WO2024071717A1 - Renewable energy power generation device using lever-crank - Google Patents

Renewable energy power generation device using lever-crank Download PDF

Info

Publication number
WO2024071717A1
WO2024071717A1 PCT/KR2023/013332 KR2023013332W WO2024071717A1 WO 2024071717 A1 WO2024071717 A1 WO 2024071717A1 KR 2023013332 W KR2023013332 W KR 2023013332W WO 2024071717 A1 WO2024071717 A1 WO 2024071717A1
Authority
WO
WIPO (PCT)
Prior art keywords
lever
shaft
power generation
rotation
crank
Prior art date
Application number
PCT/KR2023/013332
Other languages
French (fr)
Korean (ko)
Inventor
최종수
김성순
김길원
홍섭
김형우
여태경
이종훈
박지용
김경환
Original Assignee
한국해양과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양과학기술원 filed Critical 한국해양과학기술원
Publication of WO2024071717A1 publication Critical patent/WO2024071717A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D5/00Other wind motors
    • F03D5/06Other wind motors the wind-engaging parts swinging to-and-fro and not rotating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • H02K7/075Means for converting reciprocating motion into rotary motion or vice versa using crankshafts or eccentrics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention relates to a mechanism that can be used for renewable energy generation, and more specifically, to a device that converts reciprocating motion power converted from wind, waves, currents, etc. into continuous rotation motion form and can be used to effectively produce electric power.
  • This relates to a renewable energy power generation device using a lever-crank structure.
  • Conventional power generation mainly consisted of thermal power generation using fossil fuels such as coal, natural gas, and oil, hydroelectric power generation using the potential energy of water, and nuclear power generation using nuclear fission, but recently solar power has been used as an energy source.
  • solar power generation wind power generation using the kinetic energy of the wind, wave power generation using waves as an energy source, seawater temperature difference power generation using the temperature difference according to the depth of the ocean, tidal power generation using the difference in tides and topography, and Due to the influence of phosphorus, the development of tidal power generation using algae as an energy source is becoming active.
  • thermal power generation and hydroelectric power generation require enormous construction costs, thermal power generation causes greenhouse gas and pollution problems due to fossil energy, and hydroelectric power generation causes changes in the ecosystem due to submergence of a wide area after dam construction, as well as in severe cases, Secondary environmental problems are being raised that even change the climate of the region.
  • Nuclear power generation has many limitations, such as the need to spend a huge amount of money on facility investment to block radiation leaks, and the need to spend a huge amount of money on waste disposal. Even a single accident can cause serious environmental damage. There is always risk.
  • renewable energy power generation collectively known as wind power generation, solar power generation, wave power generation, seawater temperature difference power generation, tidal power generation, tidal power generation, etc.
  • wind power generation solar power generation
  • wave power generation seawater temperature difference power generation
  • tidal power generation tidal power generation
  • tidal power generation etc.
  • wind power generation, wave power generation, and tidal power generation obtain energy from the kinetic energy of wind, waves, and tidal currents using a continuous rotation type or reciprocating energy weight device, and then undergo intermediate conversion to finally produce electricity.
  • reciprocating energy extraction devices are applied to wave power generation (Pelamis, Oyster, Floating Pendulum Wave Energy Converter, etc.) and Wayugi vibration tidal current power generation (VIVACE, VIVEED, etc.), and are directly connected to a generator or hydraulic conversion for power production. Electric power is produced through the device.
  • the present invention relates to a method for minimizing energy loss and minimizing the capacity of generators and power conversion devices by mechanically converting the energy obtained through a reciprocating energy extraction device into continuous rotational motion using a lever-crank mechanism.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2011-0126151 (Name: Simple reciprocating pivot rotation type Wayugi vibration energy extraction device, Publication date: November 29, 2011)
  • Patent Document 2 Republic of Korea Patent Publication No. 10-2018-0081262 (Name: Wayugi vibration energy extraction device with two-way current response structure, Publication date: November 12, 2018)
  • Patent Document 3 U.S. Patent No. 9018779 (name: Apparatus for extracting power from waves, registration date: April 28, 2015)
  • the present invention was invented to improve the above-mentioned problems, and one purpose of the present invention is to transform the reciprocating motion power converted from wind, waves, currents, etc. into continuous rotational motion by using a structure other than the rotary aberration method.
  • the aim is to provide a renewable energy power generation device using a lever-crank that includes a structure that can be converted and used to effectively produce electric power.
  • Another object of the present invention is to provide a lever-crank that includes a structure that can be used to effectively produce power by converting reciprocating motion power converted from wind, waves, currents, etc. into continuous rotation motion through a relatively simple structure.
  • the purpose is to provide a renewable energy power generation device.
  • a renewable energy power generation device using a lever-crank includes a pair of angular movement shaft fixing plates formed to have a certain area and arranged to face each other at a certain distance;
  • a pair of rotation axis insertion ports which each protrude from at least one corner of the corners of a pair of angular motion axis fixing plates and are formed on the corners of opposing angular motion axis fixing plates, are spaced a certain distance from the rotation axis insertion ports, and are located on each of the pair of angular motion axis fixing plates.
  • the lever-crank mechanism is rotatably inserted in the middle, the power generation shaft is coupled to the other end of the rotation shaft, and the generator produces power as the power generation shaft rotates.
  • the lever-crank mechanism is installed to be inserted into the upper and lower ends of the angular movement shaft, respectively.
  • It includes blades whose upper and lower ends are respectively coupled to the ends of the lever inserted into the angular motion axis included in the lever-crank mechanism installed at the upper and lower ends, and the blades reciprocate within a certain range by the flow of surrounding fluid.
  • the reciprocating motion is converted into rotary motion by the lever-crank mechanism, and the rotary motion is transmitted to the power generation shaft of the generator.
  • the lever-crank mechanism part of the renewable energy power generation device using the lever-crank includes a first lever, one end of which is rotatably coupled to the upper end of a rotating shaft, and another end of the first lever.
  • a second lever whose end is rotatably coupled, a third lever whose end is rotatably coupled to one end of the second lever and a through hole formed between one end and the other end, and a lever-crank mechanism facing the other end of the third lever.
  • It includes a blade coupled to extend to the same part of the third lever, the through hole of the third lever is inserted into the angular movement axis, and the length from the center of rotation of one end of the first lever to the center of rotation of the other end of the first lever is a,
  • the length from the rotation center of one end of the second lever to the rotation center of the other end of the second lever is b
  • the length from the rotation center of the third lever one end to the center of the angular movement axis inserted into the through hole is c
  • the first If d is the length from the rotation center of one end of the lever to the center of the angular movement axis a is the shortest and d is the longest among a, b, c, and d, and a+b ⁇ c+d and a+d ⁇ b+c It is characterized by the establishment of the following relationship.
  • each end of a pair of angular motion shaft fixing plates of the renewable energy power generation device using a lever-crank is a fixed plate support having a certain thickness and length and one side of which is coupled to the surface of a specific object. It is coupled to the top and bottom of the other side, respectively, and the fixing plate support is characterized by forming a straight reinforcement beam extending straight to the middle of the surface of the angular motion axis fixing plate, which is coupled near the top and bottom, respectively, at a mid-height on the side opposite to one side. do.
  • the renewable energy power generation device using a lever-crank is installed around a rotating shaft and installed on one of a rotational speed measurement sensor, a fixed plate support, or an angular motion shaft fixed plate to measure the rotational speed of the rotating shaft. and is equipped with a control unit that receives the rotation speed measurement result from the rotation speed measurement sensor, and when the rotation speed of the rotation shaft measured by the rotation speed measurement sensor is greater than the preset rotation speed, power is normally produced through the generator under the control of the control unit. And, if the rotation speed of the rotation shaft measured by the rotation speed measurement sensor is less than the preset rotation speed, continuous rotation movement is not achieved, so no power generation load is added under the control of the control unit to ensure continuous rotation movement.
  • a renewable energy power generation device using a lever-crank that provides acceleration.
  • a hydraulic shift circuit and a hydraulic motor are installed between the power generation shaft and the generator of the renewable energy power generation device using a lever-crank according to a preferred embodiment of the present invention, and the hydraulic shift circuit is coupled to the power generation shaft to move from the power generation shaft.
  • the speed is changed using a hydraulic shift circuit that can change gears according to the control of the rotational motion transmitted, and the hydraulic motor is rotated using the rotational motion transmitted from the hydraulic shift circuit to rotate the generator.
  • a structure that can be used to effectively produce power by converting reciprocating motion power converted from wind, waves, currents, etc. into continuous rotation motion form using a structure other than a rotating water turbine method.
  • a structure other than a rotating water turbine method.
  • a lever-crank comprising a structure that converts reciprocating motion power converted from wind, waves, currents, etc. into rotational motion form through a relatively simple structure and uses it to effectively produce power. This has the effect of providing a renewable energy power generation device using .
  • Figure 1 is a conceptual diagram of a lever-crank mechanism applied to a renewable energy power generation device using a lever-crank according to a preferred embodiment of the present invention.
  • Figure 2 is a diagram including a perspective view, front view, and side view showing a renewable energy power generation device using a lever-crank according to a preferred embodiment of the present invention.
  • Figure 3 is a conceptual diagram showing a lever-crank structure included in a renewable energy power generation device using a lever-crank according to a preferred embodiment of the present invention when viewed from above.
  • Figure 4 is a diagram showing an example in which the first embodiment 100 of a renewable energy power generation device using a lever-crank is installed according to a preferred embodiment of the present invention.
  • Figure 5 is a diagram showing another example in which the first embodiment 100 of a renewable energy power generation device using a lever-crank is installed according to a preferred embodiment of the present invention.
  • Figure 6 is a diagram showing an example in which the second embodiment 200 of a renewable energy power generation device using a lever-crank is installed according to a preferred embodiment of the present invention.
  • Figure 7 is a diagram showing another example in which the second embodiment 200 of a renewable energy power generation device using a lever-crank is installed according to a preferred embodiment of the present invention.
  • Figure 8 is a control concept diagram used to assist the normal operation of a mechanism included in a renewable energy power generation device using a lever-crank according to a preferred embodiment of the present invention.
  • Figure 1 is a conceptual diagram of a lever-crank mechanism applied to a renewable energy power generation device using a lever-crank according to a preferred embodiment of the present invention.
  • the lever-crank mechanism included in the renewable energy power generation device using the lever-crank of the present invention includes four levers, A, B, C, and D, and the length of these levers is A lever. is the shortest, D lever is the longest, and the following relationships are established: A+B ⁇ C+D and A+D ⁇ B+C.
  • lever A rotates and lever D performs reciprocating angular motion.
  • C1 and C2 represent the range in which the C lever reciprocates.
  • Figure 2 is a diagram including a perspective view, front view, and side view showing a renewable energy power generation device using a lever-crank according to a preferred embodiment of the present invention.
  • the left side of the drawing shows a perspective view of the renewable energy power generation device using the lever-crank of the present invention and a partially enlarged view of the lever-crank mechanism (L) below the device, and the right side shows a front view and side view, A floor plan is shown.
  • the renewable energy power generation device using a lever-crank has a hexahedral shape of a certain thickness and length and has one side on the surface of an underwater artificial structure such as a pier.
  • a fixed plate support (1) coupled to one side of the fixed plate support (1), an angular motion axis fixing plate (5) that is coupled near the top and bottom of the opposing surface opposite to one side of the fixed plate support (1) and extends a certain length outward.
  • a rotation shaft insertion hole (10) formed to protrude from at least one corner formed at the outer end of An angular motion shaft 60, the upper and lower ends of which are respectively coupled to each of the fixing plates 5, and a rotating shaft including at least one lever, which is inserted into the rotary shaft insertion hole 10 and protrudes in the direction facing the angular motion shaft fixing plate 5.
  • the end of one lever is coupled to one end, and the middle of the other lever is rotatably inserted into the angular movement axis 60.
  • the lever-crank mechanism part (L), the power generation shaft is coupled to the other end of the rotation axis, and as the power generation shaft rotates, power is generated.
  • the generator (8) that produces the lever-crank mechanism (L) is installed to be inserted into the upper and lower portions of the angular motion shaft 60, respectively, and the angular motion shaft included in the lever-crank mechanism portion (L) installed at the upper and lower portions, respectively. It includes a blade (50) whose upper and lower ends are respectively coupled to the ends of the lever inserted into (60), and the blade (50) reciprocates within a certain range by the flow of surrounding fluid, and the reciprocating motion is performed by lever-crank. It is characterized in that it is converted into rotational movement by the mechanism (L) and transmitted to the power generation shaft of the generator (8).
  • the renewable energy power generation device using a lever-crank of the present invention uses a lever-crank mechanism including four levers as described with reference to FIG. 1 to generate electricity by the flow of fluid around the device.
  • the reciprocating angular motion of the blade 50 and the reciprocating angular motion of the third lever 40 are converted into the rotary motion of the first lever 20, and the rotation axis installed at one end of the first lever 20 is the angular motion axis.
  • the fixed plate support (1) of the renewable energy power generation device using the lever-crank of the present invention is located near the upper and lower ends of the fixed plate support (1) at a mid-height on the side opposite to one side of the fixed plate support (1).
  • Figure 3 is a conceptual diagram showing a lever-crank structure included in a renewable energy power generation device using a lever-crank according to a preferred embodiment of the present invention when viewed from above.
  • a, b, c, and d can each be viewed as corresponding to the capital letters in FIG. 1, and are components of a renewable energy power generation device using a lever-crank according to a preferred embodiment of the present invention shown in FIG. 2.
  • a is the first axis-to-axis distance, which corresponds to the first lever 20 of FIG. 2
  • b is the second axis-to-axis distance, which corresponds to the second lever 30 of FIG.
  • c is the second axis-to-axis distance.
  • a part of the lever 40, d can be viewed as the distance from the angular movement axis 60, which is one end of c, to the center of the rotation axis insertion hole 10.
  • each component is similar to the relationship between A, B, C, and D described in FIG. 1, with the first axis-to-axis distance (a) being the shortest and the fourth axis-to-axis distance (d) being the longest, Relationships such as a+b ⁇ c+d and a+d ⁇ b+c are established.
  • Figures 3(a), 3(b), and 3(c) show the first axis distance (a) and the first lever ( To make it easier to understand that 20) rotates, the reciprocating angular motion state of the third lever 40 is divided into a state in which the left end of the third lever 40 reaches the highest point, midpoint, and lowest point based on the direction of the drawing. This is shown in Figures 3(a), 3(b), and 3(c), respectively.
  • FIGS. 4 to 6 are diagrams showing examples of installation of the first embodiment 100 or the second embodiment 200 of a renewable energy power generation device using a lever-crank, respectively, according to a preferred embodiment of the present invention.
  • Figures 4 and 5 respectively relate to the first embodiment 100
  • Figures 6 and 7 respectively relate to the second embodiment 200.
  • two units of the first embodiment 100 of the renewable energy power generation device using a lever-crank are installed at opposing positions with the installation pillar 170 at the center, and are viewed from the side of the installation pillar 170.
  • the two units of the first embodiment are installed on the left and right sides of the installation pillar 170, respectively.
  • the lower end of the installation pillar 170 is inserted into the installation pillar fixture 180 fixed to the ground or sea floor and maintained in a fixed state.
  • FIG. 5 an example can be seen where several first embodiments of the renewable energy power generation device 100 using a lever-crank are installed on one installation pillar 170.
  • the embodiment of FIG. 5 shows an embodiment in which five power generation devices are installed on one installation pillar 170.
  • two units of the second embodiment 200 of the renewable energy power generation device using a lever-crank are installed at opposite positions with the installation pillar 270 at the center, and are viewed from the side of the installation pillar 270.
  • the two units of the second embodiment are installed on the left and right sides of the installation pillar 270, respectively.
  • the lower end of the installation pillar 270 is inserted into the installation pillar fixture 280 fixed to the ground or sea floor and maintained in a fixed state.
  • FIG. 7 an example can be seen where several second embodiments of the renewable energy power generation device 200 using a lever-crank are installed on one installation pillar 270.
  • the embodiment of FIG. 7 shows an embodiment in which 12 power generation devices are installed on one installation pillar 270.
  • the first and second embodiments 100 and 200 of the renewable energy power generation device using a lever-crank are installed on an artificial structure such as a bridge, and at least one in each direction. More than one can be installed in a row. Additionally, when installing a renewable energy power generation device, it is possible to decide how many units to install by considering related conditions such as the length of the structure, size of the renewable energy power generation device, fluid flow rate, and required power generation.
  • Figure 8 is a control concept diagram used to assist the normal operation of a mechanism included in a renewable energy power generation device using a lever-crank according to a preferred embodiment of the present invention.
  • the mechanism refers to components that cause movement by fluid, including a blade 50 that generates kinetic energy through the action of resistance to the fluid, and a third device that is combined with the blade and moves in translation within a certain angular range. It refers to the lever 40, the second lever 30, and the first lever 20.
  • the renewable energy power generation device using the lever-crank of the present invention can be configured by adding a control unit and an actuator to the basic configuration described with reference to FIGS. 2 and 3, and the additional configuration is As follows. Below, the rotating shaft is inserted into the rotating shaft insertion hole (10).
  • a rotation speed measurement sensor installed around the rotation axis to measure the rotation speed of the rotation shaft, and a control unit installed on either the fixing plate support (1) or the angular movement shaft fixation plate (5) and receiving the rotation speed measurement results from the rotation speed measurement sensor. If the rotation speed of the rotation axis measured by the rotation speed measurement sensor is greater than the preset rotation speed, power is normally produced through the generator under the control of the control unit, and the rotation speed of the rotation axis measured by the rotation speed measurement sensor is greater than the preset rotation speed. If it is less than the rotation speed, continuous rotation is not achieved, so no power generation load is added under the control of the control unit, and acceleration force is provided to the rotation shaft to enable continuous rotation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oceanography (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

A renewable energy power generation device using a lever-crank according to a preferred embodiment of the present invention comprises: a pair of angular movement shaft fixing plates formed with a predetermined area and arranged opposite to each other at a predetermined distance; rotation shaft insertion members each protruding from one or more corners of the angular movement shaft fixing plate and formed on opposite corners of the angular movement shaft fixing plate to form a pair; angular movement shafts which are spaced a predetermined distance apart from the rotation shaft insertion ports and of which upper and lower ends are coupled to the pair of angular movement shaft fixing plates, respectively; a lever-crank mechanism portion including a plurality of levers, wherein one lever among the levers has an end portion coupled to one end of a rotation shaft which is inserted in the rotation shaft insertion member and protrudes in a direction in which the angular movement shaft fixing plates face each other, and another lever has a middle portion rotatably inserted in the angular movement shaft; and a generator which has a power generation shaft coupled to the other end of the rotation shaft and produces power according to the rotation of the power generation shaft, wherein the lever-crank mechanism portions are installed to be inserted into the upper and lower ends of the angular movement shafts, respectively, a blade of which upper and lower ends are coupled to the ends of the lever inserted into the angular movement shaft included in each lever-crank mechanism portion of the upper and lower ends is included, the blade reciprocates due to the surrounding flow, and the reciprocating movement is converted into rotational movement by the lever-crank mechanism portion and transmitted to the power generation shaft of the generator. The present invention is advantageous to provide a renewable energy power generation device using a lever-crank, the generation device capable of producing electric power by converting the reciprocating movement power generated by wind/waves/tidal, etc. into continuous rotation movement form.

Description

레버-크랭크를 이용한 재생에너지발전장치Renewable energy power generation device using lever-crank
본 발명은 재생에너지발전에 이용될 수 있는 기구에 관한 것으로, 보다 상세하게는 바람, 파랑, 조류 등으로부터 변환된 왕복운동 형태 동력을 연속회전 운동 형태로 전환하여 효과적으로 전력을 생산하는데 이용할 수 있게 하는 구조를 포함하는 레버-크랭크를 이용한 재생에너지발전장치에 관한 것이다.The present invention relates to a mechanism that can be used for renewable energy generation, and more specifically, to a device that converts reciprocating motion power converted from wind, waves, currents, etc. into continuous rotation motion form and can be used to effectively produce electric power. This relates to a renewable energy power generation device using a lever-crank structure.
종래의 발전으로는 석탄, 천연가스, 석유 등의 화석연료를 에너지원으로 하는 화력발전, 물의 위치에너지를 이용하는 수력발전, 핵분열을 이용하는 원자력발전 등이 주를 이루었으나, 최근 태양광을 에너지원으로 하는 태양광발전, 바람의 운동에너지를 이용한 풍력발전, 파도를 에너지원으로 하는 파력발전, 해양의 수심에 따른 온도 차이를 이용하는 해수온도차발전, 조수 간만의 차이를 이용하는 조력발전 및 조수 간만의 차이나 지형적인 영향 등으로 조류를 에너지원으로 하는 조류발전 등의 개발이 활발해지고 있다.Conventional power generation mainly consisted of thermal power generation using fossil fuels such as coal, natural gas, and oil, hydroelectric power generation using the potential energy of water, and nuclear power generation using nuclear fission, but recently solar power has been used as an energy source. solar power generation, wind power generation using the kinetic energy of the wind, wave power generation using waves as an energy source, seawater temperature difference power generation using the temperature difference according to the depth of the ocean, tidal power generation using the difference in tides and topography, and Due to the influence of phosphorus, the development of tidal power generation using algae as an energy source is becoming active.
종래의 화력발전 및 수력발전은 막대한 건설비가 요구되며, 화력발전은 화석에너지에 따른 온실가스와 공해문제를 발생하며, 수력 발전은 댐 건설후 광범위한 지역의 수몰에 따른 생태계의 변화는 물론 심한 경우에는 해당지역의 기후까지도 변화시키는 2차적인 환경문제가 제기되고 있는 실정이다.Conventional thermal power generation and hydroelectric power generation require enormous construction costs, thermal power generation causes greenhouse gas and pollution problems due to fossil energy, and hydroelectric power generation causes changes in the ecosystem due to submergence of a wide area after dam construction, as well as in severe cases, Secondary environmental problems are being raised that even change the climate of the region.
원자력발전은 방사선 누출을 차단하기 위해 시설 투자에 막대한 비용이 소비되며, 또한 폐기물 처리에 막대한 비용을 소비해야 하는 등의 여러 제약이 따르는 문제가 있으며, 한 번의 사고라도 발생되면 심각한 환경파괴를 초래하는 위험이 항상 존재한다.Nuclear power generation has many limitations, such as the need to spend a huge amount of money on facility investment to block radiation leaks, and the need to spend a huge amount of money on waste disposal. Even a single accident can cause serious environmental damage. There is always risk.
이에 반해, 풍력발전, 태양광발전, 파력발전, 해수온도차발전, 조력발전, 조류발전 등은 통칭한 재생에너지발전은 온실가스 및 공해물질을 배출하지 않은 청정발전방식으로 그 보급과 활용이 확대될 것으로 예상된다. BP사가 2021년에 출간한 energy outlook 2020 edition에 따르면, 2050년경에는 전 세계 에너지수요의 45~60%가 재생에너지원으로 공급될 것으로 예상된다. On the other hand, renewable energy power generation, collectively known as wind power generation, solar power generation, wave power generation, seawater temperature difference power generation, tidal power generation, tidal power generation, etc., is a clean power generation method that does not emit greenhouse gases or pollutants, and its distribution and utilization will expand. It is expected that According to the energy outlook 2020 edition published by BP in 2021, 45-60% of global energy demand is expected to be supplied by renewable energy sources by 2050.
재생에너지 발전방식중 풍력발전, 파력발전, 조류발전 등은 각각 바람, 파랑, 조류의 운동에너지로부터 연속회전 운동형 또는 왕복 운동형 에너지 추줄장치로 에너지를 얻은 후 중간변환을 거쳐 최종적으로 전력을 생산한다. 이 중 왕복 운동형 에너지 추출장치는 파력발전(Pelamis, Oyster, Floating Pendulum Wave Energy Converter 등), 와유기진동형 조류발전(VIVACE, VIVEED 등) 등에 적용되고 있으며, 전력생산을 위해 발전기를 직결하거나 유압변환장치를 거쳐 전력을 생산한다. 발전기를 직결할 경우 왕복운동에서 발생되는 큰 토오크로 인해 발전기와 전력변환장치의 용량이 증가하며, 유압변환장치를 거칠 경우 그 과정에서 에너지손실이 커지는 문제가 발생한다. 본 발명은 왕복운동형 에너지 추출장치를 통해 얻어진 에너지를 레버-크랭크 기구를 이용하여 기계식으로 연속회전 운동으로 변환하여, 에너지손실을 최소화하고 발전기와 전력변환장치 용량 최소화할 수 있는 방안에 대한 것이다. Among renewable energy generation methods, wind power generation, wave power generation, and tidal power generation obtain energy from the kinetic energy of wind, waves, and tidal currents using a continuous rotation type or reciprocating energy weight device, and then undergo intermediate conversion to finally produce electricity. do. Among these, reciprocating energy extraction devices are applied to wave power generation (Pelamis, Oyster, Floating Pendulum Wave Energy Converter, etc.) and Wayugi vibration tidal current power generation (VIVACE, VIVEED, etc.), and are directly connected to a generator or hydraulic conversion for power production. Electric power is produced through the device. When the generator is directly connected, the capacity of the generator and the power converter increases due to the large torque generated during the reciprocating motion, and when it goes through the hydraulic converter, the problem of increased energy loss occurs in the process. The present invention relates to a method for minimizing energy loss and minimizing the capacity of generators and power conversion devices by mechanically converting the energy obtained through a reciprocating energy extraction device into continuous rotational motion using a lever-crank mechanism.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Document]
(특허문헌 1) 대한민국 공개특허 제10-2011-0126151호(명칭: 단순 왕복 피봇 회전형 와유기진동 에너지추출 장치, 공개일: 2011년 11월 29일)(Patent Document 1) Republic of Korea Patent Publication No. 10-2011-0126151 (Name: Simple reciprocating pivot rotation type Wayugi vibration energy extraction device, Publication date: November 29, 2011)
(특허문헌 2) 대한민국 공개특허 제10-2018-0081262호(명칭: 양방향 조류 대응구조를 갖는 와유기진동 에너지 추출장치, 공개일: 2018년 11월 12일)(Patent Document 2) Republic of Korea Patent Publication No. 10-2018-0081262 (Name: Wayugi vibration energy extraction device with two-way current response structure, Publication date: November 12, 2018)
(특허문헌 3) 미국 등록특허 제9018779호(명칭: Apparatus for extracting power from waves, 등록일: 2015년 4월 28일)(Patent Document 3) U.S. Patent No. 9018779 (name: Apparatus for extracting power from waves, registration date: April 28, 2015)
본 발명은 상기한 문제점을 개선하기 위하여 발명된 것으로, 본 발명의 한 가지 목적은, 회전수차 방식 이외의 구조를 이용하여 바람, 파랑, 조류 등으로부터 변환된 왕복운동형태 동력을 연속회전운동형태로 전환하여 효과적으로 전력을 생산하는데 이용할 수 있게 하는 구조를 포함하는 레버-크랭크를 이용한 재생에너지발전장치를 제공하는 것이다. The present invention was invented to improve the above-mentioned problems, and one purpose of the present invention is to transform the reciprocating motion power converted from wind, waves, currents, etc. into continuous rotational motion by using a structure other than the rotary aberration method. The aim is to provide a renewable energy power generation device using a lever-crank that includes a structure that can be converted and used to effectively produce electric power.
본 발명의 다른 목적은, 비교적 간단한 구조를 통하여 바람, 파랑, 조류 등으로부터 변환된 왕복 운동형태 동력을 연속회전 운동형태로 전환하여 효과적으로 전력을 생산하는데 이용할 수 있게 하는 구조를 포함하는 레버-크랭크를 이용한 재생에너지발전장치를 제공하는 것이다.Another object of the present invention is to provide a lever-crank that includes a structure that can be used to effectively produce power by converting reciprocating motion power converted from wind, waves, currents, etc. into continuous rotation motion through a relatively simple structure. The purpose is to provide a renewable energy power generation device.
본 발명의 기술적 과제는 이상에서 언급한 것들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제는 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다. The technical problems of the present invention are not limited to those mentioned above, and other technical problems not mentioned will be clearly understood by those skilled in the art from the description below.
상기 과제를 달성하기 위하여 안출된, 본 발명의 바람직한 일 실시예에 따른 레버-크랭크를 이용한 재생에너지발전장치는, 일정한 면적을 갖도록 형성되고 일정 거리를 두고 대향하도록 배치되는 한 쌍의 각운동축고정판, 한 쌍의 각운동축고정판의 모퉁이 중 적어도 하나 이상의 모퉁이에 각각 돌출되고 대향되는 각운동축고정판의 모퉁이에 각각 형성되어 쌍을 이루는 회전축삽입구, 회전축삽입구로부터 일정 거리 이격되고, 한 쌍의 각운동축고정판 각각에 상단과 하단이 각각 결합되는 각운동축, 적어도 하나 이상의 레버를 포함하고, 회전축삽입구에 삽입되어 각운동축고정판이 마주보는 방향으로 돌출되는 회전축의 일단에 한 레버의 단부가 결합되며, 각운동축에 다른 레버의 중간이 회전 가능하게 삽입되는 레버-크랭크기구부, 회전축의 타단에 발전축이 결합되고 발전축이 회전됨에 따라 전력을 생산하는 발전기, 레버-크랭크기구부는 각운동축의 상단과 하단에 각각 삽입되도록 설치되며, 상단과 하단에 각각 설치된 레버-크랭크기구부에 포함되는 각운동축에 삽입되는 레버의 단부에 상단과 하단이 각각 결합되는 블레이드를 포함하고, 블레이드는 주변 유체의 유동에 의해 일정 범위 내에서 왕복 운동하며, 왕복 운동은 레버-크랭크기구부에 의하여 회전 운동으로 전환되고, 회전 운동은 발전기의 발전축으로 전달되는 것을 특징으로 한다. A renewable energy power generation device using a lever-crank according to a preferred embodiment of the present invention, devised to achieve the above problem, includes a pair of angular movement shaft fixing plates formed to have a certain area and arranged to face each other at a certain distance; A pair of rotation axis insertion ports, which each protrude from at least one corner of the corners of a pair of angular motion axis fixing plates and are formed on the corners of opposing angular motion axis fixing plates, are spaced a certain distance from the rotation axis insertion ports, and are located on each of the pair of angular motion axis fixing plates. It includes an angular motion shaft to which the upper and lower ends are coupled, and at least one lever, the end of one lever is coupled to one end of the rotation shaft that is inserted into the rotation shaft insertion hole and protrudes in the direction facing the angular motion shaft fixing plate, and the other lever is connected to the angular motion shaft. The lever-crank mechanism is rotatably inserted in the middle, the power generation shaft is coupled to the other end of the rotation shaft, and the generator produces power as the power generation shaft rotates. The lever-crank mechanism is installed to be inserted into the upper and lower ends of the angular movement shaft, respectively. It includes blades whose upper and lower ends are respectively coupled to the ends of the lever inserted into the angular motion axis included in the lever-crank mechanism installed at the upper and lower ends, and the blades reciprocate within a certain range by the flow of surrounding fluid. The reciprocating motion is converted into rotary motion by the lever-crank mechanism, and the rotary motion is transmitted to the power generation shaft of the generator.
또한, 본 발명의 바람직한 일 실시예에 따른 레버-크랭크를 이용한 재생에너지발전장치의 레버-크랭크기구부는, 회전축의 상단에 일단부가 회전 가능하게 결합되는 제1 레버, 제1 레버의 타단부에 타단부가 회전 가능하게 결합되는 제2 레버, 제2 레버의 일단부에 일단부가 회전 가능하게 결합되고 일단과 타단 중간에 관통공이 형성되는 제3 레버 및 제3 레버의 타단부에는 마주한 레버-크랭크기구부의 동일 부위까지 연장되도록 결합되는 블레이드를 포함하고, 제3 레버의 관통공은 각운동축에 삽입되며, 제1 레버 일단부의 회전 중심으로부터 제1 레버 타단부의 회전 중심에 이르는 길이를 a라 하고, 제2 레버 일단부의 회전 중심으로부터 제2 레버 타단부의 회전 중심에 이르는 길이를 b라 하고, 제3 레버 일단부의 회전 중심으로부터 관통공에 삽입된 각운동축 중심에 이르는 길이를 c라 하고, 제1 레버 일단부의 회전 중심으로부터 각운동축 중심에 이르는 길이를 d라 할 때, a, b, c, d 중 a가 가장 짧고 d가 가장 길며, a+b < c+d 및 a+d < b+c 와 같은 관계가 성립하는 것을 특징으로 한다. In addition, the lever-crank mechanism part of the renewable energy power generation device using the lever-crank according to a preferred embodiment of the present invention includes a first lever, one end of which is rotatably coupled to the upper end of a rotating shaft, and another end of the first lever. A second lever whose end is rotatably coupled, a third lever whose end is rotatably coupled to one end of the second lever and a through hole formed between one end and the other end, and a lever-crank mechanism facing the other end of the third lever. It includes a blade coupled to extend to the same part of the third lever, the through hole of the third lever is inserted into the angular movement axis, and the length from the center of rotation of one end of the first lever to the center of rotation of the other end of the first lever is a, The length from the rotation center of one end of the second lever to the rotation center of the other end of the second lever is b, the length from the rotation center of the third lever one end to the center of the angular movement axis inserted into the through hole is c, and the first If d is the length from the rotation center of one end of the lever to the center of the angular movement axis, a is the shortest and d is the longest among a, b, c, and d, and a+b < c+d and a+d < b+c It is characterized by the establishment of the following relationship.
또한, 본 발명의 바람직한 일 실시예에 따른 레버-크랭크를 이용한 재생에너지발전장치의 한 쌍의 각운동축고정판의 일단 각각은, 일정한 두께와 길이를 갖고 특정 물체의 표면에 일면이 결합되는 고정판지지대의 타면 상단과 하단에 각각 결합되고, 고정판지지대는, 일면에 대향되는 면 상의 중간 높이에 상단 부근과 하단 부근에 각각 결합되는 각운동축고정판의 표면 중간까지 곧게 연장되는 직선형 보강보가 각각 형성되는 것을 특징으로 한다. In addition, each end of a pair of angular motion shaft fixing plates of the renewable energy power generation device using a lever-crank according to a preferred embodiment of the present invention is a fixed plate support having a certain thickness and length and one side of which is coupled to the surface of a specific object. It is coupled to the top and bottom of the other side, respectively, and the fixing plate support is characterized by forming a straight reinforcement beam extending straight to the middle of the surface of the angular motion axis fixing plate, which is coupled near the top and bottom, respectively, at a mid-height on the side opposite to one side. do.
또한, 본 발명의 바람직한 일 실시예에 따른 레버-크랭크를 이용한 재생에너지발전장치는, 회전축 주변에 설치되어 회전축의 회전 속도를 측정하는 회전속도계측센서, 고정판지지대 또는 각운동축고정판 중 어느 한 쪽에 설치되고 회전속도계측센서로부터 회전 속도 측정 결과값을 전달받는 제어부를 구비하고, 회전속도계측센서에서 측정된 회전축의 회전 속도가 사전 설정된 회전 속도보다 큰 경우, 제어부의 제어에 의하여 발전기를 통해 정상적으로 전력생산하고, 회전속도계측센서에서 측정된 회전축의 회전 속도가 사전 설정된 회전 속도보다 작은 경우, 연속 회전운동이 이루어지지 않으므로 제어부의 제어에 의하여 발전부하를 부가하지 않도록 하여 연속 회전운동이 이루어질 수 있도록 회전축에 가속력을 제공하는 것을 특징으로 하는 레버-크랭크를 이용한 재생에너지발전장치.In addition, the renewable energy power generation device using a lever-crank according to a preferred embodiment of the present invention is installed around a rotating shaft and installed on one of a rotational speed measurement sensor, a fixed plate support, or an angular motion shaft fixed plate to measure the rotational speed of the rotating shaft. and is equipped with a control unit that receives the rotation speed measurement result from the rotation speed measurement sensor, and when the rotation speed of the rotation shaft measured by the rotation speed measurement sensor is greater than the preset rotation speed, power is normally produced through the generator under the control of the control unit. And, if the rotation speed of the rotation shaft measured by the rotation speed measurement sensor is less than the preset rotation speed, continuous rotation movement is not achieved, so no power generation load is added under the control of the control unit to ensure continuous rotation movement. A renewable energy power generation device using a lever-crank that provides acceleration.
또한, 본 발명의 바람직한 일 실시예에 따른 레버-크랭크를 이용한 재생에너지발전장치의 발전축과 발전기 사이에, 유압변속회로와 유압모터를 설치하고, 유압변속회로는 발전축에 결합되어 발전축으로부터 전달되는 회전 운동을 제어에 따라 변속할 수 있는 유압변속회로를 이용하여 변속하며, 유압모터는 유압변속회로로부터 전달되는 회전 운동을 이용하여 회전되어 발전기를 회전시키는 것을 특징으로 한다.In addition, a hydraulic shift circuit and a hydraulic motor are installed between the power generation shaft and the generator of the renewable energy power generation device using a lever-crank according to a preferred embodiment of the present invention, and the hydraulic shift circuit is coupled to the power generation shaft to move from the power generation shaft. The speed is changed using a hydraulic shift circuit that can change gears according to the control of the rotational motion transmitted, and the hydraulic motor is rotated using the rotational motion transmitted from the hydraulic shift circuit to rotate the generator.
본 발명의 일 실시예에 따르면, 회전수차 방식 이외의 구조를 이용하여 바람, 파랑, 조류 등으로부터 변환된 왕복 운동형태 동력을 연속회전 운동형태로 전환하여 효과적으로 전력을 생산하는데 이용할 수 있게 하는 구조를 포함하는 레버-크랭크를 이용한 재생에너지발전장치를 제공할 수 있게 되는 효과가 있다. According to one embodiment of the present invention, a structure that can be used to effectively produce power by converting reciprocating motion power converted from wind, waves, currents, etc. into continuous rotation motion form using a structure other than a rotating water turbine method. There is an effect of being able to provide a renewable energy power generation device using a lever-crank including.
본 발명의 일 실시예에 따르면, 비교적 간단한 구조를 통하여 바람, 파랑, 조류 등으로부터 변환된 왕복 운동형태 동력을 회전 운동형태로 전환하여 효과적으로 전력을 생산하는데 이용할 수 있게 하는 구조를 포함하는 레버-크랭크를 이용한 재생에너지발전장치를 제공할 수 있게 되는 효과가 있다. According to one embodiment of the present invention, a lever-crank comprising a structure that converts reciprocating motion power converted from wind, waves, currents, etc. into rotational motion form through a relatively simple structure and uses it to effectively produce power. This has the effect of providing a renewable energy power generation device using .
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다. The effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description of the claims.
도 1은 본 발명의 바람직한 일 실시예에 따른, 레버-크랭크를 이용한 재생에너지발전장치에 적용되는 레버-크랭크 기구에 대한 개념도이다. Figure 1 is a conceptual diagram of a lever-crank mechanism applied to a renewable energy power generation device using a lever-crank according to a preferred embodiment of the present invention.
도 2는 본 발명의 바람직한 일 실시예에 따른, 레버-크랭크를 이용한 재생에너지발전장치를 나타낸 사시도와 정면도 및 측면도를 포함하는 도면이다. Figure 2 is a diagram including a perspective view, front view, and side view showing a renewable energy power generation device using a lever-crank according to a preferred embodiment of the present invention.
도 3은 본 발명의 바람직한 일 실시예에 따른, 레버-크랭크를 이용한 재생에너지발전장치에 포함되는 레버-크랭크 구조를 상방에서 내려다 본 경우를 나타내는 개념도이다. Figure 3 is a conceptual diagram showing a lever-crank structure included in a renewable energy power generation device using a lever-crank according to a preferred embodiment of the present invention when viewed from above.
도 4는 본 발명의 바람직한 일 실시예에 따른, 레버-크랭크를 이용한 재생에너지발전장치 제1 실시예(100)가 설치되는 한 가지 예를 나타낸 도면이다. Figure 4 is a diagram showing an example in which the first embodiment 100 of a renewable energy power generation device using a lever-crank is installed according to a preferred embodiment of the present invention.
도 5는 본 발명의 바람직한 일 실시예에 따른, 레버-크랭크를 이용한 재생에너지발전장치 제1 실시예(100)가 설치되는 다른 한 가지 예를 나타낸 도면이다. Figure 5 is a diagram showing another example in which the first embodiment 100 of a renewable energy power generation device using a lever-crank is installed according to a preferred embodiment of the present invention.
도 6은 본 발명의 바람직한 일 실시예에 따른, 레버-크랭크를 이용한 재생에너지발전장치 제2 실시예(200)가 설치되는 한 가지 예를 나타낸 도면이다. Figure 6 is a diagram showing an example in which the second embodiment 200 of a renewable energy power generation device using a lever-crank is installed according to a preferred embodiment of the present invention.
도 7은 본 발명의 바람직한 일 실시예에 따른, 레버-크랭크를 이용한 재생에너지발전장치 제2 실시예(200)가 설치되는 다른 한 가지 예를 나타낸 도면이다. Figure 7 is a diagram showing another example in which the second embodiment 200 of a renewable energy power generation device using a lever-crank is installed according to a preferred embodiment of the present invention.
도 8은 본 발명의 바람직한 일 실시예에 따른, 레버-크랭크를 이용한 재생에너지발전장치에 포함되는 기구가 정상 작동하도록 보조하기 위하여 이용되는 제어 개념도이다. Figure 8 is a control concept diagram used to assist the normal operation of a mechanism included in a renewable energy power generation device using a lever-crank according to a preferred embodiment of the present invention.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있을 정도로 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세하게 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily practice the present invention.
실시예를 설명함에 있어서 본 발명이 속하는 기술 분야에 익히 알려져 있고 본 발명과 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 발명의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.In describing the embodiments, descriptions of technical content that is well known in the technical field to which the present invention belongs and that are not directly related to the present invention will be omitted. This is to convey the gist of the present invention more clearly without obscuring it by omitting unnecessary explanation.
마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여하였다.For the same reason, some components are exaggerated, omitted, or schematically shown in the accompanying drawings. Additionally, the size of each component does not entirely reflect its actual size. In each drawing, identical or corresponding components are assigned the same reference numbers.
도 1은 본 발명의 바람직한 일 실시예에 따른, 레버-크랭크를 이용한 재생에너지발전장치에 적용되는 레버-크랭크 기구에 대한 개념도이다. Figure 1 is a conceptual diagram of a lever-crank mechanism applied to a renewable energy power generation device using a lever-crank according to a preferred embodiment of the present invention.
도 1을 참조하면, 본 발명의 레버-크랭크를 이용한 재생에너지발전장치에 포함되는 레버-크랭크 기구는, A, B, C 및 D의 4개 레버를 포함하고 있으며, 이들 레버의 길이는 A 레버가 가장 짧고, D 레버가 가장 길고, A+B < C+D 및 A+D < B+C 와 같은 관계가 성립한다.Referring to Figure 1, the lever-crank mechanism included in the renewable energy power generation device using the lever-crank of the present invention includes four levers, A, B, C, and D, and the length of these levers is A lever. is the shortest, D lever is the longest, and the following relationships are established: A+B < C+D and A+D < B+C.
위와 같은 길이 관계 조건이 성립한다면, A 레버는 회전하고 D 레버는 왕복각운동을 하게 된다. If the above length relationship conditions are established, lever A rotates and lever D performs reciprocating angular motion.
또한, 도면에서 C1, C2는 C 레버가 왕복각운동하는 범위를 나타낸 것이다.Additionally, in the drawing, C1 and C2 represent the range in which the C lever reciprocates.
이하 도 2 및 3을 참조하여, 본 발명의 바람직한 일 실시예에 따른, 레버-크랭크를 이용한 재생에너지발전장치에 대하여 설명한다.Hereinafter, with reference to FIGS. 2 and 3, a renewable energy power generation device using a lever-crank according to a preferred embodiment of the present invention will be described.
도 2는 본 발명의 바람직한 일 실시예에 따른, 레버-크랭크를 이용한 재생에너지발전장치를 나타낸 사시도와 정면도 및 측면도를 포함하는 도면이다. Figure 2 is a diagram including a perspective view, front view, and side view showing a renewable energy power generation device using a lever-crank according to a preferred embodiment of the present invention.
도 2를 참조하면, 도면의 좌측에 본 발명의 레버-크랭크를 이용한 재생에너지발전장치에 관한 사시도와 장치 아래 쪽 레버-크랭크 기구부(L)의 부분확대도가 나타나 있고, 우측에는 정면도와 측면도, 평면도가 나타나 있다.Referring to FIG. 2, the left side of the drawing shows a perspective view of the renewable energy power generation device using the lever-crank of the present invention and a partially enlarged view of the lever-crank mechanism (L) below the device, and the right side shows a front view and side view, A floor plan is shown.
좌측 사시도와 부분확대도를 참조하면, 본 발명의 바람직한 일 실시예에 따른, 레버-크랭크를 이용한 재생에너지발전장치는, 일정한 두께와 길이의 육면체 형상을 갖고 교각 등 수중 인공 구조물의 표면에 일면이 결합되는 고정판지지대(1), 고정판지지대(1)의 일면에 대향되는 대향면 상의 상단 부근과 하단 부근에 각각 결합되고 외측을 향하여 일정 길이 연장되는 각운동축고정판(5), 각운동축고정판(5)의 외측 단부에 형성되는 적어도 하나 이상의 모퉁이에 각각 돌출되도록 형성되는 회전축삽입구(10), 회전축삽입구(10)로부터 고정판지지대(1) 쪽으로 일정 거리 이격되고, 상단 부근과 하단 부근에 각각 결합된 각운동축고정판(5) 각각에 상단과 하단이 각각 결합되는 각운동축(60), 적어도 하나 이상의 레버를 포함하고, 회전축삽입구(10)에 삽입되어 각운동축고정판(5)이 마주보는 방향으로 돌출되는 회전축의 일단에 한 레버의 단부가 결합되며, 각운동축(60)에 다른 레버의 중간이 회전 가능하게 삽입되는 레버-크랭크기구부(L), 회전축의 타단에 발전축이 결합되고 발전축이 회전됨에 따라 전력을 생산하는 발전기(8), 레버-크랭크기구부(L)는 각운동축(60)의 상단과 하단에 각각 삽입되도록 설치되며, 상단과 하단에 각각 설치된 레버-크랭크기구부(L)에 포함되는 각운동축(60)에 삽입되는 레버의 단부에 상단과 하단이 각각 결합되는 블레이드(50)를 포함하고, 블레이드(50)는 주변 유체의 유동에 의해 일정 범위 내에서 왕복 운동하며, 왕복 운동은 레버-크랭크기구부(L)에 의하여 회전 운동으로 전환되어 발전기(8)의 발전축으로 전달되는 것을 특징으로 한다. Referring to the left perspective view and partial enlarged view, the renewable energy power generation device using a lever-crank according to a preferred embodiment of the present invention has a hexahedral shape of a certain thickness and length and has one side on the surface of an underwater artificial structure such as a pier. A fixed plate support (1) coupled to one side of the fixed plate support (1), an angular motion axis fixing plate (5) that is coupled near the top and bottom of the opposing surface opposite to one side of the fixed plate support (1) and extends a certain length outward. a rotation shaft insertion hole (10) formed to protrude from at least one corner formed at the outer end of An angular motion shaft 60, the upper and lower ends of which are respectively coupled to each of the fixing plates 5, and a rotating shaft including at least one lever, which is inserted into the rotary shaft insertion hole 10 and protrudes in the direction facing the angular motion shaft fixing plate 5. The end of one lever is coupled to one end, and the middle of the other lever is rotatably inserted into the angular movement axis 60. The lever-crank mechanism part (L), the power generation shaft is coupled to the other end of the rotation axis, and as the power generation shaft rotates, power is generated. The generator (8) that produces the lever-crank mechanism (L) is installed to be inserted into the upper and lower portions of the angular motion shaft 60, respectively, and the angular motion shaft included in the lever-crank mechanism portion (L) installed at the upper and lower portions, respectively. It includes a blade (50) whose upper and lower ends are respectively coupled to the ends of the lever inserted into (60), and the blade (50) reciprocates within a certain range by the flow of surrounding fluid, and the reciprocating motion is performed by lever-crank. It is characterized in that it is converted into rotational movement by the mechanism (L) and transmitted to the power generation shaft of the generator (8).
이상과 같은 구조를 포함하는 본 발명의 레버-크랭크를 이용한 재생에너지발전장치는, 도 1을 참조하여 설명한 것과 같은 4개의 레버를 포함하는 레버-크랭크 기구를 이용하여 장치 주변 유체의 유동에 의하여 발생하는 블레이드(50)의 왕복각운동 및 제3 레버(40)의 왕복각운동을 제1 레버(20)의 회전운동으로 전환하고, 제1 레버(20)의 일단부에 설치되는 회전축이 각운동축고정판(5)을 관통하여 발전기(8)의 발전축과 결합되게 함으로써, 발전기(8) 내부의 코일을 회전시켜 전력을 생산할 수 있다. The renewable energy power generation device using a lever-crank of the present invention including the structure described above uses a lever-crank mechanism including four levers as described with reference to FIG. 1 to generate electricity by the flow of fluid around the device. The reciprocating angular motion of the blade 50 and the reciprocating angular motion of the third lever 40 are converted into the rotary motion of the first lever 20, and the rotation axis installed at one end of the first lever 20 is the angular motion axis. By penetrating the fixing plate (5) and being coupled to the power generation shaft of the generator (8), power can be produced by rotating the coil inside the generator (8).
또한, 본 발명의 레버-크랭크를 이용한 재생에너지발전장치의 고정판지지대(1)에는, 고정판지지대(1)의 일면에 대향되는 면 상의 중간 높이에 고정판지지대(1)의 상단 부근과 하단 부근에 각각 결합되는 각운동축고정판(5)의 표면 중간까지 곧게 연장되는 직선형 보강보(3)가 각각 형성됨으로써, 고정판지지대(1) 및 각운동축고정판(5) 사이의 결합력을 공고히 유지되도록 한다. In addition, the fixed plate support (1) of the renewable energy power generation device using the lever-crank of the present invention is located near the upper and lower ends of the fixed plate support (1) at a mid-height on the side opposite to one side of the fixed plate support (1). By forming a straight reinforcement beam (3) extending straight to the middle of the surface of the angular motion axis fixing plate (5) to be coupled, the coupling force between the fixing plate support (1) and the angular motion axis fixing plate (5) is maintained firmly.
이는 유체 유동에 의하여 레버-크랭크를 이용한 재생에너지발전장치에 끊임없이 반복 작용하는 외력에 의하여 고정판지지대(1) 및 각운동축고정판(5) 사이의 결합력이 저하되거나 어느 구성요소가 파손될 가능성을 가능한 범위에서 낮추기 위한 보완적 구성이다. This is to reduce the possibility that the bonding force between the fixing plate support (1) and the angular movement axis fixing plate (5) is reduced or any component is damaged due to the external force that constantly and repeatedly acts on the renewable energy power generation device using the lever-crank due to fluid flow. It is a complementary configuration to lower it.
도 3은 본 발명의 바람직한 일 실시예에 따른, 레버-크랭크를 이용한 재생에너지발전장치에 포함되는 레버-크랭크 구조를 상방에서 내려다 본 경우를 나타내는 개념도이다. Figure 3 is a conceptual diagram showing a lever-crank structure included in a renewable energy power generation device using a lever-crank according to a preferred embodiment of the present invention when viewed from above.
도 3에는, a, b 및 c 와 같은 3개의 레버와 d 의 길이가 나타나 있다. In Figure 3, three levers a, b and c and the length d are shown.
여기에서, a, b, c, d 각각은 도 1의 대문자에 대응되는 것으로 볼 수 있으며, 도 2에 도시된 본 발명의 바람직한 일 실시예를 따른 레버-크랭크를 이용한 재생에너지발전장치의 구성요소들에 대응시킨다면, a는 제1 축간거리로서 도 2의 제1 레버(20)에 대응하는 것, b는 제2 축간거리로서 도 2의 제2 레버(30)에 대응하는 것, c는 제3 레버(40)의 일부, d는 c의 한쪽 단부인 각운동축(60)으로부터 회전축삽입구(10)의 중심에 이르는 거리로 볼 수 있다. Here, a, b, c, and d can each be viewed as corresponding to the capital letters in FIG. 1, and are components of a renewable energy power generation device using a lever-crank according to a preferred embodiment of the present invention shown in FIG. 2. If corresponding, a is the first axis-to-axis distance, which corresponds to the first lever 20 of FIG. 2, b is the second axis-to-axis distance, which corresponds to the second lever 30 of FIG. 2, and c is the second axis-to-axis distance. 3 A part of the lever 40, d, can be viewed as the distance from the angular movement axis 60, which is one end of c, to the center of the rotation axis insertion hole 10.
또한, 각 구성요소들 사이의 길이 관계는 도 1에서 설명한 A, B, C 및 D 사이의 관계와 마찬가지로, 제1 축간거리(a)가 가장 짧고, 제4 축간거리(d)가 가장 길며, a+b < c+d 및 a+d < b+c 와 같은 관계가 성립한다. In addition, the length relationship between each component is similar to the relationship between A, B, C, and D described in FIG. 1, with the first axis-to-axis distance (a) being the shortest and the fourth axis-to-axis distance (d) being the longest, Relationships such as a+b < c+d and a+d < b+c are established.
또한, 도 3(a), 3(b), 3(c)는 제3 레버(40) 및 제3 축간거리(c)의 왕복각운동에 따라 제1 축간거리(a) 및 제1 레버(20)가 회전운동하게 됨을 이해하기 쉽도록, 제3 레버(40)의 왕복각운동 상태를 제3 레버(40)의 좌측단이 도면 방향을 기준으로 최고점, 중간점, 최저점에 이른 상태로 구분하여 각각 도 3(a), 3(b), 3(c)에 도시한 것이다. In addition, Figures 3(a), 3(b), and 3(c) show the first axis distance (a) and the first lever ( To make it easier to understand that 20) rotates, the reciprocating angular motion state of the third lever 40 is divided into a state in which the left end of the third lever 40 reaches the highest point, midpoint, and lowest point based on the direction of the drawing. This is shown in Figures 3(a), 3(b), and 3(c), respectively.
도 4 내지 도 6은 각각 본 발명의 바람직한 일 실시예에 따른, 레버-크랭크를 이용한 재생에너지발전장치 제1 실시예(100) 또는 제2 실시예(200)가 설치되는 예들을 각각 나타낸 도면으로서, 도 4,5는 각각 제1 실시예(100)에 관한 것, 도 6,7은 각각 제2 실시예(200)에 관한 것이다.4 to 6 are diagrams showing examples of installation of the first embodiment 100 or the second embodiment 200 of a renewable energy power generation device using a lever-crank, respectively, according to a preferred embodiment of the present invention. , Figures 4 and 5 respectively relate to the first embodiment 100, and Figures 6 and 7 respectively relate to the second embodiment 200.
도 4를 참조하면, 레버-크랭크를 이용한 재생에너지발전장치 제1 실시예(100) 2기가 설치기둥(170)을 중심에 두고 서로 대향되는 위치에 설치되어 있으며 설치기둥(170)의 측면에서 바라보았을 때 제1 실시예 2기가 각각 설치기둥의(170)의 좌측과 우측에 설치되는 것으로 보인다. 또한, 설치기둥(170)의 하단부는 지면 또는 해저면에 고정되는 설치기둥고정구(180)에 삽입되어 고정 상태를 유지하게 된다.Referring to FIG. 4, two units of the first embodiment 100 of the renewable energy power generation device using a lever-crank are installed at opposing positions with the installation pillar 170 at the center, and are viewed from the side of the installation pillar 170. When viewed, it appears that the two units of the first embodiment are installed on the left and right sides of the installation pillar 170, respectively. In addition, the lower end of the installation pillar 170 is inserted into the installation pillar fixture 180 fixed to the ground or sea floor and maintained in a fixed state.
도 5를 참조하면, 하나의 설치기둥(170)에 레버-크랭크를 이용한 재생에너지발전장치 제1 실시예(100)가 여러 대 설치되는 경우의 실시예를 확인할 수 있다. 도 5의 실시예는 1개 설치기둥(170)에 5대의 발전장치가 설치되는 실시예를 보여준다.Referring to FIG. 5, an example can be seen where several first embodiments of the renewable energy power generation device 100 using a lever-crank are installed on one installation pillar 170. The embodiment of FIG. 5 shows an embodiment in which five power generation devices are installed on one installation pillar 170.
도 6을 참조하면, 레버-크랭크를 이용한 재생에너지발전장치 제2 실시예(200) 2기가 설치기둥(270)을 중심에 두고 서로 대향되는 위치에 설치되어 있으며 설치기둥(270)의 측면에서 바라보았을 때 제2 실시예 2기가 각각 설치기둥의(270)의 좌측과 우측에 설치되는 것으로 확인된다. 또한, 설치기둥(270)의 하단부는 지면 또는 해저면에 고정되는 설치기둥고정구(280)에 삽입되어 고정 상태를 유지하게 된다.Referring to FIG. 6, two units of the second embodiment 200 of the renewable energy power generation device using a lever-crank are installed at opposite positions with the installation pillar 270 at the center, and are viewed from the side of the installation pillar 270. When viewed, it is confirmed that the two units of the second embodiment are installed on the left and right sides of the installation pillar 270, respectively. In addition, the lower end of the installation pillar 270 is inserted into the installation pillar fixture 280 fixed to the ground or sea floor and maintained in a fixed state.
도 7을 참조하면, 하나의 설치기둥(270)에 레버-크랭크를 이용한 재생에너지발전장치 제2 실시예(200)가 여러 대 설치되는 경우의 실시예를 확인할 수 있다. 도 7의 실시예는 1개 설치기둥(270)에 12대의 발전장치가 설치되는 실시예를 보여준다.Referring to FIG. 7, an example can be seen where several second embodiments of the renewable energy power generation device 200 using a lever-crank are installed on one installation pillar 270. The embodiment of FIG. 7 shows an embodiment in which 12 power generation devices are installed on one installation pillar 270.
도 4 내지 7을 통하여 살펴본 각 설치 사례에서와 같이, 레버-크랭크를 이용한 재생에너지발전장치 제1/제2 실시예(100)(200)는 교각 등 인공 구조물에 설치되며, 각 방향에 적어도 1기 이상 복수를 일열로 설치할 수 있다. 또한 재생에너지발전장치를 설치할 때는 해당 구조물의 길이 및 재생에너지발전장치의 크기와 유체의 유속, 요구 발전량 등 관련 조건들을 고려하여 몇 기를 설치할지 결정할 수 있다.As in each installation case examined through FIGS. 4 to 7, the first and second embodiments 100 and 200 of the renewable energy power generation device using a lever-crank are installed on an artificial structure such as a bridge, and at least one in each direction. More than one can be installed in a row. Additionally, when installing a renewable energy power generation device, it is possible to decide how many units to install by considering related conditions such as the length of the structure, size of the renewable energy power generation device, fluid flow rate, and required power generation.
도 8은 본 발명의 바람직한 일 실시예에 따른, 레버-크랭크를 이용한 재생에너지발전장치에 포함되는 기구가 정상 작동하도록 보조하기 위하여 이용되는 제어 개념도이다. Figure 8 is a control concept diagram used to assist the normal operation of a mechanism included in a renewable energy power generation device using a lever-crank according to a preferred embodiment of the present invention.
도 8을 참조하면, 입사되는 재생에너지원이 부족하거나 발전부하가 과도할 경우 레버-크랭크를 이용한 재생에너지발전장치 기구의 발전기가 연결된 회전축이 연속 회전운동이 되지 못하는 현상이 발생되어 정상적인 전력생산이 불가하게 된다. 이러한 점을 해결하기 위하여, ‘기구의 운동 속도가 기 설정된 기준 운동 속도보다 큰가’를 판단한 후, 기구 운동 속도가 설정 운동 속도보다 큰 경우에만 정상작동을 하여 발전을 하는 것으로 표현되어 있다. 본 발명의 레버-크랭크를 이용한 재생에너지발전장치가 정지해 있던 상태에서 유체력이 작용하기 시작하는 초기에는 위와는 달리 기구 운동 속도가 설정 운동 속도에 미치지 못하게 되는데, 이런 경우에는 기구의 움직임에 발전부하를 부가하지 않도록 하여 자연 상태에서 보다 더 빠르게 기구 운동 속도가 기준 운동 속도에 도달할 수 있도록 제어한다.Referring to FIG. 8, when the input renewable energy source is insufficient or the power generation load is excessive, a phenomenon occurs in which the rotating shaft connected to the generator of the renewable energy power generation device mechanism using a lever-crank cannot perform continuous rotation, preventing normal power production. It becomes impossible. In order to solve this problem, it is expressed that after determining ‘whether the movement speed of the device is greater than the preset reference movement speed’, it operates normally and generates power only when the movement speed of the device is greater than the set movement speed. Unlike the above, at the beginning when the fluid force begins to act while the renewable energy power generation device using the lever-crank of the present invention is stationary, the movement speed of the mechanism does not reach the set movement speed. In this case, power generation occurs due to the movement of the mechanism. By not adding a load, the machine movement speed is controlled to reach the standard movement speed faster than in natural conditions.
이상에서, 기구란 유체에 의해 움직임이 발생하는 구성요소들을 지칭하는 표현으로서, 유체에 대한 저항력 작용으로 운동 에너지를 발생시키는 블레이드(50), 블레이드와 결합되어 일정 각도 범위 내에서 병진 운동하는 제3 레버(40) 및 제2 레버(30), 제1 레버(20)를 가리킨다. In the above, the mechanism refers to components that cause movement by fluid, including a blade 50 that generates kinetic energy through the action of resistance to the fluid, and a third device that is combined with the blade and moves in translation within a certain angular range. It refers to the lever 40, the second lever 30, and the first lever 20.
또한, 상술한 바와 같이 기구의 움직임을 일정 속도 범위 이내로 제한하거나 가진력을 더하기 위한 구성으로는 발전기(8)의 회전축의 회전 속도를 감속하거나 가속할 수 있는 것이 구현 비용 및 난이도, 효율성 면에서 바람직하다.In addition, as described above, as a configuration for limiting the movement of the mechanism within a certain speed range or adding exciting force, it is desirable to be able to slow down or accelerate the rotation speed of the rotation axis of the generator 8 in terms of implementation cost, difficulty, and efficiency. .
이와 같이 회전축의 회전 속도 가감속을 위해서는, 도 2,3을 참조하여 설명한 기본 구성에 제어부와 액츄에이터를 추가함으로써, 본 발명의 레버-크랭크를 이용한 재생에너지발전장치를 구성할 수 있으며, 추가 구성은 다음과 같다. 아래에서 회전축은 회전축삽입구(10)에 삽입된다.In order to accelerate and decelerate the rotational speed of the rotating shaft in this way, the renewable energy power generation device using the lever-crank of the present invention can be configured by adding a control unit and an actuator to the basic configuration described with reference to FIGS. 2 and 3, and the additional configuration is As follows. Below, the rotating shaft is inserted into the rotating shaft insertion hole (10).
회전축 주변에 설치되어 회전축의 회전 속도를 측정하는 회전속도계측센서 및 고정판지지대(1) 또는 각운동축고정판(5) 중 어느 한 쪽에 설치되고 회전속도계측센서로부터 회전 속도 측정 결과값을 전달받는 제어부를 구비하고, 회전속도계측센서에서 측정된 회전축의 회전 속도가 사전 설정된 회전 속도보다 큰 경우, 제어부의 제어에 의하여 발전기를 통해 정상적으로 전력생산하고, 회전속도계측센서에서 측정된 회전축의 회전 속도가 사전 설정된 회전 속도보다 작은 경우, 연속 회전운동이 이루어지지 않으므로 제어부의 제어에 의하여 발전부하를 부가하지 않도록 하여 연속 회전운동이 이루어질 수 있도록 회전축에 가속력을 제공한다.A rotation speed measurement sensor installed around the rotation axis to measure the rotation speed of the rotation shaft, and a control unit installed on either the fixing plate support (1) or the angular movement shaft fixation plate (5) and receiving the rotation speed measurement results from the rotation speed measurement sensor. If the rotation speed of the rotation axis measured by the rotation speed measurement sensor is greater than the preset rotation speed, power is normally produced through the generator under the control of the control unit, and the rotation speed of the rotation axis measured by the rotation speed measurement sensor is greater than the preset rotation speed. If it is less than the rotation speed, continuous rotation is not achieved, so no power generation load is added under the control of the control unit, and acceleration force is provided to the rotation shaft to enable continuous rotation.
이상 도 1 내지 도 8을 참조하여 설명한 본 발명의 바람직한 일 실시예에 따른 레버-크랭크를 이용한 재생에너지발전장치가 수중 환경에 설치되는 경우에는 발전기(8) 뿐만이 아닌 모든 구성요소들의 표면이 염수에 의한 부식을 방지할 수 있도록 코팅되거나, 각 구성요소들을 형성하는 재질도 실시되는 수중 환경에 적합한 것으로 선택되어야 한다.When the renewable energy power generation device using a lever-crank according to a preferred embodiment of the present invention described above with reference to FIGS. 1 to 8 is installed in an underwater environment, the surfaces of all components, not just the generator 8, are exposed to salt water. They must be coated to prevent corrosion, or the materials forming each component must be selected to be suitable for the underwater environment in which they are implemented.
한편, 본 명세서와 도면에는 본 발명의 바람직한 실시예에 대하여 개시하였으며, 비록 특정 용어들이 사용되었으나, 이는 단지 본 발명의 기술 내용을 쉽게 설명하고 발명의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예 외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.Meanwhile, the specification and drawings disclose preferred embodiments of the present invention, and although specific terms are used, they are used in a general sense to easily explain the technical content of the present invention and aid understanding of the present invention. It is not intended to limit the scope of the invention. It is obvious to those skilled in the art that in addition to the embodiments disclosed herein, other modifications based on the technical idea of the present invention can be implemented.
[부호의 설명][Explanation of symbols]
1 : 고정판지지대 1: Fixed plate support
3 : 보강보 3: Reinforcement beam
5 : 각운동축고정판 5: Each movement axis fixing plate
8 : 발전기 8: Generator
10 : 회전축삽입구 10: Rotation shaft insertion hole
20 : 제1 레버 20: first lever
30 : 제2 레버 30: second lever
40 : 제3 레버 40: third lever
50 : 블레이드 50: Blade
60 : 각운동축 60: Angular movement axis
100 : 레버-크랭크를 이용한 재생에너지발전장치 제1 실시예 100: First embodiment of renewable energy power generation device using lever-crank
170, 270 : 설치기둥 170, 270: Installation pillar
180, 280 : 설치기둥고정구 180, 280: Installation pillar fixture
200 : 레버-크랭크를 이용한 재생에너지발전장치 제2 실시예 200: Second embodiment of renewable energy power generation device using lever-crank
a : 제1 축간거리 a: Distance between first axes
b : 제2 축간거리 b: Distance between second axes
c : 제3 축간거리 c: Distance between third axles
d : 제4 축간거리 d: Distance between fourth axles
L : 레버-크랭크 기구부 L: Lever-crank mechanism part

Claims (5)

  1. 일정한 면적을 갖도록 형성되고 일정 거리를 두고 대향하도록 배치되는 한 쌍의 각운동축고정판; A pair of angular motion axis fixing plates formed to have a certain area and arranged to face each other at a certain distance;
    상기 한 쌍의 각운동축고정판의 모퉁이 중 적어도 하나 이상의 모퉁이에 각각 돌출되고 대향되는 각운동축고정판의 모퉁이에 각각 형성되어 쌍을 이루는 회전축삽입구; Rotation shaft inserts each protrude from at least one of the corners of the pair of angular motion shaft fixing plates and are formed on opposite corners of the angular motion shaft fixing plates to form a pair;
    상기 회전축삽입구로부터 일정 거리 이격되고, 상기 한 쌍의 각운동축고정판 각각에 상단과 하단이 각각 결합되는 각운동축; an angular motion shaft spaced a predetermined distance from the rotation shaft insertion port and having upper and lower ends respectively coupled to the pair of angular motion shaft fixing plates;
    적어도 하나 이상의 레버를 포함하고, 상기 회전축삽입구에 삽입되어 상기 각운동축고정판이 마주보는 방향으로 돌출되는 회전축의 일단에 한 레버의 단부가 결합되며, 상기 각운동축에 다른 레버의 중간이 회전 가능하게 삽입되는 레버-크랭크기구부; 및 It includes at least one lever, and the end of one lever is coupled to one end of a rotation shaft that is inserted into the rotation shaft insertion hole and protrudes in a direction facing the angular motion shaft fixing plate, and the middle of the other lever is rotatably inserted into the angular motion shaft. a lever-crank mechanism; and
    상기 회전축의 타단에 발전축이 결합되고 상기 발전축이 회전됨에 따라 전력을 생산하는 발전기;를 포함하고, A power generation shaft is coupled to the other end of the rotation shaft and a generator that produces power as the power generation shaft rotates,
    상기 레버-크랭크기구부는 상기 각운동축의 상단과 하단에 각각 삽입되도록 설치되며, The lever-crank mechanism is installed to be inserted into the upper and lower ends of the angular movement shaft, respectively,
    상기 상단과 하단에 각각 설치된 레버-크랭크기구부에 포함되는 상기 각운동축에 삽입되는 레버의 단부에 상단과 하단이 각각 결합되는 블레이드;를 포함하고, It includes a blade whose upper and lower ends are respectively coupled to the ends of the lever inserted into the angular movement axis included in the lever-crank mechanism installed at the upper and lower ends, respectively,
    상기 블레이드는 주변 유체의 유동에 의해 일정 범위 내에서 왕복 운동하며, 상기 왕복 운동은 상기 레버-크랭크기구부에 의하여 회전 운동으로 전환되고, The blade reciprocates within a certain range due to the flow of surrounding fluid, and the reciprocating motion is converted into rotational motion by the lever-crank mechanism,
    상기 회전 운동은 상기 발전기의 발전축으로 전달되는 것을 특징으로 하는 레버-크랭크를 이용한 재생에너지발전장치.A renewable energy power generation device using a lever-crank, characterized in that the rotational movement is transmitted to the power generation shaft of the generator.
  2. 제 1항에 있어서, According to clause 1,
    상기 레버-크랭크기구부는, The lever-crank mechanism part,
    상기 회전축의 상단에 일단부가 회전 가능하게 결합되는 제1 레버; a first lever whose one end is rotatably coupled to the upper end of the rotation shaft;
    상기 제1 레버의 타단부에 타단부가 회전 가능하게 결합되는 제2 레버; a second lever whose other end is rotatably coupled to the other end of the first lever;
    상기 제2 레버의 일단부에 일단부가 회전 가능하게 결합되고 일단과 타단 중간에 관통공이 형성되는 제3 레버; 및 a third lever, one end of which is rotatably coupled to one end of the second lever, and a through hole formed between one end and the other end; and
    상기 제3 레버의 타단부에는 마주한 레버-크랭크기구부의 동일 부위까지 연장되도록 결합되는 블레이드;를 포함하고, The other end of the third lever includes a blade coupled to extend to the same portion of the opposing lever-crank mechanism,
    상기 제3 레버의 관통공은 상기 각운동축에 삽입되며, The through hole of the third lever is inserted into the angular movement axis,
    상기 제1 레버 일단부의 회전 중심으로부터 상기 제1 레버 타단부의 회전 중심에 이르는 길이를 a라 하고, Let a be the length from the center of rotation of one end of the first lever to the center of rotation of the other end of the first lever,
    상기 제2 레버 일단부의 회전 중심으로부터 상기 제2 레버 타단부의 회전 중심에 이르는 길이를 b라 하고, Let b be the length from the center of rotation of one end of the second lever to the center of rotation of the other end of the second lever,
    상기 제3 레버 일단부의 회전 중심으로부터 상기 관통공에 삽입된 상기 각운동축 중심에 이르는 길이를 c라 하고, Let c be the length from the rotation center of one end of the third lever to the center of the angular movement axis inserted into the through hole,
    상기 제1 레버 일단부의 회전 중심으로부터 상기 각운동축 중심에 이르는 길이를 d라 할 때, When d is the length from the rotation center of one end of the first lever to the center of the angular movement axis,
    상기 a, b, c, d 중 상기 a가 가장 짧고 d가 가장 길며, Among a, b, c, and d, a is the shortest and d is the longest,
    a+b < c+d 및 a+d < b+c 와 같은 관계가 성립하는 것을 특징으로 하는 레버-크랭크를 이용한 재생에너지발전장치.A renewable energy power generation device using a lever-crank, characterized in that the following relationships are established: a+b < c+d and a+d < b+c.
  3. 제 1항에 있어서, According to clause 1,
    상기 한 쌍의 각운동축고정판의 일단 각각은, 일정한 두께와 길이를 갖고 특정 물체의 표면에 일면이 결합되는 고정판지지대의 타면 상단과 하단에 각각 결합되고, One end of each of the pair of angular motion axis fixing plates is coupled to the upper and lower ends of the other side of the fixing plate support, which has a certain thickness and length and one side of which is coupled to the surface of a specific object,
    상기 고정판지지대는, The fixing plate support is,
    상기 일면에 대향되는 면 상의 중간 높이에 상기 상단 부근과 하단 부근에 각각 결합되는 상기 각운동축고정판의 표면 중간까지 곧게 연장되는 보강보;가 각각 형성되는 것을 특징으로 하는 레버-크랭크를 이용한 재생에너지발전장치.Renewable energy generation using a lever-crank, characterized in that a reinforcing beam extending straight to the middle of the surface of the angular movement shaft fixing plate, which is coupled near the upper end and near the lower end, is formed at a mid-height on the face opposite to the one surface. Device.
  4. 제 1항 내지 제 3항 중의 어느 한 항에 있어서, According to any one of claims 1 to 3,
    상기 회전축 주변에 설치되어 상기 회전축의 회전 속도를 측정하는 회전속도계측센서; 및 A rotation speed measurement sensor installed around the rotation shaft to measure the rotation speed of the rotation shaft; and
    상기 고정판지지대 또는 각운동축고정판 중 어느 한 쪽에 설치되고 상기 회전속도계측센서로부터 회전 속도 측정 결과값을 전달받아 발전부하를 결정하는 제어부;를 구비하고, A control unit installed on either the fixing plate support or the angular motion shaft fixing plate and receiving the rotation speed measurement result from the rotation speed measurement sensor to determine the power generation load,
    상기 회전속도계측센서에서 측정된 상기 회전축의 회전 속도가 사전 설정된 회전 속도보다 큰 경우, 상기 제어부의 제어에 의하여 발전기를 통해 정상적으로 전력생산하고, If the rotation speed of the rotation shaft measured by the rotation speed measurement sensor is greater than the preset rotation speed, power is normally produced through the generator under the control of the control unit,
    상기 회전속도계측센서에서 측정된 상기 회전축의 회전 속도가 사전 설정된 회전 속도보다 작은 경우, 연속 회전운동이 이루어지지 않으므로 상기 제어부의 제어에 의하여 발전부하를 부가하지 않도록 하여 연속회전운동이 이루어질 수 있도록 상기 회전축에 가속력을 제공하는 것을 특징으로 하는 레버-크랭크를 이용한 재생에너지발전장치.If the rotational speed of the rotational shaft measured by the rotational speed measurement sensor is less than the preset rotational speed, continuous rotational movement is not achieved, so that continuous rotational movement is achieved by not adding a power generation load under the control of the control unit. A renewable energy power generation device using a lever-crank, characterized in that it provides acceleration to the rotating shaft.
  5. 제 1항에 있어서, According to clause 1,
    상기 발전축과 상기 발전기 사이에, 유압변속회로와 유압모터를 설치하고, Installing a hydraulic transmission circuit and a hydraulic motor between the power generation shaft and the generator,
    상기 유압변속회로는 상기 발전축에 결합되어 상기 발전축으로부터 전달되는 회전 운동을 제어에 따라 변속할 수 있는 유압변속회로를 이용하여 변속하며, The hydraulic shift circuit is coupled to the power generation shaft and shifts gears using a hydraulic shift circuit capable of controlling rotational motion transmitted from the power generation shaft,
    상기 유압모터는 상기 유압변속회로로부터 전달되는 회전 운동을 이용하여 회전되어 상기 발전기를 회전시키는 것을 특징으로 하는 레버-크랭크를 이용한 재생에너지발전장치.The hydraulic motor is rotated using rotational motion transmitted from the hydraulic transmission circuit to rotate the generator.
PCT/KR2023/013332 2022-09-28 2023-09-06 Renewable energy power generation device using lever-crank WO2024071717A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0123505 2022-09-28
KR1020220123505A KR102519615B1 (en) 2022-09-28 2022-09-28 Renewable energy device using lever-crank

Publications (1)

Publication Number Publication Date
WO2024071717A1 true WO2024071717A1 (en) 2024-04-04

Family

ID=85976717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/013332 WO2024071717A1 (en) 2022-09-28 2023-09-06 Renewable energy power generation device using lever-crank

Country Status (2)

Country Link
KR (1) KR102519615B1 (en)
WO (1) WO2024071717A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102519615B1 (en) * 2022-09-28 2023-04-11 한국해양과학기술원 Renewable energy device using lever-crank

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504958A (en) * 2005-08-12 2009-02-05 バイオパワー システムズ プロプライエタリー リミテッド Wave energy capture device
KR20130059915A (en) * 2011-11-29 2013-06-07 한국해양과학기술원 Simple reciprocating pivot-rotational vortex induced vibration energy extraction device
KR20130077366A (en) * 2011-12-29 2013-07-09 (주) 제이피이 Blade device and wind power generation apparatus used the same
JP2015526628A (en) * 2012-07-05 2015-09-10 アデヴェ テックAdv Tech Rotating device with fluid rotor with directable vanes
KR102519615B1 (en) * 2022-09-28 2023-04-11 한국해양과학기술원 Renewable energy device using lever-crank

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112010000441T5 (en) 2009-03-23 2012-08-09 Illinois Tool Works, Inc. Bolt holder assembly
KR101919148B1 (en) 2017-01-06 2018-11-16 부산대학교 산학협력단 Field effect thin film transistor with reconfigurable characteristics, and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504958A (en) * 2005-08-12 2009-02-05 バイオパワー システムズ プロプライエタリー リミテッド Wave energy capture device
KR20130059915A (en) * 2011-11-29 2013-06-07 한국해양과학기술원 Simple reciprocating pivot-rotational vortex induced vibration energy extraction device
KR20130077366A (en) * 2011-12-29 2013-07-09 (주) 제이피이 Blade device and wind power generation apparatus used the same
JP2015526628A (en) * 2012-07-05 2015-09-10 アデヴェ テックAdv Tech Rotating device with fluid rotor with directable vanes
KR102519615B1 (en) * 2022-09-28 2023-04-11 한국해양과학기술원 Renewable energy device using lever-crank

Also Published As

Publication number Publication date
KR102519615B1 (en) 2023-04-11

Similar Documents

Publication Publication Date Title
WO2024071717A1 (en) Renewable energy power generation device using lever-crank
AU2007309524B2 (en) Submersible turbine-generator unit for ocean and tidal currents
CN111042978B (en) Floating type wind energy-wave energy combined power generation device and control method thereof
US10982646B2 (en) Ocean tidal current energy power generating system
CN103485972B (en) A kind of tidal current wave power generation device
WO2014171629A1 (en) Air-cushioned small hydraulic power generating device
CN103470434A (en) Ocean current power generation device with self-regulating function
CN114069965B (en) Replenishing type generator set
CN201730729U (en) Heavy hammer type wave generating device
US11753786B2 (en) Fixed permeable breakwater doubling as wave energy generating device
WO2012157839A1 (en) Wave power generation device
WO2023200053A1 (en) Power generation device using wind and water power
WO2017204437A1 (en) Tidal current generator
WO2012128491A2 (en) Wave-power generation system using active breakwater
KR20030050835A (en) Bridge current power generating system
WO2016032099A1 (en) Tidal power generator
WO2018008798A1 (en) Blade structure for generator
JP2006183648A (en) Hydrodynamic force power-generating device
WO2020209556A1 (en) Floating-type power generation apparatus
WO2015012481A1 (en) Construction method for floating wave power generation complex through sharing of mooring line and floating wave power generation system using same
Barbarelli et al. Engineering Design Study on an Innovative Hydrokinetic Turbine with on Shore Foundation
WO2022092818A1 (en) Floating offshore structure and floating offshore power generation apparatus having same
CN212786157U (en) Artificial intelligence integration power mounting structure
KR101042971B1 (en) Power generation system using a dam for tidal power generation
KR101315180B1 (en) Wind power generator floating on the water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872837

Country of ref document: EP

Kind code of ref document: A1