JP4791325B2 - Synchronous motor, air conditioner and ventilation fan - Google Patents

Synchronous motor, air conditioner and ventilation fan Download PDF

Info

Publication number
JP4791325B2
JP4791325B2 JP2006289350A JP2006289350A JP4791325B2 JP 4791325 B2 JP4791325 B2 JP 4791325B2 JP 2006289350 A JP2006289350 A JP 2006289350A JP 2006289350 A JP2006289350 A JP 2006289350A JP 4791325 B2 JP4791325 B2 JP 4791325B2
Authority
JP
Japan
Prior art keywords
synchronous motor
magnet
rotor
magnetic pole
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006289350A
Other languages
Japanese (ja)
Other versions
JP2008109763A (en
Inventor
篤 松岡
祥子 川崎
芳雄 滝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006289350A priority Critical patent/JP4791325B2/en
Publication of JP2008109763A publication Critical patent/JP2008109763A/en
Application granted granted Critical
Publication of JP4791325B2 publication Critical patent/JP4791325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

この発明は、マグネットを用いた回転子を備えた同期電動機に係り、低価格、高効率、低騒音を実現する同期電動機、及びそれを用いた空気調和機及び換気用送風機及び密閉形圧縮機に関するものである。   The present invention relates to a synchronous motor provided with a rotor using a magnet, and relates to a synchronous motor that realizes low cost, high efficiency, and low noise, and an air conditioner, a ventilation fan, and a hermetic compressor using the same. Is.

回転子にマグネットを用いる同期電動機においては、出力されるトルクの脈動を抑えるためには、電動機に発生する誘起電圧を正弦波状にする必要がある。誘起電圧を正弦波状にするために、回転子表面の磁束密度を正弦波状の分布にする。   In a synchronous motor using a magnet as a rotor, in order to suppress pulsation of output torque, it is necessary to make an induced voltage generated in the motor sinusoidal. In order to make the induced voltage sinusoidal, the magnetic flux density on the rotor surface has a sinusoidal distribution.

例えば、ロータのリング状マグネットは筒状でステータの極歯および補極と対向する外周面は、隣接する磁極N、Sが異極となるように外周面に沿って磁極を複数着磁し、隣接する異極N、Sの中間位置に凹部を設けて、磁極N、Sの各中心部を凸面に形成する。ステータの極歯から等距離にある見掛け線上では着磁は正弦波形となるモータが提案されている(例えば、特許文献1参照)。
特開2002−262491号公報
For example, the ring-shaped magnet of the rotor is cylindrical and the outer peripheral surface facing the pole teeth and the auxiliary pole of the stator is magnetized with a plurality of magnetic poles along the outer peripheral surface so that the adjacent magnetic poles N and S have different polarities, A concave portion is provided at an intermediate position between adjacent different polarities N and S, and the central portions of the magnetic poles N and S are formed as convex surfaces. There has been proposed a motor whose magnetization is a sine waveform on an apparent line equidistant from the pole teeth of the stator (see, for example, Patent Document 1).
JP 2002-262491 A

回転子表面の磁束密度の分布を正弦波状にするには、例えば、回転子表面に配置するマグネットの形状を、磁極中心部分の肉厚を厚くして、磁極間に向かって徐々に厚みを薄くする形状を取ることがある。この場合、回転子と固定子を組み合わせた時の回転子、固定子間の空隙における磁束密度の最大値、言い換えると、正弦波状に分布させた磁束密度の振幅は、マグネットの厚みによって決まる。このため、磁束密度を大きくとるためには、マグネットの厚みを大きくする必要があり、マグネットの使用量が増加してしまうという課題がある。   To make the distribution of magnetic flux density on the rotor surface sinusoidal, for example, the shape of the magnet placed on the rotor surface is made thicker at the center of the magnetic pole, and the thickness gradually decreases between the magnetic poles. May take shape. In this case, the maximum value of the magnetic flux density in the gap between the rotor and the stator when the rotor and the stator are combined, in other words, the amplitude of the magnetic flux density distributed in a sinusoidal shape is determined by the thickness of the magnet. Therefore, in order to increase the magnetic flux density, it is necessary to increase the thickness of the magnet, and there is a problem that the amount of magnet used increases.

また、回転子から発生する磁束量をより多く得るために、表面の磁束密度の分布を長方形(台形状)に近づけることで実現は可能である。しかし、この場合、誘起電圧に含まれる高調波成分が増加することとなり、トルクの脈動は大きくなり、振動・騒音の要因となる。   Further, in order to obtain a larger amount of magnetic flux generated from the rotor, it can be realized by bringing the distribution of the magnetic flux density on the surface closer to a rectangle (trapezoid). However, in this case, the harmonic component contained in the induced voltage increases, and the torque pulsation becomes large, causing vibration and noise.

この発明は、上記のような課題を解決するためになされたもので、振動・騒音を増加させることなく、出力及び効率を向上させることができる同期電動機及びそれを用いた空気調和機及び換気用送風機及び密閉形圧縮機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and a synchronous motor that can improve output and efficiency without increasing vibration and noise, an air conditioner using the same, and a ventilator. An object is to provide a blower and a hermetic compressor.

この発明に係る同期電動機は、マグネットを有し、磁極数がp(偶数)の回転子と、n(2以上の整数)相の巻線を有する固定子とを備え、回転子と固定子との間に空隙を有する同期電動機において、空隙の磁束密度波形に1/2×p×n×m(mは奇数)次の高調波成分を、他の高調波成分より多く含ませることを特徴とする。   A synchronous motor according to the present invention includes a rotor having a magnet, the number of magnetic poles being p (even), and a stator having an n (integer greater than or equal to 2) phase winding, the rotor and the stator, In the synchronous motor having a gap between, the magnetic flux density waveform of the gap includes a harmonic component of 1/2 × p × n × m (m is an odd number) order more than other harmonic components. To do.

この発明に係る同期電動機は、空隙の磁束密度波形に1/2×p×n×m次の高調波成分を含ませることにより、磁束密度の最大値が同じであっても、トルクを発生させるのに必要な1/2×p次の周波数成分を多く含ませることができ、同期電動機の高トルク化、高効率化が可能となる。また、1/2×p×n×m次の高調波成分は、n相の固定子巻線の中で互いに打ち消しあって、誘起電圧には現れないため、余計なトルクの脈動が発生せず、振動・騒音を増加させない。   The synchronous motor according to the present invention generates torque even if the maximum value of the magnetic flux density is the same by including a harmonic component of 1/2 × p × n × m order in the magnetic flux density waveform of the air gap. Therefore, it is possible to include a large number of 1/2 × p-order frequency components necessary for the above, and it is possible to increase the torque and the efficiency of the synchronous motor. In addition, since the harmonic components of 1/2 × p × n × m order cancel each other in the n-phase stator winding and do not appear in the induced voltage, no extra torque pulsation occurs. Does not increase vibration and noise.

実施の形態1.
図1乃至図4は実施の形態1に示す図で、図1は同期電動機の回転子20の斜視図、図2は同期電動機の回転子20の部分断面図、図3は固定子(図示せず)と同期電動機の回転子20とを組み合わせたときの空隙(固定子と回転子との間の部分)の磁束密度分布を示す図、図4は同期電動機の空隙磁束密度波形に含まれる高次の周波数成分と1磁極対で構成される周期の波の振幅との関係を示す図である。
Embodiment 1 FIG.
1 to 4 are diagrams showing the first embodiment. FIG. 1 is a perspective view of a rotor 20 of a synchronous motor, FIG. 2 is a partial sectional view of the rotor 20 of the synchronous motor, and FIG. 3 is a stator (not shown). 1) and the synchronous motor rotor 20 are combined to show the magnetic flux density distribution in the air gap (portion between the stator and the rotor), and FIG. It is a figure which shows the relationship between the amplitude of the wave of the period comprised by the following frequency component and one magnetic pole pair.

図1に示すように、本実施の形態に示す同期電動機の回転子20は、磁極毎に分割されたマグネット1を磁性体で構成されたヨーク2の表面に配置したものである。マグネット1はヨーク2の表面に接着又はモールド等により固定される。ヨーク2には、その中心部に軸21が嵌合している。図1の同期電動機の回転子20は、磁極毎に分割されたマグネット1を8個使用する。マグネット1の材料はフェライトの焼結が一般的である。   As shown in FIG. 1, the rotor 20 of the synchronous motor shown in this embodiment has a magnet 1 divided for each magnetic pole arranged on the surface of a yoke 2 made of a magnetic material. The magnet 1 is fixed to the surface of the yoke 2 by bonding or molding. A shaft 21 is fitted to the center of the yoke 2. The rotor 20 of the synchronous motor shown in FIG. 1 uses eight magnets 1 divided for each magnetic pole. The material of the magnet 1 is generally sintered ferrite.

それぞれのマグネット1は、内周面はリング状のヨーク2の表面形状に沿う円弧形状である。外周面は全体的には外側に凸の略円弧形状であるが、単純な形状ではない。本実施の形態は、マグネット1の外周面の形状に特徴がある。以下、詳細に説明する。   Each of the magnets 1 has an arc shape along the surface shape of the ring-shaped yoke 2 on the inner peripheral surface. The outer peripheral surface has a generally arc shape that protrudes outward, but is not a simple shape. This embodiment is characterized by the shape of the outer peripheral surface of the magnet 1. Details will be described below.

図2に示すように、マグネット1の断面形状は、磁極中心3付近が内側に凹む。そして磁極中心3から離れるにつれ、磁極中心3の両側とも所定の範囲で徐々に径方向の厚さが増し、磁極中心の両側4で最大肉厚となる。さらに磁極中心の両側4からマグネット1の両端部までは、径方向の厚さが徐々に小さくなる。最大肉厚となる磁極中心の両側4では、空隙の磁束密度の分布も最大となる。   As shown in FIG. 2, the cross-sectional shape of the magnet 1 is recessed in the vicinity of the magnetic pole center 3. As the distance from the magnetic pole center 3 increases, the thickness in the radial direction gradually increases within a predetermined range on both sides of the magnetic pole center 3 and reaches the maximum thickness on both sides 4 of the magnetic pole center. Further, the radial thickness gradually decreases from both sides 4 of the magnetic pole center to both ends of the magnet 1. On both sides 4 of the magnetic pole center having the maximum thickness, the distribution of the magnetic flux density of the air gap is also maximized.

固定子(図示せず)と同期電動機の回転子20とを組み合わせたときの空隙の磁束密度分布は図3に示すようになる。図3は、1磁極対分(2極分)の空隙の磁束密度波形を示しており、磁極中心3のマグネット1の径方向の厚さを磁極中心の両側4の径方向の厚さよりも薄くすることで、磁極中心3の磁束密度は低くなり、空隙の磁束密度波形は、1次と3次の周波数成分を含む波形5のようになる。1次と3次の周波数成分を含む波形5は、3次の周波数成分を他の高調波成分より多く含む。   FIG. 3 shows the magnetic flux density distribution of the air gap when the stator (not shown) and the synchronous motor rotor 20 are combined. FIG. 3 shows a magnetic flux density waveform of the gap for one magnetic pole pair (for two poles), and the radial thickness of the magnet 1 at the magnetic pole center 3 is smaller than the radial thickness at both sides 4 of the magnetic pole center. As a result, the magnetic flux density at the magnetic pole center 3 is lowered, and the magnetic flux density waveform of the air gap becomes a waveform 5 including the first and third frequency components. The waveform 5 including the first-order and third-order frequency components includes more third-order frequency components than other harmonic components.

図3において、1次と3次の周波数成分を含む波形5は、1磁極対で1周期となる1次の成分と、その3倍の周波数の成分である3次の成分を含有したものである。1次と3次の周波数成分を含む波形5と1次成分のみの波形6とを比較すると、最大値はほぼ同じであるが、1次と3次の周波数成分を含む波形5に含まれる1次成分7は、図中の破線で示すように1次成分のみの波形6よりも振幅が大きくなっている。   In FIG. 3, the waveform 5 including the primary and tertiary frequency components includes a primary component that is one cycle with one magnetic pole pair and a tertiary component that is a component of three times the frequency. is there. When the waveform 5 including the primary and tertiary frequency components is compared with the waveform 6 including only the primary component, the maximum values are substantially the same, but the waveform 1 including the primary and tertiary frequency components includes 1 The amplitude of the next component 7 is larger than that of the waveform 6 including only the first component, as indicated by a broken line in the figure.

これにより、固定子の巻線(図示せず)に発生する誘起電圧に含まれる1次の成分も大きくなる。同期電動機より発生するトルクは、巻線の誘起電圧と電流の積で発生するため、同一電流を流した時により大きなトルクが得られる。あるいは、同一トルクを出力するために必要な電流は少なくて済むことから、巻線で発生する損失(銅損)は減少し、電動機の効率は向上する。   As a result, the primary component included in the induced voltage generated in the stator winding (not shown) also increases. Since the torque generated from the synchronous motor is generated by the product of the induced voltage and current of the winding, a larger torque can be obtained when the same current is passed. Alternatively, since less current is required to output the same torque, the loss (copper loss) generated in the winding is reduced and the efficiency of the motor is improved.

3相の電動機の場合、空隙の磁束密度波形に3次の周波数成分が含まれていても、固定子の誘起電圧は相間で互いに3次の周波数成分を打ち消し合うため、各相には3次の周波数成分は現れない。このため、出力されるトルクには脈動が発生せず、振動・騒音の発生を抑えることができる。   In the case of a three-phase motor, even if a third-order frequency component is included in the magnetic flux density waveform of the air gap, the induced voltage of the stator cancels out the third-order frequency component between the phases. This frequency component does not appear. For this reason, pulsation does not occur in the output torque, and generation of vibration and noise can be suppressed.

このように、3相の固定子巻線を持つ同期電動機において、空隙の磁束密度波形に、1磁極対で構成する周期の波形に1次成分と3次成分を他の高調波成分より多く含有させることで、同期電動機の出力を向上し、効率を向上させることと同時に、同期電動機の振動・騒音の発生を抑えることが可能となる。   Thus, in a synchronous motor having a three-phase stator winding, the magnetic flux density waveform of the air gap contains more primary and tertiary components than the other harmonic components in the period waveform composed of one magnetic pole pair. As a result, the output of the synchronous motor can be improved, the efficiency can be improved, and at the same time, the generation of vibration and noise of the synchronous motor can be suppressed.

図4は、1磁極対分の空隙の磁束密度分布の波形にその3倍の周波数の成分を含有させる割合(高調波含有率)を横軸にとり、1磁極対分の空隙の磁束密度分布の波形の最大振幅に対する1次成分の振幅の割合(基本波振幅比)を縦軸に取ったグラフを示す。空隙の磁束密度分布に3次の成分を含有させることで、波形に含まれる1次成分を大きくすることができる。波形の振幅値に対して、1次成分が10%以上大きくなる範囲8は、3次成分を9〜28%含有する時である。その中でも、1次成分が最も大きくなる範囲9は、3次成分を14〜20%含有する時である。   In FIG. 4, the horizontal axis represents the ratio (harmonic content rate) of the component of the magnetic flux density distribution of the gap of one magnetic pole pair, and the horizontal axis indicates the ratio of the magnetic flux density distribution of one magnetic pole pair. The graph which took the ratio (fundamental wave amplitude ratio) of the amplitude of the primary component with respect to the maximum amplitude of a waveform on the vertical axis | shaft is shown. By including a third-order component in the magnetic flux density distribution of the air gap, the first-order component included in the waveform can be increased. A range 8 in which the primary component is increased by 10% or more with respect to the amplitude value of the waveform is when the tertiary component is contained by 9 to 28%. Among them, the range 9 in which the primary component becomes the largest is when the tertiary component is contained in an amount of 14 to 20%.

本実施の形態では、回転子のマグネット1の表面磁束分布に、1磁極対で構成する周期の波形に1次成分と3次成分のみを多く含有させるものを示したが、3次成分の奇数倍の高調波を含有させてもよい。   In the present embodiment, the surface magnetic flux distribution of the rotor magnet 1 is shown in which only a primary component and a tertiary component are included in the waveform of the period formed by one magnetic pole pair. Double harmonics may be included.

また、3相の固定子巻線を持つ同期電動機を例に説明したが、3相に限定されない。固定子巻線は、任意の相数でよい。   Moreover, although the synchronous motor having a three-phase stator winding has been described as an example, it is not limited to three phases. The stator winding may have any number of phases.

以上より、回転子の極数をp(偶数)、固定子巻線の相数をn(2以上の整数)、mを奇数とすると、回転子の表面磁束密度波形に、1/2×p×n×m次の高調波成分を多く含ませることにより、同期電動機の出力、効率を向上させることと同時に、同期電動機の振動・騒音の発生を抑えることが可能となる。   From the above, if the number of poles of the rotor is p (even), the number of phases of the stator winding is n (an integer of 2 or more), and m is an odd number, the surface magnetic flux density waveform of the rotor is 1/2 × p. By including many harmonic components of × n × m order, the output and efficiency of the synchronous motor can be improved, and at the same time, the generation of vibration and noise of the synchronous motor can be suppressed.

実施の形態2.
図5乃至図7は実施の形態2を示す図で、図5は同期電動機の回転子20の部分断面図、図6は同期電動機の回転子20に用いるマグネット1の斜視図、図7は同期電動機の回転子20に用いるマグネット1の斜視図である。
Embodiment 2. FIG.
5 to 7 are diagrams showing the second embodiment. FIG. 5 is a partial sectional view of the rotor 20 of the synchronous motor. FIG. 6 is a perspective view of the magnet 1 used for the rotor 20 of the synchronous motor. It is a perspective view of the magnet 1 used for the rotor 20 of an electric motor.

本実施の形態の同期電動機の回転子20は、磁性体のヨーク2の表面にリング状のマグネット1を配置している。マグネット1は、ラジアル方向に着磁あるいは配向がされている。   In the rotor 20 of the synchronous motor of the present embodiment, a ring-shaped magnet 1 is disposed on the surface of a magnetic yoke 2. The magnet 1 is magnetized or oriented in the radial direction.

リング状のマグネット1の各磁極中心3の外周部には溝3a(断面形状が略U字状、軸方向に形成される)があり、この溝3a部分のみがマグネット1の径方向の厚さが薄くなっている。これによって、磁極中心3の磁束密度が低くなり、図3と同じような空隙磁束密度の分布波形となる。溝3aの形状(周方向の長さ、径方向の深さ)を変化させることにより、空隙の磁束密度波形に含まれる3次成分を変化させることができ、最適化することができる。   There is a groove 3a (a cross-sectional shape is substantially U-shaped and formed in the axial direction) on the outer periphery of each magnetic pole center 3 of the ring-shaped magnet 1, and only the groove 3a portion has a thickness in the radial direction of the magnet 1. Is thinner. As a result, the magnetic flux density at the magnetic pole center 3 is lowered, and the air gap magnetic flux density distribution waveform is the same as in FIG. By changing the shape of the groove 3a (the length in the circumferential direction and the depth in the radial direction), the third order component included in the magnetic flux density waveform of the air gap can be changed and optimized.

マグネット1の厚み(溝3aがない部分)が決まれば、マグネット表面の磁束密度の最大値も決まる。最大の磁束密度が同じでも、磁極中心3に溝3aを設けることで、溝3aがない場合より空隙の磁束密度波形に含有される1次の成分は大きくなり、同期電動機の高トルク化、高効率化が可能である。   If the thickness of the magnet 1 (the portion without the groove 3a) is determined, the maximum value of the magnetic flux density on the magnet surface is also determined. Even if the maximum magnetic flux density is the same, by providing the groove 3a at the magnetic pole center 3, the primary component contained in the magnetic flux density waveform of the air gap becomes larger than when there is no groove 3a, and the synchronous motor has a higher torque and higher power. Efficiency can be improved.

空隙の磁束密度分布は、マグネット1の着磁に用いるヨークの形状や、印加する電流で調整することができる。或いは、マグネット1の軸方向の長さを変化させて固定子の巻線に鎖交する磁束量を調整することによっても空隙の磁束密度分布を調整することができる。例えば、図6に示すように、磁極間の軸方向両端に磁極間の切り欠き10を設けることによって、磁束量の変化を、例えば、図3の1次と3次の周波数成分を含む波形5のように調整することも可能である。   The magnetic flux density distribution of the air gap can be adjusted by the shape of the yoke used for magnetizing the magnet 1 and the applied current. Alternatively, the magnetic flux density distribution of the air gap can also be adjusted by changing the axial length of the magnet 1 and adjusting the amount of magnetic flux linked to the stator winding. For example, as shown in FIG. 6, by providing notches 10 between the magnetic poles at both ends in the axial direction between the magnetic poles, a change in the amount of magnetic flux is represented by, for example, a waveform 5 including the primary and tertiary frequency components in FIG. It is also possible to adjust as follows.

また、図7に示すように磁極中心3に溝3aを設ける代わりに、磁極中心3の軸方向両端に磁極中心部の切り欠き11を設けることによっても同様に、磁束量の変化を、例えば、図3の1次と3次の周波数成分を含む波形5のように調整することも可能である。   Further, instead of providing the groove 3a in the magnetic pole center 3 as shown in FIG. 7, by providing notches 11 in the magnetic pole center at both ends in the axial direction of the magnetic pole center 3, the change in the amount of magnetic flux It is also possible to adjust like the waveform 5 including the primary and tertiary frequency components in FIG.

実施の形態3.
図8及び図9は実施の形態3を示す図で、図8は同期電動機の回転子20の斜視図、図9は同期電動機の回転子20に用いるマグネット1の着磁の向きを示す断面図である。
Embodiment 3 FIG.
8 and 9 are diagrams showing the third embodiment, FIG. 8 is a perspective view of the rotor 20 of the synchronous motor, and FIG. 9 is a cross-sectional view showing the direction of magnetization of the magnet 1 used in the rotor 20 of the synchronous motor. It is.

図8に示すように、磁性体のヨーク2表面にリング状のマグネット1を配置する点は、前述の実施の形態2と同様である。本実施の形態では、マグネット1に等方性の材料(希土類磁石)を用いており、着磁ヨークの形状、着磁条件によって、図9に示すように磁極中心3よりも磁極中心の両側4に磁束が集中するように着磁を行なう。   As shown in FIG. 8, the point that the ring-shaped magnet 1 is arranged on the surface of the magnetic yoke 2 is the same as in the second embodiment. In the present embodiment, an isotropic material (rare earth magnet) is used for the magnet 1, and both sides 4 of the magnetic pole center rather than the magnetic pole center 3 are shown in FIG. Magnetization is performed so that the magnetic flux is concentrated on.

これによって、回転子表面の磁束密度分布は、3よりも磁極中心の両側4でピークを取るような波形となる。このようにして、空隙の磁束密度の分布波形を1次と3次の成分を多く含む波形となるように調整することで、より1次成分を多く含み、同期電動機を振動・騒音の発生を抑えながら高トルク化、高効率化することを可能にする。   As a result, the magnetic flux density distribution on the rotor surface has a waveform that takes a peak on both sides 4 of the magnetic pole center rather than 3. In this way, the distribution waveform of the magnetic flux density in the air gap is adjusted so as to have a waveform containing a large amount of primary and tertiary components, so that the synchronous motor can generate vibration and noise. High torque and high efficiency can be achieved while suppressing.

実施の形態4.
図10及び図11は実施の形態4を示す図で、図10は同期電動機の回転子20の斜視図、図11は同期電動機の回転子20のマグネット1の配向の向きを示す断面図である。
Embodiment 4 FIG.
10 and 11 are diagrams showing the fourth embodiment. FIG. 10 is a perspective view of the rotor 20 of the synchronous motor. FIG. 11 is a cross-sectional view showing the orientation of the magnet 1 of the rotor 20 of the synchronous motor. .

前述の実施の形態1乃至3とは異なり、同期電動機の回転子20に磁路としての磁性体(ヨーク2)を用いていない。マグネット1は、樹脂等で成形される連結部22で軸21と結合している。そして、異方性材料のマグネット1を用いており、マグネット1の成形時に極異方の磁場を印加する。これによって、マグネット1内部で極異方の配向がなされ、マグネット1と軸21との間に磁性体のヨーク2がなくても十分な磁束量が得られる。   Unlike Embodiments 1 to 3 described above, the rotor 20 of the synchronous motor does not use a magnetic body (yoke 2) as a magnetic path. The magnet 1 is coupled to the shaft 21 by a connecting portion 22 formed of resin or the like. An anisotropic material magnet 1 is used, and an extremely anisotropic magnetic field is applied when the magnet 1 is formed. As a result, an anisotropic orientation is made inside the magnet 1, and a sufficient amount of magnetic flux can be obtained without the magnetic yoke 2 between the magnet 1 and the shaft 21.

マグネット1の肉厚が厚くなるため、材料としては、フェライトの焼結あるいは、プラスチックマグネットが用いられることが多い。回転子表面の磁束密度分布の波形は、成形時の配向磁場の分布で調整ができる。そのため、図11(a)に示すように、マグネット1の配向を調整することで、図11(b)に示すような磁極中心3よりもその両側4に磁束が集中し、1次、3次を多く含有する表面磁束密度波形を実現でき、同期電動機の振動・騒音を抑えながら、トルクの向上、効率の向上が可能となる。   Since the thickness of the magnet 1 is increased, as a material, sintered ferrite or a plastic magnet is often used. The waveform of the magnetic flux density distribution on the rotor surface can be adjusted by the distribution of the orientation magnetic field during molding. Therefore, as shown in FIG. 11A, by adjusting the orientation of the magnet 1, the magnetic flux is concentrated on both sides 4 of the magnetic pole center 3 as shown in FIG. It is possible to achieve a surface magnetic flux density waveform that contains a large amount of, and to improve torque and efficiency while suppressing vibration and noise of the synchronous motor.

実施の形態5.
図12は実施の形態5を示す図で、同期電動機の回転子20の断面図である。
Embodiment 5 FIG.
FIG. 12 shows the fifth embodiment and is a cross-sectional view of the rotor 20 of the synchronous motor.

本実施の形態の同期電動機の回転子20は、マグネット1を磁性体の回転子内部の磁石挿入孔23に配置する。マグネット1には、主に希土類のマグネットを用いることが多い。磁石挿入孔23に配置したマグネット1の外周部の磁性体部分12を利用してリラクタンストルクを利用する回転子である。   In the rotor 20 of the synchronous motor of the present embodiment, the magnet 1 is disposed in the magnet insertion hole 23 inside the magnetic rotor. As the magnet 1, a rare earth magnet is often used. This is a rotor that utilizes reluctance torque using the magnetic body portion 12 on the outer periphery of the magnet 1 disposed in the magnet insertion hole 23.

このマグネット1の外周部の磁性体部分12の外周の、磁極中心3に溝3a(断面形状が略U字状、軸方向に形成される)を設けている。溝3aの部分は、固定子との距離(空隙長)が大きくなるため、マグネット1より生じる磁束は、溝3aの両側である磁極中心の両側4に流れるようになり、溝3aの形状、寸法の調整によって、図3に示すような空隙磁束密度分布を持つ回転子を得ることができる。これによって、1次成分を多く含む空隙磁束密度分布が実現でき、同期電動機の振動・騒音を抑えながら、トルクの向上、効率の向上が可能となる。   A groove 3a (the cross-sectional shape is substantially U-shaped and formed in the axial direction) is provided in the magnetic pole center 3 on the outer periphery of the magnetic body portion 12 on the outer peripheral portion of the magnet 1. Since the portion of the groove 3a has a large distance (gap length) from the stator, the magnetic flux generated from the magnet 1 flows on both sides 4 of the magnetic pole center on both sides of the groove 3a, and the shape and dimensions of the groove 3a. Thus, a rotor having a gap magnetic flux density distribution as shown in FIG. 3 can be obtained. As a result, a gap magnetic flux density distribution containing a large amount of primary components can be realized, and torque and efficiency can be improved while suppressing vibration and noise of the synchronous motor.

本実施の形態の同期電動機の回転子20は、特に密閉形圧縮機に適する。希土類のマグネットを用いるため高性能であることと、回転子内部の磁石挿入孔23にマグネット1が挿入されるため、密閉形圧縮機に使用するのに適する。   The rotor 20 of the synchronous motor according to the present embodiment is particularly suitable for a hermetic compressor. Since a rare earth magnet is used, it has high performance and the magnet 1 is inserted into the magnet insertion hole 23 inside the rotor, so that it is suitable for use in a hermetic compressor.

実施の形態6.
図13は実施の形態6を示す図で、空気調和機30を示す図である。
Embodiment 6 FIG.
FIG. 13 is a diagram illustrating the air conditioner 30 according to the sixth embodiment.

実施の形態1乃至5で示した同期電動機の回転子20を用いた同期電動機を搭載したものである。同期電動機は、主に室外ユニット13の圧縮機用電動機14、送風機用電動機15、および室内ユニット16の送風機用電動機17に用いられる。   The synchronous motor using the synchronous motor rotor 20 shown in the first to fifth embodiments is mounted. The synchronous motor is mainly used for the compressor motor 14 of the outdoor unit 13, the blower motor 15, and the blower motor 17 of the indoor unit 16.

空気調和機30で消費される電力のほとんどが圧縮機用電動機14、送風機用電動機15、および送風機用電動機17によるものであり、実施の形態1乃至5による同期電動機の回転子20を用いた同期電動機をこれらに用いることで、空気調和機30から発生する振動・騒音を抑えながら、消費電力を少なくすることができる。   Most of the electric power consumed by the air conditioner 30 is generated by the compressor motor 14, the blower motor 15, and the blower motor 17, and is synchronized using the rotor 20 of the synchronous motor according to the first to fifth embodiments. By using an electric motor for these, power consumption can be reduced while suppressing vibration and noise generated from the air conditioner 30.

実施の形態7.
図14は実施の形態7を示す図で、換気用送風機40の正面図である。
Embodiment 7 FIG.
FIG. 14 shows the seventh embodiment and is a front view of the ventilation fan 40.

換気用送風機40は、駆動源となる送風機用電動機18と、この送風機用電動機18で駆動される羽根19とを備える。送風機用電動機18が羽根19を直接回転させるので、送風機用電動機18のトルク脈動が振動・騒音の要因となりやすい。   The ventilation blower 40 includes a blower motor 18 serving as a drive source, and blades 19 driven by the blower motor 18. Since the blower motor 18 rotates the blades 19 directly, the torque pulsation of the blower motor 18 tends to cause vibration and noise.

実施の形態1乃至5の同期電動機の回転子20を送風機用電動機18に用いることにより、振動・騒音を抑えて、消費電力の少ない換気用送風機40が得られる。   By using the rotor 20 of the synchronous motor of Embodiments 1 to 5 for the blower motor 18, the ventilation blower 40 with reduced power consumption can be obtained while suppressing vibration and noise.

また、効率が良いことから、送風機用電動機18からの発熱が少なくなり、送風機用電動機18の軸受けの寿命が長くなり、送風機用電動機18の長寿命化も可能である。   Further, since the efficiency is high, heat generation from the blower motor 18 is reduced, the life of the bearing of the blower motor 18 is extended, and the life of the blower motor 18 can be extended.

また、高トルク化が可能であることから、送風機用電動機18を小型化することもできるため、この場合、換気用送風機40の軽量化が可能となる。   Further, since the torque can be increased, the blower motor 18 can be downsized. In this case, the ventilation fan 40 can be reduced in weight.

実施の形態1に示す図で、同期電動機の回転子20の斜視図である。It is a figure shown in Embodiment 1, and is a perspective view of the rotor 20 of a synchronous motor. 実施の形態1に示す図で、同期電動機の回転子20の部分断面図である。It is a figure shown in Embodiment 1, and is a fragmentary sectional view of the rotor 20 of a synchronous motor. 実施の形態1に示す図で、固定子と同期電動機の回転子20とを組み合わせたときの空隙の磁束密度分布を示す図である。It is a figure shown in Embodiment 1, and is a figure which shows the magnetic flux density distribution of a space | gap when a stator and the rotor 20 of a synchronous motor are combined. 実施の形態1に示す図で、同期電動機の回転子20の表面磁束密度の波形に含まれる高次の周波数成分と1磁極対で構成される周期の波の振幅との関係を示す図である。FIG. 5 is a diagram illustrating the relationship between the higher-order frequency component included in the waveform of the surface magnetic flux density of the rotor 20 of the synchronous motor and the amplitude of a wave having a period composed of one magnetic pole pair, according to the first embodiment. . 実施の形態2を示す図で、同期電動機の回転子20の部分断面図である。It is a figure which shows Embodiment 2, and is a fragmentary sectional view of the rotor 20 of a synchronous motor. 実施の形態2を示す図で、同期電動機の回転子20に用いるマグネット1の斜視図である。It is a figure which shows Embodiment 2, and is a perspective view of the magnet 1 used for the rotor 20 of a synchronous motor. 実施の形態2を示す図で、同期電動機の回転子20に用いるマグネット1の斜視図である。It is a figure which shows Embodiment 2, and is a perspective view of the magnet 1 used for the rotor 20 of a synchronous motor. 実施の形態3を示す図で、同期電動機の回転子20の斜視図である。It is a figure which shows Embodiment 3, and is a perspective view of the rotor 20 of a synchronous motor. 実施の形態3を示す図で、同期電動機の回転子20に用いるマグネット1の着磁の向きを示す断面図である。It is a figure which shows Embodiment 3, and is sectional drawing which shows the direction of the magnetization of the magnet 1 used for the rotor 20 of a synchronous motor. 実施の形態4を示す図で、同期電動機の回転子20の斜視図である。It is a figure which shows Embodiment 4, and is a perspective view of the rotor 20 of a synchronous motor. 実施の形態4を示す図で、同期電動機の回転子20のマグネット1の配向の向きを示す断面図である。It is a figure which shows Embodiment 4, and is sectional drawing which shows the direction of orientation of the magnet 1 of the rotor 20 of a synchronous motor. 実施の形態5を示す図で、同期電動機の回転子20の断面図である。It is a figure which shows Embodiment 5, and is sectional drawing of the rotor 20 of a synchronous motor. 実施の形態6を示す図で、空気調和機30を示す図である。It is a figure which shows Embodiment 6, and is a figure which shows the air conditioner 30. FIG. 実施の形態7を示す図で、換気用送風機40の正面図である。It is a figure which shows Embodiment 7, and is a front view of the air blower 40 for ventilation.

符号の説明Explanation of symbols

1 マグネット、2 ヨーク、3 磁極中心、4 磁極中心の両側、5 1次と3次の周波数成分を含む波形、6 1次成分のみの波形、7 1次と3次の周波数成分を含む波形5に含まれる1次成分、8 1次成分が10%以上大きくなる範囲、9 1次成分が最も大きくなる範囲、10 磁極間の切り欠き、11 磁極中心部の切り欠き、12 マグネット1の外周部の磁性体部分、13 室外ユニット、14 圧縮機用電動機、15 送風機用電動機、16 室内ユニット、17 送風機用電動機、18 送風機用電動機、19 羽根、20 同期電動機の回転子、21 軸、22 連結部、23 磁石挿入孔、30 空気調和機、40 換気用送風機。   1 Magnet, 2 Yoke, 3 Magnetic pole center, 4 Both sides of magnetic pole center, 5 Waveform including primary and tertiary frequency components, 6 Waveform including only primary components, and 7 Waveform including primary and tertiary frequency components 8 The primary component included in the range, 8 The range in which the primary component is greater than 10%, 9 The range in which the primary component is the largest, 10 Notch between the magnetic poles, 11 Notch in the center of the magnetic pole, 12 Magnetic unit, 13 outdoor unit, 14 motor for compressor, 15 motor for blower, 16 indoor unit, 17 motor for blower, 18 motor for blower, 19 blades, 20 rotor of synchronous motor, 21 shaft, 22 connecting portion , 23 Magnet insertion hole, 30 Air conditioner, 40 Blower for ventilation.

Claims (4)

マグネットを有し、磁極数がp(偶数)の回転子と、3相の巻線を有する固定子とを備え、前記回転子と前記固定子との間に空隙を有する同期電動機において、
前記空隙の磁束密度波形に、1磁極対で構成する周期の波形に1次成分と3次成分もしくは3次成分の奇数倍の高調波成分とを、他の高調波成分より多く含ませ、
前記回転子は磁性体のヨークの外周面に前記マグネットを磁極毎に分割して配置し、前記マグネットは、外周面の全体形状が外側に略凸形状で、且つ磁極中心付近が内側に凹み、前記磁極中心から離れるにつれ、前記磁極中心の両側とも所定の範囲で徐々に径方向の厚さが増し、磁極中心の両側で最大肉厚となり、前記磁極中心の両側から前記マグネットの両端部までは、径方向の厚さが徐々に小さくなり、前記マグネットの前記磁極中心から両端部までの肉厚が滑らかに変化することを特徴とする同期電動機。
In a synchronous motor having a magnet, including a rotor having a number of magnetic poles p (even) and a stator having a three-phase winding, and having a gap between the rotor and the stator,
In the magnetic flux density waveform of the air gap, the first-order component and the third-order component or the harmonic component that is an odd multiple of the third-order component are included in the waveform of the period formed by one magnetic pole pair more than the other harmonic components,
The rotor is arranged by dividing the magnet into magnetic poles on the outer peripheral surface of a magnetic yoke, and the magnet has a generally convex outer shape on the outer peripheral surface and a concave portion in the vicinity of the magnetic pole center. As the distance from the magnetic pole center increases, the thickness in the radial direction gradually increases within a predetermined range on both sides of the magnetic pole center, and reaches a maximum thickness on both sides of the magnetic pole center. The synchronous motor is characterized in that the radial thickness gradually decreases and the thickness of the magnet from the magnetic pole center to both end portions changes smoothly.
前記1磁極対で構成する周期の波形に3次成分を14〜20%含むことを特徴とする請求項1記載の同期電動機。   2. The synchronous motor according to claim 1, wherein the waveform of the period formed by the one magnetic pole pair includes a tertiary component in an amount of 14 to 20%. 請求項1乃至記載のいずれかの同期電動機を搭載したことを特徴とする空気調和機。 An air conditioner characterized by being mounted to one of the synchronous motor according to claim 1 or 2 wherein. 請求項1乃至記載のいずれかの同期電動機を送風機用電動機に用いることを特徴とする換気用送風機。 Ventilating fan, which comprises using in claim 1 or 2 blower electric motor to one of the synchronous motor according.
JP2006289350A 2006-10-25 2006-10-25 Synchronous motor, air conditioner and ventilation fan Active JP4791325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006289350A JP4791325B2 (en) 2006-10-25 2006-10-25 Synchronous motor, air conditioner and ventilation fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006289350A JP4791325B2 (en) 2006-10-25 2006-10-25 Synchronous motor, air conditioner and ventilation fan

Publications (2)

Publication Number Publication Date
JP2008109763A JP2008109763A (en) 2008-05-08
JP4791325B2 true JP4791325B2 (en) 2011-10-12

Family

ID=39442678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006289350A Active JP4791325B2 (en) 2006-10-25 2006-10-25 Synchronous motor, air conditioner and ventilation fan

Country Status (1)

Country Link
JP (1) JP4791325B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104184236A (en) * 2014-09-05 2014-12-03 宁波市北仑海伯精密机械制造有限公司 Permanent magnet for motor and design method thereof
US10998782B2 (en) 2016-04-19 2021-05-04 Nidec Corporation Motor and electric power steering apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT509968B1 (en) * 2010-05-20 2012-05-15 Austrian Ct Of Competence In Mechatronics Gmbh METHOD FOR REDUCING A RELEVANT TORQUE OF AN ELECTRICAL MACHINE
KR101925333B1 (en) * 2017-04-24 2018-12-05 엘지전자 주식회사 Electric motor with permanent magnet and compressor having the same
CN109067021B (en) * 2018-07-26 2020-05-05 珠海格力电器股份有限公司 Magnetic shoe, motor rotor, motor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222711A (en) * 1975-08-13 1977-02-21 Citizen Watch Co Ltd Rotor for clock motor
JPH06217478A (en) * 1993-01-19 1994-08-05 Toshiba Corp Permanent magnet type motor
JP3655205B2 (en) * 2001-02-26 2005-06-02 株式会社日立製作所 Rotating electric machine and electric vehicle using the same
JP4797331B2 (en) * 2004-03-22 2011-10-19 パナソニック株式会社 Brushless motor
JP2005328588A (en) * 2004-05-12 2005-11-24 Mitsubishi Electric Corp Permanent magnet motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104184236A (en) * 2014-09-05 2014-12-03 宁波市北仑海伯精密机械制造有限公司 Permanent magnet for motor and design method thereof
CN104184236B (en) * 2014-09-05 2016-09-14 宁波市北仑海伯精密机械制造有限公司 Permanent magnet and the method for designing of this permanent magnet thereof for motor
US10998782B2 (en) 2016-04-19 2021-05-04 Nidec Corporation Motor and electric power steering apparatus

Also Published As

Publication number Publication date
JP2008109763A (en) 2008-05-08

Similar Documents

Publication Publication Date Title
JP4838348B2 (en) Permanent magnet motor, hermetic compressor and fan motor
JP4670871B2 (en) motor
US7550891B2 (en) Permanent magnet motor having stator poles with stepped-end-surfaces and rotor with outer-circumferential-recessed surface
US7569962B2 (en) Multi-phase brushless motor with reduced number of stator poles
JP2002315243A (en) Permanent magnet type rotary electric machine
JP2006304546A (en) Permanent magnet reluctance type rotary electric machine
JP5188746B2 (en) Brushless DC motor
JP4791325B2 (en) Synchronous motor, air conditioner and ventilation fan
US20230253838A1 (en) Electric motor
JP2006060952A (en) Permanent magnet embedded motor
JP2005245146A (en) Synchronous motor, enclosed compressor and fan motor
JP2006288043A (en) Permanent magnet type motor
KR20230079451A (en) Stator lamination, stator steel core, motor, compressor and refrigeration equipment
JP2008092715A (en) Permanent magnet motor
JP2006211826A (en) Embedded magnet type rotor
DE60235685D1 (en) Internal and external rotor electric motor with air gap ring winding
JP2005117771A (en) Permanent magnet type synchronous motor and compressor using it
JPWO2011062064A1 (en) Permanent magnet synchronous motor
JP5183601B2 (en) Synchronous motor rotor and synchronous motor
JP2006254622A (en) Permanent magnet type motor
JP2009189155A (en) Rotor of synchronous electric motor, blower electric motor, air conditioner, pump and water heater
JP2008005637A (en) Permanent magnet embedded electric motor
JP2006254621A (en) Permanent magnet type motor
JP5194436B2 (en) Rotating electric machine, compressor, blower, air conditioner
JP2013099104A (en) Rotor and motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4791325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250