WO2021206409A1 - 채널 접속 절차를 수행하는 방법 및 이를 위한 장치 - Google Patents

채널 접속 절차를 수행하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2021206409A1
WO2021206409A1 PCT/KR2021/004259 KR2021004259W WO2021206409A1 WO 2021206409 A1 WO2021206409 A1 WO 2021206409A1 KR 2021004259 W KR2021004259 W KR 2021004259W WO 2021206409 A1 WO2021206409 A1 WO 2021206409A1
Authority
WO
WIPO (PCT)
Prior art keywords
lbt
output power
size
base station
terminal
Prior art date
Application number
PCT/KR2021/004259
Other languages
English (en)
French (fr)
Inventor
명세창
이영대
양석철
김선욱
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/916,676 priority Critical patent/US20230156786A1/en
Publication of WO2021206409A1 publication Critical patent/WO2021206409A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Definitions

  • the present disclosure (disclosure) relates to a method and apparatus for performing a channel access procedure, and more particularly, to perform a channel access procedure for transmitting and receiving an uplink signal and a downlink signal in an unlicensed high frequency band of 52.6 GHz or higher It relates to a method and an apparatus for the same.
  • next-generation 5G system which is a wireless broadband communication that is improved compared to the existing LTE system.
  • NewRAT communication scenarios are divided into Enhanced Mobile BroadBand (eMBB)/ Ultra-reliability and low-latency communication (URLLC)/Massive Machine-Type Communications (mMTC), and the like.
  • eMBB Enhanced Mobile BroadBand
  • URLLC Ultra-reliability and low-latency communication
  • mMTC Massive Machine-Type Communications
  • eMBB is a next-generation mobile communication scenario with characteristics such as High Spectrum Efficiency, High User Experienced Data Rate, and High Peak Data Rate
  • URLLC is a next-generation mobile communication scenario with characteristics such as Ultra Reliable, Ultra Low Latency, and Ultra High Availability.
  • V2X Emergency Service, Remote Control
  • mMTC is a next-generation mobile communication scenario with Low Cost, Low Energy, Short Packet, and Massive Connectivity characteristics. (e.g., IoT).
  • An object of the present disclosure is to provide a method for performing a channel access procedure and an apparatus therefor.
  • a terminal In a method for a terminal to transmit an uplink signal in a wireless communication system according to an embodiment of the present disclosure, information related to a size of a unit bandwidth (BW) for Listen Before Talk (LBT) is received, and the unit Obtain a maximum output power and an ED (Energy Detection) threshold associated with a bandwidth, perform the LBT based on the unit bandwidth and the ED threshold, and obtain the LBT performance result and the maximum output power Based on it, it may be characterized in that an uplink signal is transmitted.
  • BW unit bandwidth
  • LBT Listen Before Talk
  • the Maximum Channel Occupancy Time (MCOT) for the uplink signal may be based on the size of the unit bandwidth.
  • the size of the unit bandwidth is greater than or equal to the size of the reference bandwidth, it is allowed for the terminal to share a part of the COT (Channel Occupancy Time) acquired with the base station, and the size of the unit bandwidth is the size of the reference bandwidth Based on less than, it may not be allowed to share a part of the COT obtained by the terminal to the base station.
  • COT Channel Occupancy Time
  • the uplink signal may be transmitted within a channel occupancy time (COT) obtained by the base station.
  • COT channel occupancy time
  • the maximum output power and the ED threshold may be fixed.
  • the maximum output power may be obtained based on the size of the unit bandwidth, and the ED threshold may be obtained based on the maximum output power.
  • the ED threshold may be obtained based on the size of the unit bandwidth, and the maximum output power may be a fixed value.
  • a terminal for transmitting an uplink signal comprising: at least one transceiver; at least one processor; and at least one memory operatively coupled to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform an operation, the operation comprising: Through the transceiver, information related to the size of the unit bandwidth (BW) for LBT (Listen Before Talk) is received, and the maximum output power and ED (Energy Detection) thresholds related to the unit bandwidth are received. obtaining, performing the LBT based on the unit bandwidth and the ED threshold, and transmitting an uplink signal through the at least one transceiver, based on the LBT performance result and the maximum output power can do.
  • BW unit bandwidth
  • ED Electronicgy Detection
  • an apparatus for transmitting a signal comprising: at least one processor; and at least one memory operatively coupled to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform an operation, the operation comprising: Listen Before (LBT) Acquire information related to the size of a unit bandwidth (BW) for Talk), obtain a maximum output power and an ED (Energy Detection) threshold associated with the unit bandwidth, and the unit bandwidth and ED Performing the LBT based on a threshold value, through the at least one transmission and reception, based on the LBT performance result and the maximum output power, it may be characterized in that the signal is transmitted.
  • LBT Listen Before
  • BW unit bandwidth
  • ED Electronicgy Detection
  • a size of a unit bandwidth (BW) for Listen Before Talk (LBT) is obtained, and the unit bandwidth is related to the method.
  • BW unit bandwidth
  • ED Electronicgy Detection
  • a base station for transmitting a downlink signal comprising: at least one transceiver; at least one processor; and at least one memory operatively coupled to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform an operation, the operation comprising: Listen Before (LBT) To obtain the size of a unit bandwidth (BW) for Talk), obtain a maximum output power and an ED (Energy Detection) threshold associated with the unit bandwidth, and obtain the unit bandwidth and the ED threshold Based on the LBT, and through the at least one transceiver, based on the LBT performance result and the maximum output power, it may be characterized in that the downlink signal is transmitted.
  • LBT Listen Before
  • BW unit bandwidth
  • ED Electronicgy Detection
  • a computer-readable storage medium including at least one computer program for causing at least one processor to perform an operation according to an embodiment of the present disclosure, wherein the operation includes: a unit bandwidth (BW) for LBT (Listen Before Talk) ) to obtain information related to the size, obtain a maximum output power and an ED (Energy Detection) threshold associated with the unit bandwidth, and perform the LBT based on the unit bandwidth and the ED threshold, , through the at least one transmission and reception, based on the LBT performance result and the maximum output power, it is possible to transmit a signal.
  • BW unit bandwidth
  • LBT Listen Before Talk
  • ED Electronicgy Detection
  • parameters and bandwidths to be used for the channel access procedure are set, and the channel access procedure can be efficiently performed while coexisting with other systems.
  • 3GPP system which is an example of a wireless communication system, and a general signal transmission method using them.
  • FIG. 2 illustrates the structure of a radio frame.
  • 3 illustrates a resource grid of slots.
  • FIG. 4 shows an example in which a physical channel is mapped in a slot.
  • 5 illustrates an uplink transmission operation of a terminal.
  • 6 illustrates repeated transmission based on a configured grant.
  • FIG. 7 is a diagram illustrating a wireless communication system supporting an unlicensed band applicable to the present disclosure.
  • FIG. 8 illustrates a method of occupying a resource within an unlicensed band applicable to the present disclosure.
  • FIG. 9 illustrates a channel access procedure of a terminal for transmitting uplink and/or downlink signals in an unlicensed band applicable to the present disclosure.
  • 11 to 12 are for explaining the overall operation process of the base station and the terminal in uplink and/or downlink transmission and reception according to an embodiment of the present disclosure.
  • 13 to 14 are for explaining an example in which an NR carrier in a high frequency band is set according to an embodiment of the present disclosure.
  • FIG. 16 illustrates a wireless device applicable to the present disclosure.
  • 17 illustrates a vehicle or an autonomous driving vehicle that may be applied to the present disclosure.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with a radio technology such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented with a radio technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), and the like.
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3GPP (3rd Generation Partnership Project) long term evolution (LTE) is a part of Evolved UMTS (E-UMTS) using E-UTRA
  • LTE-A Advanced
  • 3GPP NR New Radio or New Radio Access Technology
  • 3GPP LTE/LTE-A is an evolved version of 3GPP LTE/LTE-A.
  • the three main requirements areas for 5G are (1) Enhanced Mobile Broadband (eMBB) area, (2) Massive Machine Type Communication (mMTC) area and (3) Ultra-reliable and It includes an Ultra-reliable and Low Latency Communications (URLLC) area.
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC Ultra-reliable and Low Latency Communications
  • KPI key performance indicator
  • eMBB goes far beyond basic mobile internet access, covering rich interactive work, media and entertainment applications in the cloud or augmented reality.
  • Data is one of the key drivers of 5G, and for the first time in the 5G era, we may not see dedicated voice services.
  • voice is simply expected to be processed as an application using the data connection provided by the communication system.
  • the main causes for increased traffic volume are an increase in content size and an increase in the number of applications requiring high data rates.
  • Streaming services audio and video
  • interactive video and mobile Internet connections will become more widely used as more devices are connected to the Internet. Many of these applications require always-on connectivity to push real-time information and notifications to users.
  • Cloud storage and applications are rapidly increasing in mobile communication platforms, which can be applied to both work and entertainment.
  • cloud storage is a special use case that drives the growth of uplink data rates.
  • 5G is also used for remote work in the cloud, requiring much lower end-to-end latency to maintain a good user experience when tactile interfaces are used.
  • Entertainment For example, cloud gaming and video streaming are other key factors that increase the demand for mobile broadband capabilities. Entertainment is essential on smartphones and tablets anywhere, including in high-mobility environments such as trains, cars and airplanes.
  • Another use example is augmented reality for entertainment and information retrieval.
  • augmented reality requires very low latency and instantaneous amount of data.
  • URLLC includes new services that will transform industries through ultra-reliable/low-latency links available, such as remote control of critical infrastructure and self-driving vehicles. This level of reliability and latency is essential for smart grid control, industrial automation, robotics, and drone control and coordination.
  • 5G could complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of delivering streams rated at hundreds of megabits per second to gigabits per second. This high speed is required to deliver TVs in resolutions of 4K and higher (6K, 8K and higher), as well as virtual and augmented reality.
  • Virtual Reality (VR) and Augmented Reality (AR) applications almost include immersive sporting events. Certain applications may require special network settings. For VR games, for example, game companies may need to integrate core servers with network operators' edge network servers to minimize latency.
  • Automotive is expected to be an important new driving force for 5G, with many use cases for mobile communication to vehicles. For example, entertainment for passengers requires simultaneous high capacity and high mobility mobile broadband. The reason is that future users will continue to expect high-quality connections regardless of their location and speed.
  • Another use case in the automotive sector is augmented reality dashboards. It identifies objects in the dark and overlays information that tells the driver about the distance and movement of the object over what the driver is seeing through the front window.
  • wireless modules will enable communication between vehicles, information exchange between vehicles and supporting infrastructure, and information exchange between automobiles and other connected devices (eg, devices carried by pedestrians).
  • Safety systems can help drivers reduce the risk of accidents by guiding alternative courses of action to help them drive safer.
  • the next step will be remote-controlled or self-driven vehicles.
  • Smart cities and smart homes referred to as smart societies, will be embedded with high-density wireless sensor networks.
  • a distributed network of intelligent sensors will identify conditions for cost and energy-efficient maintenance of a city or house.
  • a similar setup can be performed for each household.
  • Temperature sensors, window and heating controllers, burglar alarms and appliances are all connected wirelessly. Many of these sensors are typically low data rates, low power and low cost. However, for example, real-time HD video may be required in certain types of devices for surveillance.
  • Smart grids use digital information and communication technologies to interconnect these sensors to collect information and act on it. This information can include supplier and consumer behavior, enabling smart grids to improve efficiency, reliability, economics, sustainability of production and distribution of fuels such as electricity in an automated manner.
  • the smart grid can also be viewed as another low-latency sensor network.
  • the health sector has many applications that can benefit from mobile communications.
  • the communication system may support telemedicine providing clinical care from a remote location. This can help reduce barriers to distance and improve access to consistently unavailable health care services in remote rural areas. It is also used to save lives in critical care and emergency situations.
  • a wireless sensor network based on mobile communication may provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
  • Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing cables with reconfigurable wireless links is an attractive opportunity for many industries. However, achieving this requires that the wireless connection operate with cable-like delay, reliability and capacity, and that its management be simplified. Low latency and very low error probability are new requirements that need to be connected with 5G.
  • Logistics and freight tracking are important use cases for mobile communications that use location-based information systems to enable tracking of inventory and packages from anywhere.
  • Logistics and freight tracking use cases typically require low data rates but require wide range and reliable location information.
  • 1 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method.
  • the UE receives a Synchronization Signal Block (SSB) from the base station.
  • the SSB includes a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the terminal synchronizes with the base station based on PSS/SSS and acquires information such as cell identity.
  • the terminal may receive the PBCH from the base station to obtain intra-cell broadcast information.
  • the UE may receive a DL RS (Downlink Reference Signal) in the initial cell search step to check the downlink channel state.
  • DL RS Downlink Reference Signal
  • the UE may receive a Physical Downlink Control Channel (PDCCH) and a Physical Downlink Control Channel (PDSCH) corresponding thereto to obtain more specific system information (S12).
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Control Channel
  • the terminal may perform a random access procedure to complete access to the base station (S13 to S16). Specifically, the UE transmits a preamble through a physical random access channel (PRACH) (S13), and receives a random access response (RAR) for the preamble through a PDCCH and a corresponding PDSCH (S14). . Thereafter, the UE transmits a Physical Uplink Shared Channel (PUSCH) using the scheduling information in the RAR (S15), and may perform a contention resolution procedure such as a PDCCH and a corresponding PDSCH (S16).
  • PRACH physical random access channel
  • RAR random access response
  • PUSCH Physical Uplink Shared Channel
  • S13/S15 (in which the terminal performs transmission) is performed in one step (message A), and S14/S16 is performed in one step (in which the base station performs transmission). It can be done (message B).
  • the UE may perform PDCCH/PDSCH reception (S17) and PUSCH/PUCCH (Physical Uplink Control Channel) transmission (S18) as a general uplink/downlink signal transmission procedure.
  • Control information transmitted by the terminal to the base station is referred to as uplink control information (UCI).
  • UCI includes HARQ ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgment/Negative-ACK), SR (Scheduling Request), CSI (Channel State Information), and the like.
  • CSI includes a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), and a Rank Indication (RI).
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • UCI is generally transmitted through PUCCH, but may be transmitted through PUSCH when control information and data are to be transmitted at the same time.
  • the UE may aperiodically transmit the UCI through the PUSCH.
  • FIG. 2 is a diagram showing the structure of a radio frame.
  • Uplink and downlink transmission in NR consists of frames.
  • One radio frame has a length of 10 ms and is defined as two 5 ms half-frames (HF).
  • One half-frame is defined as 5 1ms subframes (Subframe, SF).
  • One subframe is divided into one or more slots, and the number of slots in the subframe depends on subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • Each slot includes 12 or 14 OFDM(A) symbols according to a cyclic prefix (CP). When CP is usually used, each slot includes 14 symbols. When the extended CP is used, each slot includes 12 symbols.
  • the symbol may include an OFDM symbol (or a CP-OFDM symbol) and an SC-FDMA symbol (or a DFT-s-OFDM symbol).
  • Table 1 exemplifies that the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to SCS when CP is usually used.
  • Nslotsymb Nframe, uslot Nsubframe,uslot 15KHz (u 0) 14 10
  • Nslotsymb Number of symbols in a slot* Nframe,uslot: Number of slots in a frame
  • Table 2 illustrates that when the extended CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to SCS.
  • the structure of the frame is only an example, and the number of subframes, the number of slots, and the number of symbols in the frame may be variously changed. Numerology (eg, SCS, CP length, etc.) may be set differently. Accordingly, an (absolute time) interval of a time resource (eg, SF, slot, or TTI) (commonly referred to as a TU (Time Unit) for convenience) composed of the same number of symbols may be set differently between the merged cells.
  • a time resource eg, SF, slot, or TTI
  • TU Time Unit
  • NR supports multiple numerology (or subcarrier spacing (SCS)) to support various 5G services. For example, when SCS is 15kHz, it supports wide area in traditional cellular bands, and when SCS is 30kHz/60kHz, dense-urban, lower latency and a wider carrier bandwidth, and when the SCS is 60 kHz or higher, a bandwidth greater than 24.25 GHz to overcome phase noise.
  • SCS subcarrier spacing
  • the NR frequency band is defined as two types of frequency ranges (FR1, FR2).
  • FR1 and FR2 may be configured as shown in Table 3 below.
  • FR2 may mean a millimeter wave (mmW).
  • One slot includes a plurality of symbols in the time domain. For example, in the case of a normal CP, one slot includes 14 symbols, but in the case of an extended CP, one slot includes 12 symbols.
  • the carrier includes a plurality of subcarriers in the frequency domain.
  • a resource block (RB) is defined as a plurality of (eg, 12) consecutive subcarriers in the frequency domain.
  • a bandwidth part (BWP) is defined as a plurality of consecutive (P)RBs in the frequency domain, and may correspond to one numerology (eg, SCS, CP length, etc.).
  • a carrier may include a maximum of N (eg, 5) BWPs. Data communication is performed through the activated BWP, and only one BWP may be activated for one terminal.
  • Each element in the resource grid is referred to as a resource element (RE), and one complex symbol may be mapped.
  • RE resource element
  • FIG. 4 is a diagram illustrating an example in which a physical channel is mapped in a slot.
  • a DL control channel, DL or UL data, and a UL control channel may all be included in one slot.
  • the first N symbols in a slot may be used to transmit a DL control channel (hereinafter, DL control region), and the last M symbols in a slot may be used to transmit a UL control channel (hereinafter, UL control region).
  • N and M are each an integer greater than or equal to 0.
  • a resource region (hereinafter, referred to as a data region) between the DL control region and the UL control region may be used for DL data transmission or UL data transmission.
  • a time gap for DL-to-UL or UL-to-DL switching may exist between the control region and the data region.
  • the PDCCH may be transmitted in the DL control region, and the PDSCH may be transmitted in the DL data region.
  • the base station transmits a related signal to the terminal through a downlink channel to be described later, and the terminal receives the related signal from the base station through a downlink channel to be described later.
  • PDSCH Physical Downlink Shared Channel
  • PDSCH carries downlink data (eg, DL-SCH transport block, DL-SCH TB), and modulation methods such as Quadrature Phase Shift Keying (QPSK), 16 Quadrature Amplitude Modulation (QAM), 64 QAM, and 256 QAM are applied. do.
  • QPSK Quadrature Phase Shift Keying
  • QAM 16 Quadrature Amplitude Modulation
  • a codeword is generated by encoding the TB.
  • the PDSCH can carry up to two codewords. Scrambling and modulation mapping are performed for each codeword, and modulation symbols generated from each codeword may be mapped to one or more layers. Each layer is mapped to a resource together with a demodulation reference signal (DMRS), is generated as an OFDM symbol signal, and is transmitted through a corresponding antenna port.
  • DMRS demodulation reference signal
  • the PDCCH carries Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • PCH paging information for a paging channel
  • It carries system information on the DL-SCH, resource allocation information for a higher layer control message such as a random access response transmitted on the PDSCH, a transmission power control command, activation/deactivation of CS (Configured Scheduling), and the like.
  • DCI includes a cyclic redundancy check (CRC), and the CRC is masked/scrambled with various identifiers (eg, Radio Network Temporary Identifier, RNTI) according to the owner or use purpose of the PDCCH. For example, if the PDCCH is for a specific terminal, the CRC is masked with a terminal identifier (eg, Cell-RNTI, C-RNTI). If the PDCCH relates to paging, the CRC is masked with a Paging-RNTI (P-RNTI). If the PDCCH relates to system information (eg, System Information Block, SIB), the CRC is masked with a System Information RNTI (SI-RNTI). If the PDCCH relates to a random access response, the CRC is masked with RA-RNTI (Random Access-RNTI).
  • RNTI Radio Network Temporary Identifier
  • the modulation method of the PDCCH is fixed (eg, Quadrature Phase Shift Keying, QPSK), and one PDCCH is composed of 1, 2, 4, 8, or 16 CCEs (Control Channel Elements) according to the AL (Aggregation Level).
  • One CCE consists of six REGs (Resource Element Groups).
  • One REG is defined as one OFDMA symbol and one (P)RB.
  • CORESET Control Resource Set
  • CORESET corresponds to a set of physical resources/parameters used to carry PDCCH/DCI within the BWP.
  • CORESET contains a set of REGs with a given pneumonology (eg, SCS, CP length, etc.).
  • CORESET may be set through system information (eg, MIB) or UE-specific higher layer (eg, RRC) signaling. Examples of parameters/information used to set CORESET are as follows.
  • One or more CORESETs are configured for one UE, and a plurality of CORESETs may overlap in the time/frequency domain.
  • controlResourceSetId Indicates identification information (ID) of CORESET.
  • MSB Most Significant Bit
  • duration indicates a time domain resource of CORESET. Indicates the number of consecutive OFDMA symbols constituting CORESET. For example, duration has a value of 1-3.
  • - cce-REG-MappingType Indicates the CCE-to-REG mapping type. Interleaved type and non-interleaved type are supported.
  • precoderGranularity Indicates the precoder granularity in the frequency domain.
  • TCI-StateID Transmission Configuration Indication
  • TCI state is used to provide a Quasi-Co-Location (QCL) relationship between the DL RS(s) in the RS set (TCI-state) and the PDCCH DMRS port.
  • QCL Quasi-Co-Location
  • - pdcch-DMRS-ScramblingID Indicates information used for initialization of the PDCCH DMRS scrambling sequence.
  • the UE may monitor (eg, blind decoding) a set of PDCCH candidates in CORESET.
  • the PDCCH candidate indicates CCE(s) monitored by the UE for PDCCH reception/detection.
  • PDCCH monitoring may be performed in one or more CORESETs on the active DL BWP on each activated cell in which PDCCH monitoring is configured.
  • the set of PDCCH candidates monitored by the UE is defined as a PDCCH search space (SS) set.
  • the SS set may be a Common Search Space (CSS) set or a UE-specific Search Space (USS) set.
  • Table 4 illustrates the PDCCH search space.
  • Type Search Space RNTI Use Case Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI(s) UE Specific UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI(s) User specific PDSCH decoding
  • the SS set may be configured through system information (eg, MIB) or UE-specific higher layer (eg, RRC) signaling.
  • S eg, 10
  • S eg, 10
  • S eg, 10
  • S 10) or less SS sets may be configured in each DL BWP of the serving cell.
  • the following parameters/information may be provided for each SS set.
  • Each SS set is associated with one CORESET, and each CORESET configuration may be associated with one or more SS sets.
  • - searchSpaceId Indicates the ID of the SS set.
  • controlResourceSetId indicates the CORESET associated with the SS set.
  • - monitoringSlotPeriodicityAndOffset Indicates the PDCCH monitoring period interval (slot unit) and the PDCCH monitoring interval offset (slot unit).
  • - monitoringSymbolsWithinSlot indicates the first OFDMA symbol(s) for PDCCH monitoring in a slot in which PDCCH monitoring is configured. It is indicated through a bitmap, and each bit corresponds to each OFDMA symbol in a slot. The MSB of the bitmap corresponds to the first OFDM symbol in the slot. OFDMA symbol(s) corresponding to bit(s) having a bit value of 1 corresponds to the first symbol(s) of CORESET in the slot.
  • - searchSpaceType Indicates whether the SS type is CSS or USS.
  • - DCI format Indicates the DCI format of a PDCCH candidate.
  • the UE may monitor PDCCH candidates in one or more SS sets in the slot.
  • An opportunity eg, time/frequency resource
  • PDCCH (monitoring) opportunity One or more PDCCH (monitoring) opportunities may be configured within a slot.
  • Table 5 illustrates DCI formats transmitted through the PDCCH.
  • DCI format 0_0 is used to schedule a TB-based (or TB-level) PUSCH
  • DCI format 0_1 is a TB-based (or TB-level) PUSCH or CBG (Code Block Group)-based (or CBG-level) PUSCH can be used to schedule DCI format 1_0 is used to schedule a TB-based (or TB-level) PDSCH
  • DCI format 1_1 is used to schedule a TB-based (or TB-level) PDSCH or a CBG-based (or CBG-level) PDSCH.
  • Can DL grant DCI).
  • DCI format 0_0/0_1 may be referred to as UL grant DCI or UL scheduling information
  • DCI format 1_0/1_1 may be referred to as DL grant DCI or UL scheduling information
  • DCI format 2_0 is used to deliver dynamic slot format information (eg, dynamic SFI) to the terminal
  • DCI format 2_1 is used to deliver downlink pre-emption information to the terminal.
  • DCI format 2_0 and/or DCI format 2_1 may be delivered to terminals in a corresponding group through a group common PDCCH, which is a PDCCH delivered to terminals defined as one group.
  • DCI format 0_0 and DCI format 1_0 may be referred to as a fallback DCI format
  • DCI format 0_1 and DCI format 1_1 may be referred to as a non-fallback DCI format.
  • the DCI size/field configuration remains the same regardless of the UE configuration.
  • the non-fallback DCI format the DCI size/field configuration varies according to UE configuration.
  • the terminal transmits a related signal to the base station through an uplink channel to be described later, and the base station receives the related signal from the terminal through an uplink channel to be described later.
  • PUCCH Physical Uplink Control Channel
  • PUCCH carries Uplink Control Information (UCI), HARQ-ACK and/or scheduling request (SR), and is divided into Short PUCCH and Long PUCCH according to the PUCCH transmission length.
  • UCI Uplink Control Information
  • SR scheduling request
  • UCI includes:
  • - SR (Scheduling Request): Information used to request a UL-SCH resource.
  • Hybrid Automatic Repeat reQuest-ACK (Acknowledgment): It is a response to a downlink data packet (eg, codeword) on the PDSCH. Indicates whether the downlink data packet has been successfully received. 1 bit of HARQ-ACK may be transmitted in response to a single codeword, and 2 bits of HARQ-ACK may be transmitted in response to two codewords.
  • the HARQ-ACK response includes positive ACK (simply, ACK), negative ACK (NACK), DTX or NACK/DTX.
  • HARQ-ACK is mixed with HARQ ACK/NACK and ACK/NACK.
  • MIMO-related feedback information includes a Rank Indicator (RI) and a Precoding Matrix Indicator (PMI).
  • RI Rank Indicator
  • PMI Precoding Matrix Indicator
  • Table 6 illustrates PUCCH formats. According to the PUCCH transmission length, it can be divided into Short PUCCH (format 0, 2) and Long PUCCH (format 1, 3, 4).
  • PUCCH format 0 carries UCI having a maximum size of 2 bits, and is mapped and transmitted based on a sequence. Specifically, the UE transmits a specific UCI to the base station by transmitting one of the plurality of sequences through the PUCCH having the PUCCH format 0. The UE transmits a PUCCH of PUCCH format 0 within a PUCCH resource for configuring a corresponding SR only when transmitting a positive SR.
  • PUCCH format 1 carries UCI with a maximum size of 2 bits, and the modulation symbol is in the time domain. It is spread by an orthogonal cover code (OCC) (which is set differently depending on whether or not frequency hopping is performed).
  • OCC orthogonal cover code
  • DMRS is transmitted in a symbol in which a modulation symbol is not transmitted (that is, time division multiplexing (TDM) is performed and transmitted).
  • PUCCH format 2 carries UCI having a bit size greater than 2 bits, and a modulation symbol is transmitted by performing frequency division multiplexing (FDM) with DMRS.
  • DM-RS is located at symbol indexes #1, #4, #7, and #10 in a given resource block with a density of 1/3.
  • a Pseudo Noise (PN) sequence is used for the DM_RS sequence.
  • PN Pseudo Noise
  • PUCCH format 3 UE multiplexing is not performed in the same physical resource blocks, and UCI of a bit size greater than 2 bits is carried.
  • the PUCCH resource of PUCCH format 3 does not include an orthogonal cover code.
  • the modulation symbol is transmitted through DMRS and time division multiplexing (TDM).
  • PUCCH format 4 multiplexing is supported for up to 4 UEs in the same physical resource blocks, and UCI having a bit size greater than 2 bits is carried.
  • the PUCCH resource of PUCCH format 3 includes an orthogonal cover code.
  • the modulation symbol is transmitted through DMRS and time division multiplexing (TDM).
  • PUSCH carries uplink data (eg, UL-SCH transport block, UL-SCH TB) and/or uplink control information (UCI), and CP-OFDM (Cyclic Prefix - Orthogonal Frequency Division Multiplexing) waveform or It is transmitted based on a Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing (DFT-s-OFDM) waveform.
  • DFT-s-OFDM Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing
  • the UE when transform precoding is not possible (eg, transform precoding is disabled), the UE transmits a PUSCH based on the CP-OFDM waveform, and when transform precoding is possible (eg, transform precoding is enabled), the UE transmits the CP- PUSCH may be transmitted based on an OFDM waveform or a DFT-s-OFDM waveform.
  • PUSCH transmission is dynamically scheduled by a UL grant in DCI, or semi-static based on higher layer (eg, RRC) signaling (and/or Layer 1 (L1) signaling (eg, PDCCH)) -static) can be scheduled (configured scheduling, configured grant).
  • PUSCH transmission may be performed on a codebook-based or non-codebook-based basis.
  • the base station may dynamically allocate resources for downlink transmission to the terminal through PDCCH(s) (including DCI format 1_0 or DCI format 1_1). Also, the base station may transmit that some of the resources scheduled in advance to a specific terminal are pre-empted for signal transmission to another terminal through the PDCCH(s) (including DCI format 2_1). In addition, the base station sets a period of downlink assignment through higher layer signaling based on a semi-persistent scheduling (SPS) method, and activates/deactivates the downlink assignment set through the PDCCH. By signaling , downlink allocation for initial HARQ transmission may be provided to the UE.
  • SPS semi-persistent scheduling
  • the base station when retransmission for the initial HARQ transmission is required, the base station explicitly schedules retransmission resources through the PDCCH.
  • the UE may prioritize downlink assignment through DCI.
  • the base station may dynamically allocate resources for uplink transmission to the terminal through the PDCCH(s) (including DCI format 0_0 or DCI format 0_1).
  • the base station may allocate an uplink resource for initial HARQ transmission to the terminal based on a configured grant method (similar to SPS).
  • a configured grant method similar to SPS.
  • the PDCCH is accompanied by PUSCH transmission, but in the configured grant, the PDCCH is not accompanied by the PUSCH transmission.
  • uplink resources for retransmission are explicitly allocated through PDCCH(s).
  • an operation in which an uplink resource is preset by the base station without a dynamic grant eg, an uplink grant through scheduling DCI
  • the configured grant is defined as the following two types.
  • Uplink grant of a certain period is provided by higher layer signaling (set without separate first layer signaling)
  • Uplink grant is provided by signaling the period of the uplink grant by higher layer signaling, and signaling of activation/deactivation of the configured grant through PDCCH
  • the UE may transmit a packet to be transmitted based on a dynamic grant (FIG. 5(a)) or may transmit based on a preset grant (FIG. 5(b)).
  • a resource for a grant configured to a plurality of terminals may be shared. Uplink signal transmission based on the configured grant of each terminal may be identified based on time/frequency resources and reference signal parameters (eg, different cyclic shifts, etc.). Accordingly, when the uplink transmission of the terminal fails due to signal collision, the base station may identify the corresponding terminal and explicitly transmit a retransmission grant for the corresponding transport block to the corresponding terminal.
  • reference signal parameters eg, different cyclic shifts, etc.
  • K times repeated transmission including initial transmission is supported for the same transport block.
  • the HARQ process ID for the uplink signal repeatedly transmitted K times is equally determined based on the resource for the initial transmission.
  • a redundancy version for a corresponding transport block that is repeatedly transmitted K times is one of ⁇ 0,2,3,1 ⁇ , ⁇ 0,3,0,3 ⁇ , or ⁇ 0,0,0,0 ⁇ pattern has
  • 6 illustrates repeated transmission based on a configured grant.
  • the UE performs repeated transmission until one of the following conditions is satisfied:
  • NR UCell Similar to the Licensed-Assisted Access (LAA) of the existing 3GPP LTE system, a method of using an unlicensed band for cellular communication is being considered in the 3GPP NR system.
  • LAA Licensed-Assisted Access
  • the NR cell (hereinafter, NR UCell) in the unlicensed band aims at a standalone (SA) operation.
  • SA standalone
  • PUCCH, PUSCH, PRACH transmission, etc. may be supported in the NR UCell.
  • HARQ-ACK Hybrid Automatic Repeat Request - Acknowledgment / Negative-acknowledgement
  • PUSCH Physical Uplink Shared Channel
  • PHICH Physical HARQ Indicator Channel
  • the PUSCH collides with other signals in the reference subframe.
  • a method of initializing the size of the contention window to a minimum value (eg, CW min ) was introduced assuming that the transmission was successfully transmitted without collision with a signal.
  • a maximum of 400 MHz frequency resources may be allocated/supported per one component carrier (CC).
  • CC component carrier
  • RF radio frequency
  • each frequency band within the CC is different.
  • Numerology eg, sub-carrier spacing
  • the capabilities for the maximum bandwidth for each UE may be different from each other.
  • the base station may instruct/configure the UE to operate only in a partial bandwidth rather than the entire bandwidth of the broadband CC.
  • This partial bandwidth may be defined as a bandwidth part (BWP) for convenience.
  • BWP may be composed of continuous resource blocks (RBs) on the frequency axis, and one BWP may correspond to one numerology (eg, sub-carrier spacing, CP length, slot/mini-slot duration, etc.). have.
  • numerology eg, sub-carrier spacing, CP length, slot/mini-slot duration, etc.
  • the base station may configure multiple BWPs within one CC configured for the UE. For example, the base station may configure a BWP occupying a relatively small frequency region in the PDCCH monitoring slot, and schedule a PDSCH indicated by the PDCCH (or a PDSCH scheduled by the PDCCH) on a larger BWP. Alternatively, the base station may configure some UEs as different BWPs for load balancing when UEs are concentrated in a specific BWP. Alternatively, the base station may exclude some spectrum from the entire bandwidth in consideration of frequency domain inter-cell interference cancellation between neighboring cells and configure both BWPs in the same slot.
  • the base station may configure at least one DL/UL BWP to the UE associated with the broadband CC, and transmit at least one DL/UL BWP among the DL/UL BWP(s) configured at a specific time (L1 signaling (eg: DCI, etc.), MAC, RRC signaling, etc.) may be activated, and switching to another configured DL/UL BWP may be indicated (by L1 signaling or MAC CE or RRC signaling, etc.).
  • the UE may perform a switching operation to a predetermined DL/UL BWP when the timer expires based on a timer (eg, BWP inactivity timer) value.
  • a timer eg, BWP inactivity timer
  • the activated DL/UL BWP may be referred to as an active DL/UL BWP.
  • the UE may not receive the configuration for the DL/UL BWP from the base station before the initial access process or the RRC connection is set up.
  • DL / UL BWP assumed for this UE is defined as an initial active DL / UL BWP.
  • FIG. 7 shows an example of a wireless communication system supporting an unlicensed band applicable to the present disclosure.
  • a cell operating in a licensed band is defined as an L-cell, and a carrier of the L-cell is defined as a (DL/UL) LCC.
  • a cell operating in an unlicensed band (hereinafter, U-band) is defined as a U-cell, and a carrier of the U-cell is defined as (DL/UL) UCC.
  • the carrier/carrier-frequency of the cell may refer to an operating frequency (eg, center frequency) of the cell.
  • a cell/carrier (eg, CC) may be collectively referred to as a cell.
  • the terminal and the base station may transmit and receive signals through one UCC or a plurality of carrier-coupled UCCs. That is, the terminal and the base station can transmit and receive signals through only UCC(s) without LCC.
  • PRACH, PUCCH, PUSCH, SRS transmission, etc. may be supported in the UCell.
  • the signal transmission/reception operation in the unlicensed band described in the present disclosure may be performed based on the above-described deployment scenario (unless otherwise stated).
  • Consists of continuous RBs in which a channel access process is performed in a shared spectrum may refer to a carrier or a part of a carrier.
  • CAP - Channel Access Procedure
  • the CAP may be referred to as Listen-Before-Talk (LBT).
  • Channel occupancy means the corresponding transmission (s) on the channel (s) by the base station / terminal after performing the channel access procedure.
  • any (any) base station / terminal (s) sharing the channel occupancy with the base station / terminal transmits (s) on the channel ) refers to the total time that can be performed.
  • the gap period is also counted in the COT.
  • the COT may be shared for transmission between the base station and the corresponding terminal(s).
  • burst defined as the set of transmissions from the base station, with no gaps exceeding 16us. Transmissions from the base station, separated by a gap greater than 16 us, are considered separate DL transmission bursts from each other.
  • the base station may perform the transmission(s) after the gap without sensing channel availability within the DL transmission burst.
  • - UL Transmission Burst Defined as the set of transmissions from the terminal, with no gap exceeding 16us. Transmissions from the terminal, separated by a gap greater than 16us, are considered as separate UL transmission bursts from each other. The UE may perform transmission(s) after the gap without sensing channel availability within the UL transmission burst.
  • - Discovery Burst refers to a DL transmission burst comprising a set of signal(s) and/or channel(s), defined within a (time) window and associated with a duty cycle.
  • the discovery burst is transmission(s) initiated by the base station, including PSS, SSS, and cell-specific RS (CRS), and may further include non-zero power CSI-RS.
  • a discovery burst in an NR-based system is the transmission(s) initiated by the base station, comprising at least an SS/PBCH block, CORESET for PDCCH scheduling PDSCH with SIB1, PDSCH carrying SIB1 and/or non-zero It may further include a power CSI-RS.
  • FIG 8 illustrates a method for occupying resources in an unlicensed band applicable to the present disclosure.
  • a communication node within an unlicensed band must determine whether to use a channel of another communication node(s) before signal transmission.
  • the communication node in the unlicensed band may perform a channel access process (CAP) to access the channel (s) on which transmission (s) is performed.
  • CAP channel access process
  • the channel access process may be performed based on sensing.
  • the communication node may first perform CS (Carrier Sensing) before signal transmission to check whether other communication node(s) are transmitting the signal.
  • CS Carrier Sensing
  • the communication node determines the channel state as busy when energy higher than the CCA threshold is detected in the channel, and , otherwise, the channel state may be determined to be idle. If it is determined that the channel state is dormant, the communication node may start transmitting a signal in the unlicensed band.
  • CAP can be replaced with LBT.
  • Table 7 illustrates a channel access procedure (CAP) supported in NR-U applicable to this disclosure.
  • CAP channel access procedure
  • Type Explanation DL Type 1 CAP CAP with random back-off - time duration spanned by the sensing slots that are sensed to be idle before a downlink transmission(s) is random Type 2 CAP - Type 2A, 2B, 2C CAP without random back-off - time duration spanned by sensing slots that are sensed to be idle before a downlink transmission(s) is deterministic UL Type 1 CAP CAP with random back-off - time duration spanned by the sensing slots that are sensed to be idle before a downlink transmission(s) is random Type 2 CAP - Type 2A, 2B, 2C CAP without random back-off - time duration spanned by sensing slots that are sensed to be idle before a downlink transmission(s) is deterministic
  • one cell (or carrier (eg, CC)) or BWP configured for a terminal may be configured as a wideband having a larger BW (BandWidth) than that of existing LTE, however, BW requiring CCA based on independent LBT operation based on regulation, etc. may be limited.
  • BW sub-band
  • a plurality of LBT-SBs may be included in one wideband cell/BWP.
  • the RB set constituting the LBT-SB may be set through higher layer (eg, RRC) signaling.
  • one cell/BWP may include one or more LBT-SBs.
  • a plurality of LBTs in the BWP of a cell (or carrier) -SB may be included.
  • the LBT-SB may have, for example, a 20 MHz band.
  • the LBT-SB is composed of a plurality of consecutive (P)RBs in the frequency domain, and may be referred to as a (P)RB set.
  • FBE Frame Based Equipment
  • LBE Load Based Equipment
  • FBE is channel occupancy time (eg, 1 ⁇ 10ms), which means the time during which a communication node can continue to transmit when channel access is successful, and an idle period corresponding to at least 5% of the channel occupancy time. (idle period) constitutes one fixed (fixed) frame.
  • CCA is defined as the operation of observing a channel during a CCA slot (at least 20 ⁇ s) at the end of an idle period.
  • a communication node periodically performs CCA in units of fixed frames, and when a channel is unoccupied, it transmits data during the channel occupied time. Wait until the CCA slot.
  • the communication node first sets the value of q ⁇ 4, 5, ... , 32 ⁇ and then performs CCA for one CCA slot. If the channel is not occupied in the first CCA slot, data can be transmitted by securing a maximum (13/32)q ms length. If the channel is occupied in the first CCA slot, the communication node randomly selects a value of N ⁇ 1, 2, ..., q ⁇ and stores it as the initial value of the counter. Thereafter, while sensing the channel state in units of CCA slots, if the channel is in an unoccupied state in units of CCA slots, the value stored in the counter is decremented by one. When the counter value becomes 0, the communication node can transmit data by securing a time of up to (13/32)q ms in length.
  • the eNB/gNB or UE of the LTE/NR system must also perform LBT for signal transmission in an unlicensed band (referred to as U-band for convenience).
  • other communication nodes such as WiFi also perform LBT so that the eNB or the UE does not cause interference with the transmission.
  • the CCA threshold is specified as -62 dBm for a non-WiFi signal and -82 dBm for a WiFi signal.
  • the STA (Station) or the AP (Access Point) when a signal other than WiFi is received by the STA (Station) or the AP (Access Point) with power of -62 dBm or more, the STA (Station) or AP (Access Point) does not transmit other signals in order not to cause interference. .
  • the UE performs type 1 or type 2 CAP for uplink signal transmission in the unlicensed band.
  • the terminal may perform a CAP (eg, type 1 or type 2) configured by the base station for uplink signal transmission.
  • the UE may include CAP type indication information in a UL grant for scheduling PUSCH transmission (eg, DCI formats 0_0, 0_1).
  • Type 1 UL CAP the length of a time interval spanned by a sensing slot sensed as idle before transmission(s) is random.
  • Type 1 UL CAP may be applied to the following transmission.
  • FIG. 9 illustrates a Type 1 CAP operation during a channel access procedure of a terminal for transmitting uplink and/or downlink signals in an unlicensed band applicable to the present disclosure.
  • the terminal first senses whether the channel is idle during the sensing slot period of the delay duration Td, and then, when the counter N becomes 0, transmission may be performed (S934). At this time, the counter N is adjusted by sensing the channel during the additional sensing slot period(s) according to the procedure below:
  • N init is a random value uniformly distributed between 0 and CWp. Then go to step 4.
  • Step 3) (S950) The channel is sensed during the additional sensing slot period. At this time, if the additional sensing slot section is idle (Y), the process moves to step 4. If not (N), go to step 5.
  • Step 5 The channel is sensed until a busy sensing slot is detected within the additional delay period Td or all sensing slots within the additional delay period Td are detected as idle.
  • Step 6) If the channel is sensed as idle during all sensing slot periods of the additional delay period Td (Y), the process moves to step 4. If not (N), go to step 5.
  • Table 8 illustrates that mp, minimum CW, maximum CW, Maximum Channel Occupancy Time (MCOT) and allowed CW sizes applied to the CAP vary according to the channel access priority class.
  • the delay period Td is configured in the order of the period Tf (16us) + mp consecutive sensing slot periods Tsl (9us).
  • Tf includes the sensing slot period Tsl at the start of the 16us period.
  • Type 2 UL CAP the length of a time interval spanned by a sensing slot sensed as idle before transmission(s) is deterministic.
  • Type 2 UL CAPs are classified into Type 2A/2B/2C UL CAPs.
  • Tf includes a sensing slot at the start point of the interval.
  • Tf includes a sensing slot within the last 9us of the interval.
  • Type 2C UL CAP the UE does not sense a channel before performing transmission.
  • the base station For uplink data transmission of the UE in the unlicensed band, the base station must first succeed in LBT for UL grant transmission on the unlicensed band, and the UE must also succeed in LBT for UL data transmission. That is, UL data transmission can be attempted only when both LBTs of the base station end and the terminal end succeed.
  • the scheduled UL data transmission since a delay of at least 4 msec is required between UL data scheduled from the UL grant in the LTE system, the scheduled UL data transmission may be delayed because other transmission nodes coexisting in the unlicensed band preferentially access during the corresponding time. For this reason, a method for increasing the efficiency of UL data transmission in an unlicensed band is being discussed.
  • the base station uses a combination of an upper layer signal (eg, RRC signaling) or an upper layer signal and an L1 signal (eg, DCI) in time, frequency, and Supports configured grant type 1 and type 2 for setting code domain resources to the terminal.
  • the UE may perform UL transmission using a resource configured as Type 1 or Type 2 without receiving a UL grant from the BS.
  • the configured grant period and power control parameters are set with higher layer signals such as RRC, and information about the remaining resources (eg, offset of initial transmission timing and time/frequency resource allocation, DMRS parameters, MCS/TBS, etc.) ) is a method indicated by activation DCI, which is an L1 signal.
  • RRC Radio Resource Control
  • the biggest difference between the AUL of LTE LAA and the configured grant of NR is the presence or absence of the HARQ-ACK feedback transmission method for the PUSCH transmitted by the UE without the UL grant and the UCI transmitted together during PUSCH transmission.
  • the HARQ process is determined using the equations of the symbol index, period, and number of HARQ processes, but in LTE LAA, explicit HARQ-ACK feedback information is transmitted through AUL-DFI (downlink feedback information).
  • AUL-DFI downlink feedback information.
  • UCI containing information such as HARQ ID, NDI, and RV is transmitted together through AUL-UCI.
  • the UE is identified by the time/frequency resource and the DMRS resource used for PUSCH transmission, and in LTE LAA, the UE is recognized by the UE ID explicitly included in the AUL-UCI transmitted together with the PUSCH along with the DMRS resource.
  • the base station may perform one of the following channel access procedures (CAP) for downlink signal transmission in the unlicensed band.
  • CAP channel access procedures
  • Type 1 DL CAP the length of a time interval spanned by a sensing slot sensed as idle before transmission(s) is random.
  • Type 1 DL CAP can be applied to the following transmission.
  • the base station first senses whether a channel is idle during a sensing slot period of a delay duration Td, and then, when the counter N becomes 0, transmission may be performed ( S934 ). At this time, the counter N is adjusted by sensing the channel during the additional sensing slot period(s) according to the procedure below:
  • Ninit is a random value uniformly distributed between 0 and CWp. Then go to step 4.
  • Step 3) (S950) The channel is sensed during the additional sensing slot period. At this time, if the additional sensing slot section is idle (Y), the process moves to step 4. If not (N), go to step 5.
  • Step 5 The channel is sensed until a busy sensing slot is detected within the additional delay period Td or all sensing slots within the additional delay period Td are detected as idle.
  • Step 6) If the channel is sensed as idle during all sensing slot periods of the additional delay period Td (Y), the process moves to step 4. If not (N), go to step 5.
  • Table 9 shows the mp applied to the CAP according to the channel access priority class, the minimum contention window (CW), the maximum CW, the maximum channel occupancy time (MCOT), and the allowed CW sizes (allowed CW sizes). ) is different.
  • the delay period Td is configured in the order of the period Tf (16us) + mp consecutive sensing slot periods Tsl (9us).
  • Tf includes the sensing slot period Tsl at the start time of the 16us period.
  • CWp may be initialized to CWmin,p based on the HARQ-ACK feedback for the previous DL burst, may be increased to the next highest allowed value, or the existing value may be maintained.
  • Type 2 DL CAP The length of a time interval spanned by a sensing slot sensed as idle before transmission(s) in a Type 2 DL CAP is deterministic.
  • Type 2 DL CAPs are classified into Type 2A/2B/2C DL CAPs.
  • Type 2A DL CAP can be applied to the following transmission.
  • Tf includes a sensing slot at the beginning of the interval.
  • Type 2B DL CAP is applicable to transmission(s) performed by a base station after a 16us gap from transmission(s) by a terminal within a shared channel occupation time.
  • Tf includes a sensing slot within the last 9us of the interval.
  • Type 2C DL CAP is applicable to transmission(s) performed by a base station after a maximum of 16us gap from transmission(s) by a terminal within a shared channel occupation time.
  • the base station does not sense the channel before performing transmission.
  • an NR-based channel access scheme for an unlicensed band applied to the present disclosure may be classified as follows.
  • Cat-1 LBT Immediately after the end of the previous transmission within the COT, the next transmission occurs immediately after a short switching gap, and this switching gap is shorter than 16us, and up to the transceiver turnaround time Included.
  • Cat-1 LBT may correspond to the above-described type 2C CAP.
  • Cat-2 LBT LBT method without back-off. If it is confirmed that the channel is idle for a specific time immediately before transmission, transmission is possible.
  • Cat-2 LBT may be subdivided according to the length of the minimum sensing period required for channel sensing immediately before transmission. For example, a Cat-2 LBT having a minimum sensing interval of 25us may correspond to the above-described Type 2A CAP, and a Cat-2 LBT having a minimum sensing interval of 16us may correspond to the above-described Type 2B CAP. have.
  • the length of the minimum sensing period is exemplary, and may be shorter than 25us or 16us (eg, 9us).
  • -Category 3 In the LBT method of back-off with a fixed CWS, the transmitting entity is from 0 to the maximum (maximum) contention window size (CWS) value (fixed) within Whenever it is confirmed that the channel is idle by drawing a random number N, the counter value is decremented, and transmission is possible when the counter value becomes 0.
  • CWS contention window size
  • Cat-4 A back-off LBT method with a variable CWS.
  • the transmitter draws a random number N from 0 to the maximum CWS value (variation) and counts the counter value whenever it is confirmed that the channel is idle. Transmission is possible when the counter value becomes 0 while decreasing, and when feedback is received from the receiving side that the transmission was not properly received, the maximum CWS value is increased to a higher value, and within the increased CWS value, the maximum CWS value is increased. Another random number is drawn and the LBT procedure is performed again.
  • Cat-4 LBT may correspond to the above-described type 1 CAP.
  • a band may be compatible with CC/cell.
  • CC/cell (index) may be replaced with a BWP (index) configured in CC/cell, or a combination of CC/cell (index) and BWP (index).
  • UCI means control information transmitted by the UE UL.
  • UCI includes several types of control information (ie, UCI type).
  • UCI may include HARQ-ACK (simply, A/N, AN), SR, and CSI.
  • - PUCCH means a physical layer UL channel for UCI transmission.
  • PUCCH resources configured by the base station and/or instructing transmission are called A/N PUCCH resources, SR PUCCH resources, and CSI PUCCH resources, respectively.
  • DCI means DCI for UL grant. For example, it means DCI formats 0_0 and 0_1, and is transmitted through the PDCCH.
  • DCI means DCI for DL grant. For example, it means DCI formats 1_0 and 1_1, and is transmitted through the PDCCH.
  • - PUSCH means a physical layer UL channel for UL data transmission.
  • a slot means a basic time unit (time unit (TU), or time interval) for data scheduling.
  • a slot includes a plurality of symbols.
  • the symbols include OFDM-based symbols (eg, CP-OFDM symbols, DFT-s-OFDM symbols).
  • a symbol, an OFDM-based symbol, an OFDM symbol, a CP-OFDM symbol, and a DFT-s-OFDM symbol may be substituted for each other.
  • - LBT for channel X/for channel X means to perform LBT to check whether channel X can be transmitted.
  • the CAP procedure may be performed before the transmission of the channel X is started.
  • the mmWave band such as the band from 24.25 GHz to 52.6 GHz can be defined as frequency range 2 (FR2).
  • FR2 frequency range 2
  • NR-U operation in an unlicensed band within a high frequency band of 52.6 GHz or more and 100 GHz or less is also considered, so it is necessary to define the operation of the terminal and the base station in the corresponding high frequency band.
  • the band between 57 GHz and 70 GHz is named Frequency Range 4 (FR4), and in consideration of the regulations of each country of the FR4 band or other coexisting systems such as a WiGig system operating in the corresponding band, the NR system is Let's look at how to expand and operate it.
  • FR4 Frequency Range 4
  • EIRP Effective Isotropically Radiated Power
  • LBT Listen Before Talk
  • the length of the maximum channel occupancy time (COT) is less than 9 ms and the clear channel assessment (CCA) slot duration may be set to 5 us.
  • the extended CCA check times may be 8us + m x 5us.
  • m may be an integer randomly selected between 0 and 127.
  • the nominal channel bandwidth (NCB) follows a value determined by the manufacturer, and the occupied channel bandwidth (OCB) may be set to be 70% or more and 100% or less of the predetermined NCB.
  • NCB nominal channel bandwidth
  • OCB occupied channel bandwidth
  • the above-mentioned 60GHz band regulation content is written based on ETSI EN 302 567 v2.1.1 and may be added or modified by future updates.
  • the WiGig (802.11ad/ay) system operating in the 60GHz band has an NCB of 2.16GHz. Also, similar to Wi-Fi operating at 2.4GHz or 5GHz (802.11ac/ax) performs LBT in units of 20MHz before transmission and transmits and receives signals, WiGig defines 2.16GHz as one channel and The STA may perform LBT in units of the corresponding 2.16 GHz channel and transmit/receive signals. In addition, in the LBT performed in the channel access procedure, a preamble detection (PD) threshold value is defined as -68 dBm, and an energy detection (ED) threshold value is defined as -48 dBm.
  • PD preamble detection
  • ED energy detection
  • the channel distribution (channelization) status of the 60 GHz band by country is as shown in FIG. 10 .
  • aSIFSTime aRxRFDelay + aRxPLCPDelay + aMACProcessingDelay + aRxTxTurnaroundTime
  • aSlotTime aCCATime + aRxTxTurnaroundTime + aAirPropagationTime + aMACProcessingDelay.
  • PIFS aSIFSTime + aSlotTime
  • DIFS aSIFSTime + 2 ⁇ aSlotTime
  • PHY parameters Value (802.11ad/ay) Value (802.11ac/ax) aRIFSTime 1 us 2 us aSIFSTime 3 us 16 us aRxTxTurnaroundTime ⁇ 1 us ⁇ 2 us aCCATime ⁇ 3 us ⁇ 4 us aRxTxSwitchTime ⁇ 1 us ⁇ 1 us aAirPropagationTime ⁇ 100 ns ⁇ 1 us aSlotTime 5 us 9 us aCWmin 15 15 aCWmax 1023 1023
  • Cat-1 LBT and 16us Cat-2 LBT when the gap between transmissions in Wi-Fi is 16us is 3us Cat-1 LBT or 3us in WiGig, respectively It may correspond to Cat-2 LBT.
  • 25us Cat-2 LBT when the gap between transmissions is 25us may correspond to 13us Cat-2 LBT in WiGig.
  • the uplink in the unlicensed high-frequency band and A channel access procedure for downlink transmission and reception and methods for transmitting and receiving uplink and downlink are proposed.
  • the base station (or AP) or the terminal (or STA) performs a channel access procedure such as LBT and determines whether the channel is IDLE / BUSY, and then determines whether to transmit the signal.
  • a channel access procedure such as LBT and determines whether the channel is IDLE / BUSY, and then determines whether to transmit the signal.
  • LBT channel access mechanism
  • LTE LAA or NR-U a channel access procedure similar to Wi-Fi was performed, but the NR system to operate in the FR4 band performs LBT with another coexistence system (eg, WiGig) or unit bandwidth or transmission/reception procedure Because it may be different from the existing Wi-Fi in , a new channel access method may be required.
  • WiGig coexistence system
  • unit bandwidth or transmission/reception procedure Because it may be different from the existing Wi-Fi in , a new channel access method may be required.
  • WiGig transmits and receives 2.16 GHz in one channel unit, sets ED threshold to -48 dBm, performs CAT-4 LBT, and transmits max output power at 40 dBm can Based on the above, below, when the size of the CC BW of the NR system operating in the FR4 band is the same or smaller than the LBT BW of other coexistence systems such as WiGig, CAT-4 LBT BW and max output power and ED threshold ( Let's take a look at how to set threshold).
  • reference LBT for clear description and generalization
  • the parameter set (Reference LBT parameter set) be defined as ⁇ reference (LBT) BW, reference (max output) power, reference ED ⁇ .
  • reference (LBT) BW For each parameter (ie, reference (LBT) BW, reference (max output) power, reference ED), U-band regulation (regulation) and / or non-3GPP RAT specified / defined (nominal) system BW and It may be set to an ED threshold applied when performing LBT based on the maximum output power corresponding to the corresponding BW size or allowed and the corresponding BW and/or power.
  • the WiGig system is defined as a reference coexistence system, and description will be made based thereon.
  • the following embodiments are not necessarily applied only when the WiGig system is a reference coexistence system, and if it is a wireless communication system that can coexist with the NR-U system in the FR4 band defined and described in the present disclosure, refer to any system By defining a coexistence system, embodiments described below may be applied.
  • 11 to 12 are diagrams for explaining overall operation processes of a terminal and a base station according to embodiments of the present disclosure, which will be described later.
  • FIG. 11 is a diagram for explaining an overall operation process for transmitting and receiving a downlink signal according to embodiments of the present disclosure, which will be described later.
  • the base station may set the unit LBT BW (S1101), and obtain max output power and ED threshold for the downlink signal (S1103). At this time, max output power and ED threshold may be obtained based on the unit LBT BW. Examples of a specific Unit LBT BW, max output power and ED threshold setting method and Unit LBT BW, max output power and ED threshold values may be based on [Suggested Method #1] to [Suggested Method #4] to be described later. have.
  • the base station may perform LBT based on the ED threshold set in units of the set Unit LBT BW (S1105), and transmit a downlink signal to the terminal based on the max output power set according to the LBT result (S1107).
  • a specific downlink signal transmission method may be based on [Proposed Method #1] to [Proposed Method #4], which will be described later.
  • FIG. 12 is a diagram for explaining an overall operation process for transmitting and receiving an uplink signal according to embodiments of the present disclosure, which will be described later.
  • the base station may transmit information for setting the unit LBT BW to the terminal (S1201).
  • the information for setting the unit LBT BW may be transmitted through a RRC (Radio Resource Configuration) signal or may be transmitted through DCI (Downlink Control Information).
  • the S1201 process may be omitted, and the Unit LBT BW may be preset in the terminal.
  • the terminal may acquire max output power and an ED threshold (S1203).
  • max output power and ED threshold may be set based on the set unit LBT BW. Examples of a specific Unit LBT BW, max output power and ED threshold setting method and Unit LBT BW, max output power and ED threshold values may be based on [Suggested Method #1] to [Suggested Method #4] to be described later. have.
  • the terminal may perform LBT based on the ED threshold set for the set unit LBT BW unit (S1205), and transmit an uplink signal to the base station based on the max output power set according to the LBT result (S1207).
  • a specific uplink signal transmission method may be based on [Proposed Method #1] to [Proposed Method #4], which will be described later.
  • the component carrier (CC) BW of the terminal or the base station may be Y ⁇ W NR ⁇ Z.
  • W NR may be a CC BW of a base station or a terminal
  • Z may be an LBT BW of another coexistence system (eg, WiGig).
  • Y may mean the minimum BW defined in the regulation (Regulation), max output power of the system is allowed. For example, max output power may be used as a reference power, and may be 40 dBm.
  • T WiGig may be the reference ED threshold.
  • T WiGig may be an ED threshold used by another coexistence system (eg, WiGig) when performing CAT-4 LBT.
  • Pmax may mean the max output power allowed for the terminal or the base station or the max output power of the system defined in the regulation.
  • the maximum output power of the system may be used as a reference power, the max output power may be 40 dBm.
  • a parameter set of another coexistence system eg, WiGig
  • WiGig a reference parameter set for defining a parameter set of the NR system may be expressed as ⁇ Z, P max , T WiGig ⁇ .
  • ED threshold -48 dBm of another coexistence system
  • max output power 40 dBm
  • another coexistence system eg, WiGig
  • another coexistence system eg, the node of WiGig
  • signal transmission of another coexistence system may be delayed.
  • another coexistence system eg, WiGig
  • the CC BW may be the same as or smaller than the reference BW Z (eg, LBT BW of WiGig).
  • the LBT parameter set of the NR system can be set to ⁇ W NR ( ⁇ Z), P max , T WiGig ⁇ .
  • the power when the CC BW size is transmitted with the max PSD defined in the regulation is set as the max output power, and based on this, the ED threshold A value can be set.
  • max output power may be calculated as CC BW x max PSD of NR, and an ED threshold may be determined based on the max output power.
  • LBT eg, CAT-4 LBT
  • P max ED threshold
  • a signal can be transmitted based on the same max output power value as the max output power transmitted at 2.16GHz.
  • the node of another coexistence system corresponds to the corresponding The entire 2.16GHz channel, which is the BW of the system, can be regarded as BUSY.
  • the channel access opportunity is higher than that of another coexistence system (eg, WiGig) that performs CAT-4 LBT in units of 2.16 GHz. can increase
  • embodiment #1-1 is expressed as an LBT parameter set, it may be expressed as ⁇ W NR ( ⁇ Z), P max , T WiGig ⁇ .
  • embodiment #1-1 performs LBT on the unit LBT BW less than or equal to the LBT BW of another coexistence system (eg, WiGig), but the ED threshold used for LBT performance and max used for signal transmission
  • the output power is a method of using the same as other coexistence systems (eg, WiGig).
  • the LBT parameter set of the NR system may be set to ⁇ Z, P max , T WiGig ⁇ .
  • the power when the CC BW size is transmitted with the max PSD defined in the regulation is set as the max output power, and based on this An ED threshold may be set.
  • CC BW x max PSD max output power of NR is calculated, and an ED threshold value may be determined according to the corresponding max output power.
  • W NR is smaller than Z (eg, LBT BW of WiGig), which is a reference BW
  • set a lower max output power P NR compared to P max in proportion to the size of W NR compared to Z
  • the LBT parameter set of the NR system may be set to ⁇ W NR ( ⁇ Z), P NR ( ⁇ P max ), T NR (>T WiGig ) ⁇ .
  • Embodiment #1-3 sets the unit LBT BW in which the terminal or the base station performs LBT (eg, CAT-4 LBT) to be the same as the CC BW of NR , and the CC BW W NR is a reference BW
  • LBT eg, CAT-4 LBT
  • Z eg, WiGig LBT BW
  • ED threshold T WiGig (dBm) LBT can be performed using
  • W NR is smaller than Z (for example, LBT BW of WiGig), which is the reference BW
  • LBT may be performed based on the set T NR.
  • the CC BW of NR carrier 1 and NR carrier 2 is 1.08 GHz, which is half of 2.16 GHz, which is the LBT BW of WiGig, so the terminal or base station is a CAT-4 LBT of 1.08 GHz. can be performed.
  • the ED threshold may be set in an inverse proportion to the max output power. That is, when a signal is transmitted based on a small amount of power, the terminal or the base station performs LBT using an increased ED threshold to reduce the sensitivity for determining whether or not LBT succeeds, so that in a relatively NR system Channel access opportunities can be increased.
  • the ED threshold is increased by the reduced max output power compared to T WiGig , and the terminal or the base station can perform LBT based on the increased ED threshold.
  • Example #1-3 Expressing Example #1-3 as an LBT parameter set, ⁇ W NR ( ⁇ Z), P NR ( ⁇ P max ), T NR (>T WiGig ) ⁇ may be. That is, it is a method of setting an LBT BW equal to or less than the LBT BW of another coexistence system (eg, WiGig), setting a reduced max output power compared to P max , and setting an increased ED threshold compared to T WiGig.
  • the CC BW of the NR terminal or base station is W NR ⁇ Y
  • the ED threshold may be set/determined in the same principle as described above in Example #1-3.
  • LBT BW for performing LBT (eg, CAT-4 LBT) to be the same as CC BW of NR
  • W NR which is CC BW
  • the LBT parameter set of the NR system may be set to ⁇ W NR ( ⁇ Z), P max , T NR ( ⁇ T WiGig ) ⁇ .
  • the power when the CC BW size is transmitted based on the max PSD defined in the regulation may be set as the max output power.
  • the ED threshold value may be set/determined in the same principle as described in Example #1-4.
  • the CC BW of the NR terminal or base station cannot be set across LBT BWs of a plurality of other coexistence systems (eg, WiGig) or channels of other coexistence systems (eg, WiGig).
  • the PSD of each carrier may be reduced and transmitted in order to comply with the max output power regulation.
  • the CC may mean a CC having a BW equal to or greater than the minimum BW capable of transmitting a max output power of 40 dBm in U-band regulation.
  • the CC BW may mean the entire aggregated BW obtained by combining the BWs of the plurality of CCs.
  • LBT eg, CAT-4 LBT
  • Regulation Regulation
  • max output power can be used the same as other coexistence systems (eg, WiGig), but when performing CAT-4 LBT An ED threshold to be used may be set lower than that of other coexistence systems (eg, WiGig).
  • the LBT of the NR carrier BW (W NR ) is set in this case, by more sensitively determining whether the channel is IDLE / BUSY, it is possible to reduce the channel access opportunity of the NR carrier compared to when using the same ED threshold as other coexistence systems (eg, WiGig).
  • the ED threshold is set to -51 dBm, twice lower than WiGig, and max
  • the output power can be set to 40dBm, the same as WiGig.
  • the embodiment #1-4 is expressed as an LBT parameter set (parameter set), it may be ⁇ W NR ( ⁇ Z), P max , T NR ( ⁇ T WiGig ) ⁇ .
  • LBT BW equal to or smaller than the LBT BW of other coexistence systems (eg, WiGig), set the same max output power as other coexistence systems (eg, WiGig), and set the same max output power as other coexistence systems (eg, WiGig)
  • LBT is performed based on an ED threshold lower than the ED threshold of WiGig).
  • the unit LBT BW performing LBT (eg, Cat-3 LBT or Cat-4 LBT) is the same as CC BW of NR or Z that is reference BW (eg, LBT BW of WiGig) and set the power when transmission of the CC BW size is performed based on the max PSD as the max output power, and the ED threshold can be set based on the set max output power.
  • CC BW x max PSD max output power of NR
  • the ED threshold value may be determined according to the calculated max output power.
  • the max output power is the reference power (for example, , 40dBm) is a method of setting the max output power and ED threshold value when it cannot be reached.
  • the unit LBT BW in which the terminal or the base station performs LBT is the CC BW of NR
  • set the same as Z for example, LBT BW of WiGig
  • set the power when transmission as much as the CC BW size is performed based on the max PSD as the max output power, and set the max ED threshold can be set based on output power.
  • the max output power may be 37dBm according to [Equation 2].
  • the constant values of T A , P H , P TX of [Equation 3] below are defined in the FR4 band similarly to the max ED threshold calculation procedure defined in TS 37.213 Section 4.2.3.1. Values to be replaced can be appropriately substituted. Therefore, when the CC BW is small, a relatively reduced max output power is set, and LBT can be performed based on an ED threshold that is relatively increased in proportion to the reduced max output power.
  • T A , P H , and P TX may be values defined for the FR4 band.
  • P max may be derived using the equation of [Equation 2].
  • Proposed Method #2 when a plurality of NR carriers set in a channel or LBT BW of another coexistence system (eg, WiGig) are set to UL CA (Uplink Carrier Aggregation), the UL LBT ( For example, let's take a look at how to set and instruct the ED threshold and max output power to be used for CAT-4 LBT).
  • UL CA Uplink Carrier Aggregation
  • the base station may schedule/allocate a UL (data or control) channel/signal transmission resource to BW#1 to the terminal.
  • the base station may indicate/set the reference LBT BW to be referenced for the UL LBT to the terminal.
  • the size of the reference LBT BW may be set/indicated to be greater than or equal to the size of BW#1.
  • the terminal may set the max output power to be used for UL channel/signal transmission and the ED threshold to be set/used for the UL LBT based on the corresponding LBT reference BW.
  • the base station when a plurality of NR carriers are configured in a channel or LBT BW of another coexistence system (eg, WiGig), and the plurality of NR carriers are set to UL CA, the base station provides terminal 1 with a specific BW UL Transmissions can be scheduled.
  • the base station may have performed only scheduling for UE1 on the entire UL BW (single-UE case), or scheduling for UE1 and another UE2 based on Frequency Division Multiplexing (FDM) may have been performed at the same time. There is also (multi-UE case).
  • terminal 1 cannot know whether the base station performs scheduling only for terminal 1 or whether scheduling for other terminals is also performed at the same time.
  • the base station schedules CC1 and CC2 to UE1 and UE2 based on FDM, respectively, assuming that 2 CCs (ie, CC1 + CC2), which is the scheduled aggregated BW, are the reference LBT BW, [Suggestion] According to Example #1-3 of Method #1] or Example #1-4 of [Proposed Method #1], the size of the aggregated CC BW and the size of the LBT BW of a different coexistence system (eg, WiGig) or The max output power and/or the ED threshold may be set based on the ratio between the sizes of the channel BW (that is, the ratio of ⁇ 2 CCs BW / WiGig LBT BW or channel BW ⁇ ).
  • the ED threshold in 4 may be set based on a ratio of ⁇ 1 CC BW / WiGig LBT BW or channel BW ⁇ .
  • the ED threshold determined based on the ratio of ⁇ 1 CC BW / WiGig LBT BW or channel BW ⁇ rather than the ED threshold determined based on the ratio of ⁇ 2 CCs BW / WiGig LBT BW or CH BW ⁇ Since this increases, it may be disadvantageous to other coexistence systems (eg, WiGig) than the NR system in terms of coexistence.
  • coexistence systems eg, WiGig
  • the base station uses the reference LBT BW for determining the max output power according to the embodiment #1-3 of the [Proposed Method #1] or the ED threshold according to the Embodiment #1-4 of the [Proposed Method #1]. It can be instructed/configured separately from BW#1 for scheduling UL resources.
  • the base station indicates/sets the reference LBT BW to include BW#1 or to BW#2 different from BW#1, or indicates the reference LBT BW to BW#1 in the single-UE case. /can be set.
  • the terminal may set the max output power to be used for UL channel/signal transmission and set/used for UL LBT and ED thresholds based on the size of the indicated/set reference LBT BW.
  • the size of BW#2 may be greater than or equal to the size of BW#1.
  • the base station may additionally indicate/set the max output power value and/or the ED threshold value based on the aggregated reference BW to the terminal.
  • the terminal may set the ED threshold to be set/used for the UL LBT based on the indicated/set max output power value. In addition, the terminal may set a max output power value to be set/applied to the UL channel/signal transmission based on the ED threshold indicated/set by the base station.
  • NR carrier 1 and NR carrier 2 may be configured as UL CA in the LBT BW or channel of another coexistence system (eg, WiGig).
  • WiGig another coexistence system
  • the base station may instruct/set the max output power value and/or the ED threshold value based on the aggregated reference BW in which the base station schedules the UL resource to the terminal.
  • the terminal may set the ED threshold to be set/used for the UL LBT based on the indicated/set max output power value.
  • the LBT BW size of another coexistence system coexisting and operating in the same band as the NR terminal is Z
  • the channel access procedure of the terminal according to the size of the BW that can be supported according to the capability of the terminal and the COT (channel occupancy time)
  • a sharing (sharing) method and / or a method of performing a channel access procedure of the terminal when the base station can set / indicate the LBT BW size of the terminal and a COT sharing (sharing) will be looked at.
  • the base station sets / instructs the terminal the LBT BW size of the terminal through an RRC (Radio Resource Control) signal or DCI (Downlink Control Information), or a combination of an RRC signal and DCI can be used to set / instruct the terminal to set the LBT BW size of the terminal.
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the base station may set/indicate the value of the LBT BW size to the terminal in a RB (Resource Block) unit and/or RBG (Resource Block Group) unit through an RRC signal or DCI.
  • the candidate values available for the LBT BW size are preset in the terminal in the form of a table, and the base station sets any one of the candidate values to the terminal through the RRC signal or DCI, thereby setting the value of the LBT BW size to the terminal can direct
  • the base station sets/instructs the terminal the candidate values that can be set to the LBT BW size through the RRC signal to the terminal, and instructs the terminal to use any one of the candidate values through DCI, the value of the LBT BW size to be used by the terminal can be set to the terminal.
  • the base station instructs the terminal the minimum LBT BW size and / or the maximum LBT BW size through the RRC signal to the terminal, and the LBT BW size and / or the maximum LBT BW size that is less than or equal to the minimum LBT BW size through DCI.
  • the LBT BW size delivered through DCI may be expressed as an absolute LBT BW size using an RB unit and/or RBG unit, and expressed as a relative size with the maximum LBT BW size and/or the maximum LBT BW size. can be For example, how much the LBT BW size is larger than the minimum LBT BW size is expressed in RB units and/or RBG units, or how small the maximum LBT BW size is in RB units and/or RBG units.
  • the base station indicates the minimum LBT BW size and/or the maximum LBT BW size to the terminal through the RRC signal
  • DCI indicating the LBT BW size is not received, or a bit field indicating the LBT BW size is included in the DCI. If not or if the corresponding bit field indicates a specific value, the terminal may perform LBT based on the minimum LBT BW size or the maximum LBT BW size.
  • the base station indicates the LBT BW size through the RRC signal and / or DCI, or indicates the candidate values settable as the LBT BW size through the RRC signal, or the minimum LBT BW size and / or the maximum LBT BW size
  • the LBT size, the candidate values configurable as the LBT BW size, the minimum LBT BW size and/or the maximum LBT BW size may be determined by the base station in consideration of the capability of the terminal, for this purpose, Before transmitting the corresponding RRC signal, the capability information of the terminal may be received from the terminal, or after transmitting the corresponding RRC signal and before transmitting the corresponding DCI, the capability information of the terminal may be received from the terminal.
  • the terminal may inform the base station of information on the size of BW supported by the corresponding terminal.
  • the base station may set/instruct the terminal to set/instruct the size of the BW for performing the LBT of the terminal based on the received information on the size of the BW supportable by the corresponding terminal.
  • the LBT BW size of another coexistence system operating in the same band is Z
  • a specific terminal may not support the Z-size BW for reasons of capability.
  • the base station sets/indicates the size of the BW for performing LBT to be smaller than Z, it may be impossible to perform LBT for the BW of the same size as Z.
  • the channel access procedure method may be different according to the LBT BW size of the terminal based on the LBT BW size Z.
  • LBT back-off-based LBT
  • some of the channels occupied by the terminal are transferred to the base station, and the base station generates timing after the terminal performs UL transmission.
  • LBT eg, CAT-1 LBT or CAT-2 LBT
  • the base station can perform DL transmission. have.
  • sharing the gNB-initiated COT with the terminal is to share some of the channels occupied by the base station through the back-off-based LBT (eg, CAT-3 LBT or CAT-4 LBT) to the terminal.
  • LBT eg, CAT-1 LBT or CAT-2 LBT
  • the terminal performs LBT (eg, CAT-1 LBT or CAT-2 LBT) without back-off by utilizing the timing gap generated after the base station performs DL transmission, and the corresponding channel is idle ( idle) state, it may mean a process in which the UE performs UL transmission. This process can be said that the terminal and the base station share the COT.
  • the terminal's capability can support the same or larger LBT BW than Z, which is the LBT BW size of another coexistence system
  • the base station sets/instructs the LBT BW size of the terminal to be greater than or equal to Z (that is, Let's take a look at a method of performing a channel access procedure of the terminal and a COT sharing method of the terminal (in case that the terminal's LBT BW > Z).
  • the terminal may initiate (initiating) the COT in the indicated/set time and frequency resources, and the terminal sets the LBT parameter set (parameter set) to embodiments #1-1 to #1 described in [Proposed Method #1].
  • -4 may be set by any one method, and an LBT (eg, Cat-3 LBT or Cat-4 LBT)-based channel access procedure may be performed.
  • the MCOT Maximum channel occupancy time
  • the MCOT Maximum channel occupancy time
  • LBT eg, Cat-3 LBT or Cat-4 LBT
  • UL eg, CG-PUSCH
  • the terminal if the terminal supports the size of the LBT BW equal to or greater than Z, and the base station sets/instructs the LBT BW of the same size as Z, the terminal also sets the LBT (e.g. For example, Cat-3 LBT or Cat-4 LBT) may be performed to initiate COT, and UL transmission may be performed within the obtained COT.
  • the LBT parameter set to be used in the channel access procedure may be applied to embodiments #1-1 to #1-4 of the [Proposed Method #1] described above.
  • a UL-to-DL COT sharing operation used for DL transmission by transferring it to the base station may be performed.
  • the terminal cannot initiate the COT by itself, and the base station receives the COT acquired through the LBT (eg, Cat-3 LBT or Cat-4 LBT) and performs UL transmission only within the gNB-initiated COT, or in advance
  • COT may be initiated (initiating).
  • the LBT parameter set (parameter set) is based on one of the methods of Examples #1-1 to #1-4 of [Proposed Method #1], the size of the LBT BW is larger than the LBT BW of other coexistence systems.
  • a channel access procedure is performed based on a small W NR and the MCOT length may be set in proportion to the size of the BW (ie, the size of W NR ) on which LBT is performed.
  • a field for COT sharing information in uplink control information (UCI) for providing COT sharing information to the base station may always be set to 0 bit.
  • the value of the field for COT shared information may always be set to '0', or the field for COT shared information may not be included in the corresponding UCI.
  • the terminal is always capable of UL transmission only within the COT initiated by the base station, when the base station indicates the LBT type of the DG-PUSCH through DCI, the state corresponding to the original Cat-4 LBT indication other than the Cat-4 LBT It can also be reinterpreted as a type.
  • the UE may reinterpret the state related to the existing Cat-4 directional LBT (D-LBT) as a Cat-2 D-LBT.
  • MCOT is an abbreviation of maximum channel occupancy time, which is the maximum time that transmission is guaranteed upon success in back-off-based LBT (eg, Cat-3 LBT or Cat-4 LBT), and is a criterion for whether COT initiating is possible.
  • BW size Z the size of the LBT BW of another coexistence system (eg, WiGig) (eg, 2.16 GHz) and/or the (declared) nominal BW of the NR system may be considered.
  • the terminal may perform UL transmission only in the COT acquired by the base station.
  • the terminal according to the instruction of the base station back-off-based LBT (eg, Cat-3 LBT or Cat- 4 LBT) rather than LBT (eg, Cat-1 LBT or Cat-2 LBT), and UL transmission may be performed.
  • the base station back-off-based LBT eg, Cat-3 LBT or Cat- 4 LBT
  • LBT eg, Cat-1 LBT or Cat-2 LBT
  • the LBT BW size is determined based on one of the LBT parameter sets (parameter set) of Examples #1-1 to #1-4 of [Proposed Method #1]. It is possible to set W NR smaller than the LBT BW of other coexistence systems and perform a channel access procedure.
  • the MCOT length may be set proportionally to the size of the BW (ie, the size of W NR ) on which LBT is performed. For example, if the MCOT length is 2ms when the LBT BW is Z/2, the MCOT length when the LBT BW is Z/4 may be set to 1ms.
  • the COT sharing information field of uplink control information may always be set to 0 bit.
  • the value of the field for COT shared information may always be set to '0', or the field for COT shared information may not be included in the corresponding UCI.
  • the UE since only the UL transmission of the UE is always allowed within the COT (ie, gNB-initiated COT), the UE uses a back-off-based LBT (eg, Cat-3 LBT or Cat-4 LBT) for UL transmission There is no need to use it, and only other Cat-2 LBT or Cat-1 LBT will be used. Therefore, for example, even if the value of the LBT type indication field in the DCI transmitted by the base station corresponds to the state corresponding to Cat-4 LBT, the terminal can reinterpret the state as an LBT type other than Cat-4 LBT. have.
  • a back-off-based LBT eg, Cat-3 LBT or Cat-4 LBT
  • the terminal If the LBT type indication field included in the DCI consists of 2 bits, and the value of 2 bits is '00', if it was to indicate Cat-4 Directional LBT, in the case of embodiment #3-2, the terminal If the LBT type indication field indicates '00', it can be reinterpreted as Cat-2 Directional LBT.
  • the NR terminal or base station may set the LBT parameter based on [Proposed Method #1] according to the LBT BW size.
  • the base station performs the carrier BW Among the BW and BWP BW, it is possible to set/instruct the UE to set/instruct the BW as a reference for calculating the ED threshold.
  • the base station may set/instruct the terminal to set/instruct the BW as a reference in order to calculate the ED threshold using the RRC signal and/or DCI.
  • the unit LBT BW of the system eg, WiGig
  • SCS Subcarrier Spacing
  • the size of the supportable BW determined according to the unit LBT BW is set based on a smaller BW size than the unit LBT BW of another coexistence system (eg, WiGig), and LBT may be performed.
  • a plurality of BWPs having different BW sizes in a carrier may be configured.
  • the base station sets/instructs the terminal through an RRC signal and/or DCI whether to calculate the ED threshold to be used for LBT based on the BWP BW or the carrier BW, and the terminal sets/instructs the base station Accordingly, the ED threshold may be calculated based on any one of the BWP BW and the carrier BW.
  • the ED threshold itself may be maintained even during BWP switching.
  • each of the embodiments described in [Proposed Method #1] to [Suggested Method #4] described above may be independently performed, or may be implemented in a combined form.
  • a plurality of embodiments described in one proposed method may be implemented in a combined form, or a plurality of embodiments described in a plurality of proposed methods may be implemented in a combined form.
  • the content of the present disclosure is not limited to transmission/reception of uplink and/or downlink signals.
  • the content of the present disclosure may be used in direct communication between terminals.
  • the base station in the present disclosure may be a concept including a relay node as well as a base station.
  • the operation of the base station in the present disclosure may be performed by a base station, but may also be performed by a relay node.
  • examples of the above-described proposed method may also be included as one of the implementation methods of the present disclosure, it is obvious that they may be regarded as a kind of proposed method.
  • the above-described proposed methods may be implemented independently, but may also be implemented in the form of a combination (or merge) of some of the proposed methods.
  • Information on whether the proposed methods are applied is notified by the base station to the terminal or the transmitting terminal to the receiving terminal through a predefined signal (eg, a physical layer signal or a higher layer signal). Rules can be defined to
  • the communication system 1 applied to the present invention includes a wireless device, a base station, and a network.
  • the wireless device refers to a device that performs communication using a radio access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), and may be referred to as a communication/wireless/5G device.
  • a radio access technology eg, 5G NR (New RAT), LTE (Long Term Evolution)
  • the wireless device includes a robot 100a, a vehicle 100b-1, 100b-2, an eXtended Reality (XR) device 100c, a hand-held device 100d, and a home appliance 100e. ), an Internet of Things (IoT) device 100f, and an AI device/server 400 .
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include AR (Augmented Reality)/VR (Virtual Reality)/MR (Mixed Reality) devices, and include a Head-Mounted Device (HMD), a Head-Up Display (HUD) provided in a vehicle, a television, a smartphone, It may be implemented in the form of a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
  • the portable device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), a computer (eg, a laptop computer), and the like.
  • Home appliances may include a TV, a refrigerator, a washing machine, and the like.
  • the IoT device may include a sensor, a smart meter, and the like.
  • the base station and the network may be implemented as a wireless device, and a specific wireless device 200a may operate as a base station/network node to other wireless devices.
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200 .
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may also communicate directly (e.g. sidelink communication) without passing through the base station/network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (e.g. Vehicle to Vehicle (V2V)/Vehicle to everything (V2X) communication).
  • the IoT device eg, sensor
  • the IoT device may directly communicate with other IoT devices (eg, sensor) or other wireless devices 100a to 100f.
  • Wireless communication/connection 150a, 150b, and 150c may be performed between the wireless devices 100a to 100f/base station 200 and the base station 200/base station 200 .
  • the wireless communication/connection includes uplink/downlink communication 150a and sidelink communication 150b (or D2D communication), and communication between base stations 150c (eg relay, IAB (Integrated Access Backhaul)).
  • This can be done through technology (eg 5G NR)
  • Wireless communication/connection 150a, 150b, 150c allows the wireless device and the base station/radio device, and the base station and the base station to transmit/receive wireless signals to each other.
  • the wireless communication/connection 150a, 150b, and 150c may transmit/receive signals through various physical channels.
  • various signal processing processes eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
  • resource allocation processes etc.
  • FIG. 16 illustrates a wireless device applicable to the present invention.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE, NR).
  • ⁇ first wireless device 100, second wireless device 200 ⁇ is ⁇ wireless device 100x, base station 200 ⁇ of FIG. 15 and/or ⁇ wireless device 100x, wireless device 100x) ⁇ can be matched.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104 , and may further include one or more transceivers 106 and/or one or more antennas 108 .
  • the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or flow charts disclosed herein.
  • the processor 102 may process the information in the memory 104 to generate the first information/signal, and then transmit a wireless signal including the first information/signal through the transceiver 106 .
  • the processor 102 may receive the radio signal including the second information/signal through the transceiver 106 , and then store the information obtained from the signal processing of the second information/signal in the memory 104 .
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102 .
  • the memory 104 may provide instructions for performing some or all of the processes controlled by the processor 102 , or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including
  • the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • a wireless communication technology eg, LTE, NR
  • the transceiver 106 may be coupled with the processor 102 , and may transmit and/or receive wireless signals via one or more antennas 108 .
  • the transceiver 106 may include a transmitter and/or a receiver.
  • the transceiver 106 may be used interchangeably with a radio frequency (RF) unit.
  • RF radio frequency
  • a wireless device may refer to a communication modem/circuit/chip.
  • the following operations are described based on the control operation of the processor 102 from the perspective of the processor 102, but may be stored in the memory 104, such as software code for performing these operations.
  • the at least one memory 104 is a computer-readable storage medium, which may store instructions or programs, which, when executed, are At least one processor operably connected to at least one memory may be configured to perform operations according to embodiments or implementations of the present disclosure related to the following operations.
  • the processor 102 may control the transceiver 106 to receive information for setting the unit LBT BW from the base station.
  • the information for setting the unit LBT BW may be controlled to be received through an RRC (Radio Resource Configuration) signal, it may be controlled to be received through DCI (Downlink Control Information).
  • RRC Radio Resource Configuration
  • DCI Downlink Control Information
  • the processor 102 may obtain a max output power and an ED threshold.
  • max output power and ED threshold may be set based on the set unit LBT BW. Examples of the specific Unit LBT BW, max output power and ED threshold value setting method and Unit LBT BW, max output power and ED threshold value may be based on the above-mentioned [Proposed Method #1] to [Suggested Method #4]. have.
  • the processor 102 may control the transceiver 106 to perform LBT based on the ED threshold set in units of the set Unit LBT BW, and to transmit an uplink signal to the base station based on the max output power set according to the LBT result.
  • a specific uplink signal transmission method may be based on [Proposed Method #1] to [Proposed Method #4], which will be described later.
  • the processor 102 performs LBT based on the unit LBT BW, max output power and ED threshold set by the base station according to [Proposed Method #1] to [Proposed Method #4] and transmits
  • the transceiver 106 may be controlled to receive one downlink signal.
  • the second wireless device 200 includes one or more processors 202 , one or more memories 204 , and may further include one or more transceivers 206 and/or one or more antennas 208 .
  • the processor 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 202 may process the information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206 .
  • the processor 202 may receive the radio signal including the fourth information/signal through the transceiver 206 , and then store information obtained from signal processing of the fourth information/signal in the memory 204 .
  • the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202 .
  • the memory 204 may provide instructions for performing some or all of the processes controlled by the processor 202 , or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including
  • the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • a wireless communication technology eg, LTE, NR
  • the transceiver 206 may be coupled to the processor 202 and may transmit and/or receive wireless signals via one or more antennas 208 .
  • the transceiver 206 may include a transmitter and/or a receiver.
  • the transceiver 206 may be used interchangeably with an RF unit.
  • a wireless device may refer to a communication modem/circuit/chip.
  • the following operations are described based on the control operation of the processor 202 from the perspective of the processor 202, but may be stored in the memory 204, such as software code for performing these operations.
  • the at least one memory 204 is a computer readable storage medium that can store instructions or programs, which, when executed, are At least one processor operably connected to at least one memory may cause operations according to embodiments or implementations of the present disclosure related to the following operations.
  • the processor 202 may set the unit LBT BW, and obtain max output power and ED threshold for the downlink signal. At this time, max output power and ED threshold may be obtained based on the unit LBT BW. Examples of the specific Unit LBT BW, max output power and ED threshold value setting method and Unit LBT BW, max output power and ED threshold value may be based on the above-mentioned [Proposed Method #1] to [Suggested Method #4]. have.
  • the processor 202 may control the transceiver 206 to perform LBT based on the ED threshold set in units of the set Unit LBT BW, and to transmit a downlink signal to the terminal based on the max output power set according to the LBT result.
  • a specific method for transmitting a downlink signal may be based on the above-described [Proposed Method #1] to [Proposed Method #4].
  • the processor 202 may control the transceiver 206 to transmit information for setting the unit LBT BW to the terminal.
  • the information for setting the unit LBT BW may be transmitted through a RRC (Radio Resource Configuration) signal or may be transmitted through DCI (Downlink Control Information).
  • RRC Radio Resource Configuration
  • DCI Downlink Control Information
  • the processor 202 may control the transceiver 206 so that the terminal receives the uplink signal transmitted by performing the LBT based on the ED threshold in units of the unit LBT BW.
  • a specific uplink signal transmission method may be based on the above-described [Proposed Method #1] to [Proposed Method #4].
  • one or more protocol layers may be implemented by one or more processors 102 , 202 .
  • one or more processors 102 , 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • the one or more processors 102, 202 may be configured to process one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, function, procedure, proposal, method, and/or operational flowcharts disclosed herein.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102, 202 may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or flow charts disclosed herein.
  • the one or more processors 102 and 202 generate a signal (eg, a baseband signal) including PDUs, SDUs, messages, control information, data or information according to the functions, procedures, proposals and/or methods disclosed in this document. , to one or more transceivers 106 and 206 .
  • the one or more processors 102 , 202 may receive signals (eg, baseband signals) from one or more transceivers 106 , 206 , and may be described, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein.
  • PDUs, SDUs, messages, control information, data, or information may be acquired according to the above.
  • One or more processors 102 , 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • firmware or software which may be implemented to include modules, procedures, functions, and the like.
  • the descriptions, functions, procedures, proposals, methods, and/or flow charts disclosed herein provide that firmware or software configured to perform is included in one or more processors 102 , 202 , or stored in one or more memories 104 , 204 . It may be driven by the above processors 102 and 202 .
  • the descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed herein may be implemented using firmware or software in the form of code, instructions, and/or a set of instructions.
  • One or more memories 104 , 204 may be coupled with one or more processors 102 , 202 and may store various forms of data, signals, messages, information, programs, code, instructions, and/or instructions.
  • One or more memories 104 , 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and/or combinations thereof.
  • One or more memories 104 , 204 may be located inside and/or external to one or more processors 102 , 202 .
  • one or more memories 104 , 204 may be coupled to one or more processors 102 , 202 through various technologies, such as wired or wireless connections.
  • One or more transceivers 106 , 206 may transmit user data, control information, radio signals/channels, etc. referred to in the methods and/or operational flowcharts herein, to one or more other devices.
  • One or more transceivers 106, 206 may receive user data, control information, radio signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods and/or flow charts, etc. disclosed herein, from one or more other devices. have.
  • one or more transceivers 106 , 206 may be coupled to one or more processors 102 , 202 and may transmit and receive wireless signals.
  • one or more processors 102 , 202 may control one or more transceivers 106 , 206 to transmit user data, control information, or wireless signals to one or more other devices.
  • one or more processors 102 , 202 may control one or more transceivers 106 , 206 to receive user data, control information, or wireless signals from one or more other devices.
  • one or more transceivers 106, 206 may be coupled to one or more antennas 108, 208, and the one or more transceivers 106, 206 may be coupled via one or more antennas 108, 208 to the descriptions, functions, and functions disclosed herein. , procedures, proposals, methods and/or operation flowcharts, etc.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • the one or more transceivers 106, 206 convert the received radio signal/channel, etc. from the RF band signal to process the received user data, control information, radio signal/channel, etc. using the one or more processors 102, 202. It can be converted into a baseband signal.
  • One or more transceivers 106 and 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 and 202 from baseband signals to RF band signals.
  • one or more transceivers 106 , 206 may include (analog) oscillators and/or filters.
  • the vehicle or autonomous driving vehicle may be implemented as a mobile robot, vehicle, train, manned/unmanned aerial vehicle (AV), ship, or the like.
  • AV unmanned aerial vehicle
  • the vehicle or autonomous driving vehicle 100 includes an antenna unit 108 , a communication unit 110 , a control unit 120 , a driving unit 140a , a power supply unit 140b , a sensor unit 140c and autonomous driving. It may include a part 140d.
  • the antenna unit 108 may be configured as a part of the communication unit 110 .
  • the communication unit 110 may transmit/receive signals (eg, data, control signals, etc.) to and from external devices such as other vehicles, base stations (eg, base stations, roadside units, etc.), servers, and the like.
  • the controller 120 may control elements of the vehicle or the autonomous driving vehicle 100 to perform various operations.
  • the controller 120 may include an Electronic Control Unit (ECU).
  • the driving unit 140a may cause the vehicle or the autonomous driving vehicle 100 to run on the ground.
  • the driving unit 140a may include an engine, a motor, a power train, a wheel, a brake, a steering device, and the like.
  • the power supply unit 140b supplies power to the vehicle or the autonomous driving vehicle 100 , and may include a wired/wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward movement.
  • IMU inertial measurement unit
  • a collision sensor a wheel sensor
  • a speed sensor a speed sensor
  • an inclination sensor a weight sensor
  • a heading sensor a position module
  • a vehicle forward movement / may include a reverse sensor, a battery sensor, a fuel sensor, a tire sensor, a steering sensor, a temperature sensor, a humidity sensor, an ultrasonic sensor, an illuminance sensor, a pedal position sensor, and the like.
  • the autonomous driving unit 140d includes a technology for maintaining a driving lane, a technology for automatically adjusting speed such as adaptive cruise control, a technology for automatically driving along a predetermined route, and a technology for automatically setting a route when a destination is set. technology can be implemented.
  • the communication unit 110 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
  • the controller 120 may control the driving unit 140a to move the vehicle or the autonomous driving vehicle 100 along the autonomous driving path (eg, speed/direction adjustment) according to the driving plan.
  • the communication unit 110 may non/periodically acquire the latest traffic information data from an external server, and may acquire surrounding traffic information data from surrounding vehicles.
  • the sensor unit 140c may acquire vehicle state and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and driving plan based on the newly acquired data/information.
  • the communication unit 110 may transmit information about a vehicle location, an autonomous driving route, a driving plan, and the like to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomous vehicles, and may provide the predicted traffic information data to the vehicle or autonomous vehicles.
  • a specific operation described in this document to be performed by a base station may be performed by an upper node thereof in some cases. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including the base station may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, gNode B (gNB), Node B, eNode B (eNB), and an access point.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시는 무선 통신 시스템에서, 단말이 상향링크 신호를 전송하는 방법을 개시한다. 특히, 상기 방법은 LBT (Listen Before Talk)를 위한 단위 대역폭 (Bandwidth; BW)의 크기에 관련된 정보를 수신하고, 상기 단위 대역폭에 연관된 최대 출력 전력(maximum output power) 및 ED (Energy Detection) 임계값을 획득하고, 상기 단위 대역폭 및 상기 ED 임계값을 기반으로 상기 LBT를 수행하고, 상기 LBT 수행 결과 및 상기 최대 출력 전력을 기반으로, 상향링크 신호를 전송하는 것을 특징으로 한다.

Description

채널 접속 절차를 수행하는 방법 및 이를 위한 장치
본 개시(disclosure)는 채널 접속 절차를 수행하는 방법 및 이를 위한 장치에 관한 것으로서, 더욱 상세하게는, 52.6GHz 이상의 비면허 고주파 대역에서의 상향링크 신호 및 하향링크 신호의 송수신을 위한 채널 접속 절차를 수행하는 방법 및 이를 위한 장치에 관한 것이다.
시대의 흐름에 따라 더욱 많은 통신 기기들이 더욱 큰 통신 트래픽을 요구하게 되면서, 기존 LTE 시스템보다 향상된 무선 광대역 통신인 차세대 5G 시스템이 요구되고 있다. NewRAT이라고 명칭되는, 이러한 차세대 5G 시스템에서는 Enhanced Mobile BroadBand (eMBB)/ Ultra-reliability and low-latency communication (URLLC)/Massive Machine-Type Communications (mMTC) 등으로 통신 시나리오가 구분된다.
여기서, eMBB는 High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate 등의 특성을 갖는 차세대 이동통신 시나리오이고, URLLC는 Ultra Reliable, Ultra Low Latency, Ultra High Availability 등의 특성을 갖는 차세대 이동통신 시나리오이며 (e.g., V2X, Emergency Service, Remote Control), mMTC는 Low Cost, Low Energy, Short Packet, Massive Connectivity 특성을 갖는 차세대 이동통신 시나리오이다. (e.g., IoT).
본 개시는, 채널 접속 절차를 수행하는 방법 및 이를 위한 장치를 제공하고자 한다.
본 개시에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 개시의 실시 예에 따른 무선 통신 시스템에서, 단말이 상향링크 신호를 전송하는 방법에 있어서, LBT (Listen Before Talk)를 위한 단위 대역폭 (Bandwidth; BW)의 크기에 관련된 정보를 수신하고, 상기 단위 대역폭에 연관된 최대 출력 전력(maximum output power) 및 ED (Energy Detection) 임계값을 획득하고, 상기 단위 대역폭 및 상기 ED 임계값을 기반으로 상기 LBT를 수행하고, 상기 LBT 수행 결과 및 상기 최대 출력 전력을 기반으로, 상향링크 신호를 전송하는 것을 특징으로 할 수 있다.
이 때, 상기 상향링크 신호를 위한 MCOT (Maximum Channel Occupancy Time)는, 상기 단위 대역폭의 크기에 기반할 수 있다.
또한, 상기 단위 대역폭의 크기가 참조 대역폭의 크기 이상인 것을 기반으로, 상기 단말이 획득한 COT (Channel Occupancy Time)의 일부를 기지국에게 공유하는 것이 허용되고, 상기 단위 대역폭의 크기가 상기 참조 대역폭의 크기 미만인 것은 기반으로, 상기 단말이 획득한 COT의 일부를 상기 기지국에게 공유하는 것이 허용되지 않을 수 있다.
또한, 상기 단위 대역폭의 크기가 참조 대역폭의 크기 미만인 것은 기반으로, 상기 상향링크 신호는, 기지국이 획득한 COT (Channel Occupancy Time) 내에서 전송될 수 있다.
또한, 상기 단위 대역폭의 크기에 관계 없이, 상기 최대 출력 전력 및 상기 ED 임계값은 고정될 수 있다.
또한, 상기 최대 출력 전력은, 상기 단위 대역폭의 크기를 기반으로 획득되고, 상기 ED 임계값은, 상기 최대 출력 전력을 기반으로 획득될 수 있다.
또한, 상기 ED 임계값은, 상기 단위 대역폭의 크기를 기반으로 획득되고, 상기 최대 출력 전력은 고정된 값일 수 있다.
본 개시에 따른 무선 통신 시스템에서, 상향링크 신호를 전송하는 단말에 있어서, 적어도 하나의 송수신기; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고, 상기 동작은: 상기 적어도 하나의 송수신기를 통해, LBT (Listen Before Talk)를 위한 단위 대역폭 (Bandwidth; BW)의 크기에 관련된 정보를 수신하고, 상기 단위 대역폭에 연관된 최대 출력 전력(maximum output power) 및 ED (Energy Detection) 임계값을 획득하고, 상기 단위 대역폭 및 상기 ED 임계값을 기반으로 상기 LBT를 수행하고, 상기 적어도 하나의 송수신기를 통해, 상기 LBT 수행 결과 및 상기 최대 출력 전력을 기반으로, 상향링크 신호를 전송하는 것을 특징으로 할 수 있다.
본 개시에 따른 무선 통신 시스템에서, 신호를 전송하는 장치에 있어서, 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고, 상기 동작은: LBT (Listen Before Talk)를 위한 단위 대역폭 (Bandwidth; BW)의 크기에 관련된 정보를 획득하고, 상기 단위 대역폭에 연관된 최대 출력 전력(maximum output power) 및 ED (Energy Detection) 임계값을 획득하고, 상기 단위 대역폭 및 ED 임계값을 기반으로 상기 LBT를 수행하고, 상기 적어도 하나의 송수신를 통해, 상기 LBT 수행 결과 및 상기 최대 출력 전력을 기반으로, 신호를 전송하는 것을 특징으로 할 수 있다.
본 개시의 실시 예에 따른 무선 통신 시스템에서, 기지국이 하향링크 신호를 전송하는 방법에 있어서, LBT (Listen Before Talk)를 위한 단위 대역폭 (Bandwidth; BW)의 크기를 획득하고, 상기 단위 대역폭에 연관된 최대 출력 전력(maximum output power) 및 ED (Energy Detection) 임계값을 획득하고, 상기 단위 대역폭 및 ED 임계값을 기반으로 상기 LBT를 수행하고, 상기 LBT 수행 결과 및 상기 최대 출력 전력을 기반으로, 하향링크 신호를 전송하는 것을 특징으로 할 수 있다.
본 개시에 따른 무선 통신 시스템에서, 하향링크 신호를 전송하는 기지국에 있어서, 적어도 하나의 송수신기; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고, 상기 동작은: LBT (Listen Before Talk)를 위한 단위 대역폭 (Bandwidth; BW)의 크기를 획득하고, 상기 단위 대역폭에 연관된 최대 출력 전력(maximum output power) 및 ED (Energy Detection) 임계값을 획득하고, 상기 단위 대역폭 및 ED 임계값을 기반으로 상기 LBT를 수행하고, 상기 적어도 하나의 송수신기를 통해, 상기 LBT 수행 결과 및 상기 최대 출력 전력을 기반으로, 하향링크 신호를 전송하는 것을 특징으로 할 수 있다.
본 개시의 실시 예에 따른 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 프로그램을 포함하는 컴퓨터 판독 가능한 저장 매체로서, 상기 동작은: LBT (Listen Before Talk)를 위한 단위 대역폭 (Bandwidth; BW)의 크기에 관련된 정보를 획득하고, 상기 단위 대역폭에 연관된 최대 출력 전력(maximum output power) 및 ED (Energy Detection) 임계값을 획득하고, 상기 단위 대역폭 및 ED 임계값을 기반으로 상기 LBT를 수행하고, 상기 적어도 하나의 송수신를 통해, 상기 LBT 수행 결과 및 상기 최대 출력 전력을 기반으로, 신호를 전송할 수 있다.
본 개시에 따르면, 52.6GHz 대역에서 NR 시스템과 공존하고 있는 다른 통신 시스템을 고려하여, 채널 접속 절차에 사용할 파라미터, 대역폭 등을 설정하여, 다른 시스템과 공존하면서도 효율적으로 채널 접속 절차를 수행할 수 있다.
본 개시에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 무선 통신 시스템의 일례인 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 2는 무선 프레임의 구조를 예시한다.
도 3은 슬롯의 자원 그리드를 예시한다.
도 4는 슬롯 내에 물리 채널이 매핑되는 예를 도시한다.
도 5는 단말의 상향링크 전송 동작을 예시한다.
도 6은 설정된 그랜트 (configured grant)에 기초한 반복 전송을 예시한다.
도 7은 본 개시에 적용 가능한 비면허 대역을 지원하는 무선 통신 시스템을 나타낸 도면이다.
도 8은 본 개시에 적용 가능한 비면허 대역 내에서 자원을 점유하는 방법을 예시한다.
도 9는 본 개시에 적용 가능한 비면허 대역에서 상향링크 및/또는 하향링크 신호 전송을 위한 단말의 채널 접속 절차를 예시한다.
도 10은 국가 별 고주파수 대역의 채널 분배에 관한 예시를 나타낸다.
도 11 내지 도 12는 본 개시의 실시 예에 따른 상향링크 및/또는 하향링크 송수신에서의 기지국 및 단말의 동작 과정 전반을 설명하기 위한 것이다.
도 13 내지 도 14는 본 개시의 실시 예에 따른 고주파수 대역에서의 NR 반송파가 설정되는 예시를 설명하기 위한 것이다.
도 15는 본 개시에 적용되는 통신 시스템을 예시한다.
도 16은 본 개시에 적용될 수 있는 무선 기기를 예시한다.
도 17은 본 개시에 적용될 수 있는 차량 또는 자율 주행 차량을 예시한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A의 진화된 버전이다.
설명을 명확하게 하기 위해, 3GPP 통신 시스템(예, NR)을 기반으로 기술하지만 본 개시의 기술적 사상이 이에 제한되는 것은 아니다. 본 개시의 설명에 사용된 배경기술, 용어, 약어 등에 관해서는 본 개시 이전에 공개된 표준 문서에 기재된 사항을 참조할 수 있다 (예, 38.211, 38.212, 38.213, 38.214, 38.300, 38.331 등).
이제, NR 시스템을 포함한 5G 통신에 대해서 살펴보도록 한다.
5G의 세 가지 주요 요구 사항 영역은 (1) 개선된 모바일 광대역 (Enhanced Mobile Broadband, eMBB) 영역, (2) 다량의 머신 타입 통신 (massive Machine Type Communication, mMTC) 영역 및 (3) 초-신뢰 및 저 지연 통신 (Ultra-reliable and Low Latency Communications, URLLC) 영역을 포함한다.
일부 사용 예(Use Case)는 최적화를 위해 다수의 영역들이 요구될 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표 (Key Performance Indicator, KPI)에만 포커싱될 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다.
eMBB는 기본적인 모바일 인터넷 액세스를 훨씬 능가하게 하며, 풍부한 양방향 작업, 클라우드 또는 증강 현실에서 미디어 및 엔터테인먼트 애플리케이션을 커버한다. 데이터는 5G의 핵심 동력 중 하나이며, 5G 시대에서 처음으로 전용 음성 서비스를 볼 수 없을 수 있다. 5G에서, 음성은 단순히 통신 시스템에 의해 제공되는 데이터 연결을 사용하여 응용 프로그램으로서 처리될 것이 기대된다. 증가된 트래픽 양(volume)을 위한 주요 원인들은 콘텐츠 크기의 증가 및 높은 데이터 전송률을 요구하는 애플리케이션 수의 증가이다. 스트리밍 서비스 (오디오 및 비디오), 대화형 비디오 및 모바일 인터넷 연결은 더 많은 장치가 인터넷에 연결될수록 더 널리 사용될 것이다. 이러한 많은 응용 프로그램들은 사용자에게 실시간 정보 및 알림을 푸쉬하기 위해 항상 켜져 있는 연결성이 필요하다. 클라우드 스토리지 및 애플리케이션은 모바일 통신 플랫폼에서 급속히 증가하고 있으며, 이것은 업무 및 엔터테인먼트 모두에 적용될 수 있다. 그리고, 클라우드 스토리지는 상향링크 데이터 전송률의 성장을 견인하는 특별한 사용 예이다. 5G는 또한 클라우드의 원격 업무에도 사용되며, 촉각 인터페이스가 사용될 때 우수한 사용자 경험을 유지하도록 훨씬 더 낮은 단-대-단(end-to-end) 지연을 요구한다. 엔터테인먼트 예를 들어, 클라우드 게임 및 비디오 스트리밍은 모바일 광대역 능력에 대한 요구를 증가시키는 또 다른 핵심 요소이다. 엔터테인먼트는 기차, 차 및 비행기와 같은 높은 이동성 환경을 포함하는 어떤 곳에서든지 스마트폰 및 태블릿에서 필수적이다. 또 다른 사용 예는 엔터테인먼트를 위한 증강 현실 및 정보 검색이다. 여기서, 증강 현실은 매우 낮은 지연과 순간적인 데이터 양을 필요로 한다.
또한, 가장 많이 예상되는 5G 사용 예 중 하나는 모든 분야에서 임베디드 센서를 원활하게 연결할 수 있는 기능 즉, mMTC에 관한 것이다. 2020년까지 잠재적인 IoT 장치들은 204 억 개에 이를 것으로 예측된다. 산업 IoT는 5G가 스마트 도시, 자산 추적(asset tracking), 스마트 유틸리티, 농업 및 보안 인프라를 가능하게 하는 주요 역할을 수행하는 영역 중 하나이다.
URLLC는 주요 인프라의 원격 제어 및 자체-구동 차량(self-driving vehicle)과 같은 초 신뢰 / 이용 가능한 지연이 적은 링크를 통해 산업을 변화시킬 새로운 서비스를 포함한다. 신뢰성과 지연의 수준은 스마트 그리드 제어, 산업 자동화, 로봇 공학, 드론 제어 및 조정에 필수적이다.
다음으로, NR 시스템을 포함한 5G 통신 시스템에서의 다수의 사용 예들에 대해 보다 구체적으로 살펴본다.
5G는 초당 수백 메가 비트에서 초당 기가 비트로 평가되는 스트림을 제공하는 수단으로 FTTH (fiber-to-the-home) 및 케이블 기반 광대역 (또는 DOCSIS)을 보완할 수 있다. 이러한 빠른 속도는 가상 현실과 증강 현실뿐 아니라 4K 이상(6K, 8K 및 그 이상)의 해상도로 TV를 전달하는데 요구된다. VR(Virtual Reality) 및 AR(Augmented Reality) 애플리케이션들은 거의 몰입형(immersive) 스포츠 경기를 포함한다. 특정 응용 프로그램은 특별한 네트워크 설정이 요구될 수 있다. 예를 들어, VR 게임의 경우, 게임 회사들이 지연을 최소화하기 위해 코어 서버를 네트워크 오퍼레이터의 에지 네트워크 서버와 통합해야 할 수 있다.
자동차(Automotive)는 차량에 대한 이동 통신을 위한 많은 사용 예들과 함께 5G에 있어 중요한 새로운 동력이 될 것으로 예상된다. 예를 들어, 승객을 위한 엔터테인먼트는 동시의 높은 용량과 높은 이동성 모바일 광대역을 요구한다. 그 이유는 미래의 사용자는 그들의 위치 및 속도와 관계 없이 고품질의 연결을 계속해서 기대하기 때문이다. 자동차 분야의 다른 활용 예는 증강 현실 대시보드이다. 이는 운전자가 앞면 창을 통해 보고 있는 것 위에 어둠 속에서 물체를 식별하고, 물체의 거리와 움직임에 대해 운전자에게 말해주는 정보를 겹쳐서 디스플레이 한다. 미래에, 무선 모듈은 차량들 간의 통신, 차량과 지원하는 인프라구조 사이에서 정보 교환 및 자동차와 다른 연결된 디바이스들(예를 들어, 보행자에 의해 수반되는 디바이스들) 사이에서 정보 교환을 가능하게 한다. 안전 시스템은 운전자가 보다 안전한 운전을 할 수 있도록 행동의 대체 코스들을 안내하여 사고의 위험을 낮출 수 있게 한다. 다음 단계는 원격 조종되거나 자체 운전 차량(self-driven vehicle)이 될 것이다. 이는 서로 다른 자체 운전 차량들 사이 및 자동차와 인프라 사이에서 매우 신뢰성이 있고, 매우 빠른 통신을 요구한다. 미래에, 자체 운전 차량이 모든 운전 활동을 수행하고, 운전자는 차량 자체가 식별할 수 없는 교통 이상에만 집중하도록 할 것이다. 자체 운전 차량의 기술적 요구 사항은 트래픽 안전을 사람이 달성할 수 없을 정도의 수준까지 증가하도록 초 저 지연과 초고속 신뢰성을 요구한다.
스마트 사회(smart society)로서 언급되는 스마트 도시와 스마트 홈은 고밀도 무선 센서 네트워크로 임베디드될 것이다. 지능형 센서의 분산 네트워크는 도시 또는 집의 비용 및 에너지-효율적인 유지에 대한 조건을 식별할 것이다. 유사한 설정이 각 가정을 위해 수행될 수 있다. 온도 센서, 창 및 난방 컨트롤러, 도난 경보기 및 가전 제품들은 모두 무선으로 연결된다. 이러한 센서들 중 많은 것들이 전형적으로 낮은 데이터 전송 속도, 저전력 및 저비용이다. 하지만, 예를 들어, 실시간 HD 비디오는 감시를 위해 특정 타입의 장치에서 요구될 수 있다.
열 또는 가스를 포함한 에너지의 소비 및 분배는 고도로 분산화되고 있어, 분산 센서 네트워크의 자동화된 제어가 요구된다. 스마트 그리드는 정보를 수집하고 이에 따라 행동하도록 디지털 정보 및 통신 기술을 사용하여 이런 센서들을 상호 연결한다. 이 정보는 공급 업체와 소비자의 행동을 포함할 수 있으므로, 스마트 그리드가 효율성, 신뢰성, 경제성, 생산의 지속 가능성 및 자동화된 방식으로 전기와 같은 연료들의 분배를 개선하도록 할 수 있다. 스마트 그리드는 지연이 적은 다른 센서 네트워크로 볼 수도 있다.
건강 부문은 이동 통신의 혜택을 누릴 수 있는 많은 응용 프로그램을 보유하고 있다. 통신 시스템은 멀리 떨어진 곳에서 임상 진료를 제공하는 원격 진료를 지원할 수 있다. 이는 거리에 대한 장벽을 줄이는데 도움을 주고, 거리가 먼 농촌에서 지속적으로 이용하지 못하는 의료 서비스들로의 접근을 개선시킬 수 있다. 이는 또한 중요한 진료 및 응급 상황에서 생명을 구하기 위해 사용된다. 이동 통신 기반의 무선 센서 네트워크는 심박수 및 혈압과 같은 파라미터들에 대한 원격 모니터링 및 센서들을 제공할 수 있다.
무선 및 모바일 통신은 산업 응용 분야에서 점차 중요해지고 있다. 배선은 설치 및 유지 비용이 높다. 따라서, 케이블을 재구성할 수 있는 무선 링크들로의 교체 가능성은 많은 산업 분야에서 매력적인 기회이다. 그러나, 이를 달성하는 것은 무선 연결이 케이블과 비슷한 지연, 신뢰성 및 용량으로 동작하는 것과, 그 관리가 단순화될 것이 요구된다. 낮은 지연과 매우 낮은 오류 확률은 5G로 연결될 필요가 있는 새로운 요구 사항이다.
물류(logistics) 및 화물 추적(freight tracking)은 위치 기반 정보 시스템을 사용하여 어디에서든지 인벤토리(inventory) 및 패키지의 추적을 가능하게 하는 이동 통신에 대한 중요한 사용 예이다. 물류 및 화물 추적의 사용 예는 전형적으로 낮은 데이터 속도를 요구하지만 넓은 범위와 신뢰성 있는 위치 정보가 필요하다.
도 1은 3GPP 시스템에 이용되는 물리 채널들 및 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S11). 이를 위해 단말은 기지국으로부터 SSB (Synchronization Signal Block)를 수신한다. SSB는 PSS (Primary Synchronization Signal), SSS (Secondary Synchronization Signal) 및 PBCH (Physical Broadcast Channel)를 포함한다. 단말은 PSS/SSS에 기반하여 기지국과 동기를 맞추고, 셀 ID(cell identity) 등의 정보를 획득한다. 또한, 단말은 기지국으로부터 PBCH를 수신하여 셀 내 방송 정보를 획득할 수 있다. 또한, 단말은 초기 셀 탐색 단계에서 DL RS(Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 PDCCH(Physical Downlink Control Channel) 및 이에 대응되는 PDSCH(Physical Downlink Control Channel)를 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다(S12).
이후, 단말은 기지국에 접속을 완료하기 위해 랜덤 접속 과정(Random Access Procedure)을 수행할 수 있다(S13~S16). 구체적으로, 단말은 PRACH(Physical Random Access Channel)를 통해 프리앰블(preamble)을 전송하고(S13), PDCCH 및 이에 대응하는 PDSCH를 통해 프리앰블에 대한 RAR(Random Access Response)을 수신할 수 있다(S14). 이후, 단말은 RAR 내의 스케줄링 정보를 이용하여 PUSCH(Physical Uplink Shared Channel)을 전송하고(S15), PDCCH 및 이에 대응하는 PDSCH과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다(S16).
랜덤 접속 과정이 2단계로 수행되는 경우, S13/S15이 (단말이 전송을 수행하는) 하나의 단계로 수행되고(메세지 A), S14/S16이 (기지국이 전송을 수행하는) 하나의 단계로 수행될 수 있다(메세지 B).
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상향/하향링크 신호 전송 절차로서 PDCCH/PDSCH 수신(S17) 및 PUSCH/PUCCH(Physical Uplink Control Channel) 전송(S18)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 UCI(Uplink Control Information)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 따라 단말은 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 무선 프레임의 구조를 나타낸 도면이다.
NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 하나의 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의된다. 하나의 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 정의된다. 하나의 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함한다. 보통 CP가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함한다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함한다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, DFT-s-OFDM 심볼)을 포함할 수 있다.
표 1은 보통 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) Nslotsymb Nframe,uslot Nsubframe,uslot
15KHz (u=0) 14 10 1
30KHz (u=1) 14 20 2
60KHz (u=2) 14 40 4
120KHz (u=3) 14 80 8
240KHz (u=4) 14 160 16
* Nslotsymb: 슬롯 내 심볼의 개수* Nframe,uslot: 프레임 내 슬롯의 개수
* Nsubframe,uslot: 서브프레임 내 슬롯의 개수
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) Nslotsymb Nframe,uslot Nsubframe,uslot
60KHz (u=2) 12 40 4
프레임의 구조는 예시에 불과하고, 프레임에서 서브프레임의 수, 슬롯의 수, 심볼의 수는 다양하게 변경될 수 있다.NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴모놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다.
NR은 다양한 5G 서비스들을 지원하기 위한 다수의 numerology(또는 subcarrier spacing(SCS))를 지원한다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)을 지원하며, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)을 지원하며, SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)을 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다.
NR 주파수 밴드(frequency band)는 2가지 타입(FR1, FR2)의 주파수 범위(frequency range)로 정의된다. FR1, FR2는 아래 표 3과 같이 구성될 수 있다. 또한, FR2는 밀리미터 웨이브(millimeter wave, mmW)를 의미할 수 있다.
Frequency Range designation Corresponding frequency range Subcarrier Spacing
FR1 450MHz - 7125MHz 15, 30, 60kHz
FR2 24250MHz - 52600MHz 60, 120, 240kHz
도 3은 슬롯의 자원 그리드를 예시한다.하나의 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (P)RB로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 4는 슬롯 내에 물리 채널이 매핑되는 예를 나타낸 도면이다.
하나의 슬롯 내에 DL 제어 채널, DL 또는 UL 데이터, UL 제어 채널 등이 모두 포함될 수 있다. 예를 들어, 슬롯 내의 처음 N개의 심볼은 DL 제어 채널을 전송하는데 사용되고(이하, DL 제어 영역), 슬롯 내의 마지막 M개의 심볼은 UL 제어 채널을 전송하는데 사용될 수 있다(이하, UL 제어 영역). N과 M은 각각 0 이상의 정수이다. DL 제어 영역과 UL 제어 영역의 사이에 있는 자원 영역(이하, 데이터 영역)은 DL 데이터 전송을 위해 사용되거나, UL 데이터 전송을 위해 사용될 수 있다. 제어 영역과 데이터 영역 사이에는 DL-to-UL 혹은 UL-to-DL 스위칭을 위한 시간 갭이 존재할 수 있다. DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. 슬롯 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 시간 갭으로 사용될 수 있다.
이하, 각각의 물리 채널에 대해 보다 자세히 설명한다.
하향링크 채널 구조
기지국은 후술하는 하향링크 채널을 통해 관련 신호를 단말에게 전송하고, 단말은 후술하는 하향링크 채널을 통해 관련 신호를 기지국으로부터 수신한다.
(1) 물리 하향링크 공유 채널(PDSCH)
PDSCH는 하향링크 데이터(예, DL-SCH transport block, DL-SCH TB)를 운반하고, QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM 등의 변조 방법이 적용된다. TB를 인코딩하여 코드워드(codeword)가 생성된다. PDSCH는 최대 2개의 코드워드를 나를 수 있다. 코드워드 별로 스크램블링(scrambling) 및 변조 매핑(modulation mapping)이 수행되고, 각 코드워드로부터 생성된 변조 심볼들은 하나 이상의 레이어로 매핑될 수 있다. 각 레이어는 DMRS(Demodulation Reference Signal)과 함께 자원에 매핑되어 OFDM 심볼 신호로 생성되고, 해당 안테나 포트를 통해 전송된다.
(2) 물리 하향링크 제어 채널 (PDCCH)
PDCCH는 DCI(Downlink Control Information)를 운반한다. 예를 들어, PCCCH (즉, DCI)는 DL-SCH(downlink shared channel)의 전송 포맷 및 자원 할당, UL-SCH(uplink shared channel)에 대한 자원 할당 정보, PCH(paging channel)에 대한 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위 계층 제어 메시지에 대한 자원 할당 정보, 전송 전력 제어 명령, CS(Configured Scheduling)의 활성화/해제 등을 나른다. DCI는 CRC(cyclic redundancy check)를 포함하며, CRC는 PDCCH의 소유자 또는 사용 용도에 따라 다양한 식별자(예, Radio Network Temporary Identifier, RNTI)로 마스킹/스크램블 된다. 예를 들어, PDCCH가 특정 단말을 위한 것이면, CRC는 단말 식별자(예, Cell-RNTI, C-RNTI)로 마스킹 된다. PDCCH가 페이징에 관한 것이면, CRC는 P-RNTI(Paging-RNTI)로 마스킹 된다. PDCCH가 시스템 정보(예, System Information Block, SIB)에 관한 것이면, CRC는 SI-RNTI(System Information RNTI)로 마스킹 된다. PDCCH가 랜덤 접속 응답에 관한 것이면, CRC는 RA-RNTI(Random Access-RNTI)로 마스킹 된다.
PDCCH의 변조 방식은 고정돼 있으며(예, Quadrature Phase Shift Keying, QPSK), 하나의 PDCCH는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16 개의 CCE(Control Channel Element)로 구성된다. 하나의 CCE는 6개의 REG(Resource Element Group)로 구성된다. 하나의 REG는 하나의 OFDMA 심볼과 하나의 (P)RB로 정의된다.
PDCCH는 CORESET(Control Resource Set)를 통해 전송된다. CORESET는 BWP 내에서 PDCCH/DCI를 운반하는데 사용되는 물리 자원/파라미터 세트에 해당한다. 예를 들어, CORESET는 주어진 뉴모놀로지(예, SCS, CP 길이 등)를 갖는 REG 세트를 포함한다. CORESET는 시스템 정보(예, MIB) 또는 단말-특정(UE-specific) 상위 계층(예, RRC) 시그널링을 통해 설정될 수 있다. CORESET를 설정하는데 사용되는 파라미터/정보의 예는 다음과 같다. 하나의 단말에게 하나 이상의 CORESET가 설정되며, 복수의 CORESET가 시간/주파수 도메인에서 중첩될 수 있다.
- controlResourceSetId: CORESET의 식별 정보(ID)를 나타낸다.
- frequencyDomainResources: CORESET의 주파수 영역 자원을 나타낸다. 비트맵을 통해 지시되며, 각 비트는 RB 그룹(= 6개 연속된 RB)에 대응한다. 예를 들어, 비트맵의 MSB(Most Significant Bit)는 BWP 내 첫 번째 RB 그룹에 대응한다. 비트 값이 1인 비트에 대응되는 RB 그룹이 CORESET의 주파수 영역 자원으로 할당된다.
- duration: CORESET의 시간 영역 자원을 나타낸다. CORESET를 구성하는 연속된 OFDMA 심볼 개수를 나타낸다. 예를 들어, duration은 1~3의 값을 가진다.
- cce-REG-MappingType: CCE-to-REG 매핑 타입을 나타낸다. Interleaved 타입과 non-interleaved 타입이 지원된다.
- precoderGranularity: 주파수 도메인에서 프리코더 입도(granularity)를 나타낸다.
- tci-StatesPDCCH: PDCCH에 대한 TCI(Transmission Configuration Indication) 상태(state)를 지시하는 정보(예, TCI-StateID)를 나타낸다. TCI 상태는 RS 세트(TCI-상태) 내의 DL RS(들)와 PDCCH DMRS 포트의 QCL(Quasi-Co-Location) 관계를 제공하는데 사용된다.
- tci-PresentInDCI: DCI 내의 TCI 필드가 포함되는지 여부를 나타낸다.
- pdcch-DMRS-ScramblingID: PDCCH DMRS 스크램블링 시퀀스의 초기화에 사용되는 정보를 나타낸다.
PDCCH 수신을 위해, 단말은 CORESET에서 PDCCH 후보들의 세트를 모니터링(예, 블라인드 디코딩)을 할 수 있다. PDCCH 후보는 PDCCH 수신/검출을 위해 단말이 모니터링 하는 CCE(들)을 나타낸다. PDCCH 모니터링은 PDCCH 모니터링이 설정된 각각의 활성화된 셀 상의 활성 DL BWP 상의 하나 이상의 CORESET에서 수행될 수 있다. 단말이 모니터링 하는 PDCCH 후보들의 세트는 PDCCH 검색 공간(Search Space, SS) 세트로 정의된다. SS 세트는 공통 검색 공간(Common Search Space, CSS) 세트 또는 단말-특정 검색 공간(UE-specific Search Space, USS) 세트일 수 있다.
표 4는 PDCCH 검색 공간을 예시한다.
Type Search Space RNTI Use Case
Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH
Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding
Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI(s)
UE Specific UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI(s) User specific PDSCH decoding
SS 세트는 시스템 정보(예, MIB) 또는 단말-특정(UE-specific) 상위 계층(예, RRC) 시그널링을 통해 설정될 수 있다. 서빙 셀의 각 DL BWP에는 S개(예, 10) 이하의 SS 세트가 설정될 수 있다. 예를 들어, 각 SS 세트에 대해 다음의 파라미터/정보가 제공될 수 있다. 각각의 SS 세트는 하나의 CORESET와 연관되며(associated), 각각의 CORESET 구성은 하나 이상의 SS 세트와 연관될 수 있다.- searchSpaceId: SS 세트의 ID를 나타낸다.
- controlResourceSetId: SS 세트와 연관된 CORESET를 나타낸다.
- monitoringSlotPeriodicityAndOffset: PDCCH 모니터링 주기 구간 (슬롯 단위) 및 PDCCH 모니터링 구간 오프셋 (슬롯 단위)을 나타낸다.
- monitoringSymbolsWithinSlot: PDCCH 모니터링이 설정된 슬롯 내에서 PDCCH 모니터링을 위한 첫 번째 OFDMA 심볼(들)을 나타낸다. 비트맵을 통해 지시되며, 각 비트는 슬롯 내의 각 OFDMA 심볼에 대응한다. 비트맵의 MSB는 슬롯 내 첫 번째 OFDM 심볼에 대응한다. 비트 값이 1인 비트(들)에 대응되는 OFDMA 심볼(들)이 슬롯 내에서 CORESET의 첫 번째 심볼(들)에 해당한다.
- nrofCandidates: AL={1, 2, 4, 8, 16} 별 PDCCH 후보의 개수(예, 0, 1, 2, 3, 4, 5, 6, 8 중 하나의 값)를 나타낸다.
- searchSpaceType: SS 타입이 CSS 또는 USS인지 나타낸다.
- DCI 포맷: PDCCH 후보의 DCI 포맷을 나타낸다.
CORESET/SS 세트 설정에 기반하여, 단말은 슬롯 내의 하나 이상의 SS 세트에서 PDCCH 후보들을 모니터링 할 수 있다. PDCCH 후보들을 모니터링을 해야 하는 기회(occasion)(예, 시간/주파수 자원)는 PDCCH (모니터링) 기회라고 정의된다. 슬롯 내에 하나 이상의 PDCCH (모니터링) 기회가 구성될 수 있다.
표 5는 PDCCH를 통해 전송되는 DCI 포맷들을 예시한다.
DCI format Usage
0_0 Scheduling of PUSCH in one cell
0_1 Scheduling of PUSCH in one cell
1_0 Scheduling of PDSCH in one cell
1_1 Scheduling of PDSCH in one cell
2_0 Notifying a group of UEs of the slot format
2_1 Notifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE
2_2 Transmission of TPC commands for PUCCH and PUSCH
2_3 Transmission of a group of TPC commands for SRS transmissions by one or more UEs
DCI 포맷 0_0은 TB-기반 (또는 TB-level) PUSCH를 스케줄링 하기 위해 사용되고, DCI 포맷 0_1은 TB-기반 (또는 TB-level) PUSCH 또는 CBG(Code Block Group)-기반 (또는 CBG-level) PUSCH를 스케줄링 하기 위해 사용될 수 있다. DCI 포맷 1_0은 TB-기반 (또는 TB-level) PDSCH를 스케줄링 하기 위해 사용되고, DCI 포맷 1_1은 TB-기반 (또는 TB-level) PDSCH 또는 CBG-기반 (또는 CBG-level) PDSCH를 스케줄링 하기 위해 사용될 수 있다(DL grant DCI). DCI 포맷 0_0/0_1은 UL grant DCI 또는 UL 스케줄링 정보로 지칭되고, DCI 포맷 1_0/1_1은 DL grant DCI 또는 UL 스케줄링 정보로 지칭될 수 있다. DCI 포맷 2_0은 동적 슬롯 포맷 정보 (예, dynamic SFI)를 단말에게 전달하기 위해 사용되고, DCI 포맷 2_1은 하향링크 선취 (pre-Emption) 정보를 단말에게 전달하기 위해 사용된다. DCI 포맷 2_0 및/또는 DCI 포맷 2_1은 하나의 그룹으로 정의된 단말들에게 전달되는 PDCCH인 그룹 공통 PDCCH (Group common PDCCH)를 통해 해당 그룹 내 단말들에게 전달될 수 있다.DCI 포맷 0_0과 DCI 포맷 1_0은 폴백(fallback) DCI 포맷으로 지칭되고, DCI 포맷 0_1과 DCI 포맷 1_1은 논-폴백 DCI 포맷으로 지칭될 수 있다. 폴백 DCI 포맷은 단말 설정과 관계없이 DCI 사이즈/필드 구성이 동일하게 유지된다. 반면, 논-폴백 DCI 포맷은 단말 설정에 따라 DCI 사이즈/필드 구성이 달라진다.
상향링크 채널 구조
단말은 후술하는 상향링크 채널을 통해 관련 신호를 기지국으로 전송하고, 기지국은 후술하는 상향링크 채널을 통해 관련 신호를 단말로부터 수신한다.
(1) 물리 상향링크 제어 채널(PUCCH)
PUCCH는 UCI(Uplink Control Information), HARQ-ACK 및/또는 스케줄링 요청(SR)을 운반하고, PUCCH 전송 길이에 따라 Short PUCCH 및 Long PUCCH로 구분된다.
UCI는 다음을 포함한다.
- SR(Scheduling Request): UL-SCH 자원을 요청하는데 사용되는 정보이다.
- HARQ(Hybrid Automatic Repeat reQuest)-ACK(Acknowledgement): PDSCH 상의 하향링크 데이터 패킷(예, 코드워드)에 대한 응답이다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 코드워드에 대한 응답으로 HARQ-ACK 1비트가 전송되고, 두 개의 코드워드에 대한 응답으로 HARQ-ACK 2비트가 전송될 수 있다. HARQ-ACK 응답은 포지티브 ACK(간단히, ACK), 네거티브 ACK(NACK), DTX 또는 NACK/DTX를 포함한다. 여기서, HARQ-ACK은 HARQ ACK/NACK, ACK/NACK과 혼용된다.
- CSI(Channel State Information): 하향링크 채널에 대한 피드백 정보이다. MIMO(Multiple Input Multiple Output)-관련 피드백 정보는 RI(Rank Indicator) 및 PMI(Precoding Matrix Indicator)를 포함한다.
표 6은 PUCCH 포맷들을 예시한다. PUCCH 전송 길이에 따라 Short PUCCH (포맷 0, 2) 및 Long PUCCH (포맷 1, 3, 4)로 구분될 수 있다.
PUCCH format Length in OFDM symbols N symb PUCCH Number of bits Usage Etc
0 1 - 2 ≤2 HARQ, SR Sequence selection
1 4 - 14 ≤2 HARQ, [SR] Sequence modulation
2 1 - 2 >2 HARQ, CSI, [SR] CP-OFDM
3 4 - 14 >2 HARQ, CSI, [SR] DFT-s-OFDM(no UE multiplexing)
4 4 - 14 >2 HARQ, CSI, [SR] DFT-s-OFDM(Pre DFT OCC)
PUCCH 포맷 0는 최대 2 비트 크기의 UCI를 운반하고, 시퀀스 기반으로 매핑되어 전송된다. 구체적으로, 단말은 복수 개의 시퀀스들 중 하나의 시퀀스를 PUCCH 포맷 0인 PUCCH을 통해 전송하여 특정 UCI를 기지국으로 전송한다. 단말은 긍정 (positive) SR을 전송하는 경우에만 대응하는 SR 설정을 위한 PUCCH 자원 내에서 PUCCH 포맷 0인 PUCCH를 전송한다.PUCCH 포맷 1은 최대 2 비트 크기의 UCI를 운반하고, 변조 심볼은 시간 영역에서 (주파수 호핑 여부에 따라 달리 설정되는) 직교 커버 코드(OCC)에 의해 확산된다. DMRS는 변조 심볼이 전송되지 않는 심볼에서 전송된다(즉, TDM(Time Division Multiplexing)되어 전송된다).
PUCCH 포맷 2는 2 비트보다 큰 비트 크기의 UCI를 운반하고, 변조 심볼은 DMRS와 FDM(Frequency Division Multiplexing)되어 전송된다. DM-RS는 1/3의 밀도로 주어진 자원 블록 내 심볼 인덱스 #1, #4, #7 및 #10에 위치한다. PN (Pseudo Noise) 시퀀스가 DM_RS 시퀀스를 위해 사용된다. 2 심볼 PUCCH 포맷 2를 위해 주파수 호핑은 활성화될 수 있다.
PUCCH 포맷 3은 동일 물리 자원 블록들 내 단말 다중화가 되지 않으며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH 포맷 3의 PUCCH 자원은 직교 커버 코드를 포함하지 않는다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
PUCCH 포맷 4는 동일 물리 자원 블록들 내에 최대 4개 단말까지 다중화가 지원되며, 2 비트보다 큰 비트 크기의 UCI를 운반한다. 다시 말해, PUCCH 포맷 3의 PUCCH 자원은 직교 커버 코드를 포함한다. 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
(2) 물리 상향링크 공유 채널(PUSCH)
PUSCH는 상향링크 데이터(예, UL-SCH transport block, UL-SCH TB) 및/또는 상향링크 제어 정보(UCI)를 운반하고, CP-OFDM(Cyclic Prefix - Orthogonal Frequency Division Multiplexing) 파형(waveform) 또는 DFT-s-OFDM(Discrete Fourier Transform - spread - Orthogonal Frequency Division Multiplexing) 파형에 기초하여 전송된다. PUSCH가 DFT-s-OFDM 파형에 기초하여 전송되는 경우, 단말은 변환 프리코딩(transform precoding)을 적용하여 PUSCH를 전송한다. 일 예로, 변환 프리코딩이 불가능한 경우(예, transform precoding is disabled) 단말은 CP-OFDM 파형에 기초하여 PUSCH를 전송하고, 변환 프리코딩이 가능한 경우(예, transform precoding is enabled), 단말은 CP-OFDM 파형 또는 DFT-s-OFDM 파형에 기초하여 PUSCH를 전송할 수 있다. PUSCH 전송은 DCI 내 UL 그랜트에 의해 동적으로 스케줄링 되거나(dynamic scheduling), 상위 계층(예, RRC) 시그널링 (및/또는 Layer 1(L1) 시그널링(예, PDCCH))에 기초하여 반-정적(semi-static)으로 스케줄링 될 수 있다(configured scheduling, configured grant). PUSCH 전송은 코드북 기반 또는 비-코드북 기반으로 수행될 수 있다.
하향링크에 있어, 기지국은 (DCI format 1_0 또는 DCI format 1_1을 포함한) PDCCH(s)을 통해 단말에게 동적으로 하향링크 전송을 위한 자원을 할당할 수 있다. 또한, 기지국은 (DCI format 2_1을 포함한) PDCCH(s)을 통해 특정 단말에게 미리 스케줄링된 자원 중 일부가 다른 단말로의 신호 전송을 위해 선취(pre-emption)되었음을 전달할 수 있다. 또한, 기지국은 준-지속적 스케줄링 (semi-persistent scheduling, SPS) 방법에 기초하여, 상위 계층 시그널링을 통해 하향링크 할당 (downlink assignment)의 주기를 설정하고, PDCCH를 통해 설정된 하향링크 할당의 활성화/비활성화를 시그널링함으로써 초기 HARQ 전송을 위한 하향링크 할당을 단말에게 제공할 수 있다. 이때, 초기 HARQ 전송에 대한 재전송이 필요할 경우, 기지국은 명시적으로 PDCCH를 통해 재전송 자원을 스케줄링한다. DCI를 통한 하향링크 할당과 준-지속적 스케줄링에 기초한 하향링크 할당이 충돌하는 경우, 단말은 DCI를 통한 하향링크 할당을 우선시할 수 있다.
하향링크와 유사하게, 상향링크에 있어, 기지국은 (DCI format 0_0 또는 DCI format 0_1을 포함한) PDCCH(s)을 통해 단말에게 동적으로 상향링크 전송을 위한 자원을 할당할 수 있다. 또한, 기지국은 (SPS와 유사하게) 설정된 그랜트 (configured grant) 방법에 기초하여, 초기 HARQ 전송을 위한 상향링크 자원을 단말에게 할당할 수 있다. 동적 스케줄링에서는 PUSCH 전송에 PDCCH가 수반되지만, configured grant에서는 PUSCH 전송에 PDCCH가 수반되지 않는다. 단, 재전송을 위한 상향링크 자원은 PDCCH(s)을 통해 명시적으로 할당된다. 이와 같이, 동적인 그랜트 (예, 스케줄링 DCI를 통한 상향링크 그랜트) 없이 기지국에 의해 상향링크 자원이 미리 설정되는 동작은 '설정된 그랜트(configured grant)'라 명명된다. 설정된 그랜트는 다음의 두 가지 타입으로 정의된다.
- Type 1: 상위 계층 시그널링에 의해 일정 주기의 상향링크 그랜트가 제공됨 (별도의 제1 계층 시그널링 없이 설정됨)
- Type 2: 상위 계층 시그널링에 의해 상향링크 그랜트의 주기가 설정되고, PDCCH를 통해 설정된 그랜트의 활성화/비활성화가 시그널링됨으로써 상향링크 그랜트가 제공됨
도 5는 단말의 상향링크 전송 동작을 예시한다. 단말은 전송하고자 하는 패킷을 동적 그랜트에 기초하여 전송하거나 (도 5(a)), 미리 설정된 그랜트에 기초하여 전송할 수 있다 (도 5(b)).
복수의 단말들에게 설정된 그랜트를 위한 자원은 공유될 수 있다. 각 단말들의 설정된 그랜트에 기초한 상향링크 신호 전송은 시간/주파수 자원 및 참조 신호 파라미터 (예, 상이한 순환 시프트 등)에 기초하여 식별될 수 있다. 따라서, 기지국은 신호 충돌 등으로 인해 단말의 상향링크 전송이 실패한 경우, 해당 단말을 식별하고 해당 전송 블록을 위한 재전송 그랜트를 해당 단말에게 명시적으로 전송할 수 있다.
설정된 그랜트에 의해, 동일 전송 블록을 위하여 초기 전송을 포함한 K번 반복 전송이 지원된다. K번 반복 전송되는 상향링크 신호를 위한 HARQ 프로세스 ID는 초기 전송을 위한 자원에 기초하여 동일하게 결정된다. K번 반복 전송되는 해당 전송 블록을 위한 리던던시 버전(redundancy version)은 {0,2,3,1}, {0,3,0,3} 또는{0,0,0,0} 중 하나의 패턴을 갖는다.
도 6은 설정된 그랜트에 기초한 반복 전송을 예시한다.
단말은 다음 중 하나의 조건이 만족할 때까지 반복 전송을 수행한다:
- 동일 전송 블록을 위한 상향링크 그랜트가 성공적으로 수신되는 경우
- 해당 전송 블록을 위한 반복 전송 횟수가 K에 다다른 경우
- (Option 2의 경우), 주기 P의 종료 시점이 다다른 경우
기존 3GPP LTE 시스템의 LAA(Licensed-Assisted Access)와 유사하게, 3GPP NR 시스템에서도 비 면허 대역을 셀룰러 통신에 활용하는 방안이 고려되고 있다. 단, LAA와 달리, 비면허 대역 내의 NR 셀(이하, NR UCell)은 스탠드얼론(standalone, SA) 동작을 목표로 하고 있다. 일 예로, NR UCell에서 PUCCH, PUSCH, PRACH 전송 등이 지원될 수 있다.
LAA UL(Uplink)에서는 비동기식 HARQ 절차(Asynchronous HARQ procedure)의 도입으로 PUSCH(Physical Uplink Shared Channel)에 대한 HARQ-ACK (Hybrid Automatic Repeat Request - Acknowledgement / Negative-acknowledgement)정보를 단말에게 알려주기 위한 PHICH (Physical HARQ Indicator Channel)과 같은 별도의 채널이 존재하지 않는다. 따라서, UL LBT 과정에서 경쟁 윈도우(Contention Window; CW) 크기 조정을 위해 정확한 HARQ-ACK 정보를 활용할 수 없다. 따라서 UL LBT 과정에서는 UL grant을 n번째 SF에서 수신한 경우, (n-3)번째 서브프레임 (Subframe) 이전의 가장 최신 UL TX burst의 첫 번째 서브프레임을 참조 서브프레임(Reference Subframe)으로 설정하고, 상기 참조 서브프레임에 대응되는 HARQ process ID에 대한 NDI를 기준으로 경쟁 윈도우의 크기(size)를 조정하였다. 즉, 기지국이 하나 이상의 전송 블록(Transport Block; TB) 별 NDI (New data Indicator)를 토글링(Toggling)하거나 하나 이상의 전송 블록에 대해 재전송을 지시하면, 참조 서브프레임에서 PUSCH가 다른 신호와 충돌하여 전송에 실패하였다고 가정하여 사전에 약속된 경쟁 윈도우 크기를 위한 집합 내 현재 적용된 경쟁 윈도우 크기(size) 다음으로 큰 경쟁 윈도우 크기로 해당 경쟁 윈도우의 크기를 증가시키고, 아니면 참조 서브프레임에서의 PUSCH가 다른 신호와의 충돌 없이 성공적으로 전송되었다고 가정하고 경쟁 윈도우의 크기를 최소 값 (예를 들어, CW min)으로 초기화하는 방안이 도입되었다.
본 개시의 다양한 실시예들이 적용 가능한 NR 시스템에서는 하나의 요소 반송파 (component carrier, CC) 당 최대 400 MHz 주파수 자원이 할당/지원될 수 있다. 이와 같은 광대역 (wideband) CC에서 동작하는 UE 가 항상 CC 전체에 대한 RF (Radio Frequency) 모듈을 켜둔 채로 동작할 경우, UE의 배터리 소모는 커질 수 있다.
또는, 하나의 광대역 CC 내에 동작하는 여러 사용 예 (use case)들 (예: eMBB (enhanced Mobile Broadband), URLLC, mMTC (massive Machine Type Communication) 등)을 고려할 경우, 해당 CC 내 주파수 대역 별로 서로 다른 뉴머롤로지 (예: sub-carrier spacing) 가 지원될 수 있다.
또는, UE 별로 최대 대역폭에 대한 캐퍼빌리티 (capability) 가 서로 상이할 수 있다.
이를 고려하여, 기지국은 UE에게 광대역 CC의 전체 대역폭이 아닌 일부 대역폭에서만 동작하도록 지시/설정할 수 있다. 이러한 일부 대역폭은 편의상 대역폭 파트 (bandwidth part; BWP)로 정의될 수 있다.
BWP는 주파수 축 상에서 연속한 자원 블록 (RB) 들로 구성될 수 있고, 하나의 BWP는 하나의 뉴머롤로지 (예: sub-carrier spacing, CP length, slot/mini-slot duration 등)에 대응할 수 있다.
한편, 기지국은 UE 에게 설정된 하나의 CC 내 다수의 BWP를 설정할 수 있다. 일 예로, 기지국은 PDCCH 모니터링 슬롯 내 상대적으로 작은 주파수 영역을 차지하는 BWP를 설정하고, PDCCH에서 지시하는 PDSCH (또는 상기 PDCCH에 의해 스케줄링되는 PDSCH)를 그보다 큰 BWP 상에 스케줄링할 수 있다. 또는, 상기 기지국은 특정 BWP에 UE 들이 몰리는 경우 부하 균등화 (load balancing)를 위해 일부 UE 들을 다른 BWP 로 설정할 수 있다. 또는, 기지국은 이웃 셀 간의 주파수 영역 셀-간 간섭 제거 (frequency domain inter-cell interference cancellation) 등을 고려하여 전체 대역폭 중 가운데 일부 스펙트럼을 배제하고 양쪽 BWP 들을 동일 슬롯 내 설정할 수 있다.
기지국은 광대역 CC 와 연관(association) 된 UE 에게 적어도 하나의 DL/UL BWP를 설정할 수 있고, 특정 시점에 설정된 DL/UL BWP(s) 중 적어도 하나의 DL/UL BWP를 (L1 시그널링 (예: DCI 등), MAC, RRC 시그널링 등을 통해) 활성화 (activation) 시킬 수 있으며, 다른 설정된 DL/UL BWP 로 스위칭 (switching)을 (L1 시그널링 또는 MAC CE 또는 RRC 시그널링 등에 의해) 지시할 수도 있다. 또한, 단말은 타이머(예, BWP 비활성 타이머 (BWP inactivity timer)) 값을 기반으로 타이머가 만료 (expire)되면 정해진 DL/UL BWP 로 스위칭 동작을 수행할 수도 있다. 이때, 활성화된 DL/UL BWP는 활성 (active) DL/UL BWP 라 명명할 수 있다. 초기 접속 (initial access) 과정 또는 RRC 연결이 설정 (set up) 되기 전 등의 UE는 기지국으로부터 DL/UL BWP에 대한 설정을 수신하지 못할 수 있다. 이러한 UE에 대해 가정되는 DL/UL BWP는 초기 활성 (initial active) DL/UL BWP 라고 정의한다.
도 7은 본 개시에 적용 가능한 비면허 대역을 지원하는 무선 통신 시스템의 예시를 나타낸다.
이하 설명에 있어, 면허 대역(이하, L-밴드)에서 동작하는 셀을 L-cell로 정의하고, L-cell의 캐리어를 (DL/UL) LCC라고 정의한다. 또한, 비면허 대역 (이하, U-밴드)에서 동작하는 셀을 U-cell로 정의하고, U-cell의 캐리어를 (DL/UL) UCC라고 정의한다. 셀의 캐리어/캐리어-주파수는 셀의 동작 주파수(예, 중심 주파수)를 의미할 수 있다. 셀/캐리어(예, CC)는 셀로 통칭될 수 있다.
도 7(a)와 같이 단말과 기지국이 반송파 결합된 LCC 및 UCC를 통해 신호를 송수신하는 경우, LCC는 PCC(Primary CC)로 설정되고 UCC는 SCC(Secondary CC)로 설정될 수 있다. 도 7(b)와 같이, 단말과 기지국은 하나의 UCC 또는 반송파 결합된 복수의 UCC를 통해 신호를 송수신할 수 있다. 즉, 단말과 기지국은 LCC 없이 UCC(s)만을 통해 신호를 송수신할 수 있다. 스탠드얼론 동작을 위해, UCell에서 PRACH, PUCCH, PUSCH, SRS 전송 등이 지원될 수 있다.
이하, 본 개시에서 기술하는 비면허 대역에서의 신호 송수신 동작은 (별도의 언급이 없으면) 상술한 배치 시나리오에 기초하여 수행될 수 있다.
별도의 언급이 없으면, 아래의 정의가 본 개시에서 사용되는 용어에 적용될 수 있다.
- 채널(channel): 공유 스펙트럼(shared spectrum)에서 채널 접속 과정이 수행되는 연속된 RB들로 구성되며, 반송파 또는 반송파의 일부를 지칭할 수 있다.
- 채널 접속 과정(Channel Access Procedure, CAP): 신호 전송 전에 다른 통신 노드(들)의 채널 사용 여부를 판단하기 위해, 센싱에 기반하여 채널 가용성을 평가하는 절차를 나타낸다. 센싱을 위한 기본 유닛(basic unit)은 Tsl=9us 구간(duration)의 센싱 슬롯이다. 기지국 또는 단말이 센싱 슬롯 구간동안 채널을 센싱하고, 센싱 슬롯 구간 내에서 적어도 4us 동안 검출된 전력이 에너지 검출 임계값 X Thresh보다 작은 경우, 센싱 슬롯 구간 Tsl은 휴지 상태로 간주된다. 그렇지 않은 경우, 센싱 슬롯 구간 Tsl=9us은 비지 상태로 간주된다. CAP는 LBT(Listen-Before-Talk)로 지칭될 수 있다.
- 채널 점유(channel occupancy): 채널 접속 절차의 수행 후, 기지국/단말에 의한 채널(들) 상의 대응되는 전송(들)을 의미한다.
- 채널 점유 시간(Channel Occupancy Time, COT): 기지국/단말이 채널 접속 절차의 수행 후, 상기 기지국/단말 및 채널 점유를 공유하는 임의의(any) 기지국/단말(들)이 채널 상에서 전송(들)을 수행할 수 있는 총 시간을 지칭한다. COT 결정 시, 전송 갭이 25us 이하이면, 갭 구간도 COT에 카운트된다. COT는 기지국과 대응 단말(들) 사이의 전송을 위해 공유될 수 있다.
- DL 전송 버스트(burst): 16us를 초과하는 갭이 없는, 기지국으로부터의 전송 세트로 정의된다. 16us를 초과하는 갭에 의해 분리된, 기지국으로부터의 전송들은 서로 별개의 DL 전송 버스트로 간주된다. 기지국은 DL 전송 버스트 내에서 채널 가용성을 센싱하지 않고 갭 이후에 전송(들)을 수행할 수 있다.
- UL 전송 버스트: 16us를 초과하는 갭이 없는, 단말로부터의 전송 세트로 정의된다. 16us를 초과하는 갭에 의해 분리된, 단말로부터의 전송들은 서로 별개의 UL 전송 버스트로 간주된다. 단말은 UL 전송 버스트 내에서 채널 가용성을 센싱하지 않고 갭 이후에 전송(들)을 수행할 수 있다.
- 디스커버리 버스트: (시간) 윈도우 내에 한정되고 듀티 사이클과 연관된, 신호(들) 및/또는 채널(들)의 세트를 포함하는 DL 전송 버스트를 지칭한다. LTE-기반 시스템에서 디스커버리 버스트는 기지국에 의해 개시된 전송(들)으로서, PSS, SSS 및 CRS(cell-specific RS)를 포함하고, 논-제로 파워 CSI-RS를 더 포함할 수 있다. NR-기반 시스템에서 디스커버리 버스트는 기기국에 의해 개시된 전송(들)으로서, 적어도 SS/PBCH 블록을 포함하며, SIB1을 갖는 PDSCH를 스케줄링하는 PDCCH를 위한 CORESET, SIB1을 운반하는 PDSCH 및/또는 논-제로 파워 CSI-RS를 더 포함할 수 있다.
도 8은 본 개시에 적용 가능한 비면허 대역에서 자원을 점유하는 방법을 예시한다.
도 8을 참조하면, 비면허 대역 내의 통신 노드(예, 기지국, 단말)는 신호 전송 전에 다른 통신 노드(들)의 채널 사용 여부를 판단해야 한다. 이를 위해, 비면허 대역 내의 통신 노드는 전송(들)이 수행되는 채널(들)에 접속하기 위해 채널 접속 과정(CAP)을 수행할 수 있다. 채널 접속 과정은 센싱에 기반하여 수행될 수 있다. 예를 들어, 통신 노드는 신호 전송 전에 먼저 CS(Carrier Sensing)를 수행하여 다른 통신 노드(들)이 신호 전송을 하는지 여부를 확인할 수 있다. 다른 통신 노드(들)이 신호 전송을 하지 않는다고 판단된 경우를 CCA(Clear Channel Assessment)가 확인됐다고 정의한다. 기-정의된 혹은 상위계층(예, RRC)에 의해 설정된 CCA 임계치(예, X Thresh)가 있는 경우, 통신 노드는 CCA 임계치보다 높은 에너지가 채널에서 검출되면 채널 상태를 비지(busy)로 판단하고, 그렇지 않으면 채널 상태를 휴지(idle)로 판단할 수 있다. 채널 상태가 휴지라고 판단되면, 통신 노드는 비면허 대역에서 신호 전송을 시작할 수 있다. CAP는 LBT로 대체될 수 있다.
표 7은 본 개시에 적용 가능한 NR-U에서 지원되는 채널 접속 과정(CAP)을 예시한다.
Type Explanation
DL Type 1 CAP CAP with random back-off
- time duration spanned by the sensing slots that are sensed to be idle before a downlink transmission(s) is random
Type 2 CAP
- Type 2A, 2B, 2C
CAP without random back-off
- time duration spanned by sensing slots that are sensed to be idle before a downlink transmission(s) is deterministic
UL Type 1 CAP CAP with random back-off
- time duration spanned by the sensing slots that are sensed to be idle before a downlink transmission(s) is random
Type 2 CAP
- Type 2A, 2B, 2C
CAP without random back-off
- time duration spanned by sensing slots that are sensed to be idle before a downlink transmission(s) is deterministic
비면허 대역을 지원하는 무선 통신 시스템에서 단말에게 설정되는 하나의 셀(혹은, 반송파(예, CC)) 혹은 BWP는 기존 LTE에 비해 큰 BW(BandWidth)를 갖는 와이드밴드로 구성될 수 있다, 그러나, 규제(regulation) 등에 기초하여 독립적인 LBT 동작에 기반한 CCA가 요구되는 BW는 제한될 수 있다. 개별 LBT가 수행되는 서브-밴드(SB)를 LBT-SB로 정의하면, 하나의 와이드밴드 셀/BWP 내에 복수의 LBT-SB들이 포함될 수 있다. LBT-SB를 구성하는 RB 세트는 상위계층(예, RRC) 시그널링을 통해 설정될 수 있다. 따라서, (i) 셀/BWP의 BW 및 (ii) RB 세트 할당 정보에 기반하여, 하나의 셀/BWP에는 하나 이상의 LBT-SB가 포함될 수 있다.셀(혹은, 반송파)의 BWP에 복수의 LBT-SB가 포함될 수 있다. LBT-SB는 예를 들어 20MHz 대역을 가질 수 있다. LBT-SB는 주파수 영역에서 복수의 연속된 (P)RB로 구성되며, (P)RB 세트로 지칭될 수 있다.
한편, 유럽에서는 FBE(Frame Based Equipment)와 LBE(Load Based Equipment)로 명명되는 2가지의 LBT 동작을 예시하고 있다. FBE는 통신 노드가 채널 접속에 성공했을 때 송신을 지속할 수 있는 시간을 의미하는 채널 점유 시간(channel occupancy time)(예, 1~10ms)과 상기 채널 점유 시간의 최소 5%에 해당되는 유휴 기간(idle period)이 하나의 고정(fixed) 프레임을 구성한다. 또한, CCA는 유휴(idle) 기간의 끝 부분에 CCA 슬롯 (최소 20μs) 동안 채널을 관측하는 동작으로 정의된다. 통신 노드는 고정 프레임 단위로 주기적으로 CCA를 수행하고, 채널이 비점유(unoccupied) 상태인 경우에는 채널 점유 시간 동안 데이터를 송신하고 채널이 점유(occupied) 상태인 경우에는 전송을 보류하고 다음 주기의 CCA 슬롯까지 기다린다.
LBE의 경우, 통신 노드는 먼저 q∈{4, 5, ... , 32}의 값을 설정한 후 1개의 CCA 슬롯에 대한 CCA를 수행하고. 첫 번째 CCA 슬롯에서 채널이 비점유 상태이면, 최대 (13/32)q ms 길이의 시간을 확보하여 데이터를 송신할 수 있다. 첫 번째 CCA 슬롯에서 채널이 점유 상태이면 통신 노드는 랜덤하게 N∈{1, 2, ... , q}의 값을 선택하여 카운터의 초기값으로 저장한다. 이후, CCA 슬롯 단위로 채널 상태를 센싱하면서 CCA 슬롯 단위로 채널이 비점유 상태이면 카운터에 저장된 값을 1개씩 줄여나간다. 카운터 값이 0이 되면, 통신 노드는 최대 (13/32)q ms 길이의 시간을 확보하여 데이터를 송신할 수 있다.
LTE/NR 시스템의 eNB/gNB나 UE도 unlicensed 대역(편의상 U-band로 칭함)에서의 신호 전송을 위해서는 LBT를 수행해야 한다. 또한, LTE/NR 시스템의 eNB나 UE가 신호를 전송할 때에 WiFi 등 다른 통신 노드들도 LBT를 수행하여 eNB 나 UE가 전송에 대한 간섭을 발생시키지 않아야 한다. 예를 들어서 WiFi 표준(801.11ac)에서 CCA 임계값(threshold)은 non-WiFi 신호에 대하여 -62dBm로 규정되어 있고, WiFi 신호에 대하여 -82dBm으로 규정되어 있다. 예를 들어, STA(Station)이나 AP(Access Point)에 WiFi 이외의 신호가 -62dBm 이상의 전력으로 수신되면 간섭을 발생시키지 않기 위하여 STA(Station)이나 AP(Access Point)는 다른 신호를 전송하지 않는다.
한편, 단말은 비면허 대역에서의 상향링크 신호 전송을 위해 타입 1 또는 타입 2 CAP를 수행한다. 일반적으로 단말은 상향링크 신호 전송을 위해 기지국이 설정한 CAP(예, 타입 1 또는 타입 2)를 수행할 수 있다. 예를 들어, PUSCH 전송을 스케줄링하는 UL 그랜트(예, DCI 포맷 0_0, 0_1) 내에 단말이 CAP 타입 지시 정보가 포함될 수 있다.
타입 1 UL CAP에서 전송(들) 전에 유휴로 센싱되는 센싱 슬롯에 의해 스팬되는(spanned) 시간 구간의 길이는 랜덤이다. 타입 1 UL CAP는 다음의 전송에 적용될 수 있다.
- 기지국으로부터 스케줄링 및/또는 설정된(configured) PUSCH/SRS 전송(들)
- 기지국으로부터 스케줄링 및/또는 설정된 PUCCH 전송(들)
- RAP(Random Access Procedure) 와 관련된 전송(들)
도 9는 본 개시에 적용 가능한 비면허 대역에서 상향링크 및/또는 하향링크 신호 전송을 위한 단말의 채널 접속 절차 중, 타입 1 CAP 동작을 예시한다.
먼저, 도 9를 참조하여 비면허 대역에서의 상향링크 신호 전송에 대해서 살펴보도록 한다.
단말은 먼저 지연 구간(defer duration) Td의 센싱 슬롯 구간 동안 채널이 휴지 상태인지 센싱하고, 그 후 카운터 N이 0이 되면, 전송을 수행할 수 있다(S934). 이때, 카운터 N은 아래 절차에 따라 추가 센싱 슬롯 구간(들) 동안 채널을 센싱함으로써 조정된다:
스텝 1)(S920) N=N init으로 설정. 여기서, N init은 0 부터 CWp 사이에서 균등 분포된 랜덤 값이다. 이어 스텝 4로 이동한다.
스텝 2)(S940) N>0이고 단말이 카운터를 감소시키기로 선택한 경우, N=N-1로 설정.
스텝 3)(S950) 추가 센싱 슬롯 구간 동안 채널을 센싱한다. 이때, 추가 센싱 슬롯 구간이 휴지인 경우(Y), 스텝 4로 이동한다. 아닌 경우(N), 스텝 5로 이동한다.
스텝 4)(S930) N=0이면(Y), CAP 절차를 종료한다 (S932). 아니면(N), 스텝 2로 이동한다.
스텝 5)(S960) 추가 지연 구간 Td 내에서 비지(busy) 센싱 슬롯이 검출되거나, 추가 지연 구간 Td 내의 모든 센싱 슬롯들이 휴지(idle)로 검출될 때까지 채널을 센싱.
스텝 6)(S970) 추가 지연 구간 Td의 모든 센싱 슬롯 구간 동안 채널이 휴지로 센싱되는 경우(Y), 스텝 4로 이동한다. 아닌 경우(N), 스텝 5로 이동한다.
표 8은 채널 접속 우선 순위 클래스에 따라 CAP에 적용되는 mp, 최소 CW, 최대 CW, 최대 채널 점유 시간(Maximum Channel Occupancy Time, MCOT) 및 허용된 CW 크기(allowed CW sizes)가 달라지는 것을 예시한다.
Channel Access Priority Class (p) mp CWmin,p CWmax,p Tulmcot,p allowed CWp sizes
1 2 3 7 2 ms {3,7}
2 2 7 15 4 ms {7,15}
3 3 15 1023 6 or 10 ms {15,31,63,127,255,511,1023}
4 7 15 1023 6 or 10 ms {15,31,63,127,255,511,1023}
지연 구간 Td는 구간 Tf (16us) + mp개의 연속된 센싱 슬롯 구간 Tsl (9us)의 순서로 구성된다. Tf는 16us 구간의 시작 시점에 센싱 슬롯 구간 Tsl을 포함한다.CWmin,p <= CWp <= CWmax,p이다. CWp는 CWp = CWmin,p로 설정되며, 이전 UL 버스트(예, PUSCH)에 대한 명시적/묵시적 수신 응답에 기반하여 스텝 1 이전에 업데이트 될 수 있다(CW size 업데이트). 예를 들어, CWp는 이전 UL 버스트에 대한 명시적/묵시적 수신 응답에 기반하여, CWmin,p으로 초기화되거나, 다음으로 높은 허용된 값으로 증가되거나, 기존 값이 그대로 유지될 수 있다.
타입 2 UL CAP에서 전송(들) 전에 유휴로 센싱되는 센싱 슬롯에 의해 스팬되는(spanned) 시간 구간의 길이는 결정적이다(deterministic). 타입 2 UL CAP는 타입 2A/2B/2C UL CAP로 구분된다. 타입 2A UL CAP에서 단말은 적어도 센싱 구간 Tshort_dl=25us 동안 채널이 휴지로 센싱된 이후 바로(immediately after) 전송을 전송할 수 있다. 여기서, Tshort_dl은 구간 Tf(=16us)와 바로 다음에 이어지는 하나의 센싱 슬롯 구간으로 구성된다. 타입 2A UL CAP에서 Tf는 구간의 시작 지점에 센싱 슬롯을 포함한다. 타입 2B UL CAP에서 단말은 센싱 구간 Tf=16us 동안 채널이 휴지로 센싱된 이후 바로 전송을 전송할 수 있다. 타입 2B UL CAP에서 Tf는 구간의 마지막 9us 내에 센싱 슬롯을 포함한다. 타입 2C UL CAP에서 단말은 전송을 수행하기 전에 채널을 센싱하지 않는다.
비면허 대역에서 단말의 상향링크 데이터 전송을 위해서는 우선 기지국이 비면허 대역 상 UL 그랜트 전송을 위한 LBT에 성공해야 하고 단말 역시 UL 데이터 전송을 위한 LBT에 성공해야 한다. 즉, 기지국 단과 단말 단의 두 번의 LBT 가 모두 성공해야만 UL 데이터 전송을 시도할 수 있다. 또한 LTE 시스템에서 UL 그랜트로부터 스케줄된 UL 데이터 간에는 최소 4 msec의 지연 (delay)이 소요되기 때문에 해당 시간 동안 비면허 대역에서 공존하는 다른 전송 노드가 우선 접속함으로써 스케줄된 UL 데이터 전송이 지연될 수 있다. 이러한 이유로 비면허 대역에서 UL 데이터 전송의 효율성을 높이는 방법이 논의되고 있다.
NR에서는 상대적으로 높은 신뢰도와 낮은 지연시간을 갖는 UL 전송을 지원하기 위해서, 기지국이 상위 계층 신호 (예, RRC 시그널링) 혹은 상위 계층 신호와 L1 신호 (예, DCI)의 조합으로 시간, 주파수, 및 코드 도메인 자원을 단말에게 설정해 놓는 설정된 그랜트 타입 1과 타입 2를 지원한다. 단말은 기지국으로부터 UL 그랜트를 받지 않아도 타입 1 혹은 타입 2로 설정된 자원을 사용해서 UL 전송을 할 수 있다. 타입 1은 설정된 그랜트의 주기, SFN=0 대비 오프셋, 시간/주파수 자원 할당 (time/freq. resource allocation), 반복 (repetition) 횟수, DMRS 파라미터, MCS/TBS, 전력 제어 파라미터 (power control parameter)등이 L1 신호 없이 모두 RRC와 같은 상위 계층 신호로만 설정된다. 타입 2는 설정된 그랜트의 주기와 전력 제어 파라미터 등은 RRC와 같은 상위 계층 신호로 설정되고, 나머지 자원에 대한 정보 (예, 초기전송 타이밍의 오프셋과 시간/주파수 자원 할당, DMRS 파라미터, MCS/TBS등)는 L1 시그널인 activation DCI로 지시되는 방법이다.
LTE LAA의 AUL과 NR의 configured grant간의 가장 큰 차이는 단말이 UL grant없이 전송한 PUSCH에 대한 HARQ-ACK feedback 전송 방법과 PUSCH 전송 시에 함께 전송되는 UCI의 존재 유무이다. NR Configured grant에서는 symbol index와 주기, HARQ process 개수의 방정식을 사용하여 HARQ process가 결정되지만, LTE LAA에서는 AUL-DFI (downlink feedback information)을 통해서 explicit HARQ-ACK feedback 정보가 전송된다. 그리고 LTE LAA에서는 AUL PUSCH을 전송할 때마다 HARQ ID, NDI, RV등의 정보를 담은 UCI를 AUL-UCI를 통해 함께 전송한다. 또한 NR Configured grant에서는 단말이 PUSCH 전송에 사용한 시간/주파수 자원과 DMRS 자원으로 UE identification하고 LTE LAA에서는 DMRS 자원과 더불어 PUSCH와 함께 전송되는 AUL-UCI에 explicit하게 포함된 UE ID로 단말을 인식한다.
이제, 도 9를 참조하여, 비면허 대역에서의 하향링크 신호 전송에 대해서 살펴보도록 한다.
기지국은 비면허 대역에서의 하향링크 신호 전송을 위해 다음 중 하나의 채널 접속 과정(CAP)을 수행할 수 있다.
(1) 타입 1 하향링크(DL) CAP 방법
타입 1 DL CAP에서 전송(들) 전에 유휴로 센싱되는 센싱 슬롯에 의해 스팬되는(spanned) 시간 구간의 길이는 랜덤이다. 타입 1 DL CAP는 다음의 전송에 적용될 수 있다.
- (i) 사용자 평면 데이터(user plane data)를 갖는 유니캐스트 PDSCH, 또는 (ii) 사용자 평면 데이터를 갖는 유니캐스트 PDSCH 및 사용자 평면 데이터를 스케줄링하는 유니캐스트 PDCCH를 포함하는, 기지국에 의해 개시된(initiated) 전송(들), 또는,
- (i) 디스커버리 버스트만 갖는, 또는 (ii) 비-유니캐스트(non-unicast) 정보와 다중화된 디스커버리 버스트를 갖는, 기지국에 의해 개시된 전송(들).
도 9를 참조하면, 기지국은 먼저 지연 구간(defer duration) Td의 센싱 슬롯 구간 동안 채널이 휴지 상태인지 센싱하고, 그 후 카운터 N이 0이 되면, 전송을 수행할 수 있다(S934). 이때, 카운터 N은 아래 절차에 따라 추가 센싱 슬롯 구간(들) 동안 채널을 센싱함으로써 조정된다:
스텝 1)(S920) N=Ninit으로 설정. 여기서, Ninit은 0 부터 CWp 사이에서 균등 분포된 랜덤 값이다. 이어 스텝 4로 이동한다.
스텝 2)(S940) N>0이고 기지국이 카운터를 감소시키기로 선택한 경우, N=N-1로 설정.
스텝 3)(S950) 추가 센싱 슬롯 구간 동안 채널을 센싱한다. 이때, 추가 센싱 슬롯 구간이 휴지인 경우(Y), 스텝 4로 이동한다. 아닌 경우(N), 스텝 5로 이동한다.
스텝 4)(S930) N=0이면(Y), CAP 절차를 종료한다(S1232). 아니면(N), 스텝 2로 이동한다.
스텝 5)(S960) 추가 지연 구간 Td 내에서 비지(busy) 센싱 슬롯이 검출되거나, 추가 지연 구간 Td 내의 모든 센싱 슬롯들이 휴지(idle)로 검출될 때까지 채널을 센싱.
스텝 6)(S970) 추가 지연 구간 Td의 모든 센싱 슬롯 구간 동안 채널이 휴지로 센싱되는 경우(Y), 스텝 4로 이동한다. 아닌 경우(N), 스텝 5로 이동한다.
표 9는 채널 접속 우선 순위 클래스에 따라 CAP에 적용되는 mp, 최소 경쟁 윈도우(Contention Window, CW), 최대 CW, 최대 채널 점유 시간(Maximum Channel Occupancy Time, MCOT) 및 허용된 CW 크기(allowed CW sizes)가 달라지는 것을 예시한다.
Channel Access Priority Class (p) m p CWmin,p CWmax,p Tmcot,p allowed CWp sizes
1 1 3 7 2 ms {3,7}
2 1 7 15 3 ms {7,15}
3 3 15 63 8 or 10 ms {15,31,63}
4 7 15 1023 8 or 10 ms {15,31,63,127,255,511,1023}
지연 구간 Td는 구간 Tf (16us) + mp개의 연속된 센싱 슬롯 구간 Tsl (9us)의 순서로 구성된다. Tf는 16us 구간의 시작 시점에 센싱 슬롯 구간 Tsl을 포함한다.
CWmin,p <= CWp <= CWmax,p이다. CWp는 CWp = CWmin,p로 설정되며, 이전 DL 버스트(예, PDSCH)에 대한 HARQ-ACK 피드백(예, ACK 또는 NACK 비율)에 기반하여 스텝 1 이전에 업데이트 될 수 있다(CW size 업데이트). 예를 들어, CWp는 이전 DL 버스트에 대한 HARQ-ACK 피드백에 기반하여, CWmin,p으로 초기화되거나, 다음으로 높은 허용된 값으로 증가되거나, 기존 값이 그대로 유지될 수 있다.
(2) 타입 2 하향링크(DL) CAP 방법
타입 2 DL CAP에서 전송(들) 전에 유휴로 센싱되는 센싱 슬롯에 의해 스팬되는(spanned) 시간 구간의 길이는 결정적이다(deterministic). 타입 2 DL CAP는 타입 2A/2B/2C DL CAP로 구분된다.
타입 2A DL CAP는 아래의 전송에 적용될 수 있다. 타입 2A DL CAP에서 기지국은 적어도 센싱 구간 Tshort_dl=25us 동안 채널이 휴지로 센싱된 이후 바로(immediately after) 전송을 전송할 수 있다. 여기서, Tshort_dl은 구간 Tf(=16us)와 바로 다음에 이어지는 하나의 센싱 슬롯 구간으로 구성된다. Tf는 구간의 시작 지점에 센싱 슬롯을 포함한다.
- (i) 디스커버리 버스트만 갖는, 또는 (ii) 비-유니캐스트(non-unicast) 정보와 다중화된 디스커버리 버스트를 갖는, 기지국에 의해 개시된 전송(들), 또는,
- 공유 채널 점유(shared channel occupancy) 내에서 단말에 의한 전송(들)으로부터 25us 갭 이후의 기지국의 전송(들).
타입 2B DL CAP는 공유된 채널 점유 시간 내에서 단말에 의한 전송(들)로부터 16us 갭 이후에 기지국에 의해 수행되는 전송(들)에 적용 가능하다. 타입 2B DL CAP에서 기지국은 Tf=16us 동안 채널이 휴지로 센싱된 이후 바로(immediately after) 전송을 전송할 수 있다. Tf는 구간의 마지막 9us 내에 센싱 슬롯을 포함한다. 타입 2C DL CAP는 공유된 채널 점유 시간 내에서 단말에 의한 전송(들)로부터 최대 16us 갭 이후에 기지국에 의해 수행되는 전송(들)에 적용 가능하다. 타입 2C DL CAP에서 기지국은 전송을 수행하기 전에 채널을 센싱하지 않는다.
제안 방법에 앞서 본 개시에 적용되는 비면허 대역을 위한 NR 기반의 채널접속 방식 (channel access scheme)을 아래와 같이 분류할 수 있다.
-Category 1 (Cat-1): COT 내에서 이전 전송이 끝난 직후에 짧은 스위칭 갭(switching gap) 이후 바로 다음 전송이 이루어지며, 이 switching gap은 16us보다 짧고, 트랜시버 처리 시간(transceiver turnaround 시간)까지 포함된다. Cat-1 LBT는 상술한 타입 2C CAP에 대응될 수 있다.
-Category 2 (Cat-2): 백-오프 없는 LBT 방법으로 전송 직전 특정 시간 동안 채널이 idle한 것이 확인되면 바로 전송이 가능하다. Cat-2 LBT는 전송 직전 채널 센싱에 필요한 최소 센싱 구간의 길이에 따라 세분화될 수 있다. 예를 들어, 최소 센싱 구간의 길이가 25us인 Cat-2 LBT는 상술한 타입 2A CAP에 대응될 수 있고, 최소 센싱 구간의 길이가 16us인 Cat-2 LBT는 상술한 타입 2B CAP에 대응될 수 있다. 최소 센싱 구간의 길이는 예시적인 것이며, 25us 또는 16us보다 짧은 (예를 들면, 9us) 것도 가능하다.
-Category 3 (Cat-3): 고정된 CWS를 가지고 백-오프하는 LBT 방법으로 전송 장치(transmitting entity)가 0부터 최대 (maximum) 경쟁 윈도우 사이즈 (contention window size, CWS) 값(고정) 내에서 랜덤 숫자 N을 뽑아 채널이 idle한 것이 확인될 때마다 counter 값을 감소시켜 나가다가 counter 값이 0이 된 경우에 전송 가능하다.
-Category 4 (Cat-4): 변동 CWS를 가지고 백-오프 하는 LBT 방법으로 전송 장치가 0부터 maximum CWS값(변동) 내에서 랜덤 숫자 N을 뽑아 채널이 idle한 것이 확인될 때마다 counter 값을 감소시켜 나가다가 counter 값이 0이된 경우에 전송이 가능한데, 수신 측으로부터 해당 전송이 제대로 수신되지 못했다는 피드백을 받은 경우에 maximum CWS값이 한 단계 높은 값으로 증가되고, 증가된 CWS값 내에서 다시 랜덤 숫자를 뽑아서 LBT 절차를 다시 수행하게 된다. Cat-4 LBT는 상술한 타입 1 CAP에 대응될 수 있다.
이하에서, 밴드(대역)는 CC/셀과 호환될 수 있다. 또한, CC/셀 (인덱스)는 CC/셀 내에 구성된 BWP (인덱스), 또는 CC/셀 (인덱스)와 BWP (인덱스)의 조합으로 대체될 수 있다.
먼저, 다음과 같이 용어를 정의한다.
- UCI: 단말이 UL 전송하는 제어 정보를 의미한다. UCI는 여러 타입의 제어 정보(즉, UCI 타입)을 포함한다. 예를 들어, UCI는 HARQ-ACK (간단히, A/N, AN), SR, CSI를 포함할 수 있다.
- PUCCH: UCI 전송을 위한 물리계층 UL 채널을 의미한다. 편의상, A/N, SR, CSI 전송을 위해, 기지국이 설정한 및/또는 전송을 지시한 PUCCH 자원을 각각 A/N PUCCH 자원, SR PUCCH 자원, CSI PUCCH 자원으로 명명한다.
- UL 그랜트 (grant) DCI: UL 그랜트에 대한 DCI를 의미한다. 예를 들어, DCI 포맷 0_0, 0_1을 의미하며, PDCCH를 통해 전송된다.
- DL 할당 (assignment)/그랜트 (grant) DCI: DL 그랜트에 대한 DCI를 의미한다. 예를 들어, DCI 포맷 1_0, 1_1을 의미하며, PDCCH를 통해 전송된다.
- PUSCH: UL 데이터 전송을 위한 물리계층 UL 채널을 의미한다.
- 슬롯: 데이터 스케줄링을 위한 기본 시간 단위(time unit (TU), 또는 time interval)를 의미한다. 슬롯은 복수의 심볼을 포함한다. 여기서, 심볼은 OFDM-기반 심볼(예, CP-OFDM 심볼, DFT-s-OFDM 심볼)을 포함한다. 본 명세서에서 심볼, OFDM-기반 심볼, OFDM 심볼, CP-OFDM 심볼 및 DFT-s-OFDM 심볼은 서로 대체될 수 있다.
- 채널 X에 대해/채널 X를 대상으로 LBT 수행: 채널 X를 전송할 수 있는지 확인하기 위해 LBT를 수행하는 것을 의미한다. 예를 들어, 채널 X의 전송 시작 전에 CAP 절차를 수행할 수 있다.
NR 시스템에서 24.25GHz 부터 52.6GHz까지의 대역과 같은 mmWave 대역을 frequency range 2 (FR2)라 정의할 수 있다. 한편, NR-U에서는 52.6GHz 이상 100GHz이하의 고주파수 대역내의 비-면허 대역에서의 동작도 고려하고 있어, 해당 고주파수 대역에서의 단말 및 기지국의 동작을 정의할 필요가 있다.
특히, 본 개시에서는 57GHz에서 70GHz사이 대역을 Frequency Range 4(FR4)로 명명하고, FR4 대역의 각국 규정(regulation) 또는 해당 대역에서 동작하는 WiGig 시스템 등과 같이 공존하는 다른 시스템들을 고려하여, NR 시스템을 확장하여 동작시키기 방법을 살펴보도록 한다.
ETSI EN 302 567와 같은 유럽 규정(regulation)에서는 60GHz대역의 전력 요구 사항(power requirement)으로 EIRP(Effective Isotropically Radiated Power) 기준 평균 출력 전력(mean output power)은 40dBm이고, 전력 스펙트럼 밀도 제한 (power spectral density limit)은 13dBm/MHz이다. 또한, 스펙트럼 접속(Spectrum access)을 위해서는 LBT(Listen Before Talk)와 같은 적절한 스펙트럼 공유 메커니즘(adequate spectrum sharing mechanism)을 요구할 수 있다.
예를 들어, 최대 COT (channel occupancy time)의 길이는 9ms보다 작고 CCA (clear channel assessment) 슬롯 구간(slot duration)은 5us로 설정될 수 있다. 또한, extended CCA check times 은 8us + m x 5us일 수 있다. 여기서, m은 0과 127 사이에서 임의로 뽑은 정수일 수 있다.
또한, NCB (Nominal channel bandwidth)는 제조사에 의해 정해진 값을 따르며 OCB (occupied channel bandwidth)는 정해진 NCB의 70% 이상이고, 100% 이하가 되도록 설정될 수 있다. 다만, COT내의 최소 OCB에 대한 조건은 현재 없다.
한편, 상술한 60GHz대역의 규정(regulation) 내용은 ETSI EN 302 567 v2.1.1을 기준으로 작성한 것으로 추후 업데이트에 의해 추가 및 수정 될 수 있다.
60GHz대역에서 동작하는 WiGig (802.11ad/ay) 시스템은 NCB가 2.16GHz이다. 또한, 2.4GHz나 5GHz에서 동작하는 Wi-Fi (802.11ac/ax 등)가 전송 전 20MHz 단위로 LBT를 수행하고 신호를 송수신하는 것과 유사하게, WiGig에서는 2.16GHz를 하나의 채널로 정의하고 AP와 STA가 해당 2.16GHz 채널 단위로 LBT를 수행하고, 신호를 송수신 할 수 있다. 또한, 채널 접속 절차에서 수행되는 LBT에서 PD (preamble detection) 임계값(threshold) 값은 -68dBm으로 정의되고, ED (energy detection) 임계값(threshold)값은 -48dBm으로 정의될 수 있다.
한편, 국가 별 60GHz 대역의 채널 분배 (channelization) 현황은 도 10과 같다.
한편, 아래의 [수학식 1]에서와 같이 Wi-Fi (802.11ac/ax)에서 정의되는 있는 PHY 파라미터들 간의 공식은 WiGig (802.11ad/ay)에서도 동일하게 적용될 수 있다.
[수학식 1]
aSIFSTime = aRxRFDelay + aRxPLCPDelay + aMACProcessingDelay + aRxTxTurnaroundTime
aSlotTime = aCCATime + aRxTxTurnaroundTime + aAirPropagationTime + aMACProcessingDelay.
PIFS = aSIFSTime + aSlotTime
DIFS = aSIFSTime + 2 × aSlotTime
또한, Wi-Fi (802.11ac/ax)와 WiGig (802.11ad/ay) 간의 주요 PHY 파라미터들을 비교하면 [표 10]과 같다.
PHY parameter Value (802.11ad/ay) Value (802.11ac/ax)
aRIFSTime 1 us 2 us
aSIFSTime 3 us 16 us
aRxTxTurnaroundTime < 1 us < 2 us
aCCATime < 3 us < 4 us
aRxTxSwitchTime < 1 us << 1 us
aAirPropagationTime < 100 ns << 1 us
aSlotTime 5 us 9 us
aCWmin 15 15
aCWmax 1023 1023
[수학식 1] 및 [표 10]을 참고하면, Wi-Fi에서 전송 간의 갭(gap)이 16us일 때의 Cat-1 LBT 및 16us Cat-2 LBT는 각각 WiGig에서 3us Cat-1 LBT 혹은 3us Cat-2 LBT와 대응될 수 있다. 전송 간의 갭(gap)이 25us일 때의 25us Cat-2 LBT는 WiGig에서 13us Cat-2 LBT에 대응될 수 있다.
본 개시에서는 FR4 대역에서 동작할 NR 시스템을 설계하기 위하여, 상술한 바와 같은 60GHz 대역의 규정(regulation) 및 다른 공존 시스템(예를 들어, WiGig)을 고려하여 비-면허 고주파 대역에서의 상향링크 및 하향링크 송수신을 위한 채널 접속 절차와 상향링크 및 하향링크의 송수신 방법들을 제안하도록 한다.
2.4GHz 또는 5GHz 비면허대역에서 기지국(또는 AP) 또는 단말(또는 STA)이 신호를 전송하기 위하여 LBT와 같은 채널 접속 절차를 수행하고 채널의 IDLE/BUSY 여부 판단 후, 신호의 전송 여부를 결정하였다.
이와 유사하게, 60GHz와 같은 고주파수 비면허대역에서도 LBT와 같은 채널 접속 메커니즘의 수행이 필요할 수 있다. LTE LAA 혹은 NR-U에서는 Wi-Fi와 유사한 채널 접속 절차를 수행하였었지만, FR4 대역에서 동작할 NR 시스템은 다른 공존 시스템(예를 들어, WiGig)과 LBT를 수행하는 단위 대역폭 혹은 송/수신 절차에서 기존의 Wi-Fi와는 차이가 있을 수 있기 때문에 새로운 채널 접속 방법이 필요할 수 있다.
구체적으로, WiGig를 예로 들면, WiGig는 2.16GHz을 하나의 채널 단위로 송수신하고, ED 임계값(threshold)을 -48 dBm 으로 설정하여, CAT-4 LBT를 수행하며, max output power을 40dBm로 전송할 수 있다. 상술한 바를 기반으로, 이하에서는 FR4 대역에서 동작하는 NR 시스템의 CC BW의 크기가 WiGig와 같은 다른 공존 시스템의 LBT BW보다 같거나 작은 경우에 CAT-4 LBT BW와 max output power 및 ED 임계값(threshold)을 설정하는 방법에 대해서 살펴보도록 한다.
본 개시에서는, FR4 대역에서 동작하는 NR 시스템의 CC BW에 따른 max output power와 ED 임계값(threshold)들의 설정 방법을 주로 제안할 것이기 때문에, 설명의 편의를 위하여, 명확한 기술과 일반화를 위해서 참조 LBT 파라미터 셋(Reference LBT parameter set)을 {reference (LBT) BW, reference (max output) power, reference ED}와 같이 정의하도록 한다.
각각의 파라미터 (즉, reference (LBT) BW, reference (max output) power, reference ED)의 경우, U-band 규정(regulation) 및/또는 non-3GPP RAT에서 규정/정의하는 (nominal) system BW 및 해당 BW 사이즈에 대응하거나 허용되는 max output power 그리고 해당 BW 및/또는 전력을 기반으로 LBT 수행 시에 적용되는 ED 임계값(threshold)으로 설정될 수 있다. 예를 들어, WiGig 시스템을 참조 공존 시스템으로 고려할 경우 {WiGig LBT BW or CH BW (Z=2.16GHz), P max(=40dBm), T WiGig(=-48dBm)}로 참조 LBT 파라미터 셋이 정의될 수 있다.
한편, 본 개시에서 설명하는 실시 예들은, 설명의 편의를 위해 WiGig 시스템을 참조 공존 시스템으로 정의하고, 이를 기반으로 설명한다. 하지만, 아래의 실시 예들이 반드시 WiGig 시스템이 참조 공존 시스템인 경우에만 적용되는 것은 아니며, 본 개시에서 정의하고 설명하는 FR4 대역에서 NR-U 시스템과 공존할 수 있는 무선 통신 시스템이라면, 어떠한 시스템도 참조 공존 시스템으로 정의하여, 후술하는 실시 예들이 적용될 수 있다.
도 11 내지 도 12는 후술하는 본 개시의 실시 예들에 따른 단말 및 기지국의 동작 과정 전반을 설명하기 위한 도면이다.
도 11은, 후술하는 본 개시의 실시 예들에 따라, 하향링크 신호를 송수신하는 전반적인 동작 과정을 설명하기 위한 도면이다.
도 11을 참조하면, 기지국은 Unit LBT BW 를 설정하고(S1101), 하향링크 신호를 위한 max output power 및 ED 임계값을 획득할 수 있다(S1103). 이 때, max output power 및 ED 임계값은 Unit LBT BW를 기반으로 획득될 수 있다. 구체적인 Unit LBT BW, max output power 및 ED 임계값을 설정하는 방법 및 Unit LBT BW, max output power 및 ED 임계값의 예시는 후술하는 [제안 방법 #1] 내지 [제안 방법 #4]에 기반할 수 있다.
기지국은 설정된 Unit LBT BW 단위로 설정된 ED 임계값을 기반으로 LBT를 수행하고(S1105), LBT 결과에 따라 설정된 max output power을 기반으로 하향링크 신호를 단말에 전송할 수 있다(S1107). 이 때, 구체적인 하향링크 신호의 전송 방법은 후술하는 [제안 방법 #1] 내지 [제안 방법 #4]에 기반할 수 있다.
도 12는, 후술하는 본 개시의 실시 예들에 따라, 상향링크 신호를 송수신하는 전반적인 동작 과정을 설명하기 위한 도면이다.
도 12를 참조하면, 기지국은 Unit LBT BW를 설정하기 위한 정보를 단말에게 전송할 수 있다(S1201). 이 때, 상기 Unit LBT BW를 설정하기 위한 정보는 RRC (Radio Resource Configuration) 신호를 통해 전송될 수도 있고, DCI (Downlink Control Information)을 통해 전송될 수도 있다. 또한, S1201 과정이 생략되고, Unit LBT BW가 단말에 기 설정되어 있을 수 도 있다.
단말은 max output power 및 ED 임계값을 획득할 수 있다(S1203). 이 때, max output power 및 ED 임계값은 설정된 Unit LBT BW를 기반으로 설정될 수 있다. 구체적인 Unit LBT BW, max output power 및 ED 임계값을 설정하는 방법 및 Unit LBT BW, max output power 및 ED 임계값의 예시는 후술하는 [제안 방법 #1] 내지 [제안 방법 #4]에 기반할 수 있다.
단말은 설정된 Unit LBT BW 단위로 설정된 ED 임계값을 기반으로 LBT를 수행하고(S1205), LBT 결과에 따라 설정된 max output power을 기반으로 상향링크 신호를 기지국에 전송할 수 있다(S1207). 이 때, 구체적인 상향링크 신호의 전송 방법은 후술하는 [제안 방법 #1] 내지 [제안 방법 #4]에 기반할 수 있다.
[제안 방법 #1]
단말 혹은 기지국의 Component Carrier(CC) BW는 Y ≤ W NR ≤ Z 일 수 있다. 여기서, W NR은 기지국 혹은 단말의 CC BW일 수 있고, Z는 다른 공존 시스템(예를 들어, WiGig)의 LBT BW일 수 있다. 또한, Y는 규정(Regulation)에서 정의하는, 시스템의 max output power이 허용되는 최소 BW를 의미할 수 있다. 예를 들어, max output power은 참조 전력으로 사용될 수 있으며, 40dBm일 수 있다.
구체적으로, Y의 경우 PSD limit L (dBm/MHz)과 Pmax (dBm) 제한에 의해서 결정되는 BW 크기로, Y (dB) + L (dBm/MHz) = Pmax (dBm)를 만족하는 값일 수 있다. 그리고 T WiGig는 상기 참조 ED 임계값(reference ED threshold)일 수 있다.
예를 들어, T WiGig는 다른 공존 시스템(예를 들어, WiGig)이 CAT-4 LBT 수행 시 사용하는 ED 임계값일 수 있다. 또한, Pmax은 단말 혹은 기지국에게 허용되는 max output power 또는 규정(regulation)에서 정의하는 시스템의 max output power을 의미할 수 있다. 예를 들어, 시스템의 최대 출력은 max output power은 참조 전력으로 사용될 수 있으며, 40dBm일 수 있다.
더 구체적인 예로, L=13dBm/MHz이고 Pmax가 40dBm인 경우, Y는 500MHz (27dB)가 된다. 이에 따라 LBT 파라미터 셋(parameter set)이 {BW, (max output) power, ED}으로 정의되는 경우, NR 시스템은 {W NR, P NR, T NR}으로 정의될 수 있다. 또한, NR 시스템의 파라미터 셋을 정의하기 위한 참조 파라미터 셋으로 고려되는 다른 공존 시스템(예를 들어, WiGig)의 파라미터 셋은 {Z, P max, T WiGig}으로 표현될 수 있다.
이에 대하여, 도 13 내지 도 14를 참조하여, 더 상세하게 살펴보도록 한다.
도 13을 참조하면, 다른 공존 시스템(예를 들어, WiGig)의 ED threshold=-48dBm를 기반으로 Z=2.16GHz 단위로 LBT (예를 들어, CAT-4 LBT)를 수행하고 max output power=40dBm으로 전송을 할 때, 540MHz CC BW가 설정된 단말 혹은 기지국이 도 13에서 보는 것과 같이, 다른 공존 시스템(예를 들어, WiGig)의 LBT BW내에 설정될 수 있다.
도 13에서, 규정(Regulation)의 전력 요구(power requirement)가 최대 PSD limit=13 dBm/MHz, max output power=40 dBm이라면, 다른 공존 시스템(예를 들어, WiGig)과 NR 반송파(carrier)가 각각에 대응하는 최대 대역폭을 사용해서 전송한다면, 최대 PSD (Power Spectral Density)는 각각 7dBm/MHz, 13dBm/MHz이므로, 총 output power는 40dBm으로 동일하다. 따라서, NR 반송파(carrier)의 CC BW가 다른 공존 시스템(예를 들어, WiGig)의 LBT BW내에 일부만을 차지하더라도 NR 반송파(carrier)를 통한 신호의 전송이 수행 중일 때에는, 다른 공존 시스템(예를 들어, WiGig)의 노드 입장에서는 채널이 BUSY한 것으로 간주할 수 있고, 이에 따라 다른 공존 시스템(예를 들어, WiGig)의 신호 전송을 지연될 수 있다.
도 14를 참조하면, 2.16GHz의 다른 공존 시스템(예를 들어, WiGig)의 LBT BW내에 1.08GHz의 CC BW의 NR 반송파(carrier)가 2개 설정된 경우에도, NR 반송파 1 혹은 NR 반송파 2가 총 output power=40dBm으로 전송한다면, 다른 공존 시스템(예를 들어, WiGig)의 노드 입장에서는 채널이 BUSY한 것으로 간주할 수 있고, 이에 따라 다른 공존 시스템(예를 들어, WiGig)의 신호 전송을 지연될 수 있다.
따라서, 도 13 내지 도 14의 경우에서와 같이, NR 시스템과 WiGig와 같은 다른 시스템이 공존하는 경우에, 다른 공존 시스템과 NR 시스템이 효율적으로 공존하여 통신을 수행할 수 있도록 하는 방안이 필요하며, 이하 이러한 방안에 대해서 살펴보도록 한다.
실시 예 #1-1
단말 또는 기지국이 LBT (예를 들어, CAT-4 LBT)를 수행하는 Unit LBT BW를 NR의 CC BW와 동일하게 설정하고 항상 max output power = P max (dBm)로 신호를 전송하고, ED 임계값 = T WiGig (dBm)를 기반으로 LBT를 수행하도록 할 수 있다. 이 때, CC BW는 참조 BW인 Z(예를 들어, WiGig의 LBT BW)와 동일하거나 작을 수 있다. 다시 말해, NR 시스템의 LBT 파라미터 셋을 {W NR( <Z), P max, T WiGig}로 설정할 수 있다.
이 때, NR 단말 혹은 기지국의 CC BW가 W NR < Y 일 때에는, 규정(regulation)에 정의된 max PSD으로 CC BW 크기만큼 전송했을 때의 power를 max output power로 설정하고, 이를 기반으로 ED 임계값이 설정될 수 있다. 예를 들어, NR의 CC BW x max PSD로 max output power가 계산되고, 해당 max output power을 기반으로 ED 임계값이 결정될 수 있다.
구체적으로, 실시 예 #1-1은 NR 반송파가 LBT (예를 들어, CAT-4 LBT)를 수행하는 Unit LBT BW를 NR의 CC BW와 동일하게 설정하고 항상 max output power = P max (dBm)로 신호를 전송하고, ED 임계값 = T WiGig (dBm)을 기반으로 LBT를 수행하는 방법이다. 예를 들어, 규정(Regulation)에서 허용하는 최대 PSD limit이 13dBm/MHz이고 P max가 40dBm이라면 Y=540MHz 이상의 CC BW의 NR 반송파를 통해 단말 또는 기지국은 다른 공존 시스템(예를 들어, WiGig) 노드가 2.16GHz에서 전송하는 max output power와 동일한 max output power값을 기반으로 신호를 전송할 수 있다.
따라서, 540MHz 이상의 CC BW의 NR 반송파는 다른 공존 시스템(예를 들어, WiGig)의 LBT BW내에 일부만을 차지하더라도, NR 반송파를 통한 전송으로 인하여 다른 공존 시스템(예를 들어, WiGig)의 노드는 해당 시스템의 BW인 2.16GHz 채널 전체가 BUSY한 것으로 간주할 수 있다.
그러므로, 다른 공존 시스템(예를 들어, WiGig)의 LBT BW내에 복수의 NR 반송파를 위한 ED 임계값을 다른 공존 시스템과 동일하게 T WiGig=-48dBm으로 설정한다면, 다른 공존 시스템(예를 들어, WiGig)의 노드는 2 개의 NR 반송파들 중 하나 이상의 반송파를 통해 신호가 전송 중인 것으로 판단하면, 다른 공존 시스템의 BW인 2.16GHz 채널 전체가 BUSY한 것으로 판단하고 신호의 전송을 지연시킬 수 있다.
반면, 단말 또는 기지국은 NR 반송파의 CC BW 기준으로 CAT-4 LBT를 수행하기 때문에 2.16GHz 단위의 CAT-4 LBT를 수행하는 다른 공존 시스템(예를 들어, WiGig)의 노드에 비해서 채널 접속 기회가 증가할 수 있다.
실시 예 #1-1을 LBT 파라미터 셋(parameter set)으로 표현하면, {W NR( <Z), P max, T WiGig}로 표현될 수 있다. 다시 말해, 실시 예 #1-1은 다른 공존 시스템(예를 들어, WiGig)의 LBT BW 이하의 Unit LBT BW에 대해 LBT를 수행하되, LBT 수행에 이용되는 ED 임계값 및 신호 전송에 이용되는 max output power은 다른 공존 시스템(예를 들어, WiGig)와 동일하게 사용하는 방법이다.
만약, NR 단말 혹은 기지국의 CC BW가 W NR < Y 인 경우에는, 규정(regulation)에 정의된 max PSD을 이용하여 CC BW 크기만큼의 전송이 수행됐을 때의 power를 max output power로 설정하고, 이를 기반으로 ED 임계값이 설정될 수 있다. 예를 들어, NR 시스템의 CC BW x max PSD = max output power로 계산되고, 해당 max output power를 기반으로 ED 임계값이 결정될 수 있다.
실시 예 #1-2
단말 또는 기지국이 LBT (예를 들어, CAT-4 LBT)를 수행하는 Unit LBT BW를 참조(reference) BW인 Z (예를 들어, WiGig의 LBT BW)와 동일하게 설정하고 항상 max output power = P max (dBm)를 기반으로 신호를 전송하며, ED 임계값 = T WiGig (dBm)을 이용하여 LBT를 수행할 수 있다. 다시 말해, NR 시스템의 LBT 파라미터 셋(parameter set)을 {Z, P max, T WiGig}로 설정할 수 있다.
만약, NR 단말 혹은 기지국의 CC BW가 W NR < Y 일 때에는, 규정(regulation)에 정의된 max PSD을 이용하여 CC BW 크기만큼의 전송이 수행됐을 때의 power를 max output power로 설정하고, 이를 기반으로 ED 임계값이 설정될 수 있다. 예를 들어, NR의 CC BW x max PSD = max output power로 계산되고, 해당 max output power을 기반으로 ED 임계값이 결정될 수 있다.
다시 말해, 실시 예 #1-2는 단말 또는 기지국이 LBT (예를 들어, CAT-4 LBT)를 수행하는 Unit LBT BW를 참조(reference) BW인 Z (예를 들어, WiGig의 LBT BW)와 동일하게 설정하여 항상 max output power = P max (dBm)를 기반으로 신호를 전송하고, ED 임계값 = T WiGig (dBm)을 기반으로 LBT를 수행하는 것으로서, 다른 공존 시스템(예를 들어, WiGig)와의 공평한 공존(fair coexistence)을 고려한 것이다.
실시 예 #1-2를 LBT 파라미터 셋(parameter set)으로 표현하면, {Z, P max, T WiGig}이 될 수 있다. 즉, unit LBT BW를 참조(Reference) BW인 Z (예를 들어, WiGig와 동일한 LBT BW)로 설정하고, max output power = P max로 설정하며, ED 임계값 = T WiGig로 설정할 수 있다.
만약, NR 단말 혹은 기지국의 CC BW가 W NR < Y 일 때에는, 규정(regulation)에 정의된 max PSD으로 CC BW 크기만큼의 전송이 수행됐을 때의 power를 max output power로 설정하고, 이를 기반으로 ED 임계값이 설정될 수 있다. 예를 들어, NR의 CC BW x max PSD = max output power가 계산되고, 해당 max output power에 따라서 ED 임계값이 결정될 수 있다.
실시 예 #1-3
단말 또는 기지국이 LBT (예를 들어, CAT-4 LBT)를 수행하는 Unit LBT BW를 NR의 CC BW와 동일하게 설정하고 CC BW인 W NR이 참조(reference) BW인 Z (예를 들어, WiGig의 LBT BW)와 동일할 때는 max output power = P max (dBm)로 신호를 전송하고, ED 임계값 = T WiGig (dBm)를 기반으로 LBT가 수행될 수 있다. 한편, W NR이 참조 (reference) BW인 Z (예를 들어, WiGig의 LBT BW)보다 작을 때는 Z 대비 W NR의 크기에 비례하여 P max 대비 더 낮은 max output power = P NR을 설정하고, P max 대비 감소한 P NR만큼 T WiGig대비 더 높은 ED 임계값 = T NR 를 이용하여 LBT가 수행되도록 할 수 있다. 다시 말해, NR 시스템의 LBT 파라미터 셋을 {W NR( <Z), P NR (<P max), T NR(>T WiGig)}로 설정할 수 있다.
만약, NR 단말 혹은 기지국의 CC BW가 W NR < Y 일 때에도, 상기와 동일한 원리로 max output power 및 ED 임계값이 결정될 수 있다. 예를 들어, Y 대비 W NR의 크기에 비례하여 P max 대비 더 낮은 max output power = P NR을 설정하고, P max 대비 감소한 P NR만큼 더 높은 ED 임계값 = T NR을 설정하여, 설정된 T NR을 기반으로 LBT가 수행되도록 할 수 있다.
실시 예 #1-3은 단말 또는 기지국이 LBT (예를 들어, CAT-4 LBT)를 수행하는 Unit LBT BW를 NR의 CC BW와 동일하게 설정하고, CC BW인 W NR이 참조(reference) BW인 Z (예를 들어, WiGig LBT BW)와 동일할 때에는 실시 예 #1-2와 같이 max output power = P max (dBm)를 기반으로 신호를 전송하고, ED 임계값 = T WiGig (dBm)을 이용하여 LBT가 수행될 수 있다.
한편, W NR이 참조(Reference) BW인 Z (예를 들어, WiGig의 LBT BW)보다 작을 때는 Z 대비 W NR의 크기에 비례하여 P max 대비 감소한 max output power = P NR를 이용하여 신호를 전송하고, 감소한 max output power만큼 T WiGig대비 증가된 ED 임계값 = T NR을 설정하여, 설정된 T NR을 기반으로 LBT가 수행될 수 있다.
예를 들어, 도 14를 참조하면, NR 반송파(carrier) 1과 NR 반송파 2의 CC BW는 WiGig의 LBT BW인 2.16GHz의 절반인 1.08GHz이므로, 단말 또는 기지국은 1.08GHz 단위의 CAT-4 LBT를 수행할 수 있다.
NR 시스템이 WiGig 대비 작은 LBT BW로 LBT를 수행하기 때문에 각 반송파 별 max output power를 WiGig의 P max대비 감소시켜 전송할 수 있다. 또한, ED 임계값은 max output power와 반비례 관계로 설정할 수 있다. 즉, 적은 power를 기반으로 신호를 전송하면, LBT 의 성공 여부를 판단하는 것에 대한 민감도를 감소시킬 수 있도록 증가된 ED 임계값을 이용하여 단말 또는 기지국이 LBT를 수행함으로써, 상대적으로 NR 시스템에서의 채널 접속 기회를 증가 시킬 수 있다. 다시 말해, NR 반송파는 max output power를 P max대비 감소시키는 대신에 ED 임계값은 T WiGig대비 감소한 max output power만큼 증가시키고, 증가된 ED 임계값을 기반으로 단말 또는 기지국이 LBT를 수행할 수 있다.
실시 예 #1-3을 LBT 파라미터 셋(parameter set)으로 표현하면, {W NR( <Z), P NR (<P max), T NR(>T WiGig)}일 수 있다. 즉, 다른 공존 시스템(예를 들어, WiGig)의 LBT BW 이하의 LBT BW를 설정하고, P max대비 감소한 max output power를 설정하며, T WiGig대비 증가된 ED Threshold를 설정하는 방법이다. 만약, NR 단말 혹은 기지국의 CC BW가 W NR < Y 일 때에는, 규정(regulation)에 정의된 max PSD을 기반으로 CC BW 크기만큼의 전송이 수행됐을 때의 power를 max output power로 설정할 수 있다. 예를 들어, NR의 CC BW x max PSD = max output power로 계산될 수 있다. 한편, ED 임계값은 실시 예 #1-3에서 상술한 바와 동일한 원리로 설정/결정될 수 있다.
실시 예 #1-4
단말 또는 기지국이 LBT (예를 들어, CAT-4 LBT)를 수행하는 Unit LBT BW를 NR의 CC BW와 동일하게 설정하고, CC BW인 W NR이 참조(reference) BW인 Z (예를 들어, WiGig의 LBT BW)와 동일한 경우, max output power = P max (dBm)로 신호를 전송하고, ED 임계값 = T WiGig (dBm)을 기반으로 LBT가 수행될 수 있다.
한편, W NR이 참조(reference) BW인 Z(예를 들어, WiGig의 LBT BW)보다 작을 때는 max output power는 그대로 P max (dBm)을 사용하되, ED 임계값은 참조(reference) BW인 Z 대비 W NR의 크기에 비례하여 T WiGig대비 더 감소한 ED 임계값 = T NR을 기반으로 LBT가 수행되도록 할 수 있다. 다시 말해, NR 시스템의 LBT 파라미터 셋을 {W NR( <Z), P max, T NR(<T WiGig)}로 설정할 수 있다.
만약, NR 단말 혹은 기지국의 CC BW가 W NR < Y 일 때에는, 규정(regulation)에 정의된 max PSD을 기반으로 CC BW 크기만큼의 전송이 수행됐을 때의 power를 max output power로 설정할 수 있다. 예를 들어, NR의 CC BW x max PSD = max output power로 계산될 수 있다. 한편, ED 임계값은 실시 예 #1-4에서 설명하는 것과 동일한 원리로 설정/결정될 수 있다.
단, NR 단말 혹은 기지국의 CC BW는 복수의 다른 공존 시스템(예를 들어, WiGig)의 LBT BW들 또는 다른 공존 시스템(예를 들어, WiGig) 채널들에 걸쳐서 설정될 수 없다. 또한, Z내에 복수의 NR 반송파들을 통해 동시전송을 수행하는 경우, max output power 규정을 준수하기 위해서 각 반송파(carrier)의 PSD를 감소하여 전송할 수도 있다. 또한, 상기 CC는, U-band 규정(regulation) 상 40dBm의 max output power 전송이 가능한 최소 BW 이상의 BW를 가진 CC를 의미할 수 있다. 또한, 복수의 CC들간 CA 상황의 경우, CC BW는 상기 복수의 CC 들의 BW를 합친 aggregated BW 전체를 의미할 수 있다.
실시 예 #1-4는 단말 또는 기지국이 LBT (예를 들어, CAT-4 LBT)를 수행하는 Unit LBT BW를 NR의 CC BW와 동일하게 설정하고 CC BW인 W NR이 참조(reference) BW인 Z (예를 들어, WiGig LBT BW)와 동일할 때에는 실시 예 #1-2와 같이 max output power = P max (dBm)를 기반으로 신호를 전송하고, ED 임계값 = T WiGig (dBm)을 이용하여 LBT가 수행될 수 있다.
W NR이 참조(reference) BW인 Z (예를 들어, WiGig의 LBT BW)보다 작을 때는 max output power는 그대로 P max (dBm)을 사용하되, ED 임계값은 W NR의 크기에 비례하여 T WiGig대비 감소한 ED 임계값 = T NR을 사용할 수 잇다.
이러한 경우, NR 반송파(carrier)의 CC BW W NR과 LBT BW가 다른 공존 시스템(예를 들어, WiGig)의 LBT BW보다 작지만, 40dBm을 전송할 수 있는 최소 CC BW가 Y 이상이기 때문에 규정(Regulation)에서 허용하는 PSD limit에 맞춰 max output power=40dBm까지 전송할 수 있다.
다만, 다른 공존 시스템(예를 들어, WiGig)와의 공평한 공존(fair coexistence)을 고려하여, max output power는 다른 공존 시스템(예를 들어, WiGig)와 동일하게 사용할 수 있지만, CAT-4 LBT 수행시 사용하는 ED 임계값(threshold)을 다른 공존 시스템(예를 들어, WiGig)보다 낮게 설정할 수 있다. 예를 들어, NR 반송파 BW(W NR)의 LBT BW와 다른 공존 시스템(예를 들어, WiGig)의 LBT BW의 비율만큼 ED 임계값을 감소시켜 설정하여, NR 반송파 BW(W NR)의 LBT 수행 시, 채널의 IDLE/BUSY 여부를 더 민감하게 판단함으로써 다른 공존 시스템(예를 들어, WiGig)과 동일한 ED 임계값을 사용할 때보다 NR 반송파의 채널 접속 기회를 감소시킬 수 있다.
예를 들어, 도 14를 참조하면, NR 반송파 1과 NR 반송파 2의 LBT BW의 크기가 WiGig의 LBT BW의 크기의 1/2이기 때문에 ED 임계값을 WiGig보다 2배 낮은 -51dBm으로 설정하고 max output power는 WiGig와 동일하게 40dBm으로 설정할 수 있다. 다시 말해, 실시 예 #1-4를 LBT 파라미터 셋(parameter set)으로 표현하면 {W NR( <Z), P max, T NR(<T WiGig)}일 수 있다. 즉, 다른 공존 시스템(예를 들어, WiGig) 의 LBT BW와 동일하거나 작은 LBT BW를 설정하고, 다른 공존 시스템(예를 들어, WiGig)와 동일한 max output power을 설정하며, 다른 공존 시스템(예를 들어, WiGig)의 ED 임계값보다 낮은 ED 임계값을 기반으로 LBT가 수행되는 것이다.
만약, NR 단말 혹은 기지국의 CC BW가 W NR < Y 일 때에는, 규정(regulation)에 정의된 max PSD을 기반으로 CC BW 크기만큼의 전송이 수행됐을 때의 power를 max output power로 설정할 수 있다. 예를 들어, NR의 CC BW x max PSD = max output power로 계산될 수 있다. 한편, ED 임계값은 실시 예 #1-4에서 상술한 바와 동일한 원리로 설정/결정될 수 있다.
실시 예 #1-5
실시 예 #1-5에서는 NR 단말 혹은 기지국의 CC BW가 W NR < Y 일 때, 즉, NR 단말 혹은 기지국의 CC BW가 작아서 규정(Regulation)에 정의된 max PSD를 이용하여 신호를 전송하더라도 max output power가 상기 참조 전력 (예를 들어, 40dBm)에 도달할 수 없는 경우에 대해서 살펴보도록 한다.
이러한 경우, LBT (예를 들어, Cat-3 LBT 또는 Cat-4 LBT)를 수행하는 Unit LBT BW를 NR의 CC BW 또는 참조(reference) BW인 Z (예를 들어, WiGig의 LBT BW)와 동일하게 설정하고 max PSD을 기반으로 CC BW 크기만큼의 전송이 수행됐을 때의 power를 max output power로 설정하고, 설정된 max output power를 기반으로 ED 임계값을 설정할 수 있다. 예를 들어, NR의 CC BW x max PSD = max output power로 계산되고, 계산된 해당 max output power에 따라서 ED 임계값이 결정될 수 있다.
다시 말해, 실시 예 #1-5는 FR4 대역에서 동작하는 기지국 혹은 단말의 CC BW가 작아서 규정(Regulation)에 정의된 max PSD를 이용하여 신호를 전송하더라도 max output power가 상기 참조 전력 (예를 들어, 40dBm)에 도달할 수 없는 경우에 max output power와 ED 임계값(threshold)을 설정하는 방법이다.
예를 들어, NR 단말 혹은 기지국의 CC BW가 W NR < Y 일 때, 단말 또는 기지국이 LBT (예를 들어, Cat-3 LBT 또는 Cat-4 LBT)를 수행하는 Unit LBT BW를 NR의 CC BW 또는 참조(reference) BW인 Z (예를 들어 WiGig의 LBT BW)와 동일하게 설정하고, max PSD을 기반으로 CC BW 크기만큼의 전송이 수행됐을 때의 power를 max output power로 설정하고, 설정된 max output power를 기반으로 ED 임계값을 설정할 수 있다.
예를 들어, PSD limit이 13dBm/MHz, CC BW=270MHz인 경우, [수학식 2] 에 따라 max output power은 37dBm일 수 있다.
[수학식 2]
Figure PCTKR2021004259-appb-img-000001
또한, ED 임계값을 계산하기 위하여, TS 37.213 Section 4.2.3.1에 정의된 max ED threshold 계산 절차와 유사하게 아래 [수학식 3]의 T A, P H, P TX의 상수 값들이 FR4대역에서 정의될 값들로 적절히 치환될 수 있다. 따라서 CC BW가 작은 경우, 상대적으로 감소된 max output power이 설정되고, 감소된 max output power에 비례하여 상대적으로 증가된 ED 임계값을 기반으로 LBT가 수행될 수 있다.
[수학식 3]
Figure PCTKR2021004259-appb-img-000002
여기서, T A, P H, P TX 는 FR4 대역을 위하여 정의된 값일 수 있다. 또한, P max는 [수학식 2]의 수식을 사용하여 도출될 수 있다.
[제안 방법 #2]
제안 방법 #2에서는, 다른 공존 시스템(예를 들어, WiGig)의 채널 혹은 LBT BW 내에 설정된 복수의 NR 반송파들이 UL CA(Uplink Carrier Aggregation)으로 설정된 경우, 기지국이 스케줄링 하는 aggregated CC BW 따라 UL LBT (예를 들어, CAT-4 LBT)에 사용할 ED 임계값과 max output power값을 설정 및 지시 하는 방법에 대해 살펴보도록 한다.
실시 예 #2-1
기지국은 단말에게 BW#1에 UL (데이터 또는 제어) 채널/신호 전송 자원을 스케줄링/할당할 수 있다. 추가로, 기지국은 단말에게 UL LBT를 위해 참조할 참조(reference) LBT BW 를 지시/설정할 수 있다. 이 때, 참조 LBT BW의 크기는 BW#1의 크기보다 크거나 동일하게 설정/지시될 수 있다.
또한, 단말은 해당 LBT 참조(reference) BW를 기반으로 UL 채널/신호 전송에 사용할 max output power 및 UL LBT에 설정/사용할 ED 임계값을 설정할 수 있다.
구체적으로 설명하면, 다른 공존 시스템(예를 들어, WiGig)의 채널 혹은 LBT BW 내에 복수의 NR 반송파들이 구성되고, 상기 복수의 NR 반송파들이 UL CA로 설정된 경우, 기지국은 단말1에게 특정 BW만큼 UL 전송을 스케줄링 할 수 있다. 이 때, 기지국은 전체 UL BW상에 단말1에 대한 스케줄링만 수행 했을 수 있고, (single-UE case) 혹은 단말1과 다른 단말2에 대한 스케줄링을 FDM(Frequency Division Multiplexing)을 기반으로 동시에 수행했을 수 도 있다(multi-UE case). 하지만, 단말1은 기지국이 단말 1에 대해서만 스케줄링을 수행하였는지, 다른 단말에 대한 스케줄링도 동시에 수행하였는지에 대해 알 수가 없다.
예를 들어, 기지국이 단말1과 단말2에게 각각 CC1과 CC2를 FDM을 기반으로 스케줄링 했을 경우, 스케줄링된 전체 aggregated BW인 2 CCs (즉, CC1 + CC2) 를 참조 LBT BW로 가정하면, [제안 방법 #1]의 실시 예 #1-3 혹은 [제안 방법 #1]의 실시 예 #1-4에 따라, aggregated CC BW의 크기와 다른 공존 시스템(예를 들어, WiGig)의 LBT BW 의 크기 또는 채널 BW의 크기 간의 비율(다시 말해, {2 CCs BW / WiGig LBT BW 혹은 채널 BW}의 비율)을 기반으로 max output power 및/또는 ED 임계값을 설정할 수 있다.
반면, 단말1이 자신에게 할당된 UL BW만을 참조 LBT BW로 가정한다면, [제안 방법 #1]의 실시 예 #1-3에서의 max output power 또는 [제안 방법 #1]의 실시 예 #1-4에서의 ED 임계값을 {1 CC BW / WiGig LBT BW 혹은 채널 BW}의 비율을 기반으로 설정할 수 있다. 이러한 경우, 상술한 것과 같이 {2 CCs BW / WiGig LBT BW 혹은 CH BW}의 비율에 기반하여 결정된 ED 임계값보다 {1 CC BW / WiGig LBT BW 혹은 채널 BW}의 비율을 기반으로 결정된 ED 임계값이 증가하므로, 공존(Coexistence) 관점에서 NR 시스템보다 다른 공존 시스템(예를 들어, WiGig)에게 불리할 수 있다.
그러므로, [제안 방법 #1]의 실시 예 #1-3에 따른 max output power 또는 [제안 방법#1]의 실시 예 #1-4에 따른 ED 임계값을 결정하기 위한 참조 LBT BW를 기지국이 단말에게 UL 자원을 스케줄링하는 BW#1과는 별도로 지시/설정할 수 있다.
예를 들어, multi-UE case에서 기지국이 참조 LBT BW를 BW#1을 포함하거나 BW#1과는 다른 BW#2를 지시/설정하거나, single-UE case에서 참조 LBT BW를 BW#1으로 지시/설정할 수 있다. 또한, 단말은 지시/설정된 참조 LBT BW의 크기를 기반으로 UL 채널/신호 전송에 사용할 max output power 및 UL LBT에 설정/ 사용할 및 ED 임계값을 설정할 수 있다. 여기서, BW#2의 크기는 BW#1의 크기보다 크거나 동일할 수 있다.
실시 예 #2-2
기지국이 단말에게 aggregated 참조 BW 내에서 UL 자원을 스케줄링 한다면, 추가로 기지국은 단말에게 해당 aggregated 참조 BW에 기반한 max output power 값 및/또는 ED 임계값을 지시/설정할 수 있다.
또한, 단말은 지시/설정된 max output power값을 기반으로 UL LBT에 설정/사용할 ED 임계값을 설정할 수 있다. 또한, 단말은 기지국으로부터 지시/설정된 ED 임계값을 기반으로 UL 채널/신호 전송에 설정/적용할 max output power값을 설정할 수 있다.
예를 들어, 도 14를 참조하면, 다른 공존 시스템(예를 들어, WiGig)의 LBT BW 혹은 채널에 NR 반송파 1과 NR 반송파 2가 UL CA로 설정될 수 있다. 이 때, 다른 공존 시스템(예를 들어, WiGig)는 ED threshold=-48dBm로 2.16GHz단위 CAT-4 LBT를 수행하며 max output power=40dBm의 제약에 따라 최대 PSD가 7dBm/MHz으로 제한된다고 가정한다.
그런데 NR 반송파 1과 NR 반송파 2에도 각각에도 max output power=40dBm으로 출력을 제한할 경우 다른 공존 시스템(예를 들어, WiGig)의 LBT BW보다 절반 크기의 CC BW를 가진 NR 반송파 1과 NR 반송파 2의 최대 PSD는 다른 공존 시스템(예를 들어, WiGig)보다 3dB 큰 10dBm/MHz까지 가능할 수 있다.
이러한 경우, 만약, NR 반송파 1과 NR 반송파 2 중, 하나의 NR 반송파에 대해서만 CAT-4 LBT에 성공하여 UL 전송을 수행하는 경우에는 최대 PSD 10dBm/MHz를 사용하여 max output power=40dBm을 사용할 수 있으므로, 전송 power의 제한을 초과하지 않을 수 있다. 그러나 만약, NR 반송파 1과 NR 반송파 2의 2개의 반송파들에 대한 LBT (예를 들어, Cat-3 LBT 또는 Cat-4 LBT)가 모두 성공하여, 동시에 10dBm/MHz로 각각의 CC BW에서 각각 UL 전송을 수행하면, 2.16GHz 대역폭 내에 총 output power는 43dBm이 되므로 max output power제한을 초과할 수 있다.
이러한 문제를 방지하기 위해서, 기지국은 단말에게 기지국이 UL 자원을 스케줄링 한 aggregated 참조 BW에 기반한 max output power 값 및/또는 ED 임계값을 지시/설정할 수 있다.
또한, 단말은 지시/설정된 max output power값을 기반으로 UL LBT에 설정/사용할 ED 임계값을 설정할 수 있다. 또한, 단말은 기지국으로부터 지시/설정된 ED 임계값을 기반으로 UL 채널/신호 전송에 설정/적용할 max output power값을 설정할 수 있다. 예를 들어, 도 14를 참조하면, 기지국은 단말에게 UL grant를 통해서 NR 반송파 1에만 UL 자원을 스케줄링 할 때에는 UL grant내의 특정 필드를 통해서 UL 전송에 사용할 max output power=40dBm 또는 ED threshold값 -51dBm을 동적으로 지시할 수 있다.
[제안 방법 #3]
제안 방법 #3에서는 NR 단말과 동일 대역에서 공존하며 동작하는 다른 공존 시스템의 LBT BW 크기가 Z이고, 단말의 성능(capability)에 따라 지원 가능한 BW의 크기에 따른 단말의 채널 접속 절차 수행 방법 및 COT (channel occupancy time) 공유(sharing) 방법 및/또는 기지국이 단말의 LBT BW 크기를 설정/지시할 수 있을 때의 단말의 채널 접속 절차 수행 방법 및 COT 공유(sharing) 방법을 살펴보도록 한다.
한편, [제안 방법 #3]의 실시 예들에서, 기지국은 RRC (Radio Resource Control) 신호 또는 DCI (Downlink Control Information)을 통해 단말의 LBT BW 크기를 단말에게 설정/지시하거나, RRC 신호 및 DCI의 조합을 이용하여 단말의 LBT BW 크기를 단말에게 설정/지시할 수 있다.
예를 들어, 기지국은 RRC 신호 또는 DCI를 통해 RB (Resource Block) 단위 및/또는 RBG (Resource Block Group) 단위로 LBT BW 크기의 값을 단말에게 설정/지시할 수 있다. 또한, LBT BW 크기로 사용 가능한 후보 값들을 테이블 형태로 단말에 기 설정되고, 기지국이 상기 후보 값들 중 어느 하나를 단말에게 RRC 신호 또는 DCI를 통해 지시함으로써, LBT BW 크기의 값을 단말에게 설정/지시할 수 있다.
다른 예로, 기지국은 단말에게 RRC 신호를 통해 LBT BW 크기로 설정 가능한 후보 값들을 단말에게 설정/지시하고, 상기 후보 값들 중 어느 하나를 DCI를 통해 단말에게 지시하여, 단말이 사용할 LBT BW 크기의 값을 단말에게 설정할 수 있다.
또한, 기지국은 단말에게 RRC 신호를 통해 최소 LBT BW 크기 및/또는 최대 LBT BW 크기를 단말에게 지시하고, DCI를 통해 최소 LBT BW 크기 이상인 LBT BW 크기 및/또는 최대 LBT BW 크기 이하인 LBT BW 크기를 설정/지시할 수 있다. 이 때, DCI를 통해 전달되는 LBT BW 크기는, RB 단위 및/또는 RBG 단위를 이용하여 절대적 LBT BW 크기로 표현될 수도 있고, 최대 LBT BW 크기 및/또는 최대 LBT BW 크기와의 상대적 크기로 표현될 수 있다. 예를 들어, LBT BW 크기가 최소 LBT BW 크기보다 얼마나 큰 지를 RB 단위 및/또는 RBG 단위로 표현하거나, 최대 LBT BW 크기보다 얼마나 작은 지를 RB 단위 및/또는 RBG 단위로 표현할 수 있다.
또한, 기지국이 RRC 신호를 통해 최소 LBT BW 크기 및/또는 최대 LBT BW 크기를 단말에게 지시하였으나, LBT BW 크기를 지시하는 DCI가 수신되지 않거나, 해당 DCI 내에 LBT BW 크기를 지시하는 bit field 가 포함되지 않거나, 해당 bit field가 특정 값을 지시하는 경우, 단말은 최소 LBT BW 크기 또는 최대 LBT BW 크기에 기반하여, LBT를 수행할 수 있다.
한편, 상술한 예시들에서 기지국이 RRC 신호 및/또는 DCI를 통해 LBT BW 크기를 지시하거나, RRC 신호를 통해 LBT BW 크기로 설정 가능한 후보 값들 지시하거나, 최소 LBT BW 크기 및/또는 최대 LBT BW 크기를 단말에게 지시하는 경우, 상기 LBT 크기, LBT BW 크기로 설정 가능한 후보 값들, 최소 LBT BW 크기 및/또는 최대 LBT BW 크기는 단말의 성능(capability)을 고려하여 기지국이 결정할 수 있으며, 이를 위하여, 해당 RRC 신호를 전송하기 전에 단말의 성능 정보를 단말로부터 수신하거나 해당 RRC 신호를 전송한 이후 해당 DCI를 전송하기 전, 단말의 성능 정보를 단말로부터 수신할 수 있다.
비-면허 대역 특성상 규정(regulation)에 의해 채널 접속 절차에 LBT와 같이 다른 시스템의 전송이 존재하는지 여부를 확인하는 것이 필수라면, 동일 대역에 동작하는 다른 공존 시스템과의 공평한 공존(fair coexistence)을 고려할 필요가 있다. 공평한 공존을 위하여 각 시스템이 LBT를 수행하는 BW 단위의 크기가 밀접하게 고려될 수 있다. 이는, 서로 다른 시스템이 같은 동작 주파수 대역에서 서로 다른 BW 크기를 기반으로 LBT를 수행하면 상대적으로 큰 크기의 BW를 기반으로 LBT를 수행하는 시스템이 채널 접속 기회 측면에서 손해를 볼 수 있기 때문이다.
단말은 UE 성능(capability)에 대한 정보를 기지국에게 전송함으로써, 기지국에게 해당 단말이 지원 가능한 BW의 크기에 대한 정보를 알려줄 수 있다.
또한, 기지국은 수신된 해당 해당 단말이 지원 가능한 BW의 크기에 대한 정보를 기반으로 단말에게 단말의 LBT 수행을 위한 BW의 크기를 설정/지시해 줄 수 있다. 여기서, 동일 대역에서 동작하는 다른 공존 시스템의 LBT BW 크기를 Z라고 하면, 특정 단말은 성능(capability)상의 이유로 Z 크기의 BW를 지원하지 못할 수도 있다. 또는, 특정 단말이 Z와 동일한 크기의 BW를 지원하더라도, 기지국이 LBT 수행을 위한 BW의 크기를 Z보다 작게 설정/지시한다면, Z와 동일한 크기의 BW 에 대한 LBT 수행이 불가능할 수 있다.
그런데, 상술한 바와 같이, 동일 대역에서 동작하는 시스템들 중에서 상대적으로 작은 BW 크기를 기반으로 LBT를 수행하는 시스템이 채널 접속 기회가 높을 수 있기 때문에, 공평한 공존(fair existence) 측면에서 다른 공존 시스템의 LBT BW 크기인 Z를 기준으로 단말의 LBT BW 크기에 따라서 채널 접속 절차 방법이 상이할 수 있다.
이에 대한 설명에 앞서, 후술하는 UE-initiated COT 를 기지국과 공유(share)함은 구체적으로 아래의 과정을 의미할 수 있다.
back-off 기반의 LBT (예를 들어, CAT-3 LBT 또는 CAT-4 LBT) 를 통해 단말이 점유한 채널들 중 일부를 기지국에게 양도하고, 기지국은 단말이 UL 전송을 수행한 후 발생되는 타이밍 갭(timing gap)을 활용하여 back-off 없이 LBT (예를 들어, CAT-1 LBT 또는 CAT-2 LBT)를 수행한 후, 해당 채널이 유휴(idle) 상태이면 기지국은 DL 전송을 수행할 수 있다.
반면, gNB-initiated COT를 단말과 공유(share)하는 것은, back-off 기반의 LBT (예를 들어, CAT-3 LBT 또는 CAT-4 LBT) 를 통해 기지국이 점유한 채널들 중 일부를 단말에게 양도하고, 단말은 기지국이 DL 전송을 수행한 후 발생되는 타이밍 갭을 활용하여, back-off 없이 LBT (예를 들어, CAT-1 LBT 또는 CAT-2 LBT)를 수행하고, 해당 채널이 유휴(idle) 상태이면 단말이 UL 전송을 수행하는 과정을 의미할 수 있다. 이러한 과정을 단말과 기지국이 COT를 공유한다고 할 수 있다.
이제, [제안 방법#3]에 따른 단말의 채널 접속 절차 수행 방법 및 COT 공유(sharing) 방법에 대해 살펴보도록 한다.
실시 예 #3-1
단말의 성능(capability)이 다른 공존 시스템의 LBT BW 크기인 Z보다 동일하거나 큰 LBT BW의 지원이 가능하고, 기지국이 단말의 LBT BW 크기를 Z보다 크거나 동일하게 설정/지시한 경우 (즉, 단말의 LBT BW > Z 인 경우)의 단말의 채널 접속 절차 수행 방법 및 COT 공유(sharing) 방법에 대해 살펴보도록 한다.
단말은 지시/설정된 시간 및 주파수 자원에서 COT를 개시 (initiating) 할 수 있으며, 단말은 LBT 파라미터 셋(parameter set)을 [제안 방법 #1]에 기술된 실시 예 #1-1 내지 실시 예 #1-4 중에 어느 하나의 방법으로 설정하고, LBT (예를 들어, Cat-3 LBT 또는 Cat-4 LBT) 기반의 채널 접속 절차를 수행할 수 있다. 이 때, MCOT (Maximum channel occupancy time) 길이는 단말의 LBT BW의 크기에 비례하여 설정될 수 있다.
또한, 단말의 LBT BW가 Z보다 크거나 동일한 경우에만, LBT (예를 들어, Cat-3 LBT 또는 Cat-4 LBT)성공으로 획득한 COT에서 UL (예를 들어, CG-PUSCH) 전송 수행 후, 남은 COT를 기지국에게 양도하는 UL-to-DL COT 공유(sharing)를 허용할 수 있다.
구체적으로, 단말이 Z와 동일하거나 Z보다 큰 LBT BW의 크기를 지원하고, 기지국이 Z와 동일한 크기의 LBT BW를 설정/지시 한 경우에는 단말도 설정/지시된 시간 및 주파수 자원에서 LBT(예를 들어, Cat-3 LBT 또는 Cat-4 LBT)를 수행하여 COT를 개시할 수 있고, 획득한 COT 내에서 UL 전송을 수행할 수 있다. 이 때, 채널 접속 절차에 사용할 LBT 파라미터 셋(parameter set)은 상술한 [제안 방법 #1]의 실시 예 #1-1 내지 실시 예 #1-4를 적용할 수 있다. 또한, 단말이 UL 전송한 후에 COT가 남을 경우, 기지국에게 양도하여 DL 전송에 활용하는 UL-to-DL COT 공유(sharing) 동작이 수행될 수 있다. 이 때, MCOT길이는 단말이 수행하는 LBT BW크기에 비례하여 설정될 수 있다. 예를 들어, LBT BW=Z로 LBT (예를 들어, Cat-3 LBT 또는 Cat-4 LBT)를 수행한 경우의 MCOT 길이를 4ms이라고 하면, LBT BW=Z/2인 경우에는 MCOT길이가 2ms으로 설정될 수 있다.
실시 예 #3-2
단말의 성능(capability) 상의 이유로 다른 공존 시스템의 LBT BW 크기 Z와 동일하거나 더 큰 크기의 BW를 기반으로 동작하는 것이 불가능하거나 기지국이 단말의 LBT BW 크기로 Z와 동일하거나 더 큰 크기의 BW를 기반으로 LBT를 수행하는 것이 불가능하도록 설정/지시한 경우 (혹은 Z 내의 일부 carrier(s)만을 설정) 설정/지시 경우 (즉, 단말의 LBT BW < Z 인 경우)의 단말의 채널 접속 절차 수행 방법 및 COT 공유(sharing) 방법에 대해 살펴보도록 한다.
단말은 스스로 COT를 initiating할 수는 없고 기지국이 LBT(예를 들어, Cat-3 LBT 또는 Cat-4 LBT)를 통해 획득한 COT를 양도받아 gNB-initiated COT내에서만 UL 전송을 수행하거나, 사전에 지시된 혹은 기지국을 통해 설정된 시간 및 주파수 자원에서는 COT를 개시 (initiating) 할 수 있다. 이 때, LBT 파라미터 셋(parameter set)을 [제안 방법 #1]의 실시 예 #1-1 내지 실시 예 #1-4의 방법 중 하나를 기반으로 LBT BW의 크기를 다른 공존 시스템의 LBT BW보다 작은 W NR를 기반으로 채널 접속 절차를 수행하고 MCOT 길이는 LBT를 수행한 BW의 크기(즉, W NR의 크기)에 비례하여 설정될 수 있다.
또한, 단말이 스스로 COT를 initiating하더라도, LBT 성공으로 획득한 COT에서 UL 전송 (예를 들어, CG-PUSCH)을 수행하고, 남은 COT를 기지국에게 양도하는 UL-to-DL COT 공유(sharing) 동작을 허용하지 않을 수 있다. 이러한 경우, 기지국에게 COT 공유(sharing) 정보를 제공하기 위한 UCI (uplink control information )내의 COT 공유 정보를 위한 필드(field)를 항상 0 bit으로 설정할 수 있다. 예를 들어, COT 공유 정보를 위한 필드의 값을 항상 '0'으로 설정하거나, COT 공유 정보를 위한 필드를 해당 UCI 내에 포함시키지 않을 수 있다.
또한, 단말이 항상 기지국이 initiating한 COT내에서만 UL 전송이 가능한 경우, 기지국이 DCI를 통해서 DG-PUSCH의 LBT type을 지시할 때 원래 Cat-4 LBT 지시에 대응되는 state를 Cat-4 외에 다른 LBT type으로 재해석할 수도 있다. 예를 들어, 단말은 기존 Cat-4 directional LBT (D-LBT)에 관련된 state를 Cat-2 D-LBT로 재해석할 수 있다.
상기에서 MCOT는 maximum channel occupancy time의 약자로 back-off 기반LBT (예를 들어, Cat-3 LBT 또는 Cat-4 LBT)에 성공 시 전송이 보장되는 최대 시간이며, COT initiating 가능 여부의 기준이 되는 BW 크기 Z로 다른 공존 시스템(예를 들어, WiGig)의 LBT BW의 크기(예를 들어, 2.16GHz) 및/또는 NR 시스템의 (declared) nominal BW가 고려될 수 있다.
이제, 상술한 실시 예 #3-2의 설명에 대해서 보다 상세하게 살펴보도록 한다.
만약, 단말의 성능 (Capability)상의 이유로 Z와 동일하거나 큰 크기의 BW를 단말이 지원하지 못하거나, 혹은 Z와 동일하거나 큰 BW 크기를 지원하지만 기지국이 Z 보다 작은 BW 크기로 LBT BW를 설정/지시한 경우에는 기지국이 획득한 COT에서만 단말이 UL 전송을 수행할 수 있다. 다시 말해, UE-initiated COT는 불가능하고 오직 gNB-initiated COT sharing만 허용되며, 따라서, 단말은 기지국의 지시에 따라 해당 COT내에서 back-off 기반 LBT(예를 들어, Cat-3 LBT 또는 Cat-4 LBT)가 아닌 LBT(예를 들어, Cat-1 LBT 또는 Cat-2 LBT)를 수행하고 UL 전송을 할 수 있다.
또 다른 방법으로는, LBT BW가 Z보다 작은 경우 LBT 파라미터 셋(parameter set)을 [제안 방법 #1]의 실시 예 #1-1 내지 실시 예 #1-4 중 하나를 기반으로 LBT BW 크기를 다른 공존 시스템의 LBT BW보다 작은 W NR으로 설정하고 채널 접속 절차를 수행할 수 있다. 이 때, MCOT 길이는 LBT를 수행한 BW의 크기(즉, W NR의 크기)에 비례적으로 설정될 수 있다. 예를 들어, LBT BW가 Z/2일 때 MCOT 길이가 2ms이라면 LBT BW가 Z/4일때의 MCOT 길이는 1ms으로 설정될 수 있다. Z보다 작은 BW로 LBT를 수행했을 경우 UL-to-DL COT 공유(sharing) (즉, UE-initiated COT)가 허용되지 않을 수 있다. 이러한 경우, UCI (uplink control information)의 COT 공유 정보 필드는 항상 0 bit으로 설정될 수 있다. 예를 들어, COT 공유 정보를 위한 필드의 값을 항상 '0'으로 설정하거나, COT 공유 정보를 위한 필드를 해당 UCI 내에 포함시키지 않을 수 있다.
또한, 단말의 UL 전송이 항상 COT 내 (즉, gNB- initiated COT) 전송만 허용되므로, 단말은 UL 전송을 위해 back-off 기반 LBT (예를 들어, Cat-3 LBT 또는 Cat-4 LBT)를 사용할 필요가 없으며, 그 외의 다른 Cat-2 LBT 또는 Cat-1 LBT만을 사용하게 된다. 따라서, 예를 들어, 기지국이 전송한 DCI 내의 LBT type 지시 필드의 값이 Cat-4 LBT에 해당하는 state에 대응하더라도, 단말은 해당 state를 Cat-4 LBT가 아닌 다른 LBT type으로 재해석할 수 있다. 예를 들어, DCI 내에 포함된 LBT type 지시 필드가 2bit로 구성되고, 2bit의 값이 '00' 인 경우, Cat-4 Directional LBT를 지시하는 것이었다면, 실시 예 #3-2의 경우, 단말은 LBT type 지시 필드가 '00'을 지시하면, 이를 Cat-2 Directional LBT로 재해석할 수 있다.
[제안 방법 #4]
NR 단말 혹은 기지국이 LBT BW 크기에 따라서 [제안 방법 #1]을 기반으로 LBT 파라미터를 설정할 수 있다. 한편, [제안 방법 #1]의 실시 예 #1-1 내지 실시 예 #1-5에서, Carrier/bandwidth part (BWP) BW를 고려하여 LBT에 사용할 ED 임계값을 계산하는 경우, 기지국은 carrier BW와 BWP BW 중 ED 임계값을 계산하기 위해 기준이 되는 BW를 단말에게 설정/지시할 수 있다. 이 때, 기지국은 RRC 신호 및/또는 DCI를 이용하여 ED 임계값을 계산하기 위해 기준이 되는 BW를 단말에게 설정/지시할 수 있다.
7GHz 이하에서 동작하는 NR-U의 경우에는 LBT를 수행하는 단위 BW인 unit LBT BW의 크기가 20MHz 였기 때문에, 반송파(Carrier) BW 혹은 BWP의 크기가 unit LBT BW보다 작은 경우는 고려되지 않았다. 하지만, 52GHz 이상의 고주파 비-면허 대역에서 동작하는 NR 시스템의 경우에는 동일 대역에서 공존하며 동작하는 시스템 (예를 들어, WiGig)의 unit LBT BW가 2.16 GHz이기 때문에, NR 시스템의 SCS (Subcarrier Spacing) 에 따라 결정되는 지원 가능한 BW의 크기는, 다른 공존 시스템 (예를 들어, WiGig)의 unit LBT BW보다 작은 BW 크기를 기반으로 unit LBT BW가 설정되어, LBT를 수행할 수도 있다. 한편, 반송파(carrier)내의 서로 다른 BW 크기를 가진 복수의 BWP가 설정될 수 있다.
따라서, [제안 방법 #1]의 실시 예 #1-1 내지 실시 예 #1-5를 기반으로 LBT에 사용할 ED 임계값을 계산할 때 기준이 되는 BW를 결정할 필요가 있다. 즉, LBT에 사용할 ED 임계값을 BWP BW를 기반으로 계산할 것인지, 아니면 반송파 BW를 기반으로 계산할 것인지를 기지국이 RRC 신호 및/또는 DCI를 통해 단말에게 설정/지시하고, 단말은 기지국의 설정/지시에 따라, BWP BW 및 반송파 BW 중 어느 하나를 기반으로 ED 임계값을 산출할 수 있다.
만약, BWP BW 단위로 실제 LBT 를 수행하더라도, 반송파(carrier) BW를 기반으로 ED 임계값이 계산된 경우, BWP 스위칭(switching) 시에도 ED 임계값 자체는 유지될 수도 있다.
한편, 상술한 [제안 방법 #1] 내지 [제안 방법 #4]에 기재된 각각의 실시 예들은 각각이 독립적으로 수행될 수도 있지만, 각각의 실시 예들이 조합된 형태로 실시 될 수도 있다. 예를 들어, 하나의 제안 방법 내에 서술된 복수의 실시 예들이 조합된 형태로 구현될 수도 있고, 복수의 제안 방법 내에 서술된 복수의 실시 예들이 조합된 형태로 구현될 수도 있다.
한편 본 개시의 내용은 상향링크 및/또는 하향링크 신호의 송수신에만 제한되어 적용되는 것은 아니다. 예를 들어, 본 개시의 내용은 단말간 직접 통신에서도 사용될 수 있다. 또한, 본 개시에서의 기지국은 Base Station 뿐만 아니라 relay node를 포함하는 개념일 수 있다. 예를 들어, 본 개시에서의 기지국의 동작은 기지국(Base Station)이 수행할 수도 있지만, relay node에 의해 수행될 수도 있다.
상기 설명한 제안 방식에 대한 일례들 또한 본 개시의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수 도 있지만, 일부 제안 방식들의 조합 (혹은 병합) 형태로 구현될 수 도 있다. 상기 제안 방법들의 적용 여부 정보 (혹은 상기 제안 방법들의 규칙들에 대한 정보)는 기지국이 단말에게 혹은 송신 단말이 수신 단말에게 사전에 정의된 시그널 (e.g., 물리 계층 시그널 혹은 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의될 수 가 있다.
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 발명의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 15는 본 발명에 적용되는 통신 시스템(1)을 예시한다.
도 15를 참조하면, 본 발명에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 16은 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 16을 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 15의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
구체적으로 본 발명의 실시 예에 따른 제 1 무선 기기(100)의 프로세서(102)에 의해 제어되고, 메모리(104)에 저장되는 명령 및/또는 동작들에 대해서 살펴보도록 한다.
하기 동작들은 프로세서(102)의 관점에서 프로세서(102)의 제어 동작을 기반으로 설명하지만, 이러한 동작을 수행하기 위한 소프트 웨어 코드 등에 메모리(104)에 저장될 수 있다. 예를 들어, 본 개시에서, 적어도 하나의 메모리(104)는 컴퓨터 판독 가능한(readable) 저장 매체 (storage medium)로서, 지시들 또는 프로그램들을 저장할 수 있으며, 상기 지시들 또는 프로그램들은, 실행될 때, 상기 적어도 하나의 메모리에 작동 가능하게(operably) 연결되는 적어도 하나의 프로세서로 하여금 하기 동작들과 관련된 본 개시의 실시 예들 또는 구현들에 따른 동작들을 수행하도록 할 수 있다.
구체적으로, 상향링크 송수신을 위하여, 프로세서(102)는 Unit LBT BW를 설정하기 위한 정보를 기지국으로부터 수신하도록 송수신기(106)를 제어할 수 있다. 이 때, 상기 Unit LBT BW를 설정하기 위한 정보는 RRC (Radio Resource Configuration) 신호를 통해 수신되도록 제어될 수도 있고, DCI (Downlink Control Information)을 통해 수신되도록 제어될 수도 있다. 또한, 상기 과정이 생략되고, Unit LBT BW가 프로세서(102)에 기 설정되어 있을 수 도 있다.
프로세서(102)는 max output power 및 ED 임계값을 획득할 수 있다. 이 때, max output power 및 ED 임계값은 설정된 Unit LBT BW를 기반으로 설정될 수 있다. 구체적인 Unit LBT BW, max output power 및 ED 임계값을 설정하는 방법 및 Unit LBT BW, max output power 및 ED 임계값의 예시는 상술한 [제안 방법 #1] 내지 [제안 방법 #4]에 기반할 수 있다.
프로세서(102)는 설정된 Unit LBT BW 단위로 설정된 ED 임계값을 기반으로 LBT를 수행하고, LBT 결과에 따라 설정된 max output power을 기반으로 상향링크 신호를 기지국에 전송하도록 송수신기(106)를 제어할 수 있다. 이 때, 구체적인 상향링크 신호의 전송 방법은 후술하는 [제안 방법 #1] 내지 [제안 방법 #4]에 기반할 수 있다.
한편, 하향링크 송수신을 위하여, 프로세서(102)는 기지국이 [제안 방법 #1] 내지 [제안 방법 #4]에 따라 설정된 Unit LBT BW, max output power 및 ED 임계값을 기반으로 LBT를 수행하여 전송한 하향링크 신호를 수신하도록 송수신기(106)를 제어할 수 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
구체적으로 본 발명의 실시 예에 따른 제 2 무선 기기(200)의 프로세서(202)에 의해 제어되고, 메모리(204)에 저장되는 명령 및/또는 동작들에 대해서 살펴보도록 한다.
하기 동작들은 프로세서(202)의 관점에서 프로세서(202)의 제어 동작을 기반으로 설명하지만, 이러한 동작을 수행하기 위한 소프트 웨어 코드 등에 메모리(204)에 저장될 수 있다. 예를 들어, 본 개시에서, 적어도 하나의 메모리(204)는 컴퓨터 판독 가능한(readable) 저장 매체 (storage medium)로서, 지시들 또는 프로그램들을 저장할 수 있으며, 상기 지시들 또는 프로그램들은, 실행될 때, 상기 적어도 하나의 메모리에 작동 가능하게(operably) 연결되는 적어도 하나의 프로세서로 하여금 하기 동작들과 관련된 본 개시의 실시예들 또는 구현들에 따른 동작들을 수행하도록 할 수 있다.
구체적으로, 하향링크 송수신을 위하여 프로세서(202)는 Unit LBT BW 를 설정하고, 하향링크 신호를 위한 max output power 및 ED 임계값을 획득할 수 있다. 이 때, max output power 및 ED 임계값은 Unit LBT BW를 기반으로 획득될 수 있다. 구체적인 Unit LBT BW, max output power 및 ED 임계값을 설정하는 방법 및 Unit LBT BW, max output power 및 ED 임계값의 예시는 상술한 [제안 방법 #1] 내지 [제안 방법 #4]에 기반할 수 있다.
프로세서(202)는 설정된 Unit LBT BW 단위로 설정된 ED 임계값을 기반으로 LBT를 수행하고, LBT 결과에 따라 설정된 max output power을 기반으로 하향링크 신호를 단말에 전송하도록 송수신기(206)을 제어할 수 있다. 이 때, 구체적인 하향링크 신호의 전송 방법은 상술한 [제안 방법 #1] 내지 [제안 방법 #4]에 기반할 수 있다.
또한, 상향링크 송수신을 위하여, 프로세서(202)는 Unit LBT BW를 설정하기 위한 정보를 단말에게 전송하도록 송수신기(206)를 제어할 수 있다. 이 때, 상기 Unit LBT BW를 설정하기 위한 정보는 RRC (Radio Resource Configuration) 신호를 통해 전송될 수도 있고, DCI (Downlink Control Information)을 통해 전송될 수도 있다. 다만, 상기 과정이 생략되고, Unit LBT BW가 단말에 기 설정되어 있을 수 도 있다.
프로세서(202)는 단말이 Unit LBT BW 단위로 ED 임계값을 기반으로 LBT를 수행하여 전송한 상향링크 신호를 수신하도록 송수신기(206)를 제어할 수 있다. 이 때, 구체적인 상향링크 신호의 전송 방법은 상술한 [제안 방법 #1] 내지 [제안 방법 #4]에 기반할 수 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 17은 본 발명에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 17을 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), gNode B(gNB), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 채널 접속 절차를 수행하는 방법 및 이를 위한 장치는 5세대 NewRAT 시스템에 적용되는 예를 중심으로 설명하였으나, 5세대 NewRAT 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (12)

  1. 무선 통신 시스템에서, 단말이 상향링크 신호를 전송하는 방법에 있어서,
    LBT (Listen Before Talk)를 위한 단위 대역폭 (Bandwidth; BW)의 크기에 관련된 정보를 수신하고,
    상기 단위 대역폭에 연관된 최대 출력 전력(maximum output power) 및 ED (Energy Detection) 임계값을 획득하고,
    상기 단위 대역폭 및 상기 ED 임계값을 기반으로 상기 LBT를 수행하고,
    상기 LBT 수행 결과 및 상기 최대 출력 전력을 기반으로, 상향링크 신호를 전송하는 것을 특징으로 하는,
    상향링크 신호 전송 방법.
  2. 제 1 항에 있어서,
    상기 상향링크 신호를 위한 MCOT (Maximum Channel Occupancy Time)는, 상기 단위 대역폭의 크기에 기반하는,
    상향링크 신호 전송 방법.
  3. 제 1 항에 있어서,
    상기 단위 대역폭의 크기가 참조 대역폭의 크기 이상인 것을 기반으로, 상기 단말이 획득한 COT (Channel Occupancy Time)의 일부를 기지국에게 공유하는 것이 허용되고,
    상기 단위 대역폭의 크기가 상기 참조 대역폭의 크기 미만인 것은 기반으로, 상기 단말이 획득한 COT의 일부를 상기 기지국에게 공유하는 것이 허용되지 않는,
    상향링크 신호 전송 방법.
  4. 제 1 항에 있어서,
    상기 단위 대역폭의 크기가 참조 대역폭의 크기 미만인 것은 기반으로, 상기 상향링크 신호는, 기지국이 획득한 COT (Channel Occupancy Time) 내에서 전송되는,
    상향링크 신호 전송 방법.
  5. 제 1 항에 있어서,
    상기 단위 대역폭의 크기에 관계 없이, 상기 최대 출력 전력 및 상기 ED 임계값은 고정된,
    상향링크 신호 전송 방법.
  6. 제 1 항에 있어서,
    상기 최대 출력 전력은, 상기 단위 대역폭의 크기를 기반으로 획득되고,
    상기 ED 임계값은, 상기 최대 출력 전력을 기반으로 획득되는,
    상향링크 신호 전송 방법.
  7. 제 1 항에 있어서,
    상기 ED 임계값은, 상기 단위 대역폭의 크기를 기반으로 획득되고,
    상기 최대 출력 전력은 고정된 값인,
    상향링크 신호 전송 방법.
  8. 무선 통신 시스템에서, 상향링크 신호를 전송하는 단말에 있어서,
    적어도 하나의 송수신기;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고,
    상기 동작은:
    상기 적어도 하나의 송수신기를 통해, LBT (Listen Before Talk)를 위한 단위 대역폭 (Bandwidth; BW)의 크기에 관련된 정보를 수신하고,
    상기 단위 대역폭에 연관된 최대 출력 전력(maximum output power) 및 ED (Energy Detection) 임계값을 획득하고,
    상기 단위 대역폭 및 상기 ED 임계값을 기반으로 상기 LBT를 수행하고,
    상기 적어도 하나의 송수신기를 통해, 상기 LBT 수행 결과 및 상기 최대 출력 전력을 기반으로, 상향링크 신호를 전송하는 것을 특징으로 하는,
    단말.
  9. 무선 통신 시스템에서, 신호를 전송하는 장치에 있어서,
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고,
    상기 동작은:
    LBT (Listen Before Talk)를 위한 단위 대역폭 (Bandwidth; BW)의 크기에 관련된 정보를 획득하고,
    상기 단위 대역폭에 연관된 최대 출력 전력(maximum output power) 및 ED (Energy Detection) 임계값을 획득하고,
    상기 단위 대역폭 및 ED 임계값을 기반으로 상기 LBT를 수행하고,
    상기 적어도 하나의 송수신를 통해, 상기 LBT 수행 결과 및 상기 최대 출력 전력을 기반으로, 신호를 전송하는 것을 특징으로 하는,
    장치.
  10. 무선 통신 시스템에서, 기지국이 하향링크 신호를 전송하는 방법에 있어서,
    LBT (Listen Before Talk)를 위한 단위 대역폭 (Bandwidth; BW)의 크기를 획득하고,
    상기 단위 대역폭에 연관된 최대 출력 전력(maximum output power) 및 ED (Energy Detection) 임계값을 획득하고,
    상기 단위 대역폭 및 ED 임계값을 기반으로 상기 LBT를 수행하고,
    상기 LBT 수행 결과 및 상기 최대 출력 전력을 기반으로, 하향링크 신호를 전송하는 것을 특징으로 하는,
    하향링크 신호 전송 방법.
  11. 무선 통신 시스템에서, 하향링크 신호를 전송하는 기지국에 있어서,
    적어도 하나의 송수신기;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고,
    상기 동작은:
    LBT (Listen Before Talk)를 위한 단위 대역폭 (Bandwidth; BW)의 크기를 획득하고,
    상기 단위 대역폭에 연관된 최대 출력 전력(maximum output power) 및 ED (Energy Detection) 임계값을 획득하고,
    상기 단위 대역폭 및 ED 임계값을 기반으로 상기 LBT를 수행하고,
    상기 적어도 하나의 송수신기를 통해, 상기 LBT 수행 결과 및 상기 최대 출력 전력을 기반으로, 하향링크 신호를 전송하는 것을 특징으로 하는,
    기지국.
  12. 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 프로그램을 포함하는 컴퓨터 판독 가능한 저장 매체로서, 상기 동작은:
    LBT (Listen Before Talk)를 위한 단위 대역폭 (Bandwidth; BW)의 크기에 관련된 정보를 획득하고,
    상기 단위 대역폭에 연관된 최대 출력 전력(maximum output power) 및 ED (Energy Detection) 임계값을 획득하고,
    상기 단위 대역폭 및 ED 임계값을 기반으로 상기 LBT를 수행하고,
    상기 적어도 하나의 송수신를 통해, 상기 LBT 수행 결과 및 상기 최대 출력 전력을 기반으로, 신호를 전송하는 것을 특징으로 하는,
    컴퓨터 판독 가능한 저장 매체.
PCT/KR2021/004259 2020-04-08 2021-04-06 채널 접속 절차를 수행하는 방법 및 이를 위한 장치 WO2021206409A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/916,676 US20230156786A1 (en) 2020-04-08 2021-04-06 Method for performing channel access procedure and device therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200042696 2020-04-08
KR10-2020-0042696 2020-04-08
KR10-2020-0133350 2020-10-15
KR20200133350 2020-10-15

Publications (1)

Publication Number Publication Date
WO2021206409A1 true WO2021206409A1 (ko) 2021-10-14

Family

ID=78023616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/004259 WO2021206409A1 (ko) 2020-04-08 2021-04-06 채널 접속 절차를 수행하는 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US20230156786A1 (ko)
WO (1) WO2021206409A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11452085B2 (en) * 2019-08-06 2022-09-20 Qualcomm Incorporated Radio communications in narrowband regions of unlicensed spectrum

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023010307A1 (en) * 2021-08-04 2023-02-09 Apple Inc. Listen before talk signaling and channel occupancy time sharing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200029671A (ko) * 2018-09-10 2020-03-19 주식회사 케이티 비면허 대역의 차세대 무선망에서 지향성 lbt 설정 방법 및 장치
US20200107373A1 (en) * 2017-06-14 2020-04-02 Idac Holdings, Inc. Rach procedures in unlicensed spectrum
US20200107277A1 (en) * 2018-09-27 2020-04-02 Comcast Cable Communications, Llc Power control for retransmissions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200107373A1 (en) * 2017-06-14 2020-04-02 Idac Holdings, Inc. Rach procedures in unlicensed spectrum
KR20200029671A (ko) * 2018-09-10 2020-03-19 주식회사 케이티 비면허 대역의 차세대 무선망에서 지향성 lbt 설정 방법 및 장치
US20200107277A1 (en) * 2018-09-27 2020-04-02 Comcast Cable Communications, Llc Power control for retransmissions

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Channel access procedure for NR-U", 3GPP DRAFT; R1-1912389, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051823395 *
NEC: "Remaining issues on CP extension", 3GPP DRAFT; R1-2000767, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200224 - 20200306, 14 February 2020 (2020-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051853049 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11452085B2 (en) * 2019-08-06 2022-09-20 Qualcomm Incorporated Radio communications in narrowband regions of unlicensed spectrum

Also Published As

Publication number Publication date
US20230156786A1 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
WO2022154406A1 (ko) 채널 접속 절차를 수행하는 방법 및 이를 위한 장치
WO2020091565A1 (ko) 비면허 대역에서 단말의 상향링크 신호 전송 방법 및 상기 방법을 이용하는 장치
WO2021066590A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020171405A1 (ko) 무선 통신 시스템에서 단말의 빔 관리 수행 방법 및 이를 지원하는 단말 및 기지국
WO2020159189A1 (ko) 무선 통신 시스템에서 단말의 상태 정보 보고 방법 및 이를 지원하는 단말 및 기지국
WO2020145784A1 (ko) 비면허 대역에서 장치의 채널 접속 절차
WO2021066595A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021206400A1 (ko) 채널 접속 절차를 수행하는 방법 및 이를 위한 장치
WO2020167084A1 (ko) 무선 통신 시스템에서 단말이 임의 접속 과정을 수행하는 방법 및 이를 위한 장치
WO2021091306A1 (ko) 채널 점유 시간 내에서 물리 상향링크 공유 채널을 송수신하는 방법 및 이를 위한 장치
WO2021060916A1 (ko) 비면허 대역에서 임의 접속 과정을 수행하기 위한 신호를 송수신하는 방법 및 이를 위한 장치
WO2021091300A1 (ko) 무선 통신 시스템에서 상향링크 채널을 송수신하는 방법 및 이를 위한 장치
WO2022154405A1 (ko) 채널 접속 절차를 수행하는 방법 및 이를 위한 장치
WO2021206398A1 (ko) 하향링크 제어 정보를 송수신하는 방법 및 이를 위한 장치
WO2022080736A1 (ko) 채널 접속 절차를 수행하는 방법 및 이를 위한 장치
WO2020145575A1 (ko) 무선 통신 시스템에서 단말의 빔 실패 보고 방법 및 이를 지원하는 단말 및 기지국
WO2020091566A1 (ko) 비면허 대역에서 단말의 신호 전송 방법 및 상기 방법을 이용하는 장치
WO2021066519A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2022154568A1 (ko) 상향링크 제어 채널을 송수신하는 방법 및 이를 위한 장치
WO2020145788A1 (ko) 비면허 대역에서 기지국의 채널 접속 절차 수행
WO2021206409A1 (ko) 채널 접속 절차를 수행하는 방법 및 이를 위한 장치
WO2022025549A1 (ko) 사운딩 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2020091569A1 (ko) 비면허 대역에서 단말이 기지국과 통신하는 방법 및 상기 방법을 이용하는 장치
WO2022086198A1 (ko) 하향링크 제어 채널을 송수신하는 방법 및 이를 위한 장치
WO2021060915A1 (ko) 비면허 대역에서 임의 접속 과정에 기반하여 하향링크 신호를 수신하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21783947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21783947

Country of ref document: EP

Kind code of ref document: A1