやすいという効果を有する。 According to the present embodiment, the upper end portion of the shaft 11 is connected to the external device 9 inside the annular portion 32a and transmits power to the external device 9. That is, the motor 1 of the present embodiment has an effect that it is easy to suppress the infiltration of liquid into the inside of the stator 20 from the output side to the external device 9.
 図1に示すように、環状部32aの上端面(軸方向他方側の端面)32bは、第1開口部61の開口に対し上側(軸方向他方側)に位置する。また、本実施形態によれば、環状部32aは、外周面32dにおいてシール部材9cと接触する。このため、シール部分から第1開口部61の開口までの経路を複雑化することができる。結果的に、想定外の衝撃などに伴い少量の水分がシール部を通過した場合であっても、水分が第1開口部61に達することを抑制できる。このようにモータ1は、ステータ20の内部への液体の浸入に関して、高い信頼性を有する。 As shown in FIG. 1, the upper end surface (end surface on the other side in the axial direction) 32b of the annular portion 32a is located on the upper side (the other side in the axial direction) with respect to the opening of the first opening 61. Further, according to the present embodiment, the annular portion 32a comes into contact with the seal member 9c on the outer peripheral surface 32d. Therefore, the route from the seal portion to the opening of the first opening 61 can be complicated. As a result, even when a small amount of water passes through the seal portion due to an unexpected impact or the like, it is possible to prevent the water content from reaching the first opening 61. As described above, the motor 1 has high reliability with respect to the infiltration of the liquid into the stator 20.
 環状部32aの上端面32bの外縁には、面取りされた傾斜面32cが設けられる。すなわち、環状部32aにおいて、上端面32bと外周面32dとの境界部は、下側(軸方向一方側)に向かうに従い径方向外側に向かって傾斜する傾斜面32cである。このため、保持筒部9aの内側に環状部32aを挿入する際に保持筒部9aの内周面に保持されたシール部材9cが環状部32aの外縁に引っかかることを抑制できる。結果的に、モータ1を外部装置9に取りつける際に、シール部材9cに捻じれや損傷が生じることを抑制できる。 A chamfered inclined surface 32c is provided on the outer edge of the upper end surface 32b of the annular portion 32a. That is, in the annular portion 32a, the boundary portion between the upper end surface 32b and the outer peripheral surface 32d is an inclined surface 32c that inclines outward in the radial direction toward the lower side (one side in the axial direction). Therefore, when the annular portion 32a is inserted inside the holding cylinder portion 9a, it is possible to prevent the seal member 9c held on the inner peripheral surface of the holding cylinder portion 9a from being caught on the outer edge of the annular portion 32a. As a result, when the motor 1 is attached to the external device 9, it is possible to prevent the seal member 9c from being twisted or damaged.
 図2に示すように、ハウジング30の外表面には、ゲート痕Gが設けられる。本実施形態において、ゲート痕Gは、ハウジング30の上端面(軸方向他方側の面)に設けられる。図5に示すように、ゲート痕Gは、ハウジング30を成形する金型90のキャビティCに内に樹脂材料を充填する際に形成されたゲート99の痕跡である。ゲート痕Gは、ゲート99内で硬化した樹脂を切断した箇所である。 As shown in FIG. 2, a gate mark G is provided on the outer surface of the housing 30. In the present embodiment, the gate mark G is provided on the upper end surface (the surface on the other side in the axial direction) of the housing 30. As shown in FIG. 5, the gate mark G is a mark of the gate 99 formed when the cavity C of the mold 90 for molding the housing 30 is filled with the resin material. The gate mark G is a portion where the cured resin is cut in the gate 99.
 本実施形態のハウジング30によれば、上側の面にゲート痕Gが設けられ、下側の面に第2開口部62および第3開口部63が設けられる。図5および図6に示すように、金型90のゲート99と、第2支持部92bおよび第3支持部92cとは、互いに対向する面に配置される。このため、ハウジング30の成形時にゲート99からキャビティC内に流入する樹脂の射出圧を、第2支持部92bおよび第3支持部92cによって受けることができる。結果的に、樹脂の射出圧によってステータ20が金型90内での位置ずれすることを抑制できる。 According to the housing 30 of the present embodiment, the gate mark G is provided on the upper surface, and the second opening 62 and the third opening 63 are provided on the lower surface. As shown in FIGS. 5 and 6, the gate 99 of the mold 90 and the second support portion 92b and the third support portion 92c are arranged on surfaces facing each other. Therefore, the injection pressure of the resin flowing from the gate 99 into the cavity C at the time of molding the housing 30 can be received by the second support portion 92b and the third support portion 92c. As a result, it is possible to prevent the stator 20 from being displaced in the mold 90 due to the injection pressure of the resin.
 図3に、ゲート痕Gを破線で示す。図3に示すように、ゲート痕Gは、軸方向から見て第2開口部62と第3開口部63との径方向の間に位置する。すなわち、図5および図6に示すように、ゲート99が、軸方向から見て第2支持部92bと第3支持部92cとの径方向の間に位置する。したがって、ゲート99から金型90内に流入する樹脂の射出圧を第2支持部92bと第3支持部92cとでバランスよく受けることができる。結果的に、樹脂の射出圧によってステータ20が金型90内での位置ずれすることを効果的に抑制できる。 FIG. 3 shows the gate mark G with a broken line. As shown in FIG. 3, the gate mark G is located between the second opening 62 and the third opening 63 in the radial direction when viewed from the axial direction. That is, as shown in FIGS. 5 and 6, the gate 99 is located between the second support portion 92b and the third support portion 92c in the radial direction when viewed from the axial direction. Therefore, the injection pressure of the resin flowing from the gate 99 into the mold 90 can be received by the second support portion 92b and the third support portion 92c in a well-balanced manner. As a result, it is possible to effectively prevent the stator 20 from being displaced in the mold 90 due to the injection pressure of the resin.
 図3に示すように、複数のゲート痕Gのうち一部のゲート痕Gの周方向の位置が、第2開口部62および第3開口部63の周方向位置に重なる。すなわち、径方向において、第2開口部62、ゲート痕Gおよび第3開口部63が、並んで配置される。このように配置することで、ゲート99から金型90内に流入する樹脂の射出圧を第2支持部92bと第3支持部92cとで、より一層バランスよく受けることができる。
 なお、本実施形態では、一部のゲート痕Gの周方向の位置が、第2開口部62および第3開口部63の周方向位置に重なる場合について例示した。しかしながら、全てのゲート痕G、第2開口部62および第3開口部63の位置関係について上述の関係を満たすことがより好ましい。
As shown in FIG. 3, the circumferential positions of some of the gate marks G among the plurality of gate marks G overlap with the circumferential positions of the second opening 62 and the third opening 63. That is, in the radial direction, the second opening 62, the gate mark G, and the third opening 63 are arranged side by side. By arranging in this way, the injection pressure of the resin flowing from the gate 99 into the mold 90 can be received by the second support portion 92b and the third support portion 92c in a more balanced manner.
In this embodiment, the case where the circumferential position of a part of the gate marks G overlaps with the circumferential position of the second opening 62 and the third opening 63 has been illustrated. However, it is more preferable to satisfy the above-mentioned relationship with respect to the positional relationship of all the gate marks G, the second opening 62, and the third opening 63.
 図2に示すように、ゲート痕Gは、ハウジング30に複数(本実施形態では6個)設けられる。複数のゲート痕Gの中心軸Jからの距離は、互いに一致する。すなわち、複数のゲート痕Gの径方向の位置は、互いに一致する。複数のゲート痕Gは、周方向に沿って等間隔に並ぶ。このため、ハウジング30の成形工程において、周方向に沿って等間隔に並ぶゲート99から金型90内にバランスよく樹脂材料を注入することができ、ハウジング30の成形精度を高めることができる。 As shown in FIG. 2, a plurality of gate marks G (6 in this embodiment) are provided in the housing 30. The distances of the plurality of gate marks G from the central axis J coincide with each other. That is, the radial positions of the plurality of gate marks G coincide with each other. The plurality of gate marks G are arranged at equal intervals along the circumferential direction. Therefore, in the molding process of the housing 30, the resin material can be injected into the mold 90 from the gates 99 arranged at equal intervals along the circumferential direction in a well-balanced manner, and the molding accuracy of the housing 30 can be improved.
 ゲート痕Gは、リブに位置する。より具体的には、ゲート痕Gは、径方向リブ35と中間環状リブ33との交差する部分に位置する。すなわち、ゲート痕Gは、径方向および周方向に延びるリブの交差する部分に位置する。したがって、ゲート99から注入された樹脂を中間環状リブ33および径方向リブ35に効率的に行き渡らせることができる。さらに、ゲート99から注入された樹脂を、径方向リブ35を介して内側環状リブ32および外側環状リブ34に効率的に行き渡らせることができる。 The gate mark G is located on the rib. More specifically, the gate mark G is located at the intersection of the radial rib 35 and the intermediate annular rib 33. That is, the gate mark G is located at the intersection of the ribs extending in the radial direction and the circumferential direction. Therefore, the resin injected from the gate 99 can be efficiently distributed to the intermediate annular rib 33 and the radial rib 35. Further, the resin injected from the gate 99 can be efficiently distributed to the inner annular rib 32 and the outer annular rib 34 via the radial rib 35.
 図1に示すように、ホルダ保持部38は、本体部31の上側に位置し、本体部31の内端から径方向内側に延びる。また、ホルダ保持部38は、内側環状リブ32の径方向内側に位置する。ホルダ保持部38には、上側ベアリングホルダ40のホルダフランジ部43が埋め込まれる。これにより、ホルダ保持部38は、上側ベアリングホルダ40を保持する。 As shown in FIG. 1, the holder holding portion 38 is located above the main body portion 31 and extends radially inward from the inner end of the main body portion 31. Further, the holder holding portion 38 is located inside the inner annular rib 32 in the radial direction. The holder flange portion 43 of the upper bearing holder 40 is embedded in the holder holding portion 38. As a result, the holder holding portion 38 holds the upper bearing holder 40.
 ホルダ保持部38は、本体部31に設けられた第1開口部61の径方向内側に位置する。したがって、ホルダ保持部38に埋め込まれるホルダフランジ部43は、第1開口部61の径方向内側に位置する。すなわち、第1開口部61は、上側ベアリングホルダ40の径方向内側に位置する。 The holder holding portion 38 is located inside the first opening 61 provided in the main body portion 31 in the radial direction. Therefore, the holder flange portion 43 embedded in the holder holding portion 38 is located inside the first opening 61 in the radial direction. That is, the first opening 61 is located inside the upper bearing holder 40 in the radial direction.
 フランジ部39は、外側環状リブ34の外周面および本体部31の外周面に設けられる。フランジ部39の上端面は、外側環状リブ34の上端面と連続する。複数のフランジ部39の内部には、それぞれナット部材50が埋め込まれる。これにより、ハウジング30は、ナット部材50を保持する。 The flange portion 39 is provided on the outer peripheral surface of the outer annular rib 34 and the outer peripheral surface of the main body portion 31. The upper end surface of the flange portion 39 is continuous with the upper end surface of the outer annular rib 34. A nut member 50 is embedded in each of the plurality of flange portions 39. As a result, the housing 30 holds the nut member 50.
 図2に示すように、本実施形態のハウジング30には、3個のフランジ部39が設けられる。3個のフランジ部39は、周方向に沿って等間隔に配置される。ナット部材50は、3個のフランジ部39にそれぞれ1個ずつ埋め込まれる。 As shown in FIG. 2, the housing 30 of the present embodiment is provided with three flange portions 39. The three flange portions 39 are arranged at equal intervals along the circumferential direction. One nut member 50 is embedded in each of the three flange portions 39.
 図1に示すように、ナット部材50は、軸方向に沿って延びる円柱状である。ナット部材50の上端面は、フランジ部39の上端面と同一平面上に配置される。ナット部材50の下端面は、フランジ部39の下端面と同一平面上に配置される。 As shown in FIG. 1, the nut member 50 is a columnar shape extending along the axial direction. The upper end surface of the nut member 50 is arranged on the same plane as the upper end surface of the flange portion 39. The lower end surface of the nut member 50 is arranged on the same plane as the lower end surface of the flange portion 39.
 ナット部材50は、ナット部材50の上端面に開口し下側に延びるねじ穴51と、ナット部材50の下端面に開口し上側に延びる位置決め穴52とを有する。本実施形態において、ねじ穴51と位置決め穴52とは同軸上に配置される。 The nut member 50 has a screw hole 51 that opens in the upper end surface of the nut member 50 and extends downward, and a positioning hole 52 that opens in the lower end surface of the nut member 50 and extends upward. In the present embodiment, the screw hole 51 and the positioning hole 52 are arranged coaxially.
 ねじ穴51には、モータ1を外部装置9に固定する固定ボルト9eが締結される。位置決め穴52には、ハウジング30の成形工程において、金型90に設けられた位置決めピン(図示略)が挿入される。すなわち、位置決め穴52は、金型90内でのナット部材50の位置決めに利用される。 A fixing bolt 9e for fixing the motor 1 to the external device 9 is fastened to the screw hole 51. A positioning pin (not shown) provided in the mold 90 is inserted into the positioning hole 52 in the molding process of the housing 30. That is, the positioning hole 52 is used for positioning the nut member 50 in the mold 90.
 バスバーホルダ部36は、本体部31の下面に位置する。図3に示すように、本実施形態のハウジング30は、2つのバスバーホルダ部36が設けられる。それぞれのバスバーホルダ部36の内部には、3つのバスバー80が埋め込まれる。バスバー80は、バスバーホルダ部36の下面から下側に突出する。 The bus bar holder portion 36 is located on the lower surface of the main body portion 31. As shown in FIG. 3, the housing 30 of the present embodiment is provided with two bus bar holder portions 36. Three bus bars 80 are embedded inside each bus bar holder portion 36. The bus bar 80 projects downward from the lower surface of the bus bar holder portion 36.
 下筒部37は、中心軸Jを中心とする円筒状である。下筒部37の外周面は、本体部31の外周面と連続する。下筒部37は、ハウジング30から突出する複数のバスバー80の下端部を径方向外側から囲む。また、下筒部37は、複数の第2開口部62および複数の第3開口部63を径方向外側から囲む。 The lower cylinder portion 37 has a cylindrical shape centered on the central axis J. The outer peripheral surface of the lower cylinder portion 37 is continuous with the outer peripheral surface of the main body portion 31. The lower cylinder portion 37 surrounds the lower end portions of the plurality of bus bars 80 protruding from the housing 30 from the outside in the radial direction. Further, the lower cylinder portion 37 surrounds the plurality of second openings 62 and the plurality of third openings 63 from the outside in the radial direction.
 下筒部37には、モータ1を制御する制御装置(図示略)が取り付けられる。また、バスバー80は、制御装置に設けられたソケット部(図示略)に接続される。下筒部37の内周面と制御装置とは、図示略のシール構造によりシールされている。本実施形態によれば、シール機能を担う下筒部37が複数の第2開口部62および複数の第3開口部63を径方向外側から囲む。このため、第2開口部62および第3開口部63に水分が達することを抑制することができる。 A control device (not shown) for controlling the motor 1 is attached to the lower cylinder portion 37. Further, the bus bar 80 is connected to a socket portion (not shown) provided in the control device. The inner peripheral surface of the lower cylinder portion 37 and the control device are sealed by a seal structure (not shown). According to the present embodiment, the lower cylinder portion 37 having a sealing function surrounds the plurality of second openings 62 and the plurality of third openings 63 from the outside in the radial direction. Therefore, it is possible to prevent water from reaching the second opening 62 and the third opening 63.
 <変形例>
 図10は、変形例の分割コア121Aの斜視図である。本変形例の分割コア121Aは、上述の実施形態と比較して、凹部の構成が異なる。なお、上述の実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
<Modification example>
FIG. 10 is a perspective view of the split core 121A of the modified example. The split core 121A of this modified example has a different recess configuration as compared with the above-described embodiment. The components having the same aspects as those of the above-described embodiment are designated by the same reference numerals, and the description thereof will be omitted.
 分割コア121Aは、複数の電磁鋼板126が軸方向に沿って積層されて構成されている。すなわち、ステータコア21は、複数の電磁鋼板126が軸方向に沿って積層されて構成されている。 The split core 121A is configured by laminating a plurality of electromagnetic steel plates 126 along the axial direction. That is, the stator core 21 is configured by laminating a plurality of electromagnetic steel plates 126 along the axial direction.
 分割コア121Aの上面には、内側凹部(凹部)102aおよび外側凹部(凹部)102bが設けられる。内側凹部102aおよび外側凹部102bは、下側に凹む。内側凹部102aは、上述の実施形態における内側凹部28aに対応する。外側凹部102bは、上述の実施形態における外側凹部28bに対応する。内側凹部102aおよび外側凹部102bは、それぞれハウジング30の開口部によって底面が露出される。内側凹部102aおよび外側凹部102bは、ハウジング30の成形時に、第2支持部92bおよび第3支持部92cが挿入される。これにより、第2支持部92bおよび第3支持部92cが金型90内でステータコア21を位置決めする。本変形例によれば、穴状の内側凹部102aおよび外側凹部102bを用いて、金型90内でステータコア21を位置決めできる。 An inner recess (recess) 102a and an outer recess (recess) 102b are provided on the upper surface of the split core 121A. The inner recess 102a and the outer recess 102b are recessed downward. The inner recess 102a corresponds to the inner recess 28a in the above embodiment. The outer recess 102b corresponds to the outer recess 28b in the above embodiment. The bottom surface of each of the inner recess 102a and the outer recess 102b is exposed by the opening of the housing 30. The second support portion 92b and the third support portion 92c are inserted into the inner recess 102a and the outer recess 102b when the housing 30 is molded. As a result, the second support portion 92b and the third support portion 92c position the stator core 21 in the mold 90. According to this modification, the stator core 21 can be positioned in the mold 90 by using the hole-shaped inner recess 102a and the outer recess 102b.
 以上に、本発明の一実施形態およびその変形例を説明したが、実施形態および変形例における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。 Although one embodiment of the present invention and a modification thereof have been described above, each configuration and a combination thereof in the embodiment and the modified example are examples, and the configuration is added within a range not deviating from the gist of the present invention. , Omission, replacement and other changes are possible. Moreover, the present invention is not limited to the embodiments.
 例えば、上述した実施形態およびその変形例のモータユニットの用途は、特に限定されない。上述した実施形態およびその変形例のモータユニットは、例えば、電動ポンプ、および電動パワーステアリング等に搭載される。 For example, the use of the motor unit of the above-described embodiment and its modified example is not particularly limited. The motor unit of the above-described embodiment and its modification is mounted on, for example, an electric pump, an electric power steering, and the like.
 1…モータ、10…ロータ、11…シャフト、20…ステータ、21…ステータコア、21a…コアバック部、21b…ティース部、21c…アンブレラ部、21d…分割コアバック部、21A,121A…分割コア、26a,26A…第1電磁鋼板、26A,126…電磁鋼板、26B…第2電磁鋼板、27a…貫通部、28a…内側凹部(凹部)、28ac,28bc,28cc…底面、28b…外側凹部(凹部)、28c…副凹部、29…コイル、30…ハウジング、61,62…開口部、61…第1開口部、62…第2開口部、99…ゲート、102a…内側凹部(凹部),102b…外側凹部(凹部)、G…ゲート痕、J…中心軸 1 ... motor, 10 ... rotor, 11 ... shaft, 20 ... stator, 21 ... stator core, 21a ... core back part, 21b ... teeth part, 21c ... umbrella part, 21d ... split core back part, 21A, 121A ... split core, 26a, 26A ... 1st electrical steel sheet, 26A, 126 ... Electrical steel sheet, 26B ... 2nd electrical steel sheet, 27a ... Penetration, 28a ... Inner recess (recess), 28ac, 28bc, 28cc ... Bottom, 28b ... Outer recess (recess ), 28c ... Sub-concave, 29 ... Coil, 30 ... Housing, 61, 62 ... Opening, 61 ... First opening, 62 ... Second opening, 99 ... Gate, 102a ... Inner recess (recess), 102b ... Outer recess (recess), G ... Gate mark, J ... Central axis

Claims (9)

  1.  中心軸に沿って延びるシャフトを有し前記中心軸周りに回転するロータと、
     前記ロータと径方向に対向するステータと、
     樹脂からなり前記ステータが埋め込まれるハウジングと、を備え、
     前記ステータは、複数の電磁鋼板が積層されたステータコアに設けられ軸方向一方側に開口する凹部を有し、
     前記ハウジングは、軸方向一方側に開口し前記凹部の底面を露出させる開口部を有する、
    モータ。
    A rotor having a shaft extending along a central axis and rotating around the central axis,
    A stator facing the rotor in the radial direction and
    A housing made of resin and into which the stator is embedded is provided.
    The stator has a recess provided in a stator core in which a plurality of electromagnetic steel plates are laminated and opens on one side in the axial direction.
    The housing has an opening that opens on one side in the axial direction to expose the bottom surface of the recess.
    motor.
  2.  前記ステータコアは、
     第1電磁鋼板と、前記第1電磁鋼板より軸方向他方側に積層される第2電磁鋼板と、を有し、
     前記第1電磁鋼板は、軸方向に貫通する貫通部を有し、
     前記凹部は、前記第1電磁鋼板の前記貫通部と前記第2電磁鋼板の軸方向一方側を向く面とで囲まれる部位である、請求項1に記載のモータ。
    The stator core
    It has a first electrical steel sheet and a second electrical steel sheet laminated on the other side in the axial direction from the first electrical steel sheet.
    The first electrical steel sheet has a penetrating portion that penetrates in the axial direction.
    The motor according to claim 1, wherein the recess is a portion surrounded by the penetrating portion of the first electrical steel sheet and a surface of the second electrical steel sheet facing one side in the axial direction.
  3.  前記凹部は、前記ステータコアのコアバック部の外縁部に位置する外側凹部を有する、請求項1又は2に記載のモータ。 The motor according to claim 1 or 2, wherein the recess has an outer recess located at the outer edge of the core back portion of the stator core.
  4.  前記ステータコアは、周方向に分割され、コイルが装着されるティース部と前記ティース部の径方向外側に連続する分割コアバック部とを有する複数の分割コアの集合体であって、
      前記外側凹部は、前記分割コアバック部の周方向中央部に位置する、請求項3に記載のモータ。
    The stator core is an aggregate of a plurality of divided cores which are divided in the circumferential direction and have a teeth portion on which a coil is mounted and a divided core back portion which is continuous on the radial outer side of the teeth portion.
    The motor according to claim 3, wherein the outer recess is located at the center of the divided core back portion in the circumferential direction.
  5.  前記凹部は、前記ステータコアのティース部の先端部に位置する内側凹部を有する、請求項1~4の何れか一項に記載のモータ。 The motor according to any one of claims 1 to 4, wherein the recess has an inner recess located at the tip of a tooth portion of the stator core.
  6.  前記ステータコアは、周方向に分割され、コイルが装着されるティース部と前記ティース部の径方向内側に連続するアンブレラ部とを有する複数の分割コアの集合体であって、
     前記内側凹部は、前記アンブレラ部の周方向中央部に位置する、請求項5に記載のモータ。
    The stator core is an aggregate of a plurality of divided cores which are divided in the circumferential direction and have a teeth portion on which a coil is mounted and an umbrella portion which is continuous in the radial direction of the teeth portions.
    The motor according to claim 5, wherein the inner recess is located at the center of the umbrella portion in the circumferential direction.
  7.  前記ステータコアは、軸方向他方側に開口する副凹部を有し、
     前記ハウジングは、軸方向他方側に開口し前記副凹部の内周面の少なくとも一部を露出させる副開口部を有する、請求項1~6の何れか一項に記載のモータ。
    The stator core has a sub-recess that opens on the other side in the axial direction.
    The motor according to any one of claims 1 to 6, wherein the housing has a sub-opening that opens on the other side in the axial direction to expose at least a part of the inner peripheral surface of the sub-recess.
  8.  前記第1開口部は、軸方向から見て、前記第2開口部に重なる、請求項7に記載のモータ。 The motor according to claim 7, wherein the first opening overlaps with the second opening when viewed from the axial direction.
  9.  前記ハウジングは、軸方向他方側の面にゲート痕を有する、請求項1~8の何れか一項に記載のモータ。 The motor according to any one of claims 1 to 8, wherein the housing has a gate mark on the surface on the other side in the axial direction.
PCT/JP2020/006705 2019-03-28 2020-02-20 Motor WO2020195398A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080013953.5A CN113439382A (en) 2019-03-28 2020-02-20 Motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019064535 2019-03-28
JP2019-064535 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020195398A1 true WO2020195398A1 (en) 2020-10-01

Family

ID=72610498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006705 WO2020195398A1 (en) 2019-03-28 2020-02-20 Motor

Country Status (2)

Country Link
CN (1) CN113439382A (en)
WO (1) WO2020195398A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176339A1 (en) * 2022-03-17 2023-09-21 三菱電機株式会社 Stator for rotating electrical machine, rotating electrical machine, method for manufacturing stator for rotating electrical machine, and method for manufacturing rotating electrical machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324913A (en) * 2002-05-08 2003-11-14 Aisin Aw Co Ltd Method of manufacturing core equipped with insulating material, and core manufactured thereby
JP2005245146A (en) * 2004-02-27 2005-09-08 Mitsubishi Electric Corp Synchronous motor, enclosed compressor and fan motor
JP2017108565A (en) * 2015-12-10 2017-06-15 日立オートモティブシステムズエンジニアリング株式会社 Rotary electric machine
JP2017135854A (en) * 2016-01-27 2017-08-03 ダイキン工業株式会社 Motor and manufacturing method of motor
JP2019017169A (en) * 2017-07-05 2019-01-31 アイシン精機株式会社 Rotary electric machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324913A (en) * 2002-05-08 2003-11-14 Aisin Aw Co Ltd Method of manufacturing core equipped with insulating material, and core manufactured thereby
JP2005245146A (en) * 2004-02-27 2005-09-08 Mitsubishi Electric Corp Synchronous motor, enclosed compressor and fan motor
JP2017108565A (en) * 2015-12-10 2017-06-15 日立オートモティブシステムズエンジニアリング株式会社 Rotary electric machine
JP2017135854A (en) * 2016-01-27 2017-08-03 ダイキン工業株式会社 Motor and manufacturing method of motor
JP2019017169A (en) * 2017-07-05 2019-01-31 アイシン精機株式会社 Rotary electric machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176339A1 (en) * 2022-03-17 2023-09-21 三菱電機株式会社 Stator for rotating electrical machine, rotating electrical machine, method for manufacturing stator for rotating electrical machine, and method for manufacturing rotating electrical machine

Also Published As

Publication number Publication date
CN113439382A (en) 2021-09-24

Similar Documents

Publication Publication Date Title
US9071107B2 (en) Rotor unit, rotating electrical machine, and method for manufacturing rotor unit
JP2014036456A (en) Rotor and motor
WO2018180924A1 (en) Rotor and motor
EP2246964A2 (en) Electric motor and electric motor vehicle
JP2022500976A (en) Axial flux rotor with magnet and body of composite layer with fibers in different directions
JP2004364494A (en) Inner rotor motor and production method therefor
JP7080621B2 (en) Outer rotor motor and vacuum cleaner equipped with it
WO2020195398A1 (en) Motor
JP2012182957A (en) Axial gap type electric motor
JP5771958B2 (en) Pump device
WO2020195395A1 (en) Motor
WO2020195394A1 (en) Motor
WO2020195390A1 (en) Motor
WO2020195392A1 (en) Motor
US11005333B2 (en) Electric motor having a stator with a radially outside rotor with the rotor having a fan mounting portion comprising a noncontact region and a contract region configured to contact a mouting surface of a fan
US11108288B2 (en) Rotor and motor
US11201513B2 (en) Rotor and motor
JP7347026B2 (en) motor
JP2021164308A (en) Rotor and motor
US11569699B2 (en) Holder, rotor, motor, and method for manufacturing rotor
KR20130011667A (en) Traction motor
US11289963B2 (en) Rotor, motor, and electric power steering device
JP7400596B2 (en) permanent magnet electric motor
WO2021171435A1 (en) Stator, electric motor, blower, air conditioner, and stator manufacturing method
US20230387775A1 (en) Magnetic-geared motor and magnetic gear

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20777418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP