JP2005245146A - Synchronous motor, enclosed compressor and fan motor - Google Patents

Synchronous motor, enclosed compressor and fan motor Download PDF

Info

Publication number
JP2005245146A
JP2005245146A JP2004052868A JP2004052868A JP2005245146A JP 2005245146 A JP2005245146 A JP 2005245146A JP 2004052868 A JP2004052868 A JP 2004052868A JP 2004052868 A JP2004052868 A JP 2004052868A JP 2005245146 A JP2005245146 A JP 2005245146A
Authority
JP
Japan
Prior art keywords
rotor
stator core
peripheral surface
synchronous motor
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004052868A
Other languages
Japanese (ja)
Other versions
JP4319562B2 (en
Inventor
Atsushi Matsuoka
篤 松岡
Kazuhiko Baba
和彦 馬場
Yoshio Takita
芳雄 滝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004052868A priority Critical patent/JP4319562B2/en
Publication of JP2005245146A publication Critical patent/JP2005245146A/en
Application granted granted Critical
Publication of JP4319562B2 publication Critical patent/JP4319562B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To secure the dimensional accuracy of a stator core while reducing cogging torque. <P>SOLUTION: This synchronous motor comprises a stator core having slots for containing a winding, an opening formed at the inner circumferential part of the slot in order to wind the winding and teeth formed between the slots with the opening between to extend in the radial direction, and a permanent magnet rotor. The stator core has such a cross-sectional shape on the inner circumferential surface of the teeth in the direction intersecting the axis of a plane facing the rotor perpendicularly as the central part stretches to the rotor side from the inner circumferential surface of the stator core. Both sides of the stretching part are composed of the arcuate part of the inner circumferential surface of the stator core and a groove is formed at the joint of the stretching part and the arcuate part. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、回転磁界を発生させる固定子と、永久磁石を用いた回転子とを備えた同期電動機に関するもので、同期電動機のコギングトルクを低減する技術に関するものである。また、その同期電動機を用いた密閉型圧縮機及びファンモータに関するものである。   The present invention relates to a synchronous motor including a stator for generating a rotating magnetic field and a rotor using a permanent magnet, and relates to a technique for reducing cogging torque of the synchronous motor. The present invention also relates to a hermetic compressor and a fan motor using the synchronous motor.

一般的に、回転子に永久磁石を用いた同期電動機においては、固定の鉄心に巻線を巻くためと、巻線に電流を流して発生させる磁束が固定子側で短絡することを防止するため、回転子に対向する部分にスロットの開口部を設けている。このため、回転子の永久磁石より発生する磁束が固定子の巻線に鎖交するときにこのスロット開口部を避けて鉄心を通過しようとするため、磁気的なアンバランスが生じ、固定子と回転子の位置関係によっては安定した位置と不安定となる位置が生じ、コギングトルクが発生する。このコギングトルクが大きいと、同期電動機の運転中の振動・騒音が悪化する。   Generally, in a synchronous motor using a permanent magnet as a rotor, a winding is wound around a fixed iron core, and a magnetic flux generated by passing a current through the winding is prevented from being short-circuited on the stator side. A slot opening is provided in a portion facing the rotor. For this reason, when the magnetic flux generated from the permanent magnet of the rotor interlinks with the winding of the stator, it tries to pass through the iron core avoiding this slot opening, resulting in magnetic imbalance, Depending on the positional relationship of the rotor, a stable position and an unstable position are generated, and cogging torque is generated. When this cogging torque is large, vibration and noise during operation of the synchronous motor are deteriorated.

これに対して、固定子鉄心の回転子に対向する部分で、隣り合うスロット開口部の中央付近に微小な突起を設け、回転子の永久磁石の磁束がここに集中することにより発生するコギングトルクで前述のコギングトルクを相殺し、低振動、低騒音化を図る技術がある(例えば、特許文献1参照)。   On the other hand, a cogging torque generated when a small protrusion is provided near the center of the adjacent slot opening at the portion facing the rotor of the stator core, and the magnetic flux of the permanent magnet of the rotor is concentrated here. There is a technique for canceling the cogging torque described above and reducing vibration and noise (see, for example, Patent Document 1).

また、固定子の回転子に対向する部分を直線で構成することにより、コギングトルクの低減と、誘起電圧の歪みの低減を図る技術がある(例えば、特許文献2参照)。   Further, there is a technique for reducing the cogging torque and the distortion of the induced voltage by configuring the portion of the stator facing the rotor as a straight line (see, for example, Patent Document 2).

また、同期電動機の高トルク化、高効率化のために希土類磁石の様なより磁気特性の高い永久磁石を用いると、コギングトルクは大きくなり、振動・騒音への影響はさらに大きくなる。   If a permanent magnet having higher magnetic properties such as a rare earth magnet is used to increase the torque and efficiency of the synchronous motor, the cogging torque increases and the influence on vibration and noise is further increased.

これに対して、例えば、回転子表面の磁極間の部分を直線的にカットして、固定子鉄心との距離を取り、コギングトルクを低減する技術がある(例えば、特許文献3参照)。
特開2003−143784号公報(第6頁、図1) 特開2002−101628号公報(第4頁、図2) 特許3417409号(第7頁、図3)
On the other hand, for example, there is a technique in which a portion between magnetic poles on the rotor surface is linearly cut to take a distance from the stator core and reduce cogging torque (see, for example, Patent Document 3).
JP 2003-143784 A (6th page, FIG. 1) JP 2002-101628 A (page 4, FIG. 2) Japanese Patent No. 3417409 (page 7, Fig. 3)

従来のような固定子鉄心の回転子に対向する部分で、隣り合うスロット開口部の中央付近に微小な突起を設定する場合、突起が微小であるため、固定子鉄心を製造した後、突起の位置、幅、突出量などの寸法を確認、管理することが難しい。   When a minute protrusion is set near the center of the adjacent slot opening at the portion facing the rotor of the stator core as in the prior art, since the protrusion is minute, after the stator core is manufactured, It is difficult to check and manage dimensions such as position, width, and protrusion.

また、例えば、固定子鉄心を樹脂などでモールドして固定子を構成する場合、固定子内部の回転子が設置される空間に樹脂が入り込まないようにするため、金型には回転子が配置される空間に相当する形状の円筒が設置され、モールドする際にはこの円筒に固定子鉄心をはめ込んだ状態で樹脂を注入する。固定子鉄心の回転子に対向する部分に微小な突起が存在する場合、固定子内径側に樹脂が流入することを防ぐためには、この円筒の外径に突起形状に相当する溝を形成する必要がある。樹脂の流入量を極力少なくしようとすると、この円筒の溝と固定子鉄心の突起の寸法公差を厳しくする必要があり、円筒にはめ込むあるいは、モールド後の取り出しの際の作業性が低下する。   In addition, for example, when the stator is configured by molding the stator core with resin or the like, the rotor is arranged in the mold so that the resin does not enter the space in which the rotor is installed. A cylinder having a shape corresponding to the space to be formed is installed, and when molding, resin is injected in a state where a stator core is fitted into the cylinder. If there are minute protrusions on the stator core facing the rotor, in order to prevent the resin from flowing into the inner diameter of the stator, it is necessary to form a groove corresponding to the protrusion shape on the outer diameter of this cylinder. There is. In order to reduce the inflow amount of the resin as much as possible, it is necessary to tighten the dimensional tolerance between the groove of the cylinder and the protrusion of the stator core, and the workability at the time of fitting into the cylinder or taking out after molding is lowered.

また、固定子鉄心の回転子に対向する部分を直線とする形状の場合、スロットの開口部付近では、固定子鉄心と回転子との間のギャップが大きくなり、回転子の永久磁石より発生し、固定子巻線に鎖交する磁束量が十分に得られなくなるため、モータの特性が低下する。   In addition, when the shape of the stator core facing the rotor is a straight line, the gap between the stator core and the rotor becomes large near the slot opening, which is generated by the permanent magnet of the rotor. Since the amount of magnetic flux interlinked with the stator winding cannot be obtained sufficiently, the motor characteristics are deteriorated.

また、回転子表面の磁極間の部分を直線的にカットして、固定子鉄心との距離を取ろうとすると、埋め込む永久磁石は、より内径側に配置しなくてはならないため、磁石の幅が小さくなり、回転子の径に対して最大の磁束量が得られないという問題がある。   In addition, if the portion between the magnetic poles on the rotor surface is cut linearly to take a distance from the stator core, the embedded permanent magnet must be arranged on the inner diameter side, so the width of the magnet There is a problem that the maximum magnetic flux cannot be obtained with respect to the rotor diameter.

この発明は、上記のような問題点を解消するためになされるもので、コギングトルクを低減すると共に、固定子鉄心の寸法精度を確保することを目的とする。   The present invention is made to solve the above-described problems, and aims to reduce the cogging torque and ensure the dimensional accuracy of the stator core.

また、固定子を樹脂によりモールドする際の作業性を向上することを目的とする。   Moreover, it aims at improving the workability | operativity at the time of molding a stator with resin.

また、コギングトルクを低減すると共に、永久磁石の磁束を最大限に引き出し、モータ特性の低下を抑えることを目的とする。   It is another object of the present invention to reduce cogging torque, draw out the magnetic flux of a permanent magnet to the maximum, and suppress deterioration of motor characteristics.

この発明に係る同期電動機は、巻線が収納されるスロットと、このスロットの内周部に設けられた巻線を巻くための開口部と、この開口部を挟んでスロット間に半径方向に延びて形成されるティースとを有する固定子鉄心と、永久磁石を用いた回転子とを備えた同期電動機において、固定子鉄心のティースの内周面で、回転子と対向する面の軸直交方向の断面形状を、中央部を固定子鉄心の内周面より回転子側に張り出した幅広の張り出し部とし、この張り出し部両側は、固定子鉄心の内周面の円弧部分で構成し、張り出し部と円弧部分との接続部に溝を設けたことを特徴とする。   A synchronous motor according to the present invention includes a slot in which a winding is accommodated, an opening for winding a winding provided in an inner peripheral portion of the slot, and a radial extension between the slots across the opening. In a synchronous motor including a stator core having teeth formed by a rotor and a rotor using permanent magnets, the inner peripheral surface of the teeth of the stator core is perpendicular to the axis of the surface facing the rotor. The cross-sectional shape is a wide projecting portion with the center portion projecting from the inner peripheral surface of the stator core toward the rotor, and both sides of this projecting portion are formed by arc portions of the inner peripheral surface of the stator core. A groove is provided in the connection portion with the arc portion.

この発明に係る同期電動機は、上記構成により、コギングトルクを低減することができ、同期電動機の低振動・低騒音化が図れると共に、製品の寸法管理を容易にすることできる。   With the above configuration, the synchronous motor according to the present invention can reduce cogging torque, reduce the vibration and noise of the synchronous motor, and facilitate the dimensional management of the product.

実施の形態1.
図1〜5は実施の形態1を示す図で、図1は同期電動機を示す断面図、図2は同期電動機の部分断面図、図3は同期電動機の拡大部分断面図、図4は同期電動機のコギングトルク波形を示す図、図5は固定子を樹脂でモールドする場合の図である。
Embodiment 1 FIG.
1 to 5 show the first embodiment, FIG. 1 is a sectional view showing a synchronous motor, FIG. 2 is a partial sectional view of the synchronous motor, FIG. 3 is an enlarged partial sectional view of the synchronous motor, and FIG. 4 is a synchronous motor. FIG. 5 is a diagram showing a case where the stator is molded with resin.

図1、2において、同期電動機は、主に固定子1と、回転子2とを備える。固定子1は、磁性体で構成された、通常厚さ0.1〜1.5mmの電磁鋼板を複数枚積層して構成される固定子鉄心1aを有し、固定子鉄心1aのスロット3に巻線30が巻回されて格納される。スロット3には、固定子鉄心1aの内周に開口部4があり、スロット3に巻線30を格納する際に開口部4より巻線30を挿入する。また、巻線30に流れる電流によって発生する磁束が固定子鉄心1aの中で短絡しないよう、通常は、ある程度の隙間を確保している。   1 and 2, the synchronous motor mainly includes a stator 1 and a rotor 2. The stator 1 has a stator core 1a formed by laminating a plurality of electromagnetic steel plates, usually made of a magnetic material and having a thickness of 0.1 to 1.5 mm, in a slot 3 of the stator core 1a. Winding 30 is wound and stored. The slot 3 has an opening 4 on the inner periphery of the stator core 1 a, and the winding 30 is inserted from the opening 4 when the winding 30 is stored in the slot 3. In addition, a certain amount of clearance is usually secured so that the magnetic flux generated by the current flowing through the winding 30 is not short-circuited in the stator core 1a.

固定子1と回転子2との間には、ギャップ5(空隙)がある。固定子鉄心1aのティース1bの内側先端で、回転子2と対向する面に、幅広の直線部分6(張り出し部)が設けられる(固定子鉄心内周面の軸直交方向の断面形状)。直線部分6の両側は、円弧部分20で構成される。そして、直線部分6と円弧部分20との接続部付近には、溝9が設けられる。   There is a gap 5 (gap) between the stator 1 and the rotor 2. A wide linear portion 6 (an overhang portion) is provided on the surface facing the rotor 2 at the inner tip of the tooth 1b of the stator core 1a (cross-sectional shape in the direction perpendicular to the axis of the inner surface of the stator core). Both sides of the straight portion 6 are constituted by arc portions 20. A groove 9 is provided in the vicinity of the connecting portion between the linear portion 6 and the arc portion 20.

回転子2は、固定子鉄心と同様、電磁鋼板を積層して、内部に永久磁石10が埋め込まれる。但し、外周表面に複数個の永久磁石を貼り付ける場合もある。また、回転子2を永久磁石単体で構成する場合もある。   As with the stator core, the rotor 2 is made by laminating electromagnetic steel plates, and the permanent magnet 10 is embedded therein. However, a plurality of permanent magnets may be attached to the outer peripheral surface. Moreover, the rotor 2 may be comprised with a permanent magnet single-piece | unit.

回転子2の永久磁石10から発生する磁束は、ギャップ5を介して固定子鉄心1aの中を通過し、再びギャップ5を通って回転子2の異なる磁極(永久磁石10)へと流れ込む経路(磁路)を形成している。このとき、固定子1に存在するスロット3の開口部4に対向した回転子2表面より発する磁束は、より磁気抵抗の小さい開口部4の両側の鉄心へ流れ込もうとするため、ここで磁気的なアンバランスが生じ、回転子2と固定子1の開口部4との回転位置関係によっては、安定した位置と不安定な位置が生じ、コギングトルクが発生する。   The magnetic flux generated from the permanent magnet 10 of the rotor 2 passes through the stator core 1a through the gap 5 and again flows through the gap 5 into a different magnetic pole (permanent magnet 10) of the rotor 2 ( Magnetic path) is formed. At this time, the magnetic flux generated from the surface of the rotor 2 facing the opening 4 of the slot 3 existing in the stator 1 tends to flow into the iron cores on both sides of the opening 4 having a smaller magnetic resistance. Depending on the rotational positional relationship between the rotor 2 and the opening 4 of the stator 1, a stable position and an unstable position are generated, and cogging torque is generated.

図3に示すように、ここで、固定子鉄心1aのティース1bの内側先端の、回転子2に対向する面の一部で、隣り合う開口部4の中間付近に幅広の直線部分6を設けると、この直線部分6のギャップ長gが、直線部分6がない場合のギャップ長gより小さくなり、他の場所に比べて狭くなるため、回転子2より発生する磁束はこの直線部分6に集中しやすくなる。これによって、前述のスロット開口部4によって発生するコギングトルクとちょうど逆位相のコギングトルクが生じるため、これらが打ち消しあうことによってその振幅が小さくなる。 As shown in FIG. 3, here, a wide linear portion 6 is provided in the vicinity of the middle of the adjacent opening 4 at a part of the surface facing the rotor 2 at the inner end of the tooth 1b of the stator core 1a. Then, since the gap length g of the straight line portion 6 is smaller than the gap length g 0 when there is no straight line portion 6 and is narrower than other places, the magnetic flux generated from the rotor 2 is applied to the straight line portion 6. It becomes easier to concentrate. As a result, a cogging torque having a phase opposite to that of the cogging torque generated by the slot opening 4 is generated, and the amplitude is reduced by canceling them.

図4は固定子鉄心1aのティース1bの内側先端に直線部分6がない場合と、ある場合のコギングトルクを解析した結果を比較したものであり(横軸は回転子2の回転角[deg]、縦軸はコギングトルク[N・m])、直線部分6がない場合のコギングトルク波形7と、直線部分6がある場合のコギングトルク波形8とを示している。これから、固定子鉄心1aのティース1bの内側先端に直線部分6を設けることで、コギングトルクが小さくなっていることがわかる。   FIG. 4 compares the results of analyzing the cogging torque in the case where there is no linear portion 6 at the inner tip of the tooth 1b of the stator core 1a and in the case where there is (the horizontal axis is the rotation angle [deg] of the rotor 2). The vertical axis shows cogging torque [N · m]), a cogging torque waveform 7 when there is no straight portion 6, and a cogging torque waveform 8 when there is a straight portion 6. From this, it can be seen that the cogging torque is reduced by providing the straight portion 6 at the inner end of the tooth 1b of the stator core 1a.

このコギングトルクを低減する効果は、直線部分6と回転子2との間のギャップ5の寸法の影響が大きいため、寸法の管理が重要となる。ギャップ5が狭くなる部分が直線で構成されることでこの部分がある程度広い面積を持つこととなるため、この部分での寸法の検査、管理が容易となり、安定した効果を得ることができる。   Since the effect of reducing the cogging torque is greatly affected by the size of the gap 5 between the linear portion 6 and the rotor 2, the management of the size is important. Since the portion where the gap 5 is narrowed is formed by a straight line, this portion has a certain area, so that the inspection and management of the dimensions in this portion are facilitated, and a stable effect can be obtained.

しかし、直線部分6と固定子鉄心1aの回転子2に対向する円弧部分20を接続する部分は、直線と円弧の距離が徐々に小さくなるため、寸法公差が大きいと、接続部の位置がばらつき、直線部分6の幅を管理しようとすると、寸法公差を厳しく管理する必要があり、同時に固定子鉄心1aを製造する金型にも厳しい公差を要求することとなる。これに対して直線部分6と円弧部分20の接続部付近に溝9を設けることによって、この寸法のばらつきを吸収できるため、寸法の検査、管理が容易となり、金型に要求される寸法精度を緩和することができ、また、摩耗等による寸法変化の影響も少なくできる。   However, since the distance between the straight line and the arc gradually decreases at the part connecting the straight line part 6 and the arc part 20 facing the rotor 2 of the stator core 1a, the position of the connecting part varies if the dimensional tolerance is large. In order to manage the width of the straight portion 6, it is necessary to strictly manage the dimensional tolerance, and at the same time, a strict tolerance is required for the mold for manufacturing the stator core 1a. On the other hand, by providing the groove 9 in the vicinity of the connecting portion between the linear portion 6 and the arc portion 20, this dimensional variation can be absorbed, thereby facilitating the inspection and management of the size, and the dimensional accuracy required for the mold. It can be mitigated, and the influence of dimensional changes due to wear or the like can be reduced.

図5に示すように、固定子鉄心1aを樹脂でモールドする場合、回転子2が配置される空間に樹脂が入り込まないようにするため、その空間に相当する形状の円筒を金型内に設置し、これに固定子鉄心1aをはめ込んだ状態で樹脂を注入する。固定子鉄心1aに直線部分6が存在する場合、円筒にもそれに相当する位置に直線部分を設ける必要があるが、円筒と固定子鉄心1aの内径を完全に密着させるためには、双方の円弧の部分と直線部分を接続する部分の位置を正確に一致させる必要があり、円筒の加工に厳しい精度が必要となったり、製造時の位置決めが難しくなったりする。   As shown in FIG. 5, when the stator core 1a is molded with resin, a cylinder having a shape corresponding to the space is installed in the mold so that the resin does not enter the space in which the rotor 2 is disposed. Then, the resin is injected with the stator core 1a fitted therein. When the straight portion 6 exists in the stator core 1a, it is necessary to provide the straight portion at a position corresponding to the cylinder, but in order to make the inner diameter of the cylinder and the stator core 1a completely adhere to each other, It is necessary to precisely match the position of the portion connecting the straight portion and the straight portion, so that strict accuracy is required for processing the cylinder, and positioning during manufacture becomes difficult.

固定子鉄心1aの直線部分6両側に溝9を設けることで、金型の円筒と固定子鉄心1aとの誤差をこの溝9で吸収することができ、金型の円筒と固定子鉄心1aとの密着性を向上させることでき、同時に固定子鉄心1aの金型の円筒へのはめ込み等の作業性の向上も図れる。   By providing the grooves 9 on both sides of the straight portion 6 of the stator core 1a, errors between the mold cylinder and the stator core 1a can be absorbed by the grooves 9, and the mold cylinder and the stator core 1a In addition, it is possible to improve workability such as fitting of the stator core 1a into the cylinder of the mold.

上述の実施の形態によれば、固定子鉄心1aのティース1bの内側先端の、回転子2に対向する面の一部で、隣り合う開口部4の中間付近に幅広の直線部分6を設け、直線部分6の両側は円弧部分20で構成することにより、直線部分6のギャップ長gが、直線部分6がない場合のギャップ長gより小さくなり、他の場所に比べて狭くなるため、回転子2より発生する磁束はこの直線部分6に集中しやすくなる。これによって、スロット開口部4によって発生するコギングトルクとちょうど逆位相のコギングトルクが生じるため、これらが打ち消し合うことによってその振幅が小さくなる。 According to the above-described embodiment, the wide linear portion 6 is provided in the vicinity of the middle of the adjacent opening 4 at a part of the surface facing the rotor 2 at the inner end of the tooth 1b of the stator core 1a. by both sides of the linear portion 6 which constitutes an arcuate portion 20, since the gap length g of the linear portion 6 is smaller than the gap length g 0 when no straight portion 6 becomes narrower than the other places, the rotation The magnetic flux generated from the child 2 tends to concentrate on the straight line portion 6. As a result, a cogging torque having a phase opposite to that of the cogging torque generated by the slot opening 4 is generated.

また、固定子鉄心1aの直線部分6と円弧部分20との接続部付近に溝9を設けることにより、寸法のばらつきを吸収できるため、寸法の検査、管理が容易となり、固定子鉄心1aを製造する金型に要求される寸法精度を緩和することができ、また、摩耗等による寸法変化の影響も少なくできる。   Further, by providing the groove 9 in the vicinity of the connecting portion between the linear portion 6 and the circular arc portion 20 of the stator core 1a, dimensional variations can be absorbed, so that the inspection and management of the dimensions are facilitated, and the stator core 1a is manufactured. The dimensional accuracy required for the mold to be reduced can be relaxed, and the influence of dimensional change due to wear or the like can be reduced.

さらに、固定子鉄心1aの直線部分6両側に溝9を設けることで、モールド用金型の円筒と固定子鉄心1aとの誤差をこの溝9で吸収することができ、モールド用金型の円筒と固定子鉄心1aとの密着性を向上させることでき、同時に固定子鉄心1aの金型の円筒へのはめ込み等の作業性の向上も図れる。   Furthermore, by providing the grooves 9 on both sides of the straight portion 6 of the stator core 1a, errors between the mold mold cylinder and the stator core 1a can be absorbed by the grooves 9, and the mold mold cylinder can be absorbed. It is possible to improve the adhesion between the stator core 1a and the stator core 1a, and at the same time, it is possible to improve workability such as fitting the stator core 1a into the cylinder of the mold.

実施の形態2.
図6は実施の形態2を示す図で、同期電動機の拡大部分断面図である。
上記実施の形態1では、固定子鉄心1aのティース1bの内側先端の、回転子2に対向する面の一部で、隣り合う開口部4の中間付近に幅広の直線部分6を設け、直線部分6の両側は円弧部分20で構成したものを示したが、直線部分6に代えて、固定子鉄心1aのティース1bの内側先端側に凸の円弧形状にしてもよい。
Embodiment 2. FIG.
FIG. 6 is a diagram showing the second embodiment and is an enlarged partial sectional view of the synchronous motor.
In the first embodiment, a wide linear portion 6 is provided in the vicinity of the middle of the adjacent opening 4 at a part of the surface facing the rotor 2 at the inner end of the tooth 1b of the stator core 1a. Although both sides of 6 are configured by arc portions 20, they may be formed in an arc shape that is convex on the inner tip side of the teeth 1b of the stator core 1a, instead of the straight portions 6.

図6に示すように、固定子鉄心1aのティース1bの内側先端の、回転子2に対向する面の一部で、隣り合う開口部4の中間付近に幅広の内側に凸の円弧部分6bを設け、内側に凸の円弧部分6bの両側は、溝9を挟んで固定子鉄心1aの内周の円弧部分20で構成する(固定子鉄心内周面の軸直交方向の断面形状)。   As shown in FIG. 6, a circular arc portion 6b having a wide inward convex is formed near the middle of the adjacent opening 4 at a part of the surface facing the rotor 2 at the inner end of the tooth 1b of the stator core 1a. Provided on both sides of the inwardly projecting arc portion 6b is a circular arc portion 20 on the inner periphery of the stator core 1a with the groove 9 interposed therebetween (cross-sectional shape in the direction perpendicular to the axis of the inner peripheral surface of the stator core).

このように構成することにより、円弧部分6bのギャップ長gが、円弧部分6bがない場合のギャップ長gより小さくなり、他の場所に比べて狭くなるため、回転子2より発生する磁束はこの円弧部分6bに集中しやすくなる。これによって、スロット開口部4によって発生するコギングトルクとちょうど逆位相のコギングトルクが生じるため、これらが打ち消し合うことによってその振幅が小さくなる。 With this configuration, the gap length g of the arc portion 6b becomes smaller than the gap length g 0 when there is no arc portion 6b, to become narrower than the other places, the magnetic flux generated from the rotor 2 It becomes easy to concentrate on this circular arc part 6b. As a result, a cogging torque having a phase opposite to that of the cogging torque generated by the slot opening 4 is generated.

実施の形態3.
図7は実施の形態3を示す図で、同期電動機の拡大部分断面図である。
上記実施の形態1では、固定子鉄心1aのティース1bの内側先端の、回転子2に対向する面の一部で、隣り合う開口部4の中間付近に幅広の直線部分6を設け、直線部分6の両側は円弧部分20で構成したものを示したが、直線部分6に代えて、固定子鉄心1aのティース1bの内側先端側に凸の三角形状にしてもよい。
Embodiment 3 FIG.
FIG. 7 is a diagram showing the third embodiment and is an enlarged partial sectional view of the synchronous motor.
In the first embodiment, a wide linear portion 6 is provided in the vicinity of the middle of the adjacent opening 4 at a part of the surface facing the rotor 2 at the inner end of the tooth 1b of the stator core 1a. Although both sides of 6 are configured by arc portions 20, they may be formed in a triangular shape that is convex on the inner tip side of the teeth 1b of the stator core 1a, instead of the straight portions 6.

図7に示すように、固定子鉄心1aのティース1bの内側先端の、回転子2に対向する面の一部で、隣り合う開口部4の中間付近に幅広の内側に凸の三角形部分6cを設け、三角形部分6cの両側は、溝9を挟んで固定子鉄心1aの内周の円弧部分20で構成する(固定子鉄心内周面の軸直交方向の断面形状)。   As shown in FIG. 7, a wide inwardly protruding triangular portion 6 c is formed on the inner tip of the teeth 1 b of the stator core 1 a at a part of the surface facing the rotor 2 and in the vicinity of the middle of the adjacent opening 4. Provided, both sides of the triangular portion 6c are constituted by an arc portion 20 on the inner periphery of the stator core 1a with the groove 9 interposed therebetween (cross-sectional shape in the direction perpendicular to the axis of the inner peripheral surface of the stator core).

このように構成することにより、三角形部分6cのギャップ長gが、三角形部分6cがない場合のギャップ長gより小さくなり、他の場所に比べて狭くなるため、回転子2より発生する磁束はこの三角形部分6cに集中しやすくなる。これによって、スロット開口部4によって発生するコギングトルクとちょうど逆位相のコギングトルクが生じるため、これらが打ち消し合うことによってその振幅が小さくなる。 With this configuration, the magnetic flux gap length g of the triangular portion 6c becomes smaller than the gap length g 0 in the absence of the triangular portion 6c is, to become narrower than the other places, generated from the rotor 2 It becomes easy to concentrate on the triangular portion 6c. As a result, a cogging torque having a phase opposite to that of the cogging torque generated by the slot opening 4 is generated.

実施の形態4.
図8は実施の形態4を示す図で、同期電動機の拡大部分断面図である。
上記実施の形態1では、固定子鉄心1aのティース1bの内側先端の、回転子2に対向する面の一部で、隣り合う開口部4の中間付近に幅広の直線部分6を設け、直線部分6の両側は円弧部分20で構成したものを示したが、直線部分6に代えて、固定子鉄心1aのティース1bの内側先端側に凸の台形にしてもよい。
Embodiment 4 FIG.
FIG. 8 is a diagram showing the fourth embodiment, and is an enlarged partial sectional view of the synchronous motor.
In the first embodiment, a wide linear portion 6 is provided in the vicinity of the middle of the adjacent opening 4 at a part of the surface facing the rotor 2 at the inner end of the tooth 1b of the stator core 1a. Although both sides of 6 are configured by the arc portion 20, they may be formed in a trapezoidal shape that is convex on the inner tip side of the teeth 1b of the stator core 1a, instead of the straight portion 6.

図8に示すように、固定子鉄心1aのティース1bの内側先端の、回転子2に対向する面の一部で、隣り合う開口部4の中間付近に幅広の内側に凸の台形部分6dを設け、台形部分6dの両側は、溝9を挟んで固定子鉄心1aの内周の円弧部分20で構成する(固定子鉄心内周面の軸直交方向の断面形状)。   As shown in FIG. 8, a trapezoidal portion 6 d having a wide inward convex shape is formed in the vicinity of the middle of the adjacent opening 4 at a part of the surface facing the rotor 2 at the inner end of the tooth 1 b of the stator core 1 a. Provided, both sides of the trapezoidal portion 6d are configured by an arc portion 20 on the inner periphery of the stator core 1a with the groove 9 interposed therebetween (cross-sectional shape in the direction perpendicular to the axis of the inner peripheral surface of the stator core).

このように構成することにより、台形部分6dのギャップ長gが、台形部分6dがない場合のギャップ長gより小さくなり、他の場所に比べて狭くなるため、回転子2より発生する磁束はこの台形部分6dに集中しやすくなる。これによって、スロット開口部4によって発生するコギングトルクとちょうど逆位相のコギングトルクが生じるため、これらが打ち消し合うことによってその振幅が小さくなる。 With this configuration, the gap length g of the trapezoidal portion 6d becomes smaller than the gap length g 0 when there is no trapezoidal portions 6d, to become narrower than the other places, the magnetic flux generated from the rotor 2 It becomes easy to concentrate on the trapezoidal portion 6d. As a result, a cogging torque having a phase opposite to that of the cogging torque generated by the slot opening 4 is generated.

実施の形態5.
図9、10は実施の形態5を示す図で、図9は同期電動機の部分断面図、図10は同期電動機の拡大部分断面図である。
上記実施の形態1乃至4では、固定子鉄心1aのティース1bの内側先端の、直線部分6と円弧部分20との接続部付近に溝9を設けたものを示したが、例えば、固定子1を樹脂でモールドしない用途では、溝9がないものでもよい。
Embodiment 5 FIG.
9 and 10 are diagrams showing the fifth embodiment. FIG. 9 is a partial cross-sectional view of the synchronous motor, and FIG. 10 is an enlarged partial cross-sectional view of the synchronous motor.
In Embodiments 1 to 4 described above, the groove 9 is provided in the vicinity of the connection portion between the linear portion 6 and the arc portion 20 at the inner end of the tooth 1b of the stator core 1a. In applications where the resin is not molded with resin, the groove 9 may be omitted.

図9、10に示すように、固定子鉄心1aのティース1bの内側先端は、中央部に幅広の直線部分6を設け、その両端は、固定子鉄心1aの内周の円弧部分20となる。   As shown in FIGS. 9 and 10, the inner end of the tooth 1b of the stator core 1a is provided with a wide linear portion 6 at the center, and both ends thereof are arc portions 20 on the inner periphery of the stator core 1a.

スロット開口部4によって発生するコギングトルクの振幅を低減できる効果は、実施の形態1と同様である。   The effect of reducing the amplitude of the cogging torque generated by the slot opening 4 is the same as in the first embodiment.

実施の形態6.
図11〜14は実施の形態6を示す図で、図11は同期電動機の回転子の断面図、図12は同期電動機の回転子の拡大部分断面図、図13は同期電動機に発生するコギングトルクを示す図、図14は回転子磁極表面の直線部分が占める幅とコギングトルク、出力トルクの関係を示す図である。
図11、12に示すように、回転子2は、例えば電磁鋼板を積層して構成されるもので、内部に永久磁石10を埋め込んでいる。回転子表面の軸直交方向の断面形状は、永久磁石10で構成される磁極の中央部及び磁極間11付近は同一径の円弧で構成しており、磁極の中央部と磁極間11付近との間に、直線部分12(回転子外周面より内側に凹む凹み部)を設けている。
Embodiment 6 FIG.
FIGS. 11 to 14 are diagrams showing a sixth embodiment, FIG. 11 is a sectional view of a rotor of a synchronous motor, FIG. 12 is an enlarged partial sectional view of a rotor of a synchronous motor, and FIG. 13 is a cogging torque generated in the synchronous motor. FIG. 14 is a diagram showing the relationship between the width occupied by the linear portion of the rotor magnetic pole surface, the cogging torque, and the output torque.
As shown in FIGS. 11 and 12, the rotor 2 is configured by stacking electromagnetic steel plates, for example, and has a permanent magnet 10 embedded therein. The cross-sectional shape of the rotor surface in the direction perpendicular to the axis is configured such that the central part of the magnetic pole composed of the permanent magnet 10 and the vicinity of the magnetic pole 11 are arcs of the same diameter. A straight portion 12 (a recessed portion recessed inward from the outer peripheral surface of the rotor) is provided therebetween.

永久磁石10の両端付近は、隣り合う磁極との距離が短く磁束が集中しやすいため、ギャップ5(例えば、図1参照)内の磁束密度がこの付近で高くなり、コギングトルクが大きくなる要因となりやすい。永久磁石10の両端付近を直線部分12で構成し、永久磁石10両端付近の磁束集中を緩和することによってコギングトルクを小さくすることができる。   Near both ends of the permanent magnet 10, the distance between adjacent magnetic poles is short and the magnetic flux tends to concentrate, so that the magnetic flux density in the gap 5 (see, for example, FIG. 1) becomes high in this vicinity, which increases the cogging torque. Cheap. The cogging torque can be reduced by configuring the vicinity of both ends of the permanent magnet 10 with the linear portions 12 and relaxing the magnetic flux concentration near the both ends of the permanent magnet 10.

また、磁極間11の外径寸法は、回転子2の外径寸法と同じとすることで内部の永久磁石10をより外側に配置でき、より幅の広い永久磁石10を回転子2内部に埋め込むことができる。これにより、より多くの磁束を永久磁石10から取り出せるため、同期電動機の性能を向上することができる。   Further, by setting the outer diameter dimension between the magnetic poles 11 to be the same as the outer diameter dimension of the rotor 2, the inner permanent magnet 10 can be disposed on the outer side, and the wider permanent magnet 10 is embedded inside the rotor 2. be able to. Thereby, since more magnetic flux can be taken out from the permanent magnet 10, the performance of a synchronous motor can be improved.

図13は回転子2の表面に直線部分12を設けた場合のコギングトルクを解析した結果を示しており(横軸は回転子2の回転角[deg]、縦軸はコギングトルク[N・m])、直線部分12がない場合のコギングトルク波形7bに対して、直線部分12がある場合のコギングトルク波形13の方が、振幅が小さくなっており、コギングトルク低減の効果が得られていることを示している。   FIG. 13 shows the result of analyzing the cogging torque when the linear portion 12 is provided on the surface of the rotor 2 (the horizontal axis is the rotation angle [deg] of the rotor 2 and the vertical axis is the cogging torque [N · m]. ], The cogging torque waveform 13 with the linear portion 12 has a smaller amplitude than the cogging torque waveform 7b without the linear portion 12, and the effect of reducing the cogging torque is obtained. It is shown that.

図14はこの回転子2の表面の直線部分12の幅wとコギングトルクの振幅、運転時の出力トルクとの関係を示したグラフである(図14(a)の横軸は直線部分12の幅w[%]、縦軸はコギングトルク[N・m]、図14(b)の横軸は直線部分12の幅w[%]、縦軸は出力トルク[N・m])。図14(a)は直線部12の幅wに対するコギングトルクの振幅の関係を示しており、直線部分12の幅wは、1磁極に対する直線部分が占める割合を示している。   FIG. 14 is a graph showing the relationship between the width w of the linear portion 12 on the surface of the rotor 2, the amplitude of the cogging torque, and the output torque during operation (the horizontal axis in FIG. The width w [%], the vertical axis is the cogging torque [N · m], the horizontal axis in FIG. 14B is the width w [%] of the straight portion 12, and the vertical axis is the output torque [N · m]. FIG. 14A shows the relationship of the amplitude of the cogging torque with respect to the width w of the straight portion 12, and the width w of the straight portion 12 shows the ratio of the straight portion to one magnetic pole.

図14(b)は、直線部分12の幅wに対する出力トルクの関係を示しており、固定子巻線に同一の電流を流した時に発生するトルクを比較している。図から、コギングトルクの振幅を25%以上低減できる直線部分12の割合は、片側で25%〜35%(両側あわせると、50%〜70%)の時であり、出力トルクの低下が概ね2%以内で抑えられるのは、直線部分12の割合が片側で35%以内であることがわかる。   FIG. 14B shows the relationship of the output torque with respect to the width w of the linear portion 12, and compares the torque generated when the same current is passed through the stator winding. From the figure, the ratio of the linear portion 12 that can reduce the amplitude of the cogging torque by 25% or more is 25% to 35% on one side (50% to 70% when both sides are combined), and the decrease in the output torque is approximately 2. It can be seen that the ratio of the straight line portion 12 is within 35% on one side.

上記実施の形態では、永久磁石10で構成される磁極の中央部及び磁極間11付近は同一径の円弧で構成し、磁極の中央部と磁極間11付近との間に直線部分12を設けたものを示したが、直線部分12に代えて、外側に凹の、例えば、円弧、三角形、台形等でもよく、同様の効果を奏する。   In the above-described embodiment, the central part of the magnetic pole constituted by the permanent magnet 10 and the vicinity of the magnetic pole 11 are constituted by an arc having the same diameter, and the linear portion 12 is provided between the central part of the magnetic pole and the vicinity of the magnetic pole 11. Although shown, instead of the straight portion 12, an outer concave shape, for example, an arc, a triangle, a trapezoid, or the like may be used, and similar effects can be obtained.

実施の形態7.
図15〜17は実施の形態7を示す図で、図15は同期電動機示す断面図、図16は同期電動機に発生するコギングトルクを示す図、図17は同期電動機示す断面図である。
図15に示すように、固定子鉄心1aのティース1bの内側先端で、回転子2と対向する面に、軸直交方向の断面形状幅広の直線部分6(張り出し部)が設けられる(固定子鉄心内周面の軸直交方向の断面形状)。直線部分6の両側は、円弧部分20で構成される。そして、直線部分6と円弧部分20との接続部付近には、溝9が設けられる。
Embodiment 7 FIG.
15 to 17 are diagrams showing the seventh embodiment, FIG. 15 is a sectional view showing a synchronous motor, FIG. 16 is a diagram showing cogging torque generated in the synchronous motor, and FIG. 17 is a sectional view showing the synchronous motor.
As shown in FIG. 15, a straight portion 6 (projecting portion) having a wide cross-sectional shape in the direction perpendicular to the axis is provided on the surface facing the rotor 2 at the inner end of the tooth 1 b of the stator core 1 a (stator core). The cross-sectional shape of the inner peripheral surface in the direction perpendicular to the axis). Both sides of the straight portion 6 are constituted by arc portions 20. A groove 9 is provided in the vicinity of the connecting portion between the linear portion 6 and the arc portion 20.

回転子2については、回転子表面の軸直交方向の断面形状は、永久磁石10で構成される磁極の中央部及び磁極間11付近は同一径の円弧で構成しており、磁極の中央部と磁極間11付近との間に、直線部分12(回転子外周面より内側に凹む凹み部)を設けている。   For the rotor 2, the cross-sectional shape of the rotor surface in the direction perpendicular to the axis is formed by an arc having the same diameter in the central portion of the magnetic pole formed by the permanent magnet 10 and between the magnetic poles 11. A straight line portion 12 (a recessed portion recessed inward from the outer peripheral surface of the rotor) is provided between the vicinity of 11 between the magnetic poles.

これら固定子1と回転子2とを組み合わせることにより、上記実施の形態1乃至4、実施の形態6それぞれで得られていたコギングトルクの低減効果が同時に得られるため、コギングトルクをさらに小さくすることができる。   By combining the stator 1 and the rotor 2, the cogging torque reduction effect obtained in each of the first to fourth embodiments and the sixth embodiment can be obtained at the same time. Therefore, the cogging torque can be further reduced. Can do.

図16は、固定子鉄心1aと回転子2にそれぞれ直線部分6と直線部分12がある場合とない場合のコギングトルクを解析した結果を比較したものである。固定子鉄心に直線部分6がなく、回転子に直線部分12がない場合のコギングトルク波形7cに対して、固定子鉄心に直線部分6があり、回転子に直線部分12がある場合のコギングトルク波形17の振幅が小さくなっていることがわかる。   FIG. 16 compares the results of analyzing the cogging torque with and without the straight portion 6 and the straight portion 12 in the stator core 1a and the rotor 2, respectively. The cogging torque when the stator core has the linear portion 6 and the rotor has the linear portion 12 compared to the cogging torque waveform 7c when the stator core does not have the linear portion 6 and the rotor does not have the linear portion 12. It can be seen that the amplitude of the waveform 17 is small.

また、固定子鉄心に直線部分6があり、回転子に直線部分12がある場合のコギングトルク波形17は、図4の直線部分6がある場合のコギングトルク波形8、図13の直線部分12がある場合のコギングトルク波形13と比較してもコギングトルクの振幅は小さくなっている。   The cogging torque waveform 17 when the stator core has the straight portion 6 and the rotor has the straight portion 12 is the cogging torque waveform 8 when the straight portion 6 in FIG. 4 is present, and the straight portion 12 in FIG. Even when compared with the cogging torque waveform 13 in some cases, the amplitude of the cogging torque is small.

また、図17に示すように、上記実施の形態5と、実施の形態6との組合せでもよい。コギングトルクの低減効果が同時に得られるため、コギングトルクをさらに小さくすることができる。   Moreover, as shown in FIG. 17, the combination of the said Embodiment 5 and Embodiment 6 may be sufficient. Since the cogging torque reduction effect can be obtained at the same time, the cogging torque can be further reduced.

実施の形態8.
図18〜21は実施の形態8を示す図で、図18はロータリ圧縮機の縦断面図、図19〜21はロータリ圧縮機の電動要素部分の横断面図である。
図18に示すように、ロータリ圧縮機40(密閉型圧縮機の一例)は、密閉容器43の内部に、主に電動要素41と、この電動要素41により駆動されて、冷媒を高温、高圧のガス冷媒に圧縮する圧縮要素42とが収容されている。
Embodiment 8 FIG.
18 to 21 are views showing Embodiment 8, FIG. 18 is a longitudinal sectional view of a rotary compressor, and FIGS. 19 to 21 are transverse sectional views of an electric element portion of the rotary compressor.
As shown in FIG. 18, the rotary compressor 40 (an example of a hermetic compressor) is mainly driven by the electric element 41 and the electric element 41 inside the hermetic container 43, and the refrigerant is heated to a high temperature and a high pressure. A compression element 42 that compresses the gas refrigerant is accommodated.

上記実施の形態1〜7で説明した同期電動機を、ロータリ圧縮機40の電動要素41に用いれば、電動要素41のコギングトルクが低減し、ロータリ圧縮機40の低振動・低騒音化が図れる。   If the synchronous motor described in the first to seventh embodiments is used for the electric element 41 of the rotary compressor 40, the cogging torque of the electric element 41 is reduced, and the vibration and noise of the rotary compressor 40 can be reduced.

図19は実施の形態1の同期電動機をロータリ圧縮機40の電動要素41に使用した例である。   FIG. 19 shows an example in which the synchronous motor of the first embodiment is used for the electric element 41 of the rotary compressor 40.

図20は実施の形態6の同期電動機をロータリ圧縮機40の電動要素41に使用した例である。   FIG. 20 shows an example in which the synchronous motor of the sixth embodiment is used for the electric element 41 of the rotary compressor 40.

図21は実施の形態7の同期電動機をロータリ圧縮機40の電動要素41に使用した例である。   FIG. 21 shows an example in which the synchronous motor of the seventh embodiment is used for the electric element 41 of the rotary compressor 40.

実施の形態9.
図22は実施の形態9を示す図で、ファンモータの一例を示す図である。図において、ファンモータ50は、固定子1を樹脂を用いてモールドしたモールド固定子53に、回転子2と2個の軸受54を軸に嵌合した回転子組立51を組み付け、ブラケット54を端部に固定したものである。
Embodiment 9 FIG.
FIG. 22 is a diagram illustrating the ninth embodiment and illustrates an example of a fan motor. In the figure, a fan motor 50 is constructed by assembling a rotor assembly 51 in which a rotor 2 and two bearings 54 are fitted to a shaft to a mold stator 53 in which the stator 1 is molded using a resin, and the bracket 54 is connected to the end of the bracket 54. It is fixed to the part.

図22に示すファンモータ50に、実施の形態1〜7の電動機(固定子1、回転子2)を用いることにより、電動要素41のコギングトルクが低減し、ファンモータ50の低振動・低騒音化が図れる。   By using the motors (stator 1 and rotor 2) of the first to seventh embodiments for the fan motor 50 shown in FIG. 22, the cogging torque of the electric element 41 is reduced, and the fan motor 50 has low vibration and low noise. Can be achieved.

実施の形態1を示す図で、同期電動機を示す断面図である。It is a figure which shows Embodiment 1, and is sectional drawing which shows a synchronous motor. 実施の形態1を示す図で、同期電動機の部分断面図である。FIG. 5 is a diagram showing the first embodiment and is a partial cross-sectional view of the synchronous motor. 実施の形態1を示す図で、同期電動機の拡大部分断面図である。FIG. 3 is a diagram showing the first embodiment and is an enlarged partial cross-sectional view of the synchronous motor. 実施の形態1を示す図で、同期電動機のコギングトルク波形を示す図である。It is a figure which shows Embodiment 1, and is a figure which shows the cogging torque waveform of a synchronous motor. 実施の形態1を示す図で、固定子を樹脂でモールドする場合の図である。It is a figure which shows Embodiment 1, and is a figure in the case of molding a stator with resin. 実施の形態2を示す図で、同期電動機の拡大部分断面図である。It is a figure which shows Embodiment 2, and is an expanded partial sectional view of a synchronous motor. 実施の形態3を示す図で、同期電動機の拡大部分断面図である。It is a figure which shows Embodiment 3, and is an expanded partial sectional view of a synchronous motor. 実施の形態4を示す図で、同期電動機の拡大部分断面図である。It is a figure which shows Embodiment 4, and is an expanded partial sectional view of a synchronous motor. 実施の形態5を示す図で、同期電動機の部分断面図である。It is a figure which shows Embodiment 5, and is a fragmentary sectional view of a synchronous motor. 実施の形態5を示す図で、同期電動機の拡大部分断面図である。It is a figure which shows Embodiment 5, and is an expanded partial sectional view of a synchronous motor. 実施の形態6を示す図で、同期電動機の回転子の断面図である。It is a figure which shows Embodiment 6, and is sectional drawing of the rotor of a synchronous motor. 実施の形態6を示す図で、同期電動機の回転子の拡大部分断面図である。It is a figure which shows Embodiment 6, and is an expanded partial sectional view of the rotor of a synchronous motor. 実施の形態6を示す図で、同期電動機に発生するコギングトルクを示す図である。It is a figure which shows Embodiment 6, and is a figure which shows the cogging torque which generate | occur | produces in a synchronous motor. 実施の形態6を示す図で、回転子磁極表面の直線部分が占める幅とコギングトルク、出力トルクの関係を示す図である。FIG. 10 is a diagram illustrating the sixth embodiment, and is a diagram illustrating a relationship between a width occupied by a linear portion of the rotor magnetic pole surface, cogging torque, and output torque. 実施の形態7を示す図で、同期電動機示す断面図である。It is a figure which shows Embodiment 7, and is sectional drawing which shows a synchronous motor. 実施の形態7を示す図で、同期電動機に発生するコギングトルクを示す図である。It is a figure which shows Embodiment 7, and is a figure which shows the cogging torque which generate | occur | produces in a synchronous motor. 実施の形態7を示す図で、同期電動機示す断面図である。It is a figure which shows Embodiment 7, and is sectional drawing which shows a synchronous motor. 実施の形態8を示す図で、ロータリ圧縮機の縦断面図である。It is a figure which shows Embodiment 8, and is a longitudinal cross-sectional view of a rotary compressor. 実施の形態8を示す図で、ロータリ圧縮機の電動要素部分の横断面図である。It is a figure which shows Embodiment 8, and is a cross-sectional view of the electric element part of a rotary compressor. 実施の形態8を示す図で、ロータリ圧縮機の電動要素部分の横断面図である。It is a figure which shows Embodiment 8, and is a cross-sectional view of the electric element part of a rotary compressor. 実施の形態8を示す図で、ロータリ圧縮機の電動要素部分の横断面図である。It is a figure which shows Embodiment 8, and is a cross-sectional view of the electric element part of a rotary compressor. 実施の形態9を示す図で、ファンモータの一例を示す図である。It is a figure which shows Embodiment 9, and is a figure which shows an example of a fan motor.

符号の説明Explanation of symbols

1 固定子、1a 固定子鉄心、1b ティース、2 回転子、3 スロット、4 開口部、5 ギャップ、6 直線部分、6b 円弧部分、6c 三角形部分、6d 台形部分、7 直線部分6がない場合のコギングトルク波形、7b 直線部分12がない場合のコギングトルク波形、7c 固定子鉄心に直線部分6がなく、回転子に直線部分12がない場合のコギングトルク波形、8 直線部分6がある場合のコギングトルク波形、9 溝、10 永久磁石、11 磁極間、12 直線部分、13 直線部分12がある場合のコギングトルク波形、17 固定子鉄心に直線部分6があり、回転子に直線部分12がある場合のコギングトルク波形、20 円弧部分、40 ロータリ圧縮機、41 電動要素、42 圧縮要素、43 密閉容器、50 ファンモータ、51 回転子組立、52 軸受、53 モールド固定子、54 ブラケット。   1 Stator, 1a Stator core, 1b Teeth, 2 Rotor, 3 Slot, 4 Opening, 5 Gap, 6 Straight part, 6b Arc part, 6c Triangle part, 6d Trapezoid part, 7 When there is no 6 straight part Cogging torque waveform, 7b Cogging torque waveform when there is no linear portion 12, 7c Cogging torque waveform when the stator core does not have the linear portion 6 and rotor does not have the linear portion 12, 8 Cogging when there is the linear portion 6 Torque waveform, 9 grooves, 10 permanent magnets, 11 Between magnetic poles, 12 Linear parts, 13 Cogging torque waveform when there are 12 linear parts, 17 When the stator core has the linear part 6 and the rotor has the linear part 12 Cogging torque waveform, 20 arc portion, 40 rotary compressor, 41 electric element, 42 compression element, 43 sealed container, 50 fan Motor, 51 a rotor assembly 52 bearing, 53 mold stator 54 bracket.

Claims (10)

巻線が収納されるスロットと、このスロットの内周部に設けられた前記巻線を巻くための開口部と、この開口部を挟んで前記スロット間に半径方向に延びて形成されるティースとを有する固定子鉄心と、永久磁石を用いた回転子とを備えた同期電動機において、
前記固定子鉄心のティースの内周面で、前記回転子と対向する面の軸直交方向の断面形状を、中央部を前記固定子鉄心の内周面より前記回転子側に張り出した幅広の張り出し部とし、この張り出し部両側は、前記固定子鉄心の内周面の円弧部分で構成し、前記張り出し部と前記円弧部分との接続部に溝を設けたことを特徴とする同期電動機。
A slot for storing the winding, an opening for winding the winding provided in the inner periphery of the slot, and a tooth formed extending in the radial direction between the slots across the opening In a synchronous motor including a stator core having a rotor and a rotor using a permanent magnet,
On the inner peripheral surface of the teeth of the stator core, the cross-sectional shape in the direction perpendicular to the axis of the surface facing the rotor is widened with the center portion protruding from the inner peripheral surface of the stator core toward the rotor side. The synchronous motor is characterized in that both sides of the projecting portion are formed by arc portions of the inner peripheral surface of the stator core, and a groove is provided at a connecting portion between the projecting portion and the arc portion.
巻線が収納されるスロットと、このスロットの内周部に設けられた前記巻線を巻くための開口部と、この開口部を挟んで前記スロット間に半径方向に延びて形成されるティースとを有する固定子鉄心と、永久磁石を用いた回転子とを備えた同期電動機において、
前記固定子鉄心のティースの内周面で、前記回転子と対向する面の軸直交方向の断面形状を、中央部を前記固定子鉄心の内周面より前記回転子側に張り出した幅広の張り出し部とし、この張り出し部両側は、前記固定子鉄心の内周面の円弧部分で構成したことを特徴とする同期電動機。
A slot for storing the winding, an opening for winding the winding provided in the inner periphery of the slot, and a tooth formed extending in the radial direction between the slots across the opening In a synchronous motor including a stator core having a rotor and a rotor using a permanent magnet,
On the inner peripheral surface of the teeth of the stator core, the cross-sectional shape in the direction perpendicular to the axis of the surface facing the rotor is widened with the center portion protruding from the inner peripheral surface of the stator core toward the rotor side. The synchronous motor is characterized in that both sides of the projecting portion are formed by arc portions of the inner peripheral surface of the stator core.
前記張り出し部を直線で構成したことを特徴とする請求項1又は請求項2記載の同期電動機。   The synchronous motor according to claim 1, wherein the projecting portion is configured by a straight line. 前記固定子鉄心に巻線を施した固定子を、樹脂でモールドすることを特徴とする請求項1記載の同期電動機。   The synchronous motor according to claim 1, wherein a stator having windings formed on the stator core is molded with resin. 磁性体の内部に永久磁石を埋め込み、この永久磁石が磁極となる回転子を有する同期電動機において、
前記回転子外周面の軸直交方向の断面形状は、前記永久磁石で構成される磁極の中央部及び磁極間は前記回転子外周面の径と同一径の円弧で構成し、前記磁極の中央部と磁極間との間を、回転子外周面より内側に凹む凹み部としたことを特徴とする同期電動機。
In a synchronous motor having a rotor in which a permanent magnet is embedded inside a magnetic body and this permanent magnet serves as a magnetic pole,
The cross-sectional shape in the direction perpendicular to the axis of the outer peripheral surface of the rotor is formed by an arc having the same diameter as the diameter of the outer peripheral surface of the rotor, and the central part of the magnetic pole formed by the permanent magnet and the central part of the magnetic pole. A synchronous motor characterized in that a space between the magnetic poles and the magnetic poles is formed as a recessed portion recessed inward from the outer peripheral surface of the rotor.
前記凹み部の形状を直線で構成したことを特徴とする請求項5記載の同期電動機。   6. The synchronous motor according to claim 5, wherein the shape of the recess is a straight line. 巻線が収納されるスロットと、このスロットの内周部に設けられた前記巻線を巻くための開口部と、この開口部を挟んで前記スロット間に半径方向に延びて形成されるティースとを有する固定子鉄心と、磁性体の内部に永久磁石を埋め込み、この永久磁石が磁極となる回転子とを備えた同期電動機において、
前記固定子鉄心のティースの内周面で、前記回転子と対向する面の軸直交方向の断面形状を、中央部を前記固定子鉄心の内周面より前記回転子側に張り出した幅広の張り出し部とし、この張り出し部両側は、前記固定子鉄心の内周面の円弧部分で構成し、前記張り出し部と前記円弧部分との接続部に溝を設け、前記回転子外周面の軸直交方向の断面形状は、前記永久磁石で構成される磁極の中央部及び磁極間は前記回転子外周面の径と同一径の円弧で構成し、前記磁極の中央部と磁極間との間を、回転子外周面より内側に凹む凹み部としたことを特徴とする同期電動機。
A slot for storing the winding, an opening for winding the winding provided in the inner periphery of the slot, and a tooth formed extending in the radial direction between the slots across the opening In a synchronous motor including a stator iron core having a permanent magnet embedded in a magnetic body and a rotor in which the permanent magnet serves as a magnetic pole,
On the inner peripheral surface of the teeth of the stator core, the cross-sectional shape in the direction perpendicular to the axis of the surface facing the rotor is widened with the center portion protruding from the inner peripheral surface of the stator core toward the rotor side. And both sides of the projecting portion are formed by arc portions of the inner peripheral surface of the stator core, and a groove is provided at a connection portion between the projecting portion and the arc portion, and the rotor outer peripheral surface is perpendicular to the axis direction. The cross-sectional shape is composed of an arc having the same diameter as that of the outer peripheral surface of the rotor between the central part of the magnetic pole and the magnetic pole made of the permanent magnet, and the rotor is provided between the central part of the magnetic pole and the magnetic pole. A synchronous motor characterized in that it is a recessed portion recessed inward from the outer peripheral surface.
巻線が収納されるスロットと、このスロットの内周部に設けられた前記巻線を巻くための開口部と、この開口部を挟んで前記スロット間に半径方向に延びて形成されるティースとを有する固定子鉄心と、磁性体の内部に永久磁石を埋め込み、この永久磁石が磁極となる回転子とを備えた同期電動機において、
前記固定子鉄心のティースの内周面で、前記回転子と対向する面の軸直交方向の断面形状を、中央部を前記固定子鉄心の内周面より前記回転子側に張り出した幅広の張り出し部とし、この張り出し部両側は、前記固定子鉄心の内周面の円弧部分で構成し、前記回転子外周面の軸直交方向の断面形状は、前記永久磁石で構成される磁極の中央部及び磁極間は前記回転子外周面の径と同一径の円弧で構成し、前記磁極の中央部と磁極間との間を、回転子外周面より内側に凹む凹み部としたことを特徴とする同期電動機。
A slot for storing the winding, an opening for winding the winding provided in the inner periphery of the slot, and a tooth formed extending in the radial direction between the slots across the opening In a synchronous motor including a stator iron core having a permanent magnet embedded in a magnetic body and a rotor in which the permanent magnet serves as a magnetic pole,
On the inner peripheral surface of the teeth of the stator core, the cross-sectional shape in the direction perpendicular to the axis of the surface facing the rotor is widened with the center portion protruding from the inner peripheral surface of the stator core toward the rotor side. And both sides of the projecting portion are formed by arc portions of the inner peripheral surface of the stator core, and the cross-sectional shape in the direction perpendicular to the axis of the outer peripheral surface of the rotor is the central portion of the magnetic pole formed by the permanent magnet. The synchronization is characterized in that the gap between the magnetic poles is formed by an arc having the same diameter as that of the outer peripheral surface of the rotor, and a recess between the central portion of the magnetic pole and the gap between the magnetic poles is recessed inward from the outer peripheral surface of the rotor. Electric motor.
圧縮要素と電動要素とを有する密閉型圧縮機において、
請求項1乃至8のいずれかに記載の同期電動機を前記電動要素に用いたことを特徴とする密閉型圧縮機。
In a hermetic compressor having a compression element and an electric element,
A hermetic compressor using the synchronous motor according to any one of claims 1 to 8 as the electric element.
請求項1乃至8のいずれかに記載の同期電動機を用いたことを特徴とするファンモータ。   A fan motor using the synchronous motor according to any one of claims 1 to 8.
JP2004052868A 2004-02-27 2004-02-27 Synchronous motor, hermetic compressor and fan motor Expired - Lifetime JP4319562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004052868A JP4319562B2 (en) 2004-02-27 2004-02-27 Synchronous motor, hermetic compressor and fan motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004052868A JP4319562B2 (en) 2004-02-27 2004-02-27 Synchronous motor, hermetic compressor and fan motor

Publications (2)

Publication Number Publication Date
JP2005245146A true JP2005245146A (en) 2005-09-08
JP4319562B2 JP4319562B2 (en) 2009-08-26

Family

ID=35026261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004052868A Expired - Lifetime JP4319562B2 (en) 2004-02-27 2004-02-27 Synchronous motor, hermetic compressor and fan motor

Country Status (1)

Country Link
JP (1) JP4319562B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1734638A1 (en) * 2005-06-13 2006-12-20 Samsung Electronics Co.,Ltd. Permanent-magnet motor
EP1826885A2 (en) * 2006-02-28 2007-08-29 Kabushiki Kaisha Toyota Jidoshokki Rotating electrical machine with embedded permanent magnets, motor for car air conditioner, and closed electric compressor
WO2009119734A1 (en) * 2008-03-26 2009-10-01 日本電産株式会社 Motor
KR101099496B1 (en) 2005-09-16 2011-12-28 삼성전자주식회사 External rotor?type permanent magnet synchronous electromotor
KR101106647B1 (en) 2007-06-05 2012-01-18 삼성전자주식회사 Permanent magnet motor
JP2014007796A (en) * 2012-06-21 2014-01-16 Mazda Motor Corp Rotor structure of rotary electric machine
US20150022044A1 (en) * 2013-07-22 2015-01-22 Steering Solutions Ip Holding Corporation System and method for reducing torque ripple in an interior permanent magnet motor
JPWO2013054439A1 (en) * 2011-10-14 2015-03-30 三菱電機株式会社 Permanent magnet type motor
US9564779B2 (en) 2011-10-14 2017-02-07 Mitsubishi Electric Corporation Permanent magnet motor
CN106385154A (en) * 2016-09-26 2017-02-08 上海特波电机有限公司 External rotor brushless permanent magnet motor
KR20190056036A (en) * 2017-11-16 2019-05-24 엘지이노텍 주식회사 Motor
WO2020003390A1 (en) * 2018-06-27 2020-01-02 三菱電機株式会社 Motor, compressor, blower, and refrigeration air conditioner
WO2020195398A1 (en) * 2019-03-28 2020-10-01 日本電産株式会社 Motor
CN113765252A (en) * 2021-09-18 2021-12-07 广东美芝制冷设备有限公司 Motor, compressor and refrigeration plant
EP3985836A4 (en) * 2019-06-11 2022-08-10 LG Innotek Co., Ltd. Motor
WO2023026563A1 (en) * 2021-08-23 2023-03-02 日立グローバルライフソリューションズ株式会社 Rotary electrical machine and washing machine equipped with same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105281459A (en) * 2015-07-23 2016-01-27 珠海格力电器股份有限公司 Motor rotor structure, permanent magnet motor and compressor
CN106160383A (en) * 2016-07-19 2016-11-23 中国第汽车股份有限公司 A kind of concentratred winding internal permanent magnet synchronous motor for new forms of energy car

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1734638A1 (en) * 2005-06-13 2006-12-20 Samsung Electronics Co.,Ltd. Permanent-magnet motor
US7550891B2 (en) 2005-06-13 2009-06-23 Samsung Electronics Co., Ltd. Permanent magnet motor having stator poles with stepped-end-surfaces and rotor with outer-circumferential-recessed surface
KR101099496B1 (en) 2005-09-16 2011-12-28 삼성전자주식회사 External rotor?type permanent magnet synchronous electromotor
EP1826885A2 (en) * 2006-02-28 2007-08-29 Kabushiki Kaisha Toyota Jidoshokki Rotating electrical machine with embedded permanent magnets, motor for car air conditioner, and closed electric compressor
EP1826885A3 (en) * 2006-02-28 2014-07-02 Kabushiki Kaisha Toyota Jidoshokki Rotating electrical machine with embedded permanent magnets, motor for car air conditioner, and closed electric compressor
KR101106647B1 (en) 2007-06-05 2012-01-18 삼성전자주식회사 Permanent magnet motor
WO2009119734A1 (en) * 2008-03-26 2009-10-01 日本電産株式会社 Motor
JPWO2013054439A1 (en) * 2011-10-14 2015-03-30 三菱電機株式会社 Permanent magnet type motor
US9564779B2 (en) 2011-10-14 2017-02-07 Mitsubishi Electric Corporation Permanent magnet motor
JP2014007796A (en) * 2012-06-21 2014-01-16 Mazda Motor Corp Rotor structure of rotary electric machine
US20150022044A1 (en) * 2013-07-22 2015-01-22 Steering Solutions Ip Holding Corporation System and method for reducing torque ripple in an interior permanent magnet motor
CN106385154A (en) * 2016-09-26 2017-02-08 上海特波电机有限公司 External rotor brushless permanent magnet motor
KR20190056036A (en) * 2017-11-16 2019-05-24 엘지이노텍 주식회사 Motor
KR102574508B1 (en) * 2017-11-16 2023-09-05 엘지이노텍 주식회사 Motor
WO2020003390A1 (en) * 2018-06-27 2020-01-02 三菱電機株式会社 Motor, compressor, blower, and refrigeration air conditioner
CN112335154A (en) * 2018-06-27 2021-02-05 三菱电机株式会社 Motor, compressor, blower, and refrigeration and air-conditioning apparatus
JPWO2020003390A1 (en) * 2018-06-27 2021-02-15 三菱電機株式会社 Electric motors, compressors, blowers, and refrigeration and air conditioners
CN112335154B (en) * 2018-06-27 2023-04-25 三菱电机株式会社 Motor, compressor, blower, and refrigerating and air-conditioning apparatus
US11770033B2 (en) 2018-06-27 2023-09-26 Mitsubishi Electric Corporation Electric motor, compressor, fan, and refrigerating and air conditioning apparatus
WO2020195398A1 (en) * 2019-03-28 2020-10-01 日本電産株式会社 Motor
CN113439382A (en) * 2019-03-28 2021-09-24 日本电产株式会社 Motor
EP3985836A4 (en) * 2019-06-11 2022-08-10 LG Innotek Co., Ltd. Motor
WO2023026563A1 (en) * 2021-08-23 2023-03-02 日立グローバルライフソリューションズ株式会社 Rotary electrical machine and washing machine equipped with same
CN113765252A (en) * 2021-09-18 2021-12-07 广东美芝制冷设备有限公司 Motor, compressor and refrigeration plant
CN113765252B (en) * 2021-09-18 2023-09-05 广东美芝制冷设备有限公司 Motor, compressor and refrigeration equipment

Also Published As

Publication number Publication date
JP4319562B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
JP4319562B2 (en) Synchronous motor, hermetic compressor and fan motor
JP5643127B2 (en) Rotating machine rotor
US10734852B2 (en) Motor
JP5038475B2 (en) Rotor
JP5332082B2 (en) motor
US10205359B2 (en) Low cost permanent magnet motor for an electric power steering system
JP2007014110A (en) Rotary electric machine
JP2002315243A (en) Permanent magnet type rotary electric machine
JP2006304546A (en) Permanent magnet reluctance type rotary electric machine
JP5511921B2 (en) Electric motor, blower and compressor
JP2006288043A (en) Permanent magnet type motor
JP6196864B2 (en) Permanent magnet rotating electric machine
JP2008278590A (en) Rotary electric machine
JP4791325B2 (en) Synchronous motor, air conditioner and ventilation fan
JP2008278649A (en) Axial gap rotary electric machine and field magnetic element
JP2004088855A (en) Dc motor and rotor thereof
JP5264551B2 (en) Electric motor, blower and compressor
JP2008172918A (en) Axial gap type motor and compressor
WO2017042886A1 (en) Permanent magnet-type rotating electric motor and compressor using same
JP2013201865A (en) Brushless motor
JP7006103B2 (en) Rotor and motor
WO2021106153A1 (en) Rotary electric machine
JP6950275B2 (en) Rotor and motor
JP2007259514A (en) Rotating electric machine for employing divided stator iron core
JP4993278B2 (en) Permanent magnet type rotating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090305

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4319562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250