WO2024071351A1 - Shaped objects - Google Patents

Shaped objects Download PDF

Info

Publication number
WO2024071351A1
WO2024071351A1 PCT/JP2023/035553 JP2023035553W WO2024071351A1 WO 2024071351 A1 WO2024071351 A1 WO 2024071351A1 JP 2023035553 W JP2023035553 W JP 2023035553W WO 2024071351 A1 WO2024071351 A1 WO 2024071351A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
resin
component
oil
mass
Prior art date
Application number
PCT/JP2023/035553
Other languages
French (fr)
Japanese (ja)
Inventor
憲一 江口
威 矢野
聡一郎 小林
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2024071351A1 publication Critical patent/WO2024071351A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties

Definitions

  • the present invention relates to a molded body, and more specifically to a molded body used in an autonomous light-adjusting material.
  • Materials that can control the transmission of light are finding applications in a wide range of fields, including displays, show windows, liquid crystal panels, and glass windows in buildings and vehicles.
  • Panels that can control the transparent or opaque state by applying or not applying a voltage, and can adjust lighting and line of sight, are known.
  • a liquid crystal panel is known in which multiple split liquid crystal panels are arranged in parallel, and each split liquid crystal panel can be individually controlled to a transparent or opaque state by a control means (Patent Document 1).
  • a light-control glass window is known that can automatically adjust the light transmittance of the glass in a variety of patterns according to changes in sunlight conditions, does not require an external power supply, and operates using the output of solar cells (Patent Document 2).
  • Patent Document 3 a technology is known in which the light transmittance of a mixed dispersion of hollow silica particles and a solvent changes with temperature, enabling the light transmittance to change autonomously in response to changes in external temperature.
  • the problem that this invention aims to solve is to provide an autonomous light-adjusting material that exhibits a low linear transmittance when the temperature is higher than a predetermined value and a high linear transmittance when the temperature is lower than the predetermined value.
  • the inventors have perfected the present invention by creating a molded body having a resin layer using a paint containing an oil component and a resin component.
  • the present invention relates to the following items ⁇ 1> to ⁇ 5>.
  • ⁇ 1> A transparent substrate; A resin layer provided on the substrate; a transparent cover member disposed along the resin layer on the opposite side to the substrate, The resin layer contains a resin component and an oil component, the resin layer has an uneven shape on a surface opposite to the substrate, The oil component can seep out from the resin layer when the temperature drops below a predetermined value.
  • Molded body ⁇ 2> The molded article according to ⁇ 1> above, wherein the uneven shape has a distance between adjacent convex portions exceeding 400 nm.
  • ⁇ 3> The molded article according to the above item ⁇ 1> or ⁇ 2>, wherein the resin layer has a thickness of 10 to 1000 ⁇ m.
  • ⁇ 4> A transparent substrate; A resin layer provided on the substrate, The resin layer contains a resin component and an oil component, the resin layer has an uneven shape on a surface opposite to the substrate, and the distance between adjacent protrusions is greater than 400 nm; The oil component can seep out from the resin layer when the temperature drops below a predetermined value. Molded body.
  • ⁇ 5> A method for controlling the linear transmittance of the resin layer by changing the temperature of the molded article according to the above item ⁇ 1> or ⁇ 4>.
  • the molded body of one embodiment of the present invention can control the linear transmittance according to the temperature.
  • FIG. 1 is a schematic cross-sectional view showing an example of a molded body including a substrate, a resin layer, and a cover member.
  • FIG. 2 is a schematic cross-sectional view showing an example of a molded body including a substrate and a resin layer.
  • FIG. 3 is a photograph showing an example of a method for measuring the distance between protrusions on the surface of a resin layer.
  • the numerical range "to” includes the numerical values before and after it.
  • "0% by mass to 100% by mass” means a range from 0% by mass or more to 100% by mass or less.
  • a molded body of one embodiment of the present invention comprises a transparent substrate, a resin layer provided on the substrate, and a transparent cover member arranged along the resin layer on the side opposite the substrate, wherein the resin layer contains a resin component and an oil component, the resin layer has an uneven shape on the surface opposite the substrate, and the oil component is capable of seeping out of the resin layer when the temperature drops below a predetermined value.
  • the molded article of one embodiment of the present invention comprises a transparent substrate and a resin layer provided on the substrate, the resin layer containing a resin component and an oil component, the resin layer has an uneven shape on the surface opposite the substrate, the distance between adjacent convex portions exceeds 400 nm, and the oil component can seep out of the resin layer when the temperature drops below a predetermined value.
  • the resin layer contains a resin component and an oil component.
  • the resin layer is preferably a layer obtained by applying a coating material containing a resin component and an oil component and then curing or drying the coating material.
  • the resin layer has an uneven shape on the surface opposite to the substrate.
  • the resin component may be any of a moisture-curable resin that is cured by moisture, an ultraviolet-curable resin that is cured by ultraviolet light, and a thermosetting resin that is cured by heat.
  • the resin component may also be a resin that is cured by adding a curing agent that crosslinks with the resin component, or a thermoplastic resin.
  • the SP value (solubility parameter value) of the resin component is preferably 7.5 to 11.0 (cal/cm 3 ) 1/2 .
  • the resin component and the oil component are easily compatible with each other, and a uniform resin can be formed from a paint containing the resin component and the oil component.
  • a resin component having an SP value within the above range is used, the durability of the resin layer is easily improved.
  • the SP value of the resin component is preferably from 7.7 to 10.8 (cal/cm 3 ) 1/2 , more preferably from 8.0 to 10.5 (cal/cm 3 ) 1/2 , and even more preferably from 8.3 to 10.2 (cal/cm 3 ) 1/2 .
  • the SP value can be determined by the Fedors method using the cohesive energy E and the molar volume V described in the paper (R. F. Fedors: Polym. Eng. Sci., 14 [2], 147-154 (1974)).
  • the resin component has crystalline and amorphous parts.
  • the resin component has crystalline parts, it is possible to form a thermally reversible physical cross-linked structure called pseudo-cross-linking. As a result, a resin layer can be produced from the paint easily and in a short time.
  • the resin component is not particularly limited, but examples include silicone resin, polyurethane resin, polyurethane acrylic resin, vinyl chloride resin, polyester resin, elastomers, fluororesin, polyamide resin, polyolefin resin (polyethylene, polypropylene, etc.), acrylic resin, EPDM (ethylene propylene diene rubber), SEBS (styrene-based thermoplastic elastomer), SBR (styrene butadiene rubber), etc. From the viewpoint of bleed control, the resin component is preferably silicone resin or EPDM.
  • any suitable silicone resin may be used as the silicone resin as long as it does not impair the effects of the present invention.
  • the silicone resin may be of only one type, or of two or more types.
  • Such a silicone resin may be a condensation type silicone resin, or an addition type silicone resin.
  • such a silicone resin may be a one-component silicone resin that dries alone (e.g., a one-component room temperature vulcanizable (RTV) resin), or a two-component silicone resin (e.g., a two-component room temperature vulcanizable (RTV) resin).
  • silicone resins include one-component RTV rubbers manufactured by Shin-Etsu Chemical Co., Ltd. (e.g., KE-3423, KE-347, KE-3475, KE-3495, KE-4895, KE-4896, KE-1830, KE-1884, KE-3479, KE-348, KE-4897, KE-4898, KE-1820, KE-1825, KE-1831, KE-1833, KE-1885, KE-1056, KE-1151, KE-1842, KE-1886, KE-3424G, KE-3494, KE-3490, KE-40RTV, KE-4890, KE-3497, KE-34 ...
  • RTV rubbers manufactured by Shin-Etsu Chemical Co., Ltd.
  • KEG-2000-40A/B KEG-2000-50A/B, KEG-2000-60A/B , KEG-2000-70A/B, KEG-2001-40A/B, KEG-2001-50A/B, KE-1950-10A/B, KE-1950-20A/B, KE-1950-30A/B, KE-1950-35A/B, KE-1950-40A/B, KE-1950-50A/B, KE-1 950-60A/B, KE-1950-70A/B, KE-193185A/B, KE-1987A/B, KE-1988A/B, KE-2019-40A/B, KE-2019-50A/B, KE-2019-60A/B, KE-2017-30A/B, KE-2017-40A/B, KE-20 17-50A/B, KE-2090-40A/B, KE-2090-50A/B, KE-2090-60A/B, KE-2090-70A/B, KE-2096
  • the oil component used in the present invention can seep out from the resin layer when the temperature drops below a predetermined value.
  • the above-mentioned predetermined value or lower means, for example, freezing point (0° C.) or lower.
  • the above-mentioned predetermined value or lower may mean, for example, room temperature (about 20° C.) or lower.
  • the above-mentioned predetermined value or lower is not particularly limited as long as it is a temperature at which oil can seep out from the resin layer when it is lowered to a certain temperature or lower.
  • oil component for example, silicone oil, fluorine oil, hydrocarbon oil, polyether oil, ester oil, phosphorus compound oil, mineral oil, alcohol, etc. can be used. From the viewpoint of weather resistance, silicone oil and hydrocarbon oil are preferred as the oil component.
  • hydrocarbon oils examples include liquid paraffin, petrolatum, paraffin wax, naphthenic hydrocarbon oils, aromatic hydrocarbon oils, etc.
  • silicone oils examples include silicone oils manufactured by Shin-Etsu Chemical Co., Ltd. (e.g., KF96L series, KF96 series, KF69 series, KF99 series, KF50 series, KF54 series, KF410 series, KF412 series, KF414 series, FL series, KF-56A, KF-6000, KF-6001, KF-6002, KF-6003, etc.), silicone oils manufactured by Momentive Corporation (e.g., Element14*PDMS series, TSF404 series, TSF410 series, TSF4300 series, TSF431 series, TSF433 series, TSF437 series, TSF4420 series, TSF4421 series, etc.), and silicone oils manufactured by Dow Corning Toray Co., Ltd.
  • silicone oils manufactured by Shin-Etsu Chemical Co., Ltd. e.g., KF96L series, KF96 series, KF69 series, KF99 series, KF50 series, KF54 series, KF410 series, KF4
  • the resin component and the oil component are contained in the resin layer at temperatures that do not require the oil component to bleed, for example, room temperature of about 20°C to 80°C, which is significantly higher than a specified value such as the freezing point.
  • the resin component and the oil component bleed in a temperature environment that requires the oil component to bleed, for example, below a specified value such as the freezing point.
  • the oil component is an oil that can seep out from the resin layer when the temperature drops below a specified value. Below the specified value means, for example, below the freezing point (0°C).
  • the oil component changes its behavior depending on whether the temperature is one that does not require the oil component to bleed or one that does require the oil component to bleed. In other words, the oil component functions as a low-temperature bleed oil component that bleeds from the resin component.
  • the oil component does not have to be composed of one oil component, and may contain multiple oil components as long as the above conditions are met.
  • the oil component may contain an oil component that is always compatible with the resin component and does not bleed, separate from the above oil component.
  • resin and oil components include, for example, silicone resin and silicone oil, EPDM and hydrocarbon oil, etc.
  • the resin layer has an uneven shape on the surface opposite to the substrate.
  • the distance between adjacent convex portions on the surface of the resin layer is greater than 400 nm.
  • the distance between adjacent convex portions on the surface of the resin layer is preferably greater than the wavelength of light whose in-line transmittance is controlled by the resin layer of the molded article of one embodiment of the present invention.
  • the interval between adjacent convex parts on the surface of the resin layer is preferably larger than the wavelength of the light for controlling the transmittance.
  • the interval between adjacent convex parts on the surface of the resin layer is preferably 100 nm or more when the resin layer controls the linear transmittance of ultraviolet light, preferably 375 nm or more when the resin layer controls the linear transmittance of visible light, and more preferably more than 400 nm, and preferably 750 nm or more when the resin layer controls the linear transmittance of infrared light.
  • the distance between adjacent convex portions on the resin layer surface is measured using a microscope at five locations as shown by the thick black lines in Figure 3, and the average value is used.
  • the content of the resin component in the resin layer is preferably 25% by mass to 75% by mass based on the mass of the entire resin layer.
  • the lower limit of the content of the resin component in the resin is preferably 25% by mass, more preferably 30% by mass or more, and even more preferably 35% by mass or more based on the mass of the entire resin layer.
  • the upper limit of the content of the resin component in the resin is preferably 75% by mass, more preferably 70% by mass or less, and even more preferably 65% by mass or less based on the mass of the entire resin layer.
  • the content of the oil component in the resin layer is preferably 25% by mass to 75% by mass based on the mass of the entire resin layer.
  • the lower limit of the content of the oil component in the resin is preferably 25% by mass, more preferably 30% by mass or more, and even more preferably 35% by mass or more, based on the mass of the entire resin layer.
  • the upper limit of the content of the oil component in the resin is preferably 75% by mass, more preferably 70% by mass or less, and even more preferably 65% by mass or less, based on the mass of the entire resin layer.
  • the thickness of the resin layer is not particularly limited, but is preferably 10 to 1000 ⁇ m from the viewpoint of workability.
  • the oil component can seep out of the resin layer when the temperature drops below a certain value, which may be, for example, freezing point (0° C.) or below.
  • the amount of oil component that seeps out from the resin layer when the temperature drops below a predetermined value is preferably an amount that can cover the irregularities on the surface of the resin layer, and is preferably, for example, 40 ⁇ g/cm 2 to 2000 ⁇ g/cm 2 .
  • the amount of oil components that oozes out from the resin layer when the temperature drops to a predetermined value or lower can be measured, for example, by the following method.
  • the resin layer is left at a predetermined temperature or lower, for example, at ⁇ 20° C. for 16 hours, and the oil component that bleeds onto the surface of the resin layer is collected with a cell scraper in an environment of ⁇ 20° C.
  • the collected oil component is absorbed with oil blotting paper until no change in mass of the oil blotting paper is observed.
  • the process of collecting oil using the cell scraper and absorbing it with oil blotting paper was repeated 7 times per minute.
  • the difference in mass of the oil blotting paper before and after absorbing the oil was taken as the surface oil amount.
  • the surface oil amount was measured 3 times and the average value was used.
  • the resin layer contains a resin component and an oil component.
  • the resin layer is preferably formed by applying a coating material containing the resin component and the oil component and then curing or drying the coating material.
  • the resin layer can be obtained by applying the coating material to a substrate 10 as shown in FIG. 1 and FIG. 2, for example.
  • the coating method may be a common method such as brush coating, spray coating, various coater coating, etc. Coating is usually carried out once or twice.
  • the coating material After the coating material is applied to the substrate 10, it can be cured or dried by leaving it to stand for, for example, 8 to 300 hours, preferably 24 to 200 hours, in an environment of, for example, -20 to 80°C, preferably 0 to 40°C.
  • the uneven shape of the coating surface can be formed by applying a paint containing a volatile solvent to the substrate and then curing or drying it, preferably by drying at room temperature.
  • the spacing between the protrusions can be altered by appropriately changing the ratio of resin, oil, and solvent.
  • the uneven shape of the coating film surface may be formed using a mold that has an uneven structure on its surface.
  • the coating material containing the above resin component and oil component may contain the following components in addition to the resin component and oil component detailed above.
  • the paint containing the resin component and the oil component preferably further contains a curing agent.
  • the curing agent preferably has a hydrosilyl group.
  • curing agents include tris(dimethylsiloxy)phenylsilane, bis(dimethylsiloxy)diphenylsilane, methylhydrogen silicone, 2,4,6,8-tetramethylcyclotetrasiloxane, 1,1,3,3,5,5-hexamethyltrisiloxane, 1,4-bis(dimethylsilyl)benzene, and 1,1,3,3-tetramethyldisiloxane.
  • the paint containing a resin component and an oil component preferably further contains a solvent.
  • the solvent is preferably volatile.
  • the solvent include aromatic hydrocarbon solvents such as toluene and xylene, ester solvents such as ethyl acetate and butyl acetate, hydrocarbon solvents such as hexane, octane, decane, and isoparaffin, and ketone solvents such as acetone and methyl ethyl ketone.
  • the coating material containing a resin component and an oil component may further contain a curing catalyst.
  • the curing catalyst include metal catalysts such as platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex, hexachloroplatinic acid(IV) and chlorotris(triphenylphosphine)rhodium(I).
  • Paints containing a resin component and an oil component may further contain fillers such as silica, talc, calcium carbonate, titanium oxide, clay, and pigments.
  • silica examples include silica manufactured by Nippon Aerosil Co., Ltd. (e.g., AEROSIL 50, 130, 200, 300, R972, R974, R976, RX50, RX200, RX300, RY50, RY300, R7200, R8200, and R9200).
  • the paint containing the resin component and the oil component can be obtained by mixing and/or stirring the following components by a known method.
  • the content of each component in the paint is as follows:
  • the content of the resin component in the resin layer formed using the above coating material is preferably 25% by mass to 75% by mass, based on the mass of the entire resin layer.
  • the lower limit of the content of the resin component in the above resin layer is preferably 25% by mass, more preferably 30% by mass or more, and even more preferably 35% by mass or more, based on the mass of the entire resin layer.
  • the upper limit of the content of the resin component in the above resin is preferably 75% by mass, more preferably 70% by mass or less, and even more preferably 65% by mass or less, based on the mass of the entire resin layer.
  • the content of the oil component in the resin formed using the above coating is preferably 25% by mass to 75% by mass based on the mass of the entire resin layer.
  • the lower limit of the content of the oil component in the above resin is preferably 25% by mass, more preferably 30% by mass or more, and even more preferably 35% by mass or more, based on the mass of the entire resin layer.
  • the upper limit of the content of the oil component in the above resin is preferably 75% by mass, more preferably 70% by mass or less, and even more preferably 65% by mass or less, based on the mass of the entire resin layer.
  • the content of the hardener in the paint is preferably 0.03% to 40% by mass relative to the mass of the resin component.
  • the lower limit of the content of the hardener relative to the mass of the resin component in the paint is preferably 0.03% by mass, more preferably 0.06% by mass or more, and even more preferably 0.1% by mass or more.
  • the upper limit of the content of the hardener relative to the mass of the resin component in the paint is preferably 40% by mass, more preferably 30% by mass or less, and even more preferably 20% by mass or less.
  • the solvent content in the paint is preferably 5% to 95% by mass relative to the total mass of the resin component and the oil component.
  • the lower limit of the solvent content relative to the total mass of the resin component and the oil component in the paint is preferably 5% by mass, more preferably 10% by mass or more, and even more preferably 15% by mass or more.
  • the upper limit of the solvent content relative to the total mass of the resin component and the oil component in the paint is preferably 95% by mass, more preferably 90% by mass or less, and even more preferably 85% by mass or less.
  • the content of the curing catalyst in the above coating is preferably 0.1 ppm to 1000 ppm relative to the mass of the resin component.
  • the lower limit of the content of the curing catalyst relative to the mass of the resin component in the above coating is preferably 0.1 ppm, more preferably 1 ppm or more, and even more preferably 2 ppm or more.
  • the upper limit of the content of the curing catalyst relative to the mass of the resin component in the above coating can be set to preferably 1000 ppm, more preferably 750 ppm or less, and even more preferably 500 ppm or less.
  • the substrate used in the present invention is transparent.
  • the substrate being transparent means that the opposite side of the substrate can be seen through.
  • the substrate preferably has high light transmittance, the linear transmittance of which is controlled by the resin layer.
  • the substrate is preferably colorless and transparent.
  • the substrate used in the present invention may be, for example, acrylic resin, polycarbonate resin, glass, polystyrene resin, polyurethane resin, polyurethane acrylic resin, rubber-based resin, vinyl chloride resin, polyester resin, silicone resin, elastomers, fluororesin, polyamide resin, polyolefin resin (polyethylene, polypropylene, etc.), etc.
  • the substrate may also be in the form of a film or sheet.
  • the thickness of the substrate is not particularly limited, but from the viewpoint of ease of handling, a thickness of 10 to 1000 ⁇ m is preferable.
  • the molded article according to one embodiment of the present invention has a transparent cover member.
  • the cover member By having the cover member, the molded article can cover the oil component that exudes from the resin layer when the temperature drops to or below a predetermined value.
  • the cover member preferably has high light transmittance, the in-line transmittance of which is controlled by the resin layer, and is preferably colorless and transparent.
  • Cover materials used in the present invention include, for example, acrylic resin, polycarbonate resin, polyester resin, polystyrene resin, etc.
  • the cover member is disposed along the resin layer on the opposite side to the substrate. It is preferable that there is a space between the cover member and the resin layer because the oil component will ooze out of the resin layer when the temperature drops below a predetermined value. As shown in FIG. 1, for example, an end portion of a substrate 10 and a cover member 12 can be joined via a connecting member 13 such as a spacer.
  • the thickness of the cover member is not particularly limited, but from the viewpoint of ease of handling, a thickness of 10 to 1000 ⁇ m is preferable.
  • One embodiment of the present invention includes a method of controlling the linear transmittance of the resin layer by changing the temperature of the molded body.
  • the temperature of the molded body is lowered to a predetermined value or lower, the oil component exudes from the resin layer provided on the molded body, and the uneven shape of the resin layer surface is covered with the exuded oil component, so that the scattering of transmitted light due to the uneven shape is suppressed, and the linear transmittance of the resin layer is improved.
  • the temperature is made to exceed a predetermined value, the oil component does not exude from the resin layer, so that the transmitted light is scattered by the uneven shape of the resin layer surface, and the linear transmittance of the resin layer is reduced.
  • the molded article according to one embodiment of the present invention can be used as an autonomous light control material, for example, privacy glass.
  • the linear transmittance of the molded body is preferably 80% or more, more preferably 90% or more.
  • the linear transmittance of the molded body is preferably 40% or less, more preferably 20% or less.
  • the above-mentioned predetermined value means, for example, the freezing point (0° C.).
  • the in-line transmittance of the molded article can be measured by a spectrophotometer.
  • the method for changing the temperature of the molded body is not particularly limited, and can be adjusted, for example, by changing the temperature of the environment in which the molded body is placed.
  • the present specification discloses the following: [1] A transparent substrate; A resin layer provided on the substrate; a transparent cover member disposed along the resin layer on the opposite side to the substrate, The resin layer contains a resin component and an oil component, the resin layer has an uneven shape on a surface opposite to the substrate, The oil component can seep out from the resin layer when the temperature drops below a predetermined value. Molded body. [2] The molded article according to [1] above, wherein the uneven shape has a distance between adjacent convex portions exceeding 400 nm. [3] The molded article according to the above-mentioned [1] or [2], wherein the thickness of the resin layer is 10 to 1000 ⁇ m.
  • a transparent substrate A resin layer provided on the substrate, The resin layer contains a resin component and an oil component, the resin layer has an uneven shape on a surface opposite to the substrate, and the distance between adjacent protrusions is greater than 400 nm; The oil component can seep out from the resin layer when the temperature drops below a predetermined value. Molded body.
  • a method for controlling the linear transmittance of the resin layer by changing the temperature of the molded article according to any one of the above [1] to [4].
  • Example 1 ⁇ Preparation of Molded Body> [Example 1]
  • resin component 1 EPDM resin "3092PM” (manufactured by Mitsui Chemicals, Inc.); resin component 2: maleic anhydride group-containing SEBS “FG1901GT” (manufactured by Kraton Chemical); first oil component: liquid paraffin (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., product number: liquid paraffin [density (20°C) 0.825 to 0.850 g/ml]); second oil component: phenyl-modified silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd., product number: KF-56A]); and solvent: toluene.
  • resin component 1 EPDM resin "3092PM” (manufactured by Mitsui Chemicals, Inc.)
  • resin component 2 maleic anhydride group-containing SEBS “FG1901GT” (manufactured by Kraton Chemical)
  • first oil component
  • Resin component 1 was dissolved in toluene to prepare toluene solution 1 with a resin component 1 content of 15 mass%.
  • Resin component 2 was dissolved in toluene to prepare toluene solution 2 with a resin component 2 content of 20 mass%.
  • Toluene solution 1 (86.2 mass%), toluene solution 2 (1.3 mass%), first oil component (8.6 mass%), and second oil component (3.9 mass%) were mixed at 25°C and 101 kPa.
  • the resulting mixture was stirred with a spatula for 60 seconds, and then stirred and degassed for an additional 300 seconds with a planetary centrifugal mixer (Thinky Corporation, CONDITIONING MIXER AR-250) to obtain a paint.
  • a planetary centrifugal mixer Thinky Corporation, CONDITIONING MIXER AR-250
  • the resulting paint was applied to a PET film (Lumirror #75S10, manufactured by Toray Industries, Inc.) and allowed to dry and harden for one day in a 25°C environment to form a resin layer, producing a molded article with a resin layer on the PET film.
  • a PET film Limirror #75S10, manufactured by Toray Industries, Inc.
  • Comparative Example 1 In Comparative Example 1, a PET film (Lumirror #75S10 manufactured by Toray Industries, Inc.) was used.
  • Example 1 (Uneven shape) The resin layer surface of Example 1 and the PET film surface of Comparative Example 1 were observed using a microscope ("VHX-7000" manufactured by Keyence Corporation). As shown by the thick black lines in Figure 3, the distance between the convex portions was measured at five points, and the average value was calculated.
  • the molded article of Example 1 and the PET film of Comparative Example 1 were cut into a size of 10 cm x 2 cm near the center.
  • the cut molded article and PET film were left at -20°C for 16 hours, and the oil that had bled onto the surface of the resin layer of the molded article and the surface of the film was collected with a cell scraper (CSS-10, manufactured by Kenis Co., Ltd.) in a temperature environment of -20°C.
  • the oil was absorbed until no change in the mass (oil absorption amount) of the oil blotting paper was observed.
  • the oil that had bled onto the surface of the resin layer of the molded article and onto the surface of the film was sampled in the same manner as above, except that the temperature was changed from -20°C to 20°C.
  • Oil collection using the cell scraper and absorbing with oil blotting paper were repeated seven times per minute.
  • the difference in mass of the oil blotting paper before and after absorbing the oil was taken as the amount of surface oil.
  • the amount of surface oil was measured three times and the average value was calculated.
  • the evaluation criteria for the amount of surface oil are as follows: ⁇ : 40 ⁇ g/ cm2 or more ⁇ : less than 40 ⁇ g/ cm2
  • the molded body of Example 1 showed a high linear transmittance at -10°C below the freezing point (0°C) because the oil component oozed out onto the resin layer surface at -20°C below the freezing point (0°C) and the oil component covered the uneven shape of the resin layer surface.
  • the molded body of Example 1 showed a low linear transmittance because the oil component on the resin layer surface was reduced at 20°C above the freezing point (0°C). In this way, the linear transmittance could be controlled by changing the temperature of the molded body of Example 1.
  • the PET film of Comparative Example 1 did not have an uneven shape, and furthermore, no oil components exuded onto the film surface regardless of the temperature. Therefore, even if the temperature of the PET film of Comparative Example 1 was changed, the linear transmittance did not change.
  • the molded body of one embodiment of the present invention can control the linear transmittance according to the temperature.
  • Substrate 11 Resin layer 12: Cover member 13: Connection member

Landscapes

  • Laminated Bodies (AREA)

Abstract

The present invention relates to a shaped object which comprises a transparent base, a resin layer disposed on the base, and a transparent cover member disposed along the resin layer on the reverse side from the base, wherein the resin layer comprises a resin component and an oil component and has recesses and protrusions in the surface thereof on the reverse side from the base, and the oil component, when the temperature has declined to or below a given value, can ooze out from the resin layer. The present invention further relates to a shaped object which comprises a transparent base and a resin layer disposed on the base, wherein the resin layer comprises a resin component and an oil component and has recesses and protrusions in the surface thereof on the reverse side from the base, the distances between the protrusions adjacent to each other being longer than 400 nm, and the oil component, when the temperature has declined to or below a given value, can ooze out from the resin layer.

Description

成形体Molded body
 本発明は、成形体に関し、詳しくは、自律調光材料に用いられる成形体に関する。 The present invention relates to a molded body, and more specifically to a molded body used in an autonomous light-adjusting material.
 光の透過を制御できる材料や素材は、例えばディスプレイ、ショーウィンドウ、液晶パネル、建物や乗り物のガラス窓等、様々な分野での応用が拡がっている。 Materials that can control the transmission of light are finding applications in a wide range of fields, including displays, show windows, liquid crystal panels, and glass windows in buildings and vehicles.
 電圧の印加の有無等によって、透明状態または不透明状態を制御し、採光及び視線制御の調整を行いうるパネル等が知られている。例えば、複数枚の分割液晶パネルを並設し、各分割液晶パネルを制御手段で個別に透明状態あるいは不透明状態に制御可能とした液晶パネルが知られている(特許文献1)。  Panels that can control the transparent or opaque state by applying or not applying a voltage, and can adjust lighting and line of sight, are known. For example, a liquid crystal panel is known in which multiple split liquid crystal panels are arranged in parallel, and each split liquid crystal panel can be individually controlled to a transparent or opaque state by a control means (Patent Document 1).
 日照状況の変化に合わせてガラスの光透過度を多様なパターンで自動的に調整でき、外部からの電力供給が不要で、太陽電池の出力で動作する調光ガラス窓が知られている(特許文献2)。 A light-control glass window is known that can automatically adjust the light transmittance of the glass in a variety of patterns according to changes in sunlight conditions, does not require an external power supply, and operates using the output of solar cells (Patent Document 2).
 また、シリカ中空粒子と溶剤との混合分散系の光透過度が温度により変化し、外部の温度変化に対し自律応答的に光透過性を変化できる技術が知られている(特許文献3)。 In addition, a technology is known in which the light transmittance of a mixed dispersion of hollow silica particles and a solvent changes with temperature, enabling the light transmittance to change autonomously in response to changes in external temperature (Patent Document 3).
日本国特開平3-47392号公報Japanese Patent Application Publication No. 3-47392 日本国特開平8-184273号公報Japanese Patent Application Publication No. 8-184273 日本国特開2015-025090号公報Japanese Patent Publication No. 2015-025090
 本発明が解決しようとする課題は、温度が所定値より高いときには直線透過率が低く、温度が所定値以下のときには直線透過率が高くなる自律調光材料を提供することである。 The problem that this invention aims to solve is to provide an autonomous light-adjusting material that exhibits a low linear transmittance when the temperature is higher than a predetermined value and a high linear transmittance when the temperature is lower than the predetermined value.
 本発明者らは、オイル成分及び樹脂成分を含有する塗料を用いた樹脂層を有する成形体とすることで、本発明を完成するに至った。 The inventors have perfected the present invention by creating a molded body having a resin layer using a paint containing an oil component and a resin component.
 すなわち、本発明は下記<1>~<5>に関するものである。
<1>
 透明な基材と、
 前記基材上に設けられた樹脂層と、
 前記基材とは反対側において、前記樹脂層に沿って配置される透明なカバー部材と、を備え、
 前記樹脂層は、樹脂成分及びオイル成分を含有し、
 前記樹脂層は前記基材と反対側の表面に凹凸形状を有し、
 前記オイル成分は、温度が所定値以下に低下したときに前記樹脂層から滲出することができる、
 成形体。
<2>
 前記凹凸形状において、隣り合う凸部同士の間隔が400nmを超える、上記<1>に記載の成形体。
<3>
 前記樹脂層の厚みが10~1000μmである、上記<1>又は<2>に記載の成形体。
<4>
 透明な基材と、
 前記基材上に設けられた樹脂層と、を備え、
 前記樹脂層は、樹脂成分及びオイル成分を含有し、
 前記樹脂層は前記基材と反対側の表面に凹凸形状を有し、隣り合う凸部同士の間隔が400nmを上回り、
 前記オイル成分は、温度が所定値以下に低下したときに前記樹脂層から滲出することができる、
 成形体。
<5>
 上記<1>又は<4>に記載の成形体の温度を変化させて、前記樹脂層の直線透過率を制御する方法。
That is, the present invention relates to the following items <1> to <5>.
<1>
A transparent substrate;
A resin layer provided on the substrate;
a transparent cover member disposed along the resin layer on the opposite side to the substrate,
The resin layer contains a resin component and an oil component,
the resin layer has an uneven shape on a surface opposite to the substrate,
The oil component can seep out from the resin layer when the temperature drops below a predetermined value.
Molded body.
<2>
The molded article according to <1> above, wherein the uneven shape has a distance between adjacent convex portions exceeding 400 nm.
<3>
The molded article according to the above item <1> or <2>, wherein the resin layer has a thickness of 10 to 1000 μm.
<4>
A transparent substrate;
A resin layer provided on the substrate,
The resin layer contains a resin component and an oil component,
the resin layer has an uneven shape on a surface opposite to the substrate, and the distance between adjacent protrusions is greater than 400 nm;
The oil component can seep out from the resin layer when the temperature drops below a predetermined value.
Molded body.
<5>
A method for controlling the linear transmittance of the resin layer by changing the temperature of the molded article according to the above item <1> or <4>.
 本発明の一態様の成形体は、温度に応じて直線透過率を制御できる。 The molded body of one embodiment of the present invention can control the linear transmittance according to the temperature.
図1は、基材と、樹脂層と、カバー部材とを備える、成形体の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a molded body including a substrate, a resin layer, and a cover member. 図2は、基材と、樹脂層とを備える、成形体の一例を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing an example of a molded body including a substrate and a resin layer. 図3は、樹脂層表面における、凸部同士の間隔の計測方法の一例を示す写真である。FIG. 3 is a photograph showing an example of a method for measuring the distance between protrusions on the surface of a resin layer.
 以下、本発明の実施形態について詳細に説明するが、これらは望ましい実施態様の一例を示すものであり、これらの内容に特定されるものではない。
 数値範囲の「~」は、その前後の数値を含む範囲であり、例えば、「0質量%~100質量%」は、0質量%以上であり、かつ、100質量%以下である範囲を意味する。
Hereinafter, the embodiments of the present invention will be described in detail, however, these are merely examples of preferable embodiments and the present invention is not limited to these contents.
The numerical range "to" includes the numerical values before and after it. For example, "0% by mass to 100% by mass" means a range from 0% by mass or more to 100% by mass or less.
<成形体>
 本発明の一態様の成形体は、透明な基材と、前記基材上に設けられた樹脂層と、前記基材とは反対側において、前記樹脂層に沿って配置される透明なカバー部材と、を備え、前記樹脂層は、樹脂成分及びオイル成分を含有し、前記樹脂層は前記基材と反対側の表面に凹凸形状を有し、前記オイル成分は、温度が所定値以下に低下したときに前記樹脂層から滲出することができる。
<Molded body>
A molded body of one embodiment of the present invention comprises a transparent substrate, a resin layer provided on the substrate, and a transparent cover member arranged along the resin layer on the side opposite the substrate, wherein the resin layer contains a resin component and an oil component, the resin layer has an uneven shape on the surface opposite the substrate, and the oil component is capable of seeping out of the resin layer when the temperature drops below a predetermined value.
 本発明の一態様の成形体は、透明な基材と、前記基材上に設けられた樹脂層と、を備え、前記樹脂層は、樹脂成分及びオイル成分を含有し、前記樹脂層は前記基材と反対側の表面に凹凸形状を有し、隣り合う凸部同士の間隔が400nmを上回り、前記オイル成分は、温度が所定値以下に低下したときに前記樹脂層から滲出することができる。 The molded article of one embodiment of the present invention comprises a transparent substrate and a resin layer provided on the substrate, the resin layer containing a resin component and an oil component, the resin layer has an uneven shape on the surface opposite the substrate, the distance between adjacent convex portions exceeds 400 nm, and the oil component can seep out of the resin layer when the temperature drops below a predetermined value.
 オイル成分が、温度が所定値以下に低下したときに樹脂層から滲出すると、樹脂層表面の凹凸形状が滲出したオイル成分で覆われて、樹脂層の直線透過率が向上する。また、温度が所定値を上回るとオイル成分は樹脂層から滲出しないため、樹脂層の直線透過率が低下する。 When the oil components seep out of the resin layer when the temperature drops below a certain value, the uneven shape of the resin layer surface is covered with the seeped oil components, improving the linear transmittance of the resin layer. Also, when the temperature exceeds a certain value, the oil components do not seep out of the resin layer, and the linear transmittance of the resin layer decreases.
[樹脂層]
 上記樹脂層は、樹脂成分及びオイル成分を含有する。上記樹脂層は、樹脂成分及びオイル成分を含有する塗料を塗布後に硬化又は乾燥させた層であることが好ましい。上記樹脂層は基材と反対側の表面に凹凸形状を有する。
[Resin layer]
The resin layer contains a resin component and an oil component. The resin layer is preferably a layer obtained by applying a coating material containing a resin component and an oil component and then curing or drying the coating material. The resin layer has an uneven shape on the surface opposite to the substrate.
(樹脂成分)
 樹脂成分は、湿分により硬化する湿分硬化型樹脂、紫外線照射により硬化する紫外線硬化型樹脂、加熱により硬化する熱硬化型樹脂のいずれであってもよい。また、樹脂成分は、樹脂成分と架橋反応する硬化剤を添加することによって硬化する樹脂や熱可塑性樹脂であってもよい。
(Resin Component)
The resin component may be any of a moisture-curable resin that is cured by moisture, an ultraviolet-curable resin that is cured by ultraviolet light, and a thermosetting resin that is cured by heat. The resin component may also be a resin that is cured by adding a curing agent that crosslinks with the resin component, or a thermoplastic resin.
 樹脂成分のSP値(溶解パラメータの値)は、7.5~11.0(cal/cm1/2が好ましい。
 樹脂成分のSP値及びオイル成分のSP値が近いと、樹脂成分とオイル成分は互いに相溶しやすくなり、樹脂成分及びオイル成分を含有する塗料から均一な樹脂を形成することができる。SP値が上記範囲内である樹脂成分を用いると、樹脂層の耐久性を向上させやすい。
The SP value (solubility parameter value) of the resin component is preferably 7.5 to 11.0 (cal/cm 3 ) 1/2 .
When the SP value of the resin component and the SP value of the oil component are close to each other, the resin component and the oil component are easily compatible with each other, and a uniform resin can be formed from a paint containing the resin component and the oil component. When a resin component having an SP value within the above range is used, the durability of the resin layer is easily improved.
 樹脂成分のSP値は、7.7~10.8(cal/cm1/2が好ましく、8.0~10.5(cal/cm1/2がより好ましく、8.3~10.2(cal/cm1/2がさらに好ましい。
 なお、SP値は論文(R. F. Fedors: Polym. Eng. Sci., 14 〔2〕, 147-154 (1974))に記載の凝集エネルギーEおよびモル分子容Vを用いてFedors法から求めることができる。
The SP value of the resin component is preferably from 7.7 to 10.8 (cal/cm 3 ) 1/2 , more preferably from 8.0 to 10.5 (cal/cm 3 ) 1/2 , and even more preferably from 8.3 to 10.2 (cal/cm 3 ) 1/2 .
The SP value can be determined by the Fedors method using the cohesive energy E and the molar volume V described in the paper (R. F. Fedors: Polym. Eng. Sci., 14 [2], 147-154 (1974)).
 また、樹脂成分は、結晶性部位及び非晶性部位を有することが好ましい。樹脂成分が結晶性部位を有することによって、疑似架橋と言われる熱的に可逆な物理架橋の構造を形成することができる。その結果、塗料から、簡便かつ短時間で樹脂層を製造することができる。 In addition, it is preferable that the resin component has crystalline and amorphous parts. By having the resin component have crystalline parts, it is possible to form a thermally reversible physical cross-linked structure called pseudo-cross-linking. As a result, a resin layer can be produced from the paint easily and in a short time.
 樹脂成分としては、特に限定されないが、例えば、シリコーン樹脂、ポリウレタン樹脂、ポリウレタンアクリル樹脂、塩化ビニル樹脂、ポリエステル樹脂、エラストマー類、フッ素樹脂、ポリアミド樹脂、ポリオレフィン樹脂(ポリエチレン、ポリプロピレン等)、アクリル樹脂、EPDM(エチレンプロピレンジエンゴム)、SEBS(スチレン系熱可塑エラストマー)、SBR(スチレンブタジエンゴム)等が挙げられる。ブリード制御の観点から、樹脂成分はシリコーン樹脂かEPDMが好ましい。 The resin component is not particularly limited, but examples include silicone resin, polyurethane resin, polyurethane acrylic resin, vinyl chloride resin, polyester resin, elastomers, fluororesin, polyamide resin, polyolefin resin (polyethylene, polypropylene, etc.), acrylic resin, EPDM (ethylene propylene diene rubber), SEBS (styrene-based thermoplastic elastomer), SBR (styrene butadiene rubber), etc. From the viewpoint of bleed control, the resin component is preferably silicone resin or EPDM.
 シリコーン樹脂としては、本発明の効果を損なわない範囲で、任意の適切なシリコーン樹脂を採用し得る。シリコーン樹脂は、1種のみであってもよいし、2種以上であってもよい。このようなシリコーン樹脂としては、縮合型のシリコーン樹脂であってもよいし、付加型のシリコーン樹脂であってもよい。また、このようなシリコーン樹脂としては、単独で乾燥させる1液型のシリコーン樹脂(例えば、1液型の室温硬化性(RTV)樹脂)であってもよいし、2液型のシリコーン樹脂(例えば、2液型の室温硬化性(RTV)樹脂)であってもよい。 Any suitable silicone resin may be used as the silicone resin as long as it does not impair the effects of the present invention. The silicone resin may be of only one type, or of two or more types. Such a silicone resin may be a condensation type silicone resin, or an addition type silicone resin. In addition, such a silicone resin may be a one-component silicone resin that dries alone (e.g., a one-component room temperature vulcanizable (RTV) resin), or a two-component silicone resin (e.g., a two-component room temperature vulcanizable (RTV) resin).
 シリコーン樹脂としては、例えば、信越化学工業株式会社製の1液型RTVゴム(例えば、KE-3423、KE-347、KE-3475、KE-3495、KE-4895、KE-4896、KE-1830、KE-1884、KE-3479、KE-348、KE-4897、KE-4898、KE-1820、KE-1825、KE-1831、KE-1833、KE-1885、KE-1056、KE-1151、KE-1842、KE-1886、KE-3424G、KE-3494、KE-3490、KE-40RTV、KE-4890、KE-3497、KE-3498、KE-3493、KE-3466、KE-3467、KE-1862、KE-1867、KE-3491、KE-3492、KE-3417、KE-3418、KE-3427、KE-3428、KE-41、KE-42、KE-44、KE-45、KE-441、KE-445、KE-45S等)、信越化学工業株式会社製の2液型RTVゴム(例えば、KE-1800T-A/B、KE-66、KE-1031-A/B、KE-200、KE-118、KE-103、KE-108、KE-119、KE-109E-A/B、KE-1051J-A/B、KE-1012-A/B、KE-106、KE-1282-A/B、KE-1283-A/B、KE-1800-A/B/C、KE-1801-A/B/C、KE-1802-A/B/C、KE-1281-A/B、KE-1204-A/B、KE-1204-AL/BL、KE-1280-A/B、KE-513-A/B、KE-521-A/B、KE-1285-A/B、KE-1861-A/B、KE-12、KE-14、KE-17、KE-113、KE-24、KE-26、KE-1414、KE-1415、KE-1416、KE-1417、KE-1300T、KE-1310ST、KE-1314-2、KE-1316、KE-1600、KE-117603-A/B、KE-1606、KE-1222-A/B、KE-1241等)、信越化学工業株式会社製のシリコーンシーラント(例えば、KE-42AS、KE-420、KE-450等)、信越化学工業株式会社製のゴムコンパウンド(例えば、KE-655-U、KE-675-U、KE-931-U、KE-941-U、KE-951-U、KE-961-U、KE-971-U、KE-981-U、KE-961T-U、KE-971T-U、KE-871C-U、KE-9410-U、KE-9510-U、KE-9610-U、KE-9710-U、KE-742-U、KE-752-U、KE-762-U、KE-772-U、KE-782-U、KE-850-U、KE-870-U、KE-880-U、KE-890-U、KE-9590-U、KE-5590-U、KE-552-U、KE-582-U、KE-552B-U、KE-555-U、KE-575-U、KE-541-U、KE-551-U、KE-561-U、KE-571-U、KE-581-U、KE-520-U、KE-530B-2-U、KE-540B-2-U、KE-1551-U、KE-1571-U、KE-152-U、KE-174-U、KE-3601SB-U、KE-3711-U、KE-3801M-U、KE-5612G-U、KE-5620BL-U、KE-5620W-U、KE-5634-U、KE-7511-U、KE-7611-U、KE-765-U、KE-785-U、KE-7008-U、KE-7005-U、KE-503-U、KE-5042-U、KE-505-U、KE-6801-U、KE-136Y-U等)、信越化学工業株式会社製のLIMS(液状シリコーンゴム射出成形システム)(例えば、KEG-2000-40A/B、KEG-2000-50A/B、KEG-2000-60A/B、KEG-2000-70A/B、KEG-2001-40A/B、KEG-2001-50A/B、KE-1950-10A/B、KE-1950-20A/B、KE-1950-30A/B、KE-1950-35A/B、KE-1950-40A/B、KE-1950-50A/B、KE-1950-60A/B、KE-1950-70A/B、KE-193185A/B、KE-1987A/B、KE-1988A/B、KE-2019-40A/B、KE-2019-50A/B、KE-2019-60A/B、KE-2017-30A/B、KE-2017-40A/B、KE-2017-50A/B、KE-2090-40A/B、KE-2090-50A/B、KE-2090-60A/B、KE-2090-70A/B、KE-2096-40A/B、KE-2096-50A/B、KE-2096-6OA/B等)、信越化学工業株式会社製のジメチコノール(例えば、X-21-5847、X-21-5849)、旭化成ワッカーシリコーン株式会社製のLR7665シリーズ、旭化成ワッカーシリコーン株式会社製のLR3033シリーズ、モメンティブ株式会社製のTSE3032シリーズ等、東レダウコーニング製のシルガード184等を用いることができる。
 これらは各々単独で、または2種以上組み合わせて用いられる。
Examples of silicone resins include one-component RTV rubbers manufactured by Shin-Etsu Chemical Co., Ltd. (e.g., KE-3423, KE-347, KE-3475, KE-3495, KE-4895, KE-4896, KE-1830, KE-1884, KE-3479, KE-348, KE-4897, KE-4898, KE-1820, KE-1825, KE-1831, KE-1833, KE-1885, KE-1056, KE-1151, KE-1842, KE-1886, KE-3424G, KE-3494, KE-3490, KE-40RTV, KE-4890, KE-3497, KE-34 ... -3493, KE-3466, KE-3467, KE-1862, KE-1867, KE-3491, KE-3492, KE-3417, KE-3418, KE-3427, KE-3428, KE-41, KE-42, KE-44, KE-45, KE-441, KE-445, KE-45S, etc.), Two-component RTV rubber manufactured by Etsu Chemical Industry Co., Ltd. (e.g., KE-1800T-A/B, KE-66, KE-1031-A/B, KE-200, KE-118, KE-103, KE-108, KE-119, KE-109E-A/B, KE-1051J-A/B, KE-1012-A/B, KE-106, KE-1282-A/B, KE-1283-A/B, KE-1800-A/B/C, KE-1801-A/B/C, KE-1802-A/B/C, KE-1281-A/B, KE-1204-A/B, KE-1204-AL/BL, KE-1280-A/B, KE-513-A/B, KE-521 -A/B, KE-1285-A/B, KE-1861-A/B, KE-12, KE-14, KE-17, KE-113, KE-24, KE-26, KE-1414, KE-1415, KE-1416, KE-1417, KE-1300T, KE-1310ST, KE-1314-2, KE-1316 , KE-1600, KE-117603-A/B, KE-1606, KE-1222-A/B, KE-1241, etc.), silicone sealants manufactured by Shin-Etsu Chemical Co., Ltd. (for example, KE-42AS, KE-420, KE-450, etc.), rubber compounds manufactured by Shin-Etsu Chemical Co., Ltd. (for example, KE-655-U, KE-675-U, KE-931-U, KE-941-U, KE-951-U, KE-961-U, KE-971-U, KE-981-U, KE-961T-U, KE-971T-U, KE-871C-U, KE-9410-U, KE-9510-U, KE-9610-U, KE-9710 -U, KE-742-U, KE-752-U, KE-762-U, KE-772-U, KE-782-U, KE-850-U, KE-870-U, KE-880-U, KE-890-U, KE-9590-U, KE-5590-U, KE-552-U, KE-582-U, KE-552B-U, K E-555-U, KE-575-U, KE-541-U, KE-551-U, KE-561-U, KE-571-U, KE-581-U, KE-520-U, KE-530B-2-U, KE-540B-2-U, KE-1551-U, KE-1571-U, KE-152-U, KE-174-U, K E-3601SB-U, KE-3711-U, KE-3801M-U, KE-5612G-U, KE-5620BL-U, KE-5620W-U, KE-5634-U, KE-7511-U, KE-7611-U, KE-765-U, KE-785-U, KE-7008-U, KE-7005-U, KE-503-U, KE-5042-U, KE-505-U, KE-6801-U, KE-136Y-U, etc.), LIMS (liquid silicone rubber injection molding system) manufactured by Shin-Etsu Chemical Co., Ltd. (for example, KEG-2000-40A/B, KEG-2000-50A/B, KEG-2000-60A/B , KEG-2000-70A/B, KEG-2001-40A/B, KEG-2001-50A/B, KE-1950-10A/B, KE-1950-20A/B, KE-1950-30A/B, KE-1950-35A/B, KE-1950-40A/B, KE-1950-50A/B, KE-1 950-60A/B, KE-1950-70A/B, KE-193185A/B, KE-1987A/B, KE-1988A/B, KE-2019-40A/B, KE-2019-50A/B, KE-2019-60A/B, KE-2017-30A/B, KE-2017-40A/B, KE-20 17-50A/B, KE-2090-40A/B, KE-2090-50A/B, KE-2090-60A/B, KE-2090-70A/B, KE-2096-40A/B, KE-2096-50A/B, KE-2096-6OA/B, etc.), dimethiconol (e.g., X-21-5847, X-21-5849) manufactured by Shin-Etsu Chemical Co., Ltd., LR7665 series manufactured by Wacker Asahi Kasei Silicone Co., Ltd., LR3033 series manufactured by Wacker Asahi Kasei Silicone Co., Ltd., TSE3032 series manufactured by Momentive Corporation, etc., and Sylgard 184 manufactured by Dow Corning Toray Co., Ltd. can be used.
These may be used alone or in combination of two or more.
(オイル成分)
 本発明で用いられるオイル成分は、温度が所定値以下に低下したときに樹脂層から滲出することができる。
 なお、上記所定値以下とは、例えば、氷点(0℃)以下を意味する。なお、上記所定値以下とは、例えば、室温(約20℃)以下を意味するものでもよい。すなわち、上記所定値以下とは、一定の温度以下に低下したときに樹脂層からオイルが滲出することができる温度であれば、特に限定されない。
(Oil components)
The oil component used in the present invention can seep out from the resin layer when the temperature drops below a predetermined value.
The above-mentioned predetermined value or lower means, for example, freezing point (0° C.) or lower. The above-mentioned predetermined value or lower may mean, for example, room temperature (about 20° C.) or lower. In other words, the above-mentioned predetermined value or lower is not particularly limited as long as it is a temperature at which oil can seep out from the resin layer when it is lowered to a certain temperature or lower.
 オイル成分として、例えば、シリコーンオイル、フッ素オイル、炭化水素系オイル、ポリエーテル系オイル、エステル系オイル、リン化合物系オイル、鉱油系オイル、アルコール等を用いることができる。耐候性の観点から、オイル成分はシリコーンオイル、炭化水素系オイルが好ましい。 As the oil component, for example, silicone oil, fluorine oil, hydrocarbon oil, polyether oil, ester oil, phosphorus compound oil, mineral oil, alcohol, etc. can be used. From the viewpoint of weather resistance, silicone oil and hydrocarbon oil are preferred as the oil component.
 炭化水素系オイルとしては、例えば、流動パラフィン、ワセリン、パラフィンワックス、ナフテン系炭化水素オイル、芳香族系炭化水素オイル等が挙げられる。 Examples of hydrocarbon oils include liquid paraffin, petrolatum, paraffin wax, naphthenic hydrocarbon oils, aromatic hydrocarbon oils, etc.
 シリコーンオイルとしては、例えば、信越化学工業株式会社製のシリコーンオイル(例えば、KF96Lシリーズ、KF96シリーズ、KF69シリーズ、KF99シリーズ、KF50シリーズ、KF54シリーズ、KF410シリーズ、KF412シリーズ、KF414シリーズ、FLシリーズ、KF-56A、KF-6000、KF-6001、KF-6002、KF-6003等)、モメンティブ株式会社製のシリコーンオイル(例えば、Element14*PDMSシリーズ、TSF404シリーズ、TSF410シリーズ、TSF4300シリーズ、TSF431シリーズ、TSF433シリーズ、TSF437シリーズ、TSF4420シリーズ、TSF4421シリーズ等)、東レダウコーニング株式会社製のシリコーンオイル(例えば、BY16-846シリーズ、SF8416シリーズ、SF8427シリーズ、SF-8428シリーズ、SH200シリーズ、SH203シリーズ、SH230シリーズ、SF8419シリーズ、FS1265シリーズ、SH510シリーズ、SH550シリーズ、SH710シリーズ、FZ-2110シリーズ、FZ-2203シリーズ、BY16-201等)、旭化成ワッカーシリコーン社製のシリコーンオイル(WACKER(登録商標)SILICONE FLUID AKシリーズ、WACKER(登録商標)SILICONE FLUID APシリーズ、WACKER(登録商標)SILICONE FLUID ARシリーズ、WACKER(登録商標)SILICONE FLUID ASシリーズ、WACKER(登録商標)TNシリーズ、WACKER(登録商標)Lシリーズ、WACKER(登録商標)AFシリーズ等)等、流動パラフィンを用いることができる。 Examples of silicone oils include silicone oils manufactured by Shin-Etsu Chemical Co., Ltd. (e.g., KF96L series, KF96 series, KF69 series, KF99 series, KF50 series, KF54 series, KF410 series, KF412 series, KF414 series, FL series, KF-56A, KF-6000, KF-6001, KF-6002, KF-6003, etc.), silicone oils manufactured by Momentive Corporation (e.g., Element14*PDMS series, TSF404 series, TSF410 series, TSF4300 series, TSF431 series, TSF433 series, TSF437 series, TSF4420 series, TSF4421 series, etc.), and silicone oils manufactured by Dow Corning Toray Co., Ltd. (e.g., BY16-846 series, SF8416 series, SF8427, etc.). series, SF-8428 series, SH200 series, SH203 series, SH230 series, SF8419 series, FS1265 series, SH510 series, SH550 series, SH710 series, FZ-2110 series, FZ-2203 series, BY16-201, etc.), silicone oils manufactured by Wacker Asahi Kasei Silicone Co., Ltd. (WACKER (registered trademark) SILICONE FLUID AK series, WACKER (registered trademark) SILICONE FLUID AP series, WACKER (registered trademark) SILICONE FLUID AR series, WACKER (registered trademark) SILICONE FLUID AS series, WACKER (registered trademark) TN series, WACKER (registered trademark) L series, WACKER (registered trademark) AF series, etc.), and liquid paraffin can be used.
(樹脂成分及びオイル成分の特性)
 以下に、樹脂成分及びオイル成分の特性について説明する。
(Characteristics of resin and oil components)
The properties of the resin component and the oil component will be described below.
 これらオイル成分及び樹脂成分としては、例えば、以下の1)及び2)の性質を満たす組み合わせを選択することが好ましい。 As these oil and resin components, it is preferable to select a combination that satisfies the following properties 1) and 2).
1)樹脂成分とオイル成分は、オイル成分をブリードさせることを必要としない温度、例えば氷点等の所定値よりも有意に高い20℃~80℃程度の常温では、樹脂層に内包されている。一方、樹脂成分とオイル成分は、オイル成分をブリードさせることを必要とする温度、例えば氷点等の所定値以下となる温度環境の下ではブリードする。なお、オイル成分は、温度が所定値以下に低下したときに、上記樹脂層から滲出することができるオイルである。上記所定値以下とは、例えば、氷点(0℃)以下を意味する。 1) The resin component and the oil component are contained in the resin layer at temperatures that do not require the oil component to bleed, for example, room temperature of about 20°C to 80°C, which is significantly higher than a specified value such as the freezing point. On the other hand, the resin component and the oil component bleed in a temperature environment that requires the oil component to bleed, for example, below a specified value such as the freezing point. The oil component is an oil that can seep out from the resin layer when the temperature drops below a specified value. Below the specified value means, for example, below the freezing point (0°C).
2)オイル成分は、オイル成分をブリードさせることを必要としない温度であるか、又は、オイル成分をブリードさせることを必要とする温度であるかによって、その挙動を変化させる。言い換えれば、オイル成分は樹脂成分からブリードする低温ブリードオイル成分として機能する。 2) The oil component changes its behavior depending on whether the temperature is one that does not require the oil component to bleed or one that does require the oil component to bleed. In other words, the oil component functions as a low-temperature bleed oil component that bleeds from the resin component.
 オイル成分は1つのオイル成分で構成されている必要はなく、上記の条件を満たすのであれば、複数のオイル成分を含有してもよい。 The oil component does not have to be composed of one oil component, and may contain multiple oil components as long as the above conditions are met.
 上記の条件を満たすのであれば、常に樹脂成分と相溶しており、上記オイル成分とは別の、ブリードすることのないオイル成分を含んでもよい。  As long as the above conditions are met, the oil component may contain an oil component that is always compatible with the resin component and does not bleed, separate from the above oil component.
 樹脂成分とオイル成分の好ましい組み合わせとしては、例えば、シリコーン樹脂及びシリコーンオイル、EPDM及び炭化水素系オイル等が挙げられる。 Preferred combinations of resin and oil components include, for example, silicone resin and silicone oil, EPDM and hydrocarbon oil, etc.
[樹脂層の特徴]
(凹凸構造)
 樹脂層は、基材と反対側の表面に凹凸形状を有する。本発明の一態様の成形体においては、樹脂層表面の隣り合う凸部同士の間隔は400nmを上回る。
[Characteristics of resin layer]
(Uneven structure)
The resin layer has an uneven shape on the surface opposite to the substrate. In the molded article according to one aspect of the present invention, the distance between adjacent convex portions on the surface of the resin layer is greater than 400 nm.
 樹脂層表面の隣り合う凸部同士の間隔は、本発明の一態様の成形体の有する樹脂層が直線透過率を制御する光の波長より大きいことが好ましい。
 樹脂層表面の隣り合う凸部同士の間隔は、透過率を制御する光の波長よりも大きいことが好ましい。例えば、樹脂層表面の隣り合う凸部同士の間隔は、樹脂層が紫外光の直線透過率を制御するときは100nm以上が好ましく、樹脂層が可視光の直線透過率を制御するときは375nm以上が好ましく、400nmを超えることがより好ましく、樹脂層が赤外光の直線透過率を制御するときは750nm以上が好ましい。
The distance between adjacent convex portions on the surface of the resin layer is preferably greater than the wavelength of light whose in-line transmittance is controlled by the resin layer of the molded article of one embodiment of the present invention.
The interval between adjacent convex parts on the surface of the resin layer is preferably larger than the wavelength of the light for controlling the transmittance. For example, the interval between adjacent convex parts on the surface of the resin layer is preferably 100 nm or more when the resin layer controls the linear transmittance of ultraviolet light, preferably 375 nm or more when the resin layer controls the linear transmittance of visible light, and more preferably more than 400 nm, and preferably 750 nm or more when the resin layer controls the linear transmittance of infrared light.
 樹脂層表面の隣り合う凸部同士の間隔は、顕微鏡を用いて、図3の黒い太線で示すように凸部同士の間隔を5箇所測定し、その平均値とする。 The distance between adjacent convex portions on the resin layer surface is measured using a microscope at five locations as shown by the thick black lines in Figure 3, and the average value is used.
(樹脂成分とオイル成分の含有量)
 樹脂層における樹脂成分の含有量は、樹脂層全体の質量を基準として、好ましくは25質量%~75質量%である。上記樹脂における樹脂成分の含有量の下限値は、樹脂層全体の質量を基準として、好ましくは25質量%、より好ましくは30質量%以上、さらに好ましくは35質量%以上である。また、上記樹脂における樹脂成分の含有量の上限値は、樹脂層全体の質量を基準として、好ましくは75質量%、より好ましくは70質量%以下、さらに好ましくは65質量%以下である。
(Resin and oil content)
The content of the resin component in the resin layer is preferably 25% by mass to 75% by mass based on the mass of the entire resin layer. The lower limit of the content of the resin component in the resin is preferably 25% by mass, more preferably 30% by mass or more, and even more preferably 35% by mass or more based on the mass of the entire resin layer. The upper limit of the content of the resin component in the resin is preferably 75% by mass, more preferably 70% by mass or less, and even more preferably 65% by mass or less based on the mass of the entire resin layer.
 樹脂層におけるオイル成分の含有量は、樹脂層全体の質量を基準として、好ましくは25質量%~75質量%である。上記樹脂におけるオイル成分の含有量の下限値は、樹脂層全体の質量を基準として、好ましくは25質量%、より好ましくは30質量%以上、さらに好ましくは35質量%以上である。また、上記樹脂におけるオイル成分の含有量の上限値は、樹脂層全体の質量を基準として、好ましくは75質量%、より好ましくは70質量%以下、さらに好ましくは65質量%以下である。 The content of the oil component in the resin layer is preferably 25% by mass to 75% by mass based on the mass of the entire resin layer. The lower limit of the content of the oil component in the resin is preferably 25% by mass, more preferably 30% by mass or more, and even more preferably 35% by mass or more, based on the mass of the entire resin layer. The upper limit of the content of the oil component in the resin is preferably 75% by mass, more preferably 70% by mass or less, and even more preferably 65% by mass or less, based on the mass of the entire resin layer.
(厚み)
 樹脂層の厚みは、特に限定されないが、施工性の観点から10~1000μmが好ましい。
(Thickness)
The thickness of the resin layer is not particularly limited, but is preferably 10 to 1000 μm from the viewpoint of workability.
(樹脂層から滲出することができるオイル成分)
 オイル成分は、温度が所定値以下に低下したときに上記樹脂層から滲出することができる。なお、上記所定値以下とは、例えば、氷点(0℃)以下を意味する。
(Oil components that can seep out from the resin layer)
The oil component can seep out of the resin layer when the temperature drops below a certain value, which may be, for example, freezing point (0° C.) or below.
 温度が所定値以下に低下したときに上記樹脂層から滲出するオイル成分の量は、樹脂層表面の凹凸形状を覆える量が好ましく、例えば、40μg/cm~2000μg/cmが好ましい。 The amount of oil component that seeps out from the resin layer when the temperature drops below a predetermined value is preferably an amount that can cover the irregularities on the surface of the resin layer, and is preferably, for example, 40 μg/cm 2 to 2000 μg/cm 2 .
 温度が所定値以下に低下したときに上記樹脂層から滲出するオイル成分の量は、例えば以下の方法により測定しうる。
 前記樹脂層を所定の温度以下、例えば-20℃で16時間放置し、前記樹脂層の表面にブリードしたオイル成分を、-20℃の環境下においてセルスクレーパーで採取する。採取したオイル成分を油取り紙によって、油取り紙の質量変化が見られなくなるまで吸い取る。
 セルスクレーパーによるオイル採取と油取り紙による吸い取りは、1分間に7回繰り返す。オイル吸い取り前後の油取り紙の質量差を表面オイル量とする。表面オイル量の測定は3回行い、その平均値を採用する。
The amount of oil components that oozes out from the resin layer when the temperature drops to a predetermined value or lower can be measured, for example, by the following method.
The resin layer is left at a predetermined temperature or lower, for example, at −20° C. for 16 hours, and the oil component that bleeds onto the surface of the resin layer is collected with a cell scraper in an environment of −20° C. The collected oil component is absorbed with oil blotting paper until no change in mass of the oil blotting paper is observed.
The process of collecting oil using the cell scraper and absorbing it with oil blotting paper was repeated 7 times per minute. The difference in mass of the oil blotting paper before and after absorbing the oil was taken as the surface oil amount. The surface oil amount was measured 3 times and the average value was used.
[樹脂層の製造方法]
 樹脂層は、樹脂成分及びオイル成分を含有する。樹脂層は、樹脂成分及びオイル成分を含有する塗料を塗布後に硬化又は乾燥させて形成することが好ましい。樹脂層は、例えば図1及び図2に示すように、基材10に塗装することによって樹脂層11を得ることができる。
 上記塗料の塗装方法としては、ハケ塗り、スプレー塗装、各種コーター塗装などの一般的な方法を用いることができる。塗装は、通常1~2回行われる。
[Method of manufacturing resin layer]
The resin layer contains a resin component and an oil component. The resin layer is preferably formed by applying a coating material containing the resin component and the oil component and then curing or drying the coating material. The resin layer can be obtained by applying the coating material to a substrate 10 as shown in FIG. 1 and FIG. 2, for example.
The coating method may be a common method such as brush coating, spray coating, various coater coating, etc. Coating is usually carried out once or twice.
 上記塗料を、基材10に塗装した後は、例えば-20~80℃、好ましくは0~40℃の環境下で、例えば8~300時間、好ましくは24~200時間静置することによって塗料を硬化又は乾燥させることができる。 After the coating material is applied to the substrate 10, it can be cured or dried by leaving it to stand for, for example, 8 to 300 hours, preferably 24 to 200 hours, in an environment of, for example, -20 to 80°C, preferably 0 to 40°C.
 塗装膜表面の凹凸形状は、揮発性溶剤を含む塗料を基材に塗装し、硬化又は乾燥することで形成でき、常温での乾燥によって形成することが好ましい。凸部同士の間隔は樹脂、オイル、溶剤の比率を適宜変更することによって変化させることができる。 The uneven shape of the coating surface can be formed by applying a paint containing a volatile solvent to the substrate and then curing or drying it, preferably by drying at room temperature. The spacing between the protrusions can be altered by appropriately changing the ratio of resin, oil, and solvent.
 塗装膜表面の凹凸形状は、凹凸構造を表面に有する鋳型を用いて形成してもよい。 The uneven shape of the coating film surface may be formed using a mold that has an uneven structure on its surface.
(塗料)
 上記の樹脂成分及びオイル成分を含有する塗料は、上で詳述した樹脂成分及びオイル成分に加えて、下記成分を含有していてもよい。
(paint)
The coating material containing the above resin component and oil component may contain the following components in addition to the resin component and oil component detailed above.
((硬化剤))
 樹脂成分及びオイル成分を含有する塗料は、さらに硬化剤を含有することが好ましい。硬化剤は、ヒドロシリル基を有することが好ましい。上記塗料がヒドロシリル基を有する硬化剤を含有すると、樹脂成分同士がヒドロシリル化によって結合し、上記塗料から得られる樹脂層の強度が向上する。
((hardening agent))
The paint containing the resin component and the oil component preferably further contains a curing agent. The curing agent preferably has a hydrosilyl group. When the paint contains a curing agent having a hydrosilyl group, the resin components are bonded to each other by hydrosilylation, and the strength of the resin layer obtained from the paint is improved.
 硬化剤としては、例えば、トリス(ジメチルシロキシ)フェニルシラン、ビス(ジメチルシロキシ)ジフェニルシラン、メチルハイドロジェンシリコーン、2,4,6,8-テトラメチルシクロテトラシロキサン、1,1,3,3,5,5-ヘキサメチルトリシロキサン、1,4-ビス(ジメチルシリル)ベンゼン、1,1,3,3-テトラメチルジシロキサン等を挙げることができる。 Examples of curing agents include tris(dimethylsiloxy)phenylsilane, bis(dimethylsiloxy)diphenylsilane, methylhydrogen silicone, 2,4,6,8-tetramethylcyclotetrasiloxane, 1,1,3,3,5,5-hexamethyltrisiloxane, 1,4-bis(dimethylsilyl)benzene, and 1,1,3,3-tetramethyldisiloxane.
((溶剤))
 樹脂成分及びオイル成分を含有する塗料は、さらに溶剤を含有することが好ましい。溶剤は、揮発性であることが好ましい。
 溶剤としては、例えば、トルエン、キシレン等の芳香族炭化水素系溶剤、酢酸エチル、酢酸ブチル等のエステル系溶剤、ヘキサン、オクタン、デカン、イソパラフィン等の炭化水素系溶剤、アセトン、メチルエチルケトン等のケトン系溶剤等を挙げることができる。
((solvent))
The paint containing a resin component and an oil component preferably further contains a solvent. The solvent is preferably volatile.
Examples of the solvent include aromatic hydrocarbon solvents such as toluene and xylene, ester solvents such as ethyl acetate and butyl acetate, hydrocarbon solvents such as hexane, octane, decane, and isoparaffin, and ketone solvents such as acetone and methyl ethyl ketone.
((硬化触媒))
 樹脂成分及びオイル成分を含有する塗料は、さらに硬化触媒を含有することができる。
 硬化触媒としては、例えば、白金(0)-1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体、ヘキサクロリド白金(IV)酸、クロロトリス(トリフェニルホスフィン)ロジウム(I)等の金属触媒等を挙げることができる。
((Curing catalyst))
The coating material containing a resin component and an oil component may further contain a curing catalyst.
Examples of the curing catalyst include metal catalysts such as platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex, hexachloroplatinic acid(IV) and chlorotris(triphenylphosphine)rhodium(I).
((その他の成分))
 樹脂成分及びオイル成分を含有する塗料は、さらにシリカ、タルク、炭酸カルシウム、酸化チタン、クレー、顔料などのフィラーを含有することができる。
 シリカとしては、例えば、日本アエロジル株式会社製のシリカ(例えば、AEROSIL50、130、200、300、R972、R974、R976、RX50、RX200、RX300、RY50、RY300、R7200、R8200、R9200)等を用いることができる。
(Other Ingredients)
Paints containing a resin component and an oil component may further contain fillers such as silica, talc, calcium carbonate, titanium oxide, clay, and pigments.
Examples of silica that can be used include silica manufactured by Nippon Aerosil Co., Ltd. (e.g., AEROSIL 50, 130, 200, 300, R972, R974, R976, RX50, RX200, RX300, RY50, RY300, R7200, R8200, and R9200).
(塗料の製造方法)
 樹脂成分及びオイル成分を含む塗料は、下記各成分を、公知の方法によって混合及び/又は撹拌して得ることができる。塗料中の各成分の含有量は下記のとおりである。
(Paint manufacturing method)
The paint containing the resin component and the oil component can be obtained by mixing and/or stirring the following components by a known method. The content of each component in the paint is as follows:
 上記塗料を用いて形成した樹脂層における樹脂成分の含有量は、樹脂層全体の質量を基準として、好ましくは25質量%~75質量%である。上記樹脂層における樹脂成分の含有量の下限値は、樹脂層全体の質量を基準として、好ましくは25質量%、より好ましくは30質量%以上、さらに好ましくは35質量%以上である。また、上記樹脂における樹脂成分の含有量の上限値は、樹脂層全体の質量を基準として、好ましくは75質量%、より好ましくは70質量%以下、さらに好ましくは65質量%以下である。 The content of the resin component in the resin layer formed using the above coating material is preferably 25% by mass to 75% by mass, based on the mass of the entire resin layer. The lower limit of the content of the resin component in the above resin layer is preferably 25% by mass, more preferably 30% by mass or more, and even more preferably 35% by mass or more, based on the mass of the entire resin layer. The upper limit of the content of the resin component in the above resin is preferably 75% by mass, more preferably 70% by mass or less, and even more preferably 65% by mass or less, based on the mass of the entire resin layer.
 上記塗料を用いて形成した樹脂におけるオイル成分の含有量は、樹脂層全体の質量を基準として、好ましくは25質量%~75質量%である。上記樹脂におけるオイル成分の含有量の下限値は、樹脂層全体の質量を基準として、好ましくは25質量%、より好ましくは30質量%以上、さらに好ましくは35質量%以上である。また、上記樹脂におけるオイル成分の含有量の上限値は、樹脂層全体の質量を基準として、好ましくは75質量%より好ましくは70質量%以下、さらに好ましくは65質量%以下である。 The content of the oil component in the resin formed using the above coating is preferably 25% by mass to 75% by mass based on the mass of the entire resin layer. The lower limit of the content of the oil component in the above resin is preferably 25% by mass, more preferably 30% by mass or more, and even more preferably 35% by mass or more, based on the mass of the entire resin layer. The upper limit of the content of the oil component in the above resin is preferably 75% by mass, more preferably 70% by mass or less, and even more preferably 65% by mass or less, based on the mass of the entire resin layer.
 上記塗料における硬化剤の含有量は、樹脂成分の質量に対して、好ましくは0.03質量%~40質量%である。上記塗料における樹脂成分の質量に対する硬化剤の含有量の下限値は、好ましくは0.03質量%、より好ましくは0.06質量%以上、さらに好ましくは0.1質量%以上である。また、上記塗料における樹脂成分の質量に対する硬化剤の含有量の上限値は、好ましくは40質量%、より好ましくは30質量%以下、さらに好ましくは20質量%以下である。 The content of the hardener in the paint is preferably 0.03% to 40% by mass relative to the mass of the resin component. The lower limit of the content of the hardener relative to the mass of the resin component in the paint is preferably 0.03% by mass, more preferably 0.06% by mass or more, and even more preferably 0.1% by mass or more. The upper limit of the content of the hardener relative to the mass of the resin component in the paint is preferably 40% by mass, more preferably 30% by mass or less, and even more preferably 20% by mass or less.
 上記塗料における溶剤の含有量は、樹脂成分及びオイル成分の合計質量に対して、好ましくは5質量%~95質量%である。上記塗料における樹脂成分及びオイル成分の合計質量に対する溶剤の含有量の下限値は、好ましくは5質量%、より好ましくは10質量%以上、さらに好ましくは15質量%以上である。また、上記塗料における樹脂成分及びオイル成分の合計質量に対する溶剤の含有量の上限値は、好ましくは95質量%、より好ましくは90質量%以下、さらに好ましくは85質量%以下である。 The solvent content in the paint is preferably 5% to 95% by mass relative to the total mass of the resin component and the oil component. The lower limit of the solvent content relative to the total mass of the resin component and the oil component in the paint is preferably 5% by mass, more preferably 10% by mass or more, and even more preferably 15% by mass or more. The upper limit of the solvent content relative to the total mass of the resin component and the oil component in the paint is preferably 95% by mass, more preferably 90% by mass or less, and even more preferably 85% by mass or less.
 上記塗料における硬化触媒の含有量は、樹脂成分の質量に対して、好ましくは0.1ppm~1000ppmである。上記塗料における樹脂成分の質量に対する硬化触媒の含有量の下限値は、好ましくは0.1ppm、より好ましくは1ppm以上、さらに好ましくは2ppm以上である。また、上記塗料における樹脂成分の質量に対する硬化触媒の含有量の上限値は、好ましくは1000ppm、より好ましくは750ppm以下、さらに好ましくは500ppm以下に設定することができる。 The content of the curing catalyst in the above coating is preferably 0.1 ppm to 1000 ppm relative to the mass of the resin component. The lower limit of the content of the curing catalyst relative to the mass of the resin component in the above coating is preferably 0.1 ppm, more preferably 1 ppm or more, and even more preferably 2 ppm or more. The upper limit of the content of the curing catalyst relative to the mass of the resin component in the above coating can be set to preferably 1000 ppm, more preferably 750 ppm or less, and even more preferably 500 ppm or less.
[基材]
 本発明で用いる基材は透明である。基材が透明であるとは、基材の反対側が透けて見えることを意味する。基材は、樹脂層で直線透過率を制御する光の透過率が高いことが好ましい。基材は無色透明であることが好ましい。
[Base material]
The substrate used in the present invention is transparent. The substrate being transparent means that the opposite side of the substrate can be seen through. The substrate preferably has high light transmittance, the linear transmittance of which is controlled by the resin layer. The substrate is preferably colorless and transparent.
 本発明で用いる基材として、例えば、アクリル樹脂、ポリカーボネート樹脂、ガラス、ポリスチレン樹脂、ポリウレタン樹脂、ポリウレタンアクリル樹脂、ゴム系樹脂、塩化ビニル樹脂、ポリエステル樹脂、シリコーン樹脂、エラストマー類、フッ素樹脂、ポリアミド樹脂、ポリオレフィン樹脂(ポリエチレン、ポリプロピレン等)等を用いることができる。また、基材はフィルム状やシート状でもよい。 The substrate used in the present invention may be, for example, acrylic resin, polycarbonate resin, glass, polystyrene resin, polyurethane resin, polyurethane acrylic resin, rubber-based resin, vinyl chloride resin, polyester resin, silicone resin, elastomers, fluororesin, polyamide resin, polyolefin resin (polyethylene, polypropylene, etc.), etc. The substrate may also be in the form of a film or sheet.
 基材の厚みは、特に限定されないが、取り扱い易さの観点から10~1000μmが好ましい。 The thickness of the substrate is not particularly limited, but from the viewpoint of ease of handling, a thickness of 10 to 1000 μm is preferable.
[カバー部材]
 本発明の一態様の成形体は、透明なカバー部材を有する。成形体がカバー部材を有することで、温度が所定値以下に低下したときに樹脂層から滲出するオイル成分を覆うことができる。
 カバー部材は、樹脂層で直線透過率を制御する光の透過率が高いことが好ましい。カバー部材は無色透明であることが好ましい。
[Cover member]
The molded article according to one embodiment of the present invention has a transparent cover member. By having the cover member, the molded article can cover the oil component that exudes from the resin layer when the temperature drops to or below a predetermined value.
The cover member preferably has high light transmittance, the in-line transmittance of which is controlled by the resin layer, and is preferably colorless and transparent.
 本発明で用いるカバー部材として、例えば、アクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリスチレン樹脂等が挙げられる。 Cover materials used in the present invention include, for example, acrylic resin, polycarbonate resin, polyester resin, polystyrene resin, etc.
 カバー部材は、基材とは反対側において、樹脂層に沿って配置される。温度が所定値以下に低下したときに、オイル成分が樹脂層から滲出するため、カバー部材と樹脂層の間には空間があることが好ましい。
 図1に示すように、例えば、基材10の端部とカバー部材12とは、スペーサー等の接続部材13を介して接合しうる。
The cover member is disposed along the resin layer on the opposite side to the substrate. It is preferable that there is a space between the cover member and the resin layer because the oil component will ooze out of the resin layer when the temperature drops below a predetermined value.
As shown in FIG. 1, for example, an end portion of a substrate 10 and a cover member 12 can be joined via a connecting member 13 such as a spacer.
 カバー部材の厚みは、特に限定されないが、取り扱い易さの観点から10~1000μmが好ましい。 The thickness of the cover member is not particularly limited, but from the viewpoint of ease of handling, a thickness of 10 to 1000 μm is preferable.
<光透過性を制御する方法>
 本発明の一態様として、上記成形体の温度を変化させることで、樹脂層の直線透過率を制御する方法が挙げられる。
 上記成形体の温度を所定値以下に低下させると、該成形体に備えられた樹脂層において、オイル成分が樹脂層から滲出し、樹脂層表面の凹凸形状が滲出したオイル成分で覆われて、凸凹形状による透過光の散乱が抑制され、樹脂層の直線透過率が向上する。また、温度が所定値を上回るようにすると、オイル成分は樹脂層から滲出しないため、光は樹脂層表面の凹凸形状で透過光が散乱し、樹脂層の直線透過率が低下する。
Methods for controlling light transmittance
One embodiment of the present invention includes a method of controlling the linear transmittance of the resin layer by changing the temperature of the molded body.
When the temperature of the molded body is lowered to a predetermined value or lower, the oil component exudes from the resin layer provided on the molded body, and the uneven shape of the resin layer surface is covered with the exuded oil component, so that the scattering of transmitted light due to the uneven shape is suppressed, and the linear transmittance of the resin layer is improved. On the other hand, when the temperature is made to exceed a predetermined value, the oil component does not exude from the resin layer, so that the transmitted light is scattered by the uneven shape of the resin layer surface, and the linear transmittance of the resin layer is reduced.
 上記樹脂層では、温度が所定値以下に低下してオイル成分が樹脂層から滲出した後、温度が所定値を上回るとオイル成分は樹脂層内に戻る。
 そのため、本発明の一態様の成形体は、自律調光材料、例えばプライバシーガラスとして用いることができる。
In the resin layer, when the temperature falls below a predetermined value and the oil component seeps out of the resin layer, the oil component returns to the resin layer when the temperature exceeds the predetermined value.
Therefore, the molded article according to one embodiment of the present invention can be used as an autonomous light control material, for example, privacy glass.
 上記成形体の温度が所定値以下のときの、成形体の直線透過率は、80%以上が好ましく、90%以上がより好ましい。上記成形体の温度が所定値より高いときの、成形体の直線透過率は、40%以下が好ましく、20%以下がより好ましい。
 なお、上記所定値とは、例えば、氷点(0℃)を意味する。
 成形体の直線透過率は、分光光度計によって測定しうる。
When the temperature of the molded body is equal to or lower than a predetermined value, the linear transmittance of the molded body is preferably 80% or more, more preferably 90% or more.When the temperature of the molded body is higher than a predetermined value, the linear transmittance of the molded body is preferably 40% or less, more preferably 20% or less.
The above-mentioned predetermined value means, for example, the freezing point (0° C.).
The in-line transmittance of the molded article can be measured by a spectrophotometer.
 成形体の温度を変化する方法は特に限定されず、例えば、成形体を設置する環境の温度を変更することにより調整しうる。 The method for changing the temperature of the molded body is not particularly limited, and can be adjusted, for example, by changing the temperature of the environment in which the molded body is placed.
 以上説明したように、本明細書には次の事項が開示されている。
[1]
 透明な基材と、
 前記基材上に設けられた樹脂層と、
 前記基材とは反対側において、前記樹脂層に沿って配置される透明なカバー部材と、を備え、
 前記樹脂層は、樹脂成分及びオイル成分を含有し、
 前記樹脂層は前記基材と反対側の表面に凹凸形状を有し、
 前記オイル成分は、温度が所定値以下に低下したときに前記樹脂層から滲出することができる、
 成形体。
[2]
 前記凹凸形状において、隣り合う凸部同士の間隔が400nmを超える、上記[1]記載の成形体。
[3]
 前記樹脂層の厚みが10~1000μmである、上記[1]又は[2]に記載の成形体。
[4]
 透明な基材と、
 前記基材上に設けられた樹脂層と、を備え、
 前記樹脂層は、樹脂成分及びオイル成分を含有し、
 前記樹脂層は前記基材と反対側の表面に凹凸形状を有し、隣り合う凸部同士の間隔が400nmを上回り、
 前記オイル成分は、温度が所定値以下に低下したときに前記樹脂層から滲出することができる、
 成形体。
[5]
 上記[1]~[4]のいずれか1に記載の成形体の温度を変化させて、前記樹脂層の直線透過率を制御する方法。
As described above, the present specification discloses the following:
[1]
A transparent substrate;
A resin layer provided on the substrate;
a transparent cover member disposed along the resin layer on the opposite side to the substrate,
The resin layer contains a resin component and an oil component,
the resin layer has an uneven shape on a surface opposite to the substrate,
The oil component can seep out from the resin layer when the temperature drops below a predetermined value.
Molded body.
[2]
The molded article according to [1] above, wherein the uneven shape has a distance between adjacent convex portions exceeding 400 nm.
[3]
The molded article according to the above-mentioned [1] or [2], wherein the thickness of the resin layer is 10 to 1000 μm.
[4]
A transparent substrate;
A resin layer provided on the substrate,
The resin layer contains a resin component and an oil component,
the resin layer has an uneven shape on a surface opposite to the substrate, and the distance between adjacent protrusions is greater than 400 nm;
The oil component can seep out from the resin layer when the temperature drops below a predetermined value.
Molded body.
[5]
A method for controlling the linear transmittance of the resin layer by changing the temperature of the molded article according to any one of the above [1] to [4].
 以下に、実施例をあげて本発明を具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。 The present invention will be specifically explained below using examples, but the present invention is not limited to the following examples as long as they do not exceed the gist of the invention.
<成形体の作製>
[実施例1]
 塗料成分として、樹脂成分1:EPDM樹脂「3092PM」(三井化学株式会社製)、樹脂成分2:無水マレイン酸基含有のSEBS「FG1901GT」(クレイトン社製)、第1オイル成分:流動パラフィン(富士フィルム和光純薬株式会社製、品番:流動パラフィン[密度(20℃)0.825~0.850g/ml])、第2オイル成分:フェニル変性シリコーンオイル(信越化学工業株式会社製、品番:KF-56A])、溶剤:トルエンを用意した。
<Preparation of Molded Body>
[Example 1]
The coating components were as follows: resin component 1: EPDM resin "3092PM" (manufactured by Mitsui Chemicals, Inc.); resin component 2: maleic anhydride group-containing SEBS "FG1901GT" (manufactured by Kraton Chemical); first oil component: liquid paraffin (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., product number: liquid paraffin [density (20°C) 0.825 to 0.850 g/ml]); second oil component: phenyl-modified silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd., product number: KF-56A]); and solvent: toluene.
 樹脂成分1をトルエンに溶解させ、樹脂成分1の含有量が15質量%のトルエン溶液1を作製した。樹脂成分2をトルエンに溶解させ、樹脂成分2の含有量が20質量%のトルエン溶液2を作製した。当該トルエン溶液1(86.2質量%)、トルエン溶液2(1.3質量%)、第1オイル成分(8.6質量%)、及び第2オイル成分(3.9質量%)を、25℃、101kPaの条件下で混合した。得られた混合液をスパチュラで60秒間撹拌し、自転・公転ミキサー(シンキー社製、CONDITIONING MIXER AR-250)でさらに300秒間の撹拌と300秒間の脱泡をし、塗料を得た。 Resin component 1 was dissolved in toluene to prepare toluene solution 1 with a resin component 1 content of 15 mass%. Resin component 2 was dissolved in toluene to prepare toluene solution 2 with a resin component 2 content of 20 mass%. Toluene solution 1 (86.2 mass%), toluene solution 2 (1.3 mass%), first oil component (8.6 mass%), and second oil component (3.9 mass%) were mixed at 25°C and 101 kPa. The resulting mixture was stirred with a spatula for 60 seconds, and then stirred and degassed for an additional 300 seconds with a planetary centrifugal mixer (Thinky Corporation, CONDITIONING MIXER AR-250) to obtain a paint.
 得られた塗料を、PETフィルム(東レ株式会社製 ルミラー#75S10)に塗装し、25℃環境下において1日間、乾燥硬化させることによって樹脂層を形成し、PETフィルム上に樹脂層が設けられた成形体を作製した。 The resulting paint was applied to a PET film (Lumirror #75S10, manufactured by Toray Industries, Inc.) and allowed to dry and harden for one day in a 25°C environment to form a resin layer, producing a molded article with a resin layer on the PET film.
[比較例1]
 比較例1として、PETフィルム(東レ株式会社製 ルミラー#75S10)を用いた。
[Comparative Example 1]
In Comparative Example 1, a PET film (Lumirror #75S10 manufactured by Toray Industries, Inc.) was used.
<評価>
 得られた成形体を用いて、下記の評価を行った。結果を表1に示す。
<Evaluation>
The obtained molded articles were subjected to the following evaluations, and the results are shown in Table 1.
(凹凸形状)
 実施例1の樹脂層表面及び比較例1のPETフィルム表面を、顕微鏡(株式会社キーエンス製「VHX-7000」)を用いて観察した。図3の黒い太線に示すように凸部同士の間隔を5箇所測定し、その平均値を求めた。
(Uneven shape)
The resin layer surface of Example 1 and the PET film surface of Comparative Example 1 were observed using a microscope ("VHX-7000" manufactured by Keyence Corporation). As shown by the thick black lines in Figure 3, the distance between the convex portions was measured at five points, and the average value was calculated.
(樹脂層表面及びフィルム表面のオイル成分の量)
 樹脂層の表面及びフィルム表面にブリードしたオイル量を、以下の方法で測定した。
(Amount of oil component on resin layer surface and film surface)
The amount of oil that had bled onto the surface of the resin layer and onto the surface of the film was measured by the following method.
 実施例1の成形体及び比較例1のPETフィルムを、中心付近において10cm×2cmのサイズにカットした。カットした成形体及びPETフィルムを-20℃で16時間放置し、成形体の樹脂層の表面及びフィルムの表面にブリードしたオイルを、-20℃の温度環境下においてセルスクレーパー(ケニス社製、CSS-10)で採取した。そのオイルを油取り紙の質量(吸油量)変化が見られなくなるまで吸い取った。
 また、上記手順において、-20℃を20℃にした以外は同様にして、成形体の樹脂層の表面及びフィルムの表面にブリードしたオイルを採取した。
The molded article of Example 1 and the PET film of Comparative Example 1 were cut into a size of 10 cm x 2 cm near the center. The cut molded article and PET film were left at -20°C for 16 hours, and the oil that had bled onto the surface of the resin layer of the molded article and the surface of the film was collected with a cell scraper (CSS-10, manufactured by Kenis Co., Ltd.) in a temperature environment of -20°C. The oil was absorbed until no change in the mass (oil absorption amount) of the oil blotting paper was observed.
Further, the oil that had bled onto the surface of the resin layer of the molded article and onto the surface of the film was sampled in the same manner as above, except that the temperature was changed from -20°C to 20°C.
 セルスクレーパーによるオイル採取と油取り紙の吸い取りは、1分間に7回繰り返した。オイル吸い取り前後の油取り紙の質量差を表面オイル量とした。表面オイル量の測定は3回行い、その平均値を算出した。 Oil collection using the cell scraper and absorbing with oil blotting paper were repeated seven times per minute. The difference in mass of the oil blotting paper before and after absorbing the oil was taken as the amount of surface oil. The amount of surface oil was measured three times and the average value was calculated.
 表面オイル量に関する評価基準は以下のとおりである。
○・・・40μg/cm以上
×・・・40μg/cm未満
The evaluation criteria for the amount of surface oil are as follows:
○: 40 μg/ cm2 or more ×: less than 40 μg/ cm2
(直線透過率)
 実施例1の成形体及び比較例1のPETフィルムについて、分光光度計(日本分光株式会社製「分光光度計V-750」)を用いて直線透過率を測定した。測定波長は500nmとした。温度は20℃又は-10℃に設定し、チャンバー内が設定温度に達してから30分後に測定を行った。
(In-line transmittance)
The linear transmittance of the molded article of Example 1 and the PET film of Comparative Example 1 was measured using a spectrophotometer ("Spectrophotometer V-750" manufactured by JASCO Corporation). The measurement wavelength was 500 nm. The temperature was set to 20°C or -10°C, and the measurement was performed 30 minutes after the temperature in the chamber reached the set temperature.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1の成形体は、氷点(0℃)以下の-20℃において樹脂層表面にオイル成分が滲出し、オイル成分が樹脂層表面の凹凸形状を覆ったため、氷点(0℃)以下の-10℃において高い直線透過率を示した。実施例1の成形体は、氷点(0℃)を上回る20℃では樹脂層表面のオイル成分が少なくなるため、樹脂層表面の凹凸形状はオイル成分で覆われず、低い直線透過率を示した。このように、実施例1の成形体の温度を変化させることにより、直線透過率を制御できた。
 一方、比較例1のPETフィルムは、凹凸形状を有さず、さらに温度にかかわらずフィルム表面にオイル成分が滲出することはなかった。これより、比較例1のPETフィルムの温度を変化させても、直線透過率は変化しなかった。
As shown in Table 1, the molded body of Example 1 showed a high linear transmittance at -10°C below the freezing point (0°C) because the oil component oozed out onto the resin layer surface at -20°C below the freezing point (0°C) and the oil component covered the uneven shape of the resin layer surface. The molded body of Example 1 showed a low linear transmittance because the oil component on the resin layer surface was reduced at 20°C above the freezing point (0°C). In this way, the linear transmittance could be controlled by changing the temperature of the molded body of Example 1.
On the other hand, the PET film of Comparative Example 1 did not have an uneven shape, and furthermore, no oil components exuded onto the film surface regardless of the temperature. Therefore, even if the temperature of the PET film of Comparative Example 1 was changed, the linear transmittance did not change.
 本発明の一態様の成形体は、温度に応じて直線透過率を制御できる。 The molded body of one embodiment of the present invention can control the linear transmittance according to the temperature.
 以上、各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above, it goes without saying that the present invention is not limited to these examples. It is clear that a person skilled in the art can come up with various modified or revised examples within the scope of the claims, and it is understood that these also naturally fall within the technical scope of the present invention. Furthermore, the components in the above embodiments may be combined in any manner as long as it does not deviate from the spirit of the invention.
 なお、本出願は、2022年9月30日出願の日本特許出願(特願2022-158796)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Patent Application No. 2022-158796) filed on September 30, 2022, the contents of which are incorporated by reference into this application.
10 基材
11 樹脂層
12 カバー部材
13 接続部材
10: Substrate 11: Resin layer 12: Cover member 13: Connection member

Claims (5)

  1.  透明な基材と、
     前記基材上に設けられた樹脂層と、
     前記基材とは反対側において、前記樹脂層に沿って配置される透明なカバー部材と、を備え、
     前記樹脂層は、樹脂成分及びオイル成分を含有し、
     前記樹脂層は前記基材と反対側の表面に凹凸形状を有し、
     前記オイル成分は、温度が所定値以下に低下したときに前記樹脂層から滲出することができる、
     成形体。
    A transparent substrate;
    A resin layer provided on the substrate;
    a transparent cover member disposed along the resin layer on the opposite side to the substrate,
    The resin layer contains a resin component and an oil component,
    the resin layer has an uneven shape on a surface opposite to the substrate,
    The oil component can seep out from the resin layer when the temperature drops below a predetermined value.
    Molded body.
  2.  前記凹凸形状において、隣り合う凸部同士の間隔が400nmを超える、請求項1に記載の成形体。 The molded body according to claim 1, wherein the uneven shape has a distance between adjacent convex portions that exceeds 400 nm.
  3.  前記樹脂層の厚みが10~1000μmである、請求項1又は2に記載の成形体。 The molded article according to claim 1 or 2, wherein the resin layer has a thickness of 10 to 1000 μm.
  4.  透明な基材と、
     前記基材上に設けられた樹脂層と、を備え、
     前記樹脂層は、樹脂成分及びオイル成分を含有し、
     前記樹脂層は前記基材と反対側の表面に凹凸形状を有し、隣り合う凸部同士の間隔が400nmを上回り、
     前記オイル成分は、温度が所定値以下に低下したときに前記樹脂層から滲出することができる、
     成形体。
    A transparent substrate;
    A resin layer provided on the substrate,
    The resin layer contains a resin component and an oil component,
    the resin layer has an uneven shape on a surface opposite to the substrate, and the distance between adjacent protrusions is greater than 400 nm;
    The oil component can seep out from the resin layer when the temperature drops below a predetermined value.
    Molded body.
  5.  請求項1又は4に記載の成形体の温度を変化させて、前記樹脂層の直線透過率を制御する方法。 A method for controlling the linear transmittance of the resin layer by changing the temperature of the molded body described in claim 1 or 4.
PCT/JP2023/035553 2022-09-30 2023-09-28 Shaped objects WO2024071351A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022158796 2022-09-30
JP2022-158796 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024071351A1 true WO2024071351A1 (en) 2024-04-04

Family

ID=90478079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035553 WO2024071351A1 (en) 2022-09-30 2023-09-28 Shaped objects

Country Status (1)

Country Link
WO (1) WO2024071351A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030049441A1 (en) * 2000-02-04 2003-03-13 Hiroshi Samukawa lowly-adhesive coating material
JP2003328308A (en) * 2002-05-14 2003-11-19 Mitsuuma:Kk Ice/snow accretion preventing rubber mat
WO2011019050A1 (en) * 2009-08-13 2011-02-17 株式会社タイカ Gel member for optical use, method for assembling optical device using same, and optical device
WO2014061565A1 (en) * 2012-10-17 2014-04-24 旭硝子株式会社 Glass laminate and manufacturing method therefor, and support base with silicone resin layer
JP2014528990A (en) * 2011-09-22 2014-10-30 ソルティア・インコーポレーテッド Polymer interlayer containing epoxidized vegetable oil
WO2016136615A1 (en) * 2015-02-27 2016-09-01 東レ株式会社 Laminated polyester film
WO2020096070A1 (en) * 2018-11-09 2020-05-14 日東電工株式会社 Sheet body
WO2023190417A1 (en) * 2022-03-28 2023-10-05 日東電工株式会社 Sheet body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030049441A1 (en) * 2000-02-04 2003-03-13 Hiroshi Samukawa lowly-adhesive coating material
JP2003328308A (en) * 2002-05-14 2003-11-19 Mitsuuma:Kk Ice/snow accretion preventing rubber mat
WO2011019050A1 (en) * 2009-08-13 2011-02-17 株式会社タイカ Gel member for optical use, method for assembling optical device using same, and optical device
JP2014528990A (en) * 2011-09-22 2014-10-30 ソルティア・インコーポレーテッド Polymer interlayer containing epoxidized vegetable oil
WO2014061565A1 (en) * 2012-10-17 2014-04-24 旭硝子株式会社 Glass laminate and manufacturing method therefor, and support base with silicone resin layer
WO2016136615A1 (en) * 2015-02-27 2016-09-01 東レ株式会社 Laminated polyester film
WO2020096070A1 (en) * 2018-11-09 2020-05-14 日東電工株式会社 Sheet body
WO2023190417A1 (en) * 2022-03-28 2023-10-05 日東電工株式会社 Sheet body

Similar Documents

Publication Publication Date Title
US11156893B2 (en) Wide operating temperature range electrophoretic device
US9726925B2 (en) Method for producing a multiple glazing unit with variable diffusion by PDLC layer and a multiple glazing unit with a PDLC layer produced according to said method
TW200424250A (en) Composition and process for the manufacture of an improved electrophoretic display
JP2024050632A (en) Coating material and film
WO2024071351A1 (en) Shaped objects
CA2850960A1 (en) Modified release coatings for optically clear film
EP1278808B1 (en) Adhesive sheet and adhesion structure
WO2021193973A1 (en) Coating material and multilayer body
JP6972425B1 (en) Water-repellent structure, its manufacturing method, and water-repellent coating agent used for it.
US20240166894A1 (en) Coating material
JP2000169814A (en) Adhesive composition and production of adhered product
US20230167307A1 (en) Coating material and laminate
CN115516052B (en) Coating material and laminate
KR101818135B1 (en) Antifouling coating composition
US20230109348A1 (en) Coating material, coating film layer, and laminate
WO2023190796A1 (en) Coating material, coating film layer, and laminate
CA2058675A1 (en) Bonding polysulphide sealant to silicone
JP5845159B2 (en) Paint composition
KR102547161B1 (en) Paint coating agent for load surface sign of pavement and method using the same
WO1999006491A1 (en) Damping paint
JP2024130929A (en) Method for producing bleeding coating film, and method for imparting or restoring bleeding function to coating film
WO2014050356A1 (en) Waterproofing method for outdoor tank
JP2008194914A (en) Plastic eraser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872571

Country of ref document: EP

Kind code of ref document: A1