WO2022086046A1 - 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치 - Google Patents

하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2022086046A1
WO2022086046A1 PCT/KR2021/014202 KR2021014202W WO2022086046A1 WO 2022086046 A1 WO2022086046 A1 WO 2022086046A1 KR 2021014202 W KR2021014202 W KR 2021014202W WO 2022086046 A1 WO2022086046 A1 WO 2022086046A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring window
dci
monitoring
drx
information
Prior art date
Application number
PCT/KR2021/014202
Other languages
English (en)
French (fr)
Inventor
이성훈
김재형
양석철
김선욱
황승계
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP21883117.0A priority Critical patent/EP4236554A1/en
Publication of WO2022086046A1 publication Critical patent/WO2022086046A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to a method for transmitting and receiving downlink control information and an apparatus therefor, and more particularly, monitoring for transmitting and receiving Downlink Control Information (DCI) format 2_6 within DRX (Discontinuous Reception) Active Time It relates to a method for setting a window and an apparatus for the same.
  • DCI Downlink Control Information
  • next-generation 5G system which is a wireless broadband communication that is improved compared to the existing LTE system.
  • NewRAT communication scenarios are divided into Enhanced Mobile BroadBand (eMBB)/ Ultra-reliability and low-latency communication (URLLC)/Massive Machine-Type Communications (mMTC).
  • eMBB Enhanced Mobile BroadBand
  • URLLC Ultra-reliability and low-latency communication
  • mMTC Massive Machine-Type Communications
  • eMBB is a next-generation mobile communication scenario with characteristics such as High Spectrum Efficiency, High User Experienced Data Rate, and High Peak Data Rate
  • URLLC is a next-generation mobile communication scenario with characteristics such as Ultra Reliable, Ultra Low Latency, and Ultra High Availability.
  • V2X Emergency Service, Remote Control
  • mMTC is a next-generation mobile communication scenario with Low Cost, Low Energy, Short Packet, and Massive Connectivity characteristics. (e.g., IoT).
  • An object of the present disclosure is to provide a method for transmitting and receiving downlink control information and an apparatus therefor.
  • a method for a terminal supporting a discontinuous reception (DRX) operation to receive downlink control information (DCI) in a wireless communication system comprising receiving first information related to a monitoring window for the DCI and , comprising receiving the DCI within the monitoring window based on the first information, wherein the monitoring window is set within a DRX Active Time, and the first information includes an offset and a Duration of the monitoring window.
  • the offset may be a distance from the start point of the DRX Active Time to the start point of the monitoring window.
  • the offset may be expressed based on the number of slots.
  • the DCI is received through a first search space (SS) set allocated within the monitoring window, and monitoring for a second SS set allocated after the first SS set within the monitoring window is not performed.
  • SS search space
  • the first information includes information related to a period to which the monitoring window is repeatedly allocated, and the monitoring window may be repeatedly allocated within the DRX Active Time based on the information related to the period.
  • the DCI may be in DCI format 2_6.
  • a terminal supporting a discontinuous reception (DRX) operation for receiving downlink control information (DCI), comprising: at least one transceiver; at least one processor; and at least one memory operatively coupled to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform an operation, the operation comprising: Receiving first information related to a monitoring window for the DCI through a transceiver, and receiving, through the at least one transceiver, the DCI within the monitoring window based on the first information, A window is set within the DRX Active Time, and the first information includes information related to an offset and a duration of the monitoring window, and the offset is from the start point of the DRX Active Time to the start point of the monitoring window. could be the street.
  • DRX discontinuous reception
  • the offset may be expressed based on the number of slots.
  • the DCI is received through a first search space (SS) set allocated within the monitoring window, and monitoring for a second SS set allocated after the first SS set within the monitoring window is not performed.
  • SS search space
  • the first information includes information related to a period to which the monitoring window is repeatedly allocated, and the monitoring window may be repeatedly allocated within the DRX Active Time based on the information related to the period.
  • the DCI may be in DCI format 2_6.
  • an apparatus supporting a discontinuous reception (DRX) operation for receiving downlink control information (DCI), comprising: at least one processor; and at least one memory operatively coupled to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform an operation, the operation comprising: Receiving first information related to a monitoring window, and receiving the DCI within the monitoring window based on the first information, wherein the monitoring window is set within a DRX Active Time, and the first information is an offset and information related to the duration of the monitoring window, wherein the offset may be a distance from the start point of the DRX Active Time to the start point of the monitoring window.
  • DRX discontinuous reception
  • a computer-readable storage medium comprising at least one computer program for causing at least one processor according to the present disclosure to perform an operation, the operation comprising: receiving first information related to a monitoring window for the DCI; 1, comprising receiving the DCI within the monitoring window based on 1 information, wherein the monitoring window is set within the DRX Active Time, and the first information includes information related to an offset and a duration of the monitoring window.
  • the offset may be a distance from the start point of the DRX Active Time to the start point of the monitoring window.
  • first information related to a monitoring window for the DCI is transmitted and transmitting the DCI within the monitoring window based on the first information, wherein the monitoring window is set within a DRX Active Time, and the first information includes an offset and a duration of the monitoring window.
  • the offset may be a distance from the start point of the DRX Active Time to the start point of the monitoring window.
  • a base station capable of configuring a Discontinuous Reception (DRX) operation for transmitting Downlink Control Information (DCI), comprising: at least one transceiver; at least one processor; and at least one memory operatively coupled to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform an operation, the operation comprising: Transmitting first information related to a monitoring window for the DCI through a transceiver, and transmitting, through the at least one transceiver, the DCI within the monitoring window based on the first information, wherein the monitoring A window is set within the DRX Active Time, and the first information includes information related to an offset and a duration of the monitoring window, and the offset is from the start point of the DRX Active Time to the start point of the monitoring window.
  • DCI Downlink Control Information
  • DCI format 2_6 various operations that may be beneficial in terms of power saving may be indicated to User Equipment (UE) even within Discontinuous Reception (DRX) active time.
  • UE User Equipment
  • DRX Discontinuous Reception
  • DCI format 2_6 it is possible to instruct the UE to monitor only the DCI format required by the network, and to adapt the parameters for the related Search Space (SS) set configuration.
  • BD blind decoding
  • CCE control channel element
  • a gain in terms of power saving of the UE may be obtained by receiving DCI format 2_6 within the DRX active time.
  • FIG. 1 illustrates physical channels used in a 3GPP system, which is an example of a wireless communication system, and a general signal transmission method using the same.
  • FIG. 2 illustrates the structure of a radio frame.
  • 3 illustrates a resource grid of slots.
  • FIG. 4 shows an example in which a physical channel is mapped in a slot.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • 6 to 8 are diagrams for explaining a physical downlink control channel (PDCCH) in an NR system.
  • PDCCH physical downlink control channel
  • FIGS 9 to 10 are diagrams for explaining an Idle Mode Discontinuous Reception (DRX) operation.
  • DRX Discontinuous Reception
  • 11 to 13 are diagrams for explaining a DRX operation in a Radio Resource Control (RRC) Connected mode.
  • RRC Radio Resource Control
  • 14 is a diagram for explaining a method of receiving DCI Format 2_6 outside of DRX Active Time.
  • 15 to 17 are diagrams for explaining operation procedures of a UE and a base station according to an embodiment of the present disclosure.
  • 18 to 21 are diagrams for explaining a method of setting a monitoring window for DCI format 2_6 within DRX Active Time according to an embodiment of the present disclosure.
  • 22 to 24 are diagrams for explaining a method of receiving DCI format 2_6 within DRX Active Time according to an embodiment of the present disclosure.
  • 25 is a diagram for explaining a method of setting a monitoring window for DCI format 2_6 within DRX Active Time according to an embodiment of the present disclosure.
  • 26 is a diagram for explaining a method of setting a time gap for reception of DCI format 2_6 according to an embodiment of the present disclosure.
  • FIG. 27 is a diagram for explaining a method of setting a search space (SS) set for DCI format 2_6 according to an embodiment of the present disclosure.
  • 29 illustrates a wireless device applicable to the present disclosure.
  • FIG. 30 illustrates a vehicle or an autonomous driving vehicle that may be applied to the present disclosure.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with a radio technology such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented with a radio technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), and the like.
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3GPP (3rd Generation Partnership Project) long term evolution (LTE) is a part of Evolved UMTS (E-UMTS) using E-UTRA
  • LTE-A Advanced
  • 3GPP NR New Radio or New Radio Access Technology
  • 3GPP LTE/LTE-A is an evolved version of 3GPP LTE/LTE-A.
  • the three main requirements areas for 5G are (1) Enhanced Mobile Broadband (eMBB) area, (2) Massive Machine Type Communication (mMTC) area and (3) Ultra-reliable and It includes an Ultra-reliable and Low Latency Communications (URLLC) area.
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC Ultra-reliable and Low Latency Communications
  • KPI key performance indicator
  • eMBB goes far beyond basic mobile Internet access, covering rich interactive work, media and entertainment applications in the cloud or augmented reality.
  • Data is one of the key drivers of 5G, and for the first time in the 5G era, we may not see dedicated voice services.
  • voice is simply expected to be processed as an application using the data connection provided by the communication system.
  • the main causes for increased traffic volume are an increase in content size and an increase in the number of applications requiring high data rates.
  • Streaming services audio and video
  • interactive video and mobile Internet connections will become more widely used as more devices connect to the Internet. Many of these applications require always-on connectivity to push real-time information and notifications to users.
  • Cloud storage and applications are rapidly increasing in mobile communication platforms, which can be applied to both work and entertainment.
  • cloud storage is a special use case that drives the growth of uplink data rates.
  • 5G is also used for remote work in the cloud, requiring much lower end-to-end latency to maintain a good user experience when tactile interfaces are used.
  • Entertainment For example, cloud gaming and video streaming are other key factors that increase the demand for mobile broadband capabilities. Entertainment is essential on smartphones and tablets anywhere, including in high-mobility environments such as trains, cars and airplanes.
  • Another use example is augmented reality for entertainment and information retrieval.
  • augmented reality requires very low latency and instantaneous amount of data.
  • URLLC includes new services that will transform industries through ultra-reliable/available low-latency links such as self-driving vehicles and remote control of critical infrastructure. This level of reliability and latency is essential for smart grid control, industrial automation, robotics, and drone control and coordination.
  • 5G could complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of delivering streams rated from hundreds of megabits per second to gigabits per second. This high speed is required to deliver TVs in resolutions of 4K and higher (6K, 8K and higher), as well as virtual and augmented reality.
  • Virtual Reality (VR) and Augmented Reality (AR) applications almost include immersive sporting events. Certain applications may require special network settings. For VR games, for example, game companies may need to integrate core servers with network operators' edge network servers to minimize latency.
  • Automotive is expected to be an important new driving force for 5G with many use cases for mobile communication to vehicles. For example, entertainment for passengers requires simultaneous high capacity and high mobility mobile broadband. The reason is that future users continue to expect high-quality connections regardless of their location and speed.
  • Another use case in the automotive sector is augmented reality dashboards. It identifies objects in the dark and overlays information that tells the driver about the distance and movement of the object over what the driver is seeing through the front window.
  • wireless modules will enable communication between vehicles, information exchange between vehicles and supporting infrastructure, and information exchange between automobiles and other connected devices (eg, devices carried by pedestrians).
  • Safety systems can help drivers lower the risk of accidents by guiding alternative courses of action to help them drive safer.
  • the next step will be remote-controlled or self-driven vehicles.
  • Smart cities and smart homes referred to as smart societies, will be embedded with high-density wireless sensor networks.
  • a distributed network of intelligent sensors will identify conditions for cost and energy-efficient maintenance of a city or house.
  • a similar setup can be performed for each household.
  • Temperature sensors, window and heating controllers, burglar alarms and appliances are all connected wirelessly. Many of these sensors are typically low data rates, low power and low cost. However, for example, real-time HD video may be required in certain types of devices for surveillance.
  • Smart grids use digital information and communication technologies to interconnect these sensors to gather information and act on it. This information can include supplier and consumer behavior, enabling smart grids to improve efficiency, reliability, economics, sustainability of production and distribution of fuels such as electricity in an automated manner.
  • the smart grid can also be viewed as another low-latency sensor network.
  • the health sector has many applications that can benefit from mobile communications.
  • the communication system may support telemedicine providing clinical care from a remote location. This can help reduce barriers to distance and improve access to consistently unavailable health care services in remote rural areas. It is also used to save lives in critical care and emergency situations.
  • a wireless sensor network based on mobile communication may provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
  • Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing cables with reconfigurable wireless links is an attractive opportunity for many industries. Achieving this, however, requires that the wireless connection operate with cable-like delay, reliability and capacity, and that its management be simplified. Low latency and very low error probability are new requirements that need to be connected with 5G.
  • Logistics and freight tracking are important use cases for mobile communications that use location-based information systems to enable tracking of inventory and packages from anywhere.
  • Logistics and freight tracking use cases typically require low data rates but require wide range and reliable location information.
  • 1 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method.
  • the UE receives a Synchronization Signal Block (SSB) from the base station.
  • the SSB includes a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the UE synchronizes with the base station based on PSS/SSS and acquires information such as cell identity.
  • the terminal may receive the PBCH from the base station to obtain the broadcast information in the cell.
  • the UE may receive a DL RS (Downlink Reference Signal) in the initial cell search step to check the downlink channel state.
  • DL RS Downlink Reference Signal
  • the UE may receive a Physical Downlink Control Channel (PDCCH) and a Physical Downlink Control Channel (PDSCH) corresponding thereto to obtain more specific system information (S12).
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Control Channel
  • the terminal may perform a random access procedure to complete access to the base station (S13 to S16). Specifically, the UE transmits a preamble through a physical random access channel (PRACH) (S13), and receives a random access response (RAR) for the preamble through a PDCCH and a corresponding PDSCH (S14). . Thereafter, the UE transmits a Physical Uplink Shared Channel (PUSCH) by using the scheduling information in the RAR (S15), and may perform a contention resolution procedure such as the PDCCH and the corresponding PDSCH (S16).
  • PRACH physical random access channel
  • RAR random access response
  • PUSCH Physical Uplink Shared Channel
  • S13/S15 is performed in one step (in which the terminal performs transmission) (message A)
  • S14/S16 is performed in one step (in which the base station performs transmission). It can be done (message B).
  • the UE may perform PDCCH/PDSCH reception (S17) and PUSCH/PUCCH (Physical Uplink Control Channel) transmission (S18) as a general uplink/downlink signal transmission procedure.
  • Control information transmitted by the terminal to the base station is referred to as uplink control information (UCI).
  • UCI includes HARQ ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgment/Negative-ACK), SR (Scheduling Request), CSI (Channel State Information), and the like.
  • CSI includes a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), and a Rank Indication (RI).
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • UCI is generally transmitted through PUCCH, but may be transmitted through PUSCH when control information and data are to be transmitted at the same time.
  • the UE may aperiodically transmit UCI through PUSCH.
  • FIG. 2 is a diagram showing the structure of a radio frame.
  • uplink and downlink transmission consists of frames.
  • One radio frame has a length of 10 ms, and is defined as two 5 ms half-frames (HF).
  • One half-frame is defined as 5 1ms subframes (Subframe, SF).
  • One subframe is divided into one or more slots, and the number of slots in the subframe depends on subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • Each slot includes 12 or 14 OFDM(A) symbols according to a cyclic prefix (CP). When CP is usually used, each slot includes 14 symbols.
  • each slot includes 12 symbols.
  • the symbol may include an OFDM symbol (or a CP-OFDM symbol) and an SC-FDMA symbol (or a DFT-s-OFDM symbol).
  • Table 1 exemplifies that the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to SCS when CP is usually used.
  • Nslotsymb Nframe, uslot Nsubframe,uslot 15KHz (u 0) 14 10
  • Nslotsymb Number of symbols in a slot* Nframe,uslot: Number of slots in a frame
  • Table 2 illustrates that when the extended CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to SCS.
  • the structure of the frame is merely an example, and the number of subframes, the number of slots, and the number of symbols in the frame may be variously changed. Numerology (eg, SCS, CP length, etc.) may be set differently. Accordingly, the (absolute time) interval of a time resource (eg, SF, slot, or TTI) (commonly referred to as TU (Time Unit) for convenience) composed of the same number of symbols may be set differently between the merged cells.
  • a time resource eg, SF, slot, or TTI
  • TU Time Unit
  • NR supports multiple numerology (or subcarrier spacing (SCS)) to support various 5G services. For example, when SCS is 15kHz, it supports a wide area in traditional cellular bands, and when SCS is 30kHz/60kHz, dense-urban, lower latency and a wider carrier bandwidth, and when the SCS is 60 kHz or higher, a bandwidth greater than 24.25 GHz to overcome phase noise.
  • SCS subcarrier spacing
  • the NR frequency band is defined as two types of frequency ranges (FR1, FR2).
  • FR1 and FR2 may be configured as shown in Table 3 below.
  • FR2 may mean a millimeter wave (mmW).
  • One slot includes a plurality of symbols in the time domain. For example, in the case of a normal CP, one slot includes 14 symbols, but in the case of an extended CP, one slot includes 12 symbols.
  • the carrier includes a plurality of subcarriers in the frequency domain.
  • a resource block (RB) is defined as a plurality of (eg, 12) consecutive subcarriers in the frequency domain.
  • a bandwidth part (BWP) is defined as a plurality of consecutive (P)RBs in the frequency domain, and may correspond to one numerology (eg, SCS, CP length, etc.).
  • a carrier may include a maximum of N (eg, 5) BWPs. Data communication is performed through the activated BWP, and only one BWP can be activated for one terminal.
  • Each element in the resource grid is referred to as a resource element (RE), and one complex symbol may be mapped.
  • RE resource element
  • FIG. 4 is a diagram illustrating an example in which a physical channel is mapped in a slot.
  • a DL control channel, DL or UL data, and a UL control channel may all be included in one slot.
  • the first N symbols in a slot may be used to transmit a DL control channel (hereinafter, DL control region), and the last M symbols in a slot may be used to transmit a UL control channel (hereinafter, UL control region).
  • N and M are each an integer greater than or equal to 0.
  • a resource region (hereinafter, referred to as a data region) between the DL control region and the UL control region may be used for DL data transmission or UL data transmission.
  • a time gap for DL-to-UL or UL-to-DL switching may exist between the control region and the data region.
  • the PDCCH may be transmitted in the DL control region, and the PDSCH may be transmitted in the DL data region.
  • the base station transmits a related signal to the terminal through a downlink channel to be described later, and the terminal receives the related signal from the base station through a downlink channel to be described later.
  • PDSCH Physical Downlink Shared Channel
  • PDSCH carries downlink data (eg, DL-SCH transport block, DL-SCH TB), and modulation methods such as Quadrature Phase Shift Keying (QPSK), 16 Quadrature Amplitude Modulation (QAM), 64 QAM, and 256 QAM are applied. do.
  • QPSK Quadrature Phase Shift Keying
  • QAM 16 Quadrature Amplitude Modulation
  • a codeword is generated by encoding the TB.
  • the PDSCH can carry up to two codewords. Scrambling and modulation mapping are performed for each codeword, and modulation symbols generated from each codeword may be mapped to one or more layers. Each layer is mapped to a resource together with a demodulation reference signal (DMRS), is generated as an OFDM symbol signal, and is transmitted through a corresponding antenna port.
  • DMRS demodulation reference signal
  • the PDCCH carries Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • PCH paging information for a paging channel
  • It carries system information on DL-SCH, resource allocation information for higher layer control messages such as random access response transmitted on PDSCH, transmission power control commands, activation/deactivation of CS (Configured Scheduling), and the like.
  • DCI includes a cyclic redundancy check (CRC), and the CRC is masked/scrambled with various identifiers (eg, Radio Network Temporary Identifier, RNTI) according to the owner or use purpose of the PDCCH. For example, if the PDCCH is for a specific terminal, the CRC is masked with a terminal identifier (eg, Cell-RNTI, C-RNTI). If the PDCCH relates to paging, the CRC is masked with a Paging-RNTI (P-RNTI). If the PDCCH relates to system information (eg, System Information Block, SIB), the CRC is masked with a System Information RNTI (SI-RNTI). If the PDCCH relates to a random access response, the CRC is masked with a random access-RNTI (RA-RNTI).
  • CRC cyclic redundancy check
  • RNTI Radio Network Temporary Identifier
  • the modulation method of the PDCCH is fixed (eg, Quadrature Phase Shift Keying, QPSK), and one PDCCH is composed of 1, 2, 4, 8, or 16 CCEs (Control Channel Elements) according to the AL (Aggregation Level).
  • One CCE consists of six REGs (Resource Element Groups).
  • One REG is defined as one OFDMA symbol and one (P)RB.
  • D denotes a resource element (RE) to which DCI is mapped
  • R denotes an RE to which DMRS is mapped.
  • DMRS is mapped to RE #1, RE #5, and RE #9 in the frequency domain direction within one symbol.
  • CORESET corresponds to a set of physical resources/parameters used to carry PDCCH/DCI within the BWP.
  • CORESET contains a REG set with a given pneumonology (eg, SCS, CP length, etc.).
  • CORESET may be set through system information (eg, MIB) or UE-specific higher layer (eg, RRC) signaling. Examples of parameters/information used to set CORESET are as follows.
  • One or more CORESETs are configured for one UE, and a plurality of CORESETs may overlap in the time/frequency domain.
  • controlResourceSetId Indicates identification information (ID) of CORESET.
  • MSB Most Significant Bit
  • duration indicates a time domain resource of CORESET. Indicates the number of consecutive OFDMA symbols constituting CORESET. For example, duration has a value of 1-3.
  • - cce-REG-MappingType Indicates the CCE-to-REG mapping type. Interleaved type and non-interleaved type are supported.
  • precoderGranularity Indicates the precoder granularity in the frequency domain.
  • TCI-StateID Transmission Configuration Indication
  • TCI state is used to provide a Quasi-Co-Location (QCL) relationship between the DL RS(s) in the RS set (TCI-state) and the PDCCH DMRS port.
  • QCL Quasi-Co-Location
  • - pdcch-DMRS-ScramblingID Indicates information used for initialization of the PDCCH DMRS scrambling sequence.
  • the precoder granularity in the frequency domain for each CORESET is set to one of the following by higher layer signaling:
  • REGs in CORESET are numbered based on a time-first mapping manner. That is, REGs are sequentially numbered from 0, starting from the first OFDM symbol in the lowest-numbered resource block inside CORESET.
  • the CCE to REG mapping type is set to one of a non-interleaved CCE-REG mapping type or an interleaved CCE-REG mapping type.
  • 7(a) illustrates a non-interleaved CCE-REG mapping type
  • FIG. 7(b) illustrates an interleaved CCE-REG mapping type.
  • Non-interleaved (non-interleaved) CCE-REG mapping type (or localized mapping type): 6 REGs for a given CCE constitute one REG bundle, and all REGs for a given CCE are contiguous. One REG bundle corresponds to one CCE
  • Interleaved (interleaved) CCE-REG mapping type (or Distributed mapping type): 2, 3 or 6 REGs for a given CCE constitute one REG bundle, and the REG bundle is interleaved in CORESET.
  • a REG bundle in a CORESET consisting of 1 OFDM symbol or 2 OFDM symbols consists of 2 or 6 REGs, and a REG bundle in a CORESET consisting of 3 OFDM symbols consists of 3 or 6 REGs.
  • REG bundle size is set per CORESET
  • the number of rows (A) of the (block) interleaver for the above interleaving operation is set to one of 2, 3, and 6.
  • the number of columns of the block interleaver is equal to P/A.
  • a write operation for the block interleaver is performed in a row-first direction as shown in FIG. 11 below, and a read operation is performed in a column-first direction.
  • Cyclic shift (CS) of the interleaving unit is applied based on an ID that can be set independently from an ID that can be set for DMRS.
  • the UE may monitor (eg, blind decoding) a set of PDCCH candidates in CORESET.
  • the PDCCH candidate indicates CCE(s) monitored by the UE for PDCCH reception/detection.
  • PDCCH monitoring may be performed in one or more CORESETs on the active DL BWP on each activated cell in which PDCCH monitoring is configured.
  • the set of PDCCH candidates monitored by the UE is defined as a PDCCH search space (SS) set.
  • the SS set may be a Common Search Space (CSS) set or a UE-specific Search Space (USS) set.
  • Table 4 illustrates the PDCCH search space.
  • Type Search Space RNTI Use Case Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI(s) UE Specific UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI(s) User specific PDSCH decoding
  • the SS set may be configured through system information (eg, MIB) or UE-specific higher layer (eg, RRC) signaling.
  • S eg, 10
  • S eg, 10
  • S eg, 10
  • S 10) or less SS sets may be configured in each DL BWP of the serving cell.
  • the following parameters/information may be provided for each SS set.
  • Each SS set is associated with one CORESET, and each CORESET configuration can be associated with one or more SS sets.
  • - searchSpaceId Indicates the ID of the SS set.
  • controlResourceSetId indicates the CORESET associated with the SS set.
  • - monitoringSlotPeriodicityAndOffset Indicates the PDCCH monitoring period interval (slot unit) and the PDCCH monitoring interval offset (slot unit).
  • - monitoringSymbolsWithinSlot indicates the first OFDMA symbol(s) for PDCCH monitoring in a slot in which PDCCH monitoring is configured. It is indicated through a bitmap, and each bit corresponds to each OFDMA symbol in a slot. The MSB of the bitmap corresponds to the first OFDM symbol in the slot. OFDMA symbol(s) corresponding to bit(s) having a bit value of 1 corresponds to the first symbol(s) of CORESET in the slot.
  • - searchSpaceType Indicates whether the SS type is CSS or USS.
  • - DCI format Indicates the DCI format of a PDCCH candidate.
  • the UE may monitor PDCCH candidates in one or more SS sets in the slot.
  • An opportunity eg, time/frequency resource
  • PDCCH (monitoring) opportunity One or more PDCCH (monitoring) opportunities may be configured within a slot.
  • Table 5 illustrates DCI formats transmitted through the PDCCH.
  • DCI format 0_0 is used to schedule TB-based (or TB-level) PUSCH
  • DCI format 0_1 is TB-based (or TB-level) PUSCH or CBG (Code Block Group)-based (or CBG-level) PUSCH can be used to schedule
  • DCI format 1_0 is used to schedule a TB-based (or TB-level) PDSCH
  • DCI format 1_1 is used to schedule a TB-based (or TB-level) PDSCH or a CBG-based (or CBG-level) PDSCH.
  • Can DL grant DCI).
  • DCI format 0_0/0_1 may be referred to as UL grant DCI or UL scheduling information
  • DCI format 1_0/1_1 may be referred to as DL grant DCI or UL scheduling information
  • DCI format 2_0 is used to deliver dynamic slot format information (eg, dynamic SFI) to the terminal
  • DCI format 2_1 is used to deliver downlink pre-emption information to the terminal.
  • DCI format 2_0 and/or DCI format 2_1 may be delivered to terminals in a corresponding group through a group common PDCCH, which is a PDCCH delivered to terminals defined as one group.
  • DCI format 0_0 and DCI format 1_0 may be referred to as a fallback DCI format
  • DCI format 0_1 and DCI format 1_1 may be referred to as a non-fallback DCI format.
  • the DCI size/field configuration remains the same regardless of the UE configuration.
  • the non-fallback DCI format the DCI size/field configuration varies according to UE configuration.
  • the terminal transmits a related signal to the base station through an uplink channel to be described later, and the base station receives the related signal from the terminal through an uplink channel to be described later.
  • PUCCH Physical Uplink Control Channel
  • the PUCCH carries Uplink Control Information (UCI), HARQ-ACK, and/or a scheduling request (SR), and is divided into Short PUCCH and Long PUCCH according to the PUCCH transmission length.
  • UCI Uplink Control Information
  • HARQ-ACK HARQ-ACK
  • SR scheduling request
  • UCI includes:
  • - SR (Scheduling Request): Information used to request a UL-SCH resource.
  • Hybrid Automatic Repeat reQuest-ACK (Acknowledgment): It is a response to a downlink data packet (eg, codeword) on the PDSCH. Indicates whether the downlink data packet has been successfully received. 1 bit of HARQ-ACK may be transmitted in response to a single codeword, and 2 bits of HARQ-ACK may be transmitted in response to two codewords.
  • the HARQ-ACK response includes positive ACK (simply, ACK), negative ACK (NACK), DTX or NACK/DTX.
  • HARQ-ACK is mixed with HARQ ACK/NACK and ACK/NACK.
  • MIMO-related feedback information includes a Rank Indicator (RI) and a Precoding Matrix Indicator (PMI).
  • RI Rank Indicator
  • PMI Precoding Matrix Indicator
  • Table 6 illustrates PUCCH formats. According to the PUCCH transmission length, it can be divided into Short PUCCH (formats 0, 2) and Long PUCCH (formats 1, 3, 4).
  • PUCCH format 0 carries UCI having a maximum size of 2 bits, and is mapped and transmitted based on a sequence. Specifically, the UE transmits a specific UCI to the base station by transmitting one of the plurality of sequences through the PUCCH having the PUCCH format 0. The UE transmits a PUCCH of PUCCH format 0 within a PUCCH resource for configuring a corresponding SR only when transmitting a positive SR.
  • PUCCH format 1 carries UCI with a maximum size of 2 bits, and the modulation symbol is a time domain It is spread by an orthogonal cover code (OCC) (which is set differently depending on whether or not frequency hopping is performed).
  • OCC orthogonal cover code
  • DMRS is transmitted in a symbol in which a modulation symbol is not transmitted (that is, time division multiplexing (TDM) is performed and transmitted).
  • PUCCH format 2 carries UCI having a bit size greater than 2 bits, and a modulation symbol is transmitted through frequency division multiplexing (FDM) with DMRS.
  • FDM frequency division multiplexing
  • DM-RS is located at symbol indexes #1, #4, #7, and #10 in a given resource block with a density of 1/3.
  • a Pseudo Noise (PN) sequence is used for the DM_RS sequence.
  • PN Pseudo Noise
  • PUCCH format 3 UE multiplexing is not performed in the same physical resource blocks, and UCI of a bit size greater than 2 bits is carried.
  • the PUCCH resource of PUCCH format 3 does not include an orthogonal cover code.
  • the modulation symbol is transmitted through DMRS and time division multiplexing (TDM).
  • PUCCH format 4 multiplexing is supported for up to 4 UEs in the same physical resource blocks, and UCI of a bit size greater than 2 bits is carried.
  • the PUCCH resource of PUCCH format 3 includes an orthogonal cover code.
  • the modulation symbol is transmitted through DMRS and time division multiplexing (TDM).
  • PUSCH carries uplink data (eg, UL-SCH transport block, UL-SCH TB) and/or uplink control information (UCI), and CP-OFDM (Cyclic Prefix - Orthogonal Frequency Division Multiplexing) waveform or It is transmitted based on a Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing (DFT-s-OFDM) waveform.
  • DFT-s-OFDM Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing
  • the UE when transform precoding is not possible (eg, transform precoding is disabled), the UE transmits a PUSCH based on the CP-OFDM waveform, and when transform precoding is possible (eg, transform precoding is enabled), the UE transmits CP- PUSCH may be transmitted based on an OFDM waveform or a DFT-s-OFDM waveform.
  • PUSCH transmission is dynamically scheduled by a UL grant in DCI, or semi-static based on higher layer (eg, RRC) signaling (and/or Layer 1 (L1) signaling (eg, PDCCH)) -static) can be scheduled (configured scheduling, configured grant).
  • PUSCH transmission may be performed on a codebook-based or non-codebook-based basis.
  • FIG. 5 is a diagram for explaining a timing for transmitting HARQ-ACK and a timing and allocation method for transmitting a PUSCH.
  • HARQ-ACK is information indicating whether the UE (User Equipment) has successfully received the physical downlink channel, and when the UE successfully receives the physical downlink channel, ACK (acknowledgement), otherwise, negative ACK ( negative ACK, NACK) is fed back to the BS.
  • HARQ in NR supports HARQ-ACK feedback of 1 bit per transport block.
  • 5 is a diagram illustrating an example of the HARQ-ACK timing (K1).
  • K0 represents the number of slots from a slot having a PDCCH carrying a DL assignment (ie, a DL grant) to a slot having a corresponding PDSCH transmission
  • K1 is a slot of the corresponding HARQ-ACK transmission from a slot of the PDSCH.
  • K2 represents the number of slots from a slot having a PDCCH carrying a UL grant to a slot having a corresponding PUSCH transmission. That is, KO, K1, and K2 can be briefly summarized as shown in Table 7 below.
  • the BS may provide the HARQ-ACK feedback timing to the UE dynamically in DCI or semi-statically through RRC signaling.
  • NR supports different minimum HARQ processing times between UEs.
  • the HARQ processing time includes a delay between a DL data reception timing and a corresponding HARQ-ACK transmission timing and a delay between a UL grant reception timing and a corresponding UL data transmission timing.
  • the UE transmits information about the capability of its minimum HARQ processing time to the BS. From a UE perspective, HARQ ACK / NACK feedback for multiple DL transmissions in the time domain may be transmitted in one UL data / control region. The timing between DL data reception and the corresponding ACK is indicated by DCI.
  • a code block group (CBG)-based transmission with single/multi-bit HARQ-ACK feedback is performed.
  • a transport block (TB) may be mapped to one or more CBs according to the size of the TB. For example, in the channel coding process, a CRC code is attached to a TB, and if the CRC attached TB is not larger than a predetermined size, the CRC attached TB corresponds to one code block (CB), but the CRC attached TB is the predetermined size. If greater than the size, the CRC attached TB is segmented into a plurality of CBs.
  • a UE may be configured to receive CBG-based transmissions, and retransmissions may be scheduled to carry a subset of all CBs of a TB.
  • the UE may detect the PDCCH in slot #n.
  • the PDCCH includes downlink scheduling information (eg, DCI formats 1_0 and 1_1), and the PDCCH indicates a DL assignment-to-PDSCH offset (K0) and a PDSCH-HARQ-ACK reporting offset (K1).
  • DCI formats 1_0 and 1_1 may include the following information.
  • Frequency domain resource assignment indicates the RB resource (eg, one or more (discontinuous) RB) allocated to the PDSCH
  • K0 indicates the starting position (eg, OFDM symbol index) and length (eg, number of OFDM symbols) of the PDSCH in the slot
  • HARQ process ID (Identity) for data (eg, PDSCH, TB)
  • - PUCCH resource indicator indicates a PUCCH resource to be used for UCI transmission among a plurality of PUCCH resources in the PUCCH resource set
  • the UE may transmit UCI through PUCCH in slot #(n+K1).
  • the UCI includes a HARQ-ACK response for the PDSCH.
  • the HARQ-ACK response may be configured with 1-bit.
  • the HARQ-ACK response may be configured with 2-bits when spatial bundling is not configured, and may be configured with 1-bits when spatial bundling is configured.
  • the HARQ-ACK transmission time for the plurality of PDSCHs is designated as slot #(n+K1)
  • the UCI transmitted in the slot #(n+K1) includes HARQ-ACK responses for the plurality of PDSCHs.
  • the UE may detect the PDCCH in slot #n.
  • the PDCCH includes uplink scheduling information (eg, DCI formats 0_0, 0_1).
  • DCI formats 0_0 and 0_1 may include the following information.
  • Time domain resource assignment indicates the slot offset K2, the starting position (eg, symbol index) and length (eg, the number of OFDM symbols) of the PUSCH in the slot.
  • the start symbol and length may be indicated through a Start and Length Indicator Value (SLIV) or may be indicated respectively.
  • SIV Start and Length Indicator Value
  • the UE may transmit the PUSCH in slot #(n+K2) according to the scheduling information of slot #n.
  • PUSCH includes UL-SCH TB.
  • the UE uses Discontinuous Reception (DRX) in RRC_IDLE and RRC_INACTIVE states to reduce power consumption.
  • DRX Discontinuous Reception
  • the UE performs DRX operation according to DRX configuration information.
  • the UE operating based on DRX repeats ON/OFF for the reception operation. For example, when DRX is configured, the UE attempts PDCCH reception/detection (eg, PDCCH monitoring) only at a predetermined time interval (eg, ON), and the remaining time (eg, OFF/Sleep) does not attempt PDCCH reception.
  • PDCCH reception/detection eg, PDCCH monitoring
  • a predetermined time interval eg, ON
  • the remaining time eg, OFF/Sleep
  • the time during which the UE should attempt to receive the PDCCH is called on-duration, and the on-duration is defined once per DRX cycle.
  • the UE may receive DRX configuration information from a base station (eg, gNB) through RRC signaling and may perform a DRX operation through (Long) DRX command MAC CE reception.
  • a base station eg, gNB
  • RRC signaling may perform a DRX operation through (Long) DRX command MAC CE reception.
  • DRX configuration information may be included in MAC-CellGroupConfig.
  • IE MAC-CellGroupConfig is used to configure MAC parameters for a cell group including DRX.
  • Discontinuous Reception refers to an operation mode in which a user equipment (UE) discontinuously receives/monitors a downlink channel so that the UE can reduce battery consumption. That is, the UE configured with DRX can reduce power consumption by discontinuously receiving the downlink signal.
  • the DRX operation is performed in a DRX cycle indicating a time interval in which On Duration is periodically repeated.
  • DRX cycle includes On Duration and Sleep Duration (or Opportunity for DRX).
  • On Duration indicates a time interval during which the UE monitors the PDCCH to receive the PDCCH.
  • DRX may be performed in RRC (Radio Resource Control)_IDLE State (or mode), RRC_INACTIVE State (or mode), or RRC_CONNECTED State (or mode). In RRC_IDLE State and RRC_INACTIVE State, DRX is used to receive paging signals discontinuously.
  • RRC Radio Resource Control
  • RRC_Idle State A state in which a radio connection (RRC connection) is not established between the base station and the terminal.
  • RRC Inactive State A state in which a wireless connection (RRC connection) is established between the base station and the terminal, but the wireless connection is inactive.
  • RRC_Connected state A state in which a wireless connection (RRC connection) is established between the base station and the terminal.
  • DRX is basically divided into idle mode DRX, connected DRX (C-DRX) and extended DRX.
  • DRX applied in RRC IDLE state is called IDLE mode DRX
  • DRX applied in RRC CONNECTED state is called connected mode DRX (C-DRX).
  • Extended/enhanced DRX is a mechanism that can extend the cycles of IDLE mode DRX and C-DRX, and can be mainly used for (large-scale) IoT applications. Whether to allow eDRX in IDLE mode DRX may be set based on system information (eg, SIB1).
  • SIB1 system information
  • SIB1 may include an eDRX-Allowed parameter.
  • the eDRX-Allowed parameter is a parameter indicating whether IDLE mode extended DRX is allowed.
  • One paging opportunity may be a subframe in which a Paging-Radio Network Temporary Identifier (P-RNTI) based Physical Downlink Control Channel (PDCCH) or MTC PDCCH (MPDCCH) or Narrowband PDCCH (NPDCCH) can be transmitted.
  • P-RNTI-based (M/N) PDCCH may address/scheduling a paging message for NB-IoT.
  • the PO may indicate a start subframe for MPDCCH repetition.
  • PO may indicate a start subframe for NPDCCH repetition. If the subframe determined by the PO is not a valid NB-IoT downlink subframe, the first valid NB-IoT downlink subframe after the PO may be a start subframe of NPDCCH repetition.
  • One paging frame is one radio frame that may include one or a plurality of paging opportunities.
  • the UE may be configured to monitor only one PO per DRX cycle.
  • One paging narrowband is one narrowband in which the terminal performs paging message reception/monitoring.
  • the PF, PO and/or PNB may be determined based on a DRX parameter provided through network signaling (eg, system information).
  • 'PDCCH' may mean MPDCCH, NPDCCH, and/or general PDCCH.
  • 'UE' refers to MTC UE, BL (Bandwidth Reduced Low Complexity)/CE (Coverage Enhanced) UE, NB-IoT UE, RedCap (RedCap) UE, general UE and/or IAB-MT (mobile termination). can .
  • FIG. 9 is a flowchart illustrating an example of a method of performing an IDLE mode DRX operation.
  • the UE receives IDLE mode DRX configuration information through higher layer signaling (eg, system information) from the base station (S910).
  • higher layer signaling eg, system information
  • the UE determines a Paging Frame (PF) and a Paging Occasion (PO) for monitoring the PDCCH in the paging DRX cycle based on the IDLE mode DRX configuration information (S920).
  • the DRX cycle includes On Duration and Sleep Duration (or Opportunity for DRX).
  • the UE monitors the PDCCH in the PO of the determined PF (S930). Meanwhile, the UE monitors only one subframe (PO) per paging DRX cycle.
  • the UE when the UE receives the PDCCH scrambled by the P-RNTI (more precisely, the CRC of the PDCCH) during On Duration (ie, when paging is detected), the UE transitions to the connected mode to transmit and receive data with the base station.
  • the P-RNTI more precisely, the CRC of the PDCCH
  • On Duration ie, when paging is detected
  • FIG. 10 is a diagram illustrating an example of an IDLE mode DRX operation.
  • the UE wakes up every (paging) DRX cycle and monitors the PDCCH.
  • the UE transitions to the Connected state and receives data. Otherwise, the UE may enter sleep mode again.
  • C-DRX is DRX applied in RRC Connected State.
  • the DRX cycle of C-DRX may consist of a short (Short) DRX cycle and/or a long (Long) DRX cycle.
  • a short DRX cycle is optional.
  • the UE performs PDCCH monitoring during On Duration. If there is a successfully detected PDCCH during PDCCH monitoring, the UE operates (or runs) the Inactive Timer and maintains the Wake State. On the other hand, if there is no PDCCH successfully detected during PDCCH monitoring, the UE enters a sleep state after On Duration ends.
  • a PDCCH reception occasion (eg, a slot having a PDCCH search space/candidate) may be configured discontinuously based on the C-DRX configuration.
  • a PDCCH reception occasion (eg, a slot having a PDCCH search space/candidate) may be continuously configured according to a PDCCH search space configuration.
  • PDCCH monitoring may be limited to a time interval set as a measurement gap (Measurement Gap) regardless of the C-DRX configuration.
  • FIG. 11 is a flowchart illustrating an example of a method of performing a C-DRX operation.
  • the UE receives RRC signaling (eg, MAC-MainConfig IE) including DRX configuration information from the base station (S1110).
  • RRC signaling eg, MAC-MainConfig IE
  • the DRX configuration information may include the following information.
  • DRX Cycle start period (Duration); For example, the number of PDCCH monitor subframes to be continuously monitored at the beginning of the DRX cycle
  • - drx-InactivityTimer the duration after the PDCCH Occasion corresponding to the PDCCH in which the PDCCH indicates new UL or DL transmission for the MAC entity; For example, the number of subframes after the UE decodes the PDCCH with scheduling information, that is, the duration the UE waits to successfully decode another PDCCH after the last PDCCH is decoded. If no other PDCCH is detected within the corresponding interval, the UE transitions to the Sleep mode.
  • the UE restarts the drx-inactivity timer after successful decoding of the PDCCH for initial transmission only, not for retransmission.
  • - drx-RetransmissionTimer In the case of DL, the maximum duration until DL retransmission is received (Duration); In the case of UL, the maximum duration until a grant for UL retransmission is received, for example, the number of PDCCH subframes to be continuously monitored when HARQ retransmission is expected
  • DRX Cycle that operates as many as drxShortCycleTimer when Drx-InactivityTimer ends
  • the total duration (Duration) for which the UE monitors the PDCCH including (a) "On-duration" of the DRX cycle, (b) the time during which the UE performs continuous reception while the drx-inactivity timer has not expired , and (c) the UE includes a time to perform continuous reception while waiting for a retransmission opportunity (Opportunity).
  • the Active Time for the serving cell of the DRX group includes the following time.
  • the UE monitors the PDCCH during the ON Duration of the DRX cycle based on the DRX configuration (S1130).
  • FIG. 12 is a diagram illustrating an example of a C-DRX operation.
  • the UE when the UE receives scheduling information (eg, DL Assignment or UL Grant) in the RRC_Connected State (hereinafter referred to as the Connected State), the UE executes the DRX Inactivity Timer and the RRC Inactivity Timer.
  • scheduling information eg, DL Assignment or UL Grant
  • DRX mode starts.
  • the UE wakes up from the DRX Cycle and monitors the PDCCH for a predetermined time (on duration timer).
  • Short DRX when Short DRX is configured, when the UE starts the DRX mode, the UE first starts a short DRX cycle, and after the short DRX cycle ends, the long DRX cycle starts.
  • the Long DRX cycle is a multiple of the short DRX cycle. That is, in a short DRX cycle, the UE wakes up more frequently. After the RRC Inactivity Timer expires, the UE transitions to an Idle state and performs an Idle mode DRX operation.
  • the DRX Cycle 13 shows the DRX Cycle.
  • the C-DRX operation was introduced for power saving of the UE. If a PDCCH is not received within the on-duration defined for each DRX cycle, the UE enters sleep mode until the next DRX cycle and does not perform transmission/reception.
  • the active time may be continued (or increased) based on operations such as inactivity timer and retransmission timer.
  • the UE may perform a sleep operation until the next DRX operation when additional data is not received within active time.
  • a wake up signal is introduced to acquire additional power saving gain to the existing C-DRX operation.
  • WUS may be a basis for determining whether the UE should perform PDCCH monitoring (monitoring) in on-duration of each DRX cycle (or multiple DRX cycles).
  • the UE may maintain a sleep operation without performing PDCCH monitoring in one or multiple DRX cycles associated with the WUS.
  • a monitoring window is defined so that the UE indicated for the DRX operation can detect the newly introduced DCI format 2_6 within the DRX active time.
  • DCI format 2_6 can be received only at a predetermined time (eg, ps-Offset ) before the DRX active time starts.
  • a predetermined time eg, ps-Offset
  • SS set adaptation As a technology for power saving of future wireless communication systems (eg, Rel-17 NR system, etc.), in order for the UE to reduce power consumption in DRX active time, SS set adaptation, dynamic (eg, , PDCCH or MAC CE) various methods such as CORESET on/off, and/or adaptation of BD/CCE limit may be used.
  • the BD (Blind Decoding) limit may mean the number of PDCCH candidates (eg, the number of blind decodings) that the UE needs to monitor for a unit time.
  • Control Channel Element (CCE) limit may be associated with channel estimation capability required in relation to the PDCCH detection operation of the UE.
  • the CCE limit may be based on the number of CCEs that do not overlap each other.
  • the base station may instruct the UE to perform power saving-related operations by using DCI format 2_6 newly introduced in Rel-16.
  • the UE when a DRX operation is performed, the UE may be notified of whether to wake up in each DRX cycle through DCI format 2_6.
  • Table 8 shows DCI format 2_6 defined in standard document TS 38.212.
  • DCI format 2_6 is used for notifying the power saving information outside DRX Active Time for one or more UEs.
  • the following information is transmitted by means of the DCI format 2_6 with CRC scrambled by PS-RNTI: - block number 1, block number 2,... , block number N where the starting position of a block is determined by the parameter ps-PositionDCI-2-6 provided by higher layers for the UE configured with the block.
  • one block is configured for the UE by higher layers, with the following fields defined for the block: - Wake-up indication - 1 bit - SCell dormancy indication - 0 bit if higher layer parameter Scell-groups-for-dormancy-outside-active-time is not configured; otherwise 1, 2, 3, 4 or 5 bits bitmap determined according to higher layer parameter Scell-groups-for-dormancy-outside-active-time, where each bit corresponds to one of the SCell group(s) configured by higher layers parameter Scell-groups-for-dormancy-outside-active-time, with MSB to LSB of the bitmap corresponding to the first to last configured SCell group.
  • the size of DCI format 2_6 is indicated by the higher layer parameter sizeDCI-2-6 , according to Clause 10.3 of TS 38.213.
  • the monitoring occasion for DCI format 2_6 may be determined by the ps-Offset indicated by the network and the Time Gap reported by the UE.
  • the time gap reported by the UE may be interpreted as a preparation period necessary for an operation after the UE wakes up.
  • the network may instruct the UE to configure a search space (SS) set capable of monitoring DCI format 2_6.
  • SS search space
  • monitoring of DCI format 2_6 may be instructed in three consecutive slots (ie, duration) at monitoring periodicity intervals.
  • DCI format 2_6 can be monitored by the start time of the DRX cycle (eg, the point where the on-duration timer starts) and the ps-Offset configured by the network. A monitoring window is determined. In addition, PDCCH monitoring may not be required in the time gap period reported by the UE. Finally, the SS Set monitoring occasion on which the UE actually performs monitoring may be determined as the first Full Duration (ie, Actual Monitoring Occasions of FIG. 14 ) within the monitoring window.
  • 15 is a diagram for explaining an operation process of a UE according to embodiments of the present disclosure.
  • the UE may receive first information for configuring a monitoring window for the first DCI format 2_6 within the DRX Active Time (S1501).
  • the first information may be received through higher layer signaling such as RRC (Radio Resource Control) signaling and/or dynamic signaling such as DCI (Downlink Control Information).
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the first information may include parameters for setting a monitoring window for the first DCI format 2_6. For example, it may include information on at least one of an offset, a duration, a period, and a time gap. Meanwhile, the UE may receive the aforementioned offset, Duration, Period, and Time Gap through one signaling, but each of the offset, Duration, Period and Time through separate signaling Gap can also be received.
  • a specific method for setting a monitoring window for DCI format 2_6 through the parameters included in the above-described first information may be based on “Embodiment #1” and “Embodiment #3”.
  • a method of monitoring DCI format 2_6 within the corresponding monitoring window may be based on “Example #2”.
  • a method for setting/using the Time Gap included in the above-described first information may be based on “Example #4”.
  • the UE may receive information on an offset, a duration, and a period of an SS set configuration for monitoring DCI format 2_6 separately or together with the first information.
  • the method of configuring the SS Set may be based on "Example #5".
  • the UE may receive the second DCI format 2_6 outside the DRX Active Time (S1503).
  • the second DCI format 2_6 may include a Wake up Signal (WUS). That is, the UE may start DRX Active Time (eg, On Duration) based on the WUS included in the second DCI format 2_6 (S1505).
  • WUS Wake up Signal
  • the UE may receive the first DCI format 2_6 within the monitoring window for monitoring the first DCI format 2_6 within the DRX Active Time based on the first information described above (S1507).
  • a monitoring window may be set based on "Embodiment #1" and/or "Embodiment 3".
  • the first DCI format 2_6 may be received.
  • the SS Set may be set within the DRX Active Time.
  • the UE may monitor the PDCCH after the Time Gap based on “Example #4” and receive the PDCCH (S1509).
  • the SS Set, PDCCH Occasion, CORESET and / or BWP that is the monitoring target in order for the UE to receive the scheduling DCI (eg, DL Assignment and / or UL grant) after the Time Gap. Information may be included.
  • 16 is a diagram for explaining an operation process of a base station according to embodiments of the present disclosure.
  • the base station may transmit first information for configuring a monitoring window for the first DCI format 2_6 within the DRX Active Time (S1601).
  • the first information may be transmitted through higher layer signaling such as RRC (Radio Resource Control) signaling and/or dynamic signaling such as DCI (Downlink Control Information).
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the first information may include parameters for setting a monitoring window for the first DCI format 2_6. For example, it may include information on at least one of an offset, a duration, a period, and a time gap. Meanwhile, the base station may transmit the above-described offset, duration, period, and time gap through one signaling, but offset, duration, period, and time gap through separate signaling, respectively. can also be sent.
  • a specific method for setting a monitoring window for DCI format 2_6 through the parameters included in the above-described first information may be based on “Embodiment #1” and “Embodiment #3”.
  • a method of transmitting DCI format 2_6 within the corresponding monitoring window may be based on “Example #2”.
  • a method for setting/using the Time Gap included in the above-described first information may be based on “Example #4”.
  • the base station may transmit information on an offset, a duration, and a period of an SS set configuration for monitoring DCI format 2_6 separately or together with the first information.
  • the method of configuring the SS Set may be based on "Example #5".
  • the base station may transmit the second DCI format 2_6 outside the DRX Active Time (S1603).
  • the second DCI format 2_6 may include a Wake up Signal (WUS). That is, the base station may instruct the UE to start DRX Active Time (eg, On Duration) based on the WUS included in the second DCI format 2_6.
  • WUS Wake up Signal
  • the base station may transmit the first DCI format 2_6 within the monitoring window for monitoring the first DCI format 2_6 within the DRX Active Time based on the above-described first information (S1605).
  • a monitoring window may be set based on "Embodiment #1" and/or "Embodiment 3".
  • the first DCI format 2_6 may be transmitted.
  • the SS Set may be set within the DRX Active Time.
  • the base station may transmit the PDCCH after the time gap based on "Example #4" based on the first DCI format 2_6 (S1607).
  • the SS Set, PDCCH Occasion, CORESET and / or BWP that is the monitoring target in order for the UE to receive the scheduling DCI (eg, DL Assignment and / or UL grant) after the Time Gap. Information may be included.
  • 17 is a diagram for explaining an operation process of a UE and a base station according to embodiments of the present disclosure.
  • the base station may transmit first information for configuring a monitoring window for the first DCI format 2_6 to the UE within the DRX Active Time ( S1701 ).
  • the first information may be transmitted through higher layer signaling such as RRC (Radio Resource Control) signaling and/or dynamic signaling such as DCI (Downlink Control Information).
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the first information may include parameters for setting a monitoring window for the first DCI format 2_6. For example, it may include information on at least one of an offset, a duration, a period, and a time gap. Meanwhile, the base station may transmit the above-described offset, duration, period, and time gap through one signaling, but offset, duration, period, and time gap through separate signaling, respectively. may be transmitted to the UE.
  • a specific method for setting a monitoring window for DCI format 2_6 through the parameters included in the above-described first information may be based on “Embodiment #1” and “Embodiment #3”.
  • a method of transmitting DCI format 2_6 within the corresponding monitoring window may be based on “Example #2”.
  • a method for setting/using the Time Gap included in the above-described first information may be based on “Example #4”.
  • the base station may transmit information on an offset, a duration, and a period of an SS set configuration for monitoring DCI format 2_6 to the UE separately or together with the first information.
  • the method of configuring the SS Set may be based on "Example #5".
  • the base station may transmit the second DCI format 2_6 to the UE outside the DRX Active Time (S1703).
  • the second DCI format 2_6 may include a Wake up Signal (WUS).
  • the UE may start DRX Active Time (eg, On Duration) based on the received WUS included in the second DCI format 2_6 (S1705).
  • DRX Active Time eg, On Duration
  • the base station may transmit the first DCI format 2_6 to the UE within the monitoring window for monitoring the first DCI format 2_6 in the DRX Active Time based on the first information (S1707).
  • a monitoring window may be set based on "Embodiment #1" and/or "Embodiment 3".
  • the first DCI format 2_6 may be transmitted.
  • the SS Set may be set within the DRX Active Time.
  • the base station may transmit the PDCCH to the UE after the time gap based on "Example #4" based on the first DCI format 2_6 (S1709).
  • the SS Set, PDCCH Occasion, CORESET and / or BWP that is the monitoring target in order for the UE to receive the scheduling DCI (eg, DL Assignment and / or UL grant) after the Time Gap. Information may be included.
  • a monitoring window is set according to any one of the embodiments of “Embodiment #1”, and DCI format 2_6 may be received according to any one of the embodiments of “Embodiment #2” within the monitoring window. there is.
  • a monitoring window is set according to any one of the embodiments of “Embodiment #1”, and according to any one of the embodiments of “Embodiment #4”, scheduling DCI (eg, DL Assignment or UL Grant) can be monitored.
  • Embodiment #1 A method of setting a monitoring window for DCI Format 2_6 in DRX Active Time.
  • the UE does not perform monitoring for other SS Set monitoring occasions (gray dotted arrows in FIG. 14 ) in which DCI format 2_6 can be transmitted other than the SS Set monitoring occasion performing actual monitoring. That is, referring to FIG. 14 , if the UE receives DCI Format 2_6 in Actual Monitoring Occasions, the SS Set Monitoring Occasion located after the Actual Monitoring Occasions is set in the monitoring window, but the UE does not perform monitoring for DCI format 2_6 does not
  • the UE can receive DCI format 2_6 from the network. For example, separately from WUS through DCI format 2_6 outside the DRX active time, information related to power saving within the DRX active time to the UE is additionally indicated through DCI Format 2_6 from the network. suggest a possible way.
  • the embodiments of the present disclosure operate within DRX active time, it can be understood that the techniques proposed in the present disclosure are applied when a wake-up is instructed to the UE through the WUS and the UE wakes up. , the present invention is not limited thereto.
  • a monitoring window within the DRX active time is for selecting occasions that the UE actually monitors among SS Set monitoring occasions capable of blind decoding DCI format 2_6.
  • a monitoring window on the time axis may be defined so that the UE monitors only one or more SS sets for DCI format 2_6 within the DRX active time. Actual operation of the UE through the defined monitoring windows may vary, and the present disclosure is not particularly limited thereto.
  • the monitoring window (monitoring window) within the DRX active time is an offset parameter that can indicate a starting point on the time axis, a duration parameter that can indicate the length of the monitoring window, and the monitoring window is repeated It can be defined through three variables of the periodicity parameter.
  • the period (periodicity) of the monitoring window (Monitoring window) may be defined / configured to be effective only within the DRX active time.
  • Example #1-1 Offset from On-Duration Timer starting point
  • the duration of the monitoring window may be indicated/set by the number of slots or the number of subframes from the starting point to the ending point of the monitoring window.
  • the period of the monitoring window may be indicated/set by the number of slots or the number of subframes from the starting point of the n-th monitoring window within the DRX active time to the starting point of the n+1-th monitoring window.
  • the period of the monitoring window is indicated/set by the number of slots or the number of subframes from the end point of the nth monitoring window within the DRX active time to the end point of the n+1th monitoring window (window).
  • the period (periodicity) of the monitoring window is valid only within the DRX active time and may not be defined or not counted outside the DRX active time. Or, the period (periodicity) of the monitoring window is valid only within the DRX active time and may not be indicated/configured outside the DRX active time.
  • an offset that may indicate the starting point of the first monitoring window within the DRX active time may be determined based on the starting point of the DRX active time.
  • the offset may be defined as the number of slots or the number of subframes from the starting point of the DRX active time, for example, the on-duration timer starting to operate.
  • an arrow pointing upward as in FIG. 14 means SS set monitoring occasion.
  • the UE may perform decoding/detection attempt (hereinafter, "SS set monitoring") for PDCCH candidates included in the SS set.
  • SS set monitoring decoding/detection attempt
  • the UE may not perform SS set monitoring (monitoring) for the SS set monitoring occasion outside the monitoring window (monitoring window). In other words, it may not be expected that the UE performs SS set monitoring for the SS Set monitoring occasion outside the monitoring window.
  • the offset may be determined based on a starting point of a system frame.
  • the offset may be defined as the number of slots or the number of subframes from the starting point of a system frame.
  • a Duration parameter and a Periodicity parameter may be used. That is, the monitoring window according to FIG. 19 may be configured based on the offset parameter, the interval parameter, and the period parameter.
  • the definition of the duration and the period in the setting of the monitoring window according to the embodiment #1-2 is the definition of the duration and the period described in the embodiment #1-1 can be the same as
  • Example #1-2 if the starting point of the monitoring window by the offset parameter is not set within the DRX Active Time (eg, after the starting point of On-duration), the starting point of the monitoring window is the starting point of the DRX Active Time (for example, it may be the starting point of on-duration).
  • the start point of the monitoring window when the offset is applied based on the system frame, if the application time point is before the start point of the DRX Active Time, the start point of the monitoring window may be the start point of the DRX Active Time.
  • Embodiment #1-3 Offset from the first SS Set Monitoring Occasion by SS Set configuration
  • the offset may be determined based on the first SS Set monitoring occasion in the DRX active time.
  • the offset may be defined as the number of slots or the number of subframes from the start point of the first SS Set monitoring occasion in the DRX active time.
  • a Duration parameter and a Periodicity parameter may be used together with the offset parameter. That is, the monitoring window according to FIG. 20 may be configured based on the offset parameter, the interval parameter, and the period parameter.
  • the definition of the duration and the period in the setting of the monitoring window according to the embodiment #1-3 is the definition of the duration and the period described in the embodiment #1-1 can be the same as
  • Embodiment #1-4 Whether monitoring is performed when SS set Monitoring Occasion and monitoring window are partially overlapped
  • various UE/base station operations may be additionally defined.
  • the SS Set monitoring occasion and the monitoring window during the duration for the SS set configuration do not completely overlap, but only partially overlap. .
  • Case 1 in which the first slot of the SS Set Monitoring occasion does not overlap the monitoring window and Case 2 in which the last slot of the SS Set Monitoring occasion does not overlap the monitoring window may exist.
  • Whether the UE performs PDCCH monitoring (eg, monitoring of DCI Format 2_6) for each case may be performed by an additional instruction or a predetermined rule, and the present disclosure is not particularly limited thereto.
  • the operation of the UE in the situation shown in FIG. 21 may be as follows.
  • the UE may not perform SS Set monitoring (monitoring).
  • the UE may perform SS Set monitoring.
  • the UE is DCI It can be set to perform monitoring for format 2_6.
  • the UE since it is necessary to quickly monitor DCI format 2_6 within the DRX Active time, even if only a part of the occasion overlaps the monitoring window, the UE is configured to perform monitoring for all occasions (Configuration). may be In this case, even if the first occasion does not overlap the monitoring window as in Case 1, the UE may be configured to perform monitoring for DCI Format 2_6 for all consecutive occasions.
  • Embodiment #2 How to receive DCI format 2_6 within DRX Active Time
  • Embodiment #2-1 Receive DCI format 2_6 in Monitoring Occasion in the first monitoring window
  • the UE starts DRX active time and receives DCI format 2_6 on one SS Set monitoring occasion of the first monitoring window, other SS Set monitoring occasions within the monitoring window like WUS. Monitoring may not be performed. In other words, it may not be expected that the UE performs monitoring for other SS Set monitoring occasions within the monitoring window.
  • DCI format 2_6 on the SS Set monitoring occasion located after the first SS Set monitoring occasion within the first monitoring window may not be monitored.
  • the UE may perform monitoring for DCI format 2_6 on another SS Set monitoring occasion within the first monitoring window.
  • the UE monitors the SS Set monitoring occasions in the first monitoring window in order, but when DCI format 2_6 is received on a specific SS Set monitoring occasion, in the SS Set monitoring Occasion located after the specific SS Set monitoring occasion within the first monitoring window. monitoring may not be performed.
  • the UE may not monitor DCI format 2_6 in the monitoring window after the first monitoring window. In other words, if the UE receives DCI format 2_6 within the first monitoring window, monitoring for DCI format 2_6 may not be performed from the second monitoring window.
  • the UE may monitor the SS Set monitoring Occasions within the second monitoring window as described above.
  • Example #2-1 the UE monitors DCI in chronological order for monitoring windows and SS Set monitoring occasions included in each monitoring window, but receives DCI format 2_6 on any one SS Set monitoring occasion. If so, DCI format 2_6 may not be monitored on the SS Set monitoring occasion after the SS Set monitoring occasion on which DCI format 2_6 is received within the corresponding DRX Active Time.
  • an operation to be performed in the same manner within the corresponding DRX active time may be indicated to the UE through the corresponding DCI format 2_6.
  • DCI format 2_6 instructing the UE to monitor only some SS Sets among a plurality of SS sets and/or instructing the UE to monitor only some CORESETs among a plurality of CORESETs and/or a plurality of
  • the UE is based on the DCI (e.g., , DL Assignment and/or UL grant) may be monitored.
  • the UE may operate to skip monitoring of the monitoring window after the first monitoring window in which the DCI format 2_6 is received.
  • Example #2-2 A method of receiving DCI format 2_6 on a plurality of monitoring occasions within a monitoring window
  • Format 2_6 may not be monitored.
  • the UE receives DCI format 2_6 from one SS Set Monitoring Occasion in the monitoring window, among a plurality of SS Set Monitoring Occasions set in the monitoring window, one SS Set Monitoring Occasion after SS Set Monitoring Occasion It can be expected that the UE does not monitor.
  • the UE may operate to attempt blind decoding for DCI format 2_6 in each of periodically configured (Configured) monitoring windows within DRX active time.
  • the UE may not perform monitoring of DCI format 2_6.
  • DCI format 2_6 is not received in the first SS Set Monitoring Occasion within the first monitoring window, monitoring for DCI format 2_6 may be performed in the second SS Set Monitoring Occasion.
  • the UE may monitor DCI format 2_6 in the second monitoring window. Even in this case, if DCI format 2_6 is received through the first SS Set Monitoring Occasion in the second monitoring window, monitoring for DCI format 2_6 may not be performed from the second SS Set Monitoring Occasion in the second monitoring window.
  • Example #2-1 The difference between Example #2-1 and Example #2-2 is that in Example #2-1, if the UE receives DCI Format 2_6 in a specific SS Set Monitoring Occasion, DRX Active Time including a specific SS Set Monitoring Occasion Monitoring for DCI format 2_6 is no longer performed in the However, in Example #2-2, if the UE receives DCI Format 2_6 in a specific Set Monitoring Occasion, monitoring for DCI Format 2_6 is no longer performed within the monitoring window including the specific SS Set Monitoring Occasion, but the same DRX In the next monitoring window within Active Time, monitoring for DCI format 2_6 may be performed again.
  • Example #2-1 one DCI format 2_6 is received within one DRX Active Time
  • Example #2-2 one DCI is received for each of a plurality of monitoring windows included in the DRX Active Time. Reception of format 2_6 may be made.
  • an operation to be performed from the time when the UE receives DCI format 2_6 until the next DCI format 2_6 is received within the corresponding DRX active time may be indicated to the UE through the corresponding DCI format 2_6.
  • DCI format 2_6 instructing the UE to monitor only some SS Sets among a plurality of SS sets and/or instructing the UE to monitor only some CORESETs among a plurality of CORESETs and/or a plurality of If the UE is instructed to monitor only some cells among cells and/or the UE is instructed to monitor only some BWPs among a plurality of BWPs, the UE receives DCI ( For example, DL Assignment and/or UL grant) may be monitored.
  • DCI For example, DL Assignment and/or UL grant
  • DCI format 2_6 when DCI format 2_6 is received within one monitoring window and another DCI format 2_6 is received within a subsequent monitoring window, the operation indicated by the other DCI format 2_6 is indicated by the previously received DCI format 2_6. It can operate to override the operation to be performed.
  • Embodiment #2-3 A method of receiving DCI format 2_6 through a Monitoring Occasion in a non-first monitoring window
  • the UE may receive DCI format 2_6 within a monitoring window other than the first monitoring window defined within the DRX active time.
  • the UE does not detect DCI format 2_6 within the first monitoring window, so DCI format 2_6 is monitored in the monitoring window after the first monitoring window to obtain DCI format 2_6 may have received
  • the time gap which is a period in which DCI format 2_6 cannot be monitored, overlaps at least a part of the first monitoring window, and thus it may be impossible to monitor DCI format 2_6 in the first monitoring window.
  • monitoring of DCI format 2_6 is not performed by the base station in the first monitoring window is configured to the UE through RRC signaling and/or DCI.
  • the UE may perform a general DRX operation (ie, a default DRX operation) until the UE receives DCI format 2_6. That is, the UE may perform a preset or preset default DRX operation with the base station until DCI format 2_6 is received. In addition, based on Example #2-1, the UE may perform the operation indicated by the corresponding DCI format 2_6 during the remaining DRX active time from the point in time when DCI format 2_6 is received within the corresponding DRX Active Time.
  • a general DRX operation ie, a default DRX operation
  • the operation indicated by the corresponding DCI format 2_6 may be performed from the point when DCI format 2_6 is received within the corresponding DRX Active Time until the next DCI format 2_6 is received.
  • the operation indicated by DCI format 2_6 is, for example, instructing the UE to monitor only some SS sets among a plurality of SS sets through DCI format 2_6 and/or among a plurality of CORESETs, some of If the UE is instructed to monitor only CORESETs and/or the UE is instructed to monitor only some cells of the plurality of cells and/or the UE is instructed to monitor only some BWPs from among the plurality of BWPs, the UE is configured for the corresponding DRX Active Time DCI (eg, DL Assignment and/or UL grant) may be monitored based on the indication within.
  • DRX Active Time DCI eg, DL Assignment and/or UL grant
  • Embodiment #2-4 Method of monitoring only DCI format 2_6 within DRX Active Time
  • the base station may instruct/configure the UE to monitor only DCI format 2_6 within the DRX active time.
  • the UE may inform other SS sets to be monitored for other DCI transmission and reception.
  • the network wants to transmit a scheduling DCI for DL or UL within the DRX Active Time, if it informs the UE of the SS set to transmit the scheduling DCI through DCI format 2_6, the UE monitors the SS set Thus, the corresponding scheduling DCI can be received.
  • the UE may perform a general DRX operation according to the DRX mechanism described in TS38.331. For example, when the UE receives DCI scheduling DL or UL, the UE may start the operation of the Inactive Timer.
  • Example #3 as in Example #1, a method of setting a monitoring window other than defining a monitoring window based on an offset parameter, a duration parameter, and a period parameter will be described.
  • the UE may be configured/defined/instructed to monitor DCI format 2_6 for an arbitrary duration based on the on-duration timer starting point.
  • the duration may be set to an arbitrary number of slots or the number of subframes.
  • a Duration parameter may be indicated to the UE, and an offset parameter and a Periodicity parameter may not be indicated.
  • the offset may be 0 based on Example #1-1.
  • the network may set a periodicity so that a plurality of monitoring windows within the DRX active time may be configured.
  • the base station does not indicate the offset parameter to the UE, but may indicate the duration parameter and the periodicity parameter to the UE.
  • PDCCH monitoring in the monitoring window set through Example #3 may also be performed in the same manner as the SS Set monitoring occasion monitoring method described in Examples #1-1 to #1-4. However, when the monitoring window is set as in Example #3, the UE may be separately instructed by the base station to perform PDDCH monitoring in a method different from Examples #1-1 to #1-4.
  • Embodiment #3 it may be the same as that in Embodiments #1-1 to #1-3 in which a monitoring window having an offset value of '0' is set.
  • the time gap may also be referred to as a preparation time for the UE to transmit and receive signals in the DRX active time, which is also related to the number of SS sets to be monitored by the UE.
  • a time gap related to DCI format 2_6 monitoring within the DRX active time may be defined differently from the prior art.
  • a time gap for the UE to secure a preparation time for monitoring SS sets corresponding to the corresponding SS Set ID information may be required even within the DRX active time.
  • the time gap defined outside the existing DRX Active Time is T
  • the time gap outside the DRX active time that is changed according to the embodiments of the present disclosure is T 1
  • DCI format 2_6 within the DRX active time A time gap that may be required for PDCCH monitoring after reception or after the monitoring window receiving DCI format 2_6 is terminated is referred to as T 2 .
  • T can be seen as a time required to complete all preparations for the UE to perform transmission/reception operation within the DRX active time.
  • T 1 can be regarded as a time required to prepare only DCI format 2_6 monitoring.
  • T 2 is the time required for preparation for monitoring other DCI (eg, DL Assignment or UL Grant) other than DCI Format 2_6 monitoring, that is, the time for preparing the remaining monitoring other than DCI Format 2_6 monitoring. can be thought of as
  • the operation of the UE may consider the following two cases.
  • the UE may receive DCI format 2_6 outside the DRX active time, and may operate an on-duration timer based on the DCI format 2_6.
  • the UE can prepare monitoring for all SS sets while starting the DRX active time. Thereafter, a monitoring window within the DRX active time that starts at the same time as the on-duration timer starts, or starts by applying a certain offset (eg, a monitoring window according to “Embodiment #1” or “Example 3”) ) may monitor DCI format 2_6 and obtain power saving information from the received DCI format 2_6.
  • a certain offset eg, a monitoring window according to “Embodiment #1” or “Example 3”
  • Information on the SS set that does not need to be monitored may be indicated to the UE through the acquired power saving information.
  • embodiment #4-1 is the same as the existing WUS operation in terms of time gap, and it can be seen that only the operation of turning off a receiver not required for the UE (ie, a receiver not required for SS Set monitoring) is added. Therefore, the operation of the UE according to the embodiment #4-1 may be possible without modification of the standard document for the time gap of the conventional NR system.
  • the UE may receive DCI format 2_6 outside the DRX active time, and may operate an on-duration timer based on the DCI format 2_6. At this time, the UE can prepare only the SS set and the minimum additional SS set monitoring required for monitoring of DCI format 2_6 instead of all SS sets while starting the DRX active time. In other words, only the receiver for monitoring the SS Set and the minimum additional SS Set for monitoring DCI format 2_6 within the DRX Active Time may be 'On', and the remaining receivers may be 'Off'. On the other hand, if the minimum additional SS Set is not required, the UE may turn on only the receiver associated with the SS Set for monitoring DCI format 2_6 in DRX Active Time 'On'.
  • T 1 may be a relatively smaller value than T.
  • the SS set to be monitored may be indicated to the UE during the corresponding DRX active time or until the next DCI format 2_6 is received through DCI format 2_6 monitoring within the DRX active time of the UE.
  • T 2 may be T ⁇ T 1 +T 2 because the UE prepares only the monitoring of the indicated SS set, not all of the remaining SS sets. Therefore, compared to the time gap set for the reception of DCI format 2_6 including the WUS outside the DRX Active Time, the number of slots performing PDCCH monitoring is reduced, which has the effect of reducing the delay time (eg, Time Gap).
  • the delay time eg, Time Gap
  • the conventional time gap is set differently for each sub-carrier spacing (SCS).
  • SCS sub-carrier spacing
  • it may be defined as a short time gap such as value 1 of slots 1 to 2 and a long time gap such as value 2 in slots 3 to 24.
  • T 2 is set equal to or shorter than the conventional time gap, in the case of value 1, it is set to the minimum number of slots, and like the operation in the conventional time gap, all PDCCH monitoring may not be required.
  • At least the default SS set group for the preset minimum monitoring may be required to be monitored.
  • this is only an example, and may be configured to monitor the default SS set group at value 1 or skip all PDCCH monitoring at value 2.
  • Example #5 A method for distinguishing between an SS set for DCI format 2_6 inside DRX Active Time and an SS set for DCI format 2_6 outside DRX Active Time
  • the monitoring occasion of the SS set is determined based on a monitoring period, an offset, and a duration.
  • the monitoring periodicity of the DRX cycle and the SS set can be set differently, the DCI format 2_6 monitoring time in the DRX active time proposed in the present disclosure is irregularly formed based on the start point of the on-duration timer.
  • the SS set to be monitored by the UE (or the minimum SS set to be monitored) within the monitoring window within the DRX active time proposed in the present disclosure may be individually indicated by the base station.
  • the duration and periodicity of the SS set configuration may be set to be the same as the SS set configuration for monitoring DCI format 2_6 including WUS.
  • an offset based on the On-duration Timer for determining at which point in the DRX active time the UE will start monitoring may be configured separately. Through this, as can be seen in FIG. 27 , it is possible to prevent the monitoring occasion from being irregularly formed based on the start of On-Duration. For example, DCI format 2_6 received outside the DRX Active Time may instruct to start monitoring of DCI format 2_6 after a certain point in time from the start of On-Duration.
  • an offset may be set based on a frame start point or a monitoring window as in Embodiment #1-2 or Embodiment #1-3.
  • DCI format 2_6 monitored within the DRX active time may explicitly or implicitly indicate operations related to power saving. Therefore, the UE may be instructed/configured to monitor DCI format 2_6 in the DRX active time with the highest priority.
  • CORESETs with different Transmission Configuration Indication (TCI) eg, QCL-typeD
  • TCI Transmission Configuration Indication
  • a UE - is configured for single cell operation or for operation with carrier aggregation in a same frequency band, and - monitors PDCCH candidates in overlapping PDCCH monitoring occasions in multiple CORESETs that have same or different QCL-TypeD properties on active DL BWP(s) of one or more cells the UE monitors PDCCHs only in a CORESET, and in any other CORESET from the multiple CORESETs having same QCL-TypeD properties as the CORESET, on the active DL BWP of a cell from the one or more cells - the CORESET corresponds to the CSS set with the lowest index in the cell with the lowest index containing CSS, if any; otherwise, to the USS set with the lowest index in the cell with lowest index - the lowest USS set index is determined over all USS sets with at least one PDCCH candidate in overlapping PDCCH monitoring occasions - for the purpose of determining the CORESET, a SS/PBCH block is considered to have different QCL-TypeD properties than a
  • the UE preferentially monitors the CORESET having a low ID of the associated SS set. Therefore, as in the present disclosure, when the UE monitors DCI format 2_6 within the DRX active time, the CORESET / SS set for monitoring DCI format 2_6 is TCI (QCL-TypeD) different CORESET / SS set and In case of overlapping, CORESET/SS Set for DCI format 2_6 may be indicated/set to be monitored with priority.
  • TCI QCL-TypeD
  • the UE may be instructed/set to consider the index of the CORESET/SS set (eg, type-3 PDCCH CSS set) for monitoring of the corresponding DCI format 2_6 as the lowest index.
  • the base station may allocate the lowest index to the CORESET/SS set (eg, type-3 PDCCH CSS set) for DCI format 2_6 monitoring.
  • the communication system 1 applied to the present invention includes a wireless device, a base station, and a network.
  • the wireless device refers to a device that performs communication using a radio access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), and may be referred to as a communication/wireless/5G device.
  • a radio access technology eg, 5G NR (New RAT), LTE (Long Term Evolution)
  • the wireless device may include a robot 100a, a vehicle 100b-1, 100b-2, an eXtended Reality (XR) device 100c, a hand-held device 100d, and a home appliance 100e. ), an Internet of Thing (IoT) device 100f, and an AI device/server 400 .
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include AR (Augmented Reality)/VR (Virtual Reality)/MR (Mixed Reality) devices, and include a Head-Mounted Device (HMD), a Head-Up Display (HUD) provided in a vehicle, a television, a smartphone, It may be implemented in the form of a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
  • the portable device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), a computer (eg, a laptop computer), and the like.
  • Home appliances may include a TV, a refrigerator, a washing machine, and the like.
  • the IoT device may include a sensor, a smart meter, and the like.
  • the base station and the network may be implemented as a wireless device, and the specific wireless device 200a may operate as a base station/network node to other wireless devices.
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200 .
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may also communicate directly (e.g. sidelink communication) without passing through the base station/network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (e.g. Vehicle to Vehicle (V2V)/Vehicle to everything (V2X) communication).
  • the IoT device eg, sensor
  • the IoT device may communicate directly with other IoT devices (eg, sensor) or other wireless devices 100a to 100f.
  • Wireless communication/connection 150a, 150b, and 150c may be performed between the wireless devices 100a to 100f/base station 200 and the base station 200/base station 200 .
  • the wireless communication/connection includes uplink/downlink communication 150a and sidelink communication 150b (or D2D communication), communication between base stations 150c (e.g. relay, IAB (Integrated Access Backhaul), etc.)
  • This can be done through technology (eg 5G NR)
  • Wireless communication/connection 150a, 150b, 150c allows the wireless device and the base station/radio device, and the base station and the base station to transmit/receive wireless signals to each other.
  • the wireless communication/connection 150a, 150b, and 150c may transmit/receive signals through various physical channels.
  • various signal processing processes eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
  • resource allocation processes etc.
  • 29 illustrates a wireless device that can be applied to the present invention.
  • the first wireless device 100 and the second wireless device 200 may transmit/receive wireless signals through various wireless access technologies (eg, LTE, NR).
  • ⁇ first wireless device 100, second wireless device 200 ⁇ is ⁇ wireless device 100x, base station 200 ⁇ of FIG. 28 and/or ⁇ wireless device 100x, wireless device 100x) ⁇ can be matched.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104 , and may further include one or more transceivers 106 and/or one or more antennas 108 .
  • the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 102 may process information in the memory 104 to generate first information/signal, and then transmit a wireless signal including the first information/signal through the transceiver 106 .
  • the processor 102 may receive the radio signal including the second information/signal through the transceiver 106 , and then store information obtained from signal processing of the second information/signal in the memory 104 .
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102 .
  • memory 104 may provide instructions for performing some or all of the processes controlled by processor 102 , or for performing descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including
  • the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • a wireless communication technology eg, LTE, NR
  • the transceiver 106 may be coupled to the processor 102 , and may transmit and/or receive wireless signals via one or more antennas 108 .
  • the transceiver 106 may include a transmitter and/or a receiver.
  • the transceiver 106 may be used interchangeably with a radio frequency (RF) unit.
  • RF radio frequency
  • a wireless device may refer to a communication modem/circuit/chip.
  • the following operations are described based on the control operation of the processor 102 from the perspective of the processor 102, but may be stored in the memory 104, such as software code for performing these operations.
  • the at least one memory 104 is a computer-readable storage medium, which can store instructions or programs, which, when executed, are At least one processor operably connected to at least one memory may cause operations according to embodiments or implementations of the present disclosure related to the following operations.
  • the processor 102 may control the transceiver 106 to receive first information for configuring a monitoring window for the first DCI format 2_6 within the DRX Active Time.
  • the first information may be controlled to be received through higher layer signaling such as RRC (Radio Resource Control) signaling and/or dynamic signaling such as DCI (Downlink Control Information).
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the first information may include parameters for setting a monitoring window for the first DCI format 2_6. For example, it may include information on at least one of an offset, a duration, a period, and a time gap.
  • the processor 102 may control the transceiver 106 to receive the above-described offset, duration, period, and time gap through one signaling, but each of the offset and duration through separate signaling The transceiver 106 may be controlled to receive (Duration), Periodicity and Time Gap.
  • a specific method for setting a monitoring window for DCI format 2_6 through the parameters included in the above-described first information may be based on “Embodiment #1” and “Embodiment #3”.
  • a method of monitoring DCI format 2_6 within the corresponding monitoring window may be based on “Example #2”.
  • a method for setting/using the Time Gap included in the above-described first information may be based on “Example #4”.
  • the processor 102 also receives information on the offset, Duration and Periodicity of the SS set configuration for monitoring DCI format 2_6 separately or together with the first information. can be controlled
  • the method of configuring the SS Set may be based on "Example #5".
  • the processor 102 may control the transceiver 106 to receive the second DCI format 2_6 outside the DRX Active Time.
  • the second DCI format 2_6 may include a Wake up Signal (WUS). That is, the processor 102 may start DRX Active Time (eg, On Duration) based on the WUS included in the second DCI format 2_6.
  • WUS Wake up Signal
  • the processor 102 may control the transceiver 106 to receive the first DCI format 2_6 within a monitoring window for monitoring the first DCI format 2_6 within the DRX Active Time, based on the first information described above.
  • a monitoring window may be set based on "Embodiment #1" and/or "Embodiment 3".
  • the transceiver 106 may be controlled to receive the first DCI format 2_6 based on “Example #2”.
  • the SS Set may be set within the DRX Active Time.
  • the processor 102 may monitor the PDCCH after the time gap based on “Example #4” based on the first DCI format 2_6 and control the transceiver 106 to receive the PDCCH.
  • the SS Set, PDCCH Occasion, CORESET and / or BWP that is the monitoring target in order for the UE to receive the scheduling DCI (eg, DL Assignment and / or UL grant) after the Time Gap. Information may be included.
  • the second wireless device 200 includes one or more processors 202 , one or more memories 204 , and may further include one or more transceivers 206 and/or one or more antennas 208 .
  • the processor 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or flow charts disclosed herein.
  • the processor 202 may process the information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206 .
  • the processor 202 may receive the radio signal including the fourth information/signal through the transceiver 206 , and then store information obtained from signal processing of the fourth information/signal in the memory 204 .
  • the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202 .
  • the memory 204 may provide instructions for performing some or all of the processes controlled by the processor 202, or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including
  • the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • the transceiver 206 may be coupled to the processor 202 and may transmit and/or receive wireless signals via one or more antennas 208 .
  • the transceiver 206 may include a transmitter and/or a receiver.
  • the transceiver 206 may be used interchangeably with an RF unit.
  • a wireless device may refer to a communication modem/circuit/chip.
  • the following operations are described based on the control operation of the processor 202 from the perspective of the processor 202, but may be stored in the memory 204, such as software code for performing these operations.
  • the at least one memory 204 is a computer-readable storage medium that can store instructions or programs, which, when executed, are At least one processor operably connected to at least one memory may cause operations according to embodiments or implementations of the present disclosure related to the following operations.
  • the processor 202 may control the transceiver 206 to transmit first information for configuring a monitoring window for the first DCI format 2_6 within the DRX Active Time.
  • the first information may be controlled to be transmitted through higher layer signaling such as RRC (Radio Resource Control) signaling and/or dynamic signaling such as DCI (Downlink Control Information).
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the first information may include parameters for setting a monitoring window for the first DCI format 2_6. For example, it may include information on at least one of an offset, a duration, a period, and a time gap.
  • the processor 202 may control the transceiver 206 to transmit the above-described offset, duration, period, and time gap through one signaling, but each of the offset and duration through separate signaling The transceiver 206 may be controlled to transmit Duration, Periodicity, and Time Gap.
  • a specific method for setting a monitoring window for DCI format 2_6 through the parameters included in the above-described first information may be based on “Embodiment #1” and “Embodiment #3”.
  • a method of transmitting DCI format 2_6 within the corresponding monitoring window may be based on “Example #2”.
  • a method for setting/using the Time Gap included in the above-described first information may be based on “Example #4”.
  • the processor 202 transmits information on the offset, Duration and Periodicity of the SS set configuration for monitoring DCI format 2_6 separately or together with the first information. can be controlled
  • the method of configuring the SS Set may be based on "Example #5".
  • the processor 202 may control the transceiver 206 to transmit the second DCI format 2_6 outside the DRX Active Time.
  • the second DCI format 2_6 may include a Wake up Signal (WUS). That is, the processor 202 may control the transceiver 206 to instruct the UE to start DRX Active Time (eg, On Duration) based on the WUS included in the second DCI format 2_6.
  • WUS Wake up Signal
  • the processor 202 may control the transceiver 206 to transmit the first DCI format 2_6 within a monitoring window for monitoring the first DCI format 2_6 within the DRX Active Time based on the above-described first information.
  • a monitoring window may be set based on "Embodiment #1" and/or "Embodiment 3".
  • the first DCI format 2_6 may be transmitted.
  • the SS Set may be set within the DRX Active Time.
  • the processor 202 may control the transceiver 206 to transmit the PDCCH after the time gap based on “Example #4” based on the first DCI format 2_6.
  • the SS Set, PDCCH Occasion, CORESET and / or BWP that is the monitoring target in order for the UE to receive the scheduling DCI (eg, DL Assignment and / or UL grant) after the Time Gap. Information may be included.
  • one or more protocol layers may be implemented by one or more processors 102 , 202 .
  • one or more processors 102 , 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • the one or more processors 102, 202 are configured to process one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, function, procedure, proposal, method, and/or operational flowcharts disclosed herein.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102 , 202 may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or flow charts disclosed herein.
  • the one or more processors 102 and 202 generate a signal (eg, a baseband signal) including PDUs, SDUs, messages, control information, data or information according to the functions, procedures, proposals and/or methods disclosed herein. , to one or more transceivers 106 and 206 .
  • the one or more processors 102 , 202 may receive signals (eg, baseband signals) from one or more transceivers 106 , 206 , and may be described, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein.
  • PDUs, SDUs, messages, control information, data, or information may be acquired according to the fields.
  • One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more processors 102 , 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • firmware or software may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the descriptions, functions, procedures, suggestions, methods, and/or flow charts disclosed in this document provide that firmware or software configured to perform is contained in one or more processors 102 , 202 , or stored in one or more memories 104 , 204 . It may be driven by the above processors 102 and 202 .
  • the descriptions, functions, procedures, proposals, methods, and/or flowcharts of operations disclosed herein may be implemented using firmware or software in the form of code, instructions, and/or a set of instructions.
  • One or more memories 104 , 204 may be coupled with one or more processors 102 , 202 , and may store various forms of data, signals, messages, information, programs, code, instructions, and/or instructions.
  • the one or more memories 104 and 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and/or combinations thereof.
  • One or more memories 104 , 204 may be located inside and/or external to one or more processors 102 , 202 . Additionally, one or more memories 104 , 204 may be coupled to one or more processors 102 , 202 through various technologies, such as wired or wireless connections.
  • One or more transceivers 106 , 206 may transmit user data, control information, radio signals/channels, etc. referred to in the methods and/or operational flowcharts of this document to one or more other devices.
  • One or more transceivers 106, 206 may receive user data, control information, radio signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods and/or flow charts, etc. disclosed herein, from one or more other devices. there is.
  • one or more transceivers 106 , 206 may be coupled to one or more processors 102 , 202 and may transmit and receive wireless signals.
  • one or more processors 102 , 202 may control one or more transceivers 106 , 206 to transmit user data, control information, or wireless signals to one or more other devices.
  • one or more processors 102 , 202 may control one or more transceivers 106 , 206 to receive user data, control information, or wireless signals from one or more other devices.
  • one or more transceivers 106, 206 may be coupled to one or more antennas 108, 208, and the one or more transceivers 106, 206 may be coupled via one or more antennas 108, 208 to the descriptions, functions, and functions disclosed herein. , may be set to transmit and receive user data, control information, radio signals/channels, etc.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • the one or more transceivers 106, 206 convert the received radio signal/channel, etc. from the RF band signal to process the received user data, control information, radio signal/channel, etc. using the one or more processors 102, 202. It can be converted into a baseband signal.
  • One or more transceivers 106 , 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 , 202 from baseband signals to RF band signals.
  • one or more transceivers 106 , 206 may include (analog) oscillators and/or filters.
  • the vehicle or autonomous driving vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), a ship, and the like.
  • AV aerial vehicle
  • the vehicle or autonomous driving vehicle 100 includes an antenna unit 108 , a communication unit 110 , a control unit 120 , a driving unit 140a , a power supply unit 140b , a sensor unit 140c , and autonomous driving. It may include a part 140d.
  • the antenna unit 108 may be configured as a part of the communication unit 110 .
  • the communication unit 110 may transmit/receive signals (eg, data, control signals, etc.) to and from external devices such as other vehicles, base stations (e.g., base stations, roadside units, etc.), servers, and the like.
  • the controller 120 may control elements of the vehicle or the autonomous driving vehicle 100 to perform various operations.
  • the controller 120 may include an Electronic Control Unit (ECU).
  • the driving unit 140a may cause the vehicle or the autonomous driving vehicle 100 to run on the ground.
  • the driving unit 140a may include an engine, a motor, a power train, a wheel, a brake, a steering device, and the like.
  • the power supply unit 140b supplies power to the vehicle or the autonomous driving vehicle 100 , and may include a wired/wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward movement.
  • IMU inertial measurement unit
  • a collision sensor a wheel sensor
  • a speed sensor a speed sensor
  • an inclination sensor a weight sensor
  • a heading sensor a position module
  • a vehicle forward movement / may include a reverse sensor, a battery sensor, a fuel sensor, a tire sensor, a steering sensor, a temperature sensor, a humidity sensor, an ultrasonic sensor, an illuminance sensor, a pedal position sensor, and the like.
  • the autonomous driving unit 140d includes a technology for maintaining a driving lane, a technology for automatically adjusting speed such as adaptive cruise control, a technology for automatically driving along a predetermined route, and a technology for automatically setting a route when a destination is set. technology can be implemented.
  • the communication unit 110 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
  • the controller 120 may control the driving unit 140a to move the vehicle or the autonomous driving vehicle 100 along the autonomous driving path (eg, speed/direction adjustment) according to the driving plan.
  • the communication unit 110 may obtain the latest traffic information data from an external server non/periodically, and may acquire surrounding traffic information data from surrounding vehicles.
  • the sensor unit 140c may acquire vehicle state and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and driving plan based on the newly acquired data/information.
  • the communication unit 110 may transmit information about a vehicle location, an autonomous driving route, a driving plan, and the like to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomous vehicles, and may provide the predicted traffic information data to the vehicle or autonomous vehicles.
  • a specific operation described in this document to be performed by a base station may be performed by an upper node thereof in some cases. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including the base station may be performed by the base station or other network nodes other than the base station.
  • the base station may be replaced by terms such as a fixed station, gNode B (gNB), Node B, eNode B (eNB), and an access point.

Abstract

본 개시(disclosure)는, 무선 통신 시스템에서, DRX (Discontinuous Reception) 동작을 지원하는 단말이 DCI (Downlink Control Information)을 수신하는 방법을 개시한다. 특히, 상기 방법은, 상기 DCI를 위한 모니터링 윈도우와 관련된 제 1 정보를 수신하고, 상기 제 1 정보를 기반으로 상기 모니터링 윈도우 내에서 상기 DCI를 수신하는 것을 포함하되, 상기 모니터링 윈도우는 DRX Active Time 내에 설정되고, 상기 제 1 정보는, 오프셋 및 상기 모니터링 윈도우의 구간(Duration)에 관련된 정보를 포함하고, 상기 오프셋은, 상기 DRX Active Time의 시작점으로부터 상기 모니터링 윈도우의 시작점까지의 거리일 수 있다

Description

하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
본 개시(Disclosure)는, 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치에 관한 것으로서, 더욱 상세하게는, DRX (Discontinuous Reception) Active Time 내에서 DCI (Downlink Control Information) 포맷 2_6을 송수신하기 위한 모니터링 윈도우를 설정하는 방법 및 이를 위한 장치에 관한 것이다.
시대의 흐름에 따라 더욱 많은 통신 기기들이 더욱 큰 통신 트래픽을 요구하게 되면서, 기존 LTE 시스템보다 향상된 무선 광대역 통신인 차세대 5G 시스템이 요구되고 있다. NewRAT이라고 명칭되는, 이러한 차세대 5G 시스템에서는 Enhanced Mobile BroadBand (eMBB)/ Ultra-reliability and low-latency communication (URLLC)/Massive Machine-Type Communications (mMTC) 등으로 통신 시나리오가 구분된다.
여기서, eMBB는 High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate 등의 특성을 갖는 차세대 이동통신 시나리오이고, URLLC는 Ultra Reliable, Ultra Low Latency, Ultra High Availability 등의 특성을 갖는 차세대 이동통신 시나리오이며 (e.g., V2X, Emergency Service, Remote Control), mMTC는 Low Cost, Low Energy, Short Packet, Massive Connectivity 특성을 갖는 차세대 이동통신 시나리오이다. (e.g., IoT).
본 개시는, 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치를 제공하고자 한다.
본 개시에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 개시의 실시 예에 따른 무선 통신 시스템에서, DRX (Discontinuous Reception) 동작을 지원하는 단말이 DCI (Downlink Control Information)을 수신하는 방법에 있어서, 상기 DCI를 위한 모니터링 윈도우와 관련된 제 1 정보를 수신하고, 상기 제 1 정보를 기반으로 상기 모니터링 윈도우 내에서 상기 DCI를 수신하는 것을 포함하되, 상기 모니터링 윈도우는 DRX Active Time 내에 설정되고, 상기 제 1 정보는, 오프셋 및 상기 모니터링 윈도우의 구간(Duration)에 관련된 정보를 포함하고, 상기 오프셋은, 상기 DRX Active Time의 시작점으로부터 상기 모니터링 윈도우의 시작점까지의 거리일 수 있다.
이 때, 상기 오프셋은, 슬롯의 수를 기반으로 표현될 수 있다.
또한, 상기 DCI는, 상기 모니터링 윈도우 내에 할당된 제 1 SS (Search Space) Set을 통해 수신되고, 상기 모니터링 윈도우 내에서 상기 제 1 SS Set 이후에 할당된 제 2 SS set에 대한 모니터링은 수행되지 않을 수 있다.
또한, 상기 제 1 정보는, 상기 모니터링 윈도우가 반복 할당되는 주기와 관련된 정보를 포함하고, 상기 모니터링 윈도우는 상기 주기에 관련된 정보를 기반으로, 상기 DRX Active Time 내에서 반복 할당될 수 있다.
또한, 상기 DCI는, DCI 포맷 2_6일 수 있다.
본 개시에 따른 무선 통신 시스템에서, DCI (Downlink Control Information)을 수신하기 위한 DRX (Discontinuous Reception) 동작을 지원하는 단말에 있어서, 적어도 하나의 송수신기; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고, 상기 동작은: 상기 적어도 하나의 송수신기를 통해, 상기 DCI를 위한 모니터링 윈도우와 관련된 제 1 정보를 수신하고, 상기 적어도 하나의 송수신기를 통해, 상기 제 1 정보를 기반으로 상기 모니터링 윈도우 내에서 상기 DCI를 수신하는 것을 포함하되, 상기 모니터링 윈도우는 DRX Active Time 내에 설정되고, 상기 제 1 정보는, 오프셋 및 상기 모니터링 윈도우의 구간(Duration)에 관련된 정보를 포함하고, 상기 오프셋은, 상기 DRX Active Time의 시작점으로부터 상기 모니터링 윈도우의 시작점까지의 거리일 수 있다.
이 때, 상기 오프셋은, 슬롯의 수를 기반으로 표현될 수 있다.
또한, 상기 DCI는, 상기 모니터링 윈도우 내에 할당된 제 1 SS (Search Space) Set을 통해 수신되고, 상기 모니터링 윈도우 내에서 상기 제 1 SS Set 이후에 할당된 제 2 SS set에 대한 모니터링은 수행되지 않을 수 있다.
또한, 상기 제 1 정보는, 상기 모니터링 윈도우가 반복 할당되는 주기와 관련된 정보를 포함하고, 상기 모니터링 윈도우는 상기 주기에 관련된 정보를 기반으로, 상기 DRX Active Time 내에서 반복 할당될 수 있다.
또한, 상기 DCI는, DCI 포맷 2_6일 수 있다.
본 개시에 따른 무선 통신 시스템에서, DCI (Downlink Control Information)을 수신하기 위한 DRX (Discontinuous Reception) 동작을 지원하는 장치에 있어서, 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고, 상기 동작은: 상기 DCI를 위한 모니터링 윈도우와 관련된 제 1 정보를 수신하고, 상기 제 1 정보를 기반으로 상기 모니터링 윈도우 내에서 상기 DCI를 수신하는 것을 포함하되, 상기 모니터링 윈도우는 DRX Active Time 내에 설정되고, 상기 제 1 정보는, 오프셋 및 상기 모니터링 윈도우의 구간(Duration)에 관련된 정보를 포함하고, 상기 오프셋은, 상기 DRX Active Time의 시작점으로부터 상기 모니터링 윈도우의 시작점까지의 거리일 수 있다.
본 개시에 따른 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 프로그램을 포함하는 컴퓨터 판독 가능한 저장 매체로서, 상기 동작은: 상기 DCI를 위한 모니터링 윈도우와 관련된 제 1 정보를 수신하고, 상기 제 1 정보를 기반으로 상기 모니터링 윈도우 내에서 상기 DCI를 수신하는 것을 포함하되, 상기 모니터링 윈도우는 DRX Active Time 내에 설정되고, 상기 제 1 정보는, 오프셋 및 상기 모니터링 윈도우의 구간(Duration)에 관련된 정보를 포함하고, 상기 오프셋은, 상기 DRX Active Time의 시작점으로부터 상기 모니터링 윈도우의 시작점까지의 거리일 수 있다.
본 개시의 실시 예에 따른 무선 통신 시스템에서, DRX (Discontinuous Reception) 동작을 설정할 수 있는 기지국이 DCI (Downlink Control Information)을 전송하는 방법에 있어서, 상기 DCI를 위한 모니터링 윈도우와 관련된 제 1 정보를 전송하고, 상기 제 1 정보를 기반으로 상기 모니터링 윈도우 내에서 상기 DCI를 전송하는 것을 포함하되, 상기 모니터링 윈도우는 DRX Active Time 내에 설정되고, 상기 제 1 정보는, 오프셋 및 상기 모니터링 윈도우의 구간(Duration)에 관련된 정보를 포함하고, 상기 오프셋은, 상기 DRX Active Time의 시작점으로부터 상기 모니터링 윈도우의 시작점까지의 거리일 수 있다.
본 개시에 따른 무선 통신 시스템에서, DCI (Downlink Control Information)을 전송하기 위한 DRX (Discontinuous Reception) 동작을 설정할 수 있는 기지국에 있어서, 적어도 하나의 송수신기; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고, 상기 동작은: 상기 적어도 하나의 송수신기를 통해, 상기 DCI를 위한 모니터링 윈도우와 관련된 제 1 정보를 전송하고, 상기 적어도 하나의 송수신기를 통해, 상기 제 1 정보를 기반으로 상기 모니터링 윈도우 내에서 상기 DCI를 전송하는 것을 포함하되, 상기 모니터링 윈도우는 DRX Active Time 내에 설정되고, 상기 제 1 정보는, 오프셋 및 상기 모니터링 윈도우의 구간(Duration)에 관련된 정보를 포함하고, 상기 오프셋은, 상기 DRX Active Time의 시작점으로부터 상기 모니터링 윈도우의 시작점까지의 거리일 수 있다.
본 개시에 따르면, DCI format 2_6를 통해 UE (Ueser Equipment)에게 DRX (Discontinuous Reception) active time 내에서도 전력 절약(power saving) 측면에서 이득이 있을 수 있는 다양한 동작들이 지시(indication)될 수 있다.
또한, DCI format 2_6를 통해 네트워크(network)가 요구하는 DCI format만 UE에게 모니터링(monitoring)되도록 지시할 수 있고, 이에 관련된 Search Space(SS) set 설정(configuration)을 위한 파라미터(parameter)들을 adaptation할 수 있다.
또한, 수신 빔(beam)들의 품질(quality)을 기반으로 PDCCH 모니터링의 복잡도(complexity)를 감소시킬 수 있다. 또한, BWP 동작(operation)을 기반으로 BD(Blind Decoding)/CCE (Control Channel Element) 제한(limit)을 조절할 수 있다.
상술한 동작들 외에도 DRX active time 내에서 DCI format 2_6을 수신하여 UE의 전력 절약(power saving) 측면에서의 이득이 얻을 수 있다.
본 개시에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 무선 통신 시스템의 일례인 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 2는 무선 프레임의 구조를 예시한다.
도 3은 슬롯의 자원 그리드를 예시한다.
도 4는 슬롯 내에 물리 채널이 매핑되는 예를 도시한다.
도 5는 PUCCH(Physical Uplink Control Channel) 및 PUSCH(Physical Uplink Shared Channel) 전송 과정을 예시한다.
도 6 내지 도 8은 NR 시스템에서 하향링크 제어 채널 (Physical Downlink Control Channel; PDCCH)에 대해 설명하기 위한 도면이다.
도 9 내지 도 10은 Idle Mode DRX (Discontinuous Reception) 동작을 설명하기 위한 도면이다.
도 11 내지 도 13은 RRC (Radio Resource Control) 연결(Connected) 모드에서의 DRX 동작을 설명하기 위한 도면이다.
도 14는 DRX Active Time 밖에서 DCI Format 2_6을 수신하는 방법을 설명하기 위한 도면이다.
도 15 내지 도 17은 본 개시의 실시 예에 따른 UE 및 기지국의 동작 과정을 설명하기 위한 도면이다.
도 18 내지 도 21은 본 개시의 실시 예에 따른 DRX Active Time 내에 DCI format 2_6을 위한 모니터링 윈도우를 설정하는 방법을 설명하기 위한 도면이다.
도 22 내지 도 24는 본 개시의 실시 예에 따른 DRX Active Time 내에 DCI format 2_6을 수신하는 방법을 설명하기 위한 도면이다.
도 25는 본 개시의 실시 예에 따른 DRX Active Time 내에 DCI format 2_6을 위한 모니터링 윈도우를 설정하는 방법을 설명하기 위한 도면이다.
도 26은 본 개시의 실시 예에 따른 DCI format 2_6의 수신을 위한 시간 갭(Time Gap)을 설정하는 방법을 설명하기 위한 도면이다.
도 27은 본 개시의 실시 예에 따른 DCI format 2_6을 위한 SS (Search Space) Set을 설정하는 방법을 설명하기 위한 도면이다.
도 28은 본 개시에 적용되는 통신 시스템을 예시한다.
도 29는 본 개시에 적용될 수 있는 무선 기기를 예시한다.
도 30은 본 개시에 적용될 수 있는 차량 또는 자율 주행 차량을 예시한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A의 진화된 버전이다.
설명을 명확하게 하기 위해, 3GPP 통신 시스템(예, NR)을 기반으로 기술하지만 본 개시의 기술적 사상이 이에 제한되는 것은 아니다. 본 개시의 설명에 사용된 배경기술, 용어, 약어 등에 관해서는 본 개시 이전에 공개된 표준 문서에 기재된 사항을 참조할 수 있다 (예, 38.211, 38.212, 38.213, 38.214, 38.300, 38.331 등).
이제, NR 시스템을 포함한 5G 통신에 대해서 살펴보도록 한다.
5G의 세 가지 주요 요구 사항 영역은 (1) 개선된 모바일 광대역 (Enhanced Mobile Broadband, eMBB) 영역, (2) 다량의 머신 타입 통신 (massive Machine Type Communication, mMTC) 영역 및 (3) 초-신뢰 및 저 지연 통신 (Ultra-reliable and Low Latency Communications, URLLC) 영역을 포함한다.
일부 사용 예(Use Case)는 최적화를 위해 다수의 영역들이 요구될 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표 (Key Performance Indicator, KPI)에만 포커싱될 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다.
eMBB는 기본적인 모바일 인터넷 액세스를 훨씬 능가하게 하며, 풍부한 양방향 작업, 클라우드 또는 증강 현실에서 미디어 및 엔터테인먼트 애플리케이션을 커버한다. 데이터는 5G의 핵심 동력 중 하나이며, 5G 시대에서 처음으로 전용 음성 서비스를 볼 수 없을 수 있다. 5G에서, 음성은 단순히 통신 시스템에 의해 제공되는 데이터 연결을 사용하여 응용 프로그램으로서 처리될 것이 기대된다. 증가된 트래픽 양(volume)을 위한 주요 원인들은 콘텐츠 크기의 증가 및 높은 데이터 전송률을 요구하는 애플리케이션 수의 증가이다. 스트리밍 서비스 (오디오 및 비디오), 대화형 비디오 및 모바일 인터넷 연결은 더 많은 장치가 인터넷에 연결될수록 더 널리 사용될 것이다. 이러한 많은 응용 프로그램들은 사용자에게 실시간 정보 및 알림을 푸쉬하기 위해 항상 켜져 있는 연결성이 필요하다. 클라우드 스토리지 및 애플리케이션은 모바일 통신 플랫폼에서 급속히 증가하고 있으며, 이것은 업무 및 엔터테인먼트 모두에 적용될 수 있다. 그리고, 클라우드 스토리지는 상향링크 데이터 전송률의 성장을 견인하는 특별한 사용 예이다. 5G는 또한 클라우드의 원격 업무에도 사용되며, 촉각 인터페이스가 사용될 때 우수한 사용자 경험을 유지하도록 훨씬 더 낮은 단-대-단(end-to-end) 지연을 요구한다. 엔터테인먼트 예를 들어, 클라우드 게임 및 비디오 스트리밍은 모바일 광대역 능력에 대한 요구를 증가시키는 또 다른 핵심 요소이다. 엔터테인먼트는 기차, 차 및 비행기와 같은 높은 이동성 환경을 포함하는 어떤 곳에서든지 스마트폰 및 태블릿에서 필수적이다. 또 다른 사용 예는 엔터테인먼트를 위한 증강 현실 및 정보 검색이다. 여기서, 증강 현실은 매우 낮은 지연과 순간적인 데이터 양을 필요로 한다.
또한, 가장 많이 예상되는 5G 사용 예 중 하나는 모든 분야에서 임베디드 센서를 원활하게 연결할 수 있는 기능 즉, mMTC에 관한 것이다. 2020년까지 잠재적인 IoT 장치들은 204 억 개에 이를 것으로 예측된다. 산업 IoT는 5G가 스마트 도시, 자산 추적(asset tracking), 스마트 유틸리티, 농업 및 보안 인프라를 가능하게 하는 주요 역할을 수행하는 영역 중 하나이다.
URLLC는 주요 인프라의 원격 제어 및 자체-구동 차량(self-driving vehicle)과 같은 초 신뢰 / 이용 가능한 지연이 적은 링크를 통해 산업을 변화시킬 새로운 서비스를 포함한다. 신뢰성과 지연의 수준은 스마트 그리드 제어, 산업 자동화, 로봇 공학, 드론 제어 및 조정에 필수적이다.
다음으로, NR 시스템을 포함한 5G 통신 시스템에서의 다수의 사용 예들에 대해 보다 구체적으로 살펴본다.
5G는 초당 수백 메가 비트에서 초당 기가 비트로 평가되는 스트림을 제공하는 수단으로 FTTH (fiber-to-the-home) 및 케이블 기반 광대역 (또는 DOCSIS)을 보완할 수 있다. 이러한 빠른 속도는 가상 현실과 증강 현실뿐 아니라 4K 이상(6K, 8K 및 그 이상)의 해상도로 TV를 전달하는데 요구된다. VR(Virtual Reality) 및 AR(Augmented Reality) 애플리케이션들은 거의 몰입형(immersive) 스포츠 경기를 포함한다. 특정 응용 프로그램은 특별한 네트워크 설정이 요구될 수 있다. 예를 들어, VR 게임의 경우, 게임 회사들이 지연을 최소화하기 위해 코어 서버를 네트워크 오퍼레이터의 에지 네트워크 서버와 통합해야 할 수 있다.
자동차(Automotive)는 차량에 대한 이동 통신을 위한 많은 사용 예들과 함께 5G에 있어 중요한 새로운 동력이 될 것으로 예상된다. 예를 들어, 승객을 위한 엔터테인먼트는 동시의 높은 용량과 높은 이동성 모바일 광대역을 요구한다. 그 이유는 미래의 사용자는 그들의 위치 및 속도와 관계 없이 고품질의 연결을 계속해서 기대하기 때문이다. 자동차 분야의 다른 활용 예는 증강 현실 대시보드이다. 이는 운전자가 앞면 창을 통해 보고 있는 것 위에 어둠 속에서 물체를 식별하고, 물체의 거리와 움직임에 대해 운전자에게 말해주는 정보를 겹쳐서 디스플레이 한다. 미래에, 무선 모듈은 차량들 간의 통신, 차량과 지원하는 인프라구조 사이에서 정보 교환 및 자동차와 다른 연결된 디바이스들(예를 들어, 보행자에 의해 수반되는 디바이스들) 사이에서 정보 교환을 가능하게 한다. 안전 시스템은 운전자가 보다 안전한 운전을 할 수 있도록 행동의 대체 코스들을 안내하여 사고의 위험을 낮출 수 있게 한다. 다음 단계는 원격 조종되거나 자체 운전 차량(self-driven vehicle)이 될 것이다. 이는 서로 다른 자체 운전 차량들 사이 및 자동차와 인프라 사이에서 매우 신뢰성이 있고, 매우 빠른 통신을 요구한다. 미래에, 자체 운전 차량이 모든 운전 활동을 수행하고, 운전자는 차량 자체가 식별할 수 없는 교통 이상에만 집중하도록 할 것이다. 자체 운전 차량의 기술적 요구 사항은 트래픽 안전을 사람이 달성할 수 없을 정도의 수준까지 증가하도록 초 저 지연과 초고속 신뢰성을 요구한다.
스마트 사회(smart society)로서 언급되는 스마트 도시와 스마트 홈은 고밀도 무선 센서 네트워크로 임베디드될 것이다. 지능형 센서의 분산 네트워크는 도시 또는 집의 비용 및 에너지-효율적인 유지에 대한 조건을 식별할 것이다. 유사한 설정이 각 가정을 위해 수행될 수 있다. 온도 센서, 창 및 난방 컨트롤러, 도난 경보기 및 가전 제품들은 모두 무선으로 연결된다. 이러한 센서들 중 많은 것들이 전형적으로 낮은 데이터 전송 속도, 저전력 및 저비용이다. 하지만, 예를 들어, 실시간 HD 비디오는 감시를 위해 특정 타입의 장치에서 요구될 수 있다.
열 또는 가스를 포함한 에너지의 소비 및 분배는 고도로 분산화되고 있어, 분산 센서 네트워크의 자동화된 제어가 요구된다. 스마트 그리드는 정보를 수집하고 이에 따라 행동하도록 디지털 정보 및 통신 기술을 사용하여 이런 센서들을 상호 연결한다. 이 정보는 공급 업체와 소비자의 행동을 포함할 수 있으므로, 스마트 그리드가 효율성, 신뢰성, 경제성, 생산의 지속 가능성 및 자동화된 방식으로 전기와 같은 연료들의 분배를 개선하도록 할 수 있다. 스마트 그리드는 지연이 적은 다른 센서 네트워크로 볼 수도 있다.
건강 부문은 이동 통신의 혜택을 누릴 수 있는 많은 응용 프로그램을 보유하고 있다. 통신 시스템은 멀리 떨어진 곳에서 임상 진료를 제공하는 원격 진료를 지원할 수 있다. 이는 거리에 대한 장벽을 줄이는데 도움을 주고, 거리가 먼 농촌에서 지속적으로 이용하지 못하는 의료 서비스들로의 접근을 개선시킬 수 있다. 이는 또한 중요한 진료 및 응급 상황에서 생명을 구하기 위해 사용된다. 이동 통신 기반의 무선 센서 네트워크는 심박수 및 혈압과 같은 파라미터들에 대한 원격 모니터링 및 센서들을 제공할 수 있다.
무선 및 모바일 통신은 산업 응용 분야에서 점차 중요해지고 있다. 배선은 설치 및 유지 비용이 높다. 따라서, 케이블을 재구성할 수 있는 무선 링크들로의 교체 가능성은 많은 산업 분야에서 매력적인 기회이다. 그러나, 이를 달성하는 것은 무선 연결이 케이블과 비슷한 지연, 신뢰성 및 용량으로 동작하는 것과, 그 관리가 단순화될 것이 요구된다. 낮은 지연과 매우 낮은 오류 확률은 5G로 연결될 필요가 있는 새로운 요구 사항이다.
물류(logistics) 및 화물 추적(freight tracking)은 위치 기반 정보 시스템을 사용하여 어디에서든지 인벤토리(inventory) 및 패키지의 추적을 가능하게 하는 이동 통신에 대한 중요한 사용 예이다. 물류 및 화물 추적의 사용 예는 전형적으로 낮은 데이터 속도를 요구하지만 넓은 범위와 신뢰성 있는 위치 정보가 필요하다.
도 1은 3GPP 시스템에 이용되는 물리 채널들 및 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S11). 이를 위해 단말은 기지국으로부터 SSB (Synchronization Signal Block)를 수신한다. SSB는 PSS (Primary Synchronization Signal), SSS (Secondary Synchronization Signal) 및 PBCH (Physical Broadcast Channel)를 포함한다. 단말은 PSS/SSS에 기반하여 기지국과 동기를 맞추고, 셀 ID(cell identity) 등의 정보를 획득한다. 또한, 단말은 기지국으로부터 PBCH를 수신하여 셀 내 방송 정보를 획득할 수 있다. 또한, 단말은 초기 셀 탐색 단계에서 DL RS(Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 PDCCH(Physical Downlink Control Channel) 및 이에 대응되는 PDSCH(Physical Downlink Control Channel)를 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다(S12).
이후, 단말은 기지국에 접속을 완료하기 위해 랜덤 접속 과정(Random Access Procedure)을 수행할 수 있다(S13~S16). 구체적으로, 단말은 PRACH(Physical Random Access Channel)를 통해 프리앰블(preamble)을 전송하고(S13), PDCCH 및 이에 대응하는 PDSCH를 통해 프리앰블에 대한 RAR(Random Access Response)을 수신할 수 있다(S14). 이후, 단말은 RAR 내의 스케줄링 정보를 이용하여 PUSCH(Physical Uplink Shared Channel)을 전송하고(S15), PDCCH 및 이에 대응하는 PDSCH과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다(S16).
랜덤 접속 과정이 2단계로 수행되는 경우, S13/S15이 (단말이 전송을 수행하는) 하나의 단계로 수행되고(메세지 A), S14/S16이 (기지국이 전송을 수행하는) 하나의 단계로 수행될 수 있다(메세지 B).
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상향/하향링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S17) 및 PUSCH/PUCCH(Physical Uplink Control Channel) 전송(S18)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 UCI(Uplink Control Information)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 따라 단말은 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 무선 프레임의 구조를 나타낸 도면이다.
NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 하나의 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의된다. 하나의 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 정의된다. 하나의 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함한다. 보통 CP가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함한다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함한다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, DFT-s-OFDM 심볼)을 포함할 수 있다.
표 1은 보통 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) Nslotsymb Nframe,uslot Nsubframe,uslot
15KHz (u=0) 14 10 1
30KHz (u=1) 14 20 2
60KHz (u=2) 14 40 4
120KHz (u=3) 14 80 8
240KHz (u=4) 14 160 16
* Nslotsymb: 슬롯 내 심볼의 개수* Nframe,uslot: 프레임 내 슬롯의 개수
* Nsubframe,uslot: 서브프레임 내 슬롯의 개수
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) Nslotsymb Nframe,uslot Nsubframe,uslot
60KHz (u=2) 12 40 4
프레임의 구조는 예시에 불과하고, 프레임에서 서브프레임의 수, 슬롯의 수, 심볼의 수는 다양하게 변경될 수 있다.NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴모놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다.
NR은 다양한 5G 서비스들을 지원하기 위한 다수의 numerology(또는 subcarrier spacing(SCS))를 지원한다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)을 지원하며, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)을 지원하며, SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)을 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다.
NR 주파수 밴드(frequency band)는 2가지 타입(FR1, FR2)의 주파수 범위(frequency range)로 정의된다. FR1, FR2는 아래 표 3과 같이 구성될 수 있다. 또한, FR2는 밀리미터 웨이브(millimeter wave, mmW)를 의미할 수 있다.
Frequency Range designation Corresponding frequency range Subcarrier Spacing
FR1 450MHz - 7125MHz 15, 30, 60kHz
FR2 24250MHz - 52600MHz 60, 120, 240kHz
도 3은 슬롯의 자원 그리드를 예시한다.하나의 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (P)RB로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 4는 슬롯 내에 물리 채널이 매핑되는 예를 나타낸 도면이다.
하나의 슬롯 내에 DL 제어 채널, DL 또는 UL 데이터, UL 제어 채널 등이 모두 포함될 수 있다. 예를 들어, 슬롯 내의 처음 N개의 심볼은 DL 제어 채널을 전송하는데 사용되고(이하, DL 제어 영역), 슬롯 내의 마지막 M개의 심볼은 UL 제어 채널을 전송하는데 사용될 수 있다(이하, UL 제어 영역). N과 M은 각각 0 이상의 정수이다. DL 제어 영역과 UL 제어 영역의 사이에 있는 자원 영역(이하, 데이터 영역)은 DL 데이터 전송을 위해 사용되거나, UL 데이터 전송을 위해 사용될 수 있다. 제어 영역과 데이터 영역 사이에는 DL-to-UL 혹은 UL-to-DL 스위칭을 위한 시간 갭이 존재할 수 있다. DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. 슬롯 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 시간 갭으로 사용될 수 있다.
이하, 각각의 물리 채널에 대해 보다 자세히 설명한다.
하향링크 채널 구조
기지국은 후술하는 하향링크 채널을 통해 관련 신호를 단말에게 전송하고, 단말은 후술하는 하향링크 채널을 통해 관련 신호를 기지국으로부터 수신한다.
(1) 물리 하향링크 공유 채널(PDSCH)
PDSCH는 하향링크 데이터(예, DL-SCH transport block, DL-SCH TB)를 운반하고, QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM 등의 변조 방법이 적용된다. TB를 인코딩하여 코드워드(codeword)가 생성된다. PDSCH는 최대 2개의 코드워드를 나를 수 있다. 코드워드 별로 스크램블링(scrambling) 및 변조 매핑(modulation mapping)이 수행되고, 각 코드워드로부터 생성된 변조 심볼들은 하나 이상의 레이어로 매핑될 수 있다. 각 레이어는 DMRS(Demodulation Reference Signal)과 함께 자원에 매핑되어 OFDM 심볼 신호로 생성되고, 해당 안테나 포트를 통해 전송된다.
(2) 물리 하향링크 제어 채널 (PDCCH)
PDCCH는 DCI(Downlink Control Information)를 운반한다. 예를 들어, PCCCH (즉, DCI)는 DL-SCH(downlink shared channel)의 전송 포맷 및 자원 할당, UL-SCH(uplink shared channel)에 대한 자원 할당 정보, PCH(paging channel)에 대한 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위 계층 제어 메시지에 대한 자원 할당 정보, 전송 전력 제어 명령, CS(Configured Scheduling)의 활성화/해제 등을 나른다. DCI는 CRC(cyclic redundancy check)를 포함하며, CRC는 PDCCH의 소유자 또는 사용 용도에 따라 다양한 식별자(예, Radio Network Temporary Identifier, RNTI)로 마스킹/스크램블 된다. 예를 들어, PDCCH가 특정 단말을 위한 것이면, CRC는 단말 식별자(예, Cell-RNTI, C-RNTI)로 마스킹 된다. PDCCH가 페이징에 관한 것이면, CRC는 P-RNTI(Paging-RNTI)로 마스킹 된다. PDCCH가 시스템 정보(예, System Information Block, SIB)에 관한 것이면, CRC는 SI-RNTI(System Information RNTI)로 마스킹 된다. PDCCH가 랜덤 접속 응답에 관한 것이면, CRC는 RA-RNTI(Random Access-RNTI)로 마스킹 된다.
PDCCH의 변조 방식은 고정돼 있으며(예, Quadrature Phase Shift Keying, QPSK), 하나의 PDCCH는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16 개의 CCE(Control Channel Element)로 구성된다. 하나의 CCE는 6개의 REG(Resource Element Group)로 구성된다. 하나의 REG는 하나의 OFDMA 심볼과 하나의 (P)RB로 정의된다.
도 6은 하나의 REG 구조를 예시한다. 도 6에서, D는 DCI가 매핑되는 자원 요소 (RE)를 나타내고, R은 DMRS가 매핑되는 RE를 나타낸다. DMRS는 하나의 심볼 내 주파수 도메인 방향으로, RE #1, RE #5 및 RE #9에 매핑된다.
PDCCH는 CORESET(Control Resource Set)를 통해 전송된다. CORESET는 BWP 내에서 PDCCH/DCI를 운반하는데 사용되는 물리 자원/파라미터 세트에 해당한다. 예를 들어, CORESET는 주어진 뉴모놀로지(예, SCS, CP 길이 등)를 갖는 REG 세트를 포함한다. CORESET는 시스템 정보(예, MIB) 또는 단말-특정(UE-specific) 상위 계층(예, RRC) 시그널링을 통해 설정될 수 있다. CORESET를 설정하는데 사용되는 파라미터/정보의 예는 다음과 같다. 하나의 단말에게 하나 이상의 CORESET가 설정되며, 복수의 CORESET가 시간/주파수 도메인에서 중첩될 수 있다.
- controlResourceSetId: CORESET의 식별 정보(ID)를 나타낸다.
- frequencyDomainResources: CORESET의 주파수 영역 자원을 나타낸다. 비트맵을 통해 지시되며, 각 비트는 RB 그룹(= 6개 연속된 RB)에 대응한다. 예를 들어, 비트맵의 MSB(Most Significant Bit)는 BWP 내 첫 번째 RB 그룹에 대응한다. 비트 값이 1인 비트에 대응되는 RB 그룹이 CORESET의 주파수 영역 자원으로 할당된다.
- duration: CORESET의 시간 영역 자원을 나타낸다. CORESET를 구성하는 연속된 OFDMA 심볼 개수를 나타낸다. 예를 들어, duration은 1~3의 값을 가진다.
- cce-REG-MappingType: CCE-to-REG 매핑 타입을 나타낸다. Interleaved 타입과 non-interleaved 타입이 지원된다.
- precoderGranularity: 주파수 도메인에서 프리코더 입도(granularity)를 나타낸다.
- tci-StatesPDCCH: PDCCH에 대한 TCI(Transmission Configuration Indication) 상태(state)를 지시하는 정보(예, TCI-StateID)를 나타낸다. TCI 상태는 RS 세트(TCI-상태) 내의 DL RS(들)와 PDCCH DMRS 포트의 QCL(Quasi-Co-Location) 관계를 제공하는데 사용된다.
- tci-PresentInDCI: DCI 내의 TCI 필드가 포함되는지 여부를 나타낸다.
- pdcch-DMRS-ScramblingID: PDCCH DMRS 스크램블링 시퀀스의 초기화에 사용되는 정보를 나타낸다.
각 CORESET을 위한 주파수 도메인 내 프리코더 입도 (precoder granularity)는 상위 계층 시그널링에 의해 다음 중 하나로 설정된다:
- sameAsREG-bundle: 주파수 도메인 내 REG 번들 크기와 동일함
- allContiguousRBs: CORESET 내부의 주파수 도메인 내 연속하는 RB들의 개수와 동일함
CORESET 내 REG들은 시간-우선 매핑 방식 (time-first mapping manner)에 기초하여 넘버링된다. 즉, REG들은 CORESET 내부의 가장-낮게 넘버링된 자원 블록 내 첫 번째 OFDM 심볼부터 시작하여 0부터 순차적으로 넘버링된다.
CCE에서 REG로의 매핑 타입은 비-인터리빙된 CCE-REG 매핑 타입 또는 인터리빙된 CCE-REG 매핑 타입 중 하나의 타입으로 설정된다. 도 7(a)는 비-인터리빙된 CCE-REG 매핑 타입을 예시하고, 도 7(b)는 인터리빙된 CCE-REG 매핑 타입을 예시한다.
- 비-인터리빙된(non-interleaved) CCE-REG 매핑 타입 (또는 localized 매핑 타입): 주어진 CCE를 위한 6 REG들은 하나의 REG 번들을 구성하고, 주어진 CCE를 위한 모든 REG들은 연속함. 하나의 REG 번들은 하나의 CCE에 대응함
- 인터리빙된 (interleaved) CCE-REG 매핑 타입 (또는 Distributed 매핑 타입): 주어진 CCE를 위한 2, 3 또는 6 REG들은 하나의 REG 번들을 구성하고, REG 번들은 CORESET 내에서 인터리빙됨. 1개 OFDM 심볼 또는 2개 OFDM 심볼로 구성된 CORESET 내 REG 번들은 2 또는 6 REG들로 구성되고, 3개 OFDM 심볼로 구성된 CORESET 내 REG 번들은 3 또는 6 REG들로 구성됨. REG 번들의 크기는 CORESET 별로 설정됨
도 8은 블록 인터리버를 예시한다. 위와 같은 인터리빙 동작을 위한 (블록) 인터리버(interleaver)의 행(row) 개수(A)는 2, 3, 6 중 하나로 설정된다. 주어진 CORESET을 위한 인터리빙 단위 (interleaving unit)의 개수가 P인 경우, 블록 인터리버의 열(column) 개수는 P/A와 같다. 블록 인터리버에 대한 쓰기(write) 동작은 하기 도 11과 같이 행-우선 (row-first) 방향으로 수행되고, 읽기(read) 동작은 열-우선(column-first) 방향으로 수행된다. 인터리빙 단위의 순환 시프트 (CS)는 DMRS를 위해 설정 가능한 ID와 독립적으로 설정 가능한 id에 기초하여 적용된다.
PDCCH 수신을 위해, 단말은 CORESET에서 PDCCH 후보들의 세트를 모니터링(예, 블라인드 디코딩)을 할 수 있다. PDCCH 후보는 PDCCH 수신/검출을 위해 단말이 모니터링 하는 CCE(들)을 나타낸다. PDCCH 모니터링은 PDCCH 모니터링이 설정된 각각의 활성화된 셀 상의 활성 DL BWP 상의 하나 이상의 CORESET에서 수행될 수 있다. 단말이 모니터링 하는 PDCCH 후보들의 세트는 PDCCH 검색 공간(Search Space, SS) 세트로 정의된다. SS 세트는 공통 검색 공간(Common Search Space, CSS) 세트 또는 단말-특정 검색 공간(UE-specific Search Space, USS) 세트일 수 있다.
표 4는 PDCCH 검색 공간을 예시한다.
Type Search Space RNTI Use Case
Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH
Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding
Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI(s)
UE Specific UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI(s) User specific PDSCH decoding
SS 세트는 시스템 정보(예, MIB) 또는 단말-특정(UE-specific) 상위 계층(예, RRC) 시그널링을 통해 설정될 수 있다. 서빙 셀의 각 DL BWP에는 S개(예, 10) 이하의 SS 세트가 설정될 수 있다. 예를 들어, 각 SS 세트에 대해 다음의 파라미터/정보가 제공될 수 있다. 각각의 SS 세트는 하나의 CORESET와 연관되며(associated), 각각의 CORESET 구성은 하나 이상의 SS 세트와 연관될 수 있다.- searchSpaceId: SS 세트의 ID를 나타낸다.
- controlResourceSetId: SS 세트와 연관된 CORESET를 나타낸다.
- monitoringSlotPeriodicityAndOffset: PDCCH 모니터링 주기 구간 (슬롯 단위) 및 PDCCH 모니터링 구간 오프셋 (슬롯 단위)을 나타낸다.
- monitoringSymbolsWithinSlot: PDCCH 모니터링이 설정된 슬롯 내에서 PDCCH 모니터링을 위한 첫 번째 OFDMA 심볼(들)을 나타낸다. 비트맵을 통해 지시되며, 각 비트는 슬롯 내의 각 OFDMA 심볼에 대응한다. 비트맵의 MSB는 슬롯 내 첫 번째 OFDM 심볼에 대응한다. 비트 값이 1인 비트(들)에 대응되는 OFDMA 심볼(들)이 슬롯 내에서 CORESET의 첫 번째 심볼(들)에 해당한다.
- nrofCandidates: AL={1, 2, 4, 8, 16} 별 PDCCH 후보의 개수(예, 0, 1, 2, 3, 4, 5, 6, 8 중 하나의 값)를 나타낸다.
- searchSpaceType: SS 타입이 CSS 또는 USS인지 나타낸다.
- DCI 포맷: PDCCH 후보의 DCI 포맷을 나타낸다.
CORESET/SS 세트 설정에 기반하여, 단말은 슬롯 내의 하나 이상의 SS 세트에서 PDCCH 후보들을 모니터링 할 수 있다. PDCCH 후보들을 모니터링을 해야 하는 기회(occasion)(예, 시간/주파수 자원)는 PDCCH (모니터링) 기회라고 정의된다. 슬롯 내에 하나 이상의 PDCCH (모니터링) 기회가 구성될 수 있다.
표 5는 PDCCH를 통해 전송되는 DCI 포맷들을 예시한다.
DCI format Usage
0_0 Scheduling of PUSCH in one cell
0_1 Scheduling of PUSCH in one cell
1_0 Scheduling of PDSCH in one cell
1_1 Scheduling of PDSCH in one cell
2_0 Notifying a group of UEs of the slot format
2_1 Notifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE
2_2 Transmission of TPC commands for PUCCH and PUSCH
2_3 Transmission of a group of TPC commands for SRS transmissions by one or more UEs
DCI 포맷 0_0은 TB-기반 (또는 TB-level) PUSCH를 스케줄링 하기 위해 사용되고, DCI 포맷 0_1은 TB-기반 (또는 TB-level) PUSCH 또는 CBG(Code Block Group)-기반 (또는 CBG-level) PUSCH를 스케줄링 하기 위해 사용될 수 있다. DCI 포맷 1_0은 TB-기반 (또는 TB-level) PDSCH를 스케줄링 하기 위해 사용되고, DCI 포맷 1_1은 TB-기반 (또는 TB-level) PDSCH 또는 CBG-기반 (또는 CBG-level) PDSCH를 스케줄링 하기 위해 사용될 수 있다(DL grant DCI). DCI 포맷 0_0/0_1은 UL grant DCI 또는 UL 스케줄링 정보로 지칭되고, DCI 포맷 1_0/1_1은 DL grant DCI 또는 UL 스케줄링 정보로 지칭될 수 있다. DCI 포맷 2_0은 동적 슬롯 포맷 정보 (예, dynamic SFI)를 단말에게 전달하기 위해 사용되고, DCI 포맷 2_1은 하향링크 선취 (pre-Emption) 정보를 단말에게 전달하기 위해 사용된다. DCI 포맷 2_0 및/또는 DCI 포맷 2_1은 하나의 그룹으로 정의된 단말들에게 전달되는 PDCCH인 그룹 공통 PDCCH (Group common PDCCH)를 통해 해당 그룹 내 단말들에게 전달될 수 있다.DCI 포맷 0_0과 DCI 포맷 1_0은 폴백(fallback) DCI 포맷으로 지칭되고, DCI 포맷 0_1과 DCI 포맷 1_1은 논-폴백 DCI 포맷으로 지칭될 수 있다. 폴백 DCI 포맷은 단말 설정과 관계없이 DCI 사이즈/필드 구성이 동일하게 유지된다. 반면, 논-폴백 DCI 포맷은 단말 설정에 따라 DCI 사이즈/필드 구성이 달라진다.
상향링크 채널 구조
단말은 후술하는 상향링크 채널을 통해 관련 신호를 기지국으로 전송하고, 기지국은 후술하는 상향링크 채널을 통해 관련 신호를 단말로부터 수신한다.
(1) 물리 상향링크 제어 채널(PUCCH)
PUCCH는 UCI(Uplink Control Information), HARQ-ACK 및/또는 스케줄링 요청(SR)을 운반하고, PUCCH 전송 길이에 따라 Short PUCCH 및 Long PUCCH로 구분된다.
UCI는 다음을 포함한다.
- SR(Scheduling Request): UL-SCH 자원을 요청하는데 사용되는 정보이다.
- HARQ(Hybrid Automatic Repeat reQuest)-ACK(Acknowledgement): PDSCH 상의 하향링크 데이터 패킷(예, 코드워드)에 대한 응답이다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 코드워드에 대한 응답으로 HARQ-ACK 1비트가 전송되고, 두 개의 코드워드에 대한 응답으로 HARQ-ACK 2비트가 전송될 수 있다. HARQ-ACK 응답은 포지티브 ACK(간단히, ACK), 네거티브 ACK(NACK), DTX 또는 NACK/DTX를 포함한다. 여기서, HARQ-ACK은 HARQ ACK/NACK, ACK/NACK과 혼용된다.
- CSI(Channel State Information): 하향링크 채널에 대한 피드백 정보이다. MIMO(Multiple Input Multiple Output)-관련 피드백 정보는 RI(Rank Indicator) 및 PMI(Precoding Matrix Indicator)를 포함한다.
표 6은 PUCCH 포맷들을 예시한다. PUCCH 전송 길이에 따라 Short PUCCH (포맷 0, 2) 및 Long PUCCH (포맷 1, 3, 4)로 구분될 수 있다.
PUCCH format Length in OFDM symbols Nsymb PUCCH Number of bits Usage Etc
0 1 - 2 ≤2 HARQ, SR Sequence selection
1 4 - 14 ≤2 HARQ, [SR] Sequence modulation
2 1 - 2 >2 HARQ, CSI, [SR] CP-OFDM
3 4 - 14 >2 HARQ, CSI, [SR] DFT-s-OFDM(no UE multiplexing)
4 4 - 14 >2 HARQ, CSI, [SR] DFT-s-OFDM(Pre DFT OCC)
PUCCH 포맷 0는 최대 2 비트 크기의 UCI를 운반하고, 시퀀스 기반으로 매핑되어 전송된다. 구체적으로, 단말은 복수 개의 시퀀스들 중 하나의 시퀀스를 PUCCH 포맷 0인 PUCCH을 통해 전송하여 특정 UCI를 기지국으로 전송한다. 단말은 긍정 (positive) SR을 전송하는 경우에만 대응하는 SR 설정을 위한 PUCCH 자원 내에서 PUCCH 포맷 0인 PUCCH를 전송한다.PUCCH 포맷 1은 최대 2 비트 크기의 UCI를 운반하고, 변조 심볼은 시간 영역에서 (주파수 호핑 여부에 따라 달리 설정되는) 직교 커버 코드(OCC)에 의해 확산된다. DMRS는 변조 심볼이 전송되지 않는 심볼에서 전송된다(즉, TDM(Time Division Multiplexing)되어 전송된다).
PUCCH 포맷 2는 2 비트보다 큰 비트 크기의 UCI를 운반하고, 변조 심볼은 DMRS와 FDM(Frequency Division Multiplexing)되어 전송된다. DM-RS는 1/3의 밀도로 주어진 자원 블록 내 심볼 인덱스 #1, #4, #7 및 #10에 위치한다. PN (Pseudo Noise) 시퀀스가 DM_RS 시퀀스를 위해 사용된다. 2 심볼 PUCCH 포맷 2를 위해 주파수 호핑은 활성화될 수 있다.
PUCCH 포맷 3은 동일 물리 자원 블록들 내 단말 다중화가 되지 않으며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH 포맷 3의 PUCCH 자원은 직교 커버 코드를 포함하지 않는다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
PUCCH 포맷 4는 동일 물리 자원 블록들 내에 최대 4개 단말까지 다중화가 지원되며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH 포맷 3의 PUCCH 자원은 직교 커버 코드를 포함한다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
(2) 물리 상향링크 공유 채널(PUSCH)
PUSCH는 상향링크 데이터(예, UL-SCH transport block, UL-SCH TB) 및/또는 상향링크 제어 정보(UCI)를 운반하고, CP-OFDM(Cyclic Prefix - Orthogonal Frequency Division Multiplexing) 파형(waveform) 또는 DFT-s-OFDM(Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplexing) 파형에 기초하여 전송된다. PUSCH가 DFT-s-OFDM 파형에 기초하여 전송되는 경우, 단말은 변환 프리코딩(transform precoding)을 적용하여 PUSCH를 전송한다. 일 예로, 변환 프리코딩이 불가능한 경우(예, transform precoding is disabled) 단말은 CP-OFDM 파형에 기초하여 PUSCH를 전송하고, 변환 프리코딩이 가능한 경우(예, transform precoding is enabled), 단말은 CP-OFDM 파형 또는 DFT-s-OFDM 파형에 기초하여 PUSCH를 전송할 수 있다. PUSCH 전송은 DCI 내 UL 그랜트에 의해 동적으로 스케줄링 되거나(dynamic scheduling), 상위 계층(예, RRC) 시그널링 (및/또는 Layer 1(L1) 시그널링(예, PDCCH))에 기초하여 반-정적(semi-static)으로 스케줄링 될 수 있다(configured scheduling, configured grant). PUSCH 전송은 코드북 기반 또는 비-코드북 기반으로 수행될 수 있다.
도 5는 HARQ-ACK을 전송하는 타이밍과 PUSCH를 전송하는 타이밍 및 할당 방법을 설명하기 위한 도면이다.
HARQ-ACK은 UE(User Equipment)가 물리 하향링크 채널을 성공적으로 수신했는지 여부를 나타내는 정보이며, UE가 물리 하향링크 채널을 성공적으로 수신한 경우에는 ACK(acknowledgement)을 그렇지 못한 경우에는 부정 ACK(negative ACK, NACK)을 BS에게 피드백한다. NR에서의 HARQ는 수송 블록당 1 비트의 HARQ-ACK 피드백을 지원한다. 도 5는 HARQ-ACK 타이밍(K1)의 일례를 나타낸 도이다.
도 5에서, K0는 DL 배정(즉, DL 그랜트)을 나르는 PDCCH를 가진 슬롯부터 대응하는 PDSCH 전송을 가진 슬롯까지의 슬롯의 개수를 나타내며, K1은 PDSCH의 슬롯으로부터 대응하는 HARQ-ACK 전송의 슬롯까지의 슬롯의 개수를 나타내고, K2는 UL 그랜트를 나르는 PDCCH를 가진 슬롯부터 대응하는 PUSCH 전송을 가진 슬롯까지의 슬롯의 개수를 나타낸다. 즉, KO, K1, K2를 아래 표 7과 같이 간략히 정리할 수 있다.
A B
K0 DL scheduling DCI Corresponding DL data transmission
K1 DL data reception Corresponding HARQ-ACK
K2 UL scheduling DCI Corresponding UL data transmission
BS는 HARQ-ACK 피드백 타이밍을 DCI에서 동적으로 혹은 RRC 시그널링을 통해 준-정적으로 UE에게 제공할 수 있다. NR은 UE들 간에 서로 다른 최소 HARQ 프로세싱 시간을 지원한다. HARQ 프로세싱 시간은 DL 데이터 수신 타이밍과 대응하는 HARQ-ACK 전송 타이밍 사이의 딜레이(delay)와 UL 그랜트 수신 타이밍과 대응하는 UL 데이터 전송 타이밍 사이의 딜레이를 포함한다. UE는 BS에게 자신의 최소 HARQ 프로세싱 시간의 능력(capability)에 대한 정보를 전송한다. UE 관점에서, 시간 도메인에서 다수의 DL 전송들에 대한 HARQ ACK / NACK 피드백은 하나의 UL 데이터 / 제어 영역에서 전송될 수 있다. DL 데이터 수신과 대응하는 ACK 사이의 타이밍은 DCI에 의해 지시된다.
수송 블록 혹은 코드워드별로 HAQR 과정이 수행되던 LTE 시스템과 달리, NR 시스템에서는 단일(single)/다중(multi)-비트 HARQ-ACK 피드백을 갖는 코드 블록 그룹(code block group, CBG) 기반의 전송이 지원된다. 수송 블록(transport block, TB)는 TB의 크기에 따라 하나 이상의 CB에 매핑될 수 있다. 예를 들어, 채널 코딩 과정에서 TB에는 CRC 코드가 부착되며, CRC 부착 TB가 일정 크기보다 크지 않으면 CRC 부착 TB가 곧 하나의 코드 블록(code block, CB)에 대응하지만 상기 CRC 부착 TB가 상기 일정 크기보다 크면 상기 CRC 부착 TB는 복수의 CB로 세그먼트된다. NR 시스템에서 UE는 CBG 기반 전송들을 수신하도록 설정될 수 있으며, 재전송은 TB의 모든 CB들의 서브셋을 나르도록 스케줄링될 수 있다.
도 5를 참조하면, 단말은 슬롯 #n에서 PDCCH를 검출할 수 있다. 여기서, PDCCH는 하향링크 스케줄링 정보(예, DCI 포맷 1_0, 1_1)를 포함하며, PDCCH는 DL assignment-to-PDSCH offset (K0)과 PDSCH-HARQ-ACK reporting offset (K1)를 나타낸다. 예를 들어, DCI 포맷 1_0, 1_1은 다음의 정보를 포함할 수 있다.
- Frequency domain resource assignment: PDSCH에 할당된 RB 자원(예, 하나 이상의 (불)연속 RB)을 나타냄
- Time domain resource assignment: K0, 슬롯 내의 PDSCH의 시작 위치(예, OFDM 심볼 인덱스) 및 길이(예 OFDM 심볼 개수)를 나타냄
- PDSCH-to-HARQ_feedback timing indicator: K1를 나타냄
- HARQ process number (4비트): 데이터(예, PDSCH, TB)에 대한 HARQ process ID(Identity)를 나타냄
- PUCCH resource indicator (PRI): PUCCH 자원 세트 내의 복수의 PUCCH 자원 중에서 UCI 전송에 사용될 PUCCH 자원을 지시함
이후, 단말은 슬롯 #n의 스케줄링 정보에 따라 슬롯 #(n+K0)에서 PDSCH를 수신한 뒤, 슬롯 #(n+K1)에서 PUCCH를 통해 UCI를 전송할 수 있다. 여기서, UCI는 PDSCH에 대한 HARQ-ACK 응답을 포함한다. PDSCH가 최대 1개 TB를 전송하도록 구성된 경우, HARQ-ACK 응답은 1-비트로 구성될 수 있다. PDSCH가 최대 2개의 TB를 전송하도록 구성된 경우, HARQ-ACK 응답은 공간(spatial) 번들링이 구성되지 않은 경우 2-비트로 구성되고, 공간 번들링이 구성된 경우 1-비트로 구성될 수 있다. 복수의 PDSCH에 대한 HARQ-ACK 전송 시점이 슬롯 #(n+K1)로 지정된 경우, 슬롯 #(n+K1)에서 전송되는 UCI는 복수의 PDSCH에 대한 HARQ-ACK 응답을 포함한다.
도 5를 참조하면, 단말은 슬롯 #n에서 PDCCH를 검출할 수 있다. 여기서, PDCCH는 상향링크 스케줄링 정보(예, DCI 포맷 0_0, 0_1)를 포함한다. DCI 포맷 0_0, 0_1은 다음의 정보를 포함할 수 있다.
- Frequency domain resource assignment: PUSCH에 할당된 RB 세트를 나타냄
- Time domain resource assignment: 슬롯 오프셋 K2, 슬롯 내의 PUSCH의 시작 위치(예, 심볼 인덱스) 및 길이(예 OFDM 심볼 개수)를 나타냄. 시작 심볼과 길이는 SLIV(Start and Length Indicator Value)를 통해 지시되거나, 각각 지시될 수 있음.
이후, 단말은 슬롯 #n의 스케줄링 정보에 따라 슬롯 #(n+K2)에서 PUSCH를 전송할 수 있다. 여기서, PUSCH는 UL-SCH TB를 포함한다.
DRX (Discontinuous Reception) 동작
UE는 전력 소모 (Power Consumption)을 감소시키기 위해 RRC_IDLE 및 RRC_INACTIVE 상태에서 DRX(Discontinuous Reception)를 사용한다. DRX가 설정되면, UE는 DRX 설정(Configuration) 정보에 따라 DRX 동작을 수행한다.
DRX를 기반으로 동작하는 UE는 수신 동작에 대한 ON/OFF를 반복한다. 예를 들어, DRX가 설정된 경우, 단말은 미리 정해진 시간 간격(예를 들어, ON)에서만 PDCCH 수신/검출(예를 들어, PDCCH 모니터링)을 시도하고, 나머지 시간(예를 들어, OFF/Sleep)에서는 PDCCH 수신을 시도하지 않는다.
이때, 단말이 PDCCH 수신을 시도해야 하는 시간을 On-duration이라고 하며, On-duration은 DRX 주기당 한 번씩 정의된다. UE는 RRC 시그널링을 통해 기지국(예를 들어, gNB)로부터 DRX 설정(Configuration) 정보를 수신하고 (Long) DRX 커맨드 MAC CE 수신을 통해 DRX 동작을 수행할 수 있다.
한편, DRX 설정(Configuration) 정보는 MAC-CellGroupConfig에 포함될 수 있다. IE MAC-CellGroupConfig는 DRX를 포함하는 셀 그룹에 대한 MAC 파라미터를 설정(Configuration)하는 데 사용된다.
DRX(Discontinuous Reception)는 UE(User Equipment)가 하향링크 채널을 불연속적으로 수신/모니터링하여 UE가 배터리 소모를 줄일 수 있도록 하는 동작 모드를 의미한다. 즉, DRX가 설정된 UE는 불연속적으로 하향링크 신호를 수신함으로써 전력 소모를 줄일 수 있다. DRX 동작은 On Duration이 주기적으로 반복되는 시간 간격을 나타내는 DRX 주기에서 수행된다. DRX 주기에는 On Duration 및 Sleep Duration (또는 DRX를 위한 Opportunity)이 포함됩니다. On Duration은 단말이 PDCCH를 수신하기 위해 PDCCH를 모니터링하는 시간 간격을 나타낸다. DRX는 RRC(Radio Resource Control)_IDLE State(또는 모드), RRC_INACTIVE State(또는 모드), 또는 RRC_CONNECTED State(또는 모드)에서 수행될 수 있다. RRC_IDLE State 및 RRC_INACTIVE State에서 DRX는 페이징 신호를 불연속적으로 수신하기 위해 사용된다.
- RRC_Idle State: 기지국과 단말 사이에 무선 연결(RRC 연결)이 설정되지 않은 상태.
- RRC Inactive State: 기지국과 단말 사이에 무선 연결(RRC 연결)이 설정되었지만 무선 연결이 비활성화된 상태.
- RRC_Connected 상태: 기지국과 단말 사이에 무선 연결(RRC 연결)이 설정된 상태.
DRX는 기본적으로 Idle 모드 DRX, Connected DRX(C-DRX) 및 확장 DRX로 구분된다. RRC IDLE 상태에서 적용되는 DRX를 IDLE 모드 DRX라고 하고, RRC CONNECTED 상태에서 적용되는 DRX를 연결 모드 DRX(C-DRX)라고 한다.
eDRX(Extended/enhanced DRX)는 IDLE 모드 DRX와 C-DRX의 주기를 확장할 수 있는 메커니즘으로, 주로 (대규모) IoT 적용에 사용될 수 있다. IDLE 모드 DRX에서 eDRX 허용 여부는 시스템 정보(예, SIB1)를 기반으로 설정될 수 있다.
SIB1은 eDRX-Allowed 파라미터를 포함할 수 있다. eDRX-Allowed 파라미터는 IDLE 모드 확장 DRX가 허용되는지 여부를 나타내는 파라미터이다.
(1) IDLE 모드 DRX
IDLE 모드에서 UE는 전력 소모(Power Consumption)를 줄이기 위해 DRX를 사용할 수 있다. 하나의 페이징 기회(PO)는 P-RNTI(Paging-Radio Network Temporary Identifier) 기반 PDCCH(Physical Downlink Control Channel) 또는 MPDCCH(MTC PDCCH) 또는 NPDCCH(Narrowband PDCCH)가 전송될 수 있는 서브프레임일 수 있다. P-RNTI 기반 (M/N)PDCCH는 NB-IoT를 위한 페이징 메시지를 어드레싱(addressing)/스케줄링(scheduling)할 수 있다. P-RNTI 기반 MPDCCH 전송의 경우, PO는 MPDCCH 반복을 위한 시작 서브프레임을 지시할 수 있다.
P-RNTI 기반 NPDCCH 전송의 경우, PO는 NPDCCH 반복을 위한 시작 서브프레임을 지시할 수 있다. PO에 의해 결정된 서브프레임이 유효한 NB-IoT 하향링크 서브프레임이 아닌 경우, PO 이후의 첫 번째 유효한 NB-IoT 하향링크 서브프레임이 NPDCCH 반복의 시작 서브프레임일 수 있다.
하나의 페이징 프레임(PF)은 하나 또는 복수의 페이징 기회를 포함할 수 있는 하나의 무선 프레임이다. DRX가 사용되는 경우, UE는 DRX 주기당 하나의 PO만 모니터링하도록 구성될 수 있다. 하나의 페이징 협대역(PNB)은 단말이 페이징 메시지 수신/모니터링을 수행하는 하나의 협대역이다. PF, PO 및/또는 PNB는 네트워크 시그널링(예를 들어, 시스템 정보)을 통해 제공되는 DRX 파라미터에 기초하여 결정될 수 있다.
이하, 'PDCCH'는 MPDCCH, NPDCCH 및/또는 일반 PDCCH를 의미할 수 있다. 이하, 'UE'는 MTC UE, BL(Bandwidth Reduced Low Complexity)/CE(Coverage Enhanced) UE, NB-IoT UE, RedCap(RedCap) UE, 일반 UE 및/또는 IAB-MT(모바일 터미네이션)를 지칭할 수 있다. .
도 9는 IDLE 모드 DRX 동작을 수행하는 방법의 일 예를 나타내는 흐름도이다.
UE는 기지국으로부터 상위 계층 시그널링(예를 들어, 시스템 정보)을 통해 IDLE 모드 DRX 설정 정보를 수신한다(S910).
또한, UE는 IDLE 모드 DRX 설정 정보를 기반으로 페이징 DRX 주기에서 PDCCH를 모니터링하기 위한 PF(Paging Frame) 및 PO(Paging Occasion)를 결정한다(S920). 이 경우 DRX 주기는 On Duration과 Sleep Duration (또는 DRX를 위한 Opportunity)을 포함한다.
또한, UE는 결정된 PF의 PO에서 PDCCH를 모니터링한다(S930). 한편, UE는 페이징 DRX 주기당 하나의 서브프레임(PO)만 모니터링한다.
또한, UE가 On Duration 동안 P-RNTI에 의해 스크램블된 PDCCH(더 정확하게는 PDCCH의 CRC)를 수신하는 경우(즉, 페이징이 감지된 경우), UE는 연결 모드로 천이하여 기지국과 데이터를 송수신할 수 있다.
도 10은 IDLE 모드 DRX 동작의 일 예를 나타내는 도면이다.
도 10을 참조하면. RRC_Idle 상태(이하 'Idle state'라 함)에 있는 UE로 향하는 트래픽(데이터)이 있는 경우, 해당 UE를 향하여 페이징이 발생한다.
따라서, UE는 (페이징) DRX 주기마다 깨어나서 PDCCH를 모니터링한다.
Paging이 존재하면 UE는 Connected 상태로 천이하고 데이터를 수신한다. 그렇지 않으면, UE는 다시 슬립 모드에 진입할 수 있다.
(2) Connected 모드 DRX (C-DRX)
C-DRX는 RRC Connected State에서 적용되는 DRX이다. C-DRX의 DRX 주기는 짧은 (Short) DRX 주기 및/또는 긴 (Long) DRX 주기로 구성될 수 있다. 짧은 DRX 주기는 선택 사항이다.
C-DRX가 설정된 경우, UE는 On Duration 동안 PDCCH 모니터링을 수행한다. PDCCH 모니터링 중에 성공적으로 검출된 PDCCH가 있는 경우, UE는 Inactive Timer를 동작(또는 실행)시키고 웨이크(Awake) State를 유지한다. 반면, PDCCH 모니터링 동안 성공적으로 검출된 PDCCH가 없는 경우, UE는 On Duration이 종료된 후 슬립(Sleep) State로 진입한다.
C-DRX가 설정되면, C-DRX 설정을 기반으로 PDCCH 수신 Occasion (예를 들어, PDCCH 검색 공간/후보를 갖는 슬롯)이 불연속적으로 설정될 수 있다. 반면, C-DRX가 설정되지 않은 경우, PDCCH 검색 공간 설정(Search Space Configuration)에 따라 PDCCH 수신 Occasion (예를 들어, PDCCH 검색 공간/후보를 갖는 슬롯)이 연속적으로 설정(configuration)될 수 있다. 한편, PDCCH 모니터링은 C-DRX 설정에 관계없이 측정 갭(Measurement Gap)으로 설정된 시간 간격으로 제한될 수 있다.
도 11은 C-DRX 동작을 수행하는 방법의 일 예를 나타내는 흐름도이다.
UE는 기지국으로부터 DRX 설정(Configuration) 정보를 포함하는 RRC 시그널링(예를 들어, MAC-MainConfig IE)을 수신한다(S1110). DRX 설정 정보는 다음과 같은 정보를 포함할 수 있다.
- on-duration: UE가 깨어난 후 PDCCH를 수신하기 위해 기다리는 구간(Duration). UE가 PDCCH를 성공적으로 디코딩하면 UE는 깨어 있고 drx-inactivity 타이머를 시작한다.
- onDurationTimer: DRX Cycle 시작되는 구간(Duration); 예를 들어, DRX 주기 시작 부분에서 연속적으로 모니터링되어야 하는 PDCCH 모니터 서브프레임의 수
- drx-InactivityTimer: PDCCH가 MAC 엔티티에 대한 새로운 UL 또는 DL 전송을 지시하는 PDCCH에 대응하는 PDCCH Occasion 이후의 지속시간; 예를 들어, UE가 스케줄링 정보를 갖는 PDCCH를 디코딩한 후의 서브프레임의 수, 즉, UE가 마지막으로 PDCCH를 디코딩한 후, 다른 PDCCH를 성공적으로 디코딩하기 위해 대기하는 구간(duration). 만약, 해당 구간 내에서 다른 PDCCH가 검출되지 않으면, UE는 Sleep 모드로 천이한다.
UE는 재전송이 아닌 초기 전송만을 위한 PDCCH의 성공적인 디코딩 후에 drx-inactivity 타이머를 다시 시작한다.
- drx-RetransmissionTimer: DL의 경우 DL 재전송이 수신될 때까지의 최대 구간(Duration); UL의 경우 UL 재전송에 대한 승인이 수신될 때까지의 최대 구간(Duration), 예를 들어, HARQ 재전송이 예상될 때 연속적으로 모니터링될 PDCCH 서브프레임의 수
- longDRX-Cycle: On Duration 발생 주기(Period)
- drxStartOffset: DRX 주기가 시작되는 서브프레임 번호
- drxShortCycleTimer: UE가 짧은 DRX 주기를 따라야 하는 구간(Duration);
- shortDRX-Cycle: Drx-InactivityTimer 종료 시 drxShortCycleTimer 수만큼 동작하는 DRX Cycle
- Active Time: UE가 PDCCH를 모니터링하는 총 구간 (Duration), 여기에는 (a) DRX 주기의 "On-duration", (b) drx-inactivity 타이머가 만료되지 않은 동안 UE가 연속 수신을 수행하는 시간, 및 (c) UE가 재전송 기회(Opportunity)를 기다리면서 연속 수신을 수행하는 시간을 포함한다.
보다 구체적으로, DRX Cycle가 설정(Configure)될 때 DRX 그룹의 서빙 셀에 대한 Active Time은 다음과 같은 시간을 포함합니다.
- (a) drx-onDurationTimer 또는 (b) DRX 그룹에 대해 설정(configure)된 drx-InactivityTimer. 또는
- (c) DRX 그룹의 모든 서빙 셀에 대한 drx-RetransmissionTimerDL 또는 drx-RetransmissionTimerUL. 또는
- (d) ra-ContentionResolutionTimer 또는 msgB-ResponseWindow. 또는
- (e) Scheduling Request 가 PUCCH를 통해 전송되고 보류 중인 구간, 또는
- (f) 경쟁 기반 랜덤 액세스 중에서 MAC 엔티티가 선택하지 않은 랜덤 액세스 프리앰블에 대한 RAR (Random Access Response)을 성공적으로 수신한 후 MAC 엔티티의 C-RNTI로 Address된 새로운 전송을 지시하는 PDCCH가 수신되지 않은 경우.
또한, MAC CE(command element)의 DRX 커맨드를 통해 DRX 'ON'이 설정되면(S1120), UE는 DRX 설정을 기반으로 DRX 주기의 ON Duration 동안 PDCCH를 모니터링한다(S1130).
도 12는 C-DRX 동작의 일례를 나타내는 도면이다.
도 12를 참조하면, UE가 RRC_Connected State (이하, Connected State라고 함)에서 스케줄링 정보(예를 들어, DL Assignment 또는 UL Grant)를 수신하면, UE는 DRX Inactivity Timer 및 RRC Inactivity Timer를 실행한다.
DRX Inactivity Timer 가 만료된 후 DRX 모드가 시작된다. UE는 DRX Cylcle에서 깨어나, 미리 결정된 시간 동안(on duration timer) PDCCH를 모니터링한다.
이 경우, Short DRX가 설정되면, UE가 DRX 모드를 시작할 때, UE는 먼저 짧은 DRX Cycle을 시작하고, 짧은 DRX Cycle이 종료된 후, 긴 DRX Cycle을 시작한다. 이 때, Long DRX 주기는 짧은 DRX 주기의 배수이다. 즉, 짧은 DRX 주기에서 UE는 더 자주 깨어난다. RRC Inactivity Timer가 만료된 후, UE는 Idle 상태로 천이하여 Idle 모드 DRX 동작을 수행한다.
도 13은 DRX Cycle을 나타낸다. C-DRX 동작(operation)은 UE의 전력 절약(power saving)을 위해 도입되었다. UE는 각 DRX cycle마다 정의된 on-duration내에서 PDCCH가 수신되지 않으면, 다음 DRX cycle까지 sleep mode로 진입하여 transmission/reception을 수행하지 않는다.
반면, UE는 On-duration에서 PDCCH를 수신할 경우, inactivity timer, retransmission timer 등의 동작에 기반하여 Active time이 지속(또는 증가)될 수 있다. UE는, active time 내에서 추가적인 데이터가 수신되지 않는 경우, 다음 DRX operation까지 sleep 동작을 수행할 수 있다.
NR에서는 기존의 C-DRX 동작(operation)에 추가적인 전력 절약 이득(power saving gain)을 획득하기 위해 위해 wake up signal (WUS)을 도입하였다. WUS는 각 DRX cycle (혹은 다수의 DRX cycles)의 on-duration에서 UE가 PDCCH 모니터링(monitoring)을 수행해야 하는지 여부를 결정하데 기초가 될 수 있다. UE는 (정해진 혹은 지시된 WUS occasion에서) WUS를 detect하지 못할 경우, 해당 WUS에 연계된 하나 혹은 다수의 DRX cycles에서 PDCCH 모니터링을 수행하지 않고 sleep 동작을 유지할 수 있다.
본 개시(disclosure)에서는 DRX 동작이 지시된 UE가 새로 도입된 DCI format 2_6를 DRX active time 내에서 검출할 수 있도록 하기 위한 모니터링 윈도우를 정의한다.
도 14에서 볼 수 있는 것과 같이, 현재의 Rel-16 NR system에서 DCI format 2_6는 DRX active time이 시작되기 전의 일정 시간 (예를 들어, ps-Offset)에서만 수신할 수 있다.
따라서, 본 개시에서는 DCI format 2_6를 DRX active time 내에서도 수신할 수 있도록 하는 UE의 모니터링 윈도우를 정의할 수 있다.
향후 무선 통신 시스템 (예를 들어, Rel-17 NR system등)의 전력 절약(power saving)을 위한 기술로써, UE가 DRX active time 내에서의 전력 소모를 줄이기 위해 SS set adaptation, dynamic (예를 들어, PDCCH 또는 MAC CE) CORESET on/off, 및/또는 adaptation of BD/CCE limit 등의 다양한 방법들이 사용될 수 있다.
BD (Blind Decoding) limit은 단위 시간 동안 UE가 모니터링해야 하는 PDCCH 후보 수 (예를 들어, 블라인드 디코딩 수)를 의미할 수 있다. CCE (Control Channel Element) limit은 UE의 PDCCH 검출 동작과 관련하여 필요한 채널 추정 capability와 연계된 것일 수 있다. CCE limit은 서로 중첩하지 않는 CCE들의 개수에 기반할 수 있다. 한편, DRX 동작이 지시된 UE에게 DRX active time 내에서 전력 절약(power saving)에 관련된 동작들을 지시될 수 있다면 UE의 전력 소모에 많은 이득이 있을 수 있다. 이를 위해 Rel-16에서 새로 도입된 DCI format 2_6를 활용해 기지국은 UE에게 전력 절약에 관련된 동작들을 지시할 수 있다.
Rel-16 NR 시스템의 전력 절약(power saving) 기술에서는 DRX 동작(operation)이 수행될 경우, 각 DRX cycle의 wake up 여부를 DCI format 2_6를 통해 UE에게 알릴 수 있다. [표 8]은 표준 문서 TS 38.212에서 정의된 DCI format 2_6를 나타낸다.
7.3.1.3.7 Format 2_6
DCI format 2_6 is used for notifying the power saving information outside DRX Active Time for one or more UEs.
The following information is transmitted by means of the DCI format 2_6 with CRC scrambled by PS-RNTI:
- block number 1, block number 2,... , block number N
where the starting position of a block is determined by the parameter ps-PositionDCI-2-6 provided by higher layers for the UE configured with the block.
If the UE is configured with higher layer parameter PS-RNTI and dci-Format2-6, one block is configured for the UE by higher layers, with the following fields defined for the block:
- Wake-up indication - 1 bit
- SCell dormancy indication - 0 bit if higher layer parameter Scell-groups-for-dormancy-outside-active-time is not configured; otherwise 1, 2, 3, 4 or 5 bits bitmap determined according to higher layer parameter Scell-groups-for-dormancy-outside-active-time, where each bit corresponds to one of the SCell group(s) configured by higher layers parameter Scell-groups-for-dormancy-outside-active-time, with MSB to LSB of the bitmap corresponding to the first to last configured SCell group.
The size of DCI format 2_6 is indicated by the higher layer parameter sizeDCI-2-6, according to Clause 10.3 of TS 38.213.
도 14를 참조하면, DCI format 2_6에 대한 monitoring occasion은 네트워크에 의해 지시된 ps-Offset과 UE가 보고하는 Time Gap에 의해 결정될 수 있다. 이 때, UE가 보고하는 Time Gap은 UE가 wake up한 이후의 동작을 위해 필요한 준비 기간으로 해석될 수 있다.
도 14의 예시와 같이, 네트워크는 UE에게 DCI format 2_6를 모니터링(monitoring)할 수 있는 search space (SS) set 설정(configuration)을 지시할 수 있다. 해당 SS set 설정(configuration)에서는 모니터링 주기(monitoring periodicity) 간격으로 3개의 연속된 슬롯들(즉, duration)에서 DCI format 2_6를 모니터링 하도록 지시할 수 있다.
DRX 설정(configuration)에서는, DRX cycle의 시작 시점(예를 들어, on-duration timer가 시작되는 지점)과 네트워크에 의해 설정(configure)된 ps-Offset 에 의해 DCI format 2_6를 모니터링(monitoring)할 수 있는 모니터링 윈도우(monitoring window)가 결정된다. 그리고 UE에 의해 보고되는 Time Gap 구간에서는 PDCCH 모니터링(monitoring)이 요구되지 않을 수도 있다. 최종적으로, UE가 실제 모니터링(monitoring)을 수행하는 SS Set monitoring occasion은 모니터링 윈도우 내의 첫번째 Full Duration (즉, 도 14의 Actual Monitoring Occasions)으로 결정될 수 있다.
상술한 내용을 바탕으로, 본 개시에 따른 DRX Active Time 내에서 DCI format 2_6을 수신하는 방법에 대해서 살펴보도록 한다.
상세한 실시 예들에 대한 설명에 앞서, 본 개시의 실시 예들에 따른 UE와 기지국의 전반적인 동작 과정을 도 15 내지 도 17을 통해 살펴보도록 한다.
도 15는 본 개시의 실시 예들에 따른 UE의 동작 과정을 설명하기 위한 도면이다.
도 15를 참조하면, UE는 DRX Active Time 내에 제 1 DCI format 2_6을 위한 모니터링 윈도우를 설정(configuration)하기 위한 제 1 정보를 수신할 수 있다(S1501). 이 때, 제 1 정보는 RRC (Radio Resource Control) 시그널링과 같은 상위 계층 시그널링 및/또는 DCI (Downlink Control Information)과 같은 동적 시그널링을 통해 수신될 수 있다.
또한, 제 1 정보에는 제 1 DCI format 2_6을 위한 모니터링 윈도우를 설정하기 위한 파라미터들이 포함될 수 있다. 예를 들어, 오프셋, 구간(Duration), 주기(Periodicity) 및 Time Gap 중 적어도 하나에 대한 정보를 포함할 수 있다. 한편, UE는 하나의 시그널링을 통해 상술한 오프셋, 구간(Duration), 주기(Periodicity) 및 Time Gap을 수신할 수도 있지만, 각각 별도의 시그널링을 통해 오프셋, 구간(Duration), 주기(Periodicity) 및 Time Gap을 수신할 수도 있다.
구체적으로, 상술한 제 1 정보에 포함된 파라미터들을 통해 DCI format 2_6을 위한 모니터링 윈도우가 설정되는 구체적인 방법은 "실시 예 #1" 및 "실시 예 #3"에 기반할 수 있다.
또한, 해당 모니터링 윈도우 내에서 DCI format 2_6을 모니터링하는 방법은 "실시 예 #2"에 기반할 수 있다.
또한, 상술한 제 1 정보에 포함된 Time Gap이 설정/사용되는 방법은 "실시 예 #4"에 기반할 수 있다.
또한, UE는 DCI format 2_6을 모니터링하기 위한 SS set 설정(configuration)의 오프셋, 구간(Duration) 및 주기(Periodicity)에 대한 정보도 제 1 정보와 별도로 혹은 함께 수신할 수 있다.
이 때, SS Set을 설정(Configuration)하는 방법은 "실시 예 #5"에 기반할 수 있다.
UE는 DRX Active Time 밖에서 제 2 DCI format 2_6을 수신할 수 있다(S1503). 제 2 DCI format 2_6은 Wake up Signal (WUS)를 포함하는 것일 수 있다. 즉, UE는 제 2 DCI format 2_6에 포함된 WUS를 기반으로, DRX Active Time (예를 들어, On Duration)을 시작할 수 있다(S1505).
UE는 상술한 제 1 정보를 기반으로, DRX Active Time 내의 제 1 DCI format 2_6을 모니터링하기 위한 모니터링 윈도우 내에서 제 1 DCI format 2_6을 수신할 수 있다(S1507). 다시 말해, "실시 예 #1" 및/또는 "실시 예 3"을 기반으로 모니터링 윈도우가 설정될 수 있다. 그리고, "실시 예 #2"를 기반으로 제 1 DCI format 2_6을 수신할 수 있다. 또한, "실시 예 #5"를 기반으로 SS Set 이 DRX Active Time 내에 설정될 수 있다.
UE는 제 1 DCI format 2_6을 기반으로, "실시 예 #4"에 기반한 Time Gap 이후에 PDCCH를 모니터링하고, PDCCH를 수신할 수 있다(S1509). 이때, 제 1 DCI format 2_6에는 Time Gap 이후에 UE가 스케줄링 DCI (예를 들어, DL Assignment 및/또는 UL grant)를 수신하기 위해 모니터링 대상이 되는 SS Set, PDCCH Occasion, CORESET 및/또는 BWP에 대한 정보가 포함될 수 있다.
도 16은 본 개시의 실시 예들에 따른 기지국의 동작 과정을 설명하기 위한 도면이다.
도 16을 참조하면, 기지국은 DRX Active Time 내에 제 1 DCI format 2_6을 위한 모니터링 윈도우를 설정(configuration)하기 위한 제 1 정보를 전송할 수 있다(S1601). 이 때, 제 1 정보는 RRC (Radio Resource Control) 시그널링과 같은 상위 계층 시그널링 및/또는 DCI (Downlink Control Information)과 같은 동적 시그널링을 통해 전송될 수 있다.
또한, 제 1 정보에는 제 1 DCI format 2_6을 위한 모니터링 윈도우를 설정하기 위한 파라미터들이 포함될 수 있다. 예를 들어, 오프셋, 구간(Duration), 주기(Periodicity) 및 Time Gap 중 적어도 하나에 대한 정보를 포함할 수 있다. 한편, 기지국은 하나의 시그널링을 통해 상술한 오프셋, 구간(Duration), 주기(Periodicity) 및 Time Gap을 전송할 수도 있지만, 각각 별도의 시그널링을 통해 오프셋, 구간(Duration), 주기(Periodicity) 및 Time Gap을 전송할 수도 있다.
구체적으로, 상술한 제 1 정보에 포함된 파라미터들을 통해 DCI format 2_6을 위한 모니터링 윈도우가 설정되는 구체적인 방법은 "실시 예 #1" 및 "실시 예 #3"에 기반할 수 있다.
또한, 해당 모니터링 윈도우 내에서 DCI format 2_6을 전송하는 방법은 "실시 예 #2"에 기반할 수 있다.
또한, 상술한 제 1 정보에 포함된 Time Gap이 설정/사용되는 방법은 "실시 예 #4"에 기반할 수 있다.
또한, 기지국은 DCI format 2_6을 모니터링하기 위한 SS set 설정(configuration)의 오프셋, 구간(Duration) 및 주기(Periodicity)에 대한 정보도 제 1 정보와 별도로 혹은 함께 전송할 수 있다.
이 때, SS Set을 설정(Configuration)하는 방법은 "실시 예 #5"에 기반할 수 있다.
기지국은 DRX Active Time 밖에서 제 2 DCI format 2_6을 전송할 수 있다(S1603). 제 2 DCI format 2_6은 Wake up Signal (WUS)를 포함하는 것일 수 있다. 즉, 기지국은 제 2 DCI format 2_6에 포함된 WUS를 기반으로, UE에게 DRX Active Time (예를 들어, On Duration)을 시작할 것을 지시할 수 있다.
기지국은 상술한 제 1 정보를 기반으로, DRX Active Time 내의 제 1 DCI format 2_6을 모니터링하기 위한 모니터링 윈도우 내에서 제 1 DCI format 2_6을 전송할 수 있다(S1605). 다시 말해, "실시 예 #1" 및/또는 "실시 예 3"을 기반으로 모니터링 윈도우가 설정될 수 있다. 그리고, "실시 예 #2"를 기반으로 제 1 DCI format 2_6을 전송할 수 있다. 또한, "실시 예 #5"를 기반으로 SS Set 이 DRX Active Time 내에 설정될 수 있다.
기지국은 제 1 DCI format 2_6을 기반으로, "실시 예 #4"에 기반한 Time Gap 이후에 PDCCH를 전송할 수 있다(S1607). 이때, 제 1 DCI format 2_6에는 Time Gap 이후에 UE가 스케줄링 DCI (예를 들어, DL Assignment 및/또는 UL grant)를 수신하기 위해 모니터링 대상이 되는 SS Set, PDCCH Occasion, CORESET 및/또는 BWP에 대한 정보가 포함될 수 있다.
도 17은 본 개시의 실시 예들에 따른 UE 및 기지국의 동작 과정을 설명하기 위한 도면이다.
도 17을 참조하면, 기지국은 DRX Active Time 내에 제 1 DCI format 2_6을 위한 모니터링 윈도우를 설정(configuration)하기 위한 제 1 정보를 UE에게 전송할 수 있다(S1701). 이 때, 제 1 정보는 RRC (Radio Resource Control) 시그널링과 같은 상위 계층 시그널링 및/또는 DCI (Downlink Control Information)과 같은 동적 시그널링을 통해 전송될 수 있다.
또한, 제 1 정보에는 제 1 DCI format 2_6을 위한 모니터링 윈도우를 설정하기 위한 파라미터들이 포함될 수 있다. 예를 들어, 오프셋, 구간(Duration), 주기(Periodicity) 및 Time Gap 중 적어도 하나에 대한 정보를 포함할 수 있다. 한편, 기지국은 하나의 시그널링을 통해 상술한 오프셋, 구간(Duration), 주기(Periodicity) 및 Time Gap을 전송할 수도 있지만, 각각 별도의 시그널링을 통해 오프셋, 구간(Duration), 주기(Periodicity) 및 Time Gap을 UE에게 전송할 수도 있다.
구체적으로, 상술한 제 1 정보에 포함된 파라미터들을 통해 DCI format 2_6을 위한 모니터링 윈도우가 설정되는 구체적인 방법은 "실시 예 #1" 및 "실시 예 #3"에 기반할 수 있다.
또한, 해당 모니터링 윈도우 내에서 DCI format 2_6을 전송하는 방법은 "실시 예 #2"에 기반할 수 있다.
또한, 상술한 제 1 정보에 포함된 Time Gap이 설정/사용되는 방법은 "실시 예 #4"에 기반할 수 있다.
또한, 기지국은 DCI format 2_6을 모니터링하기 위한 SS set 설정(configuration)의 오프셋, 구간(Duration) 및 주기(Periodicity)에 대한 정보도 제 1 정보와 별도로 혹은 함께 UE에게 전송할 수 있다.
이 때, SS Set을 설정(Configuration)하는 방법은 "실시 예 #5"에 기반할 수 있다.
기지국은 DRX Active Time 밖에서 제 2 DCI format 2_6을 UE에게 전송할 수 있다(S1703). 제 2 DCI format 2_6은 Wake up Signal (WUS)를 포함하는 것일 수 있다.
UE는 수신된 제 2 DCI format 2_6에 포함된 WUS를 기반으로, DRX Active Time (예를 들어, On Duration)을 시작할 수 있다(S1705).
기지국은 UE에게 상술한 제 1 정보를 기반으로, DRX Active Time 내의 제 1 DCI format 2_6을 모니터링하기 위한 모니터링 윈도우 내에서 제 1 DCI format 2_6을 전송할 수 있다(S1707). 다시 말해, "실시 예 #1" 및/또는 "실시 예 3"을 기반으로 모니터링 윈도우가 설정될 수 있다. 그리고, "실시 예 #2"를 기반으로 제 1 DCI format 2_6을 전송할 수 있다. 또한, "실시 예 #5"를 기반으로 SS Set 이 DRX Active Time 내에 설정될 수 있다.
기지국은 제 1 DCI format 2_6을 기반으로, "실시 예 #4"에 기반한 Time Gap 이후에 PDCCH를 UE에게 전송할 수 있다(S1709). 이때, 제 1 DCI format 2_6에는 Time Gap 이후에 UE가 스케줄링 DCI (예를 들어, DL Assignment 및/또는 UL grant)를 수신하기 위해 모니터링 대상이 되는 SS Set, PDCCH Occasion, CORESET 및/또는 BWP에 대한 정보가 포함될 수 있다.
이제, 본 개시의 실시 예들에 대해서 살펴보도록 한다. 한편, 후술하는 "실시 예 #1" 내지 "실시 예 #5"는 각각 독립적으로 구현될 수도 있지만, 하나 이상의 실시 예들이 조합되어 사용될 수 있다. 예를 들어, "실시 예 #1"의 실시 예들 중 어느 하나에 따라 모니터링 윈도우가 설정되고, 해당 모니터링 윈도우 내에서 "실시 예 #2"의 실시 예들 중 어느 하나에 따라 DCI format 2_6이 수신될 수 있다. 또한, "실시 예 #1"의 실시 예들 중 어느 하나에 따라 모니터링 윈도우가 설정되고, "실시 예 #4"의 실시 예들 중 어느 하나에 따라, 스케줄링 DCI (예를 들어, DL Assignment 또는 UL Grant)가 모니터링될 수 있다.
1. 실시 예 #1: DRX Active Time 내에서의 DCI Format 2_6을 위한 모니터링 윈도우를 설정하는 방법.
UE는 실제 모니터링(monitoring)을 수행하는 SS Set monitoring occasion 이외에 DCI format 2_6이 전송될 수 있는 다른 SS Set monitoring occasion (도 14의 회색 점선 화살표) 에 대한 monitoring을 수행하지 않는다. 즉, 도 14를 참조하면, UE가 Actual Monitoring Occasions에서 DCI Format 2_6을 수신하였다면, Actual Monitoring Occasions 이후에 위치한 SS Set Monitoring Occasion에서는 모니터링 윈도우 내에 설정되어 있더라도, UE는 DCI format 2_6을 위한 모니터링을 수행하지 않는다.
본 개시에서는 DRX의 on-duration timer가 시작된 이후의 DRX Active time 내에서의 모니터링 윈도우(monitoring window)를 정의함으로써 UE가 네트워크로부터 DCI format 2_6를 수신할 수 있도록 한다. 예를 들어, DRX active time 밖에서의 DCI format 2_6를 통한 WUS와는 별개로, UE에게 DRX active time 내에서 전력 절약(power saving)에 관련된 정보들이 네크워크로부터 DCI Format 2_6을 통해 추가로 지시(indication)될 수 있는 방법이 제안한다.
기본적으로 본 개시의 실시 예들은 DRX active time 내에서의 동작이기 때문에, WUS을 통해 UE에게 wake-up이 지시되어, UE가 깨어났을 경우에 본 개시에서 제안하는 기술들이 적용되는 것이라고 이해될 수 있으나, 본 발명은 이에 한정되지 않는다.
DRX active time 내에서의 모니터링 윈도우(monitoring window)는 DCI format 2_6를 블라인드 디코딩(blind decoding)할 수 있는 SS Set monitoring occasion들 중 단말이 실제로 모니터링(monitoring)하는 occasion들을 선택하기 위한 것이다.
따라서, ps-Offset과 time gap에 의해 정의되는 DRX active time 밖의 모니터링 (monitoring window)와는 별도로 기지국에 의해 설정될 수 있다. 예를 들어, DRX active time 내에서 DCI format 2_6를 위한 하나 이상의 SS set만 UE가 monitoring할 수 있도록 시간 축 상에서의 모니터링 윈도우(window)를 정의할 수 있다. 정의된 모니터링 윈도우들을 통한 UE의 실제 동작은 다양하게 있을 수 있으며 본 개시에서는 이를 특별히 제한하지 않는다.
예를 들어, DRX active time 내에서의 모니터링 윈도우(monitoring window)는 시간 축에서 시작점을 나타낼 수 있는 오프셋(offset) 파라미터, 모니터링 윈도우의 길이를 나타낼 수 있는 구간(duration) 파라미터 및 모니터링 윈도우가 반복되는 주기(periodicity) 파라미터의 3가지 변수를 통해 정의될 수 있다. 한편, 모니터링 윈도우(Monitoring window)의 주기(periodicity)는 DRX active time 내에서만 유효하도록 정의/설정될 수 있다. 이하, "실시 예 #1"에서는 offset을 정의하는 3가지 방법들이 개시되지만, 본 개시는 이에 한정되지 않는다.
(1) 실시 예 #1-1: On-Duration Timer 시작점으로부터의 오프셋
도 18을 참조하면, 모니터링 윈도우(Monitoring window)의 구간(duration)은 모니터링 윈도우가 시작되는 지점부터 끝나는 지점까지의 슬롯의 수 또는 서브프레임의 수로 지시/설정될 수 있다. 모니터링 윈도우의 주기(periodicity)는 DRX active time 내에서의 n번째 모니터링 윈도우의 시작점부터 n+1번째 모니터링 윈도우(window)의 시작점까지의 슬롯의 수 또는 서브프레임의 수로 지시/설정될 수 있다. 또는, 모니터링 윈도우의 주기(periodicity)는 DRX active time 내에서의 n번째 모니터링 윈도우의 종료지점부터 n+1번째 모니터링 윈도우(window)의 종료지점까지의 슬롯의 수 또는 서브프레임의 수로 지시/설정될 수 있다. 한편, 모니터링 윈도우의 주기(periodicity)는 DRX active time 내에서만 유효하고 DRX active time 밖에서는 정의되지 않거나, 카운팅(Counting)되지 않을 수 있다. 또는, 모니터링 윈도우의 주기(periodicity)는 DRX active time 내에서만 유효하고 DRX active time 밖에서는 지시/설정되지 않을 수 있다.
한편, DRX Active Time 내의 첫 번째 모니터링 윈도우의 시작점을 나타낼 수 있는 오프셋(offset)은 DRX active time의 시작점에 기초하여 결정될 수 있다. 예를 들어, 도 18에서 볼 수 있듯이, 오프셋(offset)은 DRX active time의 시작점, 예를 들어, on-duration timer가 동작하기 시작한 시점으로부터의 슬롯의 수 또는 서브프레임의 수로 정의될 수 있다.
도 18에서는 도 14와 같이 위를 가리키는 화살표가 SS set monitoring occasion을 의미한다. 본 개시에서 정의되는 모니터링 윈도우(monitoring window) 내의 SS Set monitoring occasion에 대해서는 UE가 SS set 에 포함된 PDCCH 후보들에 대한 디코딩/검출 시도 (이하, "SS set 모니터링")을 수행할 수 있다. 한편, UE는 모니터링 윈도우(monitoring window) 밖의 SS Set monitoring occasion에 대해서는 SS set 모니터링(monitoring)을 수행하지 않을 수 있다. 다시 말해, 모니터링 윈도우(monitoring window) 밖의 SS Set monitoring occasion에 대해서는 UE가 SS set 모니터링(monitoring)을 수행할 것이라고 기대되지 않을 수 있다.
(2) 실시 예 #1-2: 프레임 시작점으로부터의 오프셋
도 19를 참조하면, 오프셋은 시스템 프레임(system frame)의 시작점에 기초하여 결정될 수 있다. 예를 들어, 오프셋은 시스템 프레임(system frame)의 시작점으로부터의 슬롯의 수 또는 서브프레임의 수로 정의될 수 있다.
한편, 실시 예 #1-2에 따른 모니터링 윈도우의 설정에 있어서도 오프셋 파라미터와 함께, 구간(Duration) 파라미터와 주기(Periodicity) 파라미터가 사용될 수 있다. 즉, 도 19에 따른 모니터링 윈도우는 오프셋 파라미터, 구간 파라미터 및 주기 파라미터를 기반으로 설정(Configuration)될 수 있다.
또한, 실시 예 #1-2에 따른 모니터링 윈도우의 설정에서의 구간(duration) 및 주기(Periodicity)에 대한 정의는, 실시 예 #1-1에서 설명한 구간(duration) 및 주기(Periodicity)에 대한 정의와 동일할 수 있다.
한편, 실시 예 #1-2에서 오프셋 파라미터에 의한 모니터링 윈도우의 시작점이 DRX Active Time 내 (예를 들어, On-duration의 시작점 이후)로 설정되지 않는다면, 모니터링 윈도우의 시작점은 DRX Active Time의 시작점 (예를 들어, On-duration의 시작점)일 수 있다. 다시 말해, 시스템 프레임을 기준으로 오프셋을 적용하였을 때, 적용 시점이 DRX Active Time의 시작점 이전이라면, 모니터링 윈도우의 시작점은 DRX Active Time의 시작점일 수 있다.
(3) 실시 예 #1-3: SS Set 설정(configuration)에 의한 첫번째 SS Set Monitoring Occasion으로부터의 오프셋
도 20을 참조하면, 오프셋(offset)은 DRX active time 내의 첫 번째 SS Set monitoring occasion에 기초하여 결정될 수 있다. 예를 들어, 오프셋(offset)은 DRX active time 내의 첫 번째 SS Set monitoring occasion의 시작점으로부터의 슬롯의 수 또는 서브프레임의 수로 정의될 수 있다.
실시 예 #1-3에 따른 모니터링 윈도우의 설정에 있어서도 오프셋 파라미터와 함께, 구간(Duration) 파라미터와 주기(Periodicity) 파라미터가 사용될 수 있다. 즉, 도 20에 따른 모니터링 윈도우는 오프셋 파라미터, 구간 파라미터 및 주기 파라미터를 기반으로 설정(Configuration)될 수 있다.
또한, 실시 예 #1-3에 따른 모니터링 윈도우의 설정에서의 구간(duration) 및 주기(Periodicity)에 대한 정의는, 실시 예 #1-1에서 설명한 구간(duration) 및 주기(Periodicity)에 대한 정의와 동일할 수 있다.
(4) 실시 예 #1-4: SS set Monitoring Occasion과 모니터링 윈도우가 일부만 중첩된 경우의 모니터링 수행 여부
상술한 실시 예 #1-1 내지 실시 예 #1-3과 같이 모니터링 윈도우(monitoring window)가 설정되었을 때, 다양한 UE/기지국의 동작들이 추가로 정의될 수 있다.
한편, 도 21에서 볼 수 있듯이, SS set 설정(configuration)을 위한 구간(duration) 동안의 SS Set monitoring occasion과 모니터링 윈도우(monitoring window)가 완전히 중첩(overlap)되지 않고 일부만 중첩(overlap)될 수 있다.
예를 들어, 도 21을 참조하면, SS Set Monitoring occasion의 첫 슬롯이 모니터링 윈도우와 중첩되지 않는 Case 1과 SS Set Monitoring occasion의 마지막 슬롯이 모니터링 윈도우와 중첩되지 않는 Case 2가 있을 수 있다.
각 Case들에 대해 UE가 PDCCH 모니터링(예를 들어, DCI Format 2_6의 모니터링)을 수행하는지 여부는 추가적인 지시 혹은 미리 정해진 규칙에 의해 수행될 수 있으며 본 개시에서는 이를 특별히 제한하지 않는다.
예를 들어, Rel-16 NR system 의 WUS 모니터링의 경우와 동일하게 UE가 동작하는 것으로 가정하면, 도 21과 같은 상황에서의 UE의 동작은 다음과 같을 수 있다.
첫 번째 SS Set monitoring occasion이 모니터링 윈도우(monitoring window)의 바깥에 있는 Case 1의 경우, UE는 SS Set 모니터링(monitoring)을 수행하지 않을 수 있다. 반면, 마지막 SS Set monitoring occasion이 모니터링 윈도우(monitoring window)의 바깥에 있는 Case 2의 경우, UE는 SS Set 모니터링을 수행할 수 있다. 예를 들어, 모니터링 윈도우(monitoring window) 내에 최대 3개의 슬롯(slot)까지 정의될 수 있는 SS Set monitoring occasion 중 첫 슬롯(slot)의 occasion이 모니터링 윈도우와 중첩(overlap)되었을 경우에, UE는 DCI format 2_6을 위한 모니터링을 수행하도록 설정될 수 있다.
다른 일 예로, DRX Active time 내에서 DCI format 2_6를 빠르게 모니터링(monitoring)하는 것이 필요하기 때문에 occasion 중 일부만 모니터링 윈도우(window)와 중첩되더라도 모든 occasion들에 대한 모니터링을 UE가 수행하도록 설정(Configuration)될 수도 있다. 이러한 경우, Case 1과 같이 첫 번째 occasion이 모니터링 윈도우에 중첩(overlap)되지 않더라도, 연속된 모든 occasion에 대해 UE가 DCI Format 2_6에 대한 모니터링(monitoring)을 수행하도록 설정될 수 있다.
2. 실시 예 #2: DCI format 2_6을 DRX Active Time 내에서 수신하는 방법
(1) 실시 예 #2-1: 첫번째 모니터링 윈도우 내의 Monitoring Occasion 에서 DCI format 2_6을 수신
도 22를 참조하면, UE가 DRX active time을 시작하고 첫 번째 모니터링 윈도우(monitoring window)의 하나의 SS Set monitoring occasion에서 DCI format 2_6를 수신한다면, WUS처럼 모니터링 윈도우 내의 다른 SS Set monitoring occasion들에 대한 모니터링은 수행하지 않을 수 있다. 다시 말해, UE가 모니터링 윈도우 내의 다른 SS Set monitoring occasion들에 대한 모니터링을 수행할 것이라고 기대되지 않을 수 있다.
즉, UE가 DRX Active Time을 시작하고, 첫번째 모니터링 윈도우의 첫번째 SS Set monitoring occasion에서 DCI format 2_6을 검출하였다면, 첫번째 모니터링 윈도우 내에서, 첫번째 SS Set monitoring occasion 이후에 위치한 SS Set monitoring occasion에서는 DCI format 2_6을 모니터링하지 않을 수 있다.
다만, UE가 첫번째 모니터링 윈도우의 첫번째 SS Set monitoring occasion에서 DCI format 2_6을 검출하지 못하였다면, UE는 첫번째 모니터링 윈도우 내의 다른 SS Set monitoring occasion에서 DCI format 2_6에 대한 모니터링을 수행할 수 있다.
즉, UE는 첫번째 모니터링 윈도우 내의 SS Set monitoring occasion들을 순서대로 모니터링 하되, 특정 SS Set monitoring occasion에서 DCI format 2_6을 수신하면, 첫번째 모니터링 윈도우 내에서 해당 특정 SS Set monitoring occasion 이후에 위치한 SS Set monitoring Occasion에 대한 모니터링을 수행하지 않을 수 있다.
또한, UE가 첫번째 모니터링 윈도우 내의 SS Set monitoring Occasion에서 DCI format 2_6을 수신하였다면, UE는 첫번째 모니터링 윈도우 이후의 모니터링 윈도우에서는 DCI format 2_6을 모니터링하지 않을 수 있다. 다시 말해, UE가 첫번째 모니터링 윈도우 내에서 DCI format 2_6을 수신하였다면, 두번째 모니터링 윈도우부터는 DCI format 2_6에 대한 모니터링을 수행하지 않을 수 있다.
다만, UE가 첫번째 모니터링 윈도우 내의 모든 SS Set monitoring Occasion에서 DCI format 2_6을 수신하지 못하였다면, UE는 두번째 모니터링 윈도우 내의 SS Set monitoring Occasion을 상술한 방법과 같이 모니터링할 수 있다.
즉, 실시 예 #2-1에서는 UE가 모니터링 윈도우들 및 각각의 모니터링 윈도우 내에 포함된 SS Set monitoring occasion들에 대해서 시간 순서대로 DCI를 모니터링 하되, 어느 하나의 SS Set monitoring occasion에서 DCI format 2_6을 수신하면, 해당 DRX Active Time 내에서 DCI format 2_6이 수신된 SS Set monitoring occasion 이후의 SS Set monitoring occasion에서는 DCI format 2_6을 모니터링하지 않을 수 있다.
UE에게 UE가 DCI format 2_6를 수신한 시점 이후부터 해당 DRX active time 내에서 동일하게 수행할 동작이 해당 DCI format 2_6을 통해 지시될 수 있다. 예를 들어, DCI format 2_6을 통해 복수의 SS set들 중, 일부의 SS Set들만을 모니터링하도록 UE에게 지시 및/또는 복수의 CORESET 들 중, 일부의 CORESET들만 모니터링하도록 UE에게 지시 및/또는 복수의 셀들 중, 일부의 셀들만 모니터링하도록 UE에게 지시 및/또는 복수의 BWP들 중, 일부의 BWP들만 모니터링하도록 UE에게 지시된다면, UE는 해당 DRX Active Time 내에서 해당 지시를 기반으로 DCI (예를 들어, DL Assignment 및/또는 UL grant)를 모니터링할 수 있다.
다시 말해, 실시 예 #2-1에서, UE가 DCI format 2_6를 수신한 첫 번째 모니터링 윈도우(monitoring window) 이후의 모니터링 윈도우에 대한 모니터링은 생략(skip)하도록 동작할 수 있다.
(2) 실시 예 #2-2: 모니터링 윈도우 내의 복수의 monitoring occasion에서 DCI format 2_6을 수신하는 방법
도 23을 참조하면, UE가 DRX active time을 시작하고 첫 번째 모니터링 윈도우(monitoring window)내의 하나의 SS Set Monitoring Occasion에서 DCI format 2_6를 수신한다면, WUS처럼 모니터링 윈도우 내의 다음 SS Set monitoring occasion들에서는 DCI Format 2_6을 모니터링하지 않을 수 있다. 다시 말해, UE가 모니터링 윈도우 내의 하나의 SS Set Monitoring Occasion에서 DCI format 2_6을 수신하였다면, 해당 모니터링 윈도우 내에 설정된 복수의 SS Set Monitoring Occasion들 중, 하나의 SS Set monitoring Occasion 이후의 SS Set Monitoring Occasion에 대한 모니터링을 UE가 하지 않을 것을 기대할 수 있다.
예를 들어, UE는 DRX active time 내에서 주기적으로 설정된(Configured) 모니터링 윈도우들 각각에서 DCI format 2_6에 대한 블라인드 디코딩(blind decoding)을 시도하도록 동작할 수 있다.
예를 들어, 도 23을 참조할 때, 첫번째 모니터링 윈도우의 첫번째 SS Set Monitoring Occasion을 통해 DCI format 2_6을 수신하였다면, 첫번째 모니터링 윈도우 내에서 첫번째 SS Set Monitoring Occasion 이후의 SS Set Monitoring Occasion (즉, 두번째 SS Set Monitoring Occasion) 부터는 UE가 DCI format 2_6의 모니터링을 수행하지 않을 수 있다. 다만, 첫번째 모니터링 윈도우 내에서 첫번째 SS Set Monitoring Occasion 에서 DCI format 2_6을 수신하지 못했다면, 두번째 SS Set Monitoring Occasion에서 DCI format 2_6에 대한 모니터링을 수행할 수 있다.
또한, 도 23을 참조하면, 첫번째 모니터링 윈도우에서 DCI format 2_6을 수신하였더라도, UE는 두번째 모니터링 윈도우에서 DCI format 2_6에 대한 모니터링을 수행할 수 있다. 이 경우에도, 두번째 모니터링 윈도우 내의 첫번째 SS Set Monitoring Occasion을 통해 DCI format 2_6을 수신하였다면, 두번째 모니터링 윈도우 내의 두번째 SS Set Monitoring Occasion 부터는 DCI format 2_6에 대한 모니터링을 수행하지 않을 수 있다.
실시 예 #2-1과 실시 예 #2-2의 차이점은, 실시 예 #2-1에서는 특정 SS Set Monitoring Occasion에서 UE가 DCI Format 2_6을 수신하였다면, 특정 SS Set Monitoring Occasion이 포함된 DRX Active Time 내에서는 더 이상 DCI format 2_6에 대한 모니터링은 수행되지 않는다. 하지만, 실시 예 #2-2에서는 특정 Set Monitoring Occasion에서 UE가 DCI Format 2_6을 수신하였다면, 특정 SS Set Monitoring Occasion이 포함된 모니터링 윈도우 내에서는 더 이상 DCI format 2_6에 대한 모니터링은 수행되지 않지만, 동일한 DRX Active Time 내의 다음 모니터링 윈도우에서는 다시 DCI format 2_6에 대한 모니터링이 수행될 수 있다.
즉, 실시 예 #2-1은 하나의 DRX Active Time 내에서 한번의 DCI format 2_6의 수신이 이루어지고, 실시 예 #2-2는 DRX Active Time 내에 포함된 복수의 모니터링 윈도우 각각에 대하여 하나의 DCI format 2_6의 수신이 이루어질 수 있다.
한편, UE에게 UE가 DCI format 2_6를 수신한 시점 이후부터 해당 DRX active time 내에서 다음 DCI format 2_6를 수신하기 전까지 수행할 동작이 해당 DCI format 2_6을 통해 지시될 수 있다.
예를 들어, DCI format 2_6을 통해 복수의 SS set들 중, 일부의 SS Set들만을 모니터링하도록 UE에게 지시 및/또는 복수의 CORESET 들 중, 일부의 CORESET들만 모니터링하도록 UE에게 지시 및/또는 복수의 셀들 중, 일부의 셀들만 모니터링하도록 UE에게 지시 및/또는 복수의 BWP들 중, 일부의 BWP들만 모니터링하도록 UE에게 지시된다면, UE는 다음 DCI format 2_6이 수신될 때까지 해당 지시를 기반으로 DCI (예를 들어, DL Assignment 및/또는 UL grant)를 모니터링할 수 있다.
한편, 하나의 모니터링 윈도우 내에서 DCI format 2_6을 수신하고, 이후의 모니터링 윈도우 내에서 다른 DCI format 2_6을 수신한 경우, 다른 DCI format 2_6에 의해 지시되는 동작은 이전에 수신된 DCI format 2_6에 의해 지시되는 동작을 대체(override)하도록 동작할 수 있다.
(3) 실시 예 #2-3: 첫번째가 아닌 모니터링 윈도우 내의 Monitoring Occasion 을 통해 DCI format 2_6을 수신하는 방법
도 24를 참조하면, UE는 DRX active time 내에서 정의된 첫 번째 모니터링 윈도우가 아닌 다른 모니터리 윈도우 내에서 DCI format 2_6를 수신할 수 있다.
예를 들어, 실시 예 #2-1에서 설명한 것과 같이, 첫번째 모니터링 윈도우 내에서 UE가 DCI format 2_6을 검출하지 못하여, 첫번째 모니터링 윈도우 이후의 모니터링 윈도우에서 DCI format 2_6의 모니터링을 하여, DCI format 2_6을 수신하였을 수 있다.
또는, 실시 예 #2-2와 같은 상황에서 각각의 모니터링 윈도우에 대해서 DCI format 2_6에 대한 모니터링을 시도하였으나, 첫번째 모니터링 윈도우에서는 DCI format 2_6을 검출하지 못하고, 두번째 모니터링 윈도우에서는 DCI format 2_6을 수신한 경우일 수 있다.
또는, On-Duration 시작 이후, DCI format 2_6을 모니터링하지 못하는 구간인 Time Gap이 첫번째 모니터링 윈도우와 적어도 일부가 중첩되어, 첫번째 모니터링 윈도우에서 DCI format 2_6의 모니터링을 할 수 없게 된 경우일 수 있다.
또는, 기지국에 의해 첫번째 모니터링 윈도우에서는 DCI format 2_6의 모니터링을 수행하지 않을 것이 RRC 시그널링 및/또는 DCI를 통해 UE에게 설정된 경우일 수 있다.
이러한 경우, UE가 DCI format 2_6를 수신하기 전까지 UE는 일반적인 DRX 동작 (즉, default DRX 동작)을 수행할 수 있다. 즉, UE는 DCI format 2_6이 수신되기 전까지 기지국과 기 약속되거나 기 설정된 default DRX 동작을 수행할 수 있다. 또한, 실시 예 #2-1을 기반으로 UE는 해당 DRX Active Time 내에서 DCI format 2_6를 수신한 시점부터 남은 DRX active time 동안 해당 DCI format 2_6에 의해 지시된 동작을 수행할 수 있다.
또는, 실시 예 #2-2를 기반으로, 해당 DRX Active Time 내에서 DCI format 2_6를 수신한 시점부터 다음 DCI format 2_6를 수신하기 전까지 해당 DCI format 2_6에 의해 지시된 동작을 수행할 수 있다.
여기서, DCI format 2_6에 의해 지시된 동작이란, 예를 들어, DCI format 2_6을 통해 복수의 SS set들 중, 일부의 SS Set들만을 모니터링하도록 UE에게 지시 및/또는 복수의 CORESET 들 중, 일부의 CORESET들만 모니터링하도록 UE에게 지시 및/또는 복수의 셀들 중, 일부의 셀들만 모니터링하도록 UE에게 지시 및/또는 복수의 BWP들 중, 일부의 BWP들만 모니터링하도록 UE에게 지시된다면, UE는 해당 DRX Active Time 내에서 해당 지시를 기반으로 DCI (예를 들어, DL Assignment 및/또는 UL grant)를 모니터링할 수 있다.
(4) 실시 예 #2-4: DRX Active Time 내에서는 DCI format 2_6만을 모니터링하는 방법
실시 예 #2-1 내지 실시 예 #2-3에 있어서, 기지국은 UE에게 DRX active time 내에서는 DCI format 2_6만을 모니터링하도록 지시/설정할 수 있다.
이러한 경우, UE는 DCI format 2_6을 위한 SS Set 의외의 다른 SS Set에 대해서는 모니터링하지 않기 때문에, 전력 절약(power saving) 효과를 얻을 수 있다.
네트워크(또는 기지국)는 DRX Active Time 내에서 DCI format 2_6이외의 다른 DCI를 UE에게 전송하고자 하는 경우, DCI format 2_6를 통해, UE가 다른 DCI 송수신을 위해 모니터링 해야 할 다른 SS Set을 알려줄 수 있다.
예를 들어, 네트워크가 DRX Active Time 내에서 DL 또는 UL을 위한 스케줄링 DCI를 전송하기를 원하는 경우, DCI format 2_6을 통해 해당 스케줄링 DCI를 전송할 SS Set을 UE에게 알려주면, UE는 해당 SS Set을 모니터링하여, 해당 스케줄링 DCI를 수신할 수 있다.
UE가 DL 또는 UL을 스케줄링하는 DCI를 수신했을 경우, UE는 TS38.331에 기술된 DRX 메커니즘(mechanism)에 따라 일반적인 DRX 동작을 수행할 수 있다. 예를 들어, UE가 DL 또는 UL을 스케줄링하는 DCI를 수신하면, UE는 Inactive Timer의 동작을 시작할 수 있다.
3. 실시 예 #3: On-duration Timer 시작점부터 DCI format 2_6을 모니터링 하는 방법
실시 예 #3에서는 실시 예 #1과 같이 오프셋 파라미터, 구간(duration) 파라미터 및 주기 (Periodicity) 파라미터를 기반으로 모니터링 윈도우를 정의하는 것이 아닌 다른 모니터링 윈도우의 설정 방법에 대해서 살펴보도록 한다.
예를 들어, 도 25에서 볼 수 있는 것과 같이, UE가 on-duration timer 시작점을 기준으로 임의의 구간(duration) 동안 DCI format 2_6을 모니터링하도록 설정/정의/지시될 수 있다. 여기서, 구간(Duration)은 임의의 슬롯의 수 또는 서브프레임의 수로 설정될 수 있다.
즉, 도 25의 실시 예에서, UE에게는 구간(Duration) 파라미터만 지시되고, 오프셋 파라미터 및 주기(Periodicity) 파라미터는 지시되지 않을 수 있다.
따라서, DRX Active Time 내에서 모니터링 윈도우는 1개만 존재할 수 있으며, On-Duration의 시작점부터 모니터링 윈도우가 시작되므로, 오프셋은 실시 예 #1-1을 기반으로 0일 수 있다.
다만, 실시 예 #3에서도 네트워크(또는 기지국)는 주기(periodicity)를 설정하여, DRX active time 내에서의 복수의 모니터링 윈도우들이 설정되도록 할 수 있다. 이러한 경우, 기지국은 오프셋 파라미터는 UE에게 지시하지 않지만, 구간(Duration) 파라미터 및 주가(periodicity) 파라미터는 UE에게 지시할 수 있다.
실시 예 #3를 통해 설정된 모니터링 윈도우에서의 PDCCH 모니터링도 실시 예 #1-1 내지 실시 예 #1-4에서 설명한 SS Set monitoring occasion 모니터링 방법과 동일하게 수행될 수 있다. 다만, 실시 예 #3과 같이 모니터링 윈도우가 설정된 경우, 실시 예 #1-1 내지 실시 예 #1-4와는 다른 방법으로 PDDCH 모니터링이 수행되도록 기지국에 의해 UE에게 별도로 지시될 수도 있다.
한편, 실시 예 #3의 경우, 실시 예 #1-1 내지 실시 예 #1-3에서 오프셋 값이 '0'인 모니터링 윈도우가 설정된 것과 동일할 수 있다.
4. 실시 예 #4: Time Gap을 설정하는 방법
기존 NR 시스템에서는, DRX active time 바깥에서 WUS를 포함하는 DCI format 2_6을 수신하기 위한 모니터링 윈도우(monitoring window) 구간이더라도, UE에 의해 보고되는 time gap 구간에서는 PDCCH 모니터링(monitoring)이 요구되지 않을 수 있다.
여기서, Time gap은 DRX active time에서 UE가 신호를 송수신하기 위한 준비시간이라고도 할 수 있는데, 이는 UE가 모니터링해야 할 SS set의 개수와도 관련이 있다.
따라서, 본 개시의 실시 예들에서는 DRX active time 내의 DCI format 2_6 모니터링(monitoring)과 관련한 time gap이 종래와 상이하게 정의될 수도 있다. 또한, 본 발명의 실시 예들에 따라 DRX active time 내에서 DCI format 2_6를 모니터링(monitoring)할 때, UE가 모니터링해야 할 SS Set ID 정보 등과 같은 전력 절약(power saving) 정보를 획득하는 것으로 가정하면, 기존의 NR 시스템에서와 유사하게 UE가 해당 SS Set ID 정보에 대응하는 SS Set들을 모니터링하기 위한 준비시간을 확보하기 위한 time gap이 DRX active time 내에서도 필요할 수 있다.
도 26을 참조하면, 기존의 DRX Active Time 바깥에서 정의되는 time gap을 T, 본 개시의 실시 예들에 따라 변경되는 DRX active time 바깥에서의 time gap을 T1, DRX active time 내에서 DCI format 2_6를 수신한 이후 또는 DCI format 2_6을 수신한 모니터링 윈도우가 종료된 이후 PDCCH 모니터링을 위해 필요할 수 있는 time gap을 T2 라고 한다.
이 때, T는 DRX active time내에서 UE가 송수신 동작을 수행하기 위한 모든 준비를 완료하기 위해 필요한 시간이라 볼 수 있다. 또한, T1 은 DCI format 2_6 모니터링만을 준비하기 위해 필요한 시간이라고 볼 수 있다. 또한, T2 는 DCI Format 2_6 모니터링 이외의 다른 DCI (예를 들어, DL Assignment 또는 UL Grant)를 모니터링하기 위한 준비를 위해 필요한 시간, 즉, DCI Format 2_6 모니터링 이외의 나머지 모니터링을 준비하기 위한 시간인 것으로 생각할 수 있다.
따라서, T<= T1 +T2 의 관계가 성립할 수 있다. 이러한 경우, UE의 동작은 아래의 두 가지로 Case들을 고려할 수 있다.
(1) 실시 예 #4-1
WUS 동작과 동일한 방식으로 UE는 DRX active time 바깥에서 DCI format 2_6를 수신하고, 해당 DCI format 2_6을 기반으로 On-Duration timer를 작동시킬 수 있다. 또한, UE는 DRX active time을 시작하면서 모든 SS set에 대한 monitoring을 준비할 수 있다. 이후, On-Duration timer의 시작과 동시에 시작하거나, 일정한 오프셋(offset)을 적용하여 시작하는 DRX active time 내의 모니터링 윈도우 (예를 들어, "실시 예 #1" 또는 "실시 예 3"에 따른 모니터링 윈도우)를 기반으로 DCI format 2_6를 모니터링하고, 수신된 DCI format 2_6으로부터 전력 절약(power saving) 정보를 획득할 수 있다.
획득된 전력 절약(Power saving) 정보를 통해 UE에게 모니터링(monitoring)하지 않아도 되는 SS set에 대한 정보가 지시될 수 있다. 또한, UD는 해당 정보를 기반으로, 모니티링하지 않아도 되는 SS Set에 연관된 리시버(Receiver)를 끌 수 있다. (예를 들어, 모니터링하지 않아도 되는 SS Set에 대한 UE의 모니터링 Off). 그러므로, 실시 예 #4-1의 경우, T1 =T, T2 =0 일 수 있다.
따라서, 실시 예 #4-1은 기존의 WUS 동작과 time gap 측면에서 동일하며, UE가 필요 없는 리시버 (즉, SS Set 모니터링에 요구되지 않는 리시버)를 끄는 동작만 추가된 것으로 볼 수 있다. 따라서, 종래의 NR 시스템의 time gap에 대한 표준 문서의 수정 없이도 실시 예 #4-1에 따른 UE의 동작이 가능할 수 있다.
(2) 실시 예 #4-2
WUS 동작과 동일한 방식으로 UE는 DRX active time 바깥에서 DCI format 2_6를 수신하고, 해당 DCI format 2_6을 기반으로 On-Duration timer를 작동시킬 수 있다. 이 때, UE는 DRX active time을 시작하면서 모든 SS set이 아닌 DCI format 2_6의 모니터링에 필요한 SS Set과 최소한의 추가 SS set 모니터링만을 준비할 수 있다. 다시 말해, DRX Active Time 내에서의 DCI format 2_6의 모니터링을 위한 SS Set 및 최소한의 추가 SS Set을 모니터링하기 위한 리시버만을 'On' 시키고, 나머지 리시버는 'Off'시킬 수 있다. 한편, 최소한의 추가 SS Set이 필요하지 않다면, UE는 DRX Active Time 내에서의 DCI format 2_6의 모니터링을 위한 SS Set에 연관된 리시버만을 'On'시킬 수도 있다.
이러한 경우, UE가 UE의 모든 리시버들을 켤 필요가 없기 때문에 T1<T의 관계일 수 있다. 즉, T1은 T보다 상대적으로 작은 값일 수 있다. 그 후, UE에게 UE의 DRX active time 내에서의 DCI format 2_6 모니터링을 통해 해당 DRX active time 동안 또는 다음 DCI format 2_6을 수신할 때까지 모니터링(monitoring)해야 할 SS set이 지시될 수 있다.
이러한 경우, T2는 UE가 나머지 SS set 모두가 아닌 지시된 SS set의 모니터링만 준비하는 시간이기 때문에 T< T1 +T2 가 될 수 있다. 따라서, DRX Active Time 바깥에서 WUS를 포함하는 DCI format 2_6의 수신에 관해 설정된 time gap에 비하여, PDCCH 모니터링을 수행하는 슬롯의 수가 감소하여 지연시간(예를 들어, Time Gap)이 감소하는 효과가 있을 수 있다.
한편, 종래의 Time Gap은 SCS(Sub-Carrier Spacing) 별로 상이하게 설정된다. 예를 들어, 1~2 슬롯의 value 1과 같이 짧은 Time Gap과 3~24 슬롯의 value 2와 같이 긴 Time Gap으로 정의될 수 있다.
실시 예 #4-2의 경우, T2가 종래의 Time Gap과 동일하거나 종래의 Time Gap보다 짧게 설정된다면, value 1의 경우 최소 슬롯의 수로 설정되고, 종래의 Time Gap에서의 동작과 같이, 모든 PDCCH 모니터링이 요구되지 않을 수 있다.
value 2의 경우에는, 적어도 미리 설정된 최소한의 모니터링을 위한 default SS set group이 모니터링될 수 있도록 요구될 수 있다. 다만, 이는 하나의 예시에 불과한 것으로서, value 1에서 default SS set group을 모니터링하거나, value 2에서 모든 PDCCH 모니터링이 생략(skip)되도록 설정될 수도 있다.
5. 실시 예 #5: DRX Active Time의 안(Inside)에서의 DCI format 2_6을 위한 SS Set과 DRX Active Time의 밖(Outside)에서의 DCI format 2_6을 위한 SS Set을 구분하여 설정하는 방법
3GPP TS Rel-15 및 Rel-16 표준에서 SS set의 monitoring occasion은 모니터링 주기(monitoring periodicity), 오프셋(offset) 및 구간(duration)을 기반으로 결정된다. 그런데, DRX cycle과 SS set의 모니터링 주기(monitoring periodicity)가 상이하게 설정될 수 있기 때문에, 본 개시에서 제안하는 DRX active time 내의 DCI format 2_6 모니터링 시점이 on-duration timer의 시작점을 기준으로 불규칙적으로 형성될 수 있다.
따라서, 본 개시에서 제안하는 DRX active time 내의 모니터링 윈도우(monitoring window) 내에서 UE가 모니터링할 SS set(또는 모니터링 해야 하는 최소한의 SS set)이 기지국에 의해 개별적으로 지시될 수 있다.
이러한 경우, SS set 설정(configuration)의 구간(duration)과 주기(periodicity)는 WUS를 포함하는 DCI format 2_6 모니터링을 위한 SS Set 설정(configuration) 과 동일하게 설정될 수 있다.
다만, DRX active time 내의 어느 시점에서 UE가 모니터링을 시작할 것인가를 결정하기 위한, On-duration Timer를 기준으로 하는 오프셋(offset)은 별도로 설정될 수 있다. 이를 통해, 도 27에서 볼 수 있는 것과 같이, On-Duration 시작을 기준으로 monitoring occasion이 불규칙적으로 형성되는 것을 방지할 수 있다. 예를 들어, DRX Active Time 바깥에서 수신한 DCI format 2_6는 On-Duration 시작으로부터 일정한 시점 이후에 DCI format 2_6의 모니터링을 시작할 수 있도록 지시할 수 있다.
이는 실시 예 #1-1과 유사하다고 볼 수 있다. 다만, 상술한 방법 이외에 실시 예 #1-2 또는 실시 예 #1-3과 같이 프레임 시작점 혹은 모니터링 윈도우를 기준으로 오프셋을 설정할 수도 있다.
한편, 본 개시의 실시 예들에서 제안하는 DRX active time 내에서 모니터링 되는 DCI format 2_6는 전력 절약(power saving)에 관련한 동작들을 명시적 또는 암시적으로 지시할 수 있다. 따라서, UE에게 DRX active time 내에서의 DCI format 2_6을 가장 우선하여 모니터링하도록 지시/설정될 수 있다. Rel-15 및 16 표준문서 TS38.213에서는 TCI(Transmission Configuration Indication) (예를 들어, QCL-typeD)가 서로 상이한 CORESET들이 시간 도메인(time domain)에서 중첩(overlap)될 때, 우선하여 모니터링할 CORESET에 대해 아래의 [표 9]와 같이 정의되어 있다.
If a UE
- is configured for single cell operation or for operation with carrier aggregation in a same frequency band, and
- monitors PDCCH candidates in overlapping PDCCH monitoring occasions in multiple CORESETs that have same or different QCL-TypeD properties on active DL BWP(s) of one or more cells
the UE monitors PDCCHs only in a CORESET, and in any other CORESET from the multiple CORESETs having same QCL-TypeD properties as the CORESET, on the active DL BWP of a cell from the one or more cells
- the CORESET corresponds to the CSS set with the lowest index in the cell with the lowest index containing CSS, if any; otherwise, to the USS set with the lowest index in the cell with lowest index
- the lowest USS set index is determined over all USS sets with at least one PDCCH candidate in overlapping PDCCH monitoring occasions
- for the purpose of determining the CORESET, a SS/PBCH block is considered to have different QCL-TypeD properties than a CSI-RS
- for the purpose of determining the CORESET, a first CSI-RS associated with a SS/PBCH block in a first cell and a second CSI-RS in a second cell that is also associated with the SS/PBCH block are assumed to have same QCL-TypeD properties
- the allocation of non-overlapping CCEs and of PDCCH candidates for PDCCH monitoring is according to all search space sets associated with the multiple CORESETs on the active DL BWP(s) of the one or more cells
- the number of active TCI states is determined from the multiple CORESETs
즉, UE는 연계된 SS set의 ID가 낮은 CORESET을 우선하여 모니터링하는 것으로 해석할 수 있다. 따라서, 본 개시에서처럼 UE가 DRX active time 내에서 DCI format 2_6를 모니터링(monitoring)할 때, DCI format 2_6를 모니터링(monitoring)하는 CORESET/SS set이 TCI (QCL-TypeD)가 상이한 CORESET/SS set과 중첩(overlap)될 경우, DCI format 2_6을 위한 CORESET/SS Set을 우선하여 모니터링하도록 지시/설정될 수 있다.
이를 위해, UE에게 해당 DCI format 2_6의 monitoring을 위한 CORESET/SS set (예를 들어, type-3 PDCCH CSS set)의 인덱스(index)를 가장 낮은 인덱스(lowest index)로 간주하도록 지시/설정될 수 있다. 또는, 기지국은 DCI format 2_6 모니터링(monitoring)을 위한 CORESET/SS set (예를 들어, type-3 PDCCH CSS set)에 가장 낮은 인덱스(lowest index)를 할당할 수 있다.
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 발명의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 28은 본 발명에 적용되는 통신 시스템(1)을 예시한다.
도 28을 참조하면, 본 발명에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 29는 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 29를 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 28의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
구체적으로 본 발명의 실시 예에 따른 제 1 무선 기기(100)의 프로세서(102)에 의해 제어되고, 메모리(104)에 저장되는 명령 및/또는 동작들에 대해서 살펴보도록 한다.
하기 동작들은 프로세서(102)의 관점에서 프로세서(102)의 제어 동작을 기반으로 설명하지만, 이러한 동작을 수행하기 위한 소프트 웨어 코드 등에 메모리(104)에 저장될 수 있다. 예를 들어, 본 개시에서, 적어도 하나의 메모리(104)는 컴퓨터 판독 가능한(readable) 저장 매체 (storage medium)로서, 지시들 또는 프로그램들을 저장할 수 있으며, 상기 지시들 또는 프로그램들은, 실행될 때, 상기 적어도 하나의 메모리에 작동 가능하게(operably) 연결되는 적어도 하나의 프로세서로 하여금 하기 동작들과 관련된 본 개시의 실시예들 또는 구현들에 따른 동작들을 수행하도록 할 수 있다.
구체적으로, 프로세서(102)는 DRX Active Time 내에 제 1 DCI format 2_6을 위한 모니터링 윈도우를 설정(configuration)하기 위한 제 1 정보를 수신하도록 송수신기(106)를 제어할 수 있다. 이 때, 제 1 정보는 RRC (Radio Resource Control) 시그널링과 같은 상위 계층 시그널링 및/또는 DCI (Downlink Control Information)과 같은 동적 시그널링을 통해 수신되도록 제어될 수 있다.
또한, 제 1 정보에는 제 1 DCI format 2_6을 위한 모니터링 윈도우를 설정하기 위한 파라미터들이 포함될 수 있다. 예를 들어, 오프셋, 구간(Duration), 주기(Periodicity) 및 Time Gap 중 적어도 하나에 대한 정보를 포함할 수 있다. 한편, 프로세서(102)는 하나의 시그널링을 통해 상술한 오프셋, 구간(Duration), 주기(Periodicity) 및 Time Gap을 수신하도록 송수신기(106)를 제어할 수 있지만, 각각 별도의 시그널링을 통해 오프셋, 구간(Duration), 주기(Periodicity) 및 Time Gap을 수신하도록 송수신기(106)를 제어할 수도 있다.
구체적으로, 상술한 제 1 정보에 포함된 파라미터들을 통해 DCI format 2_6을 위한 모니터링 윈도우가 설정되는 구체적인 방법은 "실시 예 #1" 및 "실시 예 #3"에 기반할 수 있다.
또한, 해당 모니터링 윈도우 내에서 DCI format 2_6을 모니터링하는 방법은 "실시 예 #2"에 기반할 수 있다.
또한, 상술한 제 1 정보에 포함된 Time Gap이 설정/사용되는 방법은 "실시 예 #4"에 기반할 수 있다.
또한, 프로세서(102)는 DCI format 2_6을 모니터링하기 위한 SS set 설정(configuration)의 오프셋, 구간(Duration) 및 주기(Periodicity)에 대한 정보도 제 1 정보와 별도로 혹은 함께 수신하도록 송수신기(106)를 제어할 수 있다.
이 때, SS Set을 설정(Configuration)하는 방법은 "실시 예 #5"에 기반할 수 있다.
프로세서(102)는 DRX Active Time 밖에서 제 2 DCI format 2_6을 수신하도록 송수신기(106)를 제어할 수 있다. 제 2 DCI format 2_6은 Wake up Signal (WUS)를 포함하는 것일 수 있다. 즉, 프로세서(102)는 제 2 DCI format 2_6에 포함된 WUS를 기반으로, DRX Active Time (예를 들어, On Duration)을 시작할 수 있다.
프로세서(102)는 상술한 제 1 정보를 기반으로, DRX Active Time 내의 제 1 DCI format 2_6을 모니터링하기 위한 모니터링 윈도우 내에서 제 1 DCI format 2_6을 수신하도록 송수신기(106)를 제어할 수 있다. 다시 말해, "실시 예 #1" 및/또는 "실시 예 3"을 기반으로 모니터링 윈도우가 설정될 수 있다. 그리고, "실시 예 #2"를 기반으로 제 1 DCI format 2_6을 수신하도록 송수신기(106)를 제어할 수 있다. 또한, "실시 예 #5"를 기반으로 SS Set 이 DRX Active Time 내에 설정될 수 있다.
프로세서(102)는 제 1 DCI format 2_6을 기반으로, "실시 예 #4"에 기반한 Time Gap 이후에 PDCCH를 모니터링하고, PDCCH를 수신하도록 송수신기(106)를 제어할 수 있다. 이때, 제 1 DCI format 2_6에는 Time Gap 이후에 UE가 스케줄링 DCI (예를 들어, DL Assignment 및/또는 UL grant)를 수신하기 위해 모니터링 대상이 되는 SS Set, PDCCH Occasion, CORESET 및/또는 BWP에 대한 정보가 포함될 수 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
구체적으로 본 발명의 실시 예에 따른 제 2 무선 기기(200)의 프로세서(202)에 의해 제어되고, 메모리(204)에 저장되는 명령 및/또는 동작들에 대해서 살펴보도록 한다.
하기 동작들은 프로세서(202)의 관점에서 프로세서(202)의 제어 동작을 기반으로 설명하지만, 이러한 동작을 수행하기 위한 소프트 웨어 코드 등에 메모리(204)에 저장될 수 있다. 예를 들어, 본 개시에서, 적어도 하나의 메모리(204)는 컴퓨터 판독 가능한(readable) 저장 매체 (storage medium)로서, 지시들 또는 프로그램들을 저장할 수 있으며, 상기 지시들 또는 프로그램들은, 실행될 때, 상기 적어도 하나의 메모리에 작동 가능하게(operably) 연결되는 적어도 하나의 프로세서로 하여금 하기 동작들과 관련된 본 개시의 실시예들 또는 구현들에 따른 동작들을 수행하도록 할 수 있다.
구체적으로, 프로세서(202)는 DRX Active Time 내에 제 1 DCI format 2_6을 위한 모니터링 윈도우를 설정(configuration)하기 위한 제 1 정보를 전송하도록 송수신기(206)를 제어할 수 있다. 이 때, 제 1 정보는 RRC (Radio Resource Control) 시그널링과 같은 상위 계층 시그널링 및/또는 DCI (Downlink Control Information)과 같은 동적 시그널링을 통해 전송되도록 제어될 수 있다.
또한, 제 1 정보에는 제 1 DCI format 2_6을 위한 모니터링 윈도우를 설정하기 위한 파라미터들이 포함될 수 있다. 예를 들어, 오프셋, 구간(Duration), 주기(Periodicity) 및 Time Gap 중 적어도 하나에 대한 정보를 포함할 수 있다. 한편, 프로세서(202)는 하나의 시그널링을 통해 상술한 오프셋, 구간(Duration), 주기(Periodicity) 및 Time Gap을 전송하도록 송수신기(206)를 제어할 수도 있지만, 각각 별도의 시그널링을 통해 오프셋, 구간(Duration), 주기(Periodicity) 및 Time Gap을 전송하도록 송수신기(206)를 제어할 수도 있다.
구체적으로, 상술한 제 1 정보에 포함된 파라미터들을 통해 DCI format 2_6을 위한 모니터링 윈도우가 설정되는 구체적인 방법은 "실시 예 #1" 및 "실시 예 #3"에 기반할 수 있다.
또한, 해당 모니터링 윈도우 내에서 DCI format 2_6을 전송하는 방법은 "실시 예 #2"에 기반할 수 있다.
또한, 상술한 제 1 정보에 포함된 Time Gap이 설정/사용되는 방법은 "실시 예 #4"에 기반할 수 있다.
또한, 프로세서(202)는 DCI format 2_6을 모니터링하기 위한 SS set 설정(configuration)의 오프셋, 구간(Duration) 및 주기(Periodicity)에 대한 정보도 제 1 정보와 별도로 혹은 함께 전송하도록 송수신기(206)를 제어할 수 있다.
이 때, SS Set을 설정(Configuration)하는 방법은 "실시 예 #5"에 기반할 수 있다.
프로세서(202)는 DRX Active Time 밖에서 제 2 DCI format 2_6을 전송하도록 송수신기(206)를 제어할 수 있다. 제 2 DCI format 2_6은 Wake up Signal (WUS)를 포함하는 것일 수 있다. 즉, 프로세서(202)는 제 2 DCI format 2_6에 포함된 WUS를 기반으로, UE에게 DRX Active Time (예를 들어, On Duration)을 시작할 것을 지시하도록 송수신기(206)를 제어할 수 있다.
프로세서(202)는 상술한 제 1 정보를 기반으로, DRX Active Time 내의 제 1 DCI format 2_6을 모니터링하기 위한 모니터링 윈도우 내에서 제 1 DCI format 2_6을 전송하도록 송수신기(206)를 제어할 수 있다. 다시 말해, "실시 예 #1" 및/또는 "실시 예 3"을 기반으로 모니터링 윈도우가 설정될 수 있다. 그리고, "실시 예 #2"를 기반으로 제 1 DCI format 2_6을 전송할 수 있다. 또한, "실시 예 #5"를 기반으로 SS Set 이 DRX Active Time 내에 설정될 수 있다.
프로세서(202)는 제 1 DCI format 2_6을 기반으로, "실시 예 #4"에 기반한 Time Gap 이후에 PDCCH를 전송하도록 송수신기(206)를 제어할 수 있다. 이때, 제 1 DCI format 2_6에는 Time Gap 이후에 UE가 스케줄링 DCI (예를 들어, DL Assignment 및/또는 UL grant)를 수신하기 위해 모니터링 대상이 되는 SS Set, PDCCH Occasion, CORESET 및/또는 BWP에 대한 정보가 포함될 수 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 30은 본 발명에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 34를 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), gNode B(gNB), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치는 5세대 NewRAT 시스템에 적용되는 예를 중심으로 설명하였으나, 5세대 NewRAT 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (14)

  1. 무선 통신 시스템에서, DRX (Discontinuous Reception) 동작을 지원하는 단말이 DCI (Downlink Control Information)을 수신하는 방법에 있어서,
    상기 DCI를 위한 모니터링 윈도우와 관련된 제 1 정보를 수신하고,
    상기 제 1 정보를 기반으로 상기 모니터링 윈도우 내에서 상기 DCI를 수신하는 것을 포함하되,
    상기 모니터링 윈도우는 DRX Active Time 내에 설정되고,
    상기 제 1 정보는, 오프셋 및 상기 모니터링 윈도우의 구간(Duration)에 관련된 정보를 포함하고,
    상기 오프셋은, 상기 DRX Active Time의 시작점으로부터 상기 모니터링 윈도우의 시작점까지의 거리인,
    DCI 수신 방법.
  2. 제 1 항에 있어서,
    상기 오프셋은, 슬롯의 수를 기반으로 표현되는,
    DCI 수신 방법.
  3. 제 1 항에 있어서,
    상기 DCI는, 상기 모니터링 윈도우 내에 할당된 제 1 SS (Search Space) Set을 통해 수신되고,
    상기 모니터링 윈도우 내에서 상기 제 1 SS Set 이후에 할당된 제 2 SS set에 대한 모니터링은 수행되지 않는,
    DCI 수신 방법.
  4. 제 1 항에 있어서,
    상기 제 1 정보는, 상기 모니터링 윈도우가 반복 할당되는 주기와 관련된 정보를 포함하고,
    상기 모니터링 윈도우는 상기 주기에 관련된 정보를 기반으로, 상기 DRX Active Time 내에서 반복 할당되는,
    DCI 수신 방법.
  5. 제 1 항에 있어서,
    상기 DCI는, DCI 포맷 2_6인,
    DCI 수신 방법.
  6. 무선 통신 시스템에서, DCI (Downlink Control Information)을 수신하기 위한 DRX (Discontinuous Reception) 동작을 지원하는 단말에 있어서,
    적어도 하나의 송수신기;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고,
    상기 동작은:
    상기 적어도 하나의 송수신기를 통해, 상기 DCI를 위한 모니터링 윈도우와 관련된 제 1 정보를 수신하고,
    상기 적어도 하나의 송수신기를 통해, 상기 제 1 정보를 기반으로 상기 모니터링 윈도우 내에서 상기 DCI를 수신하는 것을 포함하되,
    상기 모니터링 윈도우는 DRX Active Time 내에 설정되고,
    상기 제 1 정보는, 오프셋 및 상기 모니터링 윈도우의 구간(Duration)에 관련된 정보를 포함하고,
    상기 오프셋은, 상기 DRX Active Time의 시작점으로부터 상기 모니터링 윈도우의 시작점까지의 거리인,
    단말.
  7. 제 6 항에 있어서,
    상기 오프셋은, 슬롯의 수를 기반으로 표현되는,
    단말.
  8. 제 6 항에 있어서,
    상기 DCI는, 상기 모니터링 윈도우 내에 할당된 제 1 SS (Search Space) Set을 통해 수신되고,
    상기 모니터링 윈도우 내에서 상기 제 1 SS Set 이후에 할당된 제 2 SS set에 대한 모니터링은 수행되지 않는,
    단말.
  9. 제 6 항에 있어서,
    상기 제 1 정보는, 상기 모니터링 윈도우가 반복 할당되는 주기와 관련된 정보를 포함하고,
    상기 모니터링 윈도우는 상기 주기에 관련된 정보를 기반으로, 상기 DRX Active Time 내에서 반복 할당되는,
    단말.
  10. 제 6 항에 있어서,
    상기 DCI는, DCI 포맷 2_6인,
    단말.
  11. 무선 통신 시스템에서, DCI (Downlink Control Information)을 수신하기 위한 DRX (Discontinuous Reception) 동작을 지원하는 장치에 있어서,
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고,
    상기 동작은:
    상기 DCI를 위한 모니터링 윈도우와 관련된 제 1 정보를 수신하고,
    상기 제 1 정보를 기반으로 상기 모니터링 윈도우 내에서 상기 DCI를 수신하는 것을 포함하되,
    상기 모니터링 윈도우는 DRX Active Time 내에 설정되고,
    상기 제 1 정보는, 오프셋 및 상기 모니터링 윈도우의 구간(Duration)에 관련된 정보를 포함하고,
    상기 오프셋은, 상기 DRX Active Time의 시작점으로부터 상기 모니터링 윈도우의 시작점까지의 거리인,
    장치.
  12. 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 프로그램을 포함하는 컴퓨터 판독 가능한 저장 매체로서, 상기 동작은:
    상기 DCI를 위한 모니터링 윈도우와 관련된 제 1 정보를 수신하고,
    상기 제 1 정보를 기반으로 상기 모니터링 윈도우 내에서 상기 DCI를 수신하는 것을 포함하되,
    상기 모니터링 윈도우는 DRX Active Time 내에 설정되고,
    상기 제 1 정보는, 오프셋 및 상기 모니터링 윈도우의 구간(Duration)에 관련된 정보를 포함하고,
    상기 오프셋은, 상기 DRX Active Time의 시작점으로부터 상기 모니터링 윈도우의 시작점까지의 거리인,
    컴퓨터 판독 가능한 저장 매체.
  13. 무선 통신 시스템에서, DRX (Discontinuous Reception) 동작을 설정할 수 있는 기지국이 DCI (Downlink Control Information)을 전송하는 방법에 있어서,
    상기 DCI를 위한 모니터링 윈도우와 관련된 제 1 정보를 전송하고,
    상기 제 1 정보를 기반으로 상기 모니터링 윈도우 내에서 상기 DCI를 전송하는 것을 포함하되,
    상기 모니터링 윈도우는 DRX Active Time 내에 설정되고,
    상기 제 1 정보는, 오프셋 및 상기 모니터링 윈도우의 구간(Duration)에 관련된 정보를 포함하고,
    상기 오프셋은, 상기 DRX Active Time의 시작점으로부터 상기 모니터링 윈도우의 시작점까지의 거리인,
    DCI 전송 방법.
  14. 무선 통신 시스템에서, DCI (Downlink Control Information)을 전송하기 위한 DRX (Discontinuous Reception) 동작을 설정할 수 있는 기지국에 있어서,
    적어도 하나의 송수신기;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고,
    상기 동작은:
    상기 적어도 하나의 송수신기를 통해, 상기 DCI를 위한 모니터링 윈도우와 관련된 제 1 정보를 전송하고,
    상기 적어도 하나의 송수신기를 통해, 상기 제 1 정보를 기반으로 상기 모니터링 윈도우 내에서 상기 DCI를 전송하는 것을 포함하되,
    상기 모니터링 윈도우는 DRX Active Time 내에 설정되고,
    상기 제 1 정보는, 오프셋 및 상기 모니터링 윈도우의 구간(Duration)에 관련된 정보를 포함하고,
    상기 오프셋은, 상기 DRX Active Time의 시작점으로부터 상기 모니터링 윈도우의 시작점까지의 거리인,
    기지국.
PCT/KR2021/014202 2020-10-22 2021-10-14 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치 WO2022086046A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21883117.0A EP4236554A1 (en) 2020-10-22 2021-10-14 Method for transmitting/receiving downlink control information, and device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0137395 2020-10-22
KR20200137395 2020-10-22

Publications (1)

Publication Number Publication Date
WO2022086046A1 true WO2022086046A1 (ko) 2022-04-28

Family

ID=81290819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014202 WO2022086046A1 (ko) 2020-10-22 2021-10-14 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치

Country Status (2)

Country Link
EP (1) EP4236554A1 (ko)
WO (1) WO2022086046A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024031434A1 (en) * 2022-08-10 2024-02-15 Apple Inc. System and method for performing a global navigation satellite system (gnss) measurement in non-terrestrial network (ntn)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200085698A (ko) * 2018-04-23 2020-07-15 엘지전자 주식회사 무선 통신 시스템에서 물리 하향링크 공유 채널을 송수신하기 위한 방법 및 이를 지원하는 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200085698A (ko) * 2018-04-23 2020-07-15 엘지전자 주식회사 무선 통신 시스템에서 물리 하향링크 공유 채널을 송수신하기 위한 방법 및 이를 지원하는 장치

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Multiplexing and channel coding (Release 16)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.212, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. V16.3.0, 1 October 2020 (2020-10-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 152, XP051961277 *
CATT: "Preparation Summary of PDCCH based Power Saving Signal/Channel", 3GPP DRAFT; R1-2004723, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200525 - 20200605, 25 May 2020 (2020-05-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051890587 *
HUAWEI, HISILICON: "Remaining issues on PDCCH based power saving", 3GPP DRAFT; R1-2003518, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20200525 - 20200605, 16 May 2020 (2020-05-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051885302 *
LG ELECTRONICS: "Remaining issues on PDCCH-based power saving signal/channel", 3GPP DRAFT; R1-2001943, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200420 - 20200430, 10 April 2020 (2020-04-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051873379 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024031434A1 (en) * 2022-08-10 2024-02-15 Apple Inc. System and method for performing a global navigation satellite system (gnss) measurement in non-terrestrial network (ntn)

Also Published As

Publication number Publication date
EP4236554A1 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
WO2020184836A1 (ko) 무선 통신 시스템에서 단말의 빔 정보 전송 방법 및 이를 지원하는 단말 및 기지국
WO2020167084A1 (ko) 무선 통신 시스템에서 단말이 임의 접속 과정을 수행하는 방법 및 이를 위한 장치
WO2020060089A1 (ko) 하향링크 채널을 송수신하는 방법 및 이를 위한 장치
WO2021033944A1 (ko) 무선 통신 시스템에서 단말이 임의 접속 과정을 수행하는 방법 및 이를 위한 장치
WO2022030867A1 (ko) 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치
WO2020166848A1 (ko) 무선 통신 시스템에서 단말의 빔 관련 상향링크 피드백 정보 전송 방법 및 이를 지원하는 단말 및 기지국
WO2022154614A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021206400A1 (ko) 채널 접속 절차를 수행하는 방법 및 이를 위한 장치
WO2022086198A1 (ko) 하향링크 제어 채널을 송수신하는 방법 및 이를 위한 장치
WO2022216035A1 (en) Method and apparatus for transmitting/receiving wireless signal in wireless communication system
WO2020067783A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 불연속 수신 방법 및 상기 방법을 이용하는 단말
WO2022031141A1 (ko) Iab 노드에서 신호를 송수신하는 방법 및 이를 위한 장치
WO2022025549A1 (ko) 사운딩 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2021206409A1 (ko) 채널 접속 절차를 수행하는 방법 및 이를 위한 장치
WO2021066278A1 (ko) 비면허 대역에서 단말이 임의 접속 과정을 수행하기 위한 신호를 송수신하는 방법 및 이를 위한 장치
WO2021066277A1 (ko) 비면허 대역에서 단말이 임의 접속 과정을 수행하는 방법 및 이를 위한 장치
WO2022086046A1 (ko) 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
WO2022154408A1 (ko) 하향링크 제어 채널을 송수신하는 방법 및 이를 위한 장치
WO2022216045A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021206398A1 (ko) 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
WO2022080728A1 (ko) 채널 접속 절차를 수행하는 방법 및 이를 위한 장치
WO2021060913A1 (ko) 비면허 대역에서 단말이 하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치
WO2020222589A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 물리 하향링크 제어 채널의 수신 방법 및 장치
WO2020226376A1 (ko) 무선 통신 시스템에서 단말이 임의 접속 과정을 수행하는 방법 및 이를 위한 장치
WO2020145575A1 (ko) 무선 통신 시스템에서 단말의 빔 실패 보고 방법 및 이를 지원하는 단말 및 기지국

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21883117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021883117

Country of ref document: EP

Effective date: 20230522