WO2023210984A1 - 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 - Google Patents

무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 Download PDF

Info

Publication number
WO2023210984A1
WO2023210984A1 PCT/KR2023/004234 KR2023004234W WO2023210984A1 WO 2023210984 A1 WO2023210984 A1 WO 2023210984A1 KR 2023004234 W KR2023004234 W KR 2023004234W WO 2023210984 A1 WO2023210984 A1 WO 2023210984A1
Authority
WO
WIPO (PCT)
Prior art keywords
drx
duration
terminal
pdcch
information
Prior art date
Application number
PCT/KR2023/004234
Other languages
English (en)
French (fr)
Inventor
황승계
김재형
이영대
양석철
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2023210984A1 publication Critical patent/WO2023210984A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present invention relates to a wireless communication system, and more specifically to a method and device for transmitting and receiving wireless signals.
  • Wireless communication systems are being widely deployed to provide various types of communication services such as voice and data.
  • a wireless communication system is a multiple access system that can support communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA) systems. division multiple access) systems, etc.
  • the purpose of the present invention is to provide a method and device for efficiently performing a wireless signal transmission and reception process.
  • a method for a terminal to receive a signal in a wireless communication system includes receiving DRX setting information including information about a DRX (Discontinuous Reception) cycle; And it may include monitoring a physical downlink control channel (PDCCH) based on the DRX configuration information.
  • DRX setting information including information about a DRX (Discontinuous Reception) cycle
  • PDCCH physical downlink control channel
  • the terminal may perform monitoring of the PDCCH based on the plurality of on-durations included in each on-duration set. Based on the fact that the PDCCH is detected in one of the plurality of on-durations as a result of monitoring the PDCCH, the terminal may determine that a subsequent on-duration will not occur until the start of the next DRX cycle.
  • At least one of first information about the maximum length of time for which the corresponding On-duration set remains valid from the start of each On-duration set and second information about the maximum number of valid On-durations included in each On-duration set. may be set in the terminal.
  • the DRX setting information may include at least one of the first information and the second information.
  • the corresponding on-duration set may be terminated early.
  • Data scheduled by the detected PDCCH may have a non-integer period.
  • the DRX setting information may include at least one of information about the interval between the plurality of on-durations and information about the location of the first on-duration among the plurality of on-durations.
  • Information about the interval between the plurality of on-durations may include the period of the plurality of on-durations.
  • Information about the location of the leading On-duration may include an offset between the start of the corresponding DRX cycle and the start of the leading On-duration.
  • the length of each On-duration belonging to the same On-duration set can be set individually.
  • a computer-readable recording medium recording a program for performing the above-described signal reception method may be provided.
  • a terminal that performs the signal reception method described above may be provided.
  • a device that controls a terminal that performs the signal reception method described above may be provided.
  • a method for a base station to transmit a signal in a wireless communication system includes transmitting DRX (Discontinuous Reception) setting information including information about a DRX (Discontinuous Reception) cycle to a terminal; And a physical downlink control channel (PDCCH) may be transmitted to the terminal based on the DRX configuration information.
  • DRX Continuous Reception
  • PDCCH physical downlink control channel
  • the base station may perform transmission of the PDCCH based on the plurality of on-durations included in each on-duration set. Based on the fact that the PDCCH was transmitted in one of the plurality of on-durations, the base station may determine that a subsequent on-duration for the terminal will not occur until the start of the next DRX cycle.
  • a base station that performs the signal transmission method described above may be provided.
  • signal transmission and reception are performed based on improved DRX operation, so power efficiency can be further improved.
  • Figure 1 illustrates physical channels used in a 3GPP system, which is an example of a wireless communication system, and a general signal transmission method using them.
  • Figure 2 illustrates the structure of a radio frame.
  • Figure 3 illustrates a resource grid of slots.
  • Figure 4 shows an example of a physical channel being mapped within a slot.
  • Figure 5 illustrates a PDCCH (Physical Downlink Control Channel) transmission and reception process.
  • PDCCH Physical Downlink Control Channel
  • Figure 6 illustrates the PDSCH reception and ACK/NACK transmission process.
  • Figure 7 illustrates the PUSCH transmission process.
  • Figures 8 to 10 are diagrams for explaining DRX-related operations.
  • Figure 11 shows an example of an on-duration burst.
  • Figure 12 shows an example of terminal operation.
  • Figure 13 shows an example of base station operation.
  • Figure 14 shows an example of the maximum length of an on-duration burst and the maximum number of on-durations.
  • Figure 15 shows an example of terminal operation.
  • Figure 16 shows an example of base station operation.
  • Figure 17 shows an example of the end of an on-duration burst.
  • Figure 18 shows an example of terminal operation.
  • Figure 19 shows an example of base station operation.
  • Figure 20 shows an example of the location of on-durations.
  • Figure 21 shows an example of terminal operation.
  • Figure 22 shows an example of base station operation.
  • Figures 23 to 26 show various examples of on-durations.
  • Figure 27 shows the flow of a signal reception method for a terminal according to an embodiment.
  • Figure 28 shows the flow of a signal transmission method of a base station according to an embodiment.
  • 29 to 32 illustrate communication system 1 and wireless devices applicable to the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA can be implemented with radio technology such as UTRA (Universal Terrestrial Radio Access) or CDMA2000.
  • TDMA can be implemented with wireless technologies such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE).
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA can be implemented with wireless technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), etc.
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of Evolved UMTS (E-UMTS) using E-UTRA
  • LTE-A Advanced
  • 3GPP NR New Radio or New Radio Access Technology
  • 3GPP LTE/LTE-A is an evolved version of 3GPP LTE/LTE-A.
  • next-generation communications As more communication devices require larger communication capacity, the need for improved mobile broadband communication compared to existing RAT (Radio Access Technology) is emerging. Additionally, massive MTC (Machine Type Communications), which connects multiple devices and objects to provide a variety of services anytime, anywhere, is also one of the major issues to be considered in next-generation communications. Additionally, communication system design considering services/terminals sensitive to reliability and latency is being discussed. In this way, the introduction of next-generation RAT considering eMBB (enhanced Mobile BroadBand Communication), massive MTC, URLLC (Ultra-Reliable and Low Latency Communication), etc. is being discussed. In one embodiment of the present invention, for convenience, the technology is used as NR (New Radio). It is also called New RAT).
  • NR New Radio
  • New RAT New RAT
  • 3GPP NR is mainly described, but the technical idea of the present invention is not limited thereto.
  • RRC Radio Resource Control
  • UE User Equipment
  • RRC Radio Resource Control
  • PDCCH Physical Downlink Control Channel
  • PDCCH is used to represent PDCCHs of various structures that can be used for the same purpose. (e.g. NPDCCH (Narrowband PDCCH), MPDCCH (MTC PDCCH), etc.)
  • a terminal receives information from a base station through downlink (DL), and the terminal transmits information to the base station through uplink (UL).
  • the information transmitted and received between the base station and the terminal includes data and various control information, and various physical channels exist depending on the type/purpose of the information they transmit and receive.
  • Figure 1 is a diagram to explain physical channels used in the 3GPP NR system and a general signal transmission method using them.
  • a terminal that is turned on again from a power-off state or newly entered a cell performs an initial cell search task such as synchronizing with the base station in step S101.
  • the terminal receives SSB (Synchronization Signal Block) from the base station.
  • SSB includes Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS), and Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the terminal synchronizes with the base station based on PSS/SSS and obtains information such as cell ID (cell identity). Additionally, the terminal can obtain intra-cell broadcast information based on the PBCH. Meanwhile, the terminal can check the downlink channel status by receiving a downlink reference signal (DL RS) in the initial cell search stage.
  • DL RS downlink reference signal
  • the terminal After completing the initial cell search, the terminal receives a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH) according to the physical downlink control channel information in step S102 to provide more detailed information.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the terminal may perform a random access procedure such as steps S103 to S106 to complete access to the base station.
  • the terminal transmits a preamble through a physical random access channel (PRACH) (S103), and a response message to the preamble through the physical downlink control channel and the corresponding physical downlink shared channel. can be received (S104).
  • PRACH physical random access channel
  • S104 a contention resolution procedure such as transmission of an additional physical random access channel (S105) and reception of the physical downlink control channel and the corresponding physical downlink shared channel (S106) ) can be performed.
  • the terminal that has performed the above-described procedure then receives a physical downlink control channel/physical downlink shared channel (S107) and a physical uplink shared channel (PUSCH) as a general uplink/downlink signal transmission procedure.
  • Physical uplink control channel (PUCCH) transmission (S108) can be performed.
  • the control information transmitted from the terminal to the base station is collectively referred to as uplink control information (UCI).
  • UCI includes HARQ ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgment/Negative-ACK), SR (Scheduling Request), and CSI (Channel State Information).
  • CSI includes Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), Rank Indication (RI), etc.
  • UCI is generally transmitted through PUCCH, but when control information and traffic data must be transmitted simultaneously, it can be transmitted through PUSCH. Additionally, UCI can be transmitted aperiodically through PUSCH at the request/ins
  • FIG. 2 illustrates the structure of a radio frame.
  • uplink and downlink transmission consists of frames.
  • Each radio frame is 10ms long and is divided into two 5ms half-frames (HF).
  • Each half-frame is divided into five 1ms subframes (Subframe, SF).
  • a subframe is divided into one or more slots, and the number of slots in a subframe depends on SCS (Subcarrier Spacing).
  • Each slot contains 12 or 14 Orthogonal Frequency Division Multiplexing (OFDM) symbols depending on the cyclic prefix (CP).
  • OFDM Orthogonal Frequency Division Multiplexing
  • CP cyclic prefix
  • Table 1 illustrates that when a normal CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary depending on the SCS.
  • Table 2 illustrates that when an extended CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary depending on the SCS.
  • the structure of the frame is only an example, and the number of subframes, number of slots, and number of symbols in the frame can be changed in various ways.
  • OFDM numerology eg, SCS
  • the (absolute time) interval of time resources e.g., SF, slot, or TTI
  • TU Time Unit
  • the symbol may include an OFDM symbol (or CP-OFDM symbol) or SC-FDMA symbol (or Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM symbol).
  • Figure 3 illustrates a resource grid of slots.
  • a slot includes a plurality of symbols in the time domain. For example, in the case of normal CP, one slot contains 14 symbols, but in the case of extended CP, one slot contains 12 symbols.
  • a carrier wave includes a plurality of subcarriers in the frequency domain.
  • RB Resource Block
  • a Bandwidth Part (BWP) is defined as a plurality of consecutive PRBs (Physical RBs) in the frequency domain and may correspond to one numerology (e.g., SCS, CP length, etc.).
  • a carrier wave may contain up to N (e.g., 5) BWPs. Data communication is performed through an activated BWP, and only one BWP can be activated for one terminal.
  • Each element in the resource grid is referred to as a Resource Element (RE), and one complex symbol can be mapped.
  • RE Resource Element
  • Figure 4 shows an example of a physical channel being mapped within a slot.
  • a frame features a self-contained structure in which a DL control channel, DL or UL data, and UL control channel can all be included in one slot.
  • the first N symbols in a slot are used to transmit a DL control channel (e.g., PDCCH) (hereinafter referred to as DL control region), and the last M symbols in a slot are used to transmit a UL control channel (e.g., PUCCH).
  • DL control channel e.g., PDCCH
  • UL control area e.g., PUCCH
  • N and M are each integers greater than or equal to 0.
  • the resource area (hereinafter referred to as data area) between the DL control area and the UL control area may be used to transmit DL data (eg, PDSCH) or UL data (eg, PUSCH).
  • GP provides a time gap during the process of the base station and the terminal switching from transmission mode to reception mode or from reception mode to transmission mode. Some symbols at the point of transition from DL to UL within a subframe may be set to GP.
  • PDCCH carries Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • PCCCH includes transmission format and resource allocation for downlink shared channel (DL-SCH), resource allocation information for uplink shared channel (UL-SCH), paging information for paging channel (PCH), It carries system information on the DL-SCH, resource allocation information for upper layer control messages such as random access responses transmitted on the PDSCH, transmission power control commands, activation/deactivation of CS (Configured Scheduling), etc.
  • DCI includes a cyclic redundancy check (CRC), and the CRC is masked/scrambled with various identifiers (e.g. Radio Network Temporary Identifier, RNTI) depending on the owner or use of the PDCCH.
  • CRC cyclic redundancy check
  • the CRC is masked with the UE identifier (eg, Cell-RNTI, C-RNTI). If the PDCCH is related to paging, the CRC is masked with P-RNTI (Paging-RNTI). If the PDCCH is about system information (e.g., System Information Block, SIB), the CRC is masked with System Information RNTI (SI-RNTI). If the PDCCH relates to a random access response, the CRC is masked with Random Access-RNTI (RA-RNTI).
  • SIB System Information Block
  • FIG. 5 illustrates the PDCCH transmission/reception process.
  • the base station may transmit a CORESET (Control Resource Set) configuration to the terminal (S502).
  • CORESET is defined as a set of Resource Element Groups (REGs) with a given newonology (e.g. SCS, CP length, etc.).
  • REG is defined as one OFDM symbol and one (P)RB.
  • Multiple CORESETs for one terminal may overlap in the time/frequency domain.
  • CORESET can be set through system information (eg, Master Information Block, MIB) or upper layer (eg, Radio Resource Control, RRC, layer) signaling.
  • MIB Master Information Block
  • RRC Radio Resource Control
  • a PDSCH carrying system information block 1 may be scheduled by a specific PDCCH, and CORESET #0 may be for transmission of a specific PDCCH.
  • System information (SIB1) broadcast from the cell includes PDSCH-ConfigCommon, which is cell-specific PDSCH configuration information.
  • PDSCH-ConfigCommon includes pdsch-TimeDomainAllocationList, which is a list (or look-up table) of parameters related to time domain resource allocation of PDSCH.
  • pdsch-TimeDomainAllocationList can contain up to 16 entries (or rows) each jointly encoding ⁇ K0, PDSCH mapping type, PDSCH start symbol and length (SLIV) ⁇ .
  • pdsch-TimeDomainAllocationList can also be provided through PDSCH-Config, which is a terminal-specific PDSCH setting.
  • the pdsch-TimeDomainAllocationList that is set specifically for the terminal has the same structure as the pdsch-TimeDomainAllocationList that is commonly provided to the terminal.
  • K0 and SLIV of pdsch-TimeDomainAllocationList refer to the description below.
  • configuration information for CORESET #N may be transmitted through RRC signaling (e.g., cell common RRC signaling or UE-specific RRC signaling, etc.).
  • RRC signaling e.g., cell common RRC signaling or UE-specific RRC signaling, etc.
  • terminal-specific RRC signaling carrying CORESET configuration information may include, but is not limited to, various signaling such as, for example, an RRC setup message, an RRC reconfiguration message, and/or BWP configuration information.
  • the CORESET configuration may include the following information/fields:
  • controlResourceSetId Indicates the ID of CORESET.
  • MSB Most Significant Bit
  • duration Represents the time domain resources of CORESET. Indicates the number of consecutive OFDM symbols that constitute CORESET. duration has values from 1 to 3.
  • CCE Control Channel Element
  • REG-MappingType Indicates the mapping type between CCE (Control Channel Element) and REG. Interleaved and non-interleaved types are supported.
  • interleaverSize Indicates the interleaver size.
  • pdcch-DMRS-ScramblingID Indicates the value used to initialize PDCCH DMRS. If pdcch-DMRS-ScramblingID is not included, the physical cell ID of the serving cell is used.
  • precoderGranularity Indicates the precoder granularity in the frequency domain.
  • TCI Transmission Configuration Index
  • TCI-Configuration Represents a subset of TCI states defined in PDCCH-configuration.
  • the TCI state is used to provide the Quasi-Co-Location (QCL) relationship of the DL RS(s) and PDCCH DMRS port within the RS set (TCI-state).
  • QCL Quasi-Co-Location
  • the base station may transmit the PDCCH SS (Search Space) configuration to the terminal (S504).
  • PDCCH SS configuration may be transmitted through higher layer signaling (e.g., RRC signaling).
  • RRC signaling may include, but is not limited to, various signaling such as an RRC setup message, RRC reconfiguration message, and/or BWP configuration information.
  • the CORESET configuration and the PDCCH SS configuration are shown as being signaled separately, but the present invention is not limited thereto.
  • the CORESET configuration and the PDCCH SS configuration may be transmitted through one message (e.g., one RRC signaling), or may be transmitted through different messages.
  • the PDCCH SS configuration may include information about the configuration of the PDCCH SS set.
  • the PDCCH SS set can be defined as a set of PDCCH candidates for which the UE monitors (e.g., blind detection).
  • One or multiple SS sets may be set in the terminal.
  • Each SS set may be a USS set or a CSS set.
  • the PDCCH SS set may also be simply referred to as “SS” or “PDCCH SS.”
  • the PDCCH SS set includes PDCCH candidates.
  • the PDCCH candidate indicates the CCE(s) monitored by the UE for PDCCH reception/detection.
  • monitoring includes blind decoding (BD) of PDCCH candidates.
  • One PDCCH (candidate) consists of 1, 2, 4, 8, or 16 CCEs depending on AL (Aggregation Level).
  • One CCE consists of 6 REGs.
  • Each CORESET configuration is associated with one or more SS, and each SS is associated with one COREST configuration.
  • One SS is defined based on one SS configuration, and the SS configuration may include the following information/fields.
  • - searchSpaceId Indicates the ID of SS.
  • controlResourceSetId Indicates CORESET associated with SS.
  • - monitoringSlotPeriodicityAndOffset Indicates the PDCCH monitoring period interval (slot unit) and PDCCH monitoring interval offset (slot unit)
  • - monitoringSymbolsWithinSlot Indicates the first OFDM symbol(s) for PDCCH monitoring within a slot in which PDCCH monitoring is set. It is indicated through a bitmap, and each bit corresponds to each OFDM symbol in the slot. The MSB of the bitmap corresponds to the first OFDM symbol in the slot. OFDM symbol(s) corresponding to bit(s) with a bit value of 1 correspond to the first symbol(s) of CORESET within the slot.
  • - searchSpaceType Indicates CSS (Common Search Space) or USS (UE-specific search space), and represents the DCI format used in the corresponding SS type.
  • the base station generates a PDCCH and transmits it to the terminal (S506), and the terminal can monitor PDCCH candidates in one or more SSs to receive/detect the PDCCH (S508).
  • An opportunity to monitor PDCCH candidates (e.g., time/frequency resources) is defined as a PDCCH (monitoring) opportunity.
  • One or more PDCCH (monitoring) opportunities may be configured within a slot.
  • Table 3 illustrates the characteristics of each SS type.
  • Type Search Space RNTI Use Case Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI(s) UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI(s) User specific PDSCH decoding
  • Table 4 illustrates DCI formats transmitted through PDCCH.
  • DCI format 0_0 is used to schedule TB-based (or TB-level) PUSCH
  • DCI format 0_1 is used to schedule TB-based (or TB-level) PUSCH or CBG (Code Block Group)-based (or CBG-level) PUSCH.
  • DCI format 1_0 is used to schedule a TB-based (or TB-level) PDSCH
  • DCI format 1_1 is used to schedule a TB-based (or TB-level) PDSCH or CBG-based (or CBG-level) PDSCH. (DL grant DCI).
  • DCI format 0_0/0_1 may be referred to as UL grant DCI or UL scheduling information
  • DCI format 1_0/1_1 may be referred to as DL grant DCI or DL scheduling information
  • DCI format 2_0 is used to deliver dynamic slot format information (e.g., dynamic SFI) to the terminal
  • DCI format 2_1 is used to deliver downlink pre-emption information to the terminal.
  • DCI format 2_0 and/or DCI format 2_1 can be delivered to terminals within the group through group common PDCCH, which is a PDCCH delivered to terminals defined as one group.
  • DCI format 0_0 and DCI format 1_0 may be referred to as a fallback DCI format
  • DCI format 0_1 and DCI format 1_1 may be referred to as a non-fallback DCI format.
  • the DCI size/field configuration remains the same regardless of terminal settings.
  • the non-fallback DCI format the DCI size/field configuration varies depending on the terminal settings.
  • the mapping type from CCE to REG is set to either a non-interleaved CCE-REG mapping type or an interleaved CCE-REG mapping type.
  • Non-interleaved CCE-REG mapping type (or localized mapping type) (FIG. 5): Constructs one REG bundle with 6 REGs for a given CCE, and all REGs for a given CCE are contiguous. do. One REG bundle corresponds to one CCE.
  • Interleaved CCE-REG mapping type (or Distributed mapping type): Constructs one REG bundle with 2, 3 or 6 REGs for a given CCE, and the REG bundle is interleaved within CORESET.
  • a REG bundle within CORESET consisting of 1 to 2 OFDM symbols consists of 2 or 6 REGs, and a REG bundle within CORESET consisting of 3 OFDM symbols consists of 3 or 6 REGs.
  • the size of the REG bundle is set for each CORESET.
  • Figure 6 illustrates the PDSCH reception and ACK/NACK transmission process.
  • the terminal can detect the PDCCH in slot #n.
  • PDCCH includes downlink scheduling information (e.g., DCI format 1_0, 1_1), and PDCCH indicates DL assignment-to-PDSCH offset (K0) and PDSCH-HARQ-ACK reporting offset (K1).
  • DCI format 1_0, 1_1 may include the following information.
  • K0 e.g. slot offset
  • K0 indicates the start position of the PDSCH in slot #n+K0 (e.g. OFDM symbol index) and the length of the PDSCH (e.g. number of OFDM symbols)
  • HARQ process ID (Identity) for data (e.g. PDSCH, TB)
  • - PUCCH resource indicator Indicates the PUCCH resource to be used for UCI transmission among a plurality of PUCCH resources in the PUCCH resource set.
  • the terminal receives the PDSCH from slot #(n+K0) according to the scheduling information of slot #n, and when the PDSCH is received from slot #n1 (where, n+K0 ⁇ n1), the terminal receives the PDSCH from slot #(n1+K1). ), UCI can be transmitted through PUCCH.
  • UCI may include a HARQ-ACK response to PDSCH.
  • the HARQ-ACK response may consist of 1-bit.
  • the HARQ-ACK response may consist of 2-bits if spatial bundling is not configured, and may consist of 1-bit if spatial bundling is configured. If the HARQ-ACK transmission point for multiple PDSCHs is designated as slot #(n+K1), UCI transmitted in slot #(n+K1) includes HARQ-ACK responses for multiple PDSCHs.
  • Whether the UE must perform spatial bundling for the HARQ-ACK response can be configured for each cell group (e.g., RRC/higher layer signaling).
  • spatial bundling may be individually configured for each HARQ-ACK response transmitted through PUCCH and/or HARQ-ACK response transmitted through PUSCH.
  • Spatial bundling can be supported when the maximum number of TBs (or codewords) that can be received at once in the corresponding serving cell (or schedulable through 1 DCI) is 2 (or more than 2) (eg, upper layer if the parameter maxNrofCodeWordsScheduledByDCI corresponds to 2-TB). Meanwhile, for 2-TB transmission, more than 4 layers can be used, and up to 4 layers can be used for 1-TB transmission. As a result, when spatial bundling is configured in the corresponding cell group, spatial bundling can be performed on serving cells in which more than four layers are schedulable among the serving cells in the corresponding cell group. On the corresponding serving cell, a terminal that wishes to transmit a HARQ-ACK response through spatial bundling can generate a HARQ-ACK response by performing a (bit-wise) logical AND operation on the A/N bits for multiple TBs.
  • the UE performing spatial bundling receives the 1st A/N for the 1st TB.
  • a single A/N bit can be generated by performing a logical AND operation on the bit and the second A/N bit for the second TB.
  • the terminal reports the ACK bit value to the base station, and if any one TB is NACK, the terminal reports the NACK bit value to the base station.
  • the terminal For example, if only 1-TB is actually scheduled on a serving cell that is configured to receive 2-TB, the terminal performs a logical AND operation on the A/N bit for the 1-TB and the bit value 1 to receive a single A/N. N bits can be generated. As a result, the terminal reports the A/N bit for the corresponding 1-TB to the base station as is.
  • a plurality of parallel DL HARQ processes exist in the base station/terminal for DL transmission. Multiple parallel HARQ processes allow DL transmission to be performed continuously while waiting for HARQ feedback on successful or unsuccessful reception of the previous DL transmission.
  • Each HARQ process is associated with a HARQ buffer in the MAC (Medium Access Control) layer.
  • Each DL HARQ process manages state variables related to the number of transmissions of MAC PDUs (Physical Data Blocks) in the buffer, HARQ feedback for MAC PDUs in the buffer, and current redundancy version.
  • Each HARQ process is distinguished by its HARQ process ID.
  • Figure 7 illustrates the PUSCH transmission process.
  • the UE can detect the PDCCH in slot #n.
  • PDCCH includes uplink scheduling information (eg, DCI format 0_0, 0_1).
  • DCI format 0_0, 0_1 may include the following information.
  • Time domain resource assignment Indicates the slot offset K2, the starting position (e.g. symbol index) and length (e.g. number of OFDM symbols) of the PUSCH within the slot.
  • the start symbol and length can be indicated through SLIV (Start and Length Indicator Value) or can be indicated separately.
  • the terminal can transmit PUSCH in slot #(n+K2) according to the scheduling information of slot #n.
  • PUSCH includes UL-SCH TB.
  • Figure 8 is a diagram for explaining the DRX operation of a terminal according to an embodiment of the present invention.
  • the terminal may perform DRX operation while performing the procedures and/or methods described/suggested above.
  • a terminal with DRX enabled can reduce power consumption by discontinuously receiving DL signals.
  • DRX can be performed in RRC (Radio Resource Control)_IDLE state, RRC_INACTIVE state, and RRC_CONNECTED state.
  • RRC_IDLE state and RRC_INACTIVE state DRX is used to receive paging signals discontinuously.
  • RRC_CONNECTED DRX DRX performed in RRC_CONNECTED state will be described (RRC_CONNECTED DRX).
  • the DRX cycle consists of On Duration and Opportunity for DRX.
  • the DRX cycle defines the time interval in which On Duration is periodically repeated.
  • On Duration indicates the time interval that the terminal monitors to receive the PDCCH.
  • the terminal performs PDCCH monitoring during On Duration. If there is a PDCCH successfully detected during PDCCH monitoring, the terminal starts an inactivity timer and maintains the awake state. On the other hand, if no PDCCH is successfully detected during PDCCH monitoring, the terminal enters a sleep state after the On Duration ends. Accordingly, when DRX is set, PDCCH monitoring/reception may be performed discontinuously in the time domain when performing the procedures and/or methods described/suggested above.
  • a PDCCH reception opportunity (e.g., a slot with a PDCCH search space) may be set discontinuously according to the DRX configuration.
  • PDCCH monitoring/reception can be performed continuously in the time domain when performing the procedures and/or methods described/suggested above.
  • PDCCH reception opportunities eg, slots with PDCCH search space
  • PDCCH monitoring may be limited in the time section set as the measurement gap.
  • Table 5 shows the terminal process related to DRX (RRC_CONNECTED state).
  • DRX configuration information is received through higher layer (eg, RRC) signaling, and DRX ON/OFF is controlled by the DRX command of the MAC layer.
  • RRC Radio Resource Control
  • Type of signals UE procedure 1st step RRC signaling (MAC-CellGroupConfig) - Receive DRX configuration information 2nd Step MAC C.E. ((Long) DRX command MAC CE) - Receive DRX command 3rd Step - - Monitor a PDCCH during an on-duration of a DRX cycle
  • MAC-CellGroupConfig contains configuration information necessary to set MAC (Medium Access Control) parameters for the cell group.
  • MAC-CellGroupConfig may also include configuration information about DRX.
  • MAC-CellGroupConfig defines DRX and may include information as follows.
  • drx-OnDurationTimer Defines the length of the start section of the DRX cycle.
  • drx-InactivityTimer Defines the length of the time section in which the terminal is awake after the PDCCH opportunity in which the PDCCH indicating initial UL or DL data is detected.
  • drx-HARQ-RTT-TimerDL Defines the length of the maximum time interval from when the DL initial transmission is received until the DL retransmission is received.
  • drx-HARQ-RTT-TimerDL Defines the length of the maximum time interval from when the grant for UL initial transmission is received until the grant for UL retransmission is received.
  • the terminal remains awake and performs PDCCH monitoring at every PDCCH opportunity.
  • RRC_IDLE state In RRC_IDLE state and RRC_INACTIVE state, DRX is used to receive paging signals discontinuously. For convenience, DRX performed in RRC_IDLE (or RRC_INACTIVE) state is referred to as RRC_IDLE DRX.
  • PDCCH monitoring/reception may be performed discontinuously in the time domain when performing the procedures and/or methods described/suggested above.
  • Figure 9 illustrates a DRX cycle for paging.
  • DRX may be configured for discontinuous reception of paging signals.
  • the terminal can receive DRX configuration information from the base station through higher layer (eg, RRC) signaling.
  • DRX configuration information may include configuration information about the DRX cycle, DRX offset, and DRX timer.
  • the terminal repeats On Duration and Sleep duration according to the DRX cycle.
  • the terminal may operate in wakeup mode in the On duration and in sleep mode in the Sleep duration.
  • the terminal can monitor the PO to receive paging messages.
  • PO refers to the time resource/interval (e.g., subframe, slot) where the terminal expects to receive a paging message.
  • PO monitoring includes monitoring the PDCCH (or MPDCCH, NPDCCH) (hereinafter referred to as paging PDCCH) scrambled from PO to P-RNTI.
  • the paging message may be included in the paging PDCCH or in the PDSCH scheduled by the paging PDCCH.
  • One or multiple PO(s) are included in a PF (Paging Frame), and the PF can be set periodically based on UE_ID.
  • PF corresponds to one radio frame
  • UE_ID can be determined based on the terminal's International Mobile Subscriber Identity (IMSI).
  • IMSI International Mobile Subscriber Identity
  • the terminal monitors only one PO per DRX cycle.
  • the terminal receives a paging message from the PO indicating a change in its ID and/or system information
  • the terminal performs a RACH process to initialize (or reset) the connection with the base station, or receives new system information from the base station ( or obtain). Therefore, in performing the procedures and/or methods described/suggested above, PO monitoring may be performed discontinuously in the time domain to perform RACH for connection to the base station or to receive (or acquire) new system information from the base station. You can.
  • Figure 10 illustrates an extended DRX (eDRX) cycle.
  • the maximum cycle duration may be limited to 2.56 seconds.
  • unnecessary power consumption may occur during the DRX cycle.
  • a method has been introduced to significantly expand the DRX cycle based on PSM (power saving mode) and PTW (paging time window or paging transmission window), and the extended DRX cycle is simply referred to as the eDRX cycle.
  • PSM power saving mode
  • PTW paging time window or paging transmission window
  • the terminal can perform a DRX cycle in the PTW duration to switch to wake-up mode at its PO and monitor the paging signal.
  • One or more DRX cycles (eg, wake-up mode and sleep mode) of FIG. 9 may be included within the PTW section.
  • the number of DRX cycles within the PTW interval can be configured by the base station through a higher layer (eg, RRC) signal.
  • DRX operation can be used to reduce unnecessary power consumption of the terminal.
  • DRX has a structure defined for a terminal in the RRC_IDLE state and a structure for a terminal in the RRC_CONNECTED state. Both DRX structures define a period in which the terminal can expect to receive a DL signal to occur periodically, so that in other sections, the It is designed to reduce unnecessary power consumption.
  • C-DRX i.e. DRX applied to a terminal in RRC_CONNECTED state
  • the start position of the on-duration is periodically generated based on the Rel-16 standard of NR, and the size of the cycle that can be configured at this time (i.e.
  • DRX cycle can be determined through higher layer parameters provided by the base station to the terminal.
  • Table 6 is an excerpt from the TS 38.331 standard and shows some of the parameters that determine the cycle of C-DRX.
  • the base station can indicate one or two types of DRX (i.e., long, short) to the terminal, and both types of DRX cycles have a fixed integer size.
  • drx-LongCycleStartOffset CHOICE ⁇ ms10 INTEGER(0..9); ms20 INTEGER(0..19); ms32 INTEGER(0..31); ms40 INTEGER(0..39); ms60 INTEGER(0..59); ms64 INTEGER(0..63); ms70 INTEGER(0..69); ms80 INTEGER(0..79); ms128 INTEGER(0..127); ms160 INTEGER(0..159); ms256 INTEGER(0..255); ms320 INTEGER(0..319); ms512 INTEGER(0..511); ms640 INTEGER(0..639); ms1024 INTEGER(0..1023); ms1280 INTEGER(0..1279); ms2048 INTEGER(0..2047); ms25
  • XR generally has the characteristic of ensuring a high data rate while satisfying low latency, and at the same time, since high power consumption of the terminal is expected, various power saving techniques are being considered to increase battery efficiency. For the purpose of preventing unnecessary power consumption of the terminal, XR terminals can also consider situations in which DRX operation is applied.
  • DRX's operation can be useful in systems where periodic traffic is expected.
  • the operation of DRX may cause an increase in latency, and in severe cases, traffic transmission and reception failure may occur.
  • traffic transmission and reception failure may occur.
  • the occurrence of traffic with a certain degree of periodicity can be expected, but at the same time, the occurrence of jitter due to causes such as information processing and event occurrence needs to be considered.
  • the occurrence of jitter may mean that the time when traffic is generated or transmitted or received is not fixed and may be earlier or later than expected.
  • the design of the system takes into account the occurrence of jitter and the fact that traffic can occur or be transmitted/received within the range of [t-t', t+t']. may be needed.
  • one way to ensure the transmission and reception of traffic generated by considering the effect of jitter every DRX cycle is a section in which the UE maintains PDCCH monitoring performance even when there is no PDCCH transmission or reception (A method of increasing the length of the on-duration timer (e.g. on-duration timer) may be considered.
  • this method can be disadvantageous in that it can significantly increase the average power consumption of the terminal because it increases the section for monitoring the PDCCH regardless of whether actual traffic occurs.
  • a method can be used to consider the impact of jitter by reducing the DRX cycle period so that the terminal wakes up at a more frequent period than the actual traffic generation period.
  • this method has the disadvantage of generating a section of the DRX cycle without actual traffic, thereby increasing unnecessary PDCCH monitoring of the terminal.
  • the proposal is mainly explained in a situation in which the operation of C-DRX is applied to a terminal in the RRC_CONNECTED state based on the 3GPP NR system, but it is not limited thereto, and a certain period in which the terminal does not need to expect reception of a DL signal is periodic. It can also be applied to other methods that can be defined with (e.g. DRX applied to a terminal in RRC_IDLE state). Therefore, for convenience of explanation below, the term DRX is used as a general concept that includes the term C-DRX.
  • the DRX operation described in this specification focuses on a structure in which the section in which the UE can start performing PDCCH monitoring is repeated with periodicity, but is not limited to this and can also be applied to DRX operation with an aperiodic structure. .
  • it can also be applied when a DRX operation with non-integer periodicity or a DRX operation in which the size of the DRX cycle is expressed in the form of a pattern is used.
  • the description is based on the NR system, but is not limited thereto. Additionally, the description is based on the characteristics and structure of XR services, but is not limited to XR services.
  • Each of the methods proposed in this specification may operate independently without any separate combination, or one or more methods may be combined to operate in a linked form.
  • the base station provides DRX parameter information through configuration information (e.g. RRC signaling) and the terminal receives it and performs a DRX operation.
  • configuration information e.g. RRC signaling
  • the terminal receives it and performs a DRX operation.
  • the above DRX cycle is defined and used in terms of Base-DRX.
  • the terminal When a terminal performs a DRX operation, consider a situation in which a time interval in which transmission and reception of a specific signal/channel can be expected is set. At this time, the terminal can expect transmission and reception of the specific signal / channel only within the time interval. Otherwise, it can be determined not to expect transmission and reception of the signal / channel, or to expect transmission and reception only when a separate condition is satisfied. , This may be for the purpose of obtaining a power saving effect for the terminal. Characteristically, the transmission and reception of the specific signal/channel can be determined based on the monitoring of the terminal's PDCCH for specific RNTIs, and the time period can be determined as a period in which PDCCH monitoring is performed. For example, the time section may be a section (i.e.
  • on-duration section in which an on-duration timer used in systems such as LTE/NR operates.
  • LTE/NR long term evolution
  • proposals are described based on the method of controlling the on-duration section, but even if there is no separate explanation, the proposal can be applied even when other general signal/channel and time section definitions are used.
  • the proposal may be determined to be applied only when the terminal receives related configuration information from the base station (or Core Network), and in this case, the configuration information may use a higher layer signal (e.g. SIB or RRC signaling), Alternatively, a method in which activation/deactivation of set information is indicated through separate signaling (e.g. DCI or MAC) may also be used. Additionally, the terminal can report information on whether the proposal can be supported (e.g. capability) and receive it from the base station (or Core Network).
  • a higher layer signal e.g. SIB or RRC signaling
  • a method in which activation/deactivation of set information is indicated through separate signaling e.g. DCI or MAC
  • the terminal can report information on whether the proposal can be supported (e.g. capability) and receive it from the base station (or Core Network).
  • the section of the on-duration burst may be a time section that occurs in the Base-DRX cycle, and has a structure in which one or more on-durations can occur within the section.
  • the structure in which one or more on-durations are repeated within an on-duration burst is defined and explained in mini-DRX terms, and the operation accompanying one or more on-durations repeated within an on-duration burst is described below. This is explained by defining mini-DRX operation.
  • each on-duration burst may be defined as an on-duration set containing one or two or more on-durations, and therefore, the term on-duration burst may also be referred to as an on-duration set.
  • Figure 11 shows an example for Proposal 1.
  • Figure 11 is only an example, and the present invention is not limited thereto. Referring to Figure 11, it shows a structure in which the start point (FG101) of the on-duration burst is determined based on the Base-DRX cycle, and the on-duration section (FG102) is repeated within the section of the on-duration burst. The structure is showing.
  • the terminal receives a higher layer signal (e.g. SIB or RRC signaling) containing information about DRX from the base station and performs DRX and mini-DRX operations based on the received higher layer signal.
  • the information about the DRX may include parameters related to the Base-DRX (e.g. reference position of the Base-DRX, on-duration burst length, and/or cycle, etc.), and also parameters related to the mini-DRX (e.g. It may include the reference position of mini-DRX, length of on-duration, and/or mini-DRX cycle, etc.).
  • the terminal can expect that an on-duration burst will start every Base-DRX cycle, and at this time, the location where the on-duration burst starts can be calculated through Base-DRX-related parameters received from the base station.
  • the terminal can perform mini-DRX operation within the on-duration burst section.
  • the terminal performing the mini-DRX operation can expect that on-duration sections can be generated sequentially at designated locations within the on-duration burst section, and the PDCCH required in the generated on-duration section Monitoring operations can be performed.
  • the operation of the mini-DRX can be maintained and performed until the on-duration burst section ends. If the on-duration burst section ends, the terminal can decide to finish the mini-DRX operation, and then the terminal can start the next on-duration burst through the position determined through the Base-DRX cycle. there is.
  • the terminal can assume that the mini-DRX operation is performed at the start position of the on-duration burst determined according to the configuration information of the Base-DRX, and at this time, the on-duration burst determined according to the configuration information of the mini-DRX You can set the on-duration timer to start at the starting positions.
  • the terminal can perform operations such as PDCCH monitoring, and if PDCCH detection is successful, it can perform follow-up operation(s) according to a predetermined procedure.
  • the terminal can assume that the operation of the mini-DRX has ended, and at this time, the terminal starts a new on-duration section until the next Base-DRX cycle begins. You can decide to assume that it won't happen.
  • the on-duration may take the form of a window or mask.
  • on-duration burst may have the same meaning as the on-duration section defined in the existing standard.
  • the operation of mini-DRX is that the terminal expects that a window (or mask) of a fixed position and size will occur repeatedly in the section of the on-duration burst, and can perform operations such as PDCCH monitoring at those positions. If detection of the PDCCH is successful, subsequent operation(s) can be performed according to a predetermined procedure.
  • Figure 12 shows an example of terminal operation.
  • the terminal can receive configuration information related to DRX (FG201).
  • the configuration information related to the DRX may include parameters for setting Base-DRX and parameters for setting mini-DRX.
  • the configuration information may be transmitted using higher layer signaling (e.g. SIB or RRC signaling).
  • the terminal can expect the on-duration burst to start at the start point of the on-duration burst determined by the period of Base-DRX and perform operations related thereto (FG202).
  • the terminal can expect that one or more on-durations may occur within the section of the on-duration burst, and can perform mini-DRX operation at the positions of the on-durations (FG203).
  • the above mini-DRX operation may include an operation in which PDCCH monitoring is performed at the location of the on-duration occurring within the on-duration burst.
  • the terminal can decide to maintain the operation of the mini-DRX (FG203), and if the on-duration burst section ends (FG204), the terminal can decide to maintain the mini-DRX It can be decided to end the operation and perform the next Base-DRX-based operation (FG202).
  • the base station transmits a higher layer signal (e.g. SIB or RRC signaling) containing information about DRX, and transmits and receives signals/channels considering DRX and mini-DRX operations based on the transmitted higher layer signal.
  • a higher layer signal e.g. SIB or RRC signaling
  • the information about the DRX may include parameters related to the Base-DRX (e.g. reference position of the Base-DRX, on-duration burst length, and/or cycle, etc.), and also parameters related to the mini-DRX (e.g. It may include the reference position of mini-DRX, length of on-duration, and/or mini-DRX cycle, etc.).
  • the base station can expect that the terminal will perform mini-DRX operation in the on-duration burst section set as the period of Base-DRX. If necessary, the on-duration burst section within the on-duration burst section can be expected. PDCCH can be transmitted through the -duration section.
  • the base station can assume that the terminal will perform the mini-DRX operation at the start position of the on-duration burst determined according to the configuration information of the Base-DRX. It can be decided to assume that the terminal will start the on-duration timer at the start position(s) of the on-duration.
  • the on-duration may take the form of a window or mask.
  • on-duration burst may have the same meaning as the on-duration section defined in the standard.
  • the base station can decide to assume that the terminal can perform operations such as PDCCH monitoring in windows (or masks) of a determined position and size in the section of the on-duration burst through the operation of mini-DRX.
  • Figure 13 shows an example of base station operation.
  • the base station can generate configuration information related to DRX and transmit it (FG301).
  • the configuration information related to the DRX may include parameters for setting Base-DRX and parameters for setting mini-DRX.
  • the configuration information may be transmitted using higher layer signaling (e.g. SIB or RRC signaling).
  • the base station decides to wait without transmitting the PDCCH for scheduling transmission and reception of downlink or uplink traffic until the on-duration section begins. (FG304).
  • the base station can transmit a PDCCH for scheduling transmission and reception of downlink or uplink traffic and perform operations related thereto (FG305).
  • the active time can be determined by whether drx-onDurationTimer, drx-InactivityTimer, drx-RetransmissionTimerDL or drx-RetransmissionTimerUL is running.
  • Proposal 1 is that, like XR, traffic occurs periodically, but it has an advantageous effect in obtaining a power saving effect for the terminal in a situation where the timing of traffic transmission and reception may be flexible due to jitter caused by processing time of the transmitting and receiving end. You can. This has the effect of increasing the section in which the terminal can monitor the PDCCH for traffic scheduling purposes by setting the section of the on-duration burst consisting of multiple on-durations that occur continuously.
  • each on-duration section within the on-duration burst section can be used as a unit section that can be individually controlled, so the base station A beneficial effect can be expected in that it provides the opportunity to adjust latency and power saving effects as needed.
  • the maximum length of the on-duration burst refers to the length from the starting point of the on-duration burst to the last point where the on-duration burst can be maintained. Considering that there are other conditions that may cause the on-duration burst to end early, this is done by setting a condition that can end the on-duration burst even if the condition for early termination is not satisfied, thereby reducing the excessive power of the terminal. The purpose may be to prevent consumption.
  • the mini-DRX operation performed in the on-duration burst section is terminated, or if there is a mini-DRX operation already in progress, it is performed You can decide to terminate mini-DRX operation.
  • At least one of the options below can be used.
  • Option 2-1 The section where the timer (hereinafter referred to as ODB-timer) that starts at the point where the on-duration burst begins is maintained.
  • Max-OD Number of on-durations occurring from the point where the on-duration burst starts
  • the on-duration burst section can be set to be valid only until the ODB-timer ends.
  • the ODB-timer can be set to be calculated cumulatively from the point where the on-duration burst section begins, and the standard for calculating is, for example, an absolute time unit is used (e.g. ms), or in a wireless communication system.
  • Transmission and reception units on the time domain are used (e.g. OFDM symbol, slot, frame, etc.), or transmission and reception units on the time domain used in a wireless communication system can be used by the base station and the terminal for actual downlink and/or uplink transmission and reception. Units (e.g. valid symbol, slot, etc.) can be used.
  • Option 2-2 When Option 2-2 is used, it can be set to be maintained only when the number of on-durations occurring within the section of the on-duration burst is equal to Max-OD. At this time, the number of on-durations can be determined to be accumulated and calculated based on the time when the on-duration burst starts, and the calculation standard is, for example, based on the number of times the on-duration timer starts (or ends). , Alternatively, the point at which the on-duration timer can start (or end) can be determined based on the number of occurrences (i.e., including cases where the actual on-duration timer does not start) according to the mini-DRX setting information.
  • Figure 14 shows an example in which option 2-1 and option 2-2 are applied.
  • Figure 14 is only an example, and the present invention is not limited thereto.
  • the start point (FG401) of the on-duration burst is determined based on the Base-DRX cycle, and the ODB-timer operates from this point, and the point in time when the ODB-timer ends (FG402) is based on This shows an example of how the maximum length of the on-duration burst (FG404) is determined.
  • the start point (FG401) of the on-duration burst is determined based on the Base-DRX cycle, and from this point, the point when the on-duration (FG404) of the Max-OD order ends is determined.
  • An example is shown in which the maximum length (FG404) of the on-duration burst is determined as a standard.
  • the terminal receives information related to the maximum length of the on-duration burst from the base station and calculates a section in which the on-duration burst can be maintained based on this.
  • the information may be a higher layer signal (e.g. SIB or RRC signaling) containing information about DRX.
  • the information about the maximum length of the on-duration burst may be information about the ODB-timer as in option 2-1 described above, or may be the value of Max-OD as in option 2-2 described above.
  • the terminal can expect that an on-duration burst will start every Base-DRX cycle, and at this time, the on-duration burst can be maintained by applying the maximum length of the on-duration burst from the position where the on-duration burst starts.
  • the maximum section can be calculated.
  • the terminal assumes that the on-duration burst is maintained until the end position of the on-duration burst is calculated by applying the maximum length of the on-duration burst until a condition occurs that causes the started on-duration burst to end early. You can. In the section where the on-duration burst is maintained, the terminal can perform mini-DRX operation.
  • the terminal can decide to end the operation of the mini-DRX assuming that the maintained on-duration burst has ended. . Afterwards, the terminal can start the next on-duration burst through the position determined through the period of Base-DRX.
  • the terminal can assume that the mini-DRX operation is performed at the start position of the on-duration burst determined according to the configuration information of the Base-DRX. Additionally, the terminal can obtain information about the maximum length that the on-duration burst can be maintained according to the configuration information received from the base station. If the configuration information includes information in the same form as an ODB-timer, the terminal applies the running of the ODB-timer from the start of the on-duration burst and turns on the ODB-timer based on the point when the ODB-timer ends. -duration It can be assumed that the burst is maintained.
  • the terminal accumulates and calculates the number of on-durations occurring from the start position of the on-duration burst, and the calculated value is Max-OD If it is equal to the value of , it can be assumed that the maintenance of the corresponding on-duration burst has ended.
  • the on-duration may take the form of a window or mask.
  • the terminal applies the running of the ODB-timer from the start of the on-duration burst and determines when the ODB-timer ends.
  • the maintenance of the on-duration burst ends.
  • the setting information includes information in the form of Max-OD
  • the terminal accumulates and calculates the number of windows (or masks) occurring from the start position of the on-duration burst, and the calculated value is Max-OD. If it is the same as the value of -OD, it can be assumed that the maintenance of the corresponding on-duration burst has ended.
  • Figure 15 shows an example of terminal operation.
  • the terminal can receive DRX-related configuration information including information about the maximum length of the on-duration burst (FG501).
  • the information about the maximum length of the on-duration burst may be timer information about the on-duration burst or information about the maximum number of on-durations that can occur within the on-duration burst.
  • the configuration information may be received through a higher layer signal (e.g. SIB or RRC signaling).
  • the terminal can expect the on-duration burst to start at the start point of the on-duration burst determined by the period of Base-DRX and perform operations related thereto (FG502).
  • the terminal can expect that one or more on-durations may occur within the section of the on-duration burst, and can perform mini-DRX operation at the positions of the on-durations (FG503).
  • the above mini-DRX operation may include an operation in which PDCCH monitoring is performed at the location of the on-duration occurring within the on-duration burst.
  • the above terminal can use information about the maximum length of the on-duration burst to determine whether the section of the started on-duration burst is maintained (FG504). If the on-duration burst is maintained, the terminal - It can be decided to maintain the operation of the DRX (FG503), and if the on-duration burst section ends (FG504), the terminal can decide to end the operation of the mini-DRX and perform the operation based on the next Base-DRX. There is (FG502).
  • the timer value is set, the time when the timer ends can be determined, or if the maximum number of on-durations is set, the on-duration burst that occurs within the on-duration burst can be determined. -Can be determined by the number of durations.
  • the base station provides information related to the maximum length of the on-duration burst to the terminal and sets a section in which the on-duration burst can be maintained based on this.
  • the information may be provided through a higher layer signal (e.g. SIB or RRC signaling) containing information about DRX.
  • the information about the maximum length of the on-duration burst may be information about the ODB-timer as in option 2-1 described above, or may be the value of Max-OD as in option 2-2 described above.
  • the base station can expect that the terminal will perform mini-DRX in the on-duration burst section for each Base-DRX cycle, and if necessary, the on-duration burst included in the on-duration burst section.
  • PDCCH can be transmitted through the section.
  • the base station can calculate the maximum section in which the on-duration burst can be maintained by applying the maximum length of the on-duration burst from the position where the on-duration burst starts.
  • the base station assumes that the maintained on-duration burst has ended and announces that the terminal will terminate the operation of the mini-DRX. It can be assumed.
  • the base station can assume that the terminal will perform mini-DRX operation at the start position of the on-duration burst determined according to the Base-DRX configuration information. Additionally, the base station can determine the maximum section in which the on-duration burst can be maintained based on the maximum length of the set on-duration burst. If the configuration information includes information in the same form as ODB-timer, the base station applies the running of the ODB-timer from the start position of the on-duration burst, and the terminal is based on the time when the ODB-timer ends. It can be assumed that the maintenance of the on-duration burst ends.
  • the base station accumulates and calculates the number of on-durations occurring from the start position of the on-duration burst, and the calculated value is Max-OD. If it is equal to the value of , it can be assumed that the terminal will end maintaining the corresponding on-duration burst.
  • the on-duration may take the form of a window or mask.
  • the base station applies the running of the ODB-timer from the start position of the on-duration burst and determines the point when the ODB-timer ends.
  • the terminal will end maintenance of the on-duration burst.
  • the base station accumulates and calculates the number of windows (or masks) occurring from the start position of the on-duration burst, and the calculated value is Max-OD. If it is the same as the value of -OD, it can be assumed that the terminal will end maintaining the corresponding on-duration burst.
  • Figure 16 shows an example of base station operation.
  • the base station can generate and transmit DRX-related configuration information including information about the maximum length of the on-duration burst (FG601).
  • the information about the maximum length of the on-duration burst may be timer information about the on-duration burst or information about the maximum number of on-durations that can occur within the on-duration burst.
  • the configuration information may be transmitted using higher layer signaling (e.g. SIB or RRC signaling).
  • the base station can expect that the terminal will start the on-duration burst section at the start point of the on-duration burst determined by the period of Base-DRX and perform operations related thereto (FG602) .
  • the base station can expect that one or more on-durations may occur within the section of the on-duration burst, and can perform mini-DRX operation at the positions of the on-durations (FG503). For example, if the base station needs to transmit downlink traffic or receive uplink traffic, scheduling through PDCCH transmission can be indicated at the locations of the on-durations.
  • the base station can use information on the maximum length of the on-duration burst to determine whether the on-duration burst section of the terminal is maintained (FG604). If the on-duration burst is maintained, the base station It can be assumed that the terminal will maintain mini-DRX operation (FG603), and if the on-duration burst section ends (FG604), the base station will allow the terminal to terminate mini-DRX operation and begin the next Base-DRX-based operation. It can be decided to assume that it will be performed (FG602).
  • the timer value is set, the time when the timer ends can be determined, or if the maximum number of on-durations is set, the on-duration burst that occurs within the on-duration burst can be determined. -Can be determined by the number of durations.
  • the effect of preventing unnecessary power consumption of the terminal can be achieved by limiting the length of the on-duration burst section.
  • the on-duration burst will not continue and will end. It has an advantageous effect in terms of providing a function that can be used.
  • by proposing a method of calculating the maximum length of the on-duration burst using variables that can be commonly calculated between the base station and the terminal, such as the timer value and the number of on-durations there is no need for real-time signaling between the base station and the terminal. It has the advantage of not causing ambiguity.
  • the specific condition can be determined when the terminal receives a specific signal or channel. For example, it can be determined in the case of detecting a specific purpose PDCCH (hereinafter referred to as Target-PDCCH).
  • Target-PDCCH may be for the purpose of transmitting and receiving a DCI format for scheduling traffic.
  • the proposal is explained based on whether the UE detects the Target-PDCCH, but it may also be applied to other signals or channels.
  • the operation related to the on-duration burst may be whether to maintain the mini-DRX operation of the terminal. For example, it can be determined that the mini-DRX operation is maintained until the terminal receives the Target-PDCCH on the on-duration burst, and if the terminal succeeds in detecting the Target-PDCCH, the mini-DRX operation can be terminated. .
  • the operation associated with the on-duration burst may be whether or not the on-duration occurs and is assumed within the on-duration burst. For example, if the terminal does not receive the Target-PDCCH up to the specific on-duration location on the on-duration burst, it can be determined that the next on-duration can be generated and assumed, and if the terminal does not receive the Target-PDCCH at the specific on-duration location, If detection of this Target-PDCCH is successful, it can be determined that subsequent on-duration(s) can no longer occur or be assumed on the same on-duration burst.
  • the operation related to the on-duration burst may be whether or not to maintain the on-duration burst section. For example, it can be determined that the section of the on-duration burst is maintained until the terminal receives the Target-PDCCH. If the terminal succeeds in detecting the Target-PDCCH, the on-duration burst is of the maximum length. It can be decided that it will end before the conditions are met.
  • the operations related to the on-duration burst described above are methods that can be implemented to achieve the same purpose.
  • the above purpose is the control/traffic control required for the terminal expecting transmission and reception of the Target-PDCCH in the on-duration burst section. Even after the transmission and reception of information is completed, if the terminal maintains mini-DRX, continues to monitor the next on-duration section, and/or continues to perform necessary operations on the on-duration burst, unnecessary power consumption may occur. This may be to prevent it.
  • the operations related to the above on-duration burst performed after detection of the Target-PDCCH are described in terms of ODB-state conversion.
  • the point at which the ODB-state conversion is performed is the subsequent operation associated with the detection of the Target-PDCCH (e.g. termination of the associated timers). Alternatively, it can be set to occur after the end of the active time to which the Target-PDCCH belongs is completed.
  • Figure 17 shows an example for Proposal 3.
  • Figure 17 is only an example, and the present invention is not limited thereto.
  • Case 3-1 shows a method of determining whether to maintain mini-DRX and generate/assume on-duration depending on whether the terminal receives the Target-PDCCH. If the Target-PDCCH is not detected at the location of the on-duration that occurs after the on-duration burst starts (FG701), maintenance of mini-DRX or occurrence of the next on-duration is determined, and at the location of the specific on-duration ( FG702) If the terminal succeeds in receiving the Target-PDCCH (FG703), the operation of the mini-DRX is terminated or the generation/assumption of the subsequent on-duration is terminated (FG704).
  • Case 3-2 shows a method of determining whether to maintain the on-duration burst depending on whether the terminal receives the Target-PDCCH. If the Target-PDCCH is not detected at the location of the on-duration that occurs after the on-duration burst starts (FG701), maintenance of mini-DRX or occurrence of the next on-duration is determined, and at the location of the specific on-duration ( FG702) This shows an example in which the on-duration burst ends early (FG706) when the terminal succeeds in receiving the Target-PDCCH (FG703).
  • the terminal receives information about the Target-PDCCH (e.g. search space configuration, DCI format and field configuration, etc.) from the base station, and based on this, the on-duration burst or on-duration(s) configured within the on-duration burst ), consider the situation where monitoring of the Target-PDCCH is performed.
  • the information may be provided through a higher layer signal (e.g. SIB or RRC signaling).
  • a higher layer signal e.g. SIB or RRC signaling
  • the terminal can expect that an on-duration burst will start every cycle of Base-DRX, and at this time, the mini-DRX operation is performed in the section where the started on-duration burst is maintained, and the on-duration(s) generated are performed. It can be assumed that this may occur.
  • the terminal can perform a monitoring operation of the Target-PDCCH in on-duration sections that occur within the section in which the on-duration burst is maintained.
  • the terminal does not receive the Target-PDCCH, it maintains the previous state, and if it receives the Target-PDCCH, the terminal can decide to perform ODB-state conversion.
  • the terminal can assume that the mini-DRX operation is performed at the start position of the on-duration burst determined according to the configuration information of the Base-DRX. Additionally, the terminal can receive configuration information for PDCCH monitoring in the on-duration section (or section divided by window or mask) from the base station and expect to receive it. If the UE receives a specific PDCCH (e.g. PDCCH on which scheduling DCI is transmitted) within the on-duration burst section, the UE terminates the operation of the mini-DRX or indicates that the on-duration burst section in progress will end. It can be assumed.
  • a specific PDCCH e.g. PDCCH on which scheduling DCI is transmitted
  • Figure 18 shows an example of terminal operation.
  • the terminal can receive Target-PDCCH configuration information and DRX-related configuration information (FG801).
  • the configuration information of the Target-PDCCH may include information necessary for the terminal to receive the PDCCH (e.g. search space configuration, DCI format and field configuration, etc.).
  • the configuration information may be received through a higher layer signal (e.g. SIB or RRC signaling).
  • the terminal can expect the on-duration burst to start at the start point of the on-duration burst determined by the period of Base-DRX and perform operations related thereto (FG802).
  • the terminal can expect that one or more on-durations may occur within the section of the on-duration burst, and can perform mini-DRX operation at the positions of the on-durations (FG803).
  • the above mini-DRX operation may include an operation in which PDCCH monitoring is performed at the location of the on-duration occurring within the on-duration burst.
  • the terminal fails to detect the Target-PDCCH in the on-duration section (FG804), and if the on-duration burst section is maintained (FG805), the terminal maintains the operation of the mini-DRX and continues the on-duration burst. It can be decided to continuously perform PDCCH monitoring at the location. If the on-duration burst section ends (FG805), the terminal can decide to end the mini-DRX operation and perform the next Base-DRX-based operation (FG802).
  • the terminal can decide to perform operations accompanying the Target-PDCCH (FG806). Additionally, the terminal may decide to end the mini-DRX operation and perform the next Base-DRX-based operation after the accompanying operations are completed (FG802).
  • Target-PDCCH e.g. search space configuration, DCI format and field configuration, etc.
  • the information may be provided through a higher layer signal (e.g. SIB or RRC signaling).
  • SIB Service-Control Channel
  • the base station can assume that the terminal will perform a mini-DRX operation in the on-duration burst section that occurs every Base-DRX cycle. At this time, if the base station does not transmit the Target-PDCCH after the start of the on-duration-burst, or if the Target-PDCCH is transmitted but the feedback required from the terminal is not received (e.g. HARQ-ACK or PUSCH, etc.), the base station It can be assumed that this ODB-state conversion has not been performed.
  • the base station If the base station transmits the Target-PDCCH within the on-duration burst period and can assume reception by the terminal, the base station can assume that the terminal will perform ODB-state conversion.
  • the base station can assume that the terminal will perform the mini-DRX operation at the start position of the on-duration burst determined according to the configuration information of the Base-DRX. Additionally, the base station can generate and provide configuration information for PDCCH monitoring in the on-duration section (or section divided by window or mask) to the terminal, and expect the terminal to perform a reception operation based on this. If there is traffic that the base station wants to schedule, the base station can transmit a specific PDCCH (e.g. PDCCH on which scheduling DCI is transmitted) in the on-duration section that occurs within the on-duration burst section and perform the accompanying operations. Afterwards, the base station can assume that the terminal will end the operation of the mini-DRX or end the section of the ongoing on-duration burst.
  • a specific PDCCH e.g. PDCCH on which scheduling DCI is transmitted
  • Figure 19 shows an example of base station operation.
  • the base station can generate and transmit Target-PDCCH configuration information and DRX-related configuration information (FG901).
  • the configuration information of the Target-PDCCH may include information necessary for the base station to generate and transmit the PDCCH (e.g. search space configuration, DCI format and field configuration, etc.).
  • the configuration information may be transmitted through higher layer signaling (e.g. SIB or RRC signaling).
  • the base station can perform operations related to this, assuming that the terminal expects the on-duration burst to start at the start point of the on-duration burst determined by the period of Base-DRX ( FG902).
  • the base station can expect the terminal to maintain mini-DRX operation. If the on-duration burst section ends (FG904), the base station can assume that the terminal will end the mini-DRX operation and perform the next Base-DRX-based operation (FG902).
  • the base station can transmit the Target-PDCCH and perform the accompanying transmission and reception operations.
  • the terminal can expect that one or more on-durations may occur within the section of the on-duration burst, and can perform mini-DRX operation at the positions of the on-durations.
  • mini-DRX operation may include an operation in which PDCCH monitoring is performed at the location of the on-duration occurring within the on-duration burst.
  • the terminal fails to detect the Target-PDCCH in the on-duration section (FG804), and if the on-duration burst section is maintained (FG805), the terminal maintains the operation of the mini-DRX and continues the on-duration burst. It can be decided to continuously perform PDCCH monitoring at the location. If the on-duration burst section ends (FG805), the terminal can decide to end the mini-DRX operation and perform the next Base-DRX-based operation (FG802).
  • the terminal when the terminal detects the Target-PDCCH in the on-duration section (FG903), the terminal can decide to perform operations accompanying the Target-PDCCH (FG905). Afterwards, when the base station completes the transmission and reception procedures, the base station can decide to assume that the terminal will perform the next Base-DRX-based operation after the mini-DRX operation and accompanying operations are completed (FG902).
  • the length of the on-duration burst (or on-duration) set by the base station to the terminal can be long.
  • the structure in which the operation of the on-duration burst and mini-DRX continues even after the transmission and reception of traffic required for a specific on-duration burst is completed may be disadvantageous for the terminal in power saving.
  • the on-duration burst or mini-DRX operation can be terminated early when the transmission and reception of traffic required for the terminal is completed, thereby reducing scheduling delay for traffic. It has the advantage of ensuring power saving efficiency while maintaining the reducing effect.
  • on-duration bursts or on-durations
  • Proposals such as a method of configuring one or more windows that allow the terminal to monitor the PDCCH or dividing a section where PDCCH monitoring is possible through masking/gap settings, etc. can be applied and used.
  • One of the options below can be used as a specific method to determine the location of the on-duration that occurs within the on-duration burst section.
  • Option 4-3 A method of determining the start position of the next on-duration adjacent to the end point of the previous on-duration.
  • Option 4-1 is a method in which the location of the on-duration within the on-duration burst is generated periodically (or generated according to a pre-arranged pattern), and the base station determines parameters related to mini-DRX to support this. and can be provided to the terminal.
  • the parameters related to the mini-DRX are, for example, the cycle in which the on-duration occurs in the on-duration burst (hereinafter referred to as mini-DRX cycle) and the first time that operates as a mini-DRX from the point where the on-duration burst starts.
  • mini-DRX offset The location where on-duration occurs
  • Option 4-2 is a method in which the relative positions between on-durations within an on-duration burst are determined in the form of a gap (hereinafter referred to as mini-gap), and the base station determines the relative positions between on-durations to support this.
  • the parameters for this can be determined and provided to the terminal.
  • the parameters for determining the relative positions between the on-durations are, for example, the size of the gap between the on-durations that occur on the on-duration burst and the mini-DRX from the point where the on-duration burst starts.
  • the location where the first on-duration of operation occurs hereinafter referred to as mini-DRX offset
  • mini-DRX offset may be included.
  • Option 4-3 can be a method in which on-durations are connected to each other within an on-duration burst. Specifically, if the sequence number of the time unit (e.g. OFDM symbol or slot, etc.) at the end of the n(>0)th on-duration on the on-duration burst is m, the time unit at the start of the n+1th on-duration is can be set as m+1.
  • the sequence number of the time unit e.g. OFDM symbol or slot, etc.
  • Figure 20 shows examples related to Proposal 4.
  • Figure 20 is only an example, and the present invention is not limited thereto.
  • Option 4-1 shows an example in which the position of each on-duration in the on-duration burst section occurs in the period of the mini-DRX cycle (FG1003).
  • the starting point of the first on-duration (FG1001) and the starting point of the second on-duration (FG1002) show the interval of the Mini-DRX cycle.
  • Option 4-2 shows an example in which the position of each on-duration in the on-duration burst section is determined by the mini-gap (FG1006).
  • a mini-gap gap is formed between the end point of the first on-duration (FG1004) and the start point of the second on-duration (FG1005).
  • Option 4-3 shows an example of how on-durations are generated in conjunction with each other in the on-duration burst section.
  • the end point of the first on-duration and the start point of the second on-duration are formed to have the same position (FG1007).
  • the terminal receives information about mini-DRX from the base station and determines the location of the on-duration within the on-duration burst section based on this.
  • the information about the mini-DRX may include information such as a mini-DRX cycle, or may include information such as a mini-gap.
  • the information may be provided through a higher layer signal (e.g. SIB or RRC signaling).
  • the terminal can expect that an on-duration burst will start every cycle of Base-DRX, and at this time, the mini-DRX operation is performed in the section where the started on-duration burst is maintained, and the on-duration(s) generated are performed. It can be assumed that this may occur.
  • the terminal can estimate the location where on-duration(s) occurs in the on-duration burst section based on the received mini-DRX configuration information.
  • the terminal can assume that the mini-DRX operation is performed at the start position of the on-duration burst determined according to the configuration information of the Base-DRX. Additionally, the terminal can estimate the location of the on-duration(s) that can be assumed in the on-duration burst section from the base station based on the configuration information.
  • Figure 21 shows an example of terminal operation.
  • the terminal can receive DRX-related configuration information including on-duration location configuration information (FG1101).
  • the on-duration position setting information is, for example, information for setting a mini-DRX cycle, information about the gap between on-durations, or separate setting information for specifying the relative position between on-durations. may not be provided.
  • the configuration information may be received through a higher layer signal (e.g. SIB or RRC signaling).
  • the terminal can expect the on-duration burst to start at the start point of the on-duration burst determined by the period of Base-DRX and perform operations related thereto (FG1102).
  • the terminal can expect that one or more on-durations may occur within the section of the on-duration burst, and can determine the location of occurrence of on-durations based on the received on-duration location setting information.
  • the position of the first on-duration can be determined relative to the start position of the on-duration burst, and the positions of subsequent on-durations can be determined by referring to the immediately preceding on-duration section.
  • the terminal can determine the on-duration positions by repeating the above operation until the end of the on-duration burst section. If the on-duration burst ends (FG1104), the terminal terminates the operation of the mini-DRX and You can decide to perform operations based on the following Base-DRX (FG1102).
  • the base station determines and generates information about mini-DRX and provides it to the terminal, and based on this, determines the location of on-duration occurrence within the on-duration burst section.
  • the information about the mini-DRX may include information such as a mini-DRX cycle, or may include information such as a mini-gap.
  • the information may be provided through a higher layer signal (e.g. SIB or RRC signaling).
  • the base station can assume that the terminal will perform a mini-DRX operation in the on-duration burst section that occurs every Base-DRX cycle. At this time, the base station can assume that the location where the on-duration(s) expected by the terminal in the on-duration-burst section will occur will be determined based on the mini-DRX-related information set above and provided to the terminal.
  • the base station can assume that the terminal will perform mini-DRX operation at the start position of the on-duration burst determined according to the Base-DRX configuration information. Additionally, the base station can assume that the terminal will estimate the location of the on-duration(s) that can be assumed in the on-duration burst section based on the configuration information.
  • Figure 22 shows an example of base station operation.
  • the base station can determine DRX-related configuration information, including on-duration location configuration information, and provide it to the terminal (FG1201).
  • the on-duration position setting information is, for example, information for setting a mini-DRX cycle, information about the gap between on-durations, or separate setting information for specifying the relative position between on-durations. may not be provided.
  • the configuration information may be provided through higher layer signaling (e.g. SIB or RRC signaling).
  • the base station can assume that the terminal will expect the on-duration burst to start at the start point of the on-duration burst determined by the period of Base-DRX and perform operations related thereto ( FG1202).
  • the base station can assume the occurrence location of on-durations that the terminal can expect based on the transmitted on-duration location setting information within the section of the on-duration burst (FG1203).
  • the position of the first on-duration that the terminal can assume can be determined through its relative position to the start position of the on-duration burst, and the positions of subsequent on-durations can be determined by determining the position of the terminal's immediately preceding on-duration section. It can be assumed that decisions will be made with reference to this.
  • the base station can assume that the terminal will determine the on-duration positions by repeating the above operation until the end of the on-duration burst section. If the on-duration burst ends (FG1204), the base station can determine the terminal's mini -It can be expected that DRX operation will be terminated and operation based on the next Base-DRX will be performed (FG1202).
  • the method of option 4-1 it will be advantageous to obtain a power saving effect for the terminal according to traffic characteristics in that it can guarantee a section in which the terminal can temporarily stop PDCCH monitoring between on-durations depending on the base station settings. You can.
  • the structure of the on-duration burst takes the form of a window to specify the section in which the mini-DRX operation is performed, it can be implemented using the existing DRX structure. This can have the advantage of being able to recycle the existing operation method of the terminal.
  • the method of option 4-2 it will be advantageous to obtain a power saving effect for the terminal according to traffic characteristics in that it can guarantee a section in which the terminal can temporarily stop PDCCH monitoring between on-durations depending on the base station settings. You can.
  • the mini-gap is set to recycle requirement values according to the terminal's capabilities or special operations, it may be advantageous in that it does not generate separate signaling overhead for specifying the on-duration occurrence location.
  • each on-duration section is set individually, and for example, each on-duration section may have different lengths.
  • the length of the first on-duration section can be set to be longer than the lengths of other subsequent on-durations.
  • operations other than PDCCH monitoring performed by the terminal in the on-duration section e.g. CSI report / SRS transmission
  • This may be at least guaranteed through the first on-duration section.
  • the length of each on-duration is a fixed value or relative ratio by the standard, or is set and set by the base station. It may be a provided value. If the value is set by the base station, the above information can be provided by the base station to the terminal through a higher layer signal (e.g. SIB or RRC signaling). Alternatively, a method in which the base station dynamically or semi-statically selects the terminal through the L1 layer (e.g. DCI or reference signal) or L2 layer (e.g. MAC CE) may be used.
  • L1 layer e.g. DCI or reference signal
  • L2 layer e.g. MAC CE
  • signaling can be used to indicate whether or not each on-duration section occurs.
  • the above signaling may be signaling dynamically or semi-statically transmitted from the base station to the terminal through the L1 layer (e.g. DCI or reference signal) or L2 layer (e.g. MAC CE).
  • the base station determines through L1/L2 signaling whether the terminal can assume the occurrence of the next on-duration (or on-durations), or whether mini-DRX is maintained, or whether the on-duration burst is maintained. You can instruct. This is advantageous in that the base station dynamically or semi-statically controls operations related to the on-duration of the terminal in consideration of the traffic situation, thereby increasing the scheduling flexibility of the base station and adaptively controlling the power saving efficiency of the terminal.
  • the base station can provide related information to the terminal through a higher layer signal (e.g. SIB or RRC signaling) to set the L1 or L2 signal that controls whether each on-duration occurs.
  • a higher layer signal e.g. SIB or RRC signaling
  • the terminal receives DRX-related configuration information (Base-DRX) for basic DRX operation from the base station, and the configuration information includes Base-DRX cycle, Base-DRX on-duration information, and timer for setting active time. may be included.
  • the terminal receives DRX-related configuration information (mini-DRX) for short DRX operation from the base station, and the configuration information includes mini-DRX cycle, mini-DRX on-duration information, and timer for setting active time. may be included.
  • the configuration information for the Base-DRX and mini-DRX may be information provided by the base station to the terminal through a higher layer signal (e.g. SIB or RRC signal).
  • the base station and the terminal can assume that Base-on-duration will occur in the period of the Base-DRX cycle (EG101). If the base station transmits the Target-PDCCH at the base-on-duration location and the terminal succeeds in detecting it (EG102), the base station and the terminal While performing the necessary operations, it can be assumed that the mini-DRX section is not activated (EG103), and the terminal can maintain the DRX state until the location of the next Base-on-duration determined by the Base-DRX cycle. .
  • the mini-DRX section may be activated (EG105) and the terminal -The Target-PDCCH can be monitored at the location of the mini-on-duration(s) determined to give the DRX cycle, and the base station can expect this and transmit the Target-PDCCH.
  • the terminal may terminate mini-DRX operation if certain conditions are met, for example, when the Target-PDCCH is detected in a specific mini-On-duration or the maximum period in which mini-DRX can be maintained has expired. There is (EG106).
  • Base-DRX may be a concept corresponding to long DRX defined in the standard
  • mini-DRX may be a concept corresponding to short DRX defined in the standard.
  • the rules for switching between long DRX and short DRX can be determined not to follow existing standards, and the method described in the example can be applied, which can be limited to cases set by the base station.
  • the terminal can receive DRX-related configuration information (mini-DRX) for short DRX operation from the base station.
  • the configuration information includes mini-DRX cycle, mini-DRX on-duration information, timer for setting active time, etc. This may be included.
  • the terminal can receive setting information (Active-DRX) from the base station to determine the section in which the mini-DRX is actually activated, and the setting information includes the period in which the section in which the mini-DRX is activated (Base-DRX cycle), the maximum length of the section where mini-DRX is activated, etc.
  • the configuration information for the mini-DRX and Active-DRX may be information provided by the base station to the terminal through a higher layer signal (e.g.
  • the base station and the terminal can assume that the candidate for the on-duration section will be generated in the cycle of the mini-DRX cycle (EG201), and the activation section (EG203) of the mini-DRX operation is the base-DRX cycle. It can be assumed that it will occur in a cycle of (EG202). At this time, the base station and the terminal can assume that the on-duration candidate sections belonging to the activation section of the mini-DRX operation are activated (EG204) and decide to transmit or expect reception of the Target-PDCCH through the activated on-duration sections. You can.
  • the base station and the terminal can assume that on-duration candidate sections that are not included in the activation section of the mini-DRX operation are not activated (EG205), and Target-PDCCH cannot be transmitted or received in deactivated locations. You can decide not to expect it. If the base station does not meet certain conditions at the location of the activated on-duration, for example, if the Target-PDCCH is not transmitted or if it is transmitted but the terminal fails to detect it, the operation of mini-DRX may be maintained. If a specific condition is satisfied by the base station, for example, if the terminal receives the transmitted Target-PDCCH (EG206), the terminal assumes that the remaining on-duration candidates will be deactivated in the current Base-DRX cycle. (EG207)
  • the terminal receives DRX-related configuration information (Base-DRX) for basic DRX operation from the base station, and the configuration information may include the Base-DRX cycle and offset information to determine the start position of the Base-DRX cycle.
  • the terminal receives DRX-related configuration information (mini-DRX) for short DRX operation from the base station, and the configuration information includes mini-DRX cycle, mini-DRX on-duration information, and timer for setting active time. may be included.
  • the configuration information for the Base-DRX and mini-DRX may be information provided by the base station to the terminal through a higher layer signal (e.g. SIB or RRC signal).
  • the base station and the terminal can assume that the mini-DRX operation starts in the period of the Base-DRX cycle (EG301).
  • the operation of the mini-DRX means that on-duration sections are generated in cycles of the mini-DRX cycle (EG302) from the starting position of the mini-DRX determined by the Base-DRX cycle (EG303). If the base station does not transmit the Target-PDCCH in a specific on-duration section or transmits it but the terminal does not receive it, the terminal maintains the operation of the mini-DRX and the next on-duration section by the mini-DRX cycle occurs. We can assume that it will happen.
  • the terminal can assume that no additional on-duration will occur in the corresponding Base-DRX cycle, and the base station can take this into account.
  • EG304 There is (EG304).
  • the terminal receives DRX-related configuration information (Base-DRX) for basic DRX operation from the base station, and the configuration information includes Base-DRX cycle, Base-DRX on-duration information, and timer for setting active time. may be included.
  • the terminal receives DRX-related setting information (mini-DRX) for short DRX operation from the base station, and the setting information may include mini-DRX cycle, window (or duration) information by mini-DRX, etc.
  • the configuration information for the Base-DRX and mini-DRX may be information provided by the base station to the terminal through a higher layer signal (e.g. SIB or RRC signal).
  • the base station and the terminal can assume that Base-on-duration (EG402) will occur in the period of the Base-DRX cycle (EG401).
  • the base station and the terminal can assume that the base-on-duration will not be activated until the target-PDCCH is transmitted and received (EG403).
  • the base station and the terminal transmit the Target-PDCCH base station in the section where base-on-duration is not activated, based on the above setting information, in the section of mini-on-duration (EG404) that occurs in the cycle of the mini-DRX cycle. It can be assumed that reception by the terminal can be achieved.
  • the base-on-duration deactivation state is determined to be maintained (EG403). If the base station does not receive the Target-PDCCH in the mini-on-duration section, When transmitted and the terminal receives it (EG405), the base station and the terminal can stop the operation of the mini-DRX and assume that the base-on-duration section is activated (EG406).
  • FIG. 27 is a diagram for explaining signal reception by a terminal according to an embodiment.
  • FIG. 27 may be understood as an example of implementation of at least some of the above-described Proposals 1 to 5, and the contents of Proposals 1 to 5 described above may be referred to for FIG. 27.
  • the terminal can receive DRX configuration information including information about the DRX (Discontinuous Reception) cycle (A05).
  • the terminal can monitor the PDCCH (physical downlink control channel) based on the DRX configuration information (A10).
  • PDCCH physical downlink control channel
  • each On-duration set containing a plurality of On-durations spaced apart from each other on the time axis can be set.
  • the terminal may perform monitoring of the PDCCH based on the plurality of on-durations included in each on-duration set. Based on the fact that the PDCCH is detected in one of the plurality of on-durations as a result of monitoring the PDCCH, the terminal may determine that a subsequent on-duration will not occur until the start of the next DRX cycle.
  • At least one of first information about the maximum length of time for which the corresponding On-duration set remains valid from the start of each On-duration set and second information about the maximum number of valid On-durations included in each On-duration set. may be set in the terminal.
  • the DRX setting information may include at least one of the first information and the second information.
  • the corresponding on-duration set may be terminated early.
  • Data scheduled by the detected PDCCH may have a non-integer period.
  • the DRX setting information may include at least one of information about the interval between the plurality of on-durations and information about the location of the first on-duration among the plurality of on-durations.
  • Information about the interval between the plurality of on-durations may include the period of the plurality of on-durations.
  • Information about the location of the leading On-duration may include an offset between the start of the corresponding DRX cycle and the start of the leading On-duration.
  • the length of each On-duration belonging to the same On-duration set can be set individually.
  • FIG. 28 is a diagram for explaining signal transmission by a base station according to an embodiment.
  • FIG. 28 may be understood as an example of implementation of at least some of the above-described Proposals 1 to 5, and the contents of Proposals 1 to 5 described above may be referred to for FIG. 28.
  • the base station can transmit DRX configuration information including information about the DRX (Discontinuous Reception) cycle to the terminal (B05).
  • the base station may transmit a physical downlink control channel (PDCCH) to the terminal based on the DRX configuration information (B10).
  • PDCCH physical downlink control channel
  • each On-duration set containing a plurality of On-durations spaced apart from each other on the time axis can be set.
  • the base station may perform transmission of the PDCCH based on the plurality of on-durations included in each on-duration set. Based on the fact that the PDCCH was transmitted in one of the plurality of on-durations, the base station may determine that a subsequent on-duration for the terminal will not occur until the start of the next DRX cycle.
  • the base station selects among first information about the maximum length of time for which the corresponding On-duration set remains valid from the start of each On-duration set and second information about the maximum number of valid On-durations included in each On-duration set. At least one can be set in the terminal.
  • the DRX setting information may include at least one of the first information and the second information.
  • the corresponding on-duration set may be terminated early.
  • Data scheduled by the transmitted PDCCH may have a non-integer period.
  • the DRX setting information may include at least one of information about the interval between the plurality of on-durations and information about the location of the first on-duration among the plurality of on-durations.
  • Information about the interval between the plurality of on-durations may include the period of the plurality of on-durations.
  • Information about the location of the leading On-duration may include an offset between the start of the corresponding DRX cycle and the start of the leading On-duration.
  • the length of each On-duration belonging to the same On-duration set can be set individually.
  • Figure 29 illustrates a communication system 1 applicable to the present invention.
  • the communication system 1 includes a wireless device, a base station, and a network.
  • a wireless device refers to a device that performs communication using wireless access technology (e.g., 5G NR (New RAT), LTE (Long Term Evolution)) and may be referred to as a communication/wireless/5G device.
  • wireless devices include robots (100a), vehicles (100b-1, 100b-2), XR (eXtended Reality) devices (100c), hand-held devices (100d), and home appliances (100e). ), IoT (Internet of Thing) device (100f), and AI device/server (400).
  • vehicles may include vehicles equipped with wireless communication functions, autonomous vehicles, vehicles capable of inter-vehicle communication, etc.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include AR (Augmented Reality)/VR (Virtual Reality)/MR (Mixed Reality) devices, HMD (Head-Mounted Device), HUD (Head-Up Display) installed in vehicles, televisions, smartphones, It can be implemented in the form of computers, wearable devices, home appliances, digital signage, vehicles, robots, etc.
  • Portable devices may include smartphones, smart pads, wearable devices (e.g., smartwatches, smart glasses), and computers (e.g., laptops, etc.).
  • Home appliances may include TVs, refrigerators, washing machines, etc.
  • IoT devices may include sensors, smart meters, etc.
  • a base station and network may also be implemented as wireless devices, and a specific wireless device 200a may operate as a base station/network node for other wireless devices.
  • Wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, 4G (eg, LTE) network, or 5G (eg, NR) network.
  • Wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may also communicate directly (e.g. sidelink communication) without going through the base station/network.
  • vehicles 100b-1 and 100b-2 may communicate directly (e.g.
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • an IoT device eg, sensor
  • another IoT device eg, sensor
  • another wireless device 100a to 100f
  • Wireless communication/connection may be established between the wireless devices (100a to 100f)/base station (200) and the base station (200)/base station (200).
  • wireless communication/connection includes various wireless connections such as uplink/downlink communication (150a), sidelink communication (150b) (or D2D communication), and inter-base station communication (150c) (e.g. relay, IAB (Integrated Access Backhaul)).
  • uplink/downlink communication 150a
  • sidelink communication 150b
  • inter-base station communication 150c
  • This can be achieved through technology (e.g., 5G NR).
  • a wireless device and a base station/wireless device, and a base station and a base station can transmit/receive wireless signals to each other.
  • wireless communication/connection can transmit/receive signals through various physical channels.
  • various signal processing processes e.g., channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
  • resource allocation processes etc.
  • Figure 30 illustrates a wireless device to which the present invention can be applied.
  • the first wireless device 100 and the second wireless device 200 can transmit and receive wireless signals through various wireless access technologies (eg, LTE, NR).
  • ⁇ first wireless device 100, second wireless device 200 ⁇ refers to ⁇ wireless device 100x, base station 200 ⁇ and/or ⁇ wireless device 100x, wireless device 100x) in FIG. 30.
  • can be responded to.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may additionally include one or more transceivers 106 and/or one or more antennas 108.
  • Processor 102 controls memory 104 and/or transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
  • the processor 102 may process information in the memory 104 to generate first information/signal and then transmit a wireless signal including the first information/signal through the transceiver 106.
  • the processor 102 may receive a wireless signal including the second information/signal through the transceiver 106 and then store information obtained from signal processing of the second information/signal in the memory 104.
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102. For example, memory 104 may perform some or all of the processes controlled by processor 102 or instructions for performing the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. Software code containing them can be stored.
  • the processor 102 and memory 104 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • Transceiver 106 may be coupled to processor 102 and may transmit and/or receive wireless signals via one or more antennas 108. Transceiver 106 may include a transmitter and/or receiver. The transceiver 106 can be used interchangeably with an RF (Radio Frequency) unit.
  • a wireless device may mean a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and/or one or more antennas 208.
  • Processor 202 controls memory 204 and/or transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
  • the processor 202 may process the information in the memory 204 to generate third information/signal and then transmit a wireless signal including the third information/signal through the transceiver 206.
  • the processor 202 may receive a wireless signal including the fourth information/signal through the transceiver 206 and then store information obtained from signal processing of the fourth information/signal in the memory 204.
  • the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202. For example, memory 204 may perform some or all of the processes controlled by processor 202 or instructions for performing the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. Software code containing them can be stored.
  • the processor 202 and memory 204 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • Transceiver 206 may be coupled to processor 202 and may transmit and/or receive wireless signals via one or more antennas 208. Transceiver 206 may include a transmitter and/or receiver. Transceiver 206 may be used interchangeably with an RF unit.
  • a wireless device may mean a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 102, 202.
  • one or more processors 102, 202 may implement one or more layers (e.g., functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • One or more processors 102, 202 may generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the descriptions, functions, procedures, suggestions, methods and/or operational flow charts disclosed herein. can be created.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102, 202 may generate messages, control information, data or information in accordance with the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
  • One or more processors 102, 202 may generate signals (e.g., baseband signals) containing PDUs, SDUs, messages, control information, data or information in accordance with the functions, procedures, suggestions and/or methods disclosed herein. , can be provided to one or more transceivers (106, 206).
  • One or more processors 102, 202 may receive signals (e.g., baseband signals) from one or more transceivers 106, 206, and the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • PDU, SDU, message, control information, data or information can be obtained.
  • One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, etc.
  • Firmware or software configured to perform the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document may be included in one or more processors (102, 202) or stored in one or more memories (104, 204). It may be driven by the above processors 102 and 202.
  • the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software in the form of codes, instructions and/or sets of instructions.
  • One or more memories 104, 204 may be connected to one or more processors 102, 202 and may store various types of data, signals, messages, information, programs, codes, instructions, and/or instructions.
  • One or more memories 104, 204 may consist of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and/or combinations thereof.
  • One or more memories 104, 204 may be located internal to and/or external to one or more processors 102, 202. Additionally, one or more memories 104, 204 may be connected to one or more processors 102, 202 through various technologies, such as wired or wireless connections.
  • One or more transceivers 106, 206 may transmit user data, control information, wireless signals/channels, etc. mentioned in the methods and/or operation flowcharts of this document to one or more other devices.
  • One or more transceivers 106, 206 may receive user data, control information, wireless signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein, etc. from one or more other devices. there is.
  • one or more transceivers 106 and 206 may be connected to one or more processors 102 and 202 and may transmit and receive wireless signals.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or wireless signals to one or more other devices. Additionally, one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or wireless signals from one or more other devices. In addition, one or more transceivers (106, 206) may be connected to one or more antennas (108, 208), and one or more transceivers (106, 206) may be connected to the description and functions disclosed in this document through one or more antennas (108, 208). , may be set to transmit and receive user data, control information, wireless signals/channels, etc.
  • one or more antennas may be multiple physical antennas or multiple logical antennas (eg, antenna ports).
  • One or more transceivers (106, 206) process the received user data, control information, wireless signals/channels, etc. using one or more processors (102, 202), and convert the received wireless signals/channels, etc. from the RF band signal. It can be converted to a baseband signal.
  • One or more transceivers (106, 206) may convert user data, control information, wireless signals/channels, etc. processed using one or more processors (102, 202) from baseband signals to RF band signals.
  • one or more transceivers 106, 206 may comprise (analog) oscillators and/or filters.
  • FIG. 31 shows another example of a wireless device applied to the present invention.
  • Wireless devices can be implemented in various forms depending on usage-examples/services (see FIG. 29).
  • the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 30 and include various elements, components, units/units, and/or modules. ) can be composed of.
  • the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and an additional element 140.
  • the communication unit may include communication circuitry 112 and transceiver(s) 114.
  • communication circuitry 112 may include one or more processors 102, 202 and/or one or more memories 104, 204 of FIG. 30.
  • transceiver(s) 114 may include one or more transceivers 106, 206 and/or one or more antennas 108, 208 of FIG. 30.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140 and controls overall operations of the wireless device. For example, the control unit 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130. In addition, the control unit 120 transmits the information stored in the memory unit 130 to the outside (e.g., another communication device) through the communication unit 110 through a wireless/wired interface, or to the outside (e.g., to another communication device) through the communication unit 110. Information received through a wireless/wired interface from another communication device may be stored in the memory unit 130.
  • the outside e.g., another communication device
  • Information received through a wireless/wired interface from another communication device may be stored in the memory unit 130.
  • the additional element 140 may be configured in various ways depending on the type of wireless device.
  • the additional element 140 may include at least one of a power unit/battery, an input/output unit (I/O unit), a driving unit, and a computing unit.
  • wireless devices include robots (FIG. 30, 100a), vehicles (FIG. 30, 100b-1, 100b-2), XR devices (FIG. 30, 100c), portable devices (FIG. 30, 100d), and home appliances. (FIG. 30, 100e), IoT device (FIG.
  • digital broadcast terminal digital broadcast terminal
  • hologram device public safety device
  • MTC device medical device
  • fintech device or financial device
  • security device climate/environment It can be implemented in the form of a device, AI server/device (FIG. 30, 400), base station (FIG. 30, 200), network node, etc.
  • Wireless devices can be mobile or used in fixed locations depending on the usage/service.
  • various elements, components, units/parts, and/or modules within the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least a portion may be wirelessly connected through the communication unit 110.
  • the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (e.g., 130 and 140) are connected through the communication unit 110.
  • the control unit 120 and the first unit e.g., 130 and 140
  • each element, component, unit/part, and/or module within the wireless devices 100 and 200 may further include one or more elements.
  • the control unit 120 may be comprised of one or more processor sets.
  • control unit 120 may be comprised of a communication control processor, an application processor, an electronic control unit (ECU), a graphics processing processor, and a memory control processor.
  • memory unit 130 includes random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and/or a combination thereof.
  • Figure 32 illustrates a vehicle or autonomous vehicle to which the present invention is applied.
  • a vehicle or autonomous vehicle can be implemented as a mobile robot, vehicle, train, manned/unmanned aerial vehicle (AV), ship, etc.
  • AV manned/unmanned aerial vehicle
  • the vehicle or autonomous vehicle 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a drive unit 140a, a power supply unit 140b, a sensor unit 140c, and an autonomous driving unit. It may include a portion 140d.
  • the antenna unit 108 may be configured as part of the communication unit 110. Blocks 110/130/140a to 140d respectively correspond to blocks 110/130/140 in FIG. 31.
  • the communication unit 110 can transmit and receive signals (e.g., data, control signals, etc.) with external devices such as other vehicles, base stations (e.g. base stations, road side units, etc.), and servers.
  • the control unit 120 may control elements of the vehicle or autonomous vehicle 100 to perform various operations.
  • the control unit 120 may include an Electronic Control Unit (ECU).
  • the driving unit 140a can drive the vehicle or autonomous vehicle 100 on the ground.
  • the driving unit 140a may include an engine, motor, power train, wheels, brakes, steering device, etc.
  • the power supply unit 140b supplies power to the vehicle or autonomous vehicle 100 and may include a wired/wireless charging circuit, a battery, etc.
  • the sensor unit 140c can obtain vehicle status, surrounding environment information, user information, etc.
  • the sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward sensor. / May include a reverse sensor, battery sensor, fuel sensor, tire sensor, steering sensor, temperature sensor, humidity sensor, ultrasonic sensor, illuminance sensor, pedal position sensor, etc.
  • the autonomous driving unit 140d provides technology for maintaining the driving lane, technology for automatically adjusting speed such as adaptive cruise control, technology for automatically driving along a set route, and technology for automatically setting and driving when a destination is set. Technology, etc. can be implemented.
  • the communication unit 110 may receive map data, traffic information data, etc. from an external server.
  • the autonomous driving unit 140d can create an autonomous driving route and driving plan based on the acquired data.
  • the control unit 120 may control the driving unit 140a so that the vehicle or autonomous vehicle 100 moves along the autonomous driving path according to the driving plan (e.g., speed/direction control).
  • the communication unit 110 may acquire the latest traffic information data from an external server irregularly/periodically and obtain surrounding traffic information data from surrounding vehicles.
  • the sensor unit 140c can obtain vehicle status and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and driving plan based on newly acquired data/information.
  • the communication unit 110 may transmit information about vehicle location, autonomous driving route, driving plan, etc. to an external server.
  • An external server can predict traffic information data in advance using AI technology, etc., based on information collected from vehicles or self-driving vehicles, and provide the predicted traffic information data to the vehicles or self-driving vehicles.
  • the present invention can be used in terminals, base stations, or other equipment in a wireless mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 명세서에 개시된 예시들 중 적어도 하나에 따르면 단말은 DRX (Discontinuous Reception) 주기(cycle)에 대한 정보를 포함하는 DRX 설정 정보를 수신하고, 상기 DRX 설정 정보에 기초하여 PDCCH (physical downlink control channel)를 모니터링하며, 각 DRX 주기 마다 시간 축 상에서 서로 이격된 복수의 On-duration들을 포함하는 각 On-duration 세트가 설정되고, 상기 단말은 각 On-duration 세트에 포함된 상기 복수의 On-duration들에 기초하여 상기 PDCCH의 모니터링을 수행할 수 있다.

Description

무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
본 발명은 무선 통신 시스템에 관한 것으로, 보다 상세하게는 무선 신호 송수신 방법 및 장치에 관한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
본 발명의 목적은 무선 신호 송수신 과정을 효율적으로 수행하는 방법 및 이를 위한 장치를 제공하는데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 측면에 따른 무선 통신 시스템에서 단말이 신호를 수신하는 방법은 DRX (Discontinuous Reception) 주기(cycle)에 대한 정보를 포함하는 DRX 설정 정보를 수신; 및 상기 DRX 설정 정보에 기초하여 PDCCH (physical downlink control channel)를 모니터링하는 것을 포함할 수 있다. 각 DRX 주기 마다 시간 축 상에서 서로 이격된 복수의 On-duration들을 포함하는 각 On-duration 세트가 설정될 수 있다. 상기 단말은 각 On-duration 세트에 포함된 상기 복수의 On-duration들에 기초하여 상기 PDCCH의 모니터링을 수행할 수 있다. 상기 PDCCH의 모니터링 결과 상기 복수의 On-duration들 중 어느 하나에서 상기 PDCCH가 검출되었다는 것에 기반하여, 상기 단말은 다음 번 DRX 주기의 시작 전까지는 후속 On-duration이 발생하지 않는다고 판단할 수 있다.
각 On-duration 세트의 시작부터 해당 On-duration 세트가 유효하게 유지되는 최대 시간 길이에 대한 제1 정보 및 각 On-duration 세트에 포함되는 유효 On-duration 들의 최대 개수에 대한 제2 정보 중 적어도 하나가 상기 단말에 설정될 수 있다. 상기 DRX 설정 정보는, 상기 제1 정보 및 상기 제2 정보 중 적어도 하나를 포함할 수 있다.
상기 최대 시간 길이에 이르기 전 또는 상기 On-duration들의 최대 개수에 이르기 전에 위치한 On-duration에서 상기 PDCCH가 검출된 것에 기반하여, 해당 On-duration 세트가 조기 종료할 수 있다.
상기 검출된 PDCCH에 의해 스케줄되는 데이터는 비-정수(non-integer) 주기를 가질 수 있다.
상기 DRX 설정 정보는, 상기 복수의 On-duration들 간의 간격에 대한 정보 및 상기 복수의 On-duration들 중 선두 On-duration의 위치에 대한 정보 중 적어도 하나를 포함할 수 있다. 상기 복수의 On-duration들 간의 간격에 대한 정보는 상기 복수의 On-duration들의 주기를 포함할 수 있다. 상기 선두 On-duration의 위치에 대한 정보는, 해당 DRX 주기의 시작과 상기 선두 On-duration의 시작 간의 오프셋을 포함할 수 있다.
동일한 On-duration 세트에 속하는 각 On-duration의 길이가 개별적으로 설정될 수 있다.
본 발명의 다른 일 측면에 따라서 상술된 신호 수신 방법을 수행하기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록 매체가 제공될 수 있다.
본 발명의 또 다른 일 측면에 따라서 상술된 신호 수신 방법을 수행하는 단말이 제공될 수 있다.
본 발명의 또 다른 일 측면에 따라서 상술된 신호 수신 방법을 수행하는 단말을 제어하는 디바이스가 제공될 수 있다.
본 발명의 또 다른 일 측면에 따른 무선 통신 시스템에서 기지국이 신호를 송신하는 방법은, 단말에 DRX (Discontinuous Reception) 주기(cycle)에 대한 정보를 포함하는 DRX 설정 정보를 송신; 및 상기 DRX 설정 정보에 기초하여 상기 단말에 PDCCH (physical downlink control channel)를 송신할 수 있다. 각 DRX 주기 마다 시간 축 상에서 서로 이격된 복수의 On-duration들을 포함하는 각 On-duration 세트가 설정될 수 있다. 상기 기지국은 각 On-duration 세트에 포함된 상기 복수의 On-duration들에 기초하여 상기 PDCCH의 송신을 수행할 수 있다. 상기 복수의 On-duration들 중 어느 하나에서 상기 PDCCH가 송신되었다는 것에 기반하여, 상기 기지국은 다음 번 DRX 주기의 시작 전까지는 상기 단말을 위한 후속 On-duration이 발생하지 않는다고 판단할 수 있다.
본 발명의 또 다른 일 측면에 따라서 상술된 신호 송신 방법을 수행하는 기지국이 제공될 수 있다.
본 발명의 일 실시예에 따르면 개선된 DRX 동작에 기초하여 신호 송수신이 수행되므로 전력 효율성이 보다 향상될 수 있다.
본 발명의 일 실시예에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 무선 통신 시스템의 일례인 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다.
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다.
도 4는 슬롯 내에 물리 채널이 맵핑되는 예를 도시한다.
도 5는 PDCCH(Physical Downlink Control Channel) 송수신 과정을 예시한다.
도 6은 PDSCH 수신 및 ACK/NACK 전송 과정을 예시한다.
도 7은 PUSCH 전송 과정을 예시한다.
도 8 내지 도 10은 DRX 관련 동작을 설명하기 위한 도면이다.
도 11은 On-duration burst의 일 예를 도시한다.
도 12는 단말 동작의 일 예를 도시한다.
도 13은 기지국 동작의 일 예를 도시한다.
도 14는 On-duration burst의 최대 길이와 On-duration 최대 개수일 예를 도시한다.
도 15는 단말 동작의 일 예를 도시한다.
도 16은 기지국 동작의 일 예를 도시한다.
도 17는 On-duration burst의 종료의 일 예를 도시한다.
도 18은 단말 동작의 일 예를 도시한다.
도 19는 기지국 동작의 일 예를 도시한다.
도 20은 On-duration들의 위치에 대한 일 예를 도시한다.
도 21은 단말 동작의 일 예를 도시한다.
도 22는 기지국 동작의 일 예를 도시한다.
도 23 내지 도 26은 On-duration들의 다양한 예를 도시한다.
도 27은 일 실시예에 따른 단말의 신호 수신 방법의 흐름을 도시한다.
도 28은 일 실시예에 따른 기지국의 신호 송신 방법의 흐름을 도시한다.
도 29 내지 도 32는 본 발명에 적용 가능한 통신 시스템(1)과 무선 기기를 예시한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A의 진화된 버전이다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT(Radio Access Technology)에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한, 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC(Machine Type Communications)도 차세대 통신에서 고려될 주요 이슈 중 하나이다. 또한, 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(enhanced Mobile BroadBand Communication), massive MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있으며, 본 발명의 일 실시예에서는 편의상 해당 기술을 NR(New Radio 또는 New RAT)이라고 부른다.
설명을 명확하게 하기 위해, 3GPP NR을 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
본 발명과 관련한 배경 기술, 용어 정의 및 약어 등을 위해서 하기 문서들이 참조될 수 있다(Incorporated by Reference).
3GPP LTE
- TS 36.211: Physical channels and modulation
- TS 36.212: Multiplexing and channel coding
- TS 36.213: Physical layer procedures
- TS 36.300: Overall description
- TS 36.321: Medium Access Control (MAC)
- TS 36.331: Radio Resource Control (RRC)
3GPP NR
- TS 38.211: Physical channels and modulation
- TS 38.212: Multiplexing and channel coding
- TS 38.213: Physical layer procedures for control
- TS 38.214: Physical layer procedures for data
- TS 38.300: NR and NG-RAN Overall Description
- TS 38.304: User Equipment (UE) procedures in idle mode and in RRC Inactive state
- TS 38.321: Medium Access Control (MAC)
- TS 38.331: Radio Resource Control (RRC) protocol specification
- TS 37.213: Introduction of channel access procedures to unlicensed spectrum for NR-based access
용어 및 약어
- PSS: Primary Synchronization Signal
- SSS: Secondary Synchronization Signal
- CRS: Cell reference signal
- CSI-RS: Channel State Information Reference Signal
- TRS: Tracking Reference Signal
- SS: Search Space
- CSS: Common Search Space
- USS: UE-specific Search Space
- PDCCH: Physical Downlink Control Channel; 이후 설명에서 PDCCH는 동일한 목적으로 사용될 수 있는 다양한 구조의 PDCCH를 대표하여 사용한다. (e.g. NPDCCH (Narrowband PDCCH), MPDCCH (MTC PDCCH) 등)
- PO: Paging Occasion
- MO: Monitoring Occasion
- SI: System Information
- PEI: Paging Early Indication
- DRX: Discontinuous Reception
- eDRX: Extended DRX
무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 3GPP NR 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 SSB(Synchronization Signal Block)를 수신한다. SSB는 PSS(Primary Synchronization Signal), SSS(Secondary Synchronization Signal) 및 PBCH(Physical Broadcast Channel)를 포함한다. 단말은 PSS/SSS에 기반하여 기지국과 동기를 맞추고, 셀 ID(cell identity) 등의 정보를 획득한다. 또한, 단말은 PBCH에 기반하여 셀 내 브로드캐스트 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 단계 S102에서 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및 물리 하향링크 제어 채널 정보에 따른 물리 하향링크 공유 채널(Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 단계 S103 내지 단계 S106과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S103), 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S104). 경쟁 기반 임의 접속(Contention based random access)의 경우 추가적인 물리 임의 접속 채널의 전송(S105) 및 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널 수신(S106)과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상향/하향링크 신호 전송 절차로서 물리 하향링크 제어 채널/물리 하향링크 공유 채널 수신(S107) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH) 전송(S108)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다. NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 각 무선 프레임은 10ms의 길이를 가지며, 두 개의 5ms 하프-프레임(Half-Frame, HF)으로 분할된다. 각 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 분할된다. 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함한다. 보통(normal) CP가 사용되는 경우, 각 슬롯은 14개의 OFDM 심볼을 포함한다. 확장(extended) CP가 사용되는 경우, 각 슬롯은 12개의 OFDM 심볼을 포함한다.
표 1은 보통 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2u) Nslot symb Nframe,u slot Nsubframe,u slot
15KHz (u=0) 14 10 1
30KHz (u=1) 14 20 2
60KHz (u=2) 14 40 4
120KHz (u=3) 14 80 8
240KHz (u=4) 14 160 16
* Nslot symb: 슬롯 내 심볼의 개수
* Nframe,u slot: 프레임 내 슬롯의 개수
* Nsubframe,u slot: 서브프레임 내 슬롯의 개수
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2u) Nslot symb Nframe,u slot Nsubframe,u slot
60KHz (u=2) 12 40 4
프레임의 구조는 예시에 불과하고, 프레임에서 서브프레임의 수, 슬롯의 수, 심볼의 수는 다양하게 변경될 수 있다.
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM 뉴모놀로지(numerology)(예, SCS)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM 심볼)을 포함할 수 있다.
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다. 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 PRB(Physical RB)로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 맵핑될 수 있다.
도 4는 슬롯 내에 물리 채널이 맵핑되는 예를 도시한다. NR 시스템에서 프레임은 하나의 슬롯 내에 DL 제어 채널, DL 또는 UL 데이터, UL 제어 채널 등이 모두 포함될 수 있는 자기-완비 구조를 특징으로 한다. 예를 들어, 슬롯 내의 처음 N개의 심볼은 DL 제어 채널(예, PDCCH)을 전송하는데 사용되고(이하, DL 제어 영역), 슬롯 내의 마지막 M개의 심볼은 UL 제어 채널(예, PUCCH)을 전송하는데 사용될 수 있다(이하, UL 제어 영역). N과 M은 각각 0 이상의 정수이다. DL 제어 영역과 UL 제어 영역의 사이에 있는 자원 영역(이하, 데이터 영역)은 DL 데이터(예, PDSCH) 전송을 위해 사용되거나, UL 데이터(예, PUSCH) 전송을 위해 사용될 수 있다. GP는 기지국과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 서브프레임 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.
PDCCH는 DCI(Downlink Control Information)를 운반한다. 예를 들어, PCCCH (즉, DCI)는 DL-SCH(downlink shared channel)의 전송 포맷 및 자원 할당, UL-SCH(uplink shared channel)에 대한 자원 할당 정보, PCH(paging channel)에 대한 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위 계층 제어 메시지에 대한 자원 할당 정보, 전송 전력 제어 명령, CS(Configured Scheduling)의 활성화/해제 등을 나른다. DCI는 CRC(cyclic redundancy check)를 포함하며, CRC는 PDCCH의 소유자 또는 사용 용도에 따라 다양한 식별자(예, Radio Network Temporary Identifier, RNTI)로 마스킹/스크램블 된다. 예를 들어, PDCCH가 특정 단말을 위한 것이면, CRC는 단말 식별자(예, Cell-RNTI, C-RNTI)로 마스킹 된다. PDCCH가 페이징에 관한 것이면, CRC는 P-RNTI(Paging-RNTI)로 마스킹 된다. PDCCH가 시스템 정보(예, System Information Block, SIB)에 관한 것이면, CRC는 SI-RNTI(System Information RNTI)로 마스킹 된다. PDCCH가 랜덤 접속 응답에 관한 것이면, CRC는 RA-RNTI(Random Access-RNTI)로 마스킹 된다.
도 5는 PDCCH 전송/수신 과정을 예시한다.
도 5를 참조하면, 기지국은 단말에게 CORESET(Control Resource Set) 구성(configuration)을 전송할 수 있다(S502). CORESET는 주어진 뉴모놀로지(예, SCS, CP 길이 등)를 갖는 REG(Resource Element Group) 세트로 정의된다. REG는 하나의 OFDM 심볼과 하나의 (P)RB로 정의된다. 하나의 단말을 위한 복수의 CORESET는 시간/주파수 도메인에서 중첩될 수 있다. CORESET는 시스템 정보(예, Master Information Block, MIB) 또는 상위 계층(예, Radio Resource Control, RRC, layer) 시그널링을 통해 설정될 수 있다. 예를 들어, MIB를 통해 소정의 공통(common) CORESET (e.g., CORESET #0)에 대한 구성 정보가 송신될 수 있다. 예를 들어, SIB1(system information block 1)을 나르는 PDSCH가 특정 PDCCH에 의해 스케줄되고, CORESET #0는 특정 PDCCH의 전송을 위한 것일 수 있다. 셀에서 브로드캐스되는 시스템 정보(SIB1)는 셀 특정한 PDSCH 설정 정보인 PDSCH-ConfigCommon을 포함한다. PDSCH-ConfigCommon은 PDSCH의 시간 도메인 자원 할당과 관련된 파라미터들의 리스트 (혹은 룩-업 테이블)인 pdsch-TimeDomainAllocationList를 포함한다. pdsch-TimeDomainAllocationList는 각각 {K0, PDSCH mapping type, PDSCH start symbol and length (SLIV)}를 조인트 인코딩한 entry (혹은 row)를 최대 16개 포함할 수 있다. PDSCH-ConfigCommon를 통해 설정되는 pdsch-TimeDomainAllocationList와는 별도로(추가적으로), 단말 특정한 PDSCH 설정인 PDSCH-Config를 통해서도 pdsch-TimeDomainAllocationList가 제공될 수 있다. 단말 특정하게 설정되는 pdsch-TimeDomainAllocationList는 단말 공통하게 제공되는 pdsch-TimeDomainAllocationList와 같은 구조를 갖는다. pdsch-TimeDomainAllocationList의 K0와 SLIV에 대해서는 후술하는 설명을 참조한다.
또한, CORESET #N (e.g., N>0)에 대한 구성 정보는 RRC 시그널링(e.g., 셀 공통 RRC 시그널링 또는 단말-특정 RRC 시그널링 등)을 통해 송신될 있다. 일 예로, CORESET 구성 정보를 나르는 단말-특정 RRC 시그널링은 예를 들어 RRC 셋업 메시지, RRC 재구성(reconfiguration) 메시지 및/또는 BWP 구성 정보 등의 다양한 시그널링을 포함할 수 있으며 이에 한정되지 않는다. 구체적으로, CORESET 구성에는 다음 정보/필드가 포함될 수 있다.
- controlResourceSetId: CORESET의 ID를 나타낸다.
- frequencyDomainResources: CORESET의 주파수 영역 자원을 나타낸다. 비트맵을 통해 지시되며, 각 비트는 RB 그룹(= 6개 (연속된) RB)에 대응한다. 예를 들어, 비트맵의 MSB(Most Significant Bit)는 BWP 내 첫 번째 RB 그룹에 대응한다. 비트 값이 1인 비트에 대응되는 RB 그룹이 CORESET의 주파수 영역 자원으로 할당된다.
- duration: CORESET의 시간 영역 자원을 나타낸다. CORESET를 구성하는 연속된 OFDM 심볼 개수를 나타낸다. duration은 1~3의 값을 가진다.
- cce-REG-MappingType: CCE(Control Channel Element)와 REG간의 맵핑 타입을 나타낸다. Interleaved 타입과 non-interleaved 타입이 지원된다.
- interleaverSize: 인터리버 사이즈를 나타낸다.
- pdcch-DMRS-ScramblingID: PDCCH DMRS의 초기화에 사용되는 값을 나타낸다. pdcch-DMRS-ScramblingID가 포함되지 않는 경우, 서빙 셀의 물리 셀 ID가 사용된다.
- precoderGranularity: 주파수 도메인에서 프리코더 입도를 나타낸다.
- reg-BundleSize: REG 번들 사이즈를 나타낸다.
- tci-PresentInDCI: TCI(Transmission Configuration Index) 필드가 DL-관련 DCI에 포함되는지 여부를 나타낸다.
- tci-StatesPDCCH-ToAddList: PDCCH-구성에 정의된 TCI 상태의 서브세트를 나타낸다. TCI 상태는 RS 세트(TCI-상태) 내의 DL RS(들)와 PDCCH DMRS 포트의 QCL(Quasi-Co-Location) 관계를 제공하는데 사용된다.
또한, 기지국은 단말에게 PDCCH SS(Search Space) 구성을 전송할 수 있다(S504). PDCCH SS 구성은 상위 계층 시그널링(e.g., RRC 시그널링)을 통해 전송될 수 있다. 예를 들어, RRC 시그널링은 RRC 셋업 메시지, RRC 재구성(reconfiguration) 메시지 및/또는 BWP 구성 정보등 다양한 시그널링을 포함할 수 있으며 이에 한정되지 않는다. 도 5에서는 설명의 편의를 위하여 CORESET 구성과 PDCCH SS 구성이 각각 시그널링 되는 것으로 도시되었으나, 본 발명은 이에 한정되지 않는다. 예를 들어, CORESET 구성과 PDCCH SS 구성은 하나의 메시지(e.g., 한번의 RRC 시그널링)를 통해 송신될 수도 있으며, 또는 서로 다른 메시지들을 통해 각각 송신될 수도 있다.
PDCCH SS 구성은 PDCCH SS 세트(set)의 구성에 대한 정보를 포함할 수 있다. PDCCH SS 세트는 단말이 모니터 (e.g., 블라인드 검출)을 수행하는 PDCCH 후보들의 세트(set)로 정의될 수 있다. 단말에는 하나 또는 복수의 SS set들이 설정될 수 있다. 각 SS set는 USS set이거나 또는 CSS set일 수 있다. 이하에서는 편의상, PDCCH SS set를 간략히 "SS" 또는 "PDCCH SS"로도 지칭할 수도 있다.
PDCCH SS 세트는 PDCCH 후보들을 포함한다. PDCCH 후보는 PDCCH 수신/검출을 위해 단말이 모니터링 하는 CCE(들)을 나타낸다. 여기서, 모니터링은 PDCCH 후보들을 블라인드 디코딩(Blind Decoding, BD) 하는 것을 포함한다. 하나의 PDCCH (후보)는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16 개의 CCE로 구성된다. 하나의 CCE는 6개의 REG로 구성된다. 각각의 CORESET 구성은 하나 이상의 SS와 연관되고(associated with), 각각의 SS는 하나의 COREST 구성과 연관된다. 하나의 SS는 하나의 SS 구성에 기반하여 정의되며, SS 구성에는 다음 정보/필드가 포함될 수 있다.
- searchSpaceId: SS의 ID를 나타낸다.
- controlResourceSetId: SS와 연관된 CORESET를 나타낸다.
- monitoringSlotPeriodicityAndOffset: PDCCH 모니터링 주기 구간 (슬롯 단위) 및 PDCCH 모니터링 구간 오프셋 (슬롯 단위)을 나타냄
- monitoringSymbolsWithinSlot: PDCCH 모니터링이 설정된 슬롯 내에서 PDCCH 모니터링을 위한 첫 번째 OFDM 심볼(들)을 나타낸다. 비트맵을 통해 지시되며, 각 비트는 슬롯 내의 각 OFDM 심볼에 대응한다. 비트맵의 MSB는 슬롯 내 첫 번째 OFDM 심볼에 대응한다. 비트 값이 1인 비트(들)에 대응되는 OFDM 심볼(들)이 슬롯 내에서 CORESET의 첫 번째 심볼(들)에 해당한다.
- nrofCandidates: AL={1, 2, 4, 8, 16} 별 PDCCH 후보의 수 (0, 1, 2, 3, 4, 5, 6, 8 중 하나의 값)를 나타낸다.
- searchSpaceType: CSS(Common Search Space) 또는 USS(UE-specific search space)를 나타내고, 해당 SS 타입에서 사용되는 DCI 포맷을 나타낸다.
이후, 기지국은 PDCCH를 생성하여 단말에게 전송하고(S506), 단말은 PDCCH 수신/검출을 위해 하나 이상의 SS에서 PDCCH 후보들을 모니터링 할 수 있다(S508). PDCCH 후보들을 모니터링을 해야 하는 기회(occasion)(예, 시간/주파수 자원)을 PDCCH (모니터링) 기회라고 정의된다. 슬롯 내에 하나 이상의 PDCCH (모니터링) 기회가 구성될 수 있다.
표 3은 SS 타입별 특징을 예시한다.
Type Search Space RNTI Use Case
Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH
Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding
Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI(s)
UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI(s) User specific PDSCH decoding
표 4는 PDCCH를 통해 전송되는 DCI 포맷들을 예시한다.
DCI format Usage
0_0 Scheduling of PUSCH in one cell
0_1 Scheduling of PUSCH in one cell
1_0 Scheduling of PDSCH in one cell
1_1 Scheduling of PDSCH in one cell
2_0 Notifying a group of UEs of the slot format
2_1 Notifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE
2_2 Transmission of TPC commands for PUCCH and PUSCH
2_3 Transmission of a group of TPC commands for SRS transmissions by one or more UEs
DCI 포맷 0_0은 TB-기반 (또는 TB-level) PUSCH를 스케줄링 하기 위해 사용되고, DCI 포맷 0_1은 TB-기반 (또는 TB-level) PUSCH 또는 CBG(Code Block Group)-기반 (또는 CBG-level) PUSCH를 스케줄링 하기 위해 사용될 수 있다. DCI 포맷 1_0은 TB-기반 (또는 TB-level) PDSCH를 스케줄링 하기 위해 사용되고, DCI 포맷 1_1은 TB-기반 (또는 TB-level) PDSCH 또는 CBG-기반 (또는 CBG-level) PDSCH를 스케줄링 하기 위해 사용될 수 있다(DL grant DCI). DCI 포맷 0_0/0_1은 UL grant DCI 또는 UL 스케줄링 정보로 지칭되고, DCI 포맷 1_0/1_1은 DL grant DCI 또는 DL 스케줄링 정보로 지칭될 수 있다. DCI 포맷 2_0은 동적 슬롯 포맷 정보 (예, dynamic SFI)를 단말에게 전달하기 위해 사용되고, DCI 포맷 2_1은 하향링크 선취 (pre-Emption) 정보를 단말에게 전달하기 위해 사용된다. DCI 포맷 2_0 및/또는 DCI 포맷 2_1은 하나의 그룹으로 정의된 단말들에게 전달되는 PDCCH인 그룹 공통 PDCCH (Group common PDCCH)를 통해 해당 그룹 내 단말들에게 전달될 수 있다.
DCI 포맷 0_0과 DCI 포맷 1_0은 폴백(fallback) DCI 포맷으로 지칭되고, DCI 포맷 0_1과 DCI 포맷 1_1은 논-폴백 DCI 포맷으로 지칭될 수 있다. 폴백 DCI 포맷은 단말 설정과 관계없이 DCI 사이즈/필드 구성이 동일하게 유지된다. 반면, 논-폴백 DCI 포맷은 단말 설정에 따라 DCI 사이즈/필드 구성이 달라진다.
CCE에서 REG로의 맵핑 타입은 비-인터리빙된(non-interleaved) CCE-REG 맵핑 타입 또는 인터리빙된(interleaved) CCE-REG 맵핑 타입 중 하나로 설정된다.
- 비-인터리빙된(non-interleaved) CCE-REG 맵핑 타입 (또는 localized 맵핑 타입)(도 5): 주어진 CCE를 위한 6 REG들로 하나의 REG 번들을 구성하고, 주어진 CCE를 위한 모든 REG들은 연속한다. 하나의 REG 번들은 하나의 CCE에 대응한다.
- 인터리빙된(interleaved) CCE-REG 맵핑 타입 (또는 Distributed 맵핑 타입): 주어진 CCE를 위한 2, 3 또는 6 REG들로 하나의 REG 번들을 구성하고, REG 번들은 CORESET 내에서 인터리빙 된다. 1~2개 OFDM 심볼로 구성된 CORESET 내 REG 번들은 2 또는 6 REG들로 구성되고, 3개 OFDM 심볼로 구성된 CORESET 내 REG 번들은 3 또는 6 REG들로 구성된다. REG 번들의 크기는 CORESET 별로 설정된다.
도 6은 PDSCH 수신 및 ACK/NACK 전송 과정을 예시한다. 도 6울 참조하면, 단말은 슬롯 #n에서 PDCCH를 검출할 수 있다. 여기서, PDCCH는 하향링크 스케줄링 정보(예, DCI 포맷 1_0, 1_1)를 포함하며, PDCCH는 DL assignment-to-PDSCH offset (K0)과 PDSCH-HARQ-ACK reporting offset (K1)를 나타낸다. 예를 들어, DCI 포맷 1_0, 1_1은 다음의 정보를 포함할 수 있다.
- Frequency domain resource assignment: PDSCH에 할당된 RB 세트를 나타냄
- Time domain resource assignment: K0 (예, 슬롯 오프셋), 슬롯 #n+K0 내의 PDSCH의 시작 위치(예, OFDM 심볼 인덱스) 및 PDSCH의 길이(예 OFDM 심볼 개수)를 나타냄
- PDSCH-to-HARQ_feedback timing indicator: K1를 나타냄
- HARQ process number (4비트): 데이터(예, PDSCH, TB)에 대한 HARQ process ID(Identity)를 나타냄
- PUCCH resource indicator (PRI): PUCCH 자원 세트 내의 복수의 PUCCH 자원들 중에서 UCI 전송에 사용될 PUCCH 자원을 지시함
이후, 단말은 슬롯 #n의 스케줄링 정보에 따라 슬롯 #(n+K0)에서부터 PDSCH를 수신한 뒤, 슬롯 #n1(where, n+K0≤ n1)에서 PDSCH의 수신이 끝나면 슬롯 #(n1+K1)에서 PUCCH를 통해 UCI를 전송할 수 있다. 여기서, UCI는 PDSCH에 대한 HARQ-ACK 응답을 포함할 수 있다. 도 6에서는 편의상 PDSCH에 대한 SCS와 PUCCH에 대한 SCS가 동일하고, 슬롯# n1= 슬롯#n+K0 라고 가정하였으나, 본 발명은 이에 한정되지 않는다. SCS들이 상이한 경우 PUCCH의 SCS를 기반으로 K1 지시/해석될 수 있다.
PDSCH가 최대 1개 TB를 전송하도록 구성된 경우, HARQ-ACK 응답은 1-비트로 구성될 수 있다. PDSCH가 최대 2개의 TB를 전송하도록 구성된 경우, HARQ-ACK 응답은 공간(spatial) 번들링이 구성되지 않은 경우 2-비트로 구성되고, 공간 번들링이 구성된 경우 1-비트로 구성될 수 있다. 복수의 PDSCH에 대한 HARQ-ACK 전송 시점이 슬롯 #(n+K1)로 지정된 경우, 슬롯 #(n+K1)에서 전송되는 UCI는 복수의 PDSCH에 대한 HARQ-ACK 응답을 포함한다.
HARQ-ACK 응답을 위해 단말이 공간(spatial) 번들링을 수행하여야 하는지 여부는 셀 그룹 별로 구성(configure)(e.g., RRC/상위계층 시그널링)될 수 있다. 일 예로 공간 번들링은 PUCCH를 통해서 송신되는 HARQ-ACK 응답 및/또는 PUSCH를 통해서 송신되는 HARQ-ACK 응답 각각에 개별적으로 구성될 수 있다.
공간 번들링은 해당 서빙 셀에서 한번에 수신 가능한(또는 1 DCI를 통해 스케줄 가능한) TB (또는 코드워드)의 최대 개수가 2개 인경우 (또는 2개 이상인 경우)에 지원될 수 있다(e.g., 상위계층파라미터 maxNrofCodeWordsScheduledByDCI 가 2-TB에 해당하는 경우). 한편, 2-TB 전송을 위해서는 4개 보다 더 많은 개수의 레이어들이 사용될 수 있으며, 1-TB 전송에는 최대 4개 레이어가 사용될 수 있다. 결과적으로, 공간 번들링이 해당 셀 그룹에 구성된 경우, 해당 셀 그룹 내의 서빙 셀들 중 4 개 보다 많은 개수의 레이어가 스케줄 가능한 서빙 셀에 대하여 공간 번들링이 수행될 수 있다. 해당 서빙 셀 상에서, 공간 번들링을 통해서 HARQ-ACK 응답을 송신하고자 하는 단말은 복수 TB들에 대한 A/N bits을 (bit-wise) logical AND 연산하여 HARQ-ACK 응답을 생성할 수 있다.
예컨대, 단말이 2-TB를 스케줄링하는 DCI를 수신하고, 해당 DCI에 기초하여 PDSCH를 통해서 2-TB를 수신하였다고 가정할 때, 공간 번들링을 수행하는 단말은 제1 TB에 대한 제1 A/N bit와 제2 TB에 대한 제2 A/N bit를 논리적 AND 연산하여 단일 A/N bit를 생성할 수 있다. 결과적으로, 제1 TB와 제2 TB가 모두 ACK 인 경우 단말은 ACK 비트 값을 기지국에 보고하고, 어느 하나의 TB라도 NACK 인경우 단말은 NACK 비트 값을 기지국에 보고한다.
예컨대, 2-TB가 수신 가능하도록 구성(configure)된 서빙 셀 상에서 실제로 1-TB 만 스케줄된 경우, 단말은 해당 1-TB에 대한 A/N bit와 비트 값 1을 논리적 AND 연산하여 단일 A/N bit를 생성할 수 있다. 결과적으로, 단말은 해당 1-TB에 대한 A/N bit를 그대로 기지국에 보고하게 된다.
기지국/단말에는 DL 전송을 위해 복수의 병렬 DL HARQ 프로세스가 존재한다. 복수의 병렬 HARQ 프로세스는 이전 DL 전송에 대한 성공 또는 비성공 수신에 대한 HARQ 피드백을 기다리는 동안 DL 전송이 연속적으로 수행되게 한다. 각각의 HARQ 프로세스는 MAC(Medium Access Control) 계층의 HARQ 버퍼와 연관된다. 각각의 DL HARQ 프로세스는 버퍼 내의 MAC PDU(Physical Data Block)의 전송 횟수, 버퍼 내의 MAC PDU에 대한 HARQ 피드백, 현재 리던던시 버전(redundancy version) 등에 관한 상태 변수를 관리한다. 각각의 HARQ 프로세스는 HARQ 프로세스 ID에 의해 구별된다.
도 7은 PUSCH 전송 과정을 예시한다. 도 7을 참조하면, 단말은 슬롯 #n에서 PDCCH를 검출할 수 있다. 여기서, PDCCH는 상향링크 스케줄링 정보(예, DCI 포맷 0_0, 0_1)를 포함한다. DCI 포맷 0_0, 0_1은 다음의 정보를 포함할 수 있다.
- Frequency domain resource assignment: PUSCH에 할당된 RB 세트를 나타냄
- Time domain resource assignment: 슬롯 오프셋 K2, 슬롯 내의 PUSCH의 시작 위치(예, 심볼 인덱스) 및 길이(예 OFDM 심볼 개수)를 나타냄. 시작 심볼과 길이는 SLIV(Start and Length Indicator Value)를 통해 지시되거나, 각각 지시될 수 있음.
이후, 단말은 슬롯 #n의 스케줄링 정보에 따라 슬롯 #(n+K2)에서 PUSCH를 전송할 수 있다. 여기서, PUSCH는 UL-SCH TB를 포함한다.
DRX (Discontinuous Reception)
(1) RRC_CONNECTED DRX
도 8는 본 발명의 일 실시예에 따른 단말의 DRX동작을 설명하기 위한 도면이다.
단말은 앞에서 설명/제안한 절차 및/또는 방법들을 수행하면서 DRX 동작을 수행할 수 있다. DRX가 설정된 단말은 DL 신호를 불연속적으로 수신함으로써 전력 소비를 낮출 수 있다. DRX는 RRC(Radio Resource Control)_IDLE 상태, RRC_INACTIVE 상태, RRC_CONNECTED 상태에서 수행될 수 있다. RRC_IDLE 상태와 RRC_INACTIVE 상태에서 DRX는 페이징 신호를 불연속 수신하는데 사용된다. 이하, RRC_CONNECTED 상태에서 수행되는 DRX에 관해 설명한다(RRC_CONNECTED DRX).
도 8를 참조하면, DRX 사이클은 On Duration과 Opportunity for DRX로 구성된다. DRX 사이클은 On Duration이 주기적으로 반복되는 시간 간격을 정의한다. On Duration은 단말이 PDCCH를 수신하기 위해 모니터링 하는 시간 구간을 나타낸다. DRX가 설정되면, 단말은 On Duration 동안 PDCCH 모니터링을 수행한다. PDCCH 모니터링 동안에 성공적으로 검출된 PDCCH가 있는 경우, 단말은 inactivity 타이머를 동작시키고 깬(awake) 상태를 유지한다. 반면, PDCCH 모니터링 동안에 성공적으로 검출된 PDCCH가 없는 경우, 단말은 On Duration이 끝난 뒤 슬립(sleep) 상태로 들어간다. 따라서, DRX가 설정된 경우, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 불연속적으로 수행될 수 있다. 예를 들어, DRX가 설정된 경우, 본 발명의 일 실시예에서 PDCCH 수신 기회(occasion)(예, PDCCH 탐색 공간을 갖는 슬롯)는 DRX 설정에 따라 불연속적으로 설정될 수 있다. 반면, DRX가 설정되지 않은 경우, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 연속적으로 수행될 수 있다. 예를 들어, DRX가 설정되지 않은 경우, 본 발명의 일 실시예에서 PDCCH 수신 기회(예, PDCCH 탐색 공간을 갖는 슬롯)는 연속적으로 설정될 수 있다. 한편, DRX 설정 여부와 관계 없이, 측정 갭으로 설정된 시간 구간에서는 PDCCH 모니터링이 제한될 수 있다.
표 5는 DRX와 관련된 단말의 과정을 나타낸다(RRC_CONNECTED 상태). 표 5를 참조하면, DRX 구성 정보는 상위 계층(예, RRC) 시그널링을 통해 수신되고, DRX ON/OFF 여부는 MAC 계층의 DRX 커맨드에 의해 제어된다. DRX가 설정되면, 단말은 본 발명에 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링을 불연속적으로 수행할 수 있다.
Type of signals UE procedure
1st step RRC signalling
(MAC-CellGroupConfig)
- Receive DRX configuration information
2nd Step MAC CE
((Long) DRX command MAC CE)
- Receive DRX command
3rd Step - - Monitor a PDCCH during an on-duration of a DRX cycle
여기서, MAC-CellGroupConfig는 셀 그룹을 위한 MAC(Medium Access Control) 파라미터를 설정하는데 필요한 구성 정보를 포함한다. MAC-CellGroupConfig는 DRX에 관한 구성 정보도 포함할 수 있다. 예를 들어, MAC-CellGroupConfig는 DRX를 정의하는데 정보를 다음과 같이 포함할 수 있다.
- Value of drx-OnDurationTimer: DRX 사이클의 시작 구간의 길이를 정의
- Value of drx-InactivityTimer: 초기 UL 또는 DL 데이터를 지시하는 PDCCH가 검출된 PDCCH 기회 이후에 단말이 깬 상태로 있는 시간 구간의 길이를 정의
- Value of drx-HARQ-RTT-TimerDL: DL 초기 전송이 수신된 후, DL 재전송이 수신될 때까지의 최대 시간 구간의 길이를 정의.
- Value of drx-HARQ-RTT-TimerDL: UL 초기 전송에 대한 그랜트가 수신된 후, UL 재전송에 대한 그랜트가 수신될 때까지의 최대 시간 구간의 길이를 정의.
- drx-LongCycleStartOffset: DRX 사이클의 시간 길이와 시작 시점을 정의
- drx-ShortCycle (optional): short DRX 사이클의 시간 길이를 정의
여기서, drx-OnDurationTimer, drx-InactivityTimer, drx-HARQ-RTT-TimerDL, drx-HARQ-RTT-TimerDL 중 어느 하나라도 동작 중이면 단말은 깬 상태를 유지하면서 매 PDCCH 기회마다 PDCCH 모니터링을 수행한다.
RRC_IDLE DRX
RRC_IDLE 상태와 RRC_INACTIVE 상태에서 DRX는 페이징 신호를 불연속 수신하는데 사용된다. 편의상, RRC_IDLE (또는 RRC_INACTIVE) 상태에서 수행되는 DRX를 RRC_IDLE DRX라고 지칭한다.
따라서, DRX가 설정된 경우, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 불연속적으로 수행될 수 있다.
도 9는 페이징을 위한 DRX 사이클을 예시한다.
도 9를 참조하면, 페이징 신호의 불연속 수신을 위해 DRX가 구성될 수 있다. 단말은 상위 계층(예, RRC) 시그널링을 통해 기지국으로부터 DRX 구성 정보(DRX configuration information)를 수신할 수 있다. DRX 구성 정보는 DRX 사이클, DRX 오프셋, DRX 타이머에 대한 구성 정보 등을 포함할 수 있다. 단말은 DRX 사이클에 따라 On Duration과 Sleep duration을 반복한다. 단말은 On duration에서 웨이크업(wakeup) 모드로 동작하고, Sleep duration에서 슬립 모드로 동작할 수 있다.
웨이크업 모드에서 단말은 페이징 메시지를 수신하기 위해 PO를 모니터링 할 수 있다. PO는 단말이 페이징 메시지의 수신을 기대하는 시간 자원/구간(예, 서브프레임, 슬롯)을 의미한다. PO 모니터링은 PO에서 P-RNTI로 스크램블링된 PDCCH (또는, MPDCCH, NPDCCH)(이하, 페이징 PDCCH)를 모니터링 하는 것을 포함한다. 페이징 메시지는 페이징 PDCCH에 포함되거나, 페이징 PDCCH에 의해 스케줄링 되는 PDSCH에 포함될 수 있다. PF(Paging Frame) 내에 하나 혹은 복수의 PO(들)이 포함되며, PF는 UE_ID에 기반하여 주기적으로 설정될 수 있다. 여기서, PF는 하나의 무선 프레임에 해당하고, UE_ID는 단말의 IMSI(International Mobile Subscriber Identity)에 기반하여 결정될 수 있다. DRX가 설정된 경우, 단말은 DRX 사이클 당 하나의 PO만을 모니터링 한다. 단말은 PO에서 자신의 ID 및/또는 시스템 정보의 변경을 지시하는 페이징 메시지를 수신한 경우, 기지국과의 연결을 초기화(또는 재설정) 하기 위해 RACH 과정을 수행하거나, 새로운 시스템 정보를 기지국으로부터 수신(또는 획득)할 수 있다. 따라서, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 기지국과의 연결을 위해 RACH를 수행하거나, 새로운 시스템 정보를 기지국으로부터 수신(또는 획득)하기 위해 PO 모니터링이 시간 도메인에서 불연속적으로 수행될 수 있다.
도 10은 확장된 DRX(extended DRX, eDRX) 사이클을 예시한다.
DRX 사이클 구성에 따르면 최대 사이클 구간(cycle duration)은 2.56초로 제한될 수 있다. 하지만, MTC 단말이나 NB-IoT 단말과 같이 데이터 송수신이 간헐적으로 수행되는 단말의 경우 DRX 사이클 동안 불필요한 전력 소모가 발생할 수 있다. 단말의 전력 소모를 더 줄이기 위해 PSM(power saving mode)과 PTW(paging time window 또는 paging transmission window)에 기초하여 DRX 사이클을 대폭 확장시키는 방안이 도입되었으며, 확장된 DRX 사이클을 간략히 eDRX 사이클이라고 지칭한다. 구체적으로, UE_ID에 기반하여 PH(Paging Hyper-frames)가 주기적으로 구성되며, PH 내에 PTW가 정의된다. 단말은 PTW 구간(duration)에서 DRX 사이클을 수행하여 자신의 PO에서 웨이크업 모드로 전환하여 페이징 신호를 모니터링 할 수 있다. PTW 구간 내에는 도 9의 DRX 사이클(예, 웨이크업 모드와 슬립 모드)이 하나 이상 포함될 수 있다. PTW 구간 내의 DRX 사이클 횟수는 기지국에 의해 상위 계층(예, RRC) 신호를 통해 구성될 수 있다.
Mini-DRX operation for UE power saving
NR에서는 단말의 불필요한 power 소모를 줄이기 위한 목적으로 DRX의 동작이 사용될 수 있다. DRX는 RRC_IDLE 상태의 단말을 위한 구조와 RRC_CONNECTED 상태의 단말을 위한 구조가 각각 정의되어 있으며, 두 DRX 구조 모두 단말이 DL 신호의 수신을 기대할 수 있는 구간이 주기적으로 발생되도록 정의함으로써 그 이외의 구간에서는 불필요한 전력소모를 줄이도록 설계되어 있다. 특징적으로 C-DRX(i.e. RRC_CONNECTED 상태의 단말에게 적용되는 DRX)의 경우, NR의 Rel-16 표준을 기준으로 On-duration의 시작 위치가 주기적으로 발생되며, 이 때 구성될 수 있는 주기의 크기(i.e. DRX cycle)은 기지국이 단말에게 제공하는 higher layer parameter를 통해 결정될 수 있다. 표 6은 TS 38.331 표준의 일부를 발췌한 내용으로, C-DRX의 cycle을 결정하는 parameter들에 대한 내용의 일부를 보이고 있다. 하기의 표 6에서 볼 수 있듯이 기지국은 하나 또는 두 가지 type의 DRX(i.e., long, short)를 단말에게 지시할 수 있으며, 두 type의 DRX cycle 모두 고정된 정수의 크기를 갖고 있다.
drx-LongCycleStartOffset CHOICE {
ms10 INTEGER(0..9),
ms20 INTEGER(0..19),
ms32 INTEGER(0..31),
ms40 INTEGER(0..39),
ms60 INTEGER(0..59),
ms64 INTEGER(0..63),
ms70 INTEGER(0..69),
ms80 INTEGER(0..79),
ms128 INTEGER(0..127),
ms160 INTEGER(0..159),
ms256 INTEGER(0..255),
ms320 INTEGER(0..319),
ms512 INTEGER(0..511),
ms640 INTEGER(0..639),
ms1024 INTEGER(0..1023),
ms1280 INTEGER(0..1279),
ms2048 INTEGER(0..2047),
ms2560 INTEGER(0..2559),
ms5120 INTEGER(0..5119),
ms10240 INTEGER(0..10239)
},

shortDRX SEQUENCE {
drx-ShortCycleENUMERATED {
ms2, ms3, ms4, ms5, ms6, ms7, ms8, ms10, ms14, ms16, ms20, ms30, ms32,
ms35, ms40, ms64, ms80, ms128, ms160, ms256, ms320, ms512, ms640, spare9,
spare8, spare7, spare6, spare5, spare4, spare3, spare2, spare1 },
drx-ShortCycleTimer INTEGER (1..16)
} OPTIONAL, -- Need R
3GPP에서는 XR 서비스를 지원하기 위한 목적으로 다양한 시나리오와 후보 기술들이 논의되고 있다. XR에서는 일반적으로 높은 data rate를 보장하면서 낮은 latency를 만족해야 한다는 특성을 갖고 있으며, 동시에 단말의 높은 power consumption이 예상되기 때문에 battery 효율성을 높이기 위한 다양한 power saving 기법들이 고려되고 있다. 단말의 불필요한 power 소모를 방지하기 위한 목적으로, XR 단말들 또한 DRX의 동작이 적용되는 상황을 고려할 수 있다.
DRX의 동작은 주기적인 traffic이 예상되는 시스템에서 유용할 수 있다. 반면 traffic의 발생 주기가 일정하지 않고 traffic에 대해서 높은 수준의 latency requirement가 요구되는 경우 DRX의 동작은 latency의 증가를 유발할 수 있으며, 심한 경우 traffic의 송수신 실패가 발생할 수 있다. 일례로 XR traffic의 경우 어느 정도 주기성을 갖는 traffic의 발생을 예상할 수 있으나, 동시에 정보의 프로세싱 및 이벤트 발생 등의 원인으로 인한 jitter의 발생이 함께 고려될 필요가 있다. 이 때 jitter가 발생되었다 함은 traffic이 발생 또는 송수신되는 시점이 고정되지 않고 예상되는 시점보다 빠르거나 늦을 수 있음을 의미할 수 있다. 일례로 traffic의 발생 또는 송수신이 예상되는 시점을 t라고 할 때 jitter의 발생을 고려하여 [t-t’, t+t’]의 범위 내에서 traffic이 발생 또는 송수신될 수 있음을 고려한 시스템의 설계가 필요할 수 있다.
DRX의 구조가 사용되는 상황에서, 매 DRX cycle을 주기로 jitter의 영향이 고려되어 발생되는 traffic의 송수신을 보장하기 위한 한가지 방법으로 단말이 PDCCH의 송수신이 없는 경우에도 PDCCH monitoring의 수행을 유지하는 구간(e.g. on-duration timer)의 길이를 늘려주는 방법이 고려될 수 있다. 하지만 이러한 방법은 실제 traffic의 발생 여부와 관계 없이 PDCCH를 monitoring 하는 구간을 증가시키기 때문에 단말의 평균적인 power consumption을 크게 증가시킬 수 있다는 점에서 불리할 수 있다. 반대로 on-duration timer의 길이를 짧게 정하는 대신 DRX cycle의 주기를 줄여 실제 traffic의 발생 주기보다 더 잦은 주기로 단말이 깨어나도록 하여 Jitter의 영향을 고려하는 방법이 사용될 수 있다. 하지만 이러한 방법은 실제 traffic이 없는 DRX cycle의 구간을 발생시켜 단말의 불필요한 PDCCH monitoring을 증가시킨다는 단점이 있다.
본 명세서에서는 상기의 문제점들을 고려하여 DRX와 같이 단말의 주기적인 동작이 고려되는 상황에서 단말의 power saving 효과를 얻기 위한 방법을 제안한다. 이는 주기적인 특성을 갖지만 jitter에 의한 영향이 발생될 수 있는 traffic의 송수신 구조에서 power saving 이득을 얻기에 유리할 수 있다.
본 명세서에서는 3GPP NR 시스템을 기준으로 RRC_CONNECTED 상태의 단말에 C-DRX의 동작이 적용되는 상황을 위주로 제안을 설명하고 있으나 이에 제한되지 않으며, 단말이 DL 신호의 수신을 기대하지 않아도 되는 일정 구간이 주기성을 갖고 정의될 수 있는 다른 방법들(e.g. RRC_IDLE 상태의 단말에 적용되는 DRX)에도 적용될 수 있다. 따라서 이하 설명의 편의를 위하여 DRX의 용어가 C-DRX의 용어를 포함하는 일반적인 개념으로 사용한다.
본 명세서에서 설명하는 DRX의 동작은 단말이 PDCCH monitoring의 수행을 시작할 수 있는 구간이 주기성을 가지고 반복되어 나타나는 구조를 위주로 설명하고 있으나 이에 제한되지 않으며, 비주기적인 구조를 갖는 DRX동작에도 적용될 수 있다. 일례로 non-integer periodicity를 갖는 DRX 동작이나 DRX cycle의 크기가 pattern의 형태로 표현되는 DRX 동작이 사용되는 경우에도 적용될 수 있다. 본 명세서에서는 NR의 시스템을 기준으로 설명하나 이에 제한되지 않는다. 또한 XR 서비스의 특성과 구조를 기준으로 설명하고 있으나, XR 서비스에 제한되지 않는다. 본 명세서에서 제안되는 방법들 각각이 별도의 조합 없이 독립적인 형태로 동작하거나, 또는 하나 이상의 방법들이 조합되어 연계된 형태로 동작이 될 수도 있다. 발명의 설명을 위하여 사용되는 일부 용어와 기호, 순서 등은 한 다른 용어나 기호, 순서 등으로 대체될 수 있다.
기지국이 설정 정보(e.g. RRC signaling)을 통해 DRX parameter 정보들을 제공하고 단말이 이를 수신하여 DRX 동작을 수행하는 구조를 고려한다. 기지국이 설정한 DRX의 주기가 적어도 하나가 존재하고, 상기 DRX의 주기를 기준으로 반복될 수 있는 동작들을 제안한다. 본 명세서에서는 설명의 편의를 위하여 상기의 DRX 주기를 Base-DRX의 용어로 정의하여 사용한다.
단말이 DRX의 동작을 수행할 경우, 특정 signal/channel의 송수신을 기대할 수 있는 시간 구간이 설정되는 상황을 고려한다. 이 때 단말은 상기 시간 구간 내에서만 상기 특정 signal/channel의 송수신을 기대할 수 있으며, 그렇지 않은 경우에는 상기 signal/channel의 송수신을 기대하지 않거나 별도의 조건이 만족되는 경우에만 송수신을 기대하도록 정할 수 있으며, 이는 단말의 power saving 효과를 얻기 위한 목적일 수 있다. 특징적으로 상기 특정 signal/channel의 송수신은 특정 RNTI들에 대한 단말의 PDCCH의 monitoring을 기준으로 정할 수 있으며, 또한 상기 시간 구간은 PDCCH monitoring을 수행하는 구간으로 정할 수 있다. 일례로 상기 시간 구간은 LTE/NR과 같은 시스템에서 사용되는 on-duration timer가 동작하는 구간 (i.e. on-duration 구간)일 수 있다. 이하 본 명세서에서는 on-duration 구간을 제어하는 방법을 기준으로 제안들을 설명하고 있으나, 별도의 설명이 없는 경우에도 제안이 다른 일반적인 signal/channel과 시간 구간의 정의가 사용되는 경우에도 적용될 수 있다.
본 명세서에서 제안은 단말이 기지국(또는 Core Network)으로부터 관련된 설정정보를 수신한 경우에 한하여 적용하도록 정할 수도 있으며, 이 때 상기 설정 정보는 higher layer signal (e.g. SIB 또는 RRC signaling)이 사용될 수 있으며, 또는 설정된 정보가 별도의 signaling(e.g. DCI 또는 MAC)을 통해 활성화/비활성화가 지시되는 방법이 함께 사용될 수도 있다. 또한 단말은 제안의 지원 가능 여부의 정보 (e.g. capability)를 보고하고 기지국(또는 Core Network)에서 이를 수신하도록 정할 수 있다.
[Proposal 1] Base-DRX의 주기로 발생되는 On-duration burst 구간 설정
Base-DRX의 주기로 traffic의 송수신이 이루어지는 시스템에서 jitter의 영향에 따른 traffic 발생 가능 시간 구간이 늘어나는 현상을 고려하기 위한 한가지 방법으로 on-duration burst의 구간을 설정하는 방법을 제안한다. 상기 on-duration burst의 구간은 Base-DRX의 주기로 발생되는 시간 구간일 수 있으며, 구간 내에서 하나 이상의 on-duration이 발생될 수 있는 구조를 갖는다. 이하 on-duration burst 내에서 하나 이상의 on-duration이 반복되어 발생하는 구조를 mini-DRX의 용어로 정의하여 설명하며, 이와 같이 on-duration burst 내에서 하나 이상의 on-duration이 반복되어 수반되는 동작을 mini-DRX 동작으로 정의하여 설명한다. 또한, 각 on-duration burst는 하나 또는 둘 이상의 on-duration 들을 포함하는 On-duration 세트로 정의될 수도 있으며, 따라서, On-duration burst의 용어는 On-duration 세트로 지칭될 수도 있다.
도 11은 Proposal 1에 대한 일례를 도시한다. 도 11은 하나의 예시일 뿐이며, 본 발명은 이에 제한되지 않는다. 도 11을 참조하면 Base-DRX cycle을 주기로 on-duration burst의 시작 시점(FG101)이 결정되는 구조를 보이고 있으며, on-duration burst의 구간 내에서 on-duration의 구간(FG102)이 반복되어 발생되는 구조를 보이고 있다.
도 11에서는 단말이 기지국으로부터 DRX에 대한 정보가 포함된 상위 계층 시그널(e.g. SIB 또는 RRC signaling)을 수신하고, 상기 수신한 상위 계층 시그널에 기반하여 DRX 및 mini-DRX 동작을 수행하는 상황을 고려한다. 이 때 상기 DRX에 대한 정보에는 Base-DRX와 관련된 parameter (e.g. Base-DRX의 기준위치, on-duration burst 길이, and/or 주기 등)들을 포함할 수 있으며, 또한 mini-DRX와 관련된 parameter (e.g. mini-DRX의 기준위치, on-duration의 길이, and/or mini-DRX 주기 등)들을 포함할 수 있다.
상기 단말은 Base-DRX의 주기마다 on-duration burst가 시작될 것임을 기대할 수 있으며, 이 때 상기 on-duration burst가 시작되는 위치는 기지국으로부터 수신한 Base-DRX 관련 parameter들을 통해 계산될 수 있다.
상기 단말은 on-duration burst의 구간 내에서 mini-DRX의 동작을 수행할 수 있다. 이 때 mini-DRX의 동작을 수행하는 단말은 on-duration burst의 구간 내에 정해진 위치들에서 on-duration의 구간이 순차적으로 발생 될 수 있음을 기대할 수 있으며, 발생된 on-duration의 구간에서 필요한 PDCCH monitoring의 동작을 수행할 수 있다.
상기 mini-DRX의 동작은 on-duration burst의 구간이 종료되기 전까지 유지되어 수행될 수 있다. 만약 on-duration burst의 구간이 종료된 경우, 단말은 mini-DRX 동작을 마치도록 정할 수 있으며, 이후 단말은 Base-DRX의 주기를 통해 결정되는 위치를 통해 다음 순서의 on-duration burst를 시작할 수 있다.
일례로, LTE와 NR과 같은 3GPP 기반의 무선 통신 채널에서, 특정 요구조건을 갖는 서비스의 traffic을 송수신하기 위한 목적으로 DRX의 구조가 사용되는 경우가 고려될 수 있다. 이 때 단말은 Base-DRX의 설정 정보에 따라 결정되는 on-duration burst의 시작 위치에서 mini-DRX의 동작이 수행됨을 가정할 수 있으며, 이 때 mini-DRX의 설정 정보에 따라 결정되는 on-duration의 시작 위치들에서 on-duration timer를 시작하도록 정할 수 있다. 상기 on-duration timer가 유지되는 구간에서 단말은 PDCCH monitoring 등의 동작을 수행할 수 있으며, 만약 PDCCH의 검출에 성공한 경우 미리 정해진 절차에 따른 후속 동작(들)을 수행할 수 있다. 만약 상기 on-duration burst의 구간이 종료된 경우, 단말은 mini-DRX의 동작이 종료됨을 가정할 수 있으며, 이 때 단말은 다음 Base-DRX cycle의 주기가 시작되기 전까지 새로운 on-duration 구간이 시작되지 않을 것임을 가정하도록 정할 수 있다.
특정 요구조건을 갖는 서비스의 traffic을 송수신하기 위한 목적으로 DRX의 구조가 사용되는 경우, 상기 on-duration은 window나 mask의 형태를 가질 수 있다. 이 경우, on-duration burst는 기존 표준에 정의된 on-duration 구간과 동일한 의미일 수 있다. 이 때 mini-DRX의 동작은 단말이 on-duration burst의 구간에서 정해진 위치와 크기의 window(또는 mask)가 반복되어 발생할 것임을 기대하고 해당 위치들에서 PDCCH monitoring 등의 동작을 수행할 수 있으며, 만약 PDCCH의 검출에 성공한 경우 미리 정해진 절차에 따른 후속 동작(들)을 수행할 수 있다.
도 12는 단말 동작의 일례를 도시한다.
단말은 DRX와 관련된 설정 정보를 수신할 수 있다(FG201). 이 때 상기 DRX와 관련된 설정 정보에는 Base-DRX를 설정하기 위한 parameter와 mini-DRX를 설정하기 위한 parameter들이 포함될 수 있다. 일례로 상기 설정 정보는 상위 계층 시그널(e.g. SIB 또는 RRC signaling)을 이용하여 전송될 수 있다.
이후 단말은 수신한 DRX 설정 정보에 기반하여, Base-DRX의 주기로 결정되는 on-duration burst의 시작지점에서 on-duration burst가 시작될 것을 기대하고 이와 연관된 동작을 수행할 수 있다(FG202).
이 때, 단말은 상기 on-duration burst의 구간 내에서 하나 이상의 on-duration이 발생될 수 있음을 기대할 수 있으며, 상기 on-duration들의 위치에서 mini-DRX의 동작을 수행할 수 있다(FG203). 일례로 상기의 mini-DRX 동작은 on-duration burst 내에서 발생되는 on-duration의 위치에서 PDCCH monitoring이 수행되는 동작을 포함할 수 있다.
만약 on-duration burst 구간이 유지되는 경우(FG204), 단말은 mini-DRX의 동작을 유지하도록 정할 수 있으며(FG203), 만약 on-duration burst 구간이 종료된 경우(FG204), 단말은 mini-DRX의 동작을 종료하고 다음 Base-DRX에 기반한 동작을 수행하도록 정할 수 있다(FG202).
도 12에서는 기지국이 DRX에 대한 정보가 포함된 상위 계층 시그널(e.g. SIB 또는 RRC signaling)을 송신하고, 상기 송신한 상위 계층 시그널에 기반하여 DRX 및 mini-DRX 동작을 고려한 signal/channel의 송수신을 수행하는 상황을 고려한다. 이 때 상기 DRX에 대한 정보에는 Base-DRX와 관련된 parameter (e.g. Base-DRX의 기준위치, on-duration burst 길이, and/or 주기 등)들을 포함할 수 있으며, 또한 mini-DRX와 관련된 parameter (e.g. mini-DRX의 기준위치, on-duration의 길이, and/or mini-DRX 주기 등)들을 포함할 수 있다.
상기 기지국은 송신한 DRX 설정 정보에 기반하여 Base-DRX의 주기로 설정되는 on-duration burst 구간에서 단말이 mini-DRX의 동작을 수행할 것임을 기대할 수 있으며, 필요한 경우 상기 on-duration burst 구간에 속한 on-duration 구간을 통해 PDCCH를 전송할 수 있다.
일례로, LTE와 NR과 같은 3GPP 기반의 무선 통신 채널에서, 특정 요구조건을 갖는 서비스의 traffic을 송수신하기 위한 목적으로 DRX의 구조가 사용되는 경우가 고려될 수 있다. 이 때 기지국은 Base-DRX의 설정 정보에 따라 결정되는 on-duration burst의 시작 위치에서 단말이 mini-DRX의 동작을 수행할 것임을 가정할 수 있으며, 이 때 mini-DRX의 설정 정보에 따라 결정되는 on-duration의 시작 위치(들)에서 단말이 on-duration timer를 시작할 것임을 가정하도록 정할 수 있다.
특정 요구조건을 갖는 서비스의 traffic을 송수신하기 위한 목적으로 DRX의 구조가 사용되는 경우, 상기 on-duration은 window나 mask의 형태를 가질 수 있다. 이 경우, on-duration burst는 표준에 정의된 on-duration 구간과 동일한 의미일 수 있다. 이 때 기지국은 단말이 mini-DRX의 동작을 통해 on-duration burst의 구간에서 정해진 위치와 크기의 window(또는 mask)들에서 PDCCH monitoring 등의 동작을 수행할 수 있음을 가정하도록 정할 수 있다.
도 13은 기지국 동작의 일례를 도시한다.
도 13을 참조하면 기지국은 DRX와 관련된 설정 정보를 생성하고 이를 전송할 수 있다(FG301). 이 때 상기 DRX와 관련된 설정 정보에는 Base-DRX를 설정하기 위한 parameter와 mini-DRX를 설정하기 위한 parameter들이 포함될 수 있다. 일례로 상기 설정 정보는 상위 계층 시그널(e.g. SIB 또는 RRC signaling)을 이용하여 전송될 수 있다.
이후 기지국 측면에서 Downlink Traffic의 전송이 필요하거나 또는 Uplink Traffic의 수신이 필요한 경우가 발생할 수 있다(FG302).
이 때 만약 상기 설정 정보에 의하여 결정되는 on-duration의 구간이 아닌 경우(FG303), 기지국은 on-duration 구간이 시작되기 전까지 Downlink 또는 Uplink Traffic의 송수신을 scheduling 하기 위한 PDCCH를 전송하지 않고 대기하도록 정할 수 있다(FG304).
이 때 만약 상기 설정 정보에 의하여 결정되는 on-duration의 구간인 경우(FG303), 기지국은 Downlink 또는 Uplink Traffic의 송수신을 scheduling 하기 위한 PDCCH를 전송하고 이와 연관된 동작을 수행할 수 있다(FG305).
보다 일반적인 경우로, 상기 on-duration 구간의 여부는 LTE/NR과 같은 시스템에서 active time의 여부(i.e. 단말이 DRX 동작을 수행할 때 특정 목적의 PDCCH들의 송수신을 기대할 수 있는 구간)에 포함되어 적용될 수 있다. 일례로 상기 active time의 여부는 drx-onDurationTimer, drx-InactivityTimer, drx-RetransmissionTimerDL or drx-RetransmissionTimerUL가 running하고 있는지의 여부로 결정될 수 있다.
Proposal 1의 예시는 XR과 같이 traffic의 발생이 주기성을 갖지만 송수신단의 processing time 등의 원인으로 발생되는 jitter로 인해 traffic 송수신 시점이 유동적일 수 있는 상황에서 단말의 power saving 효과를 얻는데 유리한 효과를 가질 수 있다. 이는 연속적으로 발생되는 복수의 on-duration들로 구성되는 on-duration burst의 구간을 설정함으로 인하여 단말이 traffic scheduling 목적의 PDCCH를 monitoring 할 수 있는 구간을 늘이는 효과를 얻을 수 있다.
또한 기존의 DRX 구조를 유지하면서 하나의 on-duration 길이를 늘리는 방법과 비교할 때, on-duration burst의 구간에 속한 각 on-duration 구간들을 개별적으로 제어할 수 있는 단위 구간으로 활용할 수 있기 때문에 기지국이 필요에 따라 latency와 power saving 효과를 조절할 수 있는 기회를 제공한다는 측면에서 유리한 효과를 기대할 수 있다.
[Proposal 2] On-duration burst 구간의 최대 길이 설정
on-duration burst의 구간이 설정되는 경우, on-duration burst의 최대 길이를 설정하는 방법을 제안한다. 상기 on-duration burst의 최대 길이는 on-duration burst가 시작되는 지점으로부터 on-duration burst가 유지될 수 있는 마지막 지점까지의 길이를 의미한다. 이는 on-duration burst가 조기에 종료될 수 있는 다른 조건이 존재하는 경우를 고려할 때, 상기 조기 종료의 조건이 만족되지 않는 경우에도 on-duration burst를 종료시킬 수 있는 조건을 설정하여 단말의 과도한 power consumption을 방지하기 위한 목적일 수 있다. 만약 on-duration burst 구간이 조기에 종료되지 않고 최대 길이에 도달하는 경우, 상기 on-duration burst 구간에서 수행되는 mini-DRX 동작이 종료되거나 또는 이미 진행되고 있는 mini-DRX 동작이 있다면 이를 수행한 뒤 mini-DRX 동작을 종료하도록 정할 수 있다.
On-duration burst 구간의 최대 길이를 결정하는 구체적인 방법은 아래의 option 중 적어도 하나가 사용될 수 있다.
- Option 2-1: On-duration burst가 시작되는 지점에서 시작되는 timer(이하 ODB-timer)가 유지되는 구간
- Option 2-2: On-duration burst가 시작되는 지점으로부터 발생되는 on-duration의 개수 (이하 Max-OD)
Option 2-1의 방식이 사용될 경우, on-duration burst의 구간은 ODB-timer가 종료된 시점까지만 유효할 수 있도록 정할 수 있다. 이 때 상기 ODB-timer는 on-duration burst의 구간이 시작되는 지점에서부터 누적하여 계산되도록 정할 수 있으며, 계산이 수행되는 기준은 일례로 절대적인 시간 단위가 사용되거나(e.g. ms), 또는 무선 통신 시스템에서 사용되는 time domain 상의 송수신 단위가 사용되거나(e.g. OFDM symbol, slot, frame 등), 또는 무선 통신 시스템에서 사용되는 time domain 상의 송수신 단위 중 기지국과 단말이 실제 Downlink and/or Uplink 송수신에 사용할 수 있는 송수신 단위(e.g. valid symbol, slot 등)가 사용될 수 있다.
Option 2-2의 방식이 사용될 경우, on-duration burst의 구간 내에서 발생되는 on-duration의 개수가 Max-OD와 동일한 경우까지만 유지될 수 있도록 정할 수 있다. 이 때 상기 on-duration의 개수는 on-duration burst가 시작되는 시점을 기준으로 누적되어 계산되도록 정할 수 있으며, 계산되는 기준은 일례로 on-duration timer가 시작(또는 종료)되는 횟수를 기준으로 하거나, 또는 mini-DRX의 설정 정보에 의하여 on-duration timer가 시작(또는 종료)될 수 있는 시점(i.e. 실제 on-duration timer가 시작되지 않는 경우도 포함)이 발생된 횟수를 기준으로 정할 수도 있다.
도 14는 option 2-1과 option 2-2가 적용되는 일례를 보이고 있다. 도 14는 하나의 예시일 뿐이며, 본 발명은 이에 제한되지 않는다.
option 2-1에 대한 예시에서는 Base-DRX cycle을 주기로 on-duration burst의 시작 시점(FG401)이 결정이 되고, 상기 시점으로부터 ODB-timer가 동작하여 ODB-timer가 종료된 시점(FG402)을 기준으로 on-duration burst의 최대 길이(FG404)가 결정되는 일례를 보이고 있다.
또한 option 2-2에 대한 예시에서는 Base-DRX cycle을 주기로 on-duration burst의 시작 시점(FG401)이 결정이 되고, 상기 시점으로부터 Max-OD번째 순서의 on-duration(FG404)이 종료되는 시점을 기준으로 on-duration burst의 최대 길이(FG404)가 결정되는 일례를 보이고 있다.
일 예로 단말이 기지국으로부터 on-duration burst의 최대 길이와 관련된 정보를 수신하고, 이에 기반하여 on-duration burst가 유지될 수 있는 구간을 계산하는 방법을 고려한다. 이 때 상기 정보는 DRX에 대한 정보가 포함된 상위 계층 시그널(e.g. SIB 또는 RRC signaling)일 수 있다. 상기 on-duration burst의 최대 길이에 대한 정보는, 상기 설명된 option 2-1와 같이 ODB-timer에 대한 정보일 수 있으며, 또는 상기 설명된 option 2-2와 같이 Max-OD의 값일 수 있다.
상기 단말은 Base-DRX의 주기마다 on-duration burst가 시작될 것임을 기대할 수 있으며, 이 때 상기 on-duration burst가 시작되는 위치로부터 on-duration burst의 최대 길이를 적용하여 on-duration burst가 유지될 수 있는 최대 구간을 계산할 수 있다.
상기 단말은 시작된 on-duration burst가 조기 종료되는 조건이 발생하기 전까지, on-duration burst의 최대 길이를 적용하여 계산되는 on-duration burst의 종료되는 위치가 되기 전까지 on-duration burst가 유지됨을 가정할 수 있다. On-duration burst가 유지되는 구간에서 단말은 mini-DRX의 동작을 수행할 수 있다.
상기 단말은 on-duration burst의 최대 길이를 적용하여 계산되는 on-duration burst의 종료되는 시점이 지난 경우, 유지되고 있는 on-duration burst가 종료됨을 가정하고 mini-DRX의 동작을 종료하도록 정할 수 있다. 이후 단말은 Base-DRX의 주기를 통해 결정되는 위치를 통해 다음 순서의 on-duration burst를 시작할 수 있다.
특정 요구조건을 갖는 서비스의 traffic을 송수신하기 위한 목적으로 DRX의 구조가 사용되는 경우가 고려될 수 있다. 이 때 단말은 Base-DRX의 설정 정보에 따라 결정되는 on-duration burst의 시작 위치에서 mini-DRX의 동작이 수행됨을 가정할 수 있다. 또한 단말은 기지국으로부터 수신한 설정 정보에 따라 시작된 on-duration burst가 유지될 수 있는 최대 길이에 대한 정보를 취득할 수 있다. 만약 상기 설정 정보에 ODB-timer와 같은 형태의 정보가 포함되어 있는 경우, 단말은 on-duration burst의 시작 위치로부터 ODB-timer의 running을 적용하고, 상기 ODB-timer가 종료된 시점을 기준으로 on-duration burst의 유지가 종료됨을 가정할 수 있다. 또는 만약 상기 설정 정보에 Max-OD와 같은 형태의 정보가 포함되어 있는 경우, 단말은 on-duration burst의 시작 위치로부터 발생하는 on-duration의 개수를 누적하여 계산하고, 계산된 값이 Max-OD의 값과 동일할 경우 해당 on-duration burst의 유지가 종료됨을 가정할 수 있다.
특정 요구조건을 갖는 서비스의 traffic을 송수신하기 위한 목적으로 DRX의 구조가 사용되는 경우, 상기 on-duration은 window나 mask의 형태를 가질 수 있다. 이 경우, 만약 상기 설정 정보에 ODB-timer와 같은 형태의 정보가 포함되어 있는 경우, 단말은 on-duration burst의 시작 위치로부터 ODB-timer의 running을 적용하고, 상기 ODB-timer가 종료된 시점을 기준으로 on-duration burst의 유지가 종료됨을 가정할 수 있다. 또는 만약 상기 설정 정보에 Max-OD와 같은 형태의 정보가 포함되어 있는 경우, 단말은 on-duration burst의 시작 위치로부터 발생하는 window(또는 mask)의 개수를 누적하여 계산하고, 계산된 값이 Max-OD의 값과 동일할 경우 해당 on-duration burst의 유지가 종료됨을 가정할 수 있다.
도 15는 단말 동작의 일례를 도시한다.
도 15를 참조하면 단말은 on-duration burst의 최대 길이에 대한 정보를 포함한 DRX 관련 설정 정보를 수신할 수 있다(FG501). 이 때 상기 on-duration burst의 최대 길이에 대한 정보는 on-duration burst에 대한 timer 정보이거나 또는 on-duration burst 내에서 on-duration이 발생될 수 있는 최대 개수에 대한 정보일 수 있다. 일례로 상기 설정 정보는 상위 계층 시그널(e.g. SIB 또는 RRC signaling)을 통해 수신될 수 있다.
이후 단말은 수신한 DRX 설정 정보에 기반하여, Base-DRX의 주기로 결정되는 on-duration burst의 시작지점에서 on-duration burst가 시작될 것을 기대하고 이와 연관된 동작을 수행할 수 있다(FG502).
이 때, 단말은 상기 on-duration burst의 구간 내에서 하나 이상의 on-duration이 발생될 수 있음을 기대할 수 있으며, 상기 on-duration들의 위치에서 mini-DRX의 동작을 수행할 수 있다(FG503). 일례로 상기의 mini-DRX 동작은 on-duration burst 내에서 발생되는 on-duration의 위치에서 PDCCH monitoring이 수행되는 동작을 포함할 수 있다.
상기의 단말은 시작된 on-duration burst의 구간이 유지되는지의 여부를 판별하기 위하여 on-duration burst의 최대 길이에 대한 정보를 활용할 수 있으며(FG504), 만약 on-duration burst가 유지되는 경우 단말은 mini-DRX의 동작을 유지하도록 정할 수 있으며(FG503), 만약 on-duration burst 구간이 종료된 경우(FG504), 단말은 mini-DRX의 동작을 종료하고 다음 Base-DRX에 기반한 동작을 수행하도록 정할 수 있다(FG502). 이 때 상기 on-duration burst의 유지를 판별하는 기준으로, 만약 timer값이 설정된 경우 timer가 종료된 시점을 정할 수 있으며, 또는 만약 on-duration 최대 개수가 설정된 경우 on-duration burst 내에서 발생된 on-duration의 개수로 정할 수 있다.
일 예로 기지국이 단말에게 on-duration burst의 최대 길이와 관련된 정보를 제공하고, 이에 기반하여 on-duration burst가 유지될 수 있는 구간을 설정하는 방법을 고려한다. 이 때 상기 정보는 DRX에 대한 정보가 포함된 상위 계층 시그널(e.g. SIB 또는 RRC signaling)을 통해 제공될 수 있다. 상기 on-duration burst의 최대 길이에 대한 정보는, 상기 설명된 option 2-1와 같이 ODB-timer에 대한 정보일 수 있으며, 또는 상기 설명된 option 2-2와 같이 Max-OD의 값일 수 있다.
상기 기지국은 송신한 DRX 설정 정보에 기반하여 Base-DRX의 주기마다 on-duration burst의 구간에서 단말이 mini-DRX를 수행할 것임을 기대할 수 있으며, 필요한 경우 상기 on-duration burst 구간에 속한 on-duration 구간을 통해 PDCCH를 전송할 수 있다. 이 때 기지국은 on-duration burst가 시작되는 위치로부터 on-duration burst의 최대 길이를 적용하여 on-duration burst가 유지될 수 있는 최대 구간을 계산할 수 있다.
상기 기지국은 on-duration burst의 최대 길이를 적용하여 계산되는 on-duration burst의 종료되는 시점이 지난 경우, 유지되고 있는 on-duration burst가 종료됨을 가정하고 단말이 mini-DRX의 동작을 종료할 것임을 가정할 수 있다.
특정 요구조건을 갖는 서비스의 traffic을 송수신하기 위한 목적으로 DRX의 구조가 사용되는 경우가 고려될 수 있다. 이 때 기지국은 단말이 Base-DRX의 설정 정보에 따라 결정되는 on-duration burst의 시작 위치에서 mini-DRX의 동작을 수행할 것임을 가정할 수 있다. 또한 기지국은 설정한 on-duration burst의 최대 길이에 기반하여 on-duration burst가 유지될 수 있는 최대 구간을 결정할 수 있다. 만약 상기 설정 정보에 ODB-timer와 같은 형태의 정보가 포함되어 있는 경우, 기지국은 on-duration burst의 시작 위치로부터 ODB-timer의 running을 적용하고, 상기 ODB-timer가 종료된 시점을 기준으로 단말의 on-duration burst의 유지가 종료됨을 가정할 수 있다. 또는 만약 상기 설정 정보에 Max-OD와 같은 형태의 정보가 포함되어 있는 경우, 기지국은 on-duration burst의 시작 위치로부터 발생하는 on-duration의 개수를 누적하여 계산하고, 계산된 값이 Max-OD의 값과 동일할 경우 해당 on-duration burst의 유지를 단말이 종료할 것임을 가정할 수 있다.
특정 요구조건을 갖는 서비스의 traffic을 송수신하기 위한 목적으로 DRX의 구조가 사용되는 경우, 상기 on-duration은 window나 mask의 형태를 가질 수 있다. 이 경우, 만약 상기 설정 정보에 ODB-timer와 같은 형태의 정보가 포함되어 있는 경우, 기지국은 on-duration burst의 시작 위치로부터 ODB-timer의 running을 적용하고, 상기 ODB-timer가 종료된 시점을 기준으로 단말이 on-duration burst의 유지를 종료할 것임을 가정할 수 있다. 또는 만약 상기 설정 정보에 Max-OD와 같은 형태의 정보가 포함되어 있는 경우, 기지국은 on-duration burst의 시작 위치로부터 발생하는 window(또는 mask)의 개수를 누적하여 계산하고, 계산된 값이 Max-OD의 값과 동일할 경우 해당 on-duration burst의 유지를 단말이 종료할 것임을 가정할 수 있다.
도 16는 기지국 동작의 일례를 도시한다.
도 16을 참조하면 기지국은 on-duration burst의 최대 길이에 대한 정보를 포함한 DRX 관련 설정 정보를 생성하고 이를 송신할 수 있다(FG601). 이 때 상기 on-duration burst의 최대 길이에 대한 정보는 on-duration burst에 대한 timer 정보이거나 또는 on-duration burst 내에서 on-duration이 발생될 수 있는 최대 개수에 대한 정보일 수 있다. 일례로 상기 설정 정보는 상위 계층 시그널(e.g. SIB 또는 RRC signaling)을 이용하여 전송될 수 있다.
이후 기지국은 송신한 DRX 설정 정보에 기반하여, Base-DRX의 주기로 결정되는 on-duration burst의 시작지점에서 단말이 on-duration burst 구간을 시작할 것임을 기대하고 이와 연관된 동작을 수행할 수 있다(FG602).
이 때, 기지국은 상기 on-duration burst의 구간 내에서 하나 이상의 on-duration이 발생될 수 있음을 기대할 수 있으며, 상기 on-duration들의 위치에서 mini-DRX의 동작을 수행할 수 있다(FG503). 일례로 만약 기지국 측면에서 Downlink Traffic의 전송이 필요하거나 또는 Uplink Traffic의 수신이 필요한 경우가 발생할 경우 상기 on-duration들의 위치에서 PDCCH 전송을 통한 scheduling을 지시할 수 있다.
상기의 기지국은 단말의 on-duration burst의 구간이 유지되는지의 여부를 판별하기 위하여 on-duration burst의 최대 길이에 대한 정보를 활용할 수 있으며(FG604), 만약 on-duration burst가 유지되는 경우 기지국은 단말의 mini-DRX 동작 유지를 가정할 수 있으며(FG603), 만약 on-duration burst 구간이 종료된 경우(FG604), 기지국은 단말이 mini-DRX의 동작을 종료하고 다음 Base-DRX에 기반한 동작을 수행할 것임을 가정하도록 정할 수 있다(FG602). 이 때 상기 on-duration burst의 유지를 판별하는 기준으로, 만약 timer값이 설정된 경우 timer가 종료된 시점을 정할 수 있으며, 또는 만약 on-duration 최대 개수가 설정된 경우 on-duration burst 내에서 발생된 on-duration의 개수로 정할 수 있다.
Proposal 2에 따르면, on-duration burst의 구간의 길이를 제한함으로써 단말의 불필요한 power 소모를 방지하는 효과를 얻을 수 있다. 특히, on-duration burst를 종료시킬 수 있는 별도의 조건이 존재하는 경우를 가정할 때, 만약 상기 별도의 조건이 발생하지 않거나 단말이 missing한 경우에도, on-duration burst가 계속 유지되지 않고 종료될 수 있는 기능을 제공한다는 측면에서 유리한 효과를 갖는다. 또한, timer value와 on-duration의 개수 같이 기지국과 단말간에 공통적으로 계산이 가능한 변수를 사용하여 on-duration burst의 최대길이를 계산하는 방법을 제안함으로써, 기지국과 단말간에 실시간으로 주고받는 signaling이 없이도 ambiguity를 발생시키지 않는다는 측면에서 장점을 갖는다.
[Proposal 3] 특정 조건에 따라 On-duration burst 구간의 동작을 결정
on-duration burst의 구간이 설정되는 경우, 특정 조건에 따라 on-duration burst와 연관된 동작이 결정되는 방법을 제안한다.
상기 특정 조건은 단말이 특정한 signal 또는 channel을 수신한 경우로 정할 수 있다. 일례로 특정 목적의 PDCCH(이하 Target-PDCCH)를 검출하는 경우로 정할 수 있다. 특징적인 일례로 상기 Target-PDCCH는 traffic을 scheduling하는 DCI format을 송수신하기 위한 목적일 수 있다. 설명의 편의를 위하여 단말의 Target-PDCCH 검출 여부를 기준으로 제안을 설명하고 있으나, 다른 signal 또는 channel에도 적용될 수도 있다.
상기 on-duration burst와 연관된 동작은 단말의 mini-DRX 동작의 유지 여부일 수 있다. 일례로 on-duration burst 상에서 단말이 Target-PDCCH를 수신하기 이전까지 mini-DRX 동작이 유지되도록 정할 수 있으며, 만약 단말이 Target-PDCCH의 검출에 성공한 경우 mini-DRX의 동작이 종료되도록 정할 수 있다.
또는, 상기 on-duration burst와 연관된 동작은 on-duration burst 내에서 on-duration의 발생과 가정 여부일 수 있다. 일례로 on-duration burst 상의 특정 on-duration의 위치까지 단말이 Target-PDCCH를 수신하지 못한 경우 다음 차례의 on-duration이 발생 및 가정될 수 있도록 정할 수 있으며, 만약 특정 on-duration의 위치에서 단말이 Target-PDCCH의 검출에 성공한 경우 동일 on-duration burst상에서 후속하는 on-duration(들)이 더 이상 발생하거나 가정될 수 없도록 정할 수 있다.
또는, 상기 on-duration burst와 연관된 동작은 on-duration burst 구간의 유지 여부일 수 있다. 일례로 on-duration burst 상에서 단말이 Target-PDCCH를 수신하기 이전까지 on-duration burst의 구간이 유지되도록 정할 수 있으며, 만약 단말이 Target-PDCCH의 검출에 성공한 경우, on-duration burst가 최대 길이의 조건을 만족하기 이전에 종료될 수 있도록 정할 수 있다.
상기 설명된 on-duration burst와 연관된 동작들은 동일한 목적을 달성하기 위하여 구현될 수 있는 방법들로, 상기의 목적은 on-duration burst 구간에서 Target-PDCCH의 송수신을 기대하는 단말에 대하여 필요한 control/traffic 정보의 송수신이 완료된 이후에도 단말이 mini-DRX를 유지하거나, 다음 on-duration 구간을 계속 monitoring 하거나, 그리고/또는 on-duration burst 상에서 필요한 동작들을 계속 유지하게 될 경우 불필요한 power 소모가 발생할 수 있는 문제점을 방지하기 위함일 수 있다. 이하 설명의 편의를 위하여 Target-PDCCH의 검출 이후 수행되는 상기의 on-duration burst와 연관된 동작들을 ODB-상태 변환으로 표현하여 기술한다.
기지국과 단말이 Target-PDCCH가 목적으로 하는 연관동작들이 마무리되기 위한 구간을 보장하기 위한 목적으로, 상기 ODB-상태 변환이 수행되는 시점이 Target-PDCCH의 검출과 연관된 후속 동작(e.g. 연관된 timer들의 종료 또는 Target-PDCCH가 속한 active time의 종료)이 완료된 이후가 되도록 정할 수도 있다.
도 17은 Proposal 3에 대한 일례를 도시한다. 도 17은 하나의 예시일 뿐이며, 본 발명은 이에 제한되지 않는다.
도 17을 참조하면 Case 3-1은 단말의 Target-PDCCH 수신 여부에 따라 mini-DRX의 유지와 on-duration의 발생/가정 여부를 결정하는 방법을 보이고 있다. on-duration burst가 시작된 이후 발생되는 on-duration의 위치에서 Target-PDCCH가 검출되지 않은 경우(FG701) mini-DRX의 유지 또는 다음 on-duration의 발생이 결정되며, 특정 on-duration의 위치에서(FG702) 단말이 Target-PDCCH(FG703)의 수신에 성공한 경우 mini-DRX의 동작이 종료되거나 또는 이후 on-duration의 발생/가정이 종료되는(FG704) 일례를 보이고 있다.
Case 3-2는 단말의 Target-PDCCH 수신 여부에 따라 on-duration burst의 유지 여부를 결정하는 방법을 보이고 있다. on-duration burst가 시작된 이후 발생되는 on-duration의 위치에서 Target-PDCCH가 검출되지 않은 경우(FG701) mini-DRX의 유지 또는 다음 on-duration의 발생이 결정되며, 특정 on-duration의 위치에서(FG702) 단말이 Target-PDCCH(FG703)의 수신에 성공한 경우 on-duration burst가 조기에 종료되는(FG706) 일례를 보이고 있다.
일 예로 단말이 Target-PDCCH에 대한 정보(e.g. search space configuration, DCI format 및 field의 구성 등)를 기지국으로부터 수신하고, 이에 기반하여 on-duration burst 또는 on-duration burst 내 구성되는 on-duration(들)에서 Target-PDCCH의 monitoring을 수행하는 상황을 고려한다. 이 때 상기 정보는 상위 계층 시그널(e.g. SIB 또는 RRC signaling)을 통해 제공될 수 있다. 이 때 단말이 monitoring하는 대상의 Target-PDCCH의 종류는 하나 이상이 설정될 수 있다.
상기 단말은 Base-DRX의 주기마다 on-duration burst가 시작될 것임을 기대할 수 있으며, 이 때 상기 시작된 on-duration burst가 유지되는 구간에서 mini-DRX의 동작이 수행되며 발생되는 on-duration(들)이 발생될 수 있음을 가정할 수 있다.
상기 단말은 상기 on-duration burst가 유지되는 구간 내에서 발생되는 on-duration의 구간들에서 Target-PDCCH의 monitoring 동작을 수행할 수 있다.
만약 단말이 Target-PDCCH을 수신하지 못한 경우 이전 상태를 유지하며, 만약 Target-PDCCH를 수신한 경우, 단말은 ODB-상태 변환을 수행하도록 정할 수 있다.
특정 요구조건을 갖는 서비스의 traffic을 송수신하기 위한 목적으로 DRX의 구조가 사용되는 경우가 고려될 수 있다. 이 때 단말은 Base-DRX의 설정 정보에 따라 결정되는 on-duration burst의 시작 위치에서 mini-DRX의 동작이 수행됨을 가정할 수 있다. 또한 단말은 기지국으로부터 on-duration 구간(또는 window나 mask에 의하여 구분되는 구간)에서의 PDCCH monitoring을 위한 설정 정보를 수신하고, 이에 대한 수신을 기대할 수 있다. On-duration burst 구간 내에서 단말이 특정 PDCCH(e.g. scheduling DCI가 전송되는 PDCCH)를 수신한 경우, 단말은 mini-DRX의 동작을 종료하거나, 또는 진행되고 있는 on-duration burst의 구간이 종료될 것임을 가정할 수 있다.
도 18은 단말 동작의 일례를 도시한다.
도 18을 참조하면 단말은 Target-PDCCH의 설정 정보와 DRX 관련 설정 정보를 수신할 수 있다(FG801). 이 때 상기 Target-PDCCH의 설정 정보에는 단말이 PDCCH의 수신에 필요한 정보(e.g. search space configuration, DCI format 및 field의 구성 등)를 포함하는 정보일 수 있다. 일례로 상기 설정 정보는 상위 계층 시그널(e.g. SIB 또는 RRC signaling)을 통해 수신될 수 있다.
이후 단말은 수신한 DRX 설정 정보에 기반하여, Base-DRX의 주기로 결정되는 on-duration burst의 시작지점에서 on-duration burst가 시작될 것을 기대하고 이와 연관된 동작을 수행할 수 있다(FG802).
이 때, 단말은 상기 on-duration burst의 구간 내에서 하나 이상의 on-duration이 발생될 수 있음을 기대할 수 있으며, 상기 on-duration들의 위치에서 mini-DRX의 동작을 수행할 수 있다(FG803). 일례로 상기의 mini-DRX 동작은 on-duration burst 내에서 발생되는 on-duration의 위치에서 PDCCH monitoring이 수행되는 동작을 포함할 수 있다.
상기의 단말이 on-duration의 구간에서 Target-PDCCH를 검출하지 못한 경우(FG804), 그리고 on-duration burst의 구간이 유지되는 경우(FG805), 단말은 mini-DRX의 동작을 유지하며 on-duration의 위치에서 PDCCH monitoring을 지속하여 수행하도록 정할 수 있다. 만약 on-duration burst의 구간이 종료된 경우(FG805) 단말은 mini-DRX의 동작을 종료하고 다음 Base-DRX에 기반한 동작을 수행하도록 정할 수 있다(FG802).
상기의 단말이 on-duration의 구간에서 Target-PDCCH를 검출한 경우 (FG804), 단말은 Target-PDCCH에 수반되는 동작들을 수행하도록 정할 수 있다(FG806). 또한 단말은 mini-DRX의 동작을 종료하고, 상기 수반되는 동작들이 종료된 이후 다음 Base-DRX에 기반한 동작을 수행하도록 정할 수 있다(FG802).
기지국이 단말에게 Target-PDCCH에 대한 정보(e.g. search space configuration, DCI format 및 field의 구성 등)를 제공하고, 필요할 경우 이에 기반하여 Target-PDCCH의 전송을 수행할 수 있는 상황을 고려한다. 이 때 상기 정보는 상위 계층 시그널(e.g. SIB 또는 RRC signaling)을 통해 제공될 수 있다. 이 때 기지국이 단말에게 설정하는 Target-PDCCH의 종류는 하나 이상이 설정될 수 있다.
상기 기지국은 Base-DRX의 주기마다 발생되는 on-duration burst 구간에서 단말이 mini-DRX 동작을 수행할 것임을 가정할 수 있다. 이 때 기지국이 on-duration-burst가 시작된 이후 Target-PDCCH를 전송하지 않았거나, 또는 Target-PDCCH를 전송하였으나 단말에게 요구되는 feedback을 받지 못한 경우(e.g. HARQ-ACK or PUSCH 등), 기지국은 단말이 ODB-상태변환을 수행하지 않았을 것임을 가정할 수 있다.
만약 상기 기지국이 on-duration burst 구간 내에서 Target-PDCCH를 전송하고, 이에 대한 단말의 수신을 가정할 수 있는 경우, 기지국은 단말이 ODB-상태변환을 수행할 것임을 가정할 수 있다.
특정 요구조건을 갖는 서비스의 traffic을 송수신하기 위한 목적으로 DRX의 구조가 사용되는 경우가 고려될 수 있다. 이 때 기지국은 단말이 Base-DRX의 설정 정보에 따라 결정되는 on-duration burst의 시작 위치에서 mini-DRX의 동작이 수행할 것임을 가정할 수 있다. 또한 기지국은 단말에게 on-duration 구간(또는 window나 mask에 의하여 구분되는 구간)에서의 PDCCH monitoring을 위한 설정 정보를 생성하여 제공하고, 단말이 이에 기반한 수신 동작을 수행할 것을 기대할 수 있다. 만약 기지국이 scheduling 하고자 하는 traffic이 존재하는 경우, 기지국은 On-duration burst 구간 내에서 발생되는 on-duration의 구간에서 특정 PDCCH(e.g. scheduling DCI가 전송되는 PDCCH)를 전송하고 이에 수반되는 동작들을 수행할 수 있으며, 이후 기지국은 단말이 mini-DRX의 동작을 종료하거나, 또는 진행되고 있는 on-duration burst의 구간의 종료할 것임을 가정할 수 있다.
도 19은 기지국 동작의 일례를 도시한다.
기지국은 Target-PDCCH의 설정 정보와 DRX 관련 설정 정보를 생성하고 송신할 수 있다(FG901). 이 때 상기 Target-PDCCH의 설정 정보에는 기지국이 PDCCH의 생성 및 전송에 필요한 정보(e.g. search space configuration, DCI format 및 field의 구성 등)를 포함하는 정보일 수 있다. 일례로 상기 설정 정보는 상위 계층 시그널(e.g. SIB 또는 RRC signaling)을 통해 전송될 수 있다.
이후 상기 기지국은 송신한 DRX 설정 정보에 기반하여, 단말이 Base-DRX의 주기로 결정되는 on-duration burst의 시작지점에서 on-duration burst가 시작될 것을 기대할 것임을 가정하고 이와 연관된 동작을 수행할 수 있다(FG902).
만약 상기 기지국이 scheduling을 하고자 하는 traffic이 없는 경우(FG903), 그리고 on-duration burst의 구간이 종료되지 않은 경우(FG904), 기지국은 단말이 mini-DRX의 동작을 유지할 것임을 기대할 수 있다. 만약 on-duration burst구간이 종료된 경우(FG904), 기지국은 단말이 mini-DRX의 동작을 종료하고 다음 Base-DRX에 기반한 동작을 수행할 것임을 가정할 수 있다(FG902).
만약 상기 기지국이 scheduling을 하고자 하는 traffic이 발생한 경우(FG903), 기지국은 Target-PDCCH를 전송하고 이에 수반되는 송수신 동작을 수행할 수 있다.
여기서 다시 도 18을 참조하면, 단말은 상기 on-duration burst의 구간 내에서 하나 이상의 on-duration이 발생될 수 있음을 기대할 수 있으며, 상기 on-duration들의 위치에서 mini-DRX의 동작을 수행할 수 있다(FG803). 일례로 상기의 mini-DRX 동작은 on-duration burst 내에서 발생되는 on-duration의 위치에서 PDCCH monitoring이 수행되는 동작을 포함할 수 있다.
상기의 단말이 on-duration의 구간에서 Target-PDCCH를 검출하지 못한 경우(FG804), 그리고 on-duration burst의 구간이 유지되는 경우(FG805), 단말은 mini-DRX의 동작을 유지하며 on-duration의 위치에서 PDCCH monitoring을 지속하여 수행하도록 정할 수 있다. 만약 on-duration burst의 구간이 종료된 경우(FG805) 단말은 mini-DRX의 동작을 종료하고 다음 Base-DRX에 기반한 동작을 수행하도록 정할 수 있다(FG802).
다시 도 19를 참조하면, 상기의 단말이 on-duration의 구간에서 Target-PDCCH를 검출한 경우 (FG903), 단말은 Target-PDCCH에 수반되는 동작들을 수행하도록 정할 수 있다(FG905). 이후 기지국이 송수신 절차를 완료한 경우, 기지국은 단말이 mini-DRX의 동작과 수반되는 동작들이 종료한 이후 다음 Base-DRX에 기반한 동작을 수행할 것임을 가정할 수 있도록 정할 수 있다(FG902).
Proposal 3에 따르면 상기 설명된 바와 같이, XR과 같이 traffic의 발생 및 송수신 시점에 대한 특성이 jitter의 영향이 발생할 수 있는 경우, 기지국이 단말에게 설정하는 on-duration burst(또는 on-duration)의 길이가 길어질 수 있다. 하지만 특정 on-duration burst에서 필요한 traffic의 송수신이 완료된 이후에도 on-duration burst와 mini-DRX의 동작이 계속 유지되는 구조는 단말이 power saving에 불리할 수 있다. 제안이 사용될 경우, on-duration burst의 길이가 길게 설정된 경우에도, 단말에게 필요한 traffic의 송수신이 완료된 경우 on-duration burst 또는 mini-DRX의 동작을 조기에 종료할 수 있기 때문에 traffic에 대한 scheduling delay를 감소시키는 효과를 유지하면서 power saving efficiency를 보장할 수 있다는 점에서 장점을 갖는다.
[Proposal 4] On-duration burst 상에서 각 on-duration의 위치 결정
on-duration burst의 구간이 설정되는 경우, on-duration burst 구간 내에서 발생되는 on-duration들의 위치를 결정하는 방법을 제안한다. 이하에서는, on-duration burst 상에서 하나 이상의 on-duration이 발생되는 구조를 위주로 설명하고 있으나 이와 유사한 목적을 달성할 수 있는 다른 형태의 방법들에도, 일례로 on-duration burst(또는 on-duration) 상에서 단말이 PDCCH를 monitoring 할 수 있도록 설정된 window가 하나 이상 구성되거나 또는 masking/gap의 설정 등을 통해 PDCCH monitoring이 가능한 구간을 분할하는 방법 등, 제안이 적용되어 사용될 수 있다. On-duration burst 구간 내에서 발생되는 on-duration의 위치가 결정되는 구체적인 방법은 아래의 option 중 하나가 사용될 수 있다.
- Option 4-1: mini-DRX cycle을 주기로 on-duration의 시작 위치를 결정하는 방법
- Option 4-2: 연속하는 on-duration간에 gap을 설정하는 방법
- Option 4-3: 이전 on-duration의 종료시점에 연접하여 다음 차례의 on-duration 시작 위치가 결정하는 방법
Option 4-1은 on-duration burst 내에서 on-duration의 위치가 주기적으로 발생되는 (또는 사전에 약속된 pattern에 의하여 발생되는) 방법으로, 기지국은 이를 지원하기 위하여 mini-DRX와 관련된 parameter들을 결정하고 단말에게 제공할 수 있다. 이 때 상기 mini-DRX와 관련된 parameter들은 일례로, on-duration burst 상에서 on-duration이 발생되는 주기(이하 mini-DRX cycle)와 on-duration burst가 시작되는 지점으로부터 mini-DRX로 동작하는 첫 번째 on-duration이 발생되는 위치(이하 mini-DRX offset) 등이 포함될 수 있다.
Option 4-2는 on-duration burst 내에서 on-duration들간의 상대적인 위치가 gap(이하 mini-gap)과 같은 형태로 결정되는 방법으로, 기지국은 이를 지원하기 위하여 on-duration들간의 상대적인 위치를 결정하기 위한 parameter들을 결정하고 단말에게 제공할 수 있다. 이 때 상기 on-duration들간의 상대적인 위치를 결정하기 위한 parameter들은 일례로, on-duration burst 상에서 발생되는 on-duration들간에 구성되는 gap의 크기와 on-duration burst가 시작되는 지점으로부터 mini-DRX로 동작하는 첫 번째 on-duration이 발생되는 위치(이하 mini-DRX offset) 등이 포함될 수 있다.
Option 4-3은 on-duration burst 내에서 on-duration들이 서로 연접하여 발생되는 방법일 수 있다. 구체적으로, on-duration burst상의 n(>0)번째 on-duration이 종료시점의 time unit(e.g. OFDM symbol 또는 slot 등)의 순번이 m일 경우 n+1번째 on-duration의 시작지점의 time unit은 m+1로 정할 수 있다.
도 20은 Proposal 4 관련된 예시들을 도시한다. 도 20은 하나의 예시일 뿐이며, 본 발명은 이에 제한되지 않는다.
Option 4-1의 예시는 on-duration burst 구간에서 각 on-duration의 위치가 mini-DRX cycle(FG1003)의 주기로 발생되는 일례를 도시한다. 첫 번째 on-duration의 시작 지점(FG1001)과 두 번째 on-duration의 시작 지점(FG1002)는 Mini-DRX cycle의 간격을 보이고 있다.
Option 4-2의 예시는 on-duration burst 구간에서 각 on-duration들의 위치가 mini-gap(FG1006)에 의하여 결정되는 일례를 도시한다. 첫 번째 on-duration의 종료 지점(FG1004)과 두 번째 on-duration의 시작 지점(FG1005)간에는 mini-gap의 간격이 형성된다.
Option 4-3의 예시는 on-duration burst 구간에서 on-duration들이 서로 연접하여 발생되는 방법의 일례를 도시한다. 첫 번째 on-duration의 종료 지점과 두 번째 on-duration의 시작 지점은 동일한 위치(FG1007)를 갖도록 형성된다.
단말이 mini-DRX에 대한 정보를 기지국으로부터 수신하고, 이에 기반하여 on-duration burst 구간 내에서 on-duration의 발생 위치를 결정하는 상황을 고려한다. 이 때 상기 mini-DRX에 대한 정보에는, 일례로 mini-DRX cycle과 같은 정보가 포함될 수 있으며, 또는 mini-gap과 같은 정보가 포함될 수도 있다. 이 때 상기 정보는 상위 계층 시그널(e.g. SIB 또는 RRC signaling)을 통해 제공될 수 있다.
상기 단말은 Base-DRX의 주기마다 on-duration burst가 시작될 것임을 기대할 수 있으며, 이 때 상기 시작된 on-duration burst가 유지되는 구간에서 mini-DRX의 동작이 수행되며 발생되는 on-duration(들)이 발생될 수 있음을 가정할 수 있다.
이 때 상기 단말은 수신 받은 mini-DRX의 설정 정보에 기반하여 상기 on-duration burst 구간에서 on-duration(들)이 발생되는 위치를 추정할 수 있다.
정 요구조건을 갖는 서비스의 traffic을 송수신하기 위한 목적으로 DRX의 구조가 사용되는 경우가 고려될 수 있다. 이 때 단말은 Base-DRX의 설정 정보에 따라 결정되는 on-duration burst의 시작 위치에서 mini-DRX의 동작이 수행됨을 가정할 수 있다. 또한 단말은 기지국으로부터 on-duration burst 구간에서 가정할 수 있는 on-duration(들)의 위치를 상기 설정 정보에 기반하여 추정할 수 있다.
도 21은 단말 동작의 일례를 도시한다.
도 21을 참조하면 단말은 on-duration 위치 설정 정보를 포함한 DRX 관련 설정 정보를 수신할 수 있다(FG1101). 이 때 상기 on-duration 위치 설정 정보는, 일례로 mini-DRX cycle을 설정하기 위한 정보이거나, 또는 on-duration간의 gap에 대한 정보이거나, 또는 on-duration간의 상대적인 위치를 지정하기 위한 별도의 설정 정보가 제공되지 않을 수도 있다. 일례로 상기 설정 정보는 상위 계층 시그널(e.g. SIB 또는 RRC signaling)을 통해 수신될 수 있다.
이후 단말은 수신한 DRX 설정 정보에 기반하여, Base-DRX의 주기로 결정되는 on-duration burst의 시작지점에서 on-duration burst가 시작될 것을 기대하고 이와 연관된 동작을 수행할 수 있다(FG1102).
이 때, 단말은 상기 on-duration burst의 구간 내에서 하나 이상의 on-duration이 발생될 수 있음을 기대할 수 있으며, 상기 수신한 on-duration 위치 설정 정보에 기반하여 on-duration들의 발생 위치를 결정할 수 있다(FG1103). 일례로 첫 번째 on-duration의 위치는 on-duration burst의 시작 위치에 대한 상대적인 위치로 결정될 수 있으며, 후속하는 on-duration들의 위치는 직전의 on-duration 구간을 참조하여 결정되도록 정할 수 있다.
단말은 on-duration burst의 구간이 끝나는 지점까지 상기의 동작을 반복하여 on-duration 위치들을 결정할 수 있으며, 만약 on-duration burst가 종료된 경우(FG1104), 단말은 mini-DRX의 동작을 종료하고 다음 Base-DRX에 기반한 동작을 수행하도록 정할 수 있다(FG1102).
일 예로 기지국이 mini-DRX에 대한 정보를 결정 및 생성하여 단말에게 제공하고, 이에 기반하여 on-duration burst 구간 내에서 on-duration의 발생 위치를 결정하는 상황을 고려한다. 이 때 상기 mini-DRX에 대한 정보에는, 일례로 mini-DRX cycle과 같은 정보가 포함될 수 있으며, 또는 mini-gap과 같은 정보가 포함될 수도 있다. 이 때 상기 정보는 상위 계층 시그널(e.g. SIB 또는 RRC signaling)을 통해 제공될 수 있다.
상기 기지국은 Base-DRX의 주기마다 발생되는 on-duration burst 구간에서 단말이 mini-DRX 동작을 수행할 것임을 가정할 수 있다. 이 때 기지국은 on-duration-burst 구간에서 단말이 기대하는 on-duration(들)이 발생되는 위치가 상기 설정하고 단말에게 제공한 mini-DRX 관련 정보에 기반하여 결정될 것임을 가정할 수 있다.
특정 요구조건을 갖는 서비스의 traffic을 송수신하기 위한 목적으로 DRX의 구조가 사용되는 경우가 고려될 수 있다. 이 때 기지국은 단말이 Base-DRX의 설정 정보에 따라 결정되는 on-duration burst의 시작 위치에서 mini-DRX의 동작을 수행할 것임을 가정할 수 있다. 또한 기지국은 단말이 on-duration burst 구간에서 가정할 수 있는 on-duration(들)의 위치를 상기 설정 정보에 기반하여 추정할 것임을 가정할 수 있다.
도 22는 기지국 동작의 일례를 도시한다.
도 22를 참조하면 기지국은 on-duration 위치 설정 정보를 포함한 DRX 관련 설정 정보를 결정하고 이를 단말에게 제공할 수 있다(FG1201). 이 때 상기 on-duration 위치 설정 정보는, 일례로 mini-DRX cycle을 설정하기 위한 정보이거나, 또는 on-duration간의 gap에 대한 정보이거나, 또는 on-duration간의 상대적인 위치를 지정하기 위한 별도의 설정 정보가 제공되지 않을 수도 있다. 일례로 상기 설정 정보는 상위 계층 시그널(e.g. SIB 또는 RRC signaling)을 통해 제공될 수 있다.
이후 기지국은 송신한 DRX 설정 정보에 기반하여, 단말이 Base-DRX의 주기로 결정되는 on-duration burst의 시작지점에서 on-duration burst가 시작될 것을 기대하고 이와 연관된 동작을 수행할 것임을 가정할 수 있다(FG1202).
이 때, 기지국은 상기 on-duration burst의 구간 내에서 상기 송신한 on-duration 위치 설정 정보에 기반하여 단말이 기대할 수 있는 on-duration들의 발생 위치를 가정할 수 있다(FG1203). 일례로 on-duration burst의 시작 위치에 대한 상대적인 위치를 통해 단말이 가정할 수 있는 첫 번째 on-duration의 위치를 결정될 수 있으며, 후속하는 on-duration들의 위치는 단말이 직전의 on-duration 구간을 참조하여 결정할 것임을 가정할 수 있다.
기지국은 on-duration burst의 구간이 끝나는 지점까지 단말이 상기의 동작을 반복하여 on-duration 위치들을 결정할 것임을 가정할 수 있으며, 만약 on-duration burst가 종료된 경우(FG1204), 기지국은 단말이 mini-DRX의 동작을 종료하고 다음 Base-DRX에 기반한 동작을 수행할 것임을 기대할 수 있다(FG1202).
option 4-1의 방법이 사용될 경우, 기지국의 설정에 따라 on-duration간에 단말이 PDCCH monitoring을 일시적으로 중단할 수 있는 구간을 보장할 수 있다는 측면에서 traffic 특성에 따른 단말의 power saving 효과를 얻는데 유리할 수 있다. 또한 단말의 DRX 동작 구조를 따르기 때문에, 만약 on-duration burst의 구조가 mini-DRX의 동작이 수행되는 구간을 지정하기 위한 window의 형태를 취할 경우, 기존 DRX 구조를 활용하여 구현될 수 있다는 측면에서 단말의 기존 동작 방식을 재활용할 수 있다는 장점을 가질 수 있다.
option 4-2의 방법이 사용될 경우, 기지국의 설정에 따라 on-duration간에 단말이 PDCCH monitoring을 일시적으로 중단할 수 있는 구간을 보장할 수 있다는 측면에서 traffic 특성에 따른 단말의 power saving 효과를 얻는데 유리할 수 있다. 또한 상기 mini-gap의 설정을 단말의 capability 또는 특수 동작에 따른 requirement 값을 재활용하도록 설정하는 경우, on-duration 발생 위치를 지정하기 위한 별도의 signaling overhead를 발생시키지 않는다는 측면에서 유리할 수 있다.
option 4-3의 방법이 사용될 경우, 별도의 signaling overhead 없이도 on-duration burst 구간에 단말이 PDCCH monitoring을 일시 중단하는 구간을 발생시키지 않기 때문에 낮은 latency가 요구되는 traffic이 사용될 경우 gap의 발생으로 인한 지연을 줄일 수 있으며, 또한 동일한 on-duration 개수를 기준으로 전체 on-duration burst 구간의 길이를 줄일 수 있다는 장점을 가질 수 있다.
[Proposal 5] On-duration burst 상에서 on-duration들의 개별적 제어
기지국이 on-duration burst 상에서 발생되는 on-duration들을 세부적으로 제어하여 추가 power saving 효과 및 scheduling flexibility를 얻는데 유리한 방법들을 제안한다.
[Proposal 5-1] On-duration의 길이 설정
on-duration burst 구간에 복수의 on-duration들이 구성될 경우, 각 on-duration의 구간의 길이가 개별적으로 설정되고, 예를 들어 각 on-duration의 구간이 서로 다른 길이를 갖을 수도 있다. 일례로 on-duration burst 구간에서 첫 번째 on-duration 구간의 길이는 다른 후속하는 on-duration들의 길이보다 더 긴 값을 갖도록 정할 수 있다. Proposal 5-1는 Proposal 3과 같이 mini-DRX 또는 on-duration burst가 조기에 종료되는 방법이 사용될 경우, 단말이 on-duration의 구간에서 수행하는 PDCCH monitoring 이외의 동작들을 (e.g. CSI report / SRS transmission) 첫 번째 on-duration 구간을 통해 최소한 보장하기 위함일 수 있다. 상기의 예시는 일례일 뿐이며, 다른 구조의 on-duration 구간의 길이가 설정되는 경우에도 발명에서 제안이 일반적으로 적용될 수 있음을 당업자라면 이해할 수 있다.
Proposal 5-1이 사용될 때, 각 on-duration(또는 하나 이상의 on-duration들로 구성된 on-duration의 집합)의 길이는 표준에 의하여 고정된 값 또는 상대적인 비율이 사용되거나, 또는 기지국에 의하여 설정 및 제공되는 값일 수 있다. 만약 기지국에 의하여 설정되는 값이 경우, 상기의 정보는 상위 계층 시그널(e.g. SIB 또는 RRC signaling)을 통해 기지국이 단말에게 제공할 수 있다. 또는 L1 layer (e.g. DCI 또는 reference signal)나 L2 layer (e.g. MAC CE)를 통해 기지국이 단말에게 dynamic 또는 semi-static하게 선택하는 방법이 사용될 수 있다.
[Proposal 5-2] On-duration의 발생 여부를 지시하는 signaling
on-duration burst 구간에 복수의 on-duration들이 구성될 경우, 각 on-duration 구간의 발생 여부를 지시할 수 있는 signaling이 사용될 수 있다. 일례로 상기의 signaling은 L1 layer (e.g. DCI 또는 reference signal)나 L2 layer (e.g. MAC CE)를 통해 기지국이 단말에게 dynamic 또는 semi-static하게 전송하는 signaling일 수 있다. 일례로 기지국은 다음 순서의 on-duration(또는 on-duration 들)들의 발생을 단말이 가정할 수 있는지, 또는 mini-DRX의 유지 여부, 또는 on-duration burst의 유지 여부를 L1/L2 signaling을 통해 지시할 수 있다. 이는 기지국이 traffic의 상황을 고려하여 단말의 on-duration과 관련된 동작들을 dynamic 또는 semi-static하게 제어함으로써 기지국의 scheduling flexibility를 높이고 단말의 power saving efficiency를 적응적으로 제어하는데 유리한 효과를 얻을 수 있다.
Proposal 5-2가 사용될 때, 각 on-duration의 발생 여부를 제어하는 L1 또는 L2 signal을 설정하기 위하여 기지국은 상위 계층 시그널(e.g. SIB 또는 RRC signaling)을 통해 관련된 정보를 단말에게 제공할 수 있다.
구체적인 일례로 도 23을 참조하여 설명한다. 단말은 기지국으로부터 기본적인 DRX 동작을 위한 DRX 관련 설정정보 (Base-DRX)를 설정 받고, 상기 설정 정보에는 Base-DRX의 cycle, Base-DRX의 on-duration 정보, active time의 설정을 위한 timer 등이 포함될 수 있다. 또한 단말은 기지국으로부터 짧은 DRX 동작을 위한 DRX 관련 설정정보 (mini-DRX)를 설정 받고, 상기 설정 정보에는 mini-DRX cycle, mini-DRX의 on-duration 정보, active time의 설정을 위한 timer 등이 포함될 수 있다. 상기 Base-DRX와 mini-DRX에 대한 설정 정보들을 higher layer signal(e.g. SIB 또는 RRC signal)을 통해 기지국이 단말에게 제공하는 정보일 수 있다. 상기 설정된 정보들을 바탕으로 기지국과 단말은 Base-DRX의 cycle의 주기로 Base-on-duration이 발생될 것임을 가정할 수 있다(EG101). 만약 기지국이 Base-on-duration의 위치에서 Target-PDCCH를 전송하고 단말이 이에 대한 검출에 성공한 경우(EG102), 기지국과 단말은 Target-PDCCH가 송수신된 Base-on-duration에서 timer가 동작하는 동안 필요한 동작들을 수행하며, mini-DRX의 구간은 활성화 되지 않음을 가정할 수 있으며(EG103), 단말은 Base-DRX cycle에 의하여 결정되는 다음 Base-on-duration의 위치까지 DRX의 상태를 유지할 수 있다. 만약 기지국이 Base-on-duration의 위치에서 Target-PDCCH를 전송하지 않았거나 또는 전송하였지만 단말이 이에 대한 검출에 실패한 경우(EG104), mini-DRX의 구간이 활성화 될 수 있으며(EG105) 단말은 mini-DRX cycle을 주기로 결정되는 mini-on-duration(들)의 위치에서 Target-PDCCH를 monitoring 할 수 있으며, 기지국은 이를 기대하고 Target-PDCCH를 전송할 수 있다. 이 때 단말은 특정 조건을 만족하는 경우, 일례로 Target-PDCCH를 특정 mini-On-duration 상에서 검출하거나 또는 mini-DRX가 유지될 수 있는 최대 구간이 만료된 경우, mini-DRX 동작을 종료할 수 있다(EG106). 본 예시가 NR에 적용될 경우, Base-DRX는 표준에 정의되어 있는 long DRX에 대응되는 개념일 수 있으며, mini-DRX는 표준에 정의되어 있는 short DRX에 대응되는 개념일 수 있다. 단, long DRX와 short DRX간에 전환되는 규칙은 기존의 표준을 따르지 않도록 정할 수 있으며, 예시에서 설명한 방법이 적용될 수 있으며, 이는 기지국이 설정한 경우로 한정할 수 있다.
구체적인 일례 중 하나로 도 24를 참조한다. 단말은 기지국으로부터 짧은 DRX 동작을 위한 DRX 관련 설정정보 (mini-DRX)를 설정 받을 수 있으며, 상기 설정 정보에는 mini-DRX cycle, mini-DRX의 on-duration 정보, active time의 설정을 위한 timer 등이 포함될 수 있다. 또한 단말은 기지국으로부터 상기 mini-DRX가 실제 활성화되는 구간을 결정하기 위한 설정정보 (Active-DRX)를 설정 받을 수 있으며, 상기 설정 정보에는 mini-DRX가 활성화되는 구간이 발생되는 주기 (Base-DRX cycle), mini-DRX가 활성화되는 구간의 최대 길이 등이 포함될 수 있다. 상기 mini-DRX와 Active-DRX에 대한 설정 정보들은 higher layer signal(e.g. SIB 또는 RRC signal)을 통해 기지국이 단말에게 제공하는 정보일 수 있다. 상기 설정된 정보들을 바탕으로 기지국과 단말은 on-duration 구간의 후보가 mini-DRX cycle의 주기로 발생될 것임을 가정할 수 있으며(EG201), 또한 mini-DRX 동작의 활성화 구간(EG203)이 Base-DRX cycle(EG202)을 주기로 발생될 것임을 가정할 수 있다. 이 때 기지국과 단말은 상기 mini-DRX 동작의 활성화 구간에 속한 on-duration 후보 구간들이 활성화 되었음을 가정할 수 있으며(EG204) 활성화된 on-duration 구간들을 통해 Target-PDCCH를 전송하거나 수신을 기대하도록 정할 수 있다. 반면 기지국과 단말은 상기 mini-DRX 동작의 활성화 구간에 포함되지 않은 on-duration 후보 구간들은 활성화 되지 않았음을 가정할 수 있으며(EG205), 비활성화된 위치들에서는 Target-PDCCH를 전송하지 못하거나 수신을 기대하지 못하도록 정할 수 있다. 만약 기지국이 활성화된 on-duration의 위치에서 특정 조건을 만족하지 못한 경우, 일례로 Target-PDCCH를 전송하지 않았거나 또는 전송하였지만 단말이 이에 대한 검출에 실패한 경우, mini-DRX의 동작은 유지될 수 있으며, 만약 기지국이 특정 조건이 만족된 경우, 일례로 전송한 Target-PDCCH를 단말이 수신한 경우(EG206), 단말은 현재의 Base-DRX cycle 상에서 남아 있는 on-duration 후보들이 비활성화될 것임을 가정할 수 있다(EG207).
구체적인 일 예로 도 25를 참조하여 설명한다. 단말은 기지국으로부터 기본적인 DRX 동작을 위한 DRX 관련 설정정보 (Base-DRX)를 설정 받고, 상기 설정 정보에는 Base-DRX의 cycle 및 Base-DRX cycle의 시작 위치를 정하기 위한 offset 정보 등이 포함될 수 있다. 또한 단말은 기지국으로부터 짧은 DRX 동작을 위한 DRX 관련 설정정보 (mini-DRX)를 설정 받고, 상기 설정 정보에는 mini-DRX cycle, mini-DRX의 on-duration 정보, active time의 설정을 위한 timer 등이 포함될 수 있다. 상기 Base-DRX와 mini-DRX에 대한 설정 정보들을 higher layer signal(e.g. SIB 또는 RRC signal)을 통해 기지국이 단말에게 제공하는 정보일 수 있다. 상기 설정된 정보들을 바탕으로 기지국과 단말은 Base-DRX의 cycle의 주기로 mini-DRX의 동작이 시작됨을 가정할 수 있다(EG301). 이 때 mini-DRX의 동작은 Base-DRX cycle에 의하여 결정된 mini-DRX의 시작 위치로부터 mini-DRX cycle(EG302)을 주기로 on-duration의 구간들이 발생됨을 의미한다(EG303). 만약 기지국이 특정 on-duration 구간에서 Target-PDCCH를 전송하지 않거나 또는 전송하였지만 단말이 수신하지 못한 경우, 단말은 mini-DRX의 동작을 유지하고 mini-DRX cycle에 의한 다음 on-duration의 구간이 발생될 것임을 가정할 수 있다. 반면 만약 기지국이 특정 on-duration 구간에서 Target-PDCCH를 전송하고 단말이 수신에 성공한 경우 단말은 해당 Base-DRX cycle에서는 더 이상 추가 on-duration이 발생되지 않을 것임을 가정할 수 있으며 기지국은 이를 고려할 수 있다(EG304).
구체적인 일례로 도 26을 참조하여 설명한다. 단말은 기지국으로부터 기본적인 DRX 동작을 위한 DRX 관련 설정정보 (Base-DRX)를 설정 받고, 상기 설정 정보에는 Base-DRX의 cycle, Base-DRX의 on-duration 정보, active time의 설정을 위한 timer 등이 포함될 수 있다. 또한 단말은 기지국으로부터 짧은 DRX 동작을 위한 DRX 관련 설정정보 (mini-DRX)를 설정 받고, 상기 설정 정보에는 mini-DRX cycle, mini-DRX에 의한 window(또는 duration) 정보 등이 포함될 수 있다. 상기 Base-DRX와 mini-DRX에 대한 설정 정보들을 higher layer signal(e.g. SIB 또는 RRC signal)을 통해 기지국이 단말에게 제공하는 정보일 수 있다. 상기 설정된 정보들을 바탕으로 기지국과 단말은 Base-DRX의 cycle(EG401)의 주기로 Base-on-duration(EG402)이 발생될 것임을 가정할 수 있다. 이 때 상기 Base-on-duration 구간이 시작된 이후, 기지국과 단말은 Target-PDCCH의 송수신이 이루어지기 전까지 해당 base-on-duration이 활성화되지 않을 것임을 가정할 수 있다(EG403). 이 때 기지국과 단말은 Base-on-duration이 활성화되지 않은 구간에서, 상기 설정 정보를 바탕으로, mini-DRX cycle의 주기로 발생되는 mini-on-duration(EG404)의 구간에서 Target-PDCCH 기지국의 전송과 단말의 수신이 이루어질 수 있음을 가정할 수 있다. 만약 단말이 상기 mini-on-duration의 구간에서 Target-PDCCH를 수신하지 못한 경우, Base-on-duration의 비활성화 상태는 유지되도록 정하며(EG403), 만약 기지국이 mini-on-duration 구간에서 Target-PDCCH를 전송하고 단말이 이를 수신한 경우(EG405), 기지국과 단말은 mini-DRX의 동작을 중단하고 Base-on-duration의 구간이 활성화 됨을 가정할 수 있다(EG406).
도 27은 일 실시예에 따른 단말의 신호 수신을 설명하기 위한 도면이다. 도 27은 상술된 Proposal 1 내지 5 중 적어도 일부에 대한 구현 예로 이해될 수 있으며, 앞서 설명된 Proposal 1 내지 5 내용이 도 27을 위해 참조될 수 있다.
단말은 DRX (Discontinuous Reception) 주기(cycle)에 대한 정보를 포함하는 DRX 설정 정보를 수신할 수 있다(A05).
단말은 상기 DRX 설정 정보에 기초하여 PDCCH (physical downlink control channel)를 모니터링할 수 있다(A10).
각 DRX 주기 마다 시간 축 상에서 서로 이격된 복수의 On-duration들을 포함하는 각 On-duration 세트가 설정될 수 있다. 상기 단말은 각 On-duration 세트에 포함된 상기 복수의 On-duration들에 기초하여 상기 PDCCH의 모니터링을 수행할 수 있다. 상기 PDCCH의 모니터링 결과 상기 복수의 On-duration들 중 어느 하나에서 상기 PDCCH가 검출되었다는 것에 기반하여, 상기 단말은 다음 번 DRX 주기의 시작 전까지는 후속 On-duration이 발생하지 않는다고 판단할 수 있다.
각 On-duration 세트의 시작부터 해당 On-duration 세트가 유효하게 유지되는 최대 시간 길이에 대한 제1 정보 및 각 On-duration 세트에 포함되는 유효 On-duration 들의 최대 개수에 대한 제2 정보 중 적어도 하나가 상기 단말에 설정될 수 있다. 상기 DRX 설정 정보는, 상기 제1 정보 및 상기 제2 정보 중 적어도 하나를 포함할 수 있다.
상기 최대 시간 길이에 이르기 전 또는 상기 On-duration들의 최대 개수에 이르기 전에 위치한 On-duration에서 상기 PDCCH가 검출된 것에 기반하여, 해당 On-duration 세트가 조기 종료할 수 있다.
상기 검출된 PDCCH에 의해 스케줄되는 데이터는 비-정수(non-integer) 주기를 가질 수 있다.
상기 DRX 설정 정보는, 상기 복수의 On-duration들 간의 간격에 대한 정보 및 상기 복수의 On-duration들 중 선두 On-duration의 위치에 대한 정보 중 적어도 하나를 포함할 수 있다. 상기 복수의 On-duration들 간의 간격에 대한 정보는 상기 복수의 On-duration들의 주기를 포함할 수 있다. 상기 선두 On-duration의 위치에 대한 정보는, 해당 DRX 주기의 시작과 상기 선두 On-duration의 시작 간의 오프셋을 포함할 수 있다.
동일한 On-duration 세트에 속하는 각 On-duration의 길이가 개별적으로 설정될 수 있다.
도 28은 일 실시예에 따른 기지국의 신호 송신을 설명하기 위한 도면이다. 도 28은 상술된 Proposal 1 내지 5 중 적어도 일부에 대한 구현 예로 이해될 수 있으며, 앞서 설명된 Proposal 1 내지 5 내용이 도 28을 위해 참조될 수 있다.
기지국은 단말에 DRX (Discontinuous Reception) 주기(cycle)에 대한 정보를 포함하는 DRX 설정 정보를 송신할 수 있다(B05).
기지국은 상기 DRX 설정 정보에 기초하여 상기 단말에 PDCCH (physical downlink control channel)를 송신할 수 있다(B10).
각 DRX 주기 마다 시간 축 상에서 서로 이격된 복수의 On-duration들을 포함하는 각 On-duration 세트가 설정될 수 있다. 상기 기지국은 각 On-duration 세트에 포함된 상기 복수의 On-duration들에 기초하여 상기 PDCCH의 송신을 수행할 수 있다. 상기 복수의 On-duration들 중 어느 하나에서 상기 PDCCH가 송신되었다는 것에 기반하여, 상기 기지국은 다음 번 DRX 주기의 시작 전까지는 상기 단말을 위한 후속 On-duration이 발생하지 않는다고 판단할 수 있다.
기지국은 각 On-duration 세트의 시작부터 해당 On-duration 세트가 유효하게 유지되는 최대 시간 길이에 대한 제1 정보 및 각 On-duration 세트에 포함되는 유효 On-duration 들의 최대 개수에 대한 제2 정보 중 적어도 하나를 상기 단말에 설정할 수 있다. 상기 DRX 설정 정보는, 상기 제1 정보 및 상기 제2 정보 중 적어도 하나를 포함할 수 있다.
상기 최대 시간 길이에 이르기 전 또는 상기 On-duration들의 최대 개수에 이르기 전에 위치한 On-duration에서 상기 PDCCH가 송신된 것에 기반하여, 해당 On-duration 세트가 조기 종료할 수 있다.
상기 송신된 PDCCH에 의해 스케줄되는 데이터는 비-정수(non-integer) 주기를 가질 수 있다.
상기 DRX 설정 정보는, 상기 복수의 On-duration들 간의 간격에 대한 정보 및 상기 복수의 On-duration들 중 선두 On-duration의 위치에 대한 정보 중 적어도 하나를 포함할 수 있다. 상기 복수의 On-duration들 간의 간격에 대한 정보는 상기 복수의 On-duration들의 주기를 포함할 수 있다. 상기 선두 On-duration의 위치에 대한 정보는, 해당 DRX 주기의 시작과 상기 선두 On-duration의 시작 간의 오프셋을 포함할 수 있다.
동일한 On-duration 세트에 속하는 각 On-duration의 길이가 개별적으로 설정될 수 있다.
도 29은 본 발명에 적용가능한 통신 시스템(1)을 예시한다.
도 29을 참조하면, 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성 정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 맵핑/디맵핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 30은 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 30을 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 30의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 발명의 일 실시예에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 발명의 일 실시예에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적인 예로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어 정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어 정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어 정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 31는 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 29 참조).
도 31를 참조하면, 무선 기기(100, 200)는 도 30의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 30의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 30의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 30, 100a), 차량(도 30, 100b-1, 100b-2), XR 기기(도 30, 100c), 휴대 기기(도 30, 100d), 가전(도 30, 100e), IoT 기기(도 30, 100f), 디지털 브로드캐스트용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 30, 400), 기지국(도 30, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 31에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
도 32은 본 발명에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 32을 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 31의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 무선 이동 통신 시스템의 단말기, 기지국, 또는 기타 다른 장비에 사용될 수 있다.

Claims (15)

  1. 무선 통신 시스템에서 단말이 신호를 수신하는 방법에 있어서,
    DRX (Discontinuous Reception) 주기(cycle)에 대한 정보를 포함하는 DRX 설정 정보를 수신; 및
    상기 DRX 설정 정보에 기초하여 PDCCH (physical downlink control channel)를 모니터링하는 것을 포함하고,
    각 DRX 주기 마다 시간 축 상에서 서로 이격된 복수의 On-duration들을 포함하는 각 On-duration 세트가 설정되고,
    상기 단말은 각 On-duration 세트에 포함된 상기 복수의 On-duration들에 기초하여 상기 PDCCH의 모니터링을 수행하되,
    상기 PDCCH의 모니터링 결과 상기 복수의 On-duration들 중 어느 하나에서 상기 PDCCH가 검출되었다는 것에 기반하여, 상기 단말은 다음 번 DRX 주기의 시작 전까지는 후속 On-duration이 발생하지 않는다고 판단하는, 방법.
  2. 제 1 항에 있어서,
    각 On-duration 세트의 시작부터 해당 On-duration 세트가 유효하게 유지되는 최대 시간 길이에 대한 제1 정보 및 각 On-duration 세트에 포함되는 유효 On-duration 들의 최대 개수에 대한 제2 정보 중 적어도 하나가 상기 단말에 설정되는, 방법.
  3. 제 2 항에 있어서,
    상기 DRX 설정 정보는, 상기 제1 정보 및 상기 제2 정보 중 적어도 하나를 포함하는, 방법.
  4. 제 2 항에 있어서,
    상기 최대 시간 길이에 이르기 전 또는 상기 On-duration들의 최대 개수에 이르기 전에 위치한 On-duration에서 상기 PDCCH가 검출된 것에 기반하여, 해당 On-duration 세트가 조기 종료하는, 방법.
  5. 제 1 항에 있어서,
    상기 검출된 PDCCH에 의해 스케줄되는 데이터는 비-정수(non-integer) 주기를 갖는, 방법.
  6. 제 1 항에 있어서,
    상기 DRX 설정 정보는, 상기 복수의 On-duration들 간의 간격에 대한 정보 및 상기 복수의 On-duration들 중 선두 On-duration의 위치에 대한 정보 중 적어도 하나를 포함하는, 방법.
  7. 제 6 항에 있어서,
    상기 복수의 On-duration들 간의 간격에 대한 정보는 상기 복수의 On-duration들의 주기를 포함하는, 방법.
  8. 제 6 항에 있어서,
    상기 선두 On-duration의 위치에 대한 정보는, 해당 DRX 주기의 시작과 상기 선두 On-duration의 시작 간의 오프셋을 포함하는, 방법.
  9. 제 1 항에 있어서,
    동일한 On-duration 세트에 속하는 각 On-duration의 길이가 개별적으로 설정되는, 방법.
  10. 제 1 항에 기재된 방법을 수행하기 위한 프로그램을 기록한 프로세서로 읽을 수 있는 기록매체.
  11. 무선 통신을 위한 디바이스에 있어서,
    명령어들을 저장하는 메모리; 및
    상기 명령어들을 실행함으로써 동작하는 프로세서를 포함하고,
    상기 프로세서의 동작은,
    DRX (Discontinuous Reception) 주기(cycle)에 대한 정보를 포함하는 DRX 설정 정보를 수신; 및
    상기 DRX 설정 정보에 기초하여 PDCCH (physical downlink control channel)를 모니터링하는 것을 포함하고,
    각 DRX 주기 마다 시간 축 상에서 서로 이격된 복수의 On-duration들을 포함하는 각 On-duration 세트가 설정되고,
    상기 프로세서는 각 On-duration 세트에 포함된 상기 복수의 On-duration들에 기초하여 상기 PDCCH의 모니터링을 수행하되,
    상기 PDCCH의 모니터링 결과 상기 복수의 On-duration들 중 어느 하나에서 상기 PDCCH가 검출되었다는 것에 기반하여, 상기 프로세서는 다음 번 DRX 주기의 시작 전까지는 후속 On-duration이 발생하지 않는다고 판단하는, 디바이스.
  12. 제 11 항에 있어서,
    상기 디바이스는 ASIC (application specific integrated circuit) 또는 디지털 신호 처리 기기인, 디바이스.
  13. 제 11 항에 있어서,
    상기 디바이스는 3GPP(3rd generation partnership project) 기반의 무선 통신 시스템에서 동작하는 UE(user equipment)인, 디바이스.
  14. 무선 통신 시스템에서 기지국이 신호를 송신하는 방법에 있어서,
    단말에 DRX (Discontinuous Reception) 주기(cycle)에 대한 정보를 포함하는 DRX 설정 정보를 송신; 및
    상기 DRX 설정 정보에 기초하여 상기 단말에 PDCCH (physical downlink control channel)를 송신하는 것을 포함하고,
    각 DRX 주기 마다 시간 축 상에서 서로 이격된 복수의 On-duration들을 포함하는 각 On-duration 세트가 설정되고,
    상기 기지국은 각 On-duration 세트에 포함된 상기 복수의 On-duration들에 기초하여 상기 PDCCH의 송신을 수행하되,
    상기 복수의 On-duration들 중 어느 하나에서 상기 PDCCH가 송신되었다는 것에 기반하여, 상기 기지국은 다음 번 DRX 주기의 시작 전까지는 상기 단말을 위한 후속 On-duration이 발생하지 않는다고 판단하는, 방법.
  15. 무선 통신을 위한 기지국에 있어서,
    송수신기; 및
    상기 송수신기를 통해, 단말에 DRX (Discontinuous Reception) 주기(cycle)에 대한 정보를 포함하는 DRX 설정 정보를 송신하고, 상기 DRX 설정 정보에 기초하여 상기 단말에 PDCCH (physical downlink control channel)를 송신하는 프로세서를 포함하고,
    각 DRX 주기 마다 시간 축 상에서 서로 이격된 복수의 On-duration들을 포함하는 각 On-duration 세트가 설정되고,
    상기 프로세서는 각 On-duration 세트에 포함된 상기 복수의 On-duration들에 기초하여 상기 PDCCH의 송신을 수행하되,
    상기 복수의 On-duration들 중 어느 하나에서 상기 PDCCH가 송신되었다는 것에 기반하여, 상기 프로세서는 다음 번 DRX 주기의 시작 전까지는 상기 단말을 위한 후속 On-duration이 발생하지 않는다고 판단하는, 기지국.
PCT/KR2023/004234 2022-04-28 2023-03-30 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 WO2023210984A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0052938 2022-04-28
KR20220052938 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023210984A1 true WO2023210984A1 (ko) 2023-11-02

Family

ID=88519257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/004234 WO2023210984A1 (ko) 2022-04-28 2023-03-30 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치

Country Status (1)

Country Link
WO (1) WO2023210984A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180018988A (ko) * 2016-08-11 2018-02-22 주식회사 케이티 멀티캐스트 데이터를 수신하는 방법 및 그 장치
US20200389933A1 (en) * 2019-06-07 2020-12-10 Qualcomm Incorporated Discontinuous reception techniques with non-uniform cycle durations
US20220110184A1 (en) * 2019-10-03 2022-04-07 Ofinno, Llc Discontinuous Reception for a Two-step Random Access Procedure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180018988A (ko) * 2016-08-11 2018-02-22 주식회사 케이티 멀티캐스트 데이터를 수신하는 방법 및 그 장치
US20200389933A1 (en) * 2019-06-07 2020-12-10 Qualcomm Incorporated Discontinuous reception techniques with non-uniform cycle durations
US20220110184A1 (en) * 2019-10-03 2022-04-07 Ofinno, Llc Discontinuous Reception for a Two-step Random Access Procedure

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification (Release 17)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 36.321, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. V17.0.0, 19 April 2022 (2022-04-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 146, XP052146033 *
ERICSSON: "Introduction of additional enhancements for NB-IoT", 3GPP DRAFT; R2-2001787, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic meeting; 20200224 - 20200306, 11 March 2020 (2020-03-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051864510 *

Similar Documents

Publication Publication Date Title
WO2022154613A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022080928A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2020060372A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021066593A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
WO2022216024A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022030945A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2022031136A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022031135A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022154614A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022216045A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2023014199A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022154606A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021066309A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021020944A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2023210984A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2024072160A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2024080734A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2024035241A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2024096466A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2023136600A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2024071968A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2024096680A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2023136423A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2023080521A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2024071996A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796633

Country of ref document: EP

Kind code of ref document: A1