WO2024071965A1 - 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 - Google Patents

무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 Download PDF

Info

Publication number
WO2024071965A1
WO2024071965A1 PCT/KR2023/014774 KR2023014774W WO2024071965A1 WO 2024071965 A1 WO2024071965 A1 WO 2024071965A1 KR 2023014774 W KR2023014774 W KR 2023014774W WO 2024071965 A1 WO2024071965 A1 WO 2024071965A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
setting
information
base station
mac
Prior art date
Application number
PCT/KR2023/014774
Other languages
English (en)
French (fr)
Inventor
이영대
양석철
배덕현
김재형
김선욱
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2024071965A1 publication Critical patent/WO2024071965A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention relates to a wireless communication system, and more specifically to a method and device for transmitting and receiving wireless signals.
  • Wireless communication systems are being widely deployed to provide various types of communication services such as voice and data.
  • a wireless communication system is a multiple access system that can support communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA) systems. division multiple access) systems, etc.
  • the purpose of the present invention is to provide a method and device for efficiently performing a wireless signal transmission and reception process.
  • a method for a terminal (UE) to transmit a signal in a wireless communication system includes receiving one or more configured grant (CG) settings for uplink data transmission; Activating a first CG setting selected by the terminal among the one or more CG settings; And it may include transmitting a physical uplink shared channel (PUSCH) based on the activated first CG setting.
  • the terminal may activate the first CG setting through uplink transmission of control information related to the first CG setting.
  • Uplink transmission of the control information activating the first CG setting may be performed on an uplink resource associated with the first CG setting.
  • Each of the one or more CG settings may be associated with each physical uplink control channel (PUCCH) resource.
  • the terminal may activate the first CG setting by transmitting the control information on the first PUCCH resource associated with the first CG setting.
  • the control information may include SR (scheduling request) information.
  • the control information that activates the first CG setting may be a medium access control (MAC) control element (CE).
  • the MAC CE may include an index of the first CG setting.
  • the MAC CE may include at least one of MCS (modulation and coding scheme) information and PDB (packet delay budget) information related to the PUSCH transmission.
  • the MAC CE may be a buffer status report (BSR).
  • a computer-readable recording medium recording a program for performing the above-described signal transmission method may be provided.
  • a terminal that performs the signal transmission method described above may be provided.
  • a device that controls a terminal that performs the signal transmission method described above may be provided.
  • a method for a base station to transmit a signal in a wireless communication system includes transmitting one or more configured grant (CG) settings for receiving uplink data to a terminal; Activating a first CG setting selected by the terminal among the one or more CG settings; And it may include receiving a physical uplink shared channel (PUSCH) based on the activated first CG setting.
  • the base station may activate the first CG setting through uplink reception of control information related to the first CG setting.
  • a base station that performs a signal reception method may be provided.
  • signals can be transmitted and received more accurately and efficiently in a wireless communication system.
  • Figure 1 illustrates physical channels used in a 3GPP system, which is an example of a wireless communication system, and a general signal transmission method using them.
  • Figure 2 illustrates the structure of a radio frame.
  • Figure 3 illustrates a resource grid of slots.
  • Figure 4 shows an example of mapping a physical channel within a slot.
  • Figure 5 shows an example of a PDSCH transmission and reception process.
  • Figure 6 shows an example of a PUSCH transmission and reception process.
  • Figure 7 shows an example of a GOP structure/pattern.
  • Figure 8 shows an example of BSR MAC CE including CG Activation.
  • Figure 9 shows an example of CG Activation MAC CE.
  • Figure 10 shows an example of CG Activation MAC CE including PDB.
  • Figure 11 is a diagram for explaining signal transmission by a terminal according to an embodiment.
  • Figure 12 is a diagram for explaining signal reception by a base station according to an embodiment.
  • 13 to 16 illustrate a communication system 1 and a wireless device applicable to the present invention.
  • FIG 17 illustrates a Discontinuous Reception (DRX) operation applicable to the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA can be implemented with radio technology such as UTRA (Universal Terrestrial Radio Access) or CDMA2000.
  • TDMA can be implemented with wireless technologies such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE).
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA can be implemented with wireless technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), etc.
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of Evolved UMTS (E-UMTS) using E-UTRA
  • LTE-A Advanced
  • 3GPP NR New Radio or New Radio Access Technology
  • 3GPP LTE/LTE-A is an evolved version of 3GPP LTE/LTE-A.
  • next-generation communications As more communication devices require larger communication capacity, the need for improved mobile broadband communication compared to existing RAT (Radio Access Technology) is emerging. Additionally, massive MTC (Machine Type Communications), which connects multiple devices and objects to provide a variety of services anytime, anywhere, is also one of the major issues to be considered in next-generation communications. Additionally, communication system design considering services/terminals sensitive to reliability and latency is being discussed. In this way, the introduction of next-generation RAT considering eMBB (enhanced Mobile BroadBand Communication), massive MTC, URLLC (Ultra-Reliable and Low Latency Communication), etc. is being discussed, and in the present invention, for convenience, the technology is referred to as NR (New Radio or New RAT). It is called.
  • NR New Radio or New RAT
  • 3GPP NR is mainly described, but the technical idea of the present invention is not limited thereto.
  • UE User Equipment
  • PDCP Packet Data Convergence Protocol
  • RRC Radio Resource Control
  • SDAP Service Data Adaptation Protocol
  • 3GPP TS 24.502 Access to the 3GPP 5G Core Network (5GCN) via non-3GPP access networks
  • - PUCCH Physical Uplink Control Channel
  • a terminal receives information from a base station through downlink (DL), and the terminal transmits information to the base station through uplink (UL).
  • the information transmitted and received between the base station and the terminal includes data and various control information, and various physical channels exist depending on the type/purpose of the information they transmit and receive.
  • Figure 1 is a diagram to explain physical channels used in the 3GPP NR system and a general signal transmission method using them.
  • a terminal that is turned on again from a power-off state or newly entered a cell performs an initial cell search task such as synchronizing with the base station in step S101.
  • the terminal receives SSB (Synchronization Signal Block) from the base station.
  • SSB includes Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS), and Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the terminal synchronizes with the base station based on PSS/SSS and obtains information such as cell ID (cell identity). Additionally, the terminal can obtain intra-cell broadcast information based on the PBCH. Meanwhile, the terminal can check the downlink channel status by receiving a downlink reference signal (DL RS) in the initial cell search stage.
  • DL RS downlink reference signal
  • the terminal's cell search process can be summarized as follows.
  • PSS related SS/PBCH block (SSB) symbol timing acquisition, Cell ID detection within a cell ID group (3 hypothesis)
  • PBCH DMRS related SSB index and Half frame (HF) index, (Slot and frame boundary detection)
  • PBCH related Time information (80 ms, System Frame Number (SFN), SSB index, HF), Remaining Minimum System Information (RMSI) Control resource set (CORESET)/Search space configuration acquisition
  • 336 cell ID groups There are 336 cell ID groups, and 3 cell IDs exist for each cell ID group. There are a total of 1008 cell IDs. Information about the cell ID group to which the cell ID of a cell belongs is provided/obtained through the SSS of the cell, and information about the cell ID among 336 cells within the cell ID is provided/obtained through the PSS.
  • 336 cell ID groups There are 336 cell ID groups, and 3 cell IDs exist for each cell ID group. There are a total of 1008 cell IDs. Information about the cell ID group to which the cell ID of a cell belongs is provided/obtained through the SSS of the cell, and information about the cell ID among 336 cells within the cell ID is provided/obtained through the PSS.
  • the SSB is transmitted periodically according to the SSB period.
  • the basic SSB period assumed by the UE during initial cell search is defined as 20ms.
  • the SSB period can be set to one of ⁇ 5ms, 10ms, 20ms, 40ms, 80ms, 160ms ⁇ by the network (e.g., BS).
  • a set of SSB bursts is constructed.
  • the SSB burst set consists of a 5ms time window (i.e. half-frame), and an SSB can be transmitted up to L times within the SS burst set.
  • the maximum transmission number L of SSB can be given as follows depending on the frequency band of the carrier. One slot contains up to 2 SSBs.
  • the temporal position of the SSB candidate within the SS burst set may be defined according to the subcarrier spacing.
  • the temporal positions of SSB candidates are indexed from 0 to L-1 according to temporal order within the SSB burst set (i.e. half-frame) (SSB index).
  • Multiple SSBs may be transmitted within the frequency span of the carrier.
  • the physical layer cell identifiers of these SSBs do not need to be unique, and different SSBs may have different physical layer cell identifiers.
  • the UE can obtain DL synchronization by detecting SSB.
  • the terminal can identify the structure of the SSB burst set based on the detected SSB (time) index and detect symbol/slot/half-frame boundaries accordingly.
  • the number of the frame/half-frame to which the detected SSB belongs can be identified using system frame number (SFN) information and half-frame indication information.
  • SFN system frame number
  • the UE can obtain a 10-bit SFN for the frame to which the PBCH belongs from the PBCH.
  • the terminal can obtain 1-bit half-frame indication information. For example, when the UE detects a PBCH with the half-frame indication bit set to 0, it may determine that the SSB to which the PBCH belongs belongs to the first half-frame in the frame, and the half-frame indication bit is set to 1. When a PBCH set to is detected, it can be determined that the SSB to which the PBCH belongs belongs to the second half-frame within the frame. Finally, the UE can obtain the SSB index of the SSB to which the PBCH belongs based on the DMRS sequence and the PBCH payload carried by the PBCH.
  • the terminal After completing the initial cell search, the terminal receives a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH) according to the physical downlink control channel information in step S102 to provide more detailed information.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the terminal may perform a random access procedure such as steps S103 to S106 to complete access to the base station.
  • the terminal transmits a preamble through a physical random access channel (PRACH) (S103), and a response message to the preamble through the physical downlink control channel and the corresponding physical downlink shared channel. can be received (S104).
  • PRACH physical random access channel
  • S104 a contention resolution procedure such as transmission of an additional physical random access channel (S105) and reception of the physical downlink control channel and the corresponding physical downlink shared channel (S106) ) can be performed.
  • the terminal that has performed the above-described procedure then receives a physical downlink control channel/physical downlink shared channel (S107) and a physical uplink shared channel (PUSCH) as a general uplink/downlink signal transmission procedure.
  • Physical uplink control channel (PUCCH) transmission (S108) can be performed.
  • the control information transmitted from the terminal to the base station is collectively referred to as uplink control information (UCI).
  • UCI includes HARQ ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgment/Negative-ACK), SR (Scheduling Request), and CSI (Channel State Information).
  • CSI includes Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), and Rank Indication (RI).
  • UCI is generally transmitted through PUCCH, but when control information and traffic data must be transmitted simultaneously, it can be transmitted through PUSCH. Additionally, UCI can be transmitted aperiodically through PUSCH at the request/instruction
  • FIG. 2 illustrates the structure of a radio frame.
  • uplink and downlink transmission consists of frames.
  • Each radio frame is 10ms long and is divided into two 5ms half-frames (HF).
  • Each half-frame is divided into five 1ms subframes (Subframe, SF).
  • a subframe is divided into one or more slots, and the number of slots in a subframe depends on SCS (Subcarrier Spacing).
  • Each slot contains 12 or 14 Orthogonal Frequency Division Multiplexing (OFDM) symbols depending on the cyclic prefix (CP).
  • OFDM Orthogonal Frequency Division Multiplexing
  • CP cyclic prefix
  • Table 1 illustrates that when a normal CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary depending on the SCS.
  • Table 2 illustrates that when an extended CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary depending on the SCS.
  • the structure of the frame is only an example, and the number of subframes, number of slots, and number of symbols in the frame can be changed in various ways.
  • OFDM numerology eg, SCS
  • the (absolute time) interval of time resources e.g., SF, slot, or TTI
  • TU Time Unit
  • the symbol may include an OFDM symbol (or CP-OFDM symbol) or SC-FDMA symbol (or Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM symbol).
  • Figure 3 illustrates a resource grid of slots.
  • a slot includes a plurality of symbols in the time domain. For example, in the case of normal CP, one slot contains 14 symbols, but in the case of extended CP, one slot contains 12 symbols.
  • a carrier wave includes a plurality of subcarriers in the frequency domain.
  • RB Resource Block
  • a Bandwidth Part (BWP) is defined as a plurality of consecutive PRBs (Physical RBs) in the frequency domain and may correspond to one numerology (e.g., SCS, CP length, etc.).
  • a carrier wave may contain up to N (e.g., 5) BWPs. Data communication is performed through an activated BWP, and only one BWP can be activated for one terminal.
  • Each element in the resource grid is referred to as a Resource Element (RE), and one complex symbol can be mapped.
  • RE Resource Element
  • Figure 4 shows an example of a physical channel being mapped within a slot.
  • a frame features a self-contained structure in which a DL control channel, DL or UL data, and UL control channel can all be included in one slot.
  • the first N symbols in a slot are used to transmit a DL control channel (e.g., PDCCH) (hereinafter referred to as DL control region), and the last M symbols in a slot are used to transmit a UL control channel (e.g., PUCCH).
  • DL control channel e.g., PDCCH
  • UL control area e.g., PUCCH
  • N and M are each integers greater than or equal to 0.
  • the resource area (hereinafter referred to as data area) between the DL control area and the UL control area may be used to transmit DL data (eg, PDSCH) or UL data (eg, PUSCH).
  • GP provides a time gap during the process of the base station and the terminal switching from transmission mode to reception mode or from reception mode to transmission mode. Some symbols at the point of transition from DL to UL within a subframe may be set to GP.
  • PDCCH carries Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • PCCCH includes transmission format and resource allocation for downlink shared channel (DL-SCH), resource allocation information for uplink shared channel (UL-SCH), paging information for paging channel (PCH), It carries system information on the DL-SCH, resource allocation information for upper layer control messages such as random access responses transmitted on the PDSCH, transmission power control commands, activation/deactivation of CS (Configured Scheduling), etc.
  • DCI includes a cyclic redundancy check (CRC), and the CRC is masked/scrambled with various identifiers (e.g.
  • Radio Network Temporary Identifier depending on the owner or purpose of use of the PDCCH. For example, if the PDCCH is for a specific UE, the CRC is masked with the UE identifier (eg, Cell-RNTI, C-RNTI). If the PDCCH is related to paging, the CRC is masked with P-RNTI (Paging-RNTI). If the PDCCH is about system information (e.g., System Information Block, SIB), the CRC is masked with System Information RNTI (SI-RNTI). If the PDCCH relates to a random access response, the CRC is masked with Random Access-RNTI (RA-RNTI).
  • SIB System Information Block
  • the base station can transmit a CORESET (Control Resource Set) configuration to the terminal.
  • CORESET is defined as a set of Resource Element Groups (REG) with a given newonology (e.g. SCS, CP length, etc.).
  • REG is defined as one OFDM symbol and one (P)RB.
  • Multiple CORESETs for one terminal may overlap in the time/frequency domain.
  • CORESET can be set through system information (eg, Master Information Block, MIB) or upper layer (eg, Radio Resource Control, RRC, layer) signaling. For example, configuration information for a certain common CORESET (e.g., CORESET #0) may be transmitted through the MIB.
  • MIB Master Information Block
  • RRC Radio Resource Control
  • a PDSCH carrying system information block 1 may be scheduled by a specific PDCCH, and CORESET #0 may be for transmission of a specific PDCCH.
  • configuration information for CORESET #N (e.g., N>0) may be transmitted through RRC signaling (e.g., cell common RRC signaling or UE-specific RRC signaling, etc.).
  • RRC signaling e.g., cell common RRC signaling or UE-specific RRC signaling, etc.
  • terminal-specific RRC signaling carrying CORESET configuration information may include, but is not limited to, various signaling such as, for example, an RRC setup message, an RRC reconfiguration message, and/or BWP configuration information.
  • the CORESET configuration may include the following information/fields:
  • controlResourceSetId Indicates the ID of CORESET.
  • MSB Most Significant Bit
  • duration Represents the time domain resources of CORESET. Indicates the number of consecutive OFDM symbols that constitute CORESET. duration has values from 1 to 3.
  • CCE Control Channel Element
  • REG-MappingType Indicates the mapping type between CCE (Control Channel Element) and REG. Interleaved and non-interleaved types are supported.
  • interleaverSize Indicates the interleaver size.
  • pdcch-DMRS-ScramblingID Indicates the value used to initialize PDCCH DMRS. If pdcch-DMRS-ScramblingID is not included, the physical cell ID of the serving cell is used.
  • precoderGranularity Indicates the precoder granularity in the frequency domain.
  • TCI Transmission Configuration Index
  • TCI-Configuration Represents a subset of TCI states defined in PDCCH-configuration.
  • the TCI state is used to provide the Quasi-Co-Location (QCL) relationship of the DL RS(s) and PDCCH DMRS port within the RS set (TCI-state).
  • QCL Quasi-Co-Location
  • the base station can transmit a PDCCH SS (Search Space) configuration to the terminal.
  • PDCCH SS configuration may be transmitted through higher layer signaling (e.g., RRC signaling).
  • RRC signaling may include, but is not limited to, various signaling such as an RRC setup message, RRC reconfiguration message, and/or BWP configuration information.
  • the CORESET configuration and the PDCCH SS configuration may be transmitted through one message (e.g., one RRC signaling), or may be transmitted through different messages.
  • the PDCCH SS configuration may include information about the configuration of the PDCCH SS set.
  • the PDCCH SS set can be defined as a set of PDCCH candidates for which the UE monitors (e.g., blind detection).
  • One or multiple SS sets may be set in the terminal.
  • Each SS set may be a USS set or a CSS set.
  • the PDCCH SS set may also be simply referred to as “SS” or “PDCCH SS.”
  • the PDCCH SS set includes PDCCH candidates.
  • the PDCCH candidate indicates the CCE(s) monitored by the UE for PDCCH reception/detection.
  • monitoring includes blind decoding (BD) of PDCCH candidates.
  • One PDCCH (candidate) consists of 1, 2, 4, 8, or 16 CCEs depending on AL (Aggregation Level).
  • One CCE consists of 6 REGs.
  • Each CORESET configuration is associated with one or more SS, and each SS is associated with one COREST configuration.
  • One SS is defined based on one SS configuration, and the SS configuration may include the following information/fields.
  • - searchSpaceId Indicates the ID of SS.
  • controlResourceSetId Indicates CORESET associated with SS.
  • - monitoringSlotPeriodicityAndOffset Indicates the PDCCH monitoring period interval (slot unit) and PDCCH monitoring interval offset (slot unit)
  • - monitoringSymbolsWithinSlot Indicates the first OFDM symbol(s) for PDCCH monitoring within a slot in which PDCCH monitoring is set. It is indicated through a bitmap, and each bit corresponds to each OFDM symbol in the slot. The MSB of the bitmap corresponds to the first OFDM symbol in the slot. OFDM symbol(s) corresponding to bit(s) with a bit value of 1 correspond to the first symbol(s) of CORESET within the slot.
  • - searchSpaceType Indicates CSS (Common Search Space) or USS (UE-specific search space), and represents the DCI format used in the corresponding SS type.
  • the base station generates a PDCCH and transmits it to the terminal, and the terminal can monitor PDCCH candidates in one or more SSs to receive/detect the PDCCH.
  • An opportunity to monitor PDCCH candidates (e.g., time/frequency resources) is defined as a PDCCH (monitoring) opportunity.
  • One or more PDCCH (monitoring) opportunities may be configured within a slot.
  • Table 3 illustrates the characteristics of each SS type.
  • Type Search Space RNTI Use Case Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI(s) UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI(s) User specific PDSCH decoding
  • Table 4 illustrates DCI formats transmitted through PDCCH.
  • DCI format 0_0 is used to schedule TB-based (or TB-level) PUSCH
  • DCI format 0_1 is used to schedule TB-based (or TB-level) PUSCH or CBG (Code Block Group)-based (or CBG-level) PUSCH.
  • DCI format 1_0 is used to schedule a TB-based (or TB-level) PDSCH
  • DCI format 1_1 is used to schedule a TB-based (or TB-level) PDSCH or CBG-based (or CBG-level) PDSCH. (DL grant DCI).
  • DCI format 0_0/0_1 may be referred to as UL grant DCI or UL scheduling information
  • DCI format 1_0/1_1 may be referred to as DL grant DCI or DL scheduling information
  • DCI format 2_0 is used to deliver dynamic slot format information (e.g., dynamic SFI) to the terminal
  • DCI format 2_1 is used to deliver downlink pre-emption information to the terminal.
  • DCI format 2_0 and/or DCI format 2_1 can be delivered to terminals within the group through group common PDCCH, which is a PDCCH delivered to terminals defined as one group.
  • DCI format 0_0 and DCI format 1_0 may be referred to as a fallback DCI format
  • DCI format 0_1 and DCI format 1_1 may be referred to as a non-fallback DCI format.
  • the DCI size/field configuration remains the same regardless of terminal settings.
  • the non-fallback DCI format the DCI size/field configuration varies depending on the terminal settings.
  • PDSCH carries downlink data (e.g., DL-SCH transport block, DL-SCH TB), and modulation methods such as QPSK (Quadrature Phase Shift Keying), 16 QAM (Quadrature Amplitude Modulation), 64 QAM, and 256 QAM are applied. do.
  • a codeword is generated by encoding TB.
  • PDSCH can carry up to two codewords. Scrambling and modulation mapping are performed for each codeword, and modulation symbols generated from each codeword may be mapped to one or more layers. Each layer is mapped to resources along with DMRS (Demodulation Reference Signal), generated as an OFDM symbol signal, and transmitted through the corresponding antenna port.
  • DMRS Demodulation Reference Signal
  • UCI Uplink Control Information
  • UCI includes:
  • Hybrid Automatic Repeat reQuest-ACK Acknowledgement: A response to a downlink data packet (e.g., codeword) on the PDSCH. Indicates whether the downlink data packet has been successfully received. 1 bit of HARQ-ACK may be transmitted in response to a single codeword, and 2 bits of HARQ-ACK may be transmitted in response to two codewords.
  • the HARQ-ACK response includes positive ACK (simply ACK), negative ACK (NACK), DTX or NACK/DTX.
  • HARQ-ACK is used interchangeably with HARQ ACK/NACK and ACK/NACK.
  • MIMO-related feedback information includes a Rank Indicator (RI) and a Precoding Matrix Indicator (PMI).
  • Table 5 illustrates PUCCH formats. Depending on the PUCCH transmission length, it can be divided into Short PUCCH (formats 0, 2) and Long PUCCH (formats 1, 3, 4).
  • PUSCH carries uplink data (e.g., UL-SCH transport block, UL-SCH TB) and/or uplink control information (UCI), and uses CP-OFDM (Cyclic Prefix - Orthogonal Frequency Division Multiplexing) waveform or It is transmitted based on the DFT-s-OFDM (Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplexing) waveform.
  • the terminal transmits the PUSCH by applying transform precoding.
  • PUSCH can be transmitted based on the OFDM waveform or the DFT-s-OFDM waveform.
  • PUSCH transmission is scheduled dynamically by UL grant within DCI, or semi-statically based on upper layer (e.g., RRC) signaling (and/or Layer 1 (L1) signaling (e.g., PDCCH)). Can be scheduled (configured grant).
  • PUSCH transmission can be performed based on codebook or non-codebook.
  • FIG. 5 shows an example of a PDSCH transmission and reception process.
  • the UE can detect the PDCCH in slot #n.
  • PDCCH includes downlink scheduling information (e.g., DCI format 1_0, 1_1), and PDCCH indicates DL assignment-to-PDSCH offset (K0) and PDSCH-HARQ-ACK reporting offset (K1).
  • DCI format 1_0, 1_1 may include the following information.
  • K0 e.g. slot offset
  • K0 indicates the start position of the PDSCH in slot #n+K0 (e.g. OFDM symbol index) and the length of the PDSCH (e.g. number of OFDM symbols)
  • HARQ process ID (Identity) for data (e.g. PDSCH, TB)
  • - PUCCH resource indicator Indicates the PUCCH resource to be used for UCI transmission among a plurality of PUCCH resources in the PUCCH resource set.
  • the terminal receives the PDSCH from slot #(n+K0) according to the scheduling information of slot #n, and when the PDSCH is received from slot #n1 (where, n+K0 ⁇ n1), the terminal receives the PDSCH from slot #(n1+K1). ), UCI can be transmitted through PUCCH.
  • UCI may include a HARQ-ACK response to PDSCH.
  • the HARQ-ACK response may consist of 1-bit.
  • the HARQ-ACK response may consist of 2-bits if spatial bundling is not configured, and may consist of 1-bit if spatial bundling is configured. If the HARQ-ACK transmission point for multiple PDSCHs is designated as slot #(n+K1), UCI transmitted in slot #(n+K1) includes HARQ-ACK responses for multiple PDSCHs.
  • Whether the UE must perform spatial bundling for the HARQ-ACK response can be configured for each cell group (e.g., RRC/higher layer signaling).
  • spatial bundling may be individually configured for each HARQ-ACK response transmitted through PUCCH and/or HARQ-ACK response transmitted through PUSCH.
  • Spatial bundling can be supported when the maximum number of TBs (or codewords) that can be received at once in the corresponding serving cell (or schedulable through 1 DCI) is 2 (or more than 2) (eg, upper layer if the parameter maxNrofCodeWordsScheduledByDCI corresponds to 2-TB). Meanwhile, for 2-TB transmission, more than 4 layers can be used, and up to 4 layers can be used for 1-TB transmission. As a result, when spatial bundling is configured in the corresponding cell group, spatial bundling can be performed on serving cells in which more than four layers are schedulable among the serving cells in the corresponding cell group. On the corresponding serving cell, a terminal that wishes to transmit a HARQ-ACK response through spatial bundling can generate a HARQ-ACK response by performing a (bit-wise) logical AND operation on the A/N bits for multiple TBs.
  • the UE performing spatial bundling receives the 1st A/N for the 1st TB.
  • a single A/N bit can be generated by performing a logical AND operation on the bit and the second A/N bit for the second TB.
  • the terminal reports the ACK bit value to the base station, and if any one TB is NACK, the terminal reports the NACK bit value to the base station.
  • the terminal For example, if only 1-TB is actually scheduled on a serving cell that is configured to receive 2-TB, the terminal performs a logical AND operation on the A/N bit for the 1-TB and the bit value 1 to receive a single A/N. N bits can be generated. As a result, the terminal reports the A/N bit for the corresponding 1-TB to the base station as is.
  • a plurality of parallel DL HARQ processes exist in the base station/terminal for DL transmission. Multiple parallel HARQ processes allow DL transmission to be performed continuously while waiting for HARQ feedback on successful or unsuccessful reception of the previous DL transmission.
  • Each HARQ process is associated with a HARQ buffer in the MAC (Medium Access Control) layer.
  • Each DL HARQ process manages state variables related to the number of transmissions of MAC PDUs (Physical Data Blocks) in the buffer, HARQ feedback for MAC PDUs in the buffer, and current redundancy version.
  • Each HARQ process is distinguished by its HARQ process ID.
  • FIG. 6 shows an example of a PUSCH transmission and reception process.
  • the UE can detect the PDCCH in slot #n.
  • PDCCH includes uplink scheduling information (eg, DCI format 0_0, 0_1).
  • DCI format 0_0, 0_1 may include the following information.
  • Time domain resource assignment Indicates the slot offset K2, the starting position (e.g. symbol index) and length (e.g. number of OFDM symbols) of the PUSCH within the slot.
  • the start symbol and length can be indicated through SLIV (Start and Length Indicator Value) or can be indicated separately.
  • the terminal can transmit PUSCH in slot #(n+K2) according to the scheduling information of slot #n.
  • PUSCH includes UL-SCH TB.
  • one or more SPS PDSCHs can be configured for the UE for periodic transmission and reception or low latency and PDCCH overhead.
  • Each SPS setting has a cycle and can repeat the set/directed resources. That is, the initially set/indicated resource allocation is repeated at a set period, and the terminal can perform downlink reception on the corresponding resource without a separate PDCCH reception process.
  • the types of data that can be generated from XR are diverse. Among these data, it is considered that the transmission of terminal sensor and location information and video data, which are generally reported at a specific period, are transmitted and received in SPS resources. For these data, the traffic arrival time is not always constant and jitter may occur due to reasons such as video encoding time, sensor measurement time, upper layer operation, or routing changes in the network being transmitted.
  • resources are allocated to a location sufficiently far away in time from the expected traffic generation point considering jitter, etc., the availability of resources can be guaranteed, but delays may occur. Conversely, if SPS resources with a fixed cycle are allocated at the time of expected data generation, greater delay time may occur due to the waiting time to the next available resource when jitter occurs.
  • skipping methods have been discussed in the past in which a sufficiently large number of resources are allocated in a short period in preparation for data generation, the terminal or base station selectively uses these resources, and other resources are not actually used.
  • response signals it is necessary to carefully consider response signals to confirm reception and transmission between the terminal and the base station. If the terminal sends a response signal even for transmissions that have not been received, the base station must always prepare resources for the terminal to send a response signal, and for these resources, the skip method is based on setting sufficiently many resources in the radio resources. Considering this, it can act as a large uplink burden. Also, considering that these resources can be multiplexed between terminals, the burden of uplink resources should be considered more important.
  • this specification deals with a method of selectively using some of the plurality of SPS resources set between the terminal and the base station and simplifying and transmitting responses to the SPS resources used in this way to a predetermined location. .
  • GOP Group of Pictures
  • Figure 7 shows an example of a GOP structure/pattern.
  • a Group of Pictures (GOP) for video coding may include I, P, B, and D picture types.
  • I picture or I frame also called intra-coded picture, keyframe, or i-frame
  • I picture or I frame also called intra-coded picture, keyframe, or i-frame
  • Each GOP starts with an image of this type (in decoding order).
  • P picture or P frame (predictive coded picture) - Contains motion compensation difference information relative to a previously decoded picture.
  • each P picture can refer to only one picture, and that picture must precede the P picture in display order and decoding order, and must: do. I or P picture.
  • B picture or B frame (bidirectional predictive coding picture) - Contains motion-compensated difference information related to the previously decoded picture.
  • each B picture can only refer to two pictures. One is in front of the B picture and one is behind it. All referenced pictures must be I or I. P picture.
  • D picture or D frame (DC direct coded picture) - serves as a fast-access representation of the picture for loss robustness or fast-forward.
  • D video is used only for MPEG-1 video.
  • the I frame represents the start of a GOP. This is followed by several P and B frames. In previous approaches, the allowed order and reference structures were relatively limited.
  • the first number represents the distance between the two anchor frames (I or P).
  • the second represents the distance between two full images (I-frames). This is the GOP size.
  • the maximum number of B frames between two consecutive anchor frames can be used.
  • the GOP size (N value) is 15 (the length between two I frames) and the distance (M value) between two anchor frames is 5 (the length between I and P frames, or two consecutive P frames). length between frames).
  • I-frames contain the entire image and no additional information is needed to reconstruct it.
  • encoders use a GOP structure that makes each I frame a “clean random access point”. Therefore, decoding can start from an I frame and any errors within the GOP structure can be corrected after processing the correct I frame.
  • the methods proposed in the invention are not limited thereto, and may also be applied to radio resources allocated through dynamic scheduling received by the terminal.
  • the method of determining one HARQ-ACK timing for a plurality of downlink radio resources allocated to the UE can be applied regardless of the SPS PDSCH or the PDSCH indicated by dynamic scheduling.
  • the proposed methods can be applied when a plurality of radio resources are not set semi-statically but are set through dynamic instructions, for example, when a plurality of radio resources are set at once through DCI.
  • SPS is used as a general concept that collectively refers to radio resources (e.g., DL/UL SPS, CG) that are set semi-statically.
  • transmission occasion refers to radio resources (e.g., SPS PDSCH) set for SPS use.
  • the entity performing the transmission i.e., base station in the case of downlink, terminal in the case of uplink
  • the receiver i.e., terminal in the case of downlink, base station in the case of uplink
  • TO refers to radio resources (e.g., SPS PDSCH) set for SPS use.
  • the entity performing the transmission i.e., base station in the case of downlink, terminal in the case of uplink
  • the receiver i.e., terminal in the case of downlink, base station in the case of uplink
  • the proposed methods are not limited to specific NR transmission/reception types. Additionally, examples are given based on the characteristics and structure of the XR service, but the proposed methods are There are no specific restrictions on the support of XR services. Therefore, the proposed methods can be applied to all wireless communication transmission and reception structures and services.
  • the plurality of PUSCH resources are CG PUSCH.
  • This CG PUSCH transmission can be autonomously activated by the terminal based on SR, UCI, or UL MAC CE, or activated by the base station at the request of the terminal.
  • the base station sets a specific schedulingRequestID to be mapped to an SR PUCCH resource according to a specific period and offset identified by a specific schedulingRequestResourceId.
  • the base station sets a specific CG configuration index to be mapped to one or multiple schedulingRequestIDs.
  • the base station sets a specific schedulingRequestID to be mapped to one or multiple CG configuration indexes.
  • Method A A method of activating CG resources for a specific CG index based on transmission of the specific SR resource or MAC CE transmission such as BSR
  • the base station can set one or multiple CGs to a specific terminal.
  • the terminal can directly activate CG resources and inform the base station of this through SR resources or MAC CE.
  • the base station can provide the following additional settings for each CG configuration index.
  • the terminal can inform the base station of one CG duration value among the set CG duration values.
  • candidate values for the time difference between the UE's SR, UCI, or MAC CE transmission slot and the first CG PUSCH slot can be set.
  • candidate values for the first PUSCH symbol within the first CG PUSCH slot can be set.
  • the terminal can inform the base station of one CG offset value among the set CG offset values. For example, the terminal can determine the CG offset value by considering the PDB (Packet Delay Budget) of the data to be transmitted and the jittering effect.
  • PDB Packet Delay Budget
  • candidate values for MCS values for CG PUSCH transmission are set.
  • the terminal can inform the base station of one MCS value to be applied to CG PUSCH transmission among the set MCS values.
  • the base station can map one or multiple logical channels to a specific CG configuration index. If data to be transmitted on a certain logical channel is available and the corresponding logical channel is mapped to a specific CG configuration index, the terminal can transmit positive SR information through the SR PUCCH resource mapped to the specific CG configuration index.
  • SR PUCCH resource or schedulingRequestID mapped to SR PUCCH resource can be set to be mapped to the following information.
  • CG configuration index Maps to one or multiple CG configurations set in an RRC message.
  • CG duration value For the CG configuration mapped to SR PUCCH resource or schedulingRequestID, or the CG configuration connected to the logical channel mapped to schedulingRequestID, it is mapped to one of the CG duration candidate values set in the RRC message.
  • CG offset value For the CG configuration mapped to the SR PUCCH resource or schedulingRequestID, or the CG configuration connected to the logical channel mapped to schedulingRequestID, it is mapped to one of the CG offset candidate values set in the RRC message.
  • MCS value For the SR PUCCH resource or CG configuration mapped to schedulingRequestID, or the CG configuration connected to the logical channel mapped to schedulingRequestID, it is mapped to one of the MCS candidate values set in the RRC message.
  • the terminal transmits positive SR information through UCI piggybacked on PUSCH or transmits a specific MAC CE through PUSCH.
  • Activation of a specific CG configuration index can be notified to the base station.
  • the specific MAC CE is either a BSR MAC CE or a new MAC CE that has a higher or lower priority than the BSR MAC CE and can be included in the MAC PDU.
  • This type of UCI or MAC CE may indicate one or more of the following information.
  • CG configuration index Indicates activation or deactivation of one or multiple CG configurations set by RRC message.
  • CG duration value Indicates one of the CG duration candidate values set in the RRC message for one or more CG configurations indicated above.
  • CG offset value Indicates one of the CG offset candidate values set in the RRC message for one or more CG configurations indicated above.
  • MCS value Indicates one of the MCS candidate values set in the RRC message for one or more CG configurations indicated above.
  • the terminal if the terminal successfully transmits SR or UCI or the MAC CE, the terminal activates or resumes a specific CG that has been deactivated or suspended according to the CG configuration index.
  • the terminal continues transmitting the CG PUSCH for a certain period of time or a certain number of times from the first CG PUSCH transmission determined according to the CG offset, and then deactivates the CG configuration by itself.
  • a certain amount of time or a certain number of times can be determined by the CG duration value notified by the terminal to the base station, or by the CG duration value specified by the base station in an RRC message for the corresponding CG configuration index.
  • the terminal or base station determines that the corresponding CG configuration is activated until receiving a DCI or MAC CE or RRC message indicating deactivation. Meanwhile, when the terminal indicates an MCS value, the base station determines that the CG PUSCH is transmitted according to the indicated MCS value. If the terminal does not indicate an MCS value, the terminal and the base station determine that the CG PUSCH is transmitted according to the MCS value set in the RRC message.
  • the terminal may deactivate a specific activated CG configuration within the CG duration if the CG duration is specified or by transmitting a specific SR PUCCH resource if the CG duration is not specified.
  • the base station can be informed of the deactivation of a specific CG configuration through UCI or the MAC CE.
  • a specific SR PUCCH resource can be set to be mapped to the deactivation of a specific CG configuration index.
  • a specific SR PUCCH resource mapped to the activation of a specific CG configuration index can also be mapped to the deactivation of a specific CG configuration index.
  • specific SR PUCCH resource transmission transmitted after a specific CG configuration is activated may indicate deactivation of the corresponding CG configuration.
  • the base station transmits a DCI indicating release/deactivation of a specific CG configuration index within or outside the CG duration, or when the CG duration is not specified, so that the CG configuration activated by the terminal can be deactivated according to the instructions of the base station. You can.
  • the terminal may repeatedly transmit the SR, UCI, or MAC CE as many times as set by the base station.
  • Method B A method of requesting activation of CG resources for a specific CG index through transmission of the specific SR resource or MAC CE transmission such as BSR
  • the base station can set one or multiple CGs to a specific terminal.
  • the UE selects an index for a specific CG configuration mapped to the UL traffic pattern for the logical channel on which data is available and requests the base station for the selected specific CG configuration index through SR resources or MAC CE.
  • the base station can provide the following additional settings for each CG configuration index.
  • the terminal can inform the base station of one CG duration value among the set CG duration values.
  • candidate values for the time difference between the UE's SR, UCI, or MAC CE transmission slot and the first CG PUSCH slot can be set.
  • candidate values for the first PUSCH symbol within the first CG PUSCH slot can be set.
  • the terminal can inform the base station of one CG offset value among the set CG offset values. For example, the terminal can determine the CG offset value by considering the PDB (Packet Delay Budget) of the data to be transmitted and the jittering effect.
  • PDB Packet Delay Budget
  • the terminal For a specific CG configuration index to be activated, set candidate values for the remaining PDBs of data in the UL PDCP buffer or RLC buffer. Among the set PDB values, the terminal selects the value that is equal to or closest to the remaining PDB of the data to be transmitted, the closest value that is equal to or higher than the remaining PDB, or the closest value that is equal to or lower than the remaining PDB, and selects the selected PDB value. This can be notified to the base station.
  • the base station can map one or multiple logical channels to a specific CG configuration index. If data to be transmitted on a certain logical channel is available and the corresponding logical channel is mapped to a specific CG configuration index, the terminal can transmit positive SR information through the SR PUCCH resource mapped to the specific CG configuration index.
  • SR PUCCH resource or schedulingRequestID mapped to SR PUCCH resource can be set to be mapped to the following information.
  • CG configuration index Maps to one or multiple CG configurations set in an RRC message.
  • CG duration value For the CG configuration mapped to SR PUCCH resource or schedulingRequestID, or the CG configuration connected to the logical channel mapped to schedulingRequestID, it is mapped to one of the CG duration candidate values set in the RRC message.
  • CG offset value For the CG configuration mapped to the SR PUCCH resource or schedulingRequestID, or the CG configuration connected to the logical channel mapped to schedulingRequestID, it is mapped to one of the CG offset candidate values set in the RRC message.
  • Remaining PDB value For the SR PUCCH resource or CG configuration mapped to schedulingRequestID, or the CG configuration connected to the logical channel mapped to schedulingRequestID, it is mapped to one of the Remaining PDB candidate values set in the RRC message.
  • the terminal If there is no SR PUCCH resource mapped to a specific CG configuration index, BSR is triggered, or UL grant is available, the terminal transmits positive SR information through UCI piggybacked on PUSCH or transmits a specific MAC CE through PUSCH. You can request the base station to activate a specific CG configuration index.
  • the specific MAC CE is either a BSR MAC CE or a new MAC CE that has a higher or lower priority than the BSR MAC CE and can be included in the MAC PDU.
  • This type of UCI or MAC CE may indicate one or more of the following information.
  • CG configuration index Requests activation or deactivation of one or multiple CG configurations set in an RRC message.
  • CG duration value Indicates one of the CG duration candidate values set in the RRC message for one or more CG configurations indicated above.
  • CG offset value Indicates one of the CG offset candidate values set in the RRC message for one or more CG configurations indicated above.
  • Remaining PDB value Indicates one of the Remaining PDB candidate values set in the RRC message for one or more CG configurations indicated above.
  • the base station can activate a specific CG configuration with a DCI or MAC CE or RRC message.
  • the base station can indicate information such as the index of a specific CG configuration, CG duration, CG offset, and MCS value through a DCI or MAC CE or RRC message. If the base station does not indicate one or more of these pieces of information, for information not indicated, SR or UCI transmitted by the terminal or CG configuration index and/or CG duration and/or CG offset indicated by the MAC CE and/or Applies the MCS value to the activated CG configuration.
  • the terminal activates or resumes a specific CG that has been deactivated or suspended according to the base station instructions.
  • the terminal continues transmitting the CG PUSCH for a certain period of time or a certain number of times from the first CG PUSCH transmission determined according to the CG offset, and then deactivates the CG configuration by itself. At this time, a certain amount of time or a certain number of times is determined by the CG duration value indicated by the base station. If the base station does not indicate, it is determined by the CG duration value indicated by the terminal through SR/UCI/MAC CE.
  • the terminal determines that the corresponding CG configuration is activated until receiving a DCI or MAC CE or RRC message indicating deactivation. Meanwhile, when the base station indicates an MCS value, the base station determines that the CG PUSCH is transmitted according to the indicated MCS value. If the base station does not indicate an MCS value, the terminal and the base station determine that CG PUSCH is transmitted according to the MCS value set in the RRC message, or CG PUSCH is transmitted according to the MCS value notified by the terminal to the base station through SR/UCI/MAC CE. It is judged that is being transmitted.
  • the terminal may transmit a specific SR PUCCH resource to deactivate the specific activated CG configuration.
  • the base station can be informed of the deactivation of a specific CG configuration through UCI or the MAC CE.
  • a specific SR PUCCH resource can be set to be mapped to the deactivation of a specific CG configuration index.
  • a specific SR PUCCH resource mapped to the activation of a specific CG configuration index can also be mapped to the deactivation of a specific CG configuration index.
  • specific SR PUCCH resource transmission transmitted after a specific CG configuration is activated may indicate deactivation of the corresponding CG configuration.
  • the base station transmits a DCI indicating release/deactivation of a specific CG configuration index within or outside the CG duration, or when the CG duration is not specified, the activated CG configuration can be deactivated according to the base station instructions. .
  • the terminal that executes or requests CG activation through MAC CE can configure and transmit MAC CE in the format as shown below.
  • the terminal of this specification can transmit a BSR MAC CE including CG Activation information according to the settings of the base station.
  • Figure 8 shows an example of BSR MAC CE with CG Activation.
  • the BSR MAC CE includes a specific CG configuration index so that the terminal can inform or request the base station to activate or deactivate the corresponding CG configuration. Additionally, the previously mentioned CG offset and CG duration fields may be included.
  • the terminal of this specification can transmit CG Activation MAC CE.
  • Figure 9 shows an example of CG Activation MAC CE.
  • the MAC CE includes 8 Ci fields, and each Ci field is mapped to a specific CG configuration index. If the value of the Ci field is 0, the terminal notifies the base station of the deactivation of the ith CG configuration. or request, and if the value of the Ci field is 1, the terminal informs or requests the base station to activate the ith CG configuration. Additionally, the previously mentioned CG offset, MCS field, and CG duration fields may be included.
  • the terminal of this specification can transmit CG Activation MAC CE.
  • Figure 10 shows CG Activation MAC CE including PDB information.
  • the MAC CE includes 8 Ci fields, and each Ci field is mapped to a specific CG configuration index. If the value of the Ci field is 0, the terminal notifies the base station of the deactivation of the ith CG configuration. or request, and if the value of the Ci field is 1, the terminal informs or requests the base station to activate the ith CG configuration. Additionally, the previously mentioned CG offset, Remaining PDB field, and CG duration fields may be included.
  • Figure 11 is a diagram for explaining signal transmission by a terminal according to an embodiment.
  • the terminal may receive one or more configured grant (CG) settings for uplink data transmission (1105).
  • CG configured grant
  • the terminal may activate the first CG setting selected by the terminal among the one or more CG settings (1110).
  • the terminal may activate the first CG setting through uplink transmission of control information related to the first CG setting.
  • the terminal may transmit a physical uplink shared channel (PUSCH) based on the activated first CG setting (1115).
  • PUSCH physical uplink shared channel
  • Uplink transmission of the control information activating the first CG setting may be performed on an uplink resource associated with the first CG setting.
  • Each of the one or more CG settings may be associated with each physical uplink control channel (PUCCH) resource.
  • the terminal may activate the first CG setting by transmitting the control information on the first PUCCH resource associated with the first CG setting.
  • the control information may include SR (scheduling request) information.
  • the control information that activates the first CG setting may be a medium access control (MAC) control element (CE).
  • the MAC CE may include an index of the first CG setting.
  • the MAC CE may include at least one of MCS (modulation and coding scheme) information and PDB (packet delay budget) information related to the PUSCH transmission.
  • the MAC CE may be a buffer status report (BSR).
  • Figure 12 is a diagram for explaining signal reception by a base station according to an embodiment.
  • the base station may transmit one or more configured grant (CG) settings for receiving uplink data to the terminal (1205).
  • CG configured grant
  • the base station may activate the first CG setting selected by the terminal among the one or more CG settings (1210).
  • the base station may activate the first CG setting through uplink reception of control information related to the first CG setting.
  • the base station may receive a physical uplink shared channel (PUSCH) based on the activated first CG configuration (1215).
  • PUSCH physical uplink shared channel
  • Uplink reception of the control information activating the first CG setting may be performed on an uplink resource associated with the first CG setting.
  • Each of the one or more CG settings may be associated with each physical uplink control channel (PUCCH) resource.
  • the base station may activate the first CG setting based on receiving the control information on the first PUCCH resource associated with the first CG setting.
  • the control information may include SR (scheduling request) information.
  • the control information that activates the first CG setting may be a medium access control (MAC) control element (CE).
  • the MAC CE may include an index of the first CG setting.
  • the MAC CE may include at least one of MCS (modulation and coding scheme) information and PDB (packet delay budget) information related to the PUSCH reception.
  • the MAC CE may be a buffer status report (BSR).
  • Figure 13 illustrates a communication system 1 applied to the present invention.
  • the communication system 1 applied to the present invention includes a wireless device, a base station, and a network.
  • a wireless device refers to a device that performs communication using wireless access technology (e.g., 5G NR (New RAT), LTE (Long Term Evolution)) and may be referred to as a communication/wireless/5G device.
  • wireless devices include robots (100a), vehicles (100b-1, 100b-2), XR (eXtended Reality) devices (100c), hand-held devices (100d), and home appliances (100e). ), IoT (Internet of Thing) device (100f), and AI device/server (400).
  • vehicles may include vehicles equipped with wireless communication functions, autonomous vehicles, vehicles capable of inter-vehicle communication, etc.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include AR (Augmented Reality)/VR (Virtual Reality)/MR (Mixed Reality) devices, HMD (Head-Mounted Device), HUD (Head-Up Display) installed in vehicles, televisions, smartphones, It can be implemented in the form of computers, wearable devices, home appliances, digital signage, vehicles, robots, etc.
  • Portable devices may include smartphones, smart pads, wearable devices (e.g., smartwatches, smart glasses), and computers (e.g., laptops, etc.).
  • Home appliances may include TVs, refrigerators, washing machines, etc.
  • IoT devices may include sensors, smart meters, etc.
  • a base station and network may also be implemented as wireless devices, and a specific wireless device 200a may operate as a base station/network node for other wireless devices.
  • Wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, 4G (eg, LTE) network, or 5G (eg, NR) network.
  • Wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may also communicate directly (e.g. sidelink communication) without going through the base station/network.
  • vehicles 100b-1 and 100b-2 may communicate directly (e.g.
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • an IoT device eg, sensor
  • another IoT device eg, sensor
  • another wireless device 100a to 100f
  • Wireless communication/connection may be established between the wireless devices (100a to 100f)/base station (200) and the base station (200)/base station (200).
  • wireless communication/connection includes various wireless connections such as uplink/downlink communication (150a), sidelink communication (150b) (or D2D communication), and inter-base station communication (150c) (e.g. relay, IAB (Integrated Access Backhaul)).
  • uplink/downlink communication 150a
  • sidelink communication 150b
  • inter-base station communication 150c
  • This can be achieved through technology (e.g., 5G NR).
  • a wireless device and a base station/wireless device, and a base station and a base station can transmit/receive wireless signals to each other.
  • wireless communication/connection can transmit/receive signals through various physical channels.
  • various signal processing processes e.g., channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
  • resource allocation processes etc.
  • Figure 14 illustrates a wireless device to which the present invention can be applied.
  • the first wireless device 100 and the second wireless device 200 can transmit and receive wireless signals through various wireless access technologies (eg, LTE, NR).
  • ⁇ first wireless device 100, second wireless device 200 ⁇ refers to ⁇ wireless device 100x, base station 200 ⁇ and/or ⁇ wireless device 100x, wireless device 100x) in FIG. ⁇ can be responded to.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and/or one or more antennas 108.
  • Processor 102 controls memory 104 and/or transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
  • the processor 102 may process information in the memory 104 to generate first information/signal and then transmit a wireless signal including the first information/signal through the transceiver 106.
  • the processor 102 may receive a wireless signal including the second information/signal through the transceiver 106 and then store information obtained from signal processing of the second information/signal in the memory 104.
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102. For example, memory 104 may perform some or all of the processes controlled by processor 102 or instructions for performing the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. Software code containing them can be stored.
  • the processor 102 and memory 104 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • Transceiver 106 may be coupled to processor 102 and may transmit and/or receive wireless signals via one or more antennas 108. Transceiver 106 may include a transmitter and/or receiver. The transceiver 106 can be used interchangeably with an RF (Radio Frequency) unit.
  • a wireless device may mean a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and/or one or more antennas 208.
  • Processor 202 controls memory 204 and/or transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
  • the processor 202 may process the information in the memory 204 to generate third information/signal and then transmit a wireless signal including the third information/signal through the transceiver 206.
  • the processor 202 may receive a wireless signal including the fourth information/signal through the transceiver 206 and then store information obtained from signal processing of the fourth information/signal in the memory 204.
  • the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202. For example, memory 204 may perform some or all of the processes controlled by processor 202 or instructions for performing the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. Software code containing them can be stored.
  • the processor 202 and memory 204 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • Transceiver 206 may be coupled to processor 202 and may transmit and/or receive wireless signals via one or more antennas 208. Transceiver 206 may include a transmitter and/or receiver. Transceiver 206 may be used interchangeably with an RF unit.
  • a wireless device may mean a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 102, 202.
  • one or more processors 102, 202 may implement one or more layers (e.g., functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • One or more processors 102, 202 may generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the descriptions, functions, procedures, suggestions, methods and/or operational flow charts disclosed herein. can be created.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102, 202 may generate messages, control information, data or information according to the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
  • One or more processors 102, 202 generate signals (e.g., baseband signals) containing PDUs, SDUs, messages, control information, data or information according to the functions, procedures, proposals and/or methods disclosed herein. , can be provided to one or more transceivers (106, 206).
  • One or more processors 102, 202 may receive signals (e.g., baseband signals) from one or more transceivers 106, 206, and the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • PDU, SDU, message, control information, data or information can be obtained.
  • One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, etc.
  • Firmware or software configured to perform the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document may be included in one or more processors (102, 202) or stored in one or more memories (104, 204). It may be driven by the above processors 102 and 202.
  • the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software in the form of codes, instructions and/or sets of instructions.
  • One or more memories 104, 204 may be connected to one or more processors 102, 202 and may store various types of data, signals, messages, information, programs, codes, instructions, and/or instructions.
  • One or more memories 104, 204 may consist of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and/or combinations thereof.
  • One or more memories 104, 204 may be located internal to and/or external to one or more processors 102, 202. Additionally, one or more memories 104, 204 may be connected to one or more processors 102, 202 through various technologies, such as wired or wireless connections.
  • One or more transceivers 106, 206 may transmit user data, control information, wireless signals/channels, etc. mentioned in the methods and/or operation flowcharts of this document to one or more other devices.
  • One or more transceivers 106, 206 may receive user data, control information, wireless signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein, etc. from one or more other devices. there is.
  • one or more transceivers 106 and 206 may be connected to one or more processors 102 and 202 and may transmit and receive wireless signals.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or wireless signals to one or more other devices. Additionally, one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or wireless signals from one or more other devices. In addition, one or more transceivers (106, 206) may be connected to one or more antennas (108, 208), and one or more transceivers (106, 206) may be connected to the description and functions disclosed in this document through one or more antennas (108, 208). , may be set to transmit and receive user data, control information, wireless signals/channels, etc.
  • one or more antennas may be multiple physical antennas or multiple logical antennas (eg, antenna ports).
  • One or more transceivers (106, 206) process the received user data, control information, wireless signals/channels, etc. using one or more processors (102, 202), and convert the received wireless signals/channels, etc. from the RF band signal. It can be converted to a baseband signal.
  • One or more transceivers (106, 206) may convert user data, control information, wireless signals/channels, etc. processed using one or more processors (102, 202) from baseband signals to RF band signals.
  • one or more transceivers 106, 206 may comprise (analog) oscillators and/or filters.
  • FIG. 15 shows another example of a wireless device applied to the present invention.
  • Wireless devices can be implemented in various forms depending on usage-examples/services (see FIG. 13).
  • the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 14 and include various elements, components, units/units, and/or modules. ) can be composed of.
  • the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and an additional element 140.
  • the communication unit may include communication circuitry 112 and transceiver(s) 114.
  • communication circuitry 112 may include one or more processors 102, 202 and/or one or more memories 104, 204 of FIG. 14.
  • transceiver(s) 114 may include one or more transceivers 106, 206 and/or one or more antennas 108, 208 of FIG. 14.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140 and controls overall operations of the wireless device. For example, the control unit 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130. In addition, the control unit 120 transmits the information stored in the memory unit 130 to the outside (e.g., another communication device) through the communication unit 110 through a wireless/wired interface, or to the outside (e.g., to another communication device) through the communication unit 110. Information received through a wireless/wired interface from another communication device may be stored in the memory unit 130.
  • the outside e.g., another communication device
  • Information received through a wireless/wired interface from another communication device may be stored in the memory unit 130.
  • the additional element 140 may be configured in various ways depending on the type of wireless device.
  • the additional element 140 may include at least one of a power unit/battery, an input/output unit (I/O unit), a driving unit, and a computing unit.
  • wireless devices include robots (FIG. 17, 100a), vehicles (FIG. 17, 100b-1, 100b-2), XR devices (FIG. 17, 100c), portable devices (FIG. 17, 100d), and home appliances. (FIG. 17, 100e), IoT device (FIG.
  • Digital broadcasting terminal digital broadcasting terminal
  • hologram device public safety device
  • MTC device medical device
  • fintech device or financial device
  • security device climate/environment device
  • It can be implemented in the form of an AI server/device (FIG. 17, 400), a base station (FIG. 17, 200), a network node, etc.
  • Wireless devices can be mobile or used in fixed locations depending on the usage/service.
  • various elements, components, units/parts, and/or modules within the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least some of them may be wirelessly connected through the communication unit 110.
  • the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (e.g., 130 and 140) are connected through the communication unit 110.
  • the control unit 120 and the first unit e.g., 130 and 140
  • each element, component, unit/part, and/or module within the wireless devices 100 and 200 may further include one or more elements.
  • the control unit 120 may be comprised of one or more processor sets.
  • control unit 120 may be comprised of a communication control processor, an application processor, an electronic control unit (ECU), a graphics processing processor, and a memory control processor.
  • memory unit 130 includes random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and/or a combination thereof.
  • Figure 16 illustrates a vehicle or autonomous vehicle to which the present invention is applied.
  • a vehicle or autonomous vehicle can be implemented as a mobile robot, vehicle, train, manned/unmanned aerial vehicle (AV), ship, etc.
  • AV manned/unmanned aerial vehicle
  • the vehicle or autonomous vehicle 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a drive unit 140a, a power supply unit 140b, a sensor unit 140c, and an autonomous driving unit. It may include a portion 140d.
  • the antenna unit 108 may be configured as part of the communication unit 110. Blocks 110/130/140a to 140d respectively correspond to blocks 110/130/140 in FIG. 15.
  • the communication unit 110 can transmit and receive signals (e.g., data, control signals, etc.) with external devices such as other vehicles, base stations (e.g. base stations, road side units, etc.), and servers.
  • the control unit 120 may control elements of the vehicle or autonomous vehicle 100 to perform various operations.
  • the control unit 120 may include an Electronic Control Unit (ECU).
  • the driving unit 140a can drive the vehicle or autonomous vehicle 100 on the ground.
  • the driving unit 140a may include an engine, motor, power train, wheels, brakes, steering device, etc.
  • the power supply unit 140b supplies power to the vehicle or autonomous vehicle 100 and may include a wired/wireless charging circuit, a battery, etc.
  • the sensor unit 140c can obtain vehicle status, surrounding environment information, user information, etc.
  • the sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward sensor. / May include a reverse sensor, battery sensor, fuel sensor, tire sensor, steering sensor, temperature sensor, humidity sensor, ultrasonic sensor, illuminance sensor, pedal position sensor, etc.
  • the autonomous driving unit 140d provides technology for maintaining the driving lane, technology for automatically adjusting speed such as adaptive cruise control, technology for automatically driving along a set route, and technology for automatically setting and driving when a destination is set. Technology, etc. can be implemented.
  • the communication unit 110 may receive map data, traffic information data, etc. from an external server.
  • the autonomous driving unit 140d can create an autonomous driving route and driving plan based on the acquired data.
  • the control unit 120 may control the driving unit 140a so that the vehicle or autonomous vehicle 100 moves along the autonomous driving path according to the driving plan (e.g., speed/direction control).
  • the communication unit 110 may acquire the latest traffic information data from an external server irregularly/periodically and obtain surrounding traffic information data from surrounding vehicles.
  • the sensor unit 140c can obtain vehicle status and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and driving plan based on newly acquired data/information.
  • the communication unit 110 may transmit information about vehicle location, autonomous driving route, driving plan, etc. to an external server.
  • An external server can predict traffic information data in advance using AI technology, etc., based on information collected from vehicles or self-driving vehicles, and provide the predicted traffic information data to the vehicles or self-driving vehicles.
  • Figure 17 is a diagram for explaining DRX (Discontinuous Reception) operation of a terminal according to an embodiment of the present invention.
  • the terminal may perform DRX operation while performing the procedures and/or methods described/suggested above.
  • a terminal with DRX enabled can reduce power consumption by discontinuously receiving DL signals.
  • DRX can be performed in RRC (Radio Resource Control)_IDLE state, RRC_INACTIVE state, and RRC_CONNECTED state.
  • RRC_IDLE state and RRC_INACTIVE state DRX is used to receive paging signals discontinuously.
  • RRC_CONNECTED DRX DRX performed in RRC_CONNECTED state will be described (RRC_CONNECTED DRX).
  • the DRX cycle consists of On Duration and Opportunity for DRX.
  • the DRX cycle defines the time interval in which On Duration is periodically repeated.
  • On Duration indicates the time interval that the terminal monitors to receive the PDCCH.
  • the terminal performs PDCCH monitoring during On Duration. If there is a PDCCH successfully detected during PDCCH monitoring, the terminal starts an inactivity timer and maintains the awake state. On the other hand, if no PDCCH is successfully detected during PDCCH monitoring, the terminal enters a sleep state after the On Duration ends. Accordingly, when DRX is set, PDCCH monitoring/reception may be performed discontinuously in the time domain when performing the procedures and/or methods described/suggested above.
  • a PDCCH reception opportunity (e.g., a slot with a PDCCH search space) may be set discontinuously according to the DRX setting.
  • PDCCH monitoring/reception can be performed continuously in the time domain when performing the procedures and/or methods described/suggested above.
  • PDCCH reception opportunities eg, slots with PDCCH search space
  • PDCCH monitoring may be limited in the time section set as the measurement gap.
  • Table 6 shows the terminal process related to DRX (RRC_CONNECTED state).
  • DRX configuration information is received through higher layer (eg, RRC) signaling, and DRX ON/OFF is controlled by the DRX command of the MAC layer.
  • RRC Radio Resource Control
  • Type of signals UE procedure 1st step RRC signaling (MAC- (CellGroupConfig) - Receive DRX configuration information 2nd Step MAC C.E. ((Long) DRX command MAC CE) - Receive DRX command 3rd Step - - Monitor a PDCCH during an on-duration of a DRX cycle
  • MAC-CellGroupConfig contains configuration information necessary to set MAC (Medium Access Control) parameters for the cell group.
  • MAC-CellGroupConfig may also include configuration information about DRX.
  • MAC-CellGroupConfig defines DRX and can include information as follows: - Value of drx-OnDurationTimer: Defines the length of the start section of the DRX cycle.
  • drx-InactivityTimer Defines the length of the time section in which the terminal is awake after the PDCCH opportunity in which the PDCCH indicating initial UL or DL data is detected.
  • drx-HARQ-RTT-TimerDL Defines the length of the maximum time interval from when the DL initial transmission is received until the DL retransmission is received.
  • drx-HARQ-RTT-TimerDL Defines the length of the maximum time interval from when the grant for UL initial transmission is received until the grant for UL retransmission is received.
  • the terminal remains awake and performs PDCCH monitoring at every PDCCH opportunity.
  • the present invention can be used in terminals, base stations, or other equipment in a wireless mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 명세서에 개시된 실시예들 중 적어도 하나에 따라서 단말은 상향링크 데이터 송신을 위한 하나 또는 둘 이상의 CG (configured grant) 설정들을 수신하고, 상기 하나 또는 둘 이상의 CG 설정들 중 상기 단말이 선택한 제1 CG 설정을 활성화할 수 있다. 상기 활성화된 제1 CG 설정에 기초하여 PUSCH (physical uplink shared channel)를 송신하는 것을 포함하고, 상기 단말은 상기 제1 CG 설정에 관련된 제어 정보의 상향링크 송신을 통해서 상기 제1 CG 설정을 활성화할 수 있다.

Description

무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
본 발명은 무선 통신 시스템에 관한 것으로, 보다 상세하게는 무선 신호 송수신 방법 및 장치에 관한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
본 발명의 목적은 무선 신호 송수신 과정을 효율적으로 수행하는 방법 및 이를 위한 장치를 제공하는데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
일 측면에 따른 무선 통신 시스템에서 단말(UE)이 신호를 송신하는 방법은, 상향링크 데이터 송신을 위한 하나 또는 둘 이상의 CG (configured grant) 설정들을 수신; 상기 하나 또는 둘 이상의 CG 설정들 중 상기 단말이 선택한 제1 CG 설정을 활성화; 및 상기 활성화된 제1 CG 설정에 기초하여 PUSCH (physical uplink shared channel)를 송신하는 것을 포함할 수 있다. 상기 단말은 상기 제1 CG 설정에 관련된 제어 정보의 상향링크 송신을 통해서 상기 제1 CG 설정을 활성화할 수 있다.
상기 제1 CG 설정을 활성화하는 상기 제어 정보의 상향링크 송신은, 상기 제1 CG 설정에 연계된 상향링크 자원 상에서 수행될 수 있다.
상기 하나 또는 둘 이상의 CG 설정들 각각이 각 PUCCH (physical uplink control channel) 자원과 연계될 수 있다. 상기 단말은 상기 제1 CG 설정에 연계된 제1 PUCCH 자원 상에서 상기 제어 정보를 송신함으로써 상기 제1 CG 설정을 활성화할 수 있다. 상기 제어 정보는 SR (scheduling request) 정보를 포함할 수 있다.
상기 제1 CG 설정을 활성화하는 상기 제어 정보는 MAC (medium access control) CE (control element)일 수 있다. 상기 MAC CE는 상기 제1 CG 설정의 인덱스를 포함할 수 있다. 상기 MAC CE는 상기 PUSCH 송신과 관련된 MCS (modulation and coding scheme) 정보 및 PDB (packet delay budget) 정보 중 적어도 하나를 포함할 수 있다. 상기 MAC CE는 BSR (buffer status report)일 수 있다.
다른 일 측면에 따라서 상술된 신호 송신 방법을 수행하기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록 매체가 제공될 수 있다.
또 다른 일 측면에 따라서 상술된 신호 송신 방법을 수행하는 단말이 제공될 수 있다.
또 다른 일 측면에 따라서 상술된 신호 송신 방법을 수행하는 단말을 제어하는 디바이스가 제공될 수 있다.
또 다른 일 측면에 따라 무선 통신 시스템에서 기지국이 신호를 송신하는 방법은, 상향링크 데이터 수신을 위한 하나 또는 둘 이상의 CG (configured grant) 설정들을 단말에 송신; 상기 하나 또는 둘 이상의 CG 설정들 중 상기 단말이 선택한 제1 CG 설정을 활성화; 및 상기 활성화된 제1 CG 설정에 기초하여 PUSCH (physical uplink shared channel)를 수신하는 것을 포함할 수 있다. 상기 기지국은 상기 제1 CG 설정에 관련된 제어 정보의 상향링크 수신을 통해서 상기 제1 CG 설정을 활성화할 수 있다.
본 발명의 또 다른 일 측면에 따라서 신호 수신 방법을 수행하는 기지국이 제공될 수 있다.
본 발명의 일 실시예에 따르면 무선 통신 시스템에서 신호가 보다 정확하고 효율적으로 송수신 될 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 무선 통신 시스템의 일례인 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다.
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다.
도 4는 슬롯 내에 물리 채널이 매핑되는 예를 도시한다.
도 5는 PDSCH 송수신 과정의 일 예를 도시한다.
도 6은 PUSCH 송수신 과정의 일 예를 도시한다.
도 7은 GOP 구조/패턴의 일 예를 도시한다.
도 8는 CG Activation을 포함하는 BSR MAC CE의 일 예를 도시한다.
도 9은 CG Activation MAC CE의 일 예를 도시한다.
도 10은 PDB를 포함하는 CG Activation MAC CE의 일 예를 도시한다.
도 11은 일 실시예에 따른 단말의 신호 송신을 설명하기 위한 도면이다.
도 12는 일 실시예에 따른 기지국의 신호 수신을 설명하기 위한 도면이다.
도 13 내지 도 16은 본 발명에 적용 가능한 통신 시스템(1)과 무선 기기를 예시한다.
도 17은 본 발명에 적용 가능한 DRX(Discontinuous Reception) 동작을 예시한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A의 진화된 버전이다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT(Radio Access Technology)에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한, 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC(Machine Type Communications)도 차세대 통신에서 고려될 주요 이슈 중 하나이다. 또한, 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(enhanced Mobile BroadBand Communication), massive MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있으며, 본 발명에서는 편의상 해당 기술을 NR(New Radio 또는 New RAT)이라고 부른다.
설명을 명확하게 하기 위해, 3GPP NR을 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
본 발명과 관련한 배경 기술, 용어 정의 및 약어 등을 위해서 하기 문서들이 참조될 수 있다.
3GPP NR
- 3GPP TS 38.211: Physical channels and modulation
- 3GPP TS 38.212: Multiplexing and channel coding
- 3GPP TS 38.213: Physical layer procedures for control
- 3GPP TS 38.214: Physical layer procedures for data
- 3GPP TS 38.215: Physical layer measurements
- 3GPP TS 38.300: NR and NG-RAN Overall Description
- 3GPP TS 38.304: User Equipment (UE) procedures in idle mode and in RRC inactive state
- 3GPP TS 38.321: Medium Access Control (MAC) protocol
- 3GPP TS 38.322: Radio Link Control (RLC) protocol
- 3GPP TS 38.323: Packet Data Convergence Protocol (PDCP)
- 3GPP TS 38.331: Radio Resource Control (RRC) protocol
- 3GPP TS 37.324: Service Data Adaptation Protocol (SDAP)
- 3GPP TS 37.340: Multi-connectivity; Overall description
- 3GPP TS 23.287: Application layer support for V2X services; Functional architecture and information flows
- 3GPP TS 23.501: System Architecture for the 5G System
- 3GPP TS 23.502: Procedures for the 5G System
- 3GPP TS 23.503: Policy and Charging Control Framework for the 5G System; Stage 2
- 3GPP TS 24.501: Non-Access-Stratum (NAS) protocol for 5G System (5GS); Stage 3
- 3GPP TS 24.502: Access to the 3GPP 5G Core Network (5GCN) via non-3GPP access networks
- 3GPP TS 24.526: User Equipment (UE) policies for 5G System (5GS); Stage 3
용어 및 약어
- SS: Search Space
- CSS: Common Search Space
- USS: UE-specific Search Space
- PDCCH: Physical Downlink Control Channel
- PDSCH: Physical Downlink Shared Channel;
- PUCCH: Physical Uplink Control Channel;
- PUSCH: Physical Uplink Shared Channel;
- DCI: Downlink Control Information
- UCI: Uplink Control Information
- PO: Paging Occasion
- MO: Monitoring Occasion
- SI: System Information
- SIB: System Information Block
- MIB: Master Information Block
- IE: Information Element
- RE: Resource Element
- RS: Reference Signal
- TRS: Tracking Reference Signal
- CSI-RS: Channel-State Information Reference Signal
- DRX: Discontinuous Reception
- C-DRX: Connected mode DRX
- RRC: Radio Resource Control
- AR: Augmented Reality
- VR: Virtual Reality
- SPS: Semi-persistent scheduling
- CG: Configured Grant
무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 3GPP NR 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 SSB(Synchronization Signal Block)를 수신한다. SSB는 PSS(Primary Synchronization Signal), SSS(Secondary Synchronization Signal) 및 PBCH(Physical Broadcast Channel)를 포함한다. 단말은 PSS/SSS에 기반하여 기지국과 동기를 맞추고, 셀 ID(cell identity) 등의 정보를 획득한다. 또한, 단말은 PBCH에 기반하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
단말의 셀 탐색 과정은 아래와 같이 요약될 수 있다.
- 1st step (PSS 관련): SS/PBCH block (SSB) symbol timing acquisition, Cell ID detection within a cell ID group (3 hypothesis)
- 2nd Step (SSS 관련): Cell ID group detection (336 hypothesis)
- 3rd Step (PBCH DMRS 관련): SSB index and Half frame (HF) index, (Slot and frame boundary detection)
- 4th Step (PBCH 관련): Time information (80 ms, System Frame Number (SFN), SSB index, HF), Remaining Minimum System Information (RMSI) Control resource set (CORESET)/Search space configuration 획득
- 5th Step (PDCCH and PDSCH 관련): Cell access information 및 RACH configuration 수신
336개의 셀 ID 그룹이 존재하고, 셀 ID 그룹 별로 3개의 셀 ID가 존재한다. 총 1008개의 셀 ID가 존재한다. 셀의 셀 ID가 속한 셀 ID 그룹에 관한 정보는 상기 셀의 SSS를 통해 제공/획득되며, 상기 셀 ID 내 336개 셀들 중 상기 셀 ID에 관한 정보는 PSS를 통해 제공/획득된다
336개의 셀 ID 그룹이 존재하고, 셀 ID 그룹 별로 3개의 셀 ID가 존재한다. 총 1008개의 셀 ID가 존재한다. 셀의 셀 ID가 속한 셀 ID 그룹에 관한 정보는 상기 셀의 SSS를 통해 제공/획득되며, 상기 셀 ID 내 336개 셀들 중 상기 셀 ID에 관한 정보는 PSS를 통해 제공/획득된다
SSB는 SSB 주기(periodicity)에 맞춰 주기적으로 전송된다. 초기 셀 탐색 시에 UE가 가정하는 SSB 기본 주기는 20ms로 정의된다. 셀 접속 후, SSB 주기는 네트워크(예, BS)에 의해 {5ms, 10ms, 20ms, 40ms, 80ms, 160ms} 중 하나로 설정될 수 있다. SSB 주기의 시작 부분에 SSB 버스트(burst) 세트가 구성된다. SSB 버스트 세트는 5ms 시간 윈도우(즉, 하프-프레임)로 구성되며, SSB는 SS 버스트 세트 내에서 최대 L번 전송될 수 있다. SSB의 최대 전송 횟수 L은 반송파의 주파수 대역에 따라 다음과 같이 주어질 수 있다. 하나의 슬롯은 최대 2개의 SSB를 포함한다.
- For frequency range up to 3 GHz, L = 4
- For frequency range from 3GHz to 6 GHz, L = 8
- For frequency range from 6 GHz to 52.6 GHz, L = 64
SS 버스트 세트 내에서 SSB 후보의 시간 위치가 부반송파 간격에 따라 정의될 수 있다. SSB 후보의 시간 위치는 SSB 버스트 세트(즉, 하프-프레임) 내에서 시간 순서에 따라 0 ~ L-1로 인덱싱된다(SSB 인덱스).
반송파의 주파수 폭(span) 내에서 다수의 SSB들이 전송될 있다. 이러한 SSB들의 물리 계층 셀 식별자들은 고유(unique)할 필요는 없으며, 다른 SSB들은 다른 물리 계층 셀 식별자를 가질 수 있다.
단말은 SSB를 검출함으로써 DL 동기를 획득할 수 있다. 단말은 검출된 SSB (시간) 인덱스에 기반하여 SSB 버스트 세트의 구조를 식별할 수 있고, 이에 따라 심볼/슬롯/하프-프레임 경계를 검출할 수 있다. 검출된 SSB가 속하는 프레임/하프-프레임의 번호는 시스템 프레임 번호(system frame number, SFN) 정보와 하프-프레임 지시 정보를 이용하여 식별될 수 있다.
구체적으로, 단말은 PBCH로부터 상기 PBCH가 속한 프레임에 대한 10 비트 SFN을 획득할 수 있다. 다음으로, 단말은 1 비트 하프-프레임 지시 정보를 획득할 수 있다. 예를 들어, UE가 하프-프레임 지시 비트가 0으로 세팅된 PBCH를 검출한 경우에는 상기 PBCH가 속한 SSB가 프레임 내 첫 번째 하프-프레임에 속한다고 판단할 수 있고, 하프-프레임 지시 비트가 1로 세팅된 PBCH를 검출한 경우에는 상기 PBCH가 속한 SSB가 프레임 내 두 번째 하프-프레임에 속한다고 판단할 수 있다. 마지막으로, 단말은 DMRS 시퀀스와 PBCH가 나르는 PBCH 페이로드에 기반하여 상기 PBCH가 속한 SSB의 SSB 인덱스를 획득할 수 있다.
초기 셀 탐색을 마친 단말은 단계 S102에서 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및 물리 하향링크 제어 채널 정보에 따른 물리 하향링크 공유 채널(Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 단계 S103 내지 단계 S106과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S103), 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S104). 경쟁 기반 임의 접속(Contention based random access)의 경우 추가적인 물리 임의 접속 채널의 전송(S105) 및 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널 수신(S106)과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상향/하향링크 신호 전송 절차로서 물리 하향링크 제어 채널/물리 하향링크 공유 채널 수신(S107) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH) 전송(S108)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다. NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 각 무선 프레임은 10ms의 길이를 가지며, 두 개의 5ms 하프-프레임(Half-Frame, HF)으로 분할된다. 각 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 분할된다. 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함한다. 보통(normal) CP가 사용되는 경우, 각 슬롯은 14개의 OFDM 심볼을 포함한다. 확장(extended) CP가 사용되는 경우, 각 슬롯은 12개의 OFDM 심볼을 포함한다.
표 1은 보통 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2u) Nslot symb Nframe,u slot Nsubframe,u slot
15KHz (u=0) 14 10 1
30KHz (u=1) 14 20 2
60KHz (u=2) 14 40 4
120KHz (u=3) 14 80 8
240KHz (u=4) 14 160 16
* Nslot symb: 슬롯 내 심볼의 개수
* Nframe,u slot: 프레임 내 슬롯의 개수
* Nsubframe,u slot: 서브프레임 내 슬롯의 개수
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2u) Nslot symb Nframe,u slot Nsubframe,u slot
60KHz (u=2) 12 40 4
프레임의 구조는 예시에 불과하고, 프레임에서 서브프레임의 수, 슬롯의 수, 심볼의 수는 다양하게 변경될 수 있다.
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM 뉴모놀로지(numerology)(예, SCS)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM 심볼)을 포함할 수 있다.
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다. 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 PRB(Physical RB)로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 맵핑될 수 있다.
도 4는 슬롯 내에 물리 채널이 맵핑되는 예를 도시한다. NR 시스템에서 프레임은 하나의 슬롯 내에 DL 제어 채널, DL 또는 UL 데이터, UL 제어 채널 등이 모두 포함될 수 있는 자기-완비 구조를 특징으로 한다. 예를 들어, 슬롯 내의 처음 N개의 심볼은 DL 제어 채널(예, PDCCH)을 전송하는데 사용되고(이하, DL 제어 영역), 슬롯 내의 마지막 M개의 심볼은 UL 제어 채널(예, PUCCH)을 전송하는데 사용될 수 있다(이하, UL 제어 영역). N과 M은 각각 0 이상의 정수이다. DL 제어 영역과 UL 제어 영역의 사이에 있는 자원 영역(이하, 데이터 영역)은 DL 데이터(예, PDSCH) 전송을 위해 사용되거나, UL 데이터(예, PUSCH) 전송을 위해 사용될 수 있다. GP는 기지국과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 서브프레임 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.
PDCCH는 DCI(Downlink Control Information)를 운반한다. 예를 들어, PCCCH (즉, DCI)는 DL-SCH(downlink shared channel)의 전송 포맷 및 자원 할당, UL-SCH(uplink shared channel)에 대한 자원 할당 정보, PCH(paging channel)에 대한 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위 계층 제어 메시지에 대한 자원 할당 정보, 전송 전력 제어 명령, CS(Configured Scheduling)의 활성화/해제 등을 나른다. DCI는 CRC(cyclic redundancy check)를 포함하며, CRC는 PDCCH의 소유자 또는 사용 용도에 따라 다양한 식별자(예, Radio Network Temporary Identifier, RNTI)로 마스킹/스크램블 된다. 예를 들어, PDCCH가 특정 단말을 위한 것이면, CRC는 단말 식별자(예, Cell-RNTI, C-RNTI)로 마스킹 된다. PDCCH가 페이징에 관한 것이면, CRC는 P-RNTI(Paging-RNTI)로 마스킹 된다. PDCCH가 시스템 정보(예, System Information Block, SIB)에 관한 것이면, CRC는 SI-RNTI(System Information RNTI)로 마스킹 된다. PDCCH가 랜덤 접속 응답에 관한 것이면, CRC는 RA-RNTI(Random Access-RNTI)로 마스킹 된다.
기지국은 단말에게 CORESET(Control Resource Set) 구성(configuration)을 전송할 수 있다. CORESET는 주어진 뉴모놀로지(예, SCS, CP 길이 등)를 갖는 REG(Resource Element Group) 세트로 정의된다. REG는 하나의 OFDM 심볼과 하나의 (P)RB로 정의된다. 하나의 단말을 위한 복수의 CORESET는 시간/주파수 도메인에서 중첩될 수 있다. CORESET는 시스템 정보(예, Master Information Block, MIB) 또는 상위 계층(예, Radio Resource Control, RRC, layer) 시그널링을 통해 설정될 수 있다. 예를 들어, MIB를 통해 소정의 공통(common) CORESET (e.g., CORESET #0)에 대한 구성 정보가 송신될 수 있다. 예를 들어, SIB1(system information block 1)을 나르는 PDSCH가 특정 PDCCH에 의해 스케줄되고, CORESET #0는 특정 PDCCH의 전송을 위한 것일 수 있다. 또한, CORESET #N (e.g., N>0)에 대한 구성 정보는 RRC 시그널링(e.g., 셀 공통 RRC 시그널링 또는 단말-특정 RRC 시그널링 등)을 통해 송신될 있다. 일 예로, CORESET 구성 정보를 나르는 단말-특정 RRC 시그널링은 예를 들어 RRC 셋업 메시지, RRC 재구성(reconfiguration) 메시지 및/또는 BWP 구성 정보 등의 다양한 시그널링을 포함할 수 있으며 이에 한정되지 않는다. 구체적으로, CORESET 구성에는 다음 정보/필드가 포함될 수 있다.
- controlResourceSetId: CORESET의 ID를 나타낸다.
- frequencyDomainResources: CORESET의 주파수 영역 자원을 나타낸다. 비트맵을 통해 지시되며, 각 비트는 RB 그룹(= 6개 (연속된) RB)에 대응한다. 예를 들어, 비트맵의 MSB(Most Significant Bit)는 BWP 내 첫 번째 RB 그룹에 대응한다. 비트 값이 1인 비트에 대응되는 RB 그룹이 CORESET의 주파수 영역 자원으로 할당된다.
- duration: CORESET의 시간 영역 자원을 나타낸다. CORESET를 구성하는 연속된 OFDM 심볼 개수를 나타낸다. duration은 1~3의 값을 가진다.
- cce-REG-MappingType: CCE(Control Channel Element)와 REG간의 매핑 타입을 나타낸다. Interleaved 타입과 non-interleaved 타입이 지원된다.
- interleaverSize: 인터리버 사이즈를 나타낸다.
- pdcch-DMRS-ScramblingID: PDCCH DMRS의 초기화에 사용되는 값을 나타낸다. pdcch-DMRS-ScramblingID가 포함되지 않는 경우, 서빙 셀의 물리 셀 ID가 사용된다.
- precoderGranularity: 주파수 도메인에서 프리코더 입도를 나타낸다.
- reg-BundleSize: REG 번들 사이즈를 나타낸다.
- tci-PresentInDCI: TCI(Transmission Configuration Index) 필드가 DL-관련 DCI에 포함되는지 여부를 나타낸다.
- tci-StatesPDCCH-ToAddList: PDCCH-구성에 정의된 TCI 상태의 서브세트를 나타낸다. TCI 상태는 RS 세트(TCI-상태) 내의 DL RS(들)와 PDCCH DMRS 포트의 QCL(Quasi-Co-Location) 관계를 제공하는데 사용된다.
또한, 기지국은 단말에게 PDCCH SS(Search Space) 구성을 전송할 수 있다. PDCCH SS 구성은 상위 계층 시그널링(e.g., RRC 시그널링)을 통해 전송될 수 있다. 예를 들어, RRC 시그널링은 RRC 셋업 메시지, RRC 재구성(reconfiguration) 메시지 및/또는 BWP 구성 정보등 다양한 시그널링을 포함할 수 있으며 이에 한정되지 않는다. 예를 들어, CORESET 구성과 PDCCH SS 구성은 하나의 메시지(e.g., 한번의 RRC 시그널링)를 통해 송신될 수도 있으며, 또는 서로 다른 메시지들을 통해 각각 송신될 수도 있다.
PDCCH SS 구성은 PDCCH SS 세트(set)의 구성에 대한 정보를 포함할 수 있다. PDCCH SS 세트는 단말이 모니터 (e.g., 블라인드 검출)을 수행하는 PDCCH 후보들의 세트(set)로 정의될 수 있다. 단말에는 하나 또는 복수의 SS set들이 설정될 수 있다. 각 SS set는 USS set이거나 또는 CSS set일 수 있다. 이하에서는 편의상, PDCCH SS set를 간략히 "SS" 또는 "PDCCH SS"로도 지칭할 수도 있다.
PDCCH SS 세트는 PDCCH 후보들을 포함한다. PDCCH 후보는 PDCCH 수신/검출을 위해 단말이 모니터링 하는 CCE(들)을 나타낸다. 여기서, 모니터링은 PDCCH 후보들을 블라인드 디코딩(Blind Decoding, BD) 하는 것을 포함한다. 하나의 PDCCH (후보)는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16 개의 CCE로 구성된다. 하나의 CCE는 6개의 REG로 구성된다. 각각의 CORESET 구성은 하나 이상의 SS와 연관되고(associated with), 각각의 SS는 하나의 COREST 구성과 연관된다. 하나의 SS는 하나의 SS 구성에 기반하여 정의되며, SS 구성에는 다음 정보/필드가 포함될 수 있다.
- searchSpaceId: SS의 ID를 나타낸다.
- controlResourceSetId: SS와 연관된 CORESET를 나타낸다.
- monitoringSlotPeriodicityAndOffset: PDCCH 모니터링 주기 구간 (슬롯 단위) 및 PDCCH 모니터링 구간 오프셋 (슬롯 단위)을 나타냄
- monitoringSymbolsWithinSlot: PDCCH 모니터링이 설정된 슬롯 내에서 PDCCH 모니터링을 위한 첫 번째 OFDM 심볼(들)을 나타낸다. 비트맵을 통해 지시되며, 각 비트는 슬롯 내의 각 OFDM 심볼에 대응한다. 비트맵의 MSB는 슬롯 내 첫 번째 OFDM 심볼에 대응한다. 비트 값이 1인 비트(들)에 대응되는 OFDM 심볼(들)이 슬롯 내에서 CORESET의 첫 번째 심볼(들)에 해당한다.
- nrofCandidates: AL={1, 2, 4, 8, 16} 별 PDCCH 후보의 수 (0, 1, 2, 3, 4, 5, 6, 8 중 하나의 값)를 나타낸다.
- searchSpaceType: CSS(Common Search Space) 또는 USS(UE-specific search space)를 나타내고, 해당 SS 타입에서 사용되는 DCI 포맷을 나타낸다.
이후, 기지국은 PDCCH를 생성하여 단말에게 전송하고, 단말은 PDCCH 수신/검출을 위해 하나 이상의 SS에서 PDCCH 후보들을 모니터링 할 수 있다. PDCCH 후보들을 모니터링을 해야 하는 기회(occasion)(예, 시간/주파수 자원)을 PDCCH (모니터링) 기회라고 정의된다. 슬롯 내에 하나 이상의 PDCCH (모니터링) 기회가 구성될 수 있다.
표 3은 SS 타입별 특징을 예시한다.
Type Search Space RNTI Use Case
Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH
Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding
Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI(s)
UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI(s) User specific PDSCH decoding
표 4는 PDCCH를 통해 전송되는 DCI 포맷들을 예시한다.
DCI format Usage
0_0 Scheduling of PUSCH in one cell
0_1 Scheduling of PUSCH in one cell
1_0 Scheduling of PDSCH in one cell
1_1 Scheduling of PDSCH in one cell
2_0 Notifying a group of UEs of the slot format
2_1 Notifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE
2_2 Transmission of TPC commands for PUCCH and PUSCH
2_3 Transmission of a group of TPC commands for SRS transmissions by one or more UEs
DCI 포맷 0_0은 TB-기반 (또는 TB-level) PUSCH를 스케줄링 하기 위해 사용되고, DCI 포맷 0_1은 TB-기반 (또는 TB-level) PUSCH 또는 CBG(Code Block Group)-기반 (또는 CBG-level) PUSCH를 스케줄링 하기 위해 사용될 수 있다. DCI 포맷 1_0은 TB-기반 (또는 TB-level) PDSCH를 스케줄링 하기 위해 사용되고, DCI 포맷 1_1은 TB-기반 (또는 TB-level) PDSCH 또는 CBG-기반 (또는 CBG-level) PDSCH를 스케줄링 하기 위해 사용될 수 있다(DL grant DCI). DCI 포맷 0_0/0_1은 UL grant DCI 또는 UL 스케줄링 정보로 지칭되고, DCI 포맷 1_0/1_1은 DL grant DCI 또는 DL 스케줄링 정보로 지칭될 수 있다. DCI 포맷 2_0은 동적 슬롯 포맷 정보 (예, dynamic SFI)를 단말에게 전달하기 위해 사용되고, DCI 포맷 2_1은 하향링크 선취 (pre-Emption) 정보를 단말에게 전달하기 위해 사용된다. DCI 포맷 2_0 및/또는 DCI 포맷 2_1은 하나의 그룹으로 정의된 단말들에게 전달되는 PDCCH인 그룹 공통 PDCCH (Group common PDCCH)를 통해 해당 그룹 내 단말들에게 전달될 수 있다.
DCI 포맷 0_0과 DCI 포맷 1_0은 폴백(fallback) DCI 포맷으로 지칭되고, DCI 포맷 0_1과 DCI 포맷 1_1은 논-폴백 DCI 포맷으로 지칭될 수 있다. 폴백 DCI 포맷은 단말 설정과 관계없이 DCI 사이즈/필드 구성이 동일하게 유지된다. 반면, 논-폴백 DCI 포맷은 단말 설정에 따라 DCI 사이즈/필드 구성이 달라진다.
PDSCH는 하향링크 데이터(예, DL-SCH transport block, DL-SCH TB)를 운반하고, QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM 등의 변조 방법이 적용된다. TB를 인코딩하여 코드워드(codeword)가 생성된다. PDSCH는 최대 2개의 코드워드를 나를 수 있다. 코드워드 별로 스크램블링(scrambling) 및 변조 매핑(modulation mapping)이 수행되고, 각 코드워드로부터 생성된 변조 심볼들은 하나 이상의 레이어로 매핑될 수 있다. 각 레이어는 DMRS(Demodulation Reference Signal)과 함께 자원에 매핑되어 OFDM 심볼 신호로 생성되고, 해당 안테나 포트를 통해 전송된다.
PUCCH는 UCI(Uplink Control Information)를 나른다. UCI는 다음을 포함한다.
- SR(Scheduling Request): UL-SCH 자원을 요청하는데 사용되는 정보이다.
- HARQ(Hybrid Automatic Repeat reQuest)-ACK(Acknowledgement): PDSCH 상의 하향링크 데이터 패킷(예, 코드워드)에 대한 응답이다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 코드워드에 대한 응답으로 HARQ-ACK 1비트가 전송되고, 두 개의 코드워드에 대한 응답으로 HARQ-ACK 2비트가 전송될 수 있다. HARQ-ACK 응답은 포지티브 ACK(간단히, ACK), 네거티브 ACK(NACK), DTX 또는 NACK/DTX를 포함한다. 여기서, HARQ-ACK은 HARQ ACK/NACK, ACK/NACK과 혼용된다.
- CSI(Channel State Information): 하향링크 채널에 대한 피드백 정보이다. MIMO(Multiple Input Multiple Output)-관련 피드백 정보는 RI(Rank Indicator) 및 PMI(Precoding Matrix Indicator)를 포함한다.
표 5는 PUCCH 포맷들을 예시한다. PUCCH 전송 길이에 따라 Short PUCCH (포맷 0, 2) 및 Long PUCCH (포맷 1, 3, 4)로 구분될 수 있다.
PUCCH format Length in OFDM symbols NPUCCH symb Number of bits Usage Etc
0 1 - 2 ≤2 HARQ, SR Sequence selection
1 4 - 14 ≤2 HARQ, [SR] Sequence modulation
2 1 - 2 >2 HARQ, CSI, [SR] CP-OFDM
3 4 - 14 >2 HARQ, CSI, [SR] DFT-s-OFDM
(no UE multiplexing)
4 4 - 14 >2 HARQ, CSI, [SR] DFT-s-OFDM
(Pre DFT OCC)
PUSCH는 상향링크 데이터(예, UL-SCH transport block, UL-SCH TB) 및/또는 상향링크 제어 정보(UCI)를 운반하고, CP-OFDM(Cyclic Prefix - Orthogonal Frequency Division Multiplexing) 파형(waveform) 또는 DFT-s-OFDM(Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplexing) 파형에 기초하여 전송된다. PUSCH가 DFT-s-OFDM 파형에 기초하여 전송되는 경우, 단말은 변환 프리코딩(transform precoding)을 적용하여 PUSCH를 전송한다. 일 예로, 변환 프리코딩이 불가능한 경우(예, transform precoding is disabled) 단말은 CP-OFDM 파형에 기초하여 PUSCH를 전송하고, 변환 프리코딩이 가능한 경우(예, transform precoding is enabled), 단말은 CP-OFDM 파형 또는 DFT-s-OFDM 파형에 기초하여 PUSCH를 전송할 수 있다. PUSCH 전송은 DCI 내 UL 그랜트에 의해 동적으로 스케줄링 되거나, 상위 계층(예, RRC) 시그널링 (및/또는 Layer 1(L1) 시그널링(예, PDCCH))에 기초하여 반-정적(semi-static)으로 스케줄링 될 수 있다(configured grant). PUSCH 전송은 코드북 기반 또는 비-코드북 기반으로 수행될 수 있다.
도 5는 PDSCH 송수신 과정의 일 예를 도시한다. 도 5를 참조하면, 단말은 슬롯 #n에서 PDCCH를 검출할 수 있다. 여기서, PDCCH는 하향링크 스케줄링 정보(예, DCI 포맷 1_0, 1_1)를 포함하며, PDCCH는 DL assignment-to-PDSCH offset (K0)과 PDSCH-HARQ-ACK reporting offset (K1)를 나타낸다. 예를 들어, DCI 포맷 1_0, 1_1은 다음의 정보를 포함할 수 있다.
- Frequency domain resource assignment: PDSCH에 할당된 RB 세트를 나타냄
- Time domain resource assignment: K0 (예, 슬롯 오프셋), 슬롯 #n+K0 내의 PDSCH의 시작 위치(예, OFDM 심볼 인덱스) 및 PDSCH의 길이(예 OFDM 심볼 개수)를 나타냄
- PDSCH-to-HARQ_feedback timing indicator: K1를 나타냄
- HARQ process number (4비트): 데이터(예, PDSCH, TB)에 대한 HARQ process ID(Identity)를 나타냄
- PUCCH resource indicator (PRI): PUCCH 자원 세트 내의 복수의 PUCCH 자원들 중에서 UCI 전송에 사용될 PUCCH 자원을 지시함
이후, 단말은 슬롯 #n의 스케줄링 정보에 따라 슬롯 #(n+K0)에서부터 PDSCH를 수신한 뒤, 슬롯 #n1(where, n+K0≤ n1)에서 PDSCH의 수신이 끝나면 슬롯 #(n1+K1)에서 PUCCH를 통해 UCI를 전송할 수 있다. 여기서, UCI는 PDSCH에 대한 HARQ-ACK 응답을 포함할 수 있다. 도 5에서는 편의상 PDSCH에 대한 SCS와 PUCCH에 대한 SCS가 동일하고, 슬롯# n1= 슬롯#n+K0 라고 가정하였으나, 본 발명은 이에 한정되지 않는다. SCS들이 상이한 경우 PUCCH의 SCS를 기반으로 K1 지시/해석될 수 있다.
PDSCH가 최대 1개 TB를 전송하도록 구성된 경우, HARQ-ACK 응답은 1-비트로 구성될 수 있다. PDSCH가 최대 2개의 TB를 전송하도록 구성된 경우, HARQ-ACK 응답은 공간(spatial) 번들링이 구성되지 않은 경우 2-비트로 구성되고, 공간 번들링이 구성된 경우 1-비트로 구성될 수 있다. 복수의 PDSCH에 대한 HARQ-ACK 전송 시점이 슬롯 #(n+K1)로 지정된 경우, 슬롯 #(n+K1)에서 전송되는 UCI는 복수의 PDSCH에 대한 HARQ-ACK 응답을 포함한다.
HARQ-ACK 응답을 위해 단말이 공간(spatial) 번들링을 수행하여야 하는지 여부는 셀 그룹 별로 구성(configure)(e.g., RRC/상위계층 시그널링)될 수 있다. 일 예로 공간 번들링은 PUCCH를 통해서 송신되는 HARQ-ACK 응답 및/또는 PUSCH를 통해서 송신되는 HARQ-ACK 응답 각각에 개별적으로 구성될 수 있다.
공간 번들링은 해당 서빙 셀에서 한번에 수신 가능한(또는 1 DCI를 통해 스케줄 가능한) TB (또는 코드워드)의 최대 개수가 2개 인경우 (또는 2개 이상인 경우)에 지원될 수 있다(e.g., 상위계층파라미터 maxNrofCodeWordsScheduledByDCI 가 2-TB에 해당하는 경우). 한편, 2-TB 전송을 위해서는 4개 보다 더 많은 개수의 레이어들이 사용될 수 있으며, 1-TB 전송에는 최대 4개 레이어가 사용될 수 있다. 결과적으로, 공간 번들링이 해당 셀 그룹에 구성된 경우, 해당 셀 그룹 내의 서빙 셀들 중 4 개 보다 많은 개수의 레이어가 스케줄 가능한 서빙 셀에 대하여 공간 번들링이 수행될 수 있다. 해당 서빙 셀 상에서, 공간 번들링을 통해서 HARQ-ACK 응답을 송신하고자 하는 단말은 복수 TB들에 대한 A/N bits을 (bit-wise) logical AND 연산하여 HARQ-ACK 응답을 생성할 수 있다.
예컨대, 단말이 2-TB를 스케줄링하는 DCI를 수신하고, 해당 DCI에 기초하여 PDSCH를 통해서 2-TB를 수신하였다고 가정할 때, 공간 번들링을 수행하는 단말은 제1 TB에 대한 제1 A/N bit와 제2 TB에 대한 제2 A/N bit를 논리적 AND 연산하여 단일 A/N bit를 생성할 수 있다. 결과적으로, 제1 TB와 제2 TB가 모두 ACK 인 경우 단말은 ACK 비트 값을 기지국에 보고하고, 어느 하나의 TB라도 NACK 인경우 단말은 NACK 비트 값을 기지국에 보고한다.
예컨대, 2-TB가 수신 가능하도록 구성(configure)된 서빙 셀 상에서 실제로 1-TB 만 스케줄된 경우, 단말은 해당 1-TB에 대한 A/N bit와 비트 값 1을 논리적 AND 연산하여 단일 A/N bit를 생성할 수 있다. 결과적으로, 단말은 해당 1-TB에 대한 A/N bit를 그대로 기지국에 보고하게 된다.
기지국/단말에는 DL 전송을 위해 복수의 병렬 DL HARQ 프로세스가 존재한다. 복수의 병렬 HARQ 프로세스는 이전 DL 전송에 대한 성공 또는 비성공 수신에 대한 HARQ 피드백을 기다리는 동안 DL 전송이 연속적으로 수행되게 한다. 각각의 HARQ 프로세스는 MAC(Medium Access Control) 계층의 HARQ 버퍼와 연관된다. 각각의 DL HARQ 프로세스는 버퍼 내의 MAC PDU(Physical Data Block)의 전송 횟수, 버퍼 내의 MAC PDU에 대한 HARQ 피드백, 현재 리던던시 버전(redundancy version) 등에 관한 상태 변수를 관리한다. 각각의 HARQ 프로세스는 HARQ 프로세스 ID에 의해 구별된다.
도 6은 PUSCH 송수신 과정의 일 예를 도시한다. 도 6을 참조하면, 단말은 슬롯 #n에서 PDCCH를 검출할 수 있다. 여기서, PDCCH는 상향링크 스케줄링 정보(예, DCI 포맷 0_0, 0_1)를 포함한다. DCI 포맷 0_0, 0_1은 다음의 정보를 포함할 수 있다.
- Frequency domain resource assignment: PUSCH에 할당된 RB 세트를 나타냄
- Time domain resource assignment: 슬롯 오프셋 K2, 슬롯 내의 PUSCH의 시작 위치(예, 심볼 인덱스) 및 길이(예 OFDM 심볼 개수)를 나타냄. 시작 심볼과 길이는 SLIV(Start and Length Indicator Value)를 통해 지시되거나, 각각 지시될 수 있음.
이후, 단말은 슬롯 #n의 스케줄링 정보에 따라 슬롯 #(n+K2)에서 PUSCH를 전송할 수 있다. 여기서, PUSCH는 UL-SCH TB를 포함한다.
SPS associated Dynamic Grant Transmission
본 명세서에서는 XR 서비스의 영상 정보가 NR 무선통신시스템의 SPS 와 같이 사전에 설정된 자원으로 전송될 때, 전송자원의 가용성과 신뢰성을 보장하면서도 전력 소모 감소와 무선자원의 효율성을 높이는 방법을 제안한다.
NR에서는 주기적인 전송 및 수신 혹은 낮은 지연시간과 PDCCH overhead를 위해 단말에게 하나 이상의 SPS PDSCH를 설정할 수 있다. 각 SPS 설정은 주기를 갖고 설정/지시된 자원을 반복할 수 있다. 즉, 최초에 설정/지시된 자원할당이 설정된 주기로 반복되고 단말은 해당 자원에서 별도의 PDCCH 수신과정 없이 하향링크 수신을 수행할 수 있다. 한편 XR에서 발생할 수 있는 데이터의 종류는 다양하다. 이러한 데이터 중에서 일반적으로 특정한 주기를 가지고 보고되는 단말의 센서 및 위치 정보 그리고 동영상 데이터의 전송 들이 SPS 자원에서 전송 및 수신되는 것이 고려되고 있다. 이러한 데이터들은 동영상 인코딩 시간, 센서 측정 시간, 상위레이어 동작 혹은 전달되는 네트워크의 라우팅 변경등의 이유로 데이터 발생 시점 (traffic arrival time)이 항상 일정하지 못하고 흐트러짐(jitter)이 발생할 수 있다.
Jitter등을 고려하여 예상되는 트래픽 발생시점으로부터 시간상으로 충분히 떨어진 위치에 자원을 할당하게 되면, 자원의 가용성은 보장할 수 있지만 지연시간이 발생할 수 있다. 반대로 고정된 주기를 갖는 SPS 자원을 예상되는 데이터 발생 시점에 할당하면, jitter 발생시에 다음 가용 자원까지의 대기시간 덕분에 더 큰 지연시간이 발생할 수 있다.
또 어떤 데이터 들은 사건에 기반해서 발생하기 때문에, 실제 데이터의 발생시점을 정확하게 파악하는 것이 불가능하지만 스케줄링에서 야기되는 지연시간을 줄이기 위해 이러한 데이터에도 SPS 자원을 사용하는 것이 고려되고 있다. 이러한 경우, 데이터의 발생에 대비하여 짧은 주기로 충분히 많은 자원을 할당하고, 단말 혹은 기지국이 이러한 자원을 선택적으로 사용하고, 다른 자원을 실제로 사용하지 않는 건너뛰기 (skipping) 방법들이 종래에 논의되고 있다. 그러나 전송과 수신을 건너뛰는 방법을 사용하기 위해서는 단말과 기지국 사이에 수신 및 전송 여부를 확정하기 위한 응답신호들을 잘 고려할 필요가 있다. 단말이 수신되지 않은 전송에 대해서도 응답신호를 보내면, 기지국은 단말이 응답신호를 보낼 자원을 항상 준비해 두어야 하고 이러한 자원에 대해, 건너뛰기 방법이 무선자원 내 충분히 많은 자원을 설정해 두는 것을 기본으로 하는 점을 고려할 때, 큰 상향링크 부담으로 작용할 수 있다. 또 이러한 자원들이 단말간에 다중화 될 수 있는 점을 고려하면, 상향링크 자원의 부담은 더 중요하게 고려되어야 한다.
XR 서비스의 품질을 위해서는 낮은 지연시간의 확보가 필수적이기 때문에, jitter의 영향을 줄이면서도, 지연시간에 대한 영향을 최소화하는 방법에 대한 고려가 필요하다. 본 명세서에서는 이러한 문제점을 해결하기 위해서, 단말과 기지국 사이에 설정된 복수 개의 SPS 자원들 중 일부를 선택적으로 사용하고 이렇게 사용된 SPS 자원에 대한 응답을 사전에 정해진 위치에 간소화 하여 전송하는 방법에 대해 다룬다.
GOP (Group of Pictures)
도 7은 GOP 구조/패턴의 일 예를 도시한다.
비디오 코딩을 위한 GOP(Group of Pictures)에는 I, P, B 및 D picture 유형이 포함될 수 있다.
I picture 또는 I 프레임(인트라 코딩된 picture, 키프레임 또는 i-프레임이라고도 함) - 다른 모든 picture과 독립적으로 코딩된 picture이다. 각 GOP는 이 타입의 영상으로 시작된다(디코딩 순서대로).
P picture 또는 P 프레임(예측 코딩 picture) - 이전에 디코딩된 picture과 관련된 동작 보상 차이 정보를 포함합니다. MPEG-1, H.262/MPEG-2 및 H.263과 같은 이전 디자인에서 각 P picture은 하나의 picture만 참조할 수 있으며 해당 picture은 표시 순서와 디코딩 순서에서 P picture보다 앞에 있어야 하며 다음과 같아야 합니다. I 또는 P picture. 이러한 제약 조건은 최신 표준 H.264/MPEG-4 AVC 및 HEVC에는 적용되지 않습니다.
B picture 또는 B 프레임(양방향 예측 코딩 picture) - 이전에 디코딩된 picture과 관련된 동작 보상 차이 (motion-compensated difference) 정보를 포함한다. MPEG-1 및 H.262/MPEG-2와 같은 과거 디자인에서는 각 B picture은 두 개의 picture만 참조할 수 있다. 하나는 B picture보다 앞에 있고 하나는 그 뒤에 있다. 참조된 모든 picture은 I 또는 I이어야 합니다. P picture. 이러한 제약 조건은 최신 표준 H.264/MPEG-4 AVC 및 HEVC에는 적용되지 않는다.
D picture 또는 D 프레임(DC 직접 코딩된 picture) - loss robustness 또는 fast-forward.를 위한 picture의 fast-access representation 역할을 합니다. D 영상은 MPEG-1 비디오에만 사용된다.
도 7에 도시된 바와 같이, I 프레임은 GOP의 시작을 나타낸다. 이 후 여러 P 및 B 프레임이 이어진다. 이전 방식에서는 허용되는 순서 및 참조 구조가 상대적으로 제한되어 있다.
GOP 구조는 M=3, N=12와 같이 두 개의 숫자로 표시될 수 있다. 첫 번째 숫자는 두 앵커 프레임(I 또는 P) 사이의 거리를 나타낸다. 두 번째는 두 개의 전체 이미지(I-프레임) 사이의 거리를 나타낸다. 이는 GOP 크기이다. M=3, N=12의 예에서 GOP 구조는 IBBPBBPBBPBBI이다. M 파라미터 대신 두 개의 연속 앵커 프레임 사이의 B 프레임의 최대 개수가 사용될 수 있다.
예를 들어 IBBBBPBBBBPBBBBBI 패턴의 시퀀스에서 GOP 크기(N 값)는 15(두 I 프레임 사이의 길이)이고 두 앵커 프레임 사이의 거리(M 값)는 5(I와 P 프레임 사이의 길이 또는 두 개의 연속 P 프레임 사이의 길이)이다.
I 프레임에는 전체 이미지가 포함되어 있으며 이를 재구성하는 데 추가 정보가 필요하지 않다. 일반적으로 인코더는 각 I 프레임을 "clean random access point"로 만드는 GOP 구조를 사용한다. 따라서 디코딩은 I 프레임에서 시작될 수 있고 올바른 I 프레임을 처리한 후에 GOP 구조 내의 모든 에러가 정정될 수 있다.
이하 본 명세서에서는 준-정적으로 설정되는 하향링크 SPS 무선자원을 기준으로 제안되는 방법을 설명하고 있으나, 발명에서 제안하는 방법들은 이에 제한되지 않으며, 단말이 수신한 동적 스케줄링을 통해 할당된 무선자원에도 확장되어 적용될 수 있음은 당업자라면 이해할 수 있다. 일례로, 단말이 할당된 복수 개의 하향링크 무선자원에 대해서 하나의 HARQ-ACK timing을 결정하는 방법은 SPS PDSCH, 동적 스케줄링으로 지시된 PDSCH와 관계없이 적용될 수 있다. 또한 복수개의 무선자원이 준-정적으로 설정되지 아니하고, 동적 지시를 통해서 설정되는 경우, 예를 들어 DCI를 통해 복수 개의 무선자원을 한번에 설정하는 경우에도 제안하는 방법들이 적용될 수 있다. 따라서, 제안하는 방법들은 기지국과 단말이 기대하는 모든 종류의 송수신 방식에 적용될 수 있음은 자명하다. 이하 본 명세서에서는 설명의 편의를 위하여 SPS를 준 정적으로 설정되는 무선자원 (e.g., DL/UL SPS, CG)를 통칭하는 일반적인 개념으로 사용한다.
본 명세서에서 전송 기회 (transmission occasion, TO)는 SPS 용도로 설정된 무선자원(e.g., SPS PDSCH)을 의미한다. 전송 기회에서 전송을 수행하는 주체 (i.e., 하향링크의 경우 기지국, 상향링크의 경우 단말)는 전송 기회에서 전송을 시도할 수 있고, 수신기 (i.e., 하향링크의 경우 단말, 상향링크의 경우 기지국)은 각 전송기회에서 전송을 기대하고 수신을 시도할 수 있다.
이하 NR의 시스템을 기준으로 예시를 보여 설명하고 있으나, 제안하는 방법들은 NR의 송수신 형태를 특정하여 제한하지 않는다 또한 이하 XR 서비스의 특성과 구조를 기준으로 예시를 보여 설명하고 있으나, 제안하는 방법들은 XR 서비스의 지원에 특정하여 제한하지 않는다. 따라서 제안하는 방법들은 모든 무선통신 송수신의 구조와 서비스에 적용될 수 있다.
Scheduling request or buffer status report for CG PUSCH scheduling
본 명세서에서는 발생되는 UL traffic에 따라 SR and/or UCI and/or UL MAC CE (가령 BSR MAC CE) 기반으로 하나 또는 복수의 PUSCH 전송 자원의 스케줄링을 요청하여 전송하는 방식을 제안한다. 이때 복수의 PUSCH 자원은 CG PUSCH이다. 이러한 CG PUSCH 전송은 SR 혹은 UCI 혹은 UL MAC CE 기반으로 단말이 autonomous activation하거나 단말의 요청으로 기지국이 activation할 수 있다.
종래 기술에서 기지국은 특정 schedulingRequestID를 특정 schedulingRequestResourceId로 식별되는 특정 주기와 offset에 따른 SR PUCCH resource에 매핑하도록 설정한다. 본 명세서에서는, 기지국은 특정 CG configuration index를 하나 또는 복수의 schedulingRequestID에 매핑하도록 설정한다. 혹은 기지국은 특정 schedulingRequestID를 하나 또는 복수의 CG configuration index에 매핑하도록 설정한다. 단말이 특정 SR PUCCH resource를 전송할 경우, 이를 수신한 기지국이 특정 SR PUCCH resource가 지시하는 특정 CG configuration index의 전송을 기대하거나 이를 할당할 수 있다.
[1] 방식 A: 상기 특정 SR 자원의 전송 혹은 BSR과 같은 MAC CE 전송 기반으로 특정 CG index에 대한 CG 자원을 activation하는 방식
기지국은 특정 단말에게 하나 또는 복수의 CG를 설정할 수 있다. 본 방식에서는 단말이 CG 자원을 직접 활성화하고 SR 자원 혹은 MAC CE를 통해 이를 기지국에게 알려줄 수 있다. 이러한 동작을 위해서 기지국은 CG configuration index별로 다음과 같은 추가 설정을 제공할 수 있다.
1) CG duration candidate values
활성화될 특정 CG configuration index에 대해 단말이 결정할 수 있는 CG PUSCH 자원 수 혹은 CG PUSCH 전송 시간 구간의 길이에 대한 후보 값들을 설정한다. 단말은 설정된 CG duration value들 중에 하나의 CG duration 값을 기지국에게 알려줄 수 있다.
2) CG offset candidate values
활성화될 특정 CG configuration index에 대해, 단말의 SR 혹은 UCI 혹은 MAC CE 전송 slot과 첫번째 CG PUSCH slot간의 시간 차에 대한 후보 값들을 설정한다. 또한 첫번째 CG PUSCH slot내 첫번째 PUSCH symbol에 대한 후보 값들을 설정할 수도 있다. 단말은 설정된 CG offset value들 중에서 하나의 CG offset값을 기지국에게 알려줄 수 있다. 가령 단말은 전송할 데이터의 PDB (Packet Delay Budget)와 jittering 영향 등을 고려하여 CG offset값을 결정할 수 있다.
3) MCS candidate values
활성화될 특정 CG configuration index에 대해, CG PUSCH 전송을 위한 MCS값에 대한 후보 값들을 설정한다. 단말은 설정된 MCS value들 중에서 CG PUSCH 전송에 적용할 하나의 MCS값을 기지국에게 알려줄 수 있다.
기지국은 특정 CG configuration index에 하나 또는 복수의 논리채널을 매핑시킬 수 있다. 만일 어떤 논리채널에 전송할 데이터가 available하고, 해당 논리채널이 특정 CG configuration index에 매핑되어 있다면, 단말은 특정 CG configuration index에 매핑되는 SR PUCCH resource를 통해 positive SR 정보를 전송할 수 있다.
한편, SR PUCCH resource 혹은 SR PUCCH resource에 매핑되는 schedulingRequestID는 다음과 같은 정보에 매핑되도록 설정될 수 있다.
1) CG configuration index: RRC메시지로 설정된 하나 또는 복수의 CG configuration들에 매핑된다.
2) CG duration value: SR PUCCH resource 혹은 schedulingRequestID에 매핑되는 CG configuration, 혹은 schedulingRequestID에 매핑되는 logical channel과 연결된 CG configuration에 대해서, RRC메시지로 설정된 CG duration candidate values들 중 하나에 매핑된다.
3) CG offset value: SR PUCCH resource 혹은 schedulingRequestID에 매핑되는 CG configuration, 혹은 schedulingRequestID에 매핑되는 logical channel과 연결된 CG configuration에 대해서, RRC메시지로 설정된 CG offset candidate values들 중 하나에 매핑된다.
4) MCS value: SR PUCCH resource 혹은 schedulingRequestID에 매핑되는 CG configuration, 혹은 schedulingRequestID에 매핑되는 logical channel과 연결된 CG configuration에 대해서, RRC메시지로 설정된 MCS candidate valuesㅊ들 중 하나에 매핑된다.
만일 특정 CG configuration index에 매핑된 SR PUCCH resource가 없거나, BSR이 trigger된 경우, UL grant가 available한 경우 단말은 PUSCH에 piggyback되는 UCI를 통해 positive SR 정보를 전송하거나 PUSCH를 통해 특정 MAC CE를 전송하여 특정 CG configuration index의 활성화를 기지국에게 알려줄 수 있다. 이때 특정 MAC CE는 BSR MAC CE이거나 BSR MAC CE보다 높거나 낮은 우선 순위를 갖고 MAC PDU에 포함될 수 있는 새로운 MAC CE이다.
이러한 방식의 UCI 혹은 MAC CE는 다음과 같은 정보들 중 하나 또는 복수를 지시할 수 있다.
1) CG configuration index: RRC메시지로 설정된 하나 또는 복수의 CG configuration들의 활성화 혹은 비활성화를 지시한다.
2) CG duration value: 상기 지시된 하나 또는 복수의 CG configuration에 대해서, RRC메시지로 설정된 CG duration candidate values들 중 하나를 지시한다.
3) CG offset value: 상기 지시된 하나 또는 복수의 CG configuration에 대해서, RRC메시지로 설정된 CG offset candidate values들 중 하나를 지시한다.
4) MCS value: 상기 지시된 하나 또는 복수의 CG configuration에 대해서, RRC메시지로 설정된 MCS candidate value들 중 하나를 지시한다.
위의 설정과 SR/UCI/MAC CE 방식에 따라, 단말이 SR 혹은 UCI 혹은 상기 MAC CE를 성공적으로 전송한 경우, 단말은 상기 CG configuration index에 따라 비활성화 혹은 suspension된 특정 CG를 활성화하거나 resume한다. 단말은 CG offset에 따라 결정된 첫번째 CG PUSCH 전송으로부터 일정 시간 혹은 일정 횟수만큼 CG PUSCH 전송을 지속한 후, 상기 CG configuration을 단말 스스로 비활성화한다. 이때 일정 시간 혹은 일정 횟수는 단말이 기지국에게 알려준 CG duration value로 결정되거나, 기지국이 해당 CG configuration index에 대해서 RRC메시지로 지정한 CG duration값으로 결정될 수 있다.
만일 단말이나 기지국이 CG duration값을 결정하지 않는 경우, 단말은 deactivation을 지시하는 DCI 혹은 MAC CE 혹은 RRC 메시지의 수신 전까지 해당 CG configuration을 활성화된 것으로 결정한다. 한편, 단말이 MCS value를 지시한 경우, 기지국은 CG PUSCH가 지시된 MCS value에 따라 전송되는 것으로 판단한다. 단말이 MCS value를 지시하지 않는 경우, 단말과 기지국은 RRC 메시지로 설정된 MCS 값에 따라 CG PUSCH가 전송되는 것으로 판단한다.
한편, 단말은 CG duration이 지정된 경우 CG duration 내에서 혹은 CG duration이 지정되지 않는 경우, 특정 SR PUCCH 자원을 전송하여 활성화된 특정 CG configuration을 비활성화할 수 있다. 혹은 UCI나 상기 MAC CE를 통해 특정 CG configuration의 비활성화를 기지국에게 알려줄 수 있다. 이를 위해 특정 SR PUCCH 자원을 특정 CG configuration index의 비활성화에 매핑되도록 설정될 수 있다. 혹은 특정 CG configuration index의 활성화에 매핑되는 특정 SR PUCCH 자원을 특정 CG configuration index의 비활성화에도 매핑되도록 할 수 있다. 이 경우, 특정 CG configuration가 활성화가 된 이후 전송되는 특정 SR PUCCH 자원 전송은 해당 CG configuration의 비활성화를 지시할 수 있다.
기지국은 CG duration이 지정된 경우 CG duration 내 혹은 밖에서 혹은 CG duration이 지정되지 않는 경우, 특정 CG configuration index의 release/deactivation을 지시하는 DCI를 전송하여 단말이 스스로 활성화한 CG configuration을 기지국 지시에 따라 비활성화할 수 있다.
한편, 단말이 상기 SR 혹은 UCI 혹은 상기 MAC CE를 성공적으로 전송하지 못한 경우, 단말은 기지국이 설정한 횟수만큼 반복하여 상기 SR 혹은 UCI 혹은 상기 MAC CE를 반복 전송할 수 있다.
[2] 방식 B: 상기 특정 SR 자원의 전송 혹은 BSR과 같은 MAC CE 전송을 통해 특정 CG index에 대한 CG 자원을 activation을 요청하는 방식
기지국은 특정 단말에게 하나 또는 복수의 CG를 설정할 수 있다. 본 방식에서는 단말이 data가 available한 논리채널에 대한 UL traffic pattern에 따라 이에 매핑되는 특정 CG configuration에 대한 index를 선택하고, SR 자원 혹은 MAC CE를 통해 선택한 특정 CG configuration index를 기지국에게 요청하도록 한다. 이러한 동작을 위해서 기지국은 CG configuration index별로 다음과 같은 추가 설정을 제공할 수 있다.
1) CG duration candidate values
활성화될 특정 CG configuration index에 대해 단말이 결정할 수 있는 CG PUSCH 자원 수 혹은 CG PUSCH 전송 시간 구간의 길이에 대한 후보 값들을 설정한다. 단말은 설정된 CG duration value들 중에 하나의 CG duration 값을 기지국에게 알려줄 수 있다.
2) CG offset candidate values
활성화될 특정 CG configuration index에 대해, 단말의 SR 혹은 UCI 혹은 MAC CE 전송 slot과 첫번째 CG PUSCH slot간의 시간 차에 대한 후보 값들을 설정한다. 또한 첫번째 CG PUSCH slot내 첫번째 PUSCH symbol에 대한 후보 값들을 설정할 수도 있다. 단말은 설정된 CG offset value들 중에서 하나의 CG offset값을 기지국에게 알려줄 수 있다. 가령 단말은 전송할 데이터의 PDB (Packet Delay Budget)와 jittering 영향 등을 고려하여 CG offset값을 결정할 수 있다.
3) Remaining PDB candidate values
활성화될 특정 CG configuration index에 대해, UL PDCP buffer 혹은 RLC buffer에 있는 데이터의 남은 PDB들에게 대한 후보 값들을 설정한다. 단말은 설정된 PDB value들 중에서 전송할 데이터의 남은 PDB와 같거나 가장 가까운 값, 혹은 남은 PDB보다 같거나 높은 가장 가까운 값, 혹은 남은 PDB보다 같거나 낮은 가장 가까운 값을 선택하여, 선택한 하나의 PDB값을 기지국에게 알려줄 수 있다.
기지국은 특정 CG configuration index에 하나 또는 복수의 논리채널을 매핑시킬 수 있다. 만일 어떤 논리채널에 전송할 데이터가 available하고, 해당 논리채널이 특정 CG configuration index에 매핑되어 있다면, 단말은 특정 CG configuration index에 매핑되는 SR PUCCH resource를 통해 positive SR 정보를 전송할 수 있다.
한편, SR PUCCH resource 혹은 SR PUCCH resource에 매핑되는 schedulingRequestID는 다음과 같은 정보에 매핑되도록 설정될 수 있다.
1) CG configuration index: RRC메시지로 설정된 하나 또는 복수의 CG configuration들에 매핑된다.
2) CG duration value: SR PUCCH resource 혹은 schedulingRequestID에 매핑되는 CG configuration, 혹은 schedulingRequestID에 매핑되는 logical channel과 연결된 CG configuration에 대해서, RRC메시지로 설정된 CG duration candidate values들 중 하나에 매핑된다.
3) CG offset value: SR PUCCH resource 혹은 schedulingRequestID에 매핑되는 CG configuration, 혹은 schedulingRequestID에 매핑되는 logical channel과 연결된 CG configuration에 대해서, RRC메시지로 설정된 CG offset candidate values들 중 하나에 매핑된다.
4) Remaining PDB value: SR PUCCH resource 혹은 schedulingRequestID에 매핑되는 CG configuration, 혹은 schedulingRequestID에 매핑되는 logical channel과 연결된 CG configuration에 대해서, RRC메시지로 설정된 Remaining PDB candidate value들 중 하나에 매핑된다.
만일 특정 CG configuration index에 매핑된 SR PUCCH resource가 없거나, BSR이 trigger된 경우, UL grant가 available한 경우 단말은 PUSCH에 piggyback되는 UCI를 통해 positive SR 정보를 전송하거나 PUSCH를 통해 특정 MAC CE를 전송하여 특정 CG configuration index의 활성화를 기지국에게 요청할 수 있다. 이때 특정 MAC CE는 BSR MAC CE이거나 BSR MAC CE보다 높거나 낮은 우선 순위를 갖고 MAC PDU에 포함될 수 있는 새로운 MAC CE이다.
이러한 방식의 UCI 혹은 MAC CE는 다음과 같은 정보들 중 하나 또는 복수를 지시할 수 있다.
1) CG configuration index: RRC메시지로 설정된 하나 또는 복수의 CG configuration들의 활성화 혹은 비활성화를 요청한다.
2) CG duration value: 상기 지시된 하나 또는 복수의 CG configuration에 대해서, RRC메시지로 설정된 CG duration candidate values들 중 하나를 지시한다.
3) CG offset value: 상기 지시된 하나 또는 복수의 CG configuration에 대해서, RRC메시지로 설정된 CG offset candidate values들 중 하나를 지시한다.
4) Remaining PDB value: 상기 지시된 하나 또는 복수의 CG configuration에 대해서, RRC메시지로 설정된 Remaining PDB candidate values 중 하나를 지시한다.
위의 설정과 SR/UCI/MAC CE 방식에 따라, 단말이 SR 혹은 UCI 혹은 상기 MAC CE를 성공적으로 전송한 경우, 기지국은 DCI 혹은 MAC CE 혹은 RRC메시지로 특정 CG configuration을 활성화할 수 있다. 이때, 기지국은 DCI 혹은 MAC CE 혹은 RRC메시지로 특정 CG configuration의 index와 CG duration, CG offset, MCS값 등의 정보를 지시할 수 있다. 만일, 기지국이 이러한 정보들 중 하나 또는 복수를 지시하지 않았다면, 지시되지 않는 정보에 대해서, 단말이 전송한 SR 혹은 UCI 혹은 상기 MAC CE가 지시한 CG configuration index and/or CG duration and/or CG offset and/or MCS 값을 활성화된 CG configuration에 적용한다.
단말은 기지국 지시에 따라 비활성화 혹은 suspension된 특정 CG를 활성화하거나 resume한다. 단말은 CG offset에 따라 결정된 첫번째 CG PUSCH 전송으로부터 일정 시간 혹은 일정 횟수만큼 CG PUSCH 전송을 지속한 후, 상기 CG configuration을 단말 스스로 비활성화한다. 이때 일정 시간 혹은 일정 횟수는 기지국이 지시한 CG duration value로 결정된다. 만일 기지국이 지시하지 않은 경우 단말이 SR/UCI/MAC CE를 통해 지시한 CG duration value로 결정된다.
만일 단말이나 기지국이 CG duration값을 결정하지 않는 경우, 단말은 deactivation을 지시하는 DCI 혹은 MAC CE 혹은 RRC 메시지의 수신 전까지 해당 CG configuration을 활성화된 것으로 결정한다. 한편, 기지국이 MCS value를 지시한 경우, 기지국은 CG PUSCH가 지시된 MCS value에 따라 전송되는 것으로 판단한다. 기지국이 MCS value를 지시하지 않는 경우, 단말과 기지국은 RRC 메시지로 설정된 MCS 값에 따라 CG PUSCH가 전송되는 것으로 판단하거나, 단말이 SR/UCI/MAC CE를 통해 기지국에게 알려준 MCS 값에 따라 CG PUSCH가 전송되는 것으로 판단한다.
한편, CG duration이 지정된 경우 CG duration 내에서 혹은 CG duration이 지정되지 않는 경우, 단말이 특정 SR PUCCH 자원을 전송하여 활성화된 특정 CG configuration을 비활성화할 수 있다. 혹은 UCI나 상기 MAC CE를 통해 특정 CG configuration의 비활성화를 기지국에게 알려줄 수 있다. 이를 위해 특정 SR PUCCH 자원을 특정 CG configuration index의 비활성화에 매핑되도록 설정될 수 있다. 혹은 특정 CG configuration index의 활성화에 매핑되는 특정 SR PUCCH 자원을 특정 CG configuration index의 비활성화에도 매핑되도록 할 수 있다. 이 경우, 특정 CG configuration가 활성화가 된 이후 전송되는 특정 SR PUCCH 자원 전송은 해당 CG configuration의 비활성화를 지시할 수 있다.
기지국은 CG duration이 지정된 경우 CG duration 내 혹은 밖에서 혹은 CG duration이 지정되지 않는 경우, 특정 CG configuration index의 release/deactivation을 지시하는 DCI를 전송하여 상기 활성화한 CG configuration을 기지국 지시에 따라 비활성화할 수 있다.
적용 가능한 MAC CE 포맷
Pose 정보에 대한 logical channel을 특정 SR 자원에 매핑하거나 BSR의 특정 LCG (혹은 특정 필드값)에 매핑하여 SPS 혹은 1개 혹은 N개의 PDSCH 자원을 요청할 수 있겠음.
방식 A와 B의 경우, MAC CE를 통해 CG activation을 실행하거나 요청하는 단말은 아래와 같이 포맷의 MAC CE를 구성하여 전송할 수 있다.
1) Option 1: BSR MAC CE with CG Activation
BSR이 trigger된 경우, 기지국의 설정에 따라 본 명세서의 단말은 CG Activation 정보를 포함하는 BSR MAC CE를 전송할 수 있다.
도 8는 BSR MAC CE with CG Activation의 일 예를 도시한다.
도 8과 같이, BSR MAC CE가 특정 CG configuration index를 포함하도록 하여 단말이 기지국에게 해당 CG configuration의 활성화 혹은 비활성화를 알려주거나 요청할 수 있다. 또한, 앞서 언급된 CG offset과 CG duration 필드가 포함될 수 있다.
2) Option 2: CG Activation MAC CE
기지국의 설정에 따라 본 명세서의 단말은 CG Activation MAC CE를 전송할 수 있다.
도 9는 CG Activation MAC CE의 일 예를 도시한다.
도 9와 같이, MAC CE가 8개 Ci필드를 포함하도록 하고, 각 Ci필드는 특정 CG configuration index에 매핑되도록 하며, Ci필드의 값이 0인 경우 단말이 기지국에게 i번째 CG configuration의 비활성화를 알려주거나 요청하고, Ci필드의 값이 1인 경우 단말이 기지국에게 i번째 CG configuration의 활성화를 알려주거나 요청하도록 한다. 또한, 앞서 언급된 CG offset과 MCS 필드, CG duration 필드가 포함될 수 있다.
3) Option 3: CG Activation MAC CE with PDB
기지국의 설정에 따라 본 명세서의 단말은 CG Activation MAC CE를 전송할 수 있다.
도 10은 PDB 정보를 포함하는 CG Activation MAC CE를 도시한다.
도 10와 같이, MAC CE가 8개 Ci필드를 포함하도록 하고, 각 Ci필드는 특정 CG configuration index에 매핑되도록 하며, Ci필드의 값이 0인 경우 단말이 기지국에게 i번째 CG configuration의 비활성화를 알려주거나 요청하고, Ci필드의 값이 1인 경우 단말이 기지국에게 i번째 CG configuration의 활성화를 알려주거나 요청하도록 한다. 또한, 앞서 언급된 CG offset과 Remaining PDB 필드, CG duration 필드가 포함될 수 있다.
하나의 DCI로 주기적인 복수 TB 전송을 스케줄링할 수 있으므로, XR traffic 패턴에 따라 최적의 동적 스케줄링이 가능하도록 하고 PDCCH overhead도 줄일 수 있다.
도 11는 일 실시예에 따른 단말의 신호 송신을 설명하기 위한 도면이다.
도 11을 참조하면 단말은 상향링크 데이터 송신을 위한 하나 또는 둘 이상의 CG (configured grant) 설정들을 수신할 수 있다(1105).
단말은 상기 하나 또는 둘 이상의 CG 설정들 중 상기 단말이 선택한 제1 CG 설정을 활성화할 수 있다(1110). 상기 단말은 상기 제1 CG 설정에 관련된 제어 정보의 상향링크 송신을 통해서 상기 제1 CG 설정을 활성화할 수 있다.
단말은 상기 활성화된 제1 CG 설정에 기초하여 PUSCH (physical uplink shared channel)를 송신할 수 있다 (1115).
상기 제1 CG 설정을 활성화하는 상기 제어 정보의 상향링크 송신은, 상기 제1 CG 설정에 연계된 상향링크 자원 상에서 수행될 수 있다.
상기 하나 또는 둘 이상의 CG 설정들 각각이 각 PUCCH (physical uplink control channel) 자원과 연계될 수 있다. 상기 단말은 상기 제1 CG 설정에 연계된 제1 PUCCH 자원 상에서 상기 제어 정보를 송신함으로써 상기 제1 CG 설정을 활성화할 수 있다. 상기 제어 정보는 SR (scheduling request) 정보를 포함할 수 있다.
상기 제1 CG 설정을 활성화하는 상기 제어 정보는 MAC (medium access control) CE (control element)일 수 있다. 상기 MAC CE는 상기 제1 CG 설정의 인덱스를 포함할 수 있다. 상기 MAC CE는 상기 PUSCH 송신과 관련된 MCS (modulation and coding scheme) 정보 및 PDB (packet delay budget) 정보 중 적어도 하나를 포함할 수 있다. 상기 MAC CE는 BSR (buffer status report)일 수 있다.
도 12은 일 실시예에 따른 기지국의 신호 수신을 설명하기 위한 도면이다.
도 12를 참조하면 기지국은 상향링크 데이터 수신을 위한 하나 또는 둘 이상의 CG (configured grant) 설정들을 단말에 송신할 수 있다(1205).
기지국은 상기 하나 또는 둘 이상의 CG 설정들 중 상기 단말이 선택한 제1 CG 설정을 활성화할 수 있다(1210). 상기 기지국은 상기 제1 CG 설정에 관련된 제어 정보의 상향링크 수신을 통해서 상기 제1 CG 설정을 활성화할 수 있다.
기지국은 상기 활성화된 제1 CG 설정에 기초하여 PUSCH (physical uplink shared channel)를 수신할 수 있다(1215).
상기 제1 CG 설정을 활성화하는 상기 제어 정보의 상향링크 수신은, 상기 제1 CG 설정에 연계된 상향링크 자원 상에서 수행될 수 있다.
상기 하나 또는 둘 이상의 CG 설정들 각각이 각 PUCCH (physical uplink control channel) 자원과 연계될 수 있다. 상기 기지국은 상기 제1 CG 설정에 연계된 제1 PUCCH 자원 상에서 상기 제어 정보를 수신한 것에 기반하여 상기 제1 CG 설정을 활성화할 수 있다. 상기 제어 정보는 SR (scheduling request) 정보를 포함할 수 있다.
상기 제1 CG 설정을 활성화하는 상기 제어 정보는 MAC (medium access control) CE (control element)일 수 있다. 상기 MAC CE는 상기 제1 CG 설정의 인덱스를 포함할 수 있다. 상기 MAC CE는 상기 PUSCH 수신과 관련된 MCS (modulation and coding scheme) 정보 및 PDB (packet delay budget) 정보 중 적어도 하나를 포함할 수 있다. 상기 MAC CE는 BSR (buffer status report)일 수 있다.
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 발명의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 13는 본 발명에 적용되는 통신 시스템(1)을 예시한다.
도 13를 참조하면, 본 발명에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 14는 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 14를 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 17의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 15은 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 13 참조).
도 15을 참조하면, 무선 기기(100, 200)는 도 14의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 14의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 14의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 17, 100a), 차량(도 17, 100b-1, 100b-2), XR 기기(도 17, 100c), 휴대 기기(도 17, 100d), 가전(도 17, 100e), IoT 기기(도 17, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 17, 400), 기지국(도 17, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 15에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
도 16은 본 발명에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 16을 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 15의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
도 17은 본 발명의 일 실시예에 따른 단말의 DRX(Discontinuous Reception) 동작을 설명하기 위한 도면이다.
단말은 앞에서 설명/제안한 절차 및/또는 방법들을 수행하면서 DRX 동작을 수행할 수 있다. DRX가 설정된 단말은 DL 신호를 불연속적으로 수신함으로써 전력 소비를 낮출 수 있다. DRX는 RRC(Radio Resource Control)_IDLE 상태, RRC_INACTIVE 상태, RRC_CONNECTED 상태에서 수행될 수 있다. RRC_IDLE 상태와 RRC_INACTIVE 상태에서 DRX는 페이징 신호를 불연속 수신하는데 사용된다. 이하, RRC_CONNECTED 상태에서 수행되는 DRX에 관해 설명한다(RRC_CONNECTED DRX).
도 17을 참조하면, DRX 사이클은 On Duration과 Opportunity for DRX로 구성된다. DRX 사이클은 On Duration이 주기적으로 반복되는 시간 간격을 정의한다. On Duration은 단말이 PDCCH를 수신하기 위해 모니터링 하는 시간 구간을 나타낸다. DRX가 설정되면, 단말은 On Duration 동안 PDCCH 모니터링을 수행한다. PDCCH 모니터링 동안에 성공적으로 검출된 PDCCH가 있는 경우, 단말은 inactivity 타이머를 동작시키고 깬(awake) 상태를 유지한다. 반면, PDCCH 모니터링 동안에 성공적으로 검출된 PDCCH가 없는 경우, 단말은 On Duration이 끝난 뒤 슬립(sleep) 상태로 들어간다. 따라서, DRX가 설정된 경우, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 불연속적으로 수행될 수 있다. 예를 들어, DRX가 설정된 경우, 본 발명에서 PDCCH 수신 기회(occasion)(예, PDCCH 탐색 공간을 갖는 슬롯)는 DRX 설정에 따라 불연속적으로 설정될 수 있다. 반면, DRX가 설정되지 않은 경우, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 연속적으로 수행될 수 있다. 예를 들어, DRX가 설정되지 않은 경우, 본 발명에서 PDCCH 수신 기회(예, PDCCH 탐색 공간을 갖는 슬롯)는 연속적으로 설정될 수 있다. 한편, DRX 설정 여부와 관계 없이, 측정 갭으로 설정된 시간 구간에서는 PDCCH 모니터링이 제한될 수 있다.
표 6은 DRX와 관련된 단말의 과정을 나타낸다(RRC_CONNECTED 상태). 표 6을 참조하면, DRX 구성 정보는 상위 계층(예, RRC) 시그널링을 통해 수신되고, DRX ON/OFF 여부는 MAC 계층의 DRX 커맨드에 의해 제어된다. DRX가 설정되면, 단말은 본 발명에 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링을 불연속적으로 수행할 수 있다.
Type of signals UE procedure
1st step RRC signalling(MAC-
CellGroupConfig)
- Receive DRX configuration information
2nd Step MAC CE
((Long) DRX command MAC CE)
- Receive DRX command
3rd Step - - Monitor a PDCCH during an on-duration of a DRX cycle
여기서, MAC-CellGroupConfig는 셀 그룹을 위한 MAC(Medium Access Control) 파라미터를 설정하는데 필요한 구성 정보를 포함한다. MAC-CellGroupConfig는 DRX에 관한 구성 정보도 포함할 수 있다. 예를 들어, MAC-CellGroupConfig는 DRX를 정의하는데 정보를 다음과 같이 포함할 수 있다.- Value of drx-OnDurationTimer: DRX 사이클의 시작 구간의 길이를 정의
- Value of drx-InactivityTimer: 초기 UL 또는 DL 데이터를 지시하는 PDCCH가 검출된 PDCCH 기회 이후에 단말이 깬 상태로 있는 시간 구간의 길이를 정의
- Value of drx-HARQ-RTT-TimerDL: DL 초기 전송이 수신된 후, DL 재전송이 수신될 때까지의 최대 시간 구간의 길이를 정의.
- Value of drx-HARQ-RTT-TimerDL: UL 초기 전송에 대한 그랜트가 수신된 후, UL 재전송에 대한 그랜트가 수신될 때까지의 최대 시간 구간의 길이를 정의.
- drx-LongCycleStartOffset: DRX 사이클의 시간 길이와 시작 시점을 정의
- drx-ShortCycle (optional): short DRX 사이클의 시간 길이를 정의
여기서, drx-OnDurationTimer, drx-InactivityTimer, drx-HARQ-RTT-TimerDL, drx-HARQ-RTT-TimerDL 중 어느 하나라도 동작 중이면 단말은 깬 상태를 유지하면서 매 PDCCH 기회마다 PDCCH 모니터링을 수행한다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 무선 이동 통신 시스템의 단말기, 기지국, 또는 기타 다른 장비에 사용될 수 있다.

Claims (14)

  1. 무선 통신 시스템에서 단말(UE)이 신호를 송신하는 방법에 있어서,
    상향링크 데이터 송신을 위한 하나 또는 둘 이상의 CG (configured grant) 설정들을 수신;
    상기 하나 또는 둘 이상의 CG 설정들 중 상기 단말이 선택한 제1 CG 설정을 활성화; 및
    상기 활성화된 제1 CG 설정에 기초하여 PUSCH (physical uplink shared channel)를 송신하는 것을 포함하고,
    상기 단말은 상기 제1 CG 설정에 관련된 제어 정보의 상향링크 송신을 통해서 상기 제1 CG 설정을 활성화하는, 방법.
  2. 제 1 항에 있어서,
    상기 제1 CG 설정을 활성화하는 상기 제어 정보의 상향링크 송신은, 상기 제1 CG 설정에 연계된 상향링크 자원 상에서 수행되는, 방법.
  3. 제 1 항에 있어서,
    상기 하나 또는 둘 이상의 CG 설정들 각각이 각 PUCCH (physical uplink control channel) 자원과 연계되고,
    상기 단말은 상기 제1 CG 설정에 연계된 제1 PUCCH 자원 상에서 상기 제어 정보를 송신함으로써 상기 제1 CG 설정을 활성화하는, 방법.
  4. 제 3 항에 있어서,
    상기 제어 정보는 SR (scheduling request) 정보를 포함하는, 방법.
  5. 제 1 항에 있어서,
    상기 제1 CG 설정을 활성화하는 상기 제어 정보는 MAC (medium access control) CE (control element)인, 방법.
  6. 제 5 항에 있어서,
    상기 MAC CE는 상기 제1 CG 설정의 인덱스를 포함하는, 방법.
  7. 제 6 항에 있어서,
    상기 MAC CE는 상기 PUSCH 송신과 관련된 MCS (modulation and coding scheme) 정보 및 PDB (packet delay budget) 정보 중 적어도 하나를 포함하는, 방법.
  8. 제 5 항에 있어서,
    상기 MAC CE는 BSR (buffer status report)인, 방법.
  9. 제 1 항에 기재된 방법을 수행하기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체.
  10. 무선 통신을 위한 디바이스에 있어서,
    명령어들을 저장하는 메모리; 및
    상기 명령어들을 실행함으로써 동작들을 수행하는 프로세서를 포함하고,
    상기 프로세서의 동작들은,
    상향링크 데이터 송신을 위한 하나 또는 둘 이상의 CG (configured grant) 설정들을 수신;
    상기 하나 또는 둘 이상의 CG 설정들 중 상기 단말이 선택한 제1 CG 설정을 활성화; 및
    상기 활성화된 제1 CG 설정에 기초하여 PUSCH (physical uplink shared channel)를 송신하는 것을 포함하고,
    상기 프로세서는 상기 제1 CG 설정에 관련된 제어 정보의 상향링크 송신을 통해서 상기 제1 CG 설정을 활성화하는, 디바이스.
  11. 제 10 항에 있어서,
    상기 디바이스는 ASIC (application specific integrated circuit) 또는 디지털 신호 처리 기기인, 디바이스.
  12. 제 10 항에 있어서,
    상기 디바이스는 3GPP(3rd generation partnership project) 기반의 무선 통신 시스템에서 동작하는 UE(user equipment)인, 디바이스.
  13. 무선 통신 시스템에서 기지국이 신호를 송신하는 방법에 있어서,
    상향링크 데이터 수신을 위한 하나 또는 둘 이상의 CG (configured grant) 설정들을 단말에 송신;
    상기 하나 또는 둘 이상의 CG 설정들 중 상기 단말이 선택한 제1 CG 설정을 활성화; 및
    상기 활성화된 제1 CG 설정에 기초하여 PUSCH (physical uplink shared channel)를 수신하는 것을 포함하고,
    상기 기지국은 상기 제1 CG 설정에 관련된 제어 정보의 상향링크 수신을 통해서 상기 제1 CG 설정을 활성화하는, 방법.
  14. 무선 통신을 위한 기지국에 있어서,
    송수신기; 및
    상기 송수신기를 제어함으로써, 상향링크 데이터 수신을 위한 하나 또는 둘 이상의 CG (configured grant) 설정들을 단말에 송신하고, 상기 하나 또는 둘 이상의 CG 설정들 중 상기 단말이 선택한 제1 CG 설정을 활성화하고, 상기 활성화된 제1 CG 설정에 기초하여 PUSCH (physical uplink shared channel)를 수신하는 프로세서를 포함하고,
    상기 프로세서는 상기 제1 CG 설정에 관련된 제어 정보의 상향링크 수신을 통해서 상기 제1 CG 설정을 활성화하는, 기지국.
PCT/KR2023/014774 2022-09-29 2023-09-26 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 WO2024071965A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263411619P 2022-09-29 2022-09-29
US63/411,619 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024071965A1 true WO2024071965A1 (ko) 2024-04-04

Family

ID=90478718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/014774 WO2024071965A1 (ko) 2022-09-29 2023-09-26 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치

Country Status (1)

Country Link
WO (1) WO2024071965A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210184812A1 (en) * 2019-12-13 2021-06-17 Samsung Electronics Co., Ltd. Beam management and coverage enhancements for semi-persistent and configured grant transmissions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210184812A1 (en) * 2019-12-13 2021-06-17 Samsung Electronics Co., Ltd. Beam management and coverage enhancements for semi-persistent and configured grant transmissions

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "NR enhancement for XR capacity improvement", 3GPP DRAFT; R1-2206385, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Toulouse, France; 20220822 - 20220826, 12 August 2022 (2022-08-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052274317 *
CHINA TELECOM: "Discussion on XR specific capacity enhancement for NR", 3GPP DRAFT; R1-2206703, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Toulouse, France; 20220822 - 20220826, 12 August 2022 (2022-08-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052274630 *
INTERDIGITAL, INC.: "Discussion on XR-specific capacity enhancements techniques", 3GPP DRAFT; R1-2207264, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Toulouse, France; 20260822 - 20260826, 12 August 2022 (2022-08-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052275200 *
QUALCOMM INCORPORATED: "Capacity Enhancement Techniques for XR", 3GPP DRAFT; R1-2207254, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Toulouse, France; 20220822 - 20220826, 12 August 2022 (2022-08-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052275190 *

Similar Documents

Publication Publication Date Title
WO2022216024A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022031136A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022154614A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022216048A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022216045A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022086174A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022086198A1 (ko) 하향링크 제어 채널을 송수신하는 방법 및 이를 위한 장치
WO2023014199A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2023055173A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022086254A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2022086046A1 (ko) 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
WO2024071965A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2024071969A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2024071968A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2024096680A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2024071996A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2024072160A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2024219942A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
WO2024096454A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2023136600A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2024080734A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2023210984A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2023014029A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2023136423A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022215992A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23873080

Country of ref document: EP

Kind code of ref document: A1