WO2018008798A1 - Blade structure for generator - Google Patents

Blade structure for generator Download PDF

Info

Publication number
WO2018008798A1
WO2018008798A1 PCT/KR2016/010145 KR2016010145W WO2018008798A1 WO 2018008798 A1 WO2018008798 A1 WO 2018008798A1 KR 2016010145 W KR2016010145 W KR 2016010145W WO 2018008798 A1 WO2018008798 A1 WO 2018008798A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
rotation
generator
blades
wing plate
Prior art date
Application number
PCT/KR2016/010145
Other languages
French (fr)
Korean (ko)
Inventor
원상묵
Original Assignee
주식회사 미래에너지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 미래에너지 filed Critical 주식회사 미래에너지
Publication of WO2018008798A1 publication Critical patent/WO2018008798A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • F03B13/264Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy using the horizontal flow of water resulting from tide movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/062Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention relates to a blade structure for a generator, and more particularly to a blade structure for a generator for converting tidal energy or wind energy into electrical energy through a blade rotated by algae or wind.
  • renewable energy includes solar energy, wind energy, and marine energy.
  • the ocean energy is tidal power generating electricity by using the rising and falling movement of sea level caused by the tidal phenomenon of the solar system, and by installing a turbine where the flow of tidal current is fast in coastal areas generated by the tidal phenomenon, Floating algae power generation using
  • Tidal power generation produces electric power by creating dams and using the free fall between George and the Sea to generate rotational force on water wheels and converting them into electrical energy by generators directly connected to the water wheels.
  • Tidal power generation requires electricity to generate seawater by blocking the dam to store seawater and rotating the aberrations using the free fall. Therefore, to create a seawater dam, the cost of investment and the environmental protection of conflict due to the construction of a power generation dam related to local residents and marine water resources
  • An alternative to all the problems of conflict with local residents and environmental groups in Esau is algae development.
  • Algae power generation is a kind of renewable energy.
  • the tidal resources generated by tides are rich, constantly regenerated, distributed in a wide range of areas, clean and free of greenhouse gas emissions. It is a promising alternative energy source for the depletion of the same fossil fuel.
  • Korea is a peninsula country consisting of three sides of the sea, and has natural environmental conditions that can easily use algae development.
  • Algae power generation is generated by using algae that are available on the southwest coast of Korea, where the tidal phenomenon, the natural energy of the solar system, is predominant.
  • the characteristic of algae power generation is that seawater uses algae of seawater about 840 times more dense than air, so the amount of power generation is proportional to the density, so even if a small aberration (blade) is used, it can produce more energy than wind power. .
  • tidal power generation does not require dams and is only generated by using tidal flow to freely distribute seawater. Therefore, tidal power generation has little effect on the surrounding coastal marine environment.
  • tidal power generation is an eco-friendly power generation method where initial investment cost is lower than tidal power generation. It is installed in the coastal area where tidal current is fast, and it is developed by using stable algae as a friendly marine energy source. It is emerging as a good alternative energy source to cope with climate change agreements by reducing the use of fossil fuels and reducing greenhouse gases. Natural tidal phenomena can be accurately predicted in the long term, and the big advantage of algal power generation is that unlike other renewable energy sources, it is a reliable and clean energy source that can always be operated constantly regardless of seasonal factors or weather and can generate electricity accurately. to be.
  • Algae power generation is classified into floating algae generation and ground algae generation depending on the installation method.
  • the horizontal horizontal tidal power generation is a propeller-shaped turbine.
  • important facilities are installed on the sea floor, the initial investment cost is high, and the power generation facilities are installed on the sea floor, making operation and maintenance difficult, and the cost is insufficient to secure economic feasibility. There was this.
  • Floating algae generators are generators in addition to vertical shaft algae turbines. It is an economical tidal power generation method that has the advantages of low installation investment cost, safe operation and maintenance, short installation period of tidal current generator installation, and low initial facility investment cost, because it can locate the core gears of the gearbox and major electric power facilities.
  • An object of the present invention is to provide a blade structure for a generator for converting algae energy or wind energy into electrical energy through a blade rotated by algae or wind.
  • An object of the present invention is to provide a generator blade structure that is installed perpendicular to the water surface has a structure that is rotated by a tidal current, converting tidal current energy into electrical energy.
  • the main body unit is a generator; Vertically located in the lower portion of the body portion, one side is connected to the vertical rotating shaft generator; And a plurality of blade portions connected to the vertical rotation shaft and transmitting rotational force to the vertical rotation shaft, wherein the plurality of blade portions are rotatable at a predetermined angle to the module pillar member and the module pillar member coupled to the vertical rotation shaft in a module unit.
  • a plurality of rotational transmission axes connected to and spaced apart from each other by 120 °, and having a weight equal to that of the first wingplate portion and the first wingplate portion, based on a portion where the rotational transmission shafts are installed,
  • a plurality of blades, each coupled to a plurality of rotational transmission shafts, are provided so as to be divided into a second wing plate portion having an area, and the plurality of blades are based on the rotational transmission shaft by a weight balance between the first wingplate portion and the second wingplate portion. It is preferable to rotate at a predetermined angle.
  • the plurality of blades, the plurality of blades of any one blade portion is connected to the vertical axis of rotation by a 30 ° to 90 ° intervals with respect to the plurality of blades of the other blade portion located up and down desirable.
  • the modular pillar member a cylindrical pillar coupled to the vertical rotation shaft, a plurality of support shaft portion protruding from the outer peripheral surface of the cylindrical pillar rotatably supporting a plurality of rotation transmission shaft, a plurality of support shaft portion
  • the stopper is formed to protrude on the outer peripheral surface of the stopper is located in the engaging groove provided on the outer peripheral surface of the rotation transmission shaft, it is preferable to limit the degree of rotation of the rotation transmission shaft.
  • the plurality of blades are each connected to the plurality of rotation transmission shafts inclined at a predetermined angle with respect to the other blade in which one blade is adjacent to each other.
  • the present invention has a structure that is installed perpendicular to the water surface is rotated by the algae, converts the algae energy into electrical energy, it is possible to produce electrical energy environmentally friendly using natural energy.
  • the main parts such as the generator is installed on the buoyancy body, it is easy to maintain the main parts such as the generator.
  • FIG. 1 schematically shows an installation state diagram in which a blade structure for a generator according to an embodiment of the present invention is installed on a water surface.
  • Figure 2 schematically shows a bottom view of a blade structure for a generator.
  • FIG. 3 schematically illustrates a side view of a blade structure for a generator.
  • Figure 4 schematically shows a perspective view of a blade unit according to an embodiment of the present invention.
  • FIG. 5 schematically shows a plan view of the blade portion.
  • FIG. 6 is a schematic side view of the blade portion.
  • Figure 7 schematically shows an operating state diagram of the blade unit.
  • FIG. 8 schematically illustrates a state diagram in which a generator blade structure is installed in a buoyancy body.
  • FIG. 9 schematically illustrates a side cross-sectional view of FIG. 8.
  • Algae energy exists in the form of kinetic energy generated when tides are replaced by tidal action, and this kinetic energy is converted into electrical energy through algae power generation.
  • the present invention is a device for converting algae energy into electrical energy.
  • a generator to which a generator blade structure is applied is installed at a portion where a tidal current occurs will be described.
  • the present invention can be applied to wind power in addition to tidal power, if the blade can rotate.
  • the blade structure 100 for a generator includes a buoyancy body 10, a main body 110, a vertical rotation shaft 120, and a plurality of blades 130 and 140. , 150, 160).
  • the main body 110 is installed above the buoyancy body 10 to protect components such as the generator 115.
  • components such as the generator 115.
  • other components except components except for the generator 115 will be omitted in the detailed description and drawings.
  • the buoyancy body 10 is an object floating on the water surface 1.
  • the buoyancy body 10 supports the body portion 110.
  • the buoyancy body 10 is to prevent the vertical axis of rotation 120 and the plurality of blades (130, 140, 150, 160, etc.) to sink to the bottom of the sea, a device that induces the flow of floating pants and algae floating on the water surface And is formed in a shape for fixing the blade.
  • the buoyancy body 10 preferably supports the blade structure 100 for the generator so as not to affect the rotation of the plurality of blade portions 130, 140, and 150.
  • the vertical rotation shaft 120 is positioned below the buoyancy body 10 and is perpendicular to the main body 110.
  • the vertical rotation shaft 120 is connected to the generator 115.
  • a plurality of blade parts 130, 140, 150, and 160 are installed on the outer circumferential surface of the vertical rotation shaft 120.
  • the plurality of blade portions 130, 140, 150, 160 is the rotational center axis is coaxial with the rotational center axis of the vertical rotational shaft 120, is stacked in series on the vertical rotational shaft 120.
  • the vertical rotation shaft 120 transmits the rotational energy of the plurality of blade parts 130, 140, 150, and 160 to the generator 115.
  • the plurality of blades 130, 140, 150, 160 are rotated in conjunction with each other by a bird, and transmits the rotational force to the vertical rotation shaft 120.
  • the plurality of blade portions 130, 140, 150, and 160 are divided into a first blade portion 130, a second blade portion 140, a third blade portion 150, and a fourth blade portion 160. Let's do it.
  • the number of installation of the plurality of blade parts 130, 140, 150, 160 is not necessarily limited thereto, and of course, the variable number of blades 130, 140, 150, and 160 may be variously changed within a range apparent to those skilled in the art.
  • the plurality of blades 130, 140, 150, 160 are sequentially coupled to the vertical axis of rotation 120 so as not to hit each other during rotation.
  • the plurality of blade parts 130, 140, 150, and 160 are vertically rotated shafts 120 by a 30 ° to 90 ° interval with respect to the plurality of blades of the other blade part in which the plurality of blades of any one blade part are positioned up and down. Is preferably connected to
  • the second blade portion 140 is positioned such that the first blade of the second blade portion 140 is spaced by 30 ° with respect to the first blade 133 of the first blade portion 130.
  • the third blade portion 150 is the first blade of the third blade portion 150 is spaced apart by 30 ° with respect to the first blade of the second blade portion 140, the first blade portion 130 1 is positioned to be spaced apart by 60 ° with respect to the blade 133.
  • first blade of the fourth blade portion 160 is the first blade of the fourth blade portion 160 is spaced 30 degrees with respect to the first blade of the third blade portion 150, the second blade portion It is preferably located 60 degrees apart from the first blade of 140 and 90 degrees apart from the first blade 133 of the first blade portion 130.
  • first blade portion 130 to the fourth blade portion 160 have the same structure and the same function, the following description will be made on the first blade portion 130 to avoid repetition of the description. Shall be.
  • the first blade unit 130 includes a plurality of blades 133, 135, and 137, a plurality of rotation transmission shafts 134, 136, and 138, and a module pillar member 131.
  • the blade portion has a structure that is laminated to the vertical axis of rotation 120 in a module unit by the module pillar member 131.
  • the plurality of blades 133, 135, and 137 will be referred to as being divided into a first blade 133, a second blade 135, and a third blade 137.
  • the plurality of rotation transmission shafts 134, 136, and 138 will be referred to as being divided into a first rotation transmission shaft 134, a second rotation transmission shaft 136, and a third rotation transmission shaft 138.
  • the module pillar member 131 is coupled to the vertical rotation shaft 120.
  • the module pillar member 131 receives a rotational force from the first rotation transmission shaft 134 to the third rotation transmission shaft 138 when the first blade 133 to the third blade 137 rotate, and the vertical rotation shaft 120 ).
  • the blade portion is sequentially stacked on the vertical axis of rotation 120 in module units.
  • the module pillar member 131 includes a cylindrical pillar 131a, a plurality of support shaft portions 131b, and a stopper 131c.
  • the cylindrical column 131a is connected to the vertical rotation shaft 120 through the vertical rotation shaft 120.
  • the cylindrical column 131a is preferably coupled to the vertical axis of rotation 120 such that the central axis of the cylindrical column 131a is coaxial with the central axis of the vertical axis of rotation 120.
  • the cylindrical pillar 131a is provided with an upper flange 131d at the top.
  • the cylindrical column 131a is provided with a lower flange 131e at the lower portion thereof.
  • the upper flange 131d of one cylindrical pillar 131a is bolted to the lower flange 131e of the other cylindrical pillar 131a stacked thereon. In this way, the plurality of module pillar members 131 are coupled in series with each other.
  • a plurality of support shaft portion 131b is provided on the outer circumferential surface of the cylindrical column 131a.
  • the plurality of support shaft portions 131b supports the plurality of rotation transmission shafts such that the plurality of rotation transmission shafts are rotatable at a predetermined angle.
  • a stopper 131c is provided on the outer circumferential surface of the support shaft portion 131b.
  • the stopper 131c is positioned in the locking groove 134a provided on the outer circumferential surface of the first rotation transmission shaft 134 to the third rotation transmission shaft 138, respectively. At this time, the stopper 131c is positioned to protrude to the outside of the locking groove 134a.
  • the locking groove 134a has a width larger than the diameter of the stopper 131c, and has a size that is not affected by the stopper 131c when the rotational transmission shaft rotates at a predetermined angle.
  • the stopper 131c is fixed at a predetermined position, but is a relative motion with respect to the locking groove 134a when the rotational transmission shaft is rotated.
  • the stopper 131c is spaced apart from the locking groove 134a. Limit the rotation of the rotating transmission shaft.
  • the first rotation transmission shaft 134 to the third rotation transmission shaft 138 are coupled to the module pillar member 131 spaced apart from each other by 120 °.
  • the first blade 133 is connected to the first rotational transmission shaft 134.
  • the second blade 135 is connected to the second rotation transmission shaft 136.
  • the third blade 137 is connected to the third rotational transmission shaft 138.
  • the first blade 133 to the third blade 137 are coupled to the first rotation transmission shaft 134 to the third rotation transmission shaft 138 so as to be inclined with respect to the adjacent blade, thereby forming a pinwheel shape.
  • the coupling structure between the first blade 133 and the first rotational transmission shaft 134 may include a coupling structure between the second blade 135 and the second rotational transmission shaft 136 and a third blade 137 and the third rotational transmission.
  • the first blade 133 is divided into a first wing plate 133a and a second wing plate 133b based on the center of gravity.
  • the first rotational transmission shaft 134 is provided at the boundary between the first wing plate portion 133a and the second wing plate portion 133b.
  • the boundary line between the first wing plate portion 133a and the second wing plate portion 133b is the center of gravity of the first blade 133.
  • the first wing plate portion 133a has a smaller area than the second wing plate portion 133b but has the same weight as the second wing plate portion 133b.
  • a plurality of balance members 133c are installed in the first wing plate portion 133a.
  • the second wing plate portion 133b has a shape larger than the area of the first wing plate portion 133a. Accordingly, the second wing plate portion 133b has a wide plate shape having a thickness thinner than the thickness of the first wing plate portion 133a, and the first wing plate portion 133a is thicker than the thickness of the second wing plate portion 133b. It has a narrow plate shape with a thickness.
  • the first wing plate portion 133a and the second wing plate portion 133b preferably have a shape in which the edge is curved in a streamline shape so as to receive less resistance to a bird.
  • the first blade 133 receives a current proportional to the area of the first wing plate portion 133a and the second wing plate portion 133b and rotates based on the first rotation transmission shaft 134. That is, the first rotational transmission shaft 134 is rotated at a predetermined angle while the first blade 133 is positioned vertically or horizontally with respect to the traveling direction F of the tidal current, and the first wing plate portion 133a and the first wing plate portion 133a. Match the weight balance between the second wing plate portion 133b. At this time, the degree of rotation of the first rotation transmission shaft 134 is limited by the stopper 131c.
  • the first rotational transmission shaft 134 may have a first weight due to the weight balance of the first blade 133.
  • the rotating force is transmitted to the vertical rotation shaft 120 while being rotated at a predetermined angle to push the blade 133 in the direction F of the bird.
  • the first rotation transmission shaft 134 may be positioned horizontally with the traveling direction F of the tidal current. While rotating provides a rotational force to the vertical axis of rotation (120).
  • the first blade 133 when the first blade 133 is positioned perpendicular to the direction of movement F of the tidal stream, the first blade 133 may include the first wing plate portion 133a and the second wing plate portion 133b. Due to the different area difference between), the water pressure applied to the first wing plate portion 133a and the water pressure applied to the second wing plate portion 133b are applied differently. As a result, the first blade 133 is rotated in the R2 direction about the first rotational transmission shaft 134 to match the weight balance between the first wing plate portion 133a and the second wing plate portion 133b. It can be positioned horizontally with respect to the direction F to minimize the resistance to algae. For this reason, the present invention can increase the algae power generation efficiency.
  • the first rotational transmission shaft 134 is R1 by the force of the tidal force pushing the first blade 133 Is rotated in the direction.
  • the first rotation transmission shaft 134 transmits this rotation force to the vertical rotation shaft 120.
  • the rotation direction of the vertical rotation shaft 120 is the R1 direction.
  • the amount of power generated during algae generation is derived from equation (1).
  • the present invention is preferably installed in a large algal flow rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oceanography (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

A blade structure for a generator, according to one embodiment of the present invention, comprises: a main body part having a generator placed therein; a vertical rotating shaft vertically positioned on the lower part of the main body part, wherein one side of the vertical rotating shaft is connected to the generator; and a plurality of blade parts connected to the vertical rotating shaft, thereby transmitting torque to the vertical rotating shaft. The plurality of blade parts respectively have: a modular column member coupling to the vertical rotating shaft in modular units; a plurality of rotation transmission shafts connected to the modular column member so as to be rotatable at a predetermined angle, and spaced apart from each other at 120° intervals; and a plurality of blades each coupled to the plurality of rotation transmission shafts respectively so as to be partitioned, with respect to the part where the rotation transmission shaft is installed thereat, into a first blade plate part, and a second blade plate part having the same weight as the first blade plate part and having an area that is larger than the area of the first blade plate part, and thus, preferably, the plurality of blades rotate about the rotation transmission shafts at a predetermined angle by means of the weight balance between the first blade plate part and the second blade plate part.

Description

발전기용 블레이드 구조Generator blade structure
본 발명은 발전기용 블레이드 구조에 관한 것이며, 상세하게는 조류 또는 바람에 의해 회전되는 블레이드를 통해, 조류에너지 또는 바람에너지를 전기적 에너지로 변환하는 발전기용 블레이드 구조에 관한 것이다.The present invention relates to a blade structure for a generator, and more particularly to a blade structure for a generator for converting tidal energy or wind energy into electrical energy through a blade rotated by algae or wind.
현재, 우리가 현재 사용하는 대부분의 에너지원인 석유, 석탄, 우라늄 등은 한번 사용하면 다시 사용할 수 없는 원료이다. 문제는 이들 원료의 매장량에 한계가 있다는 것이다. 현대 산업사회가 가장 많이 의존하고 있는 석유는 생산량이 지속적으로 감소할 것으로 예상되며, 향후에는 고갈될 것으로 예상되고 있다.Currently, most of the energy sources we use today, such as petroleum, coal and uranium, are raw materials that cannot be reused once used. The problem is that the reserves of these raw materials are limited. Petroleum, the most dependent of modern industrial society, is expected to continue to decrease in production and depletion in the future.
이러한 에너지 자원의 부족을 대비하기 위해서 신 재생에너지 연구가 활발하게 이루어지고 있다. 이러한 신 재생에너지로는 태양에너지, 풍력에너지, 해양에너지 등이 있다. 이중 해양에너지는 태양계의 조석현상에 따라 발생하는 해수면이 상승 하강 운동을 이용하여 전기를 생산하는 조력발전과, 조석 현상에 따라 발생하는 연안지역에서 조류의 흐름이 빠른 곳에 터빈을 설치해 해수의 운동에너지를 이용하여 발전하는 부유식 조류발전 등이 있다.In order to prepare for such a shortage of energy resources, research on renewable energy is being actively conducted. Such renewable energy includes solar energy, wind energy, and marine energy. The ocean energy is tidal power generating electricity by using the rising and falling movement of sea level caused by the tidal phenomenon of the solar system, and by installing a turbine where the flow of tidal current is fast in coastal areas generated by the tidal phenomenon, Floating algae power generation using
조력발전은 댐을 만들고 조지와 와해 사이의 낙차를 이용하여 위치 에너지인 낙차를 이용하여 수차에 회전력을 발생시키고 수차와 직결되어 있는 발전기에 의해서 전기 에너지로 변환하여 전력을 생산하고 있다. Tidal power generation produces electric power by creating dams and using the free fall between George and the Sea to generate rotational force on water wheels and converting them into electrical energy by generators directly connected to the water wheels.
조력 발전은 댐을 막아 해수를 저장하고 그 낙차를 이용하여 수차를 회전하여 전기를 생산하여야 하므로, 해수 댐을 만들기 위해서는 고비용의 투자비와 지역주민과 해양수자원과 관련된 발전 댐 건설에 따른 갈등 환경보호 측면에서의 지역주민과 환경단체와 갈등의 문제점을 모두 해결할 수 있는 대안은 조류발전이다.Tidal power generation requires electricity to generate seawater by blocking the dam to store seawater and rotating the aberrations using the free fall. Therefore, to create a seawater dam, the cost of investment and the environmental protection of conflict due to the construction of a power generation dam related to local residents and marine water resources An alternative to all the problems of conflict with local residents and environmental groups in Esau is algae development.
조류발전은 신 재생에너지 (Renewable energy)의 일종으로 조석에 의해 발생되는 조류자원은 풍부하고 끊임없이 재생되며 광범위한 지역에 분포되어 있고 깨끗하며 또한 이용에 온실가스 배출이 없다는 환경 보호측면과 석유나 석탄과 같은 화석연료의 고갈에 대비한 유망한 대체 에너지원으로서 각광받는 이용 가능한 에너지원이다. 우리나라는 3면이 바다로 이루어진 반도국가로서, 조류발전을 용이하게 이용할 수 있는 천혜의 환경 조건을 가지고 있다.Algae power generation is a kind of renewable energy. The tidal resources generated by tides are rich, constantly regenerated, distributed in a wide range of areas, clean and free of greenhouse gas emissions. It is a promising alternative energy source for the depletion of the same fossil fuel. Korea is a peninsula country consisting of three sides of the sea, and has natural environmental conditions that can easily use algae development.
조류발전은 태양계의 자연에너지인 조석현상이 우세한 우리나라 서남해 연안에서 이용 가능한 조류를 이용하여 발전하기 때문에 조석에 의한 강한유속이 발생할 때에는 안정적으로 대량의 전력을 발전할 수 있다. Algae power generation is generated by using algae that are available on the southwest coast of Korea, where the tidal phenomenon, the natural energy of the solar system, is predominant.
조류발전의 특징은 해수는 공기에 비하여 밀도가 약840배 큰 해수의 조류를 이용하기 때문에 발전량은 밀도와 비례하기 때문에 작은 수차(블레이드)를 사용하더라도 풍력발전보다 큰 에너지를 생산할 수 있는 이점이 있다. The characteristic of algae power generation is that seawater uses algae of seawater about 840 times more dense than air, so the amount of power generation is proportional to the density, so even if a small aberration (blade) is used, it can produce more energy than wind power. .
조력발전과 달리 조류발전은 댐이 필요 없고 단지 조류의 흐름을 이용하여 발전해 해수 유통이 자유롭기 때문에 주변 연안 해양환경에 거의 영향을 끼치지 않는 장점이 있다. Unlike tidal power generation, tidal power generation does not require dams and is only generated by using tidal flow to freely distribute seawater. Therefore, tidal power generation has little effect on the surrounding coastal marine environment.
또한, 조류발전은 초기 투자비용이 조력발전보다 저렴한 친환경 발전방법으로 연안지역 바다의 조류가 빠른 지역에 설치해 조력발전에 비해 상대적으로 투자비용이 저렴하고 친화적인 해양에너지원으로 안정적인 조류를 이용해 발전하여 화석연료 사용의 절감과 온실가스 저감을 통한 기후변화 협약대응에 좋은 대안의 에너지원으로 부각되고 있다. 자연적인 조석현상은 장기적으로 정확한 사전예보가 가능하고 조류발전의 큰 장점은 타 재생에너지와 달리 계절적 요인이나 날씨에 관계없이 항상 일정하게 가동하며 발전량을 정확히 예측하여 발전할 수 있는 신뢰성 있는 청정에너지원이다.In addition, tidal power generation is an eco-friendly power generation method where initial investment cost is lower than tidal power generation. It is installed in the coastal area where tidal current is fast, and it is developed by using stable algae as a friendly marine energy source. It is emerging as a good alternative energy source to cope with climate change agreements by reducing the use of fossil fuels and reducing greenhouse gases. Natural tidal phenomena can be accurately predicted in the long term, and the big advantage of algal power generation is that unlike other renewable energy sources, it is a reliable and clean energy source that can always be operated constantly regardless of seasonal factors or weather and can generate electricity accurately. to be.
조류발전은 설치 방법에 따라 부유식 조류발전과 착저식 조류발전으로 구분된다. 착저식 수평축 조류발전은 프로펠라 모양의 터빈으로 일반적으로 중요설비가 해저에 설치되고 초기 투자비용이 높고 발전설비가 해저에 설치되어있어 운전 및 유지보수가 어렵고 비용이 증가되어 경제성을 확보하기에 미흡한 문제점이 있었다. 부유식 조류발전은 수직축 조류터빈 외 발전기. 증속기 및 주요 전력설비 핵심장비를 수면위에 위치시킬 수 있어 설치투자 비용이 저렴하고 유지보수 운영이 안전하며 조류발전기 설치공사 기간이 짧다는 장점과 초기 시설 투자비용이 저렴한 경제성 있는 조류발전방식이다.Algae power generation is classified into floating algae generation and ground algae generation depending on the installation method. The horizontal horizontal tidal power generation is a propeller-shaped turbine. In general, important facilities are installed on the sea floor, the initial investment cost is high, and the power generation facilities are installed on the sea floor, making operation and maintenance difficult, and the cost is insufficient to secure economic feasibility. There was this. Floating algae generators are generators in addition to vertical shaft algae turbines. It is an economical tidal power generation method that has the advantages of low installation investment cost, safe operation and maintenance, short installation period of tidal current generator installation, and low initial facility investment cost, because it can locate the core gears of the gearbox and major electric power facilities.
본 발명은 조류 또는 바람에 의해 회전되는 블레이드를 통해, 조류에너지 또는 바람에너지를 전기적 에너지로 변환하는 발전기용 블레이드 구조를 제공하는 것을 목적으로 한다. An object of the present invention is to provide a blade structure for a generator for converting algae energy or wind energy into electrical energy through a blade rotated by algae or wind.
본 발명은 수면에 대해 수직하게 설치되어 조류에 의해 회전되는 구조를 가져, 조류에너지를 전기적 에너지로 변환하는 발전기용 블레이드 구조를 제공하는 것을 목적으로 한다. An object of the present invention is to provide a generator blade structure that is installed perpendicular to the water surface has a structure that is rotated by a tidal current, converting tidal current energy into electrical energy.
본 발명은 발전기 등 주요부품들이 부력체에 설치되어, 발전기 등의 주요부품들의 유지보수가 용이한 발전기용 블레이드 구조를 제공하는 것을 목적으로 한다. It is an object of the present invention to provide a generator blade structure in which main parts such as a generator are installed in a buoyancy body, and thus easy maintenance of main parts such as a generator.
본 발명의 일 실시예에 따른 발전기용 블레이드 구조는, 발전기가 내장된 본체부; 본체부의 하부로 수직하게 위치되되, 일측이 발전기에 연결된 수직회전축; 및 수직회전축에 연결되어, 수직회전축으로 회전력을 전달하는 복수의 블레이드부를 포함하고, 복수의 블레이드부는, 수직회전축에 모듈단위로 결합되는 모듈기둥부재와, 모듈기둥부재에 소정의 각도로 회전가능하게 연결되고 상호 간에 120°간격으로 이격된 복수의 회전전달축과, 회전전달축이 설치되는 부분을 기준으로 제 1 날개판부와, 제 1 날개판부와 동일한 무게를 가지고 제 1 날개판부의 면적보다 큰 면적을 가지는 제 2 날개판부로 구획되게, 복수의 회전전달축에 각각 결합된 복수의 블레이드가 구비되어, 복수의 블레이드는 제 1 날개판부와 제 2 날개판부 간의 무게밸런스에 의해 회전전달축을 기준으로 소정의 각도로 회전하는 것이 바람직하다. Blade structure for a generator according to an embodiment of the present invention, the main body unit is a generator; Vertically located in the lower portion of the body portion, one side is connected to the vertical rotating shaft generator; And a plurality of blade portions connected to the vertical rotation shaft and transmitting rotational force to the vertical rotation shaft, wherein the plurality of blade portions are rotatable at a predetermined angle to the module pillar member and the module pillar member coupled to the vertical rotation shaft in a module unit. A plurality of rotational transmission axes connected to and spaced apart from each other by 120 °, and having a weight equal to that of the first wingplate portion and the first wingplate portion, based on a portion where the rotational transmission shafts are installed, A plurality of blades, each coupled to a plurality of rotational transmission shafts, are provided so as to be divided into a second wing plate portion having an area, and the plurality of blades are based on the rotational transmission shaft by a weight balance between the first wingplate portion and the second wingplate portion. It is preferable to rotate at a predetermined angle.
본 발명의 일 실시예에 있어서, 복수의 블레이드부는, 어느 하나의 블레이드부의 복수의 블레이드가 상하에 위치된 다른 하나의 블레이드부의 복수의 블레이드에 대해 30° 내지 90°간격만큼 어긋나게 수직회전축에 연결된 것이 바람직하다. In one embodiment of the present invention, the plurality of blades, the plurality of blades of any one blade portion is connected to the vertical axis of rotation by a 30 ° to 90 ° intervals with respect to the plurality of blades of the other blade portion located up and down desirable.
본 발명의 일 실시예에 있어서, 모듈기둥부재는, 수직회전축에 결합되는 원통형기둥과, 원통형기둥의 외주면에서 돌출되어 복수의 회전전달축을 회전가능하게 지지하는 복수의 지지축부와, 복수의 지지축부의 외주면에 돌출되게 마련된 스토퍼로 이루어지고, 스토퍼는 회전전달축의 외주면에 마련된 걸림홈에 위치되어, 회전전달축의 회전정도를 제한하는 것이 바람직하다. In one embodiment of the present invention, the modular pillar member, a cylindrical pillar coupled to the vertical rotation shaft, a plurality of support shaft portion protruding from the outer peripheral surface of the cylindrical pillar rotatably supporting a plurality of rotation transmission shaft, a plurality of support shaft portion The stopper is formed to protrude on the outer peripheral surface of the stopper is located in the engaging groove provided on the outer peripheral surface of the rotation transmission shaft, it is preferable to limit the degree of rotation of the rotation transmission shaft.
본 발명의 일 실시예에 있어서, 복수의 블레이드는 어느 하나의 블레이드가 인접하게 위치된 다른 하나의 블레이드에 대해 소정의 각도로 경사지게 복수의 회전전달축에 각각 연결된 것이 바람직하다.In one embodiment of the present invention, it is preferable that the plurality of blades are each connected to the plurality of rotation transmission shafts inclined at a predetermined angle with respect to the other blade in which one blade is adjacent to each other.
본 발명은 수면에 대해 수직하게 설치되어 조류에 의해 회전되는 구조를 가져, 조류에너지를 전기적 에너지로 변환하여, 자연에너지를 이용하여 친환경적으로 전기적에너지를 생산할 수 있다. The present invention has a structure that is installed perpendicular to the water surface is rotated by the algae, converts the algae energy into electrical energy, it is possible to produce electrical energy environmentally friendly using natural energy.
본 발명은 발전기 등 주요부품들이 부력체 위에 설치되어, 발전기 등의 주요부품들의 유지보수가 용이하다. In the present invention, the main parts such as the generator is installed on the buoyancy body, it is easy to maintain the main parts such as the generator.
도 1은 본 발명의 일 실시예에 따른 발전기용 블레이드 구조가 수면에 설치된 설치상태도를 개략적으로 도시한 것이다.1 schematically shows an installation state diagram in which a blade structure for a generator according to an embodiment of the present invention is installed on a water surface.
도 2는 발전기용 블레이드 구조의 저면도를 개략적으로 도시한 것이다. Figure 2 schematically shows a bottom view of a blade structure for a generator.
도 3은 발전기용 블레이드 구조의 측면도를 개략적으로 도시한 것이다. 3 schematically illustrates a side view of a blade structure for a generator.
도 4는 본 발명의 일 실 시예에 따른 블레이드부의 사시도를 개략적으로 도시한 것이다. Figure 4 schematically shows a perspective view of a blade unit according to an embodiment of the present invention.
도 5는 블레이드부의 평면도를 개략적으로 도시한 것이다. 5 schematically shows a plan view of the blade portion.
도 6는 블레이드부의 측면도를 개략적으로 도시한 것이다. 6 is a schematic side view of the blade portion.
도 7은 블레이드부의 작동상태도를 개략적으로 도시한 것이다. Figure 7 schematically shows an operating state diagram of the blade unit.
도 8은 발전기용 블레이드 구조가 부력체에 설치된 상태도를 개략적으로 도시한 것이다. 8 schematically illustrates a state diagram in which a generator blade structure is installed in a buoyancy body.
도 9는 도 8의 측단면도를 개략적으로 도시한 것이다. 9 schematically illustrates a side cross-sectional view of FIG. 8.
이하에서는 첨부도면을 참조하여, 본 발명의 조류직한 실시예에 따른 발전기용 블레이드 구조에 대해 설명하기로 한다. Hereinafter, with reference to the accompanying drawings, it will be described for the blade structure for the generator according to the embodiment of the present invention.
조류에너지는 조석 작용에 의해 조수가 교체되면서 발생하는 운동에너지 형태로 존재하며, 이러한 운동에너지를 조류발전을 통해 전기에너지로 변환된다. 본 발명은 조류에너지를 전기에너지로 변환하기 위한 장치이다. 본 실시예에서는 설명의 편의를 위하여, 발전기용 블레이드 구조가 적용된 발전기가 조류가 일어나는 부분에 설치된 경우에 대해 설명하기로 한다. 다만, 본 발명은 블레이드를 회전시킬 수 있다면, 조류발전 이외에 풍력발전에도 적용될 수 있다. Algae energy exists in the form of kinetic energy generated when tides are replaced by tidal action, and this kinetic energy is converted into electrical energy through algae power generation. The present invention is a device for converting algae energy into electrical energy. In this embodiment, for convenience of description, a case in which a generator to which a generator blade structure is applied is installed at a portion where a tidal current occurs will be described. However, the present invention can be applied to wind power in addition to tidal power, if the blade can rotate.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 발전기용 블레이드 구조(100)는 부력체(10), 본체부(110), 수직회전축(120) 및 복수의 블레이드부(130, 140, 150, 160)를 포함한다. As shown in FIG. 1, the blade structure 100 for a generator according to an embodiment of the present invention includes a buoyancy body 10, a main body 110, a vertical rotation shaft 120, and a plurality of blades 130 and 140. , 150, 160).
도 1에 도시된 바와 같이, 본체부(110)는 부력체(10)의 상부에 설치되어, 발전기(115)와 같은 구성부품을 보호한다. 다만, 본 명세서에서는 설명의 편의를 위하여, 발전기(115)를 제외한 구성요소를 제외한 다른 구성요소에 대해서는 구체적인 설명 및 도면에서의 도시를 생략하기로 하다. As shown in FIG. 1, the main body 110 is installed above the buoyancy body 10 to protect components such as the generator 115. However, in the present specification, for convenience of description, other components except components except for the generator 115 will be omitted in the detailed description and drawings.
부력체(10)는 수면(1)에 부유되는 물체이다. 부력체(10)는 본체부(110)를 지지한다. 부력체(10)는 수직회전축(120)과 복수의 블레이드부(130, 140, 150, 160) 등이 바다 밑바닥으로 가라앉지 않도록 하는 것으로서, 수면에 떠있도록 부유바지선 및 조류의 흐름을 유도하는 장치와 블레이드를 고정하는 형상으로 형성된다. 도 8 및 도 9에 도시된 바와 같이, 부력체(10)는 복수의 블레이드부(130, 140, 150)의 회전에 영향을 미치지 않도록 발전기용 블레이드 구조(100)를 지지하는 것이 바람직하다. The buoyancy body 10 is an object floating on the water surface 1. The buoyancy body 10 supports the body portion 110. The buoyancy body 10 is to prevent the vertical axis of rotation 120 and the plurality of blades (130, 140, 150, 160, etc.) to sink to the bottom of the sea, a device that induces the flow of floating pants and algae floating on the water surface And is formed in a shape for fixing the blade. 8 and 9, the buoyancy body 10 preferably supports the blade structure 100 for the generator so as not to affect the rotation of the plurality of blade portions 130, 140, and 150.
도 1 내지 도 3에 도시된 바와 같이, 수직회전축(120)은 부력체(10)의 하부로, 상기 본체부(110)에 대해 수직하게 위치된다. 수직회전축(120)은 발전기(115)에 연결된다. 수직회전축(120)의 외주면에는 복수의 블레이드부(130, 140, 150, 160)가 설치된다. As shown in FIGS. 1 to 3, the vertical rotation shaft 120 is positioned below the buoyancy body 10 and is perpendicular to the main body 110. The vertical rotation shaft 120 is connected to the generator 115. A plurality of blade parts 130, 140, 150, and 160 are installed on the outer circumferential surface of the vertical rotation shaft 120.
이때, 복수의 블레이드부(130, 140, 150, 160)는 회전중심축이 수직회전축(120)의 회전중심축과 동축으로, 수직회전축(120)에 직렬로 적층된다. 수직회전축(120)은 복수의 블레이드부(130, 140, 150, 160)의 회전에너지를 발전기(115)로 전달한다. At this time, the plurality of blade portions 130, 140, 150, 160 is the rotational center axis is coaxial with the rotational center axis of the vertical rotational shaft 120, is stacked in series on the vertical rotational shaft 120. The vertical rotation shaft 120 transmits the rotational energy of the plurality of blade parts 130, 140, 150, and 160 to the generator 115.
복수의 블레이드부(130, 140, 150, 160)는 조류에 의해 상호 간에 연동되어 회전되면서, 회전력을 수직회전축(120)으로 전달한다. The plurality of blades 130, 140, 150, 160 are rotated in conjunction with each other by a bird, and transmits the rotational force to the vertical rotation shaft 120.
복수의 블레이드부(130, 140, 150, 160)에 대해 제 1 블레이드부(130), 제 2 블레이드부(140), 제 3 블레이드부(150)와 제 4 블레이드부(160)로 구분하여 설명하기로 한다. 다만, 복수의 블레이드부(130, 140, 150, 160)의 설치개수는 반드시 이에 한정되는 것은 아니며, 당업자의 입장에서 자명한 범위 내에서 다양하게 가변가능함은 물론이다. The plurality of blade portions 130, 140, 150, and 160 are divided into a first blade portion 130, a second blade portion 140, a third blade portion 150, and a fourth blade portion 160. Let's do it. However, the number of installation of the plurality of blade parts 130, 140, 150, 160 is not necessarily limited thereto, and of course, the variable number of blades 130, 140, 150, and 160 may be variously changed within a range apparent to those skilled in the art.
도 1 내지 도 3에 도시된 바와 같이, 복수의 블레이드부(130, 140, 150, 160)는 회전시 상호 간에 부딪히지 않도록 수직회전축(120)에 순차적으로 결합된다. As shown in Figures 1 to 3, the plurality of blades 130, 140, 150, 160 are sequentially coupled to the vertical axis of rotation 120 so as not to hit each other during rotation.
복수의 블레이드부(130, 140, 150, 160)는, 어느 하나의 블레이드부의 복수의 블레이드가 상하에 위치된 다른 하나의 블레이드부의 복수의 블레이드에 대해 30° 내지 90°간격 만큼 어긋나게 수직회전축(120)에 연결된 것이 바람직하다. The plurality of blade parts 130, 140, 150, and 160 are vertically rotated shafts 120 by a 30 ° to 90 ° interval with respect to the plurality of blades of the other blade part in which the plurality of blades of any one blade part are positioned up and down. Is preferably connected to
구체적으로, 제 2 블레이드부(140)는 제 2 블레이드부(140)의 제 1 블레이드가 제 1 블레이드부(130)의 제 1 블레이드(133)에 대해 30°만큼이격되게 위치된다. Specifically, the second blade portion 140 is positioned such that the first blade of the second blade portion 140 is spaced by 30 ° with respect to the first blade 133 of the first blade portion 130.
그리고, 제 3 블레이드부(150)는 제 3 블레이드부(150)의 제 1 블레이드가 제 2 블레이드부(140)의 제 1 블레이드에 대해 30°만큼이격되고, 제 1 블레이드부(130)의 제 1 블레이드(133)에 대해 60°만큼이격되게 위치되게 위치된다. In addition, the third blade portion 150 is the first blade of the third blade portion 150 is spaced apart by 30 ° with respect to the first blade of the second blade portion 140, the first blade portion 130 1 is positioned to be spaced apart by 60 ° with respect to the blade 133.
마지막으로, 제 4 블레이드부(160)의 제 1 블레이드는 제 4 블레이드부(160)의 제 1 블레이드가 제 3 블레이드부(150)의 제 1 블레이드에 대해 30°만큼이격되고, 제 2 블레이드부(140)의 제 1 블레이드에 대해 60°만큼이격되고, 제 1 블레이드부(130)의 제 1 블레이드(133)에 대해 90°만큼 이격되게 위치된 것이 바람직하다.Finally, the first blade of the fourth blade portion 160 is the first blade of the fourth blade portion 160 is spaced 30 degrees with respect to the first blade of the third blade portion 150, the second blade portion It is preferably located 60 degrees apart from the first blade of 140 and 90 degrees apart from the first blade 133 of the first blade portion 130.
본 실시예에 따른 제 1 블레이드부(130) 내지 제 4 블레이드부(160)는 동일한 구조 및 동일한 기능을 가지는 바, 이하에서는 설명의 반복을 피하기 위하여, 제 1 블레이드부(130)에 대해 설명하기로 한다. Since the first blade portion 130 to the fourth blade portion 160 according to the present embodiment have the same structure and the same function, the following description will be made on the first blade portion 130 to avoid repetition of the description. Shall be.
도 4 내지 도 6에 도시된 바와 같이, 제 1 블레이드부(130)는 복수의 블레이드(133, 135, 137), 복수의 회전전달축(134, 136, 138)과, 모듈기둥부재(131)로 이루어진다. 본 실시예에서 블레이드부는 모듈기둥부재(131)에 의해 모듈단위로 수직회전축(120)에 적층되는 구조를 가진다.As shown in FIGS. 4 to 6, the first blade unit 130 includes a plurality of blades 133, 135, and 137, a plurality of rotation transmission shafts 134, 136, and 138, and a module pillar member 131. Is made of. In this embodiment, the blade portion has a structure that is laminated to the vertical axis of rotation 120 in a module unit by the module pillar member 131.
본 실시예에서는 설명의 편의를 위하여, 복수의 블레이드(133, 135, 137)에 대해 제 1 블레이드(133), 제 2 블레이드(135)와 제 3 블레이드(137)로 구분하여 지칭하기로 한다. 그리고, 복수의 회전전달축(134, 136, 138)에 대해 제 1 회전전달축(134), 제 2 회전전달축(136), 제 3 회전전달축(138)으로 구분하여 지칭하기로 한다. In the present embodiment, for convenience of description, the plurality of blades 133, 135, and 137 will be referred to as being divided into a first blade 133, a second blade 135, and a third blade 137. In addition, the plurality of rotation transmission shafts 134, 136, and 138 will be referred to as being divided into a first rotation transmission shaft 134, a second rotation transmission shaft 136, and a third rotation transmission shaft 138.
모듈기둥부재(131)는 수직회전축(120)에 결합된다. 모듈기둥부재(131)는 제 1 블레이드(133) 내지 제 3 블레이드(137)의 회전시, 제 1 회전전달축(134) 내지 제 3 회전전달축(138)으로부터 회전력을 전달받아 수직회전축(120)으로 전달한다. 모듈기둥부재(131)에 의해, 블레이드부는 모듈단위로 수직회전축(120)에 순차적으로 적층된다.The module pillar member 131 is coupled to the vertical rotation shaft 120. The module pillar member 131 receives a rotational force from the first rotation transmission shaft 134 to the third rotation transmission shaft 138 when the first blade 133 to the third blade 137 rotate, and the vertical rotation shaft 120 ). By the module pillar member 131, the blade portion is sequentially stacked on the vertical axis of rotation 120 in module units.
모듈기둥부재(131)는 원통형기둥(131a), 복수의 지지축부(131b)와 스토퍼(131c)로 이루어진다. The module pillar member 131 includes a cylindrical pillar 131a, a plurality of support shaft portions 131b, and a stopper 131c.
원통형기둥(131a)은 수직회전축(120)을 관통하여 수직회전축(120)에 연결된다. 원통형기둥(131a)은 원통형기둥(131a)의 중심축이 수직회전축(120)의 중심축과 동축이되도록 수직회전축(120)에 결합된 것이 바람직하다. The cylindrical column 131a is connected to the vertical rotation shaft 120 through the vertical rotation shaft 120. The cylindrical column 131a is preferably coupled to the vertical axis of rotation 120 such that the central axis of the cylindrical column 131a is coaxial with the central axis of the vertical axis of rotation 120.
원통형기둥(131a)은 상부에 상부플랜지(131d)가 마련된다. 그리고, 원통형기둥(131a)은 하부에 하부플랜지(131e)가 마련된다. 어느 하나의 원통형기둥(131a)의 상부플랜지(131d)는 상부에 적층된 다른 하나의 원통형기둥(131a)의 하부플랜지(131e)와 볼팅결합된다. 이러한 방식으로, 복수의 모듈기둥부재(131)는 상호 간에 직렬로 결합된다. The cylindrical pillar 131a is provided with an upper flange 131d at the top. The cylindrical column 131a is provided with a lower flange 131e at the lower portion thereof. The upper flange 131d of one cylindrical pillar 131a is bolted to the lower flange 131e of the other cylindrical pillar 131a stacked thereon. In this way, the plurality of module pillar members 131 are coupled in series with each other.
도 5 및 도 6에 도시된 바와 같이, 원통형기둥(131a)의 외주면에는 복수의 지지축부(131b)가 마련된다. 여기서, 복수의 지지축부(131b)는 복수의 회전전달축이 소정의 각도로 회전가능되게 복수의 회전전달축을 지지한다. 지지축부(131b)의 외주면에는 스토퍼(131c)가 마련된다.5 and 6, a plurality of support shaft portion 131b is provided on the outer circumferential surface of the cylindrical column 131a. Here, the plurality of support shaft portions 131b supports the plurality of rotation transmission shafts such that the plurality of rotation transmission shafts are rotatable at a predetermined angle. A stopper 131c is provided on the outer circumferential surface of the support shaft portion 131b.
스토퍼(131c)는 제 1 회전전달축(134) 내지 제 3 회전전달축(138)의 외주면에 각각 마련된 걸림홈(134a)에 위치된다. 이때, 스토퍼(131c)는 걸림홈(134a)의 외부로 돌출되게 위치된다. The stopper 131c is positioned in the locking groove 134a provided on the outer circumferential surface of the first rotation transmission shaft 134 to the third rotation transmission shaft 138, respectively. At this time, the stopper 131c is positioned to protrude to the outside of the locking groove 134a.
여기서, 걸림홈(134a)은 스토퍼(131c)의 직경보다 큰 폭을 가져, 회전전달축의 소정의 각도로의 회전시 스토퍼(131c)에 영향을 받지않는 정도의 크기를 가진다. 다만, 스토퍼(131c)는 일정 위치에서 고정된 상태이나, 회전전달축의 회전시 걸림홈(134a)에 대한 상대운동으로, 회전전달축이 소정의 각도이상 회전되면 걸림홈(134a)에 거리는 방식으로, 회전전달축의 회전정도를 제한한다.Here, the locking groove 134a has a width larger than the diameter of the stopper 131c, and has a size that is not affected by the stopper 131c when the rotational transmission shaft rotates at a predetermined angle. However, the stopper 131c is fixed at a predetermined position, but is a relative motion with respect to the locking groove 134a when the rotational transmission shaft is rotated. When the rotational transmission shaft is rotated by a predetermined angle, the stopper 131c is spaced apart from the locking groove 134a. Limit the rotation of the rotating transmission shaft.
도 5에 도시된 바와 같이, 제 1 회전전달축(134) 내지 제 3 회전전달축(138)은 상호 간에 120°간격으로 이격되게 모듈기둥부재(131)에 결합된다. 제 1 회전전달축(134)에는 제 1 블레이드(133)가 연결된다. 제 2 회전전달축(136)에는 제 2 블레이드(135)가 연결된다. 제 3 회전전달축(138)에는 제 3 블레이드(137)가 연결된다. As shown in FIG. 5, the first rotation transmission shaft 134 to the third rotation transmission shaft 138 are coupled to the module pillar member 131 spaced apart from each other by 120 °. The first blade 133 is connected to the first rotational transmission shaft 134. The second blade 135 is connected to the second rotation transmission shaft 136. The third blade 137 is connected to the third rotational transmission shaft 138.
제 1 블레이드(133) 내지 제 3 블레이드(137)는 인접하게 위치된 블레이드에 대해 경사지게, 제 1 회전전달축(134) 내지 제 3 회전전달축(138)에 결합되어, 바람개비 형태를 이룬다.The first blade 133 to the third blade 137 are coupled to the first rotation transmission shaft 134 to the third rotation transmission shaft 138 so as to be inclined with respect to the adjacent blade, thereby forming a pinwheel shape.
제 1 블레이드(133)와 제 1 회전전달축(134) 간의 결합구조는, 제 2 블레이드(135)와 제 2 회전전달축(136)의 결합구조 및 제 3 블레이드(137)와 제 3 회전전달축(138)의 결합구조와 동일한 바, 이하에서는 제 1 블레이드(133)와 제 1 회전전달축(134)의 결합구조에 대해 설명하기로 한다. The coupling structure between the first blade 133 and the first rotational transmission shaft 134 may include a coupling structure between the second blade 135 and the second rotational transmission shaft 136 and a third blade 137 and the third rotational transmission. The same as the coupling structure of the shaft 138, the coupling structure of the first blade 133 and the first rotational transmission shaft 134 will be described below.
제 1 블레이드(133)는 무게중심을 기준으로 제 1 날개판부(133a)와 제 2 날개판부(133b)로 구분된다. 제 1 회전전달축(134)은 제 1 날개판부(133a)와 제 2 날개판부(133b)의 경계선에 설치된다. 여기서, 제 1 날개판부(133a)와 제 2 날개판부(133b)의 경계선은 제 1 블레이드(133)의 무게중심선이다. The first blade 133 is divided into a first wing plate 133a and a second wing plate 133b based on the center of gravity. The first rotational transmission shaft 134 is provided at the boundary between the first wing plate portion 133a and the second wing plate portion 133b. Here, the boundary line between the first wing plate portion 133a and the second wing plate portion 133b is the center of gravity of the first blade 133.
제 1 날개판부(133a)는 제 2 날개판부(133b)보다 작은 면적을 가지나, 제 2 날개판부(133b)와 동일한 무게를 가진다. 제 2 날개판부(133b)와 동일한 무게를 가지기 위해, 제 1 날개판부(133a)에는 복수의 밸런스부재(133c)가 설치된다. The first wing plate portion 133a has a smaller area than the second wing plate portion 133b but has the same weight as the second wing plate portion 133b. In order to have the same weight as the second wing plate portion 133b, a plurality of balance members 133c are installed in the first wing plate portion 133a.
제 2 날개판부(133b)는 제 1 날개판부(133a)의 면적보다 큰 형상을 가진다. 이에 따라, 제 2 날개판부(133b)는 제 1 날개판부(133a)의 두께보다 얇은 두께를 가진 넓은 판형상을 가지고, 제 1 날개판부(133a)는 제 2 날개판부(133b)의 두께보다 두꺼운 두께를 가진 좁은 판형상을 가진다. 제 1 날개판부(133a)와 제 2 날개판부(133b)는 조류에 저항을 덜 받도록 테두리가 유선형으로 만곡된 형상을 가진 것이 바람직하다. The second wing plate portion 133b has a shape larger than the area of the first wing plate portion 133a. Accordingly, the second wing plate portion 133b has a wide plate shape having a thickness thinner than the thickness of the first wing plate portion 133a, and the first wing plate portion 133a is thicker than the thickness of the second wing plate portion 133b. It has a narrow plate shape with a thickness. The first wing plate portion 133a and the second wing plate portion 133b preferably have a shape in which the edge is curved in a streamline shape so as to receive less resistance to a bird.
제 1 블레이드(133)는 제 1 날개판부(133a)와 제 2 날개판부(133b)에 면적에 비례하는 조류을 받아 제 1 회전전달축(134)을 기준으로 회전한다. 즉, 제 1 회전전달축(134)은 제 1 블레이드(133)가 조류의 진행방향(F)에 대해 수직하게 또는 수평하게 위치되는 과정에서 소정의 각도로 회전되면서 제 1 날개판부(133a)와 제 2 날개판부(133b) 간의 무게밸런스를 맞춘다. 이때, 제 1 회전전달축(134)의 회전정도는 스토퍼(131c)에 의해 제한된다. The first blade 133 receives a current proportional to the area of the first wing plate portion 133a and the second wing plate portion 133b and rotates based on the first rotation transmission shaft 134. That is, the first rotational transmission shaft 134 is rotated at a predetermined angle while the first blade 133 is positioned vertically or horizontally with respect to the traveling direction F of the tidal current, and the first wing plate portion 133a and the first wing plate portion 133a. Match the weight balance between the second wing plate portion 133b. At this time, the degree of rotation of the first rotation transmission shaft 134 is limited by the stopper 131c.
도 7에 도시된 바와 같이, 제 1 회전전달축(134)은 제 1 블레이드(133)의 무게밸런스에 의해, 제 1 블레이드(133)가 조류의 진행방향(F)에 수직하게 위치되면 제 1 블레이드(133)를 조류의 진행방향(F)으로 밀어내도록 소정의 각도로 회전되면서 회전력을 수직회전축(120)으로 전달한다. As shown in FIG. 7, when the first blade 133 is positioned perpendicular to the flow direction F of the tidal flow, the first rotational transmission shaft 134 may have a first weight due to the weight balance of the first blade 133. The rotating force is transmitted to the vertical rotation shaft 120 while being rotated at a predetermined angle to push the blade 133 in the direction F of the bird.
그리고, 제 1 회전전달축(134)은 제 1 블레이드(133)가 조류의 진행방향(F)과 반대방향에 위치되면 제 1 블레이드(133)가 조류의 진행방향(F)과 수평하게 위치되도록 회전되면서 수직회전축(120)으로 회전력을 제공한다. In addition, when the first blade 133 is located in a direction opposite to the moving direction F of the tidal flow, the first rotation transmission shaft 134 may be positioned horizontally with the traveling direction F of the tidal current. While rotating provides a rotational force to the vertical axis of rotation (120).
도 7에 도시된 바와 같이, 제 1 블레이드(133)가 조류의 진행방향(F)에 대해 수직하게 위치되면, 제 1 블레이드(133)는 제 1 날개판부(133a)와 제 2 날개판부(133b) 간의 서로 다른 면적 차이로 인해, 제 1 날개판부(133a)에 가해지는 수압과 제 2 날개판부(133b)에 가해지는 수압이 서로 상이하게 가해진다. 이로 인해, 제 1 블레이드(133)는 제 1 날개판부(133a)와 제 2 날개판부(133b) 간의 무게밸런스를 맞추기 위해 제 1 회전전달축(134)을 중심으로 R2방향으로 회전되면서 조류의 진행방향(F)에 대해 수평하게 위치되어, 조류에 대한 저항력을 최소화할 수 있다. 이로 인해, 본 발명은 조류발전효율을 증대시킬 수 있다.As shown in FIG. 7, when the first blade 133 is positioned perpendicular to the direction of movement F of the tidal stream, the first blade 133 may include the first wing plate portion 133a and the second wing plate portion 133b. Due to the different area difference between), the water pressure applied to the first wing plate portion 133a and the water pressure applied to the second wing plate portion 133b are applied differently. As a result, the first blade 133 is rotated in the R2 direction about the first rotational transmission shaft 134 to match the weight balance between the first wing plate portion 133a and the second wing plate portion 133b. It can be positioned horizontally with respect to the direction F to minimize the resistance to algae. For this reason, the present invention can increase the algae power generation efficiency.
이 과정에서, 즉, 제 1 블레이드(133)가 조류방향에 수직하게 위치되어 조류에 밀려 회전되는 과정에서, 제 1 회전전달축(134)은 조류이 제 1 블레이드(133)를 미는 힘에 의해 R1 방향으로 회전된다. 제 1 회전전달축(134)은 이러한 회전력을 수직회전축(120)으로 전달한다. 이때, 수직회전축(120)의 회전방향은 R1 방향이다. 이와 같은 과정은 제 1 블레이드(133) 내지 제 3 블레이드(137)가 조류에 의해 회전하는 동안에 반복적으로 수행된다. In this process, that is, the first blade 133 is positioned perpendicular to the direction of the tidal flow and is pushed by the tidal flow, the first rotational transmission shaft 134 is R1 by the force of the tidal force pushing the first blade 133 Is rotated in the direction. The first rotation transmission shaft 134 transmits this rotation force to the vertical rotation shaft 120. At this time, the rotation direction of the vertical rotation shaft 120 is the R1 direction. This process is repeatedly performed while the first blade 133 to the third blade 137 rotate by the tidal stream.
조류발전시 발전량은 식 (1)에 의해 도출된다. The amount of power generated during algae generation is derived from equation (1).
Figure PCTKR2016010145-appb-I000001
.......................................식(1)
Figure PCTKR2016010145-appb-I000001
Equation (1)
(여기서, ρ는 해수밀도(1,025 ㎏/㎥)이고, A는 유수단면적이고, V는 조류의 유속이다.)(Where ρ is seawater density (1,025 kg / m 3), A is the mean area, and V is the flow rate of algae.
식(1)에 비추어 볼 때, 조류발전량(P)은 유수단면적(A)과 조류유속(V)의 세제곱에 비례하므로, 본 발명은 조류유속이 큰 곳에 설치되는 것이 바람직하다. In view of Equation (1), since the algae power generation amount (P) is proportional to the cube of the effective means area (A) and the algal flow rate (V), the present invention is preferably installed in a large algal flow rate.
본 실시예는 본 발명에 포함되는 기술적 사상의 일부를 명확하게 나타낸 것에 불과하며, 본 발명의 명세서에 포함된 기술적 사상의 범위 내에서 당업자가 용이하게 유추할 수 있는 변형 예와 구체적인 실시예는 모두 본 발명의 기술적 사상에 포함되는 것은 자명하다.The present embodiment merely shows a part of the technical idea included in the present invention, and modifications and specific embodiments which can be easily inferred by those skilled in the art within the scope of the technical idea included in the specification of the present invention are all Obviously, it is included in the technical idea of the present invention.

Claims (4)

  1. 발전기가 내장된 본체부;A main body unit in which a generator is built;
    상기 본체부의 하부로 수직하게 위치되되, 일측이 상기 발전기에 연결된 수직회전축; 및 A vertical rotating shaft positioned vertically below the main body, and one side connected to the generator; And
    상기 수직회전축에 연결되어, 상기 수직회전축으로 회전력을 전달하는 복수의 블레이드부를 포함하고, Is connected to the vertical axis of rotation, comprising a plurality of blades for transmitting a rotational force to the vertical axis of rotation,
    상기 복수의 블레이드부는,The plurality of blade portion,
    상기 수직회전축에 모듈단위로 결합되는 모듈기둥부재와, A module pillar member coupled to the vertical rotation shaft in a module unit;
    상기 모듈기둥부재에 소정의 각도로 회전가능하게 연결되고 상호 간에 120°간격으로 이격된 복수의 회전전달축과, A plurality of rotation transfer shafts rotatably connected to the module pillar member at a predetermined angle and spaced apart from each other by 120 °;
    상기 회전전달축이 설치되는 부분을 기준으로 제 1 날개판부와, 상기 제 1 날개판부와 동일한 무게를 가지고 상기 제 1 날개판부의 면적보다 큰 면적을 가지는 제 2 날개판부로 구획되게, 상기 복수의 회전전달축에 각각 결합된 복수의 블레이드가 구비되어, 상기 복수의 블레이드는 상기 제 1 날개판부와 상기 제 2 날개판부 간의 무게밸런스에 의해 상기 회전전달축을 기준으로 소정의 각도로 회전하는 것을 특징으로 하는 발전기용 블레이드 구조. The plurality of the plurality of wing blades are divided into a first wing plate portion and a second wing plate portion having the same weight as that of the first wing plate portion and having an area larger than that of the first wing plate portion based on the portion where the rotational transmission shaft is installed. A plurality of blades are respectively provided coupled to the rotation transmission shaft, wherein the plurality of blades are rotated by a predetermined angle relative to the rotation transmission axis by the weight balance between the first wing plate and the second wing plate. Blade structure for generator.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 복수의 블레이드부는, 어느 하나의 블레이드부의 복수의 블레이드가 상하에 위치된 다른 하나의 블레이드부의 복수의 블레이드에 대해 30° 내지 90°간격만큼 어긋나게 상기 수직회전축에 연결된 것을 특징으로 하는 발전기용 블레이드 구조. The plurality of blades, the blade structure for a generator, characterized in that a plurality of blades of any one blade portion is connected to the vertical axis of rotation with an interval of 30 ° to 90 ° with respect to the plurality of blades of the other blade portion located up and down .
  3. 제 2 항에 있어서, The method of claim 2,
    상기 모듈기둥부재는, The module pillar member,
    상기 수직회전축에 결합되는 원통형기둥과, A cylindrical column coupled to the vertical axis of rotation,
    상기 원통형기둥의 외주면에서 돌출되어 상기 복수의 회전전달축을 회전가능하게 지지하는 복수의 지지축부와,A plurality of support shaft portions protruding from an outer circumferential surface of the cylindrical pillar to rotatably support the plurality of rotation transmission shafts;
    상기 복수의 지지축부의 외주면에 돌출되게 마련된 스토퍼로 이루어지고, Is made of a stopper provided to protrude on the outer peripheral surface of the plurality of support shaft portion,
    상기 스토퍼는 상기 회전전달축의 외주면에 마련된 걸림홈에 위치되어, 상기 회전전달축의 회전정도를 제한하는 것을 특징으로 하는 발전기용 블레이드 구조.The stopper is located in the engaging groove provided on the outer circumferential surface of the rotary transmission shaft, generator blade structure, characterized in that for limiting the degree of rotation of the rotary transmission shaft.
  4. 제 2 항에 있어서, The method of claim 2,
    상기 복수의 블레이드는 어느 하나의 블레이드가 인접하게 위치된 다른 하나의 블레이드에 대해 소정의 각도로 경사지게 상기 복수의 회전전달축에 각각 연결된 것을 특징으로 하는 발전기용 블레이드 구조.The plurality of blades is a blade structure for a generator, characterized in that each one is connected to the plurality of rotation transmission shaft inclined at a predetermined angle with respect to the other blade is positioned adjacent to each other.
PCT/KR2016/010145 2016-07-07 2016-09-09 Blade structure for generator WO2018008798A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160085958A KR101784728B1 (en) 2016-07-07 2016-07-07 Blade structure for generator
KR10-2016-0085958 2016-07-07

Publications (1)

Publication Number Publication Date
WO2018008798A1 true WO2018008798A1 (en) 2018-01-11

Family

ID=60141330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010145 WO2018008798A1 (en) 2016-07-07 2016-09-09 Blade structure for generator

Country Status (2)

Country Link
KR (1) KR101784728B1 (en)
WO (1) WO2018008798A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109185029A (en) * 2018-09-17 2019-01-11 中国海洋大学 A kind of power generator using wave energy
WO2021014030A1 (en) * 2019-07-23 2021-01-28 Innovación, Desarrollo Y Comercialización System and method for generating electrical energy
RU2800340C1 (en) * 2023-01-11 2023-07-20 Ануар Райханович Кулмагамбетов Device for generating electricity in aquatic environment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257023A (en) * 2000-12-26 2002-09-11 Sokichi Yamazaki Tidal power generating set
JP2005009473A (en) * 2003-07-30 2005-01-13 Masato Nakawa Drive power unit utilizing wind, rotating member, and blade member suitable for the unit
KR101454471B1 (en) * 2013-06-18 2014-10-23 노학래 Tidal power generating apparatus
KR20140132514A (en) * 2013-05-08 2014-11-18 대우조선해양 주식회사 Tidal current power device
KR101626715B1 (en) * 2015-03-18 2016-06-01 원상묵 Vertical type wind power generator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101504866B1 (en) * 2014-02-18 2015-03-23 포항공과대학교 산학협력단 Wave-power generating apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257023A (en) * 2000-12-26 2002-09-11 Sokichi Yamazaki Tidal power generating set
JP2005009473A (en) * 2003-07-30 2005-01-13 Masato Nakawa Drive power unit utilizing wind, rotating member, and blade member suitable for the unit
KR20140132514A (en) * 2013-05-08 2014-11-18 대우조선해양 주식회사 Tidal current power device
KR101454471B1 (en) * 2013-06-18 2014-10-23 노학래 Tidal power generating apparatus
KR101626715B1 (en) * 2015-03-18 2016-06-01 원상묵 Vertical type wind power generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109185029A (en) * 2018-09-17 2019-01-11 中国海洋大学 A kind of power generator using wave energy
WO2021014030A1 (en) * 2019-07-23 2021-01-28 Innovación, Desarrollo Y Comercialización System and method for generating electrical energy
RU2800340C1 (en) * 2023-01-11 2023-07-20 Ануар Райханович Кулмагамбетов Device for generating electricity in aquatic environment

Also Published As

Publication number Publication date
KR101784728B1 (en) 2017-10-12

Similar Documents

Publication Publication Date Title
Zhou et al. Developments in large marine current turbine technologies–A review
WO2014171629A1 (en) Air-cushioned small hydraulic power generating device
CN103925159A (en) Offshore power generating equipment
CN102261302B (en) Wave energy power generation unit and system based on sea-surface wave layer and deep sea stable region
CN104229085A (en) Offshore wind turbine platform combined with oscillating water column type wave energy device
CN104265550A (en) Float type wave energy power generating system
CN201730729U (en) Heavy hammer type wave generating device
WO2018008798A1 (en) Blade structure for generator
WO2012077861A1 (en) Wind power generator for an urban area
WO2015174706A1 (en) Floating body for tidal current power generation and power generation method using same
KR20140027654A (en) Power generation system using current and wind power
WO2017204437A1 (en) Tidal current generator
WO2012053769A2 (en) Wave generator
CN101012800A (en) Energy-collecting gas hood and tower integrated epeiric sea energy composite generating system
WO2018169117A1 (en) Hybrid power generation equipment for photovoltaic power generation, tidal power generation, and wind power generation
CN104018980A (en) Pile type wave energy capturing device utilizing plurality of floating bodies
KR101056933B1 (en) Tidal current power plant
WO2016032099A1 (en) Tidal power generator
CN215907988U (en) Ocean energy power generation system for semi-submersible type ocean drilling platform
KR20120109933A (en) Multiple hydro generating system which used floating water-wheel of cylinder type
CN106837671B (en) Longitudinal drum-type wave-activated power generation driving device
EA034887B1 (en) Vertical axis wind turbine with controllable output power
CN104389722A (en) Umbrella-shaped wave energy power generating device using gearbox
WO2020209556A1 (en) Floating-type power generation apparatus
JP7443372B2 (en) Mechanical engine for energy generation by water movement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908240

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/05/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16908240

Country of ref document: EP

Kind code of ref document: A1