WO2024071289A1 - Leveling system, and laser receiver - Google Patents

Leveling system, and laser receiver Download PDF

Info

Publication number
WO2024071289A1
WO2024071289A1 PCT/JP2023/035365 JP2023035365W WO2024071289A1 WO 2024071289 A1 WO2024071289 A1 WO 2024071289A1 JP 2023035365 W JP2023035365 W JP 2023035365W WO 2024071289 A1 WO2024071289 A1 WO 2024071289A1
Authority
WO
WIPO (PCT)
Prior art keywords
light receiving
receiving tube
vertical
receiver
laser
Prior art date
Application number
PCT/JP2023/035365
Other languages
French (fr)
Japanese (ja)
Inventor
武志 菊池
祐次 高野
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Publication of WO2024071289A1 publication Critical patent/WO2024071289A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/02Means for marking measuring points

Definitions

  • the present invention relates to a leveling system and a laser receiver for receiving and leveling horizontal laser light from a rotary laser device.
  • a rotary laser device and a laser receiver are used for leveling.
  • the rotary laser device is installed at the measurement reference point, has a rotating head equipped with a laser light source, and rotates the laser light horizontally at the reference height.
  • the laser receiver detects the collision position of the laser light within a detection body equipped with a light receiving sensor, and detects the height (vertical) position of the laser receiver relative to the laser light.
  • Patent Document 1 discloses a laser receiver that calculates the height difference from the measurement reference point by providing multiple photodiodes as a light receiving sensor around a vertical axis and configuring the light receiving sensor to be movable in the vertical direction, so that the laser light is always received at the center position of the light receiving sensor in the height (vertical) direction.
  • the laser receiver in Patent Document 1 required a ball screw linear motion mechanism to adjust the height of the light receiving sensor in order to calculate the height difference. Also, a tilt sensor was required to prevent errors caused by the tilt of the laser receiver.
  • the present invention was made to solve these problems, and aims to measure the elevation difference between measurement points without using a ball screw linear motion mechanism or tilt sensor.
  • the leveling system of the first aspect of the present invention comprises a rotary laser device that emits laser light horizontally at a predetermined height from a measurement reference point, and a laser receiver that receives the laser light at the measurement point.
  • the laser receiver comprises a columnar light guide, light receiving units arranged at both ends of the light guide, and an optical coupling layer that divides the laser light toward both ends of the light guide, as a light receiving sensor.
  • the system comprises a first vertical light receiving tube, a second vertical light receiving tube, and a horizontal light receiving tube arranged in an H shape, and a calculation processing unit connected to the light receiving units.
  • the calculation processing unit identifies the collision position of the laser light from each light receiving signal of the light receiving units, detects the difference distance from the center position of the collision position and whether the difference distance is on the positive or negative side of the center position of the length of the light guide, and measures the height difference of the measurement point with respect to the measurement reference point according to the positive/negative combination of the difference distance of the first vertical light receiving tube, the second vertical light receiving tube, and the horizontal light receiving tube.
  • the calculation processing unit detects that the measurement point X has become higher than the measurement reference point by an amount equal to the differential distance, and when the differential distances of the first vertical light receiving tube and the second vertical light receiving tube are the same value and both are positive values, it is also preferable to detect that the measurement point X has become lower than the measurement reference point by an amount equal to the differential distance.
  • the calculation processing unit detects that the laser receiver is tilted to the left and the measurement point is lower than the measurement reference point by the height change h calculated by formula 1 when the difference distance of the first vertical light receiving tube is a positive value, the difference distance of the second vertical light receiving tube is a negative value, and the difference distance of the horizontal light receiving tube is a positive value, and detects that the laser receiver is tilted to the left and the measurement point is lower than the measurement reference point by the height change h calculated by formula 1 when the difference distance of the first vertical light receiving tube is a positive value, the difference distance of the second vertical light receiving tube is a negative value, and the difference distance of the horizontal light receiving tube is a negative value.
  • the laser receiver When the difference distance of the first vertical light receiving tube is a negative value, the difference distance of the second vertical light receiving tube is a positive value, and the difference distance of the horizontal light receiving tube is a negative value, the laser receiver is tilted to the right and the measurement point is lowered by the height change h calculated by formula 1 relative to the measurement reference point.
  • the difference distance of the first vertical light receiving tube is a negative value
  • the difference distance of the second vertical light receiving tube is a positive value
  • the difference distance of the horizontal light receiving tube is a positive value
  • the laser receiver is tilted to the right and the measurement point is higher by the height change h calculated by formula 1 relative to the measurement reference point.
  • the radius of the light guide of the horizontal light receiving tube is larger than the radius of the first vertical light receiving tube and the second vertical light receiving tube.
  • the number of horizontal light receiving tubes is increased in the height direction.
  • the sixth aspect of the laser receiver is a laser receiver that receives at a measurement point a laser beam emitted horizontally at a predetermined height from a measurement reference point, and the laser receiver includes a columnar light guide, light receiving sections arranged at both ends of the light guide, and an optical coupling layer that divides the laser beam toward both ends of the light guide, as a light receiving sensor.
  • the laser receiver includes a first vertical light receiving tube, a second vertical light receiving tube, and a horizontal light receiving tube arranged in an H shape, and a calculation processing section connected to the light receiving sections.
  • the calculation processing section identifies the collision position of the laser beam from each light receiving signal of the light receiving sections, detects the difference distance from the center position of the collision position and whether the difference distance is on the positive or negative side of the center position of the length of the light guide, and preferably measures the difference in height of the measurement point relative to the measurement reference point according to the positive/negative combination of the difference distance of the first vertical light receiving tube, the second vertical light receiving tube, and the horizontal light receiving tube.
  • the height difference between measurement points can be measured in a laser receiver for leveling without using a ball screw linear motion mechanism or tilt sensor.
  • FIG. 1 is an external perspective view of a leveling system according to an embodiment of the present invention.
  • FIG. 2 is a front perspective view of a receiver of the leveling system.
  • 4 is a diagram illustrating a light receiving sensor of a light receiver of the leveling system.
  • FIG. 13A to 13C are diagrams illustrating detection of a change in height when the light receiver of the leveling system is not tilted.
  • 10A to 10C are diagrams illustrating detection of changes in left and right tilt by a light receiver of the leveling system.
  • 3 is an example of a left/right tilt detection table for the leveling system.
  • 13A to 13C are diagrams illustrating detection of a change in height when the light receiver of the leveling system is tilted.
  • FIG. 2 is a configuration block diagram of the leveling system.
  • FIG. 11 is a front perspective view of a receiver according to a modified example of the leveling system.
  • FIG. 1 is an external perspective view of a leveling system 1 according to an embodiment of the present invention
  • FIG. 2 is a front perspective view of a receiver 20.
  • the leveling system 1 includes a rotary laser device 10 and a laser receiver (hereinafter simply referred to as the receiver) 20.
  • the rotary laser device 10 has a rotary head 11 equipped with a laser light source such as a light emitting diode (LED), a semiconductor laser (LD), or an SLED (Super Luminescent Diode).
  • a laser light source such as a light emitting diode (LED), a semiconductor laser (LD), or an SLED (Super Luminescent Diode).
  • the rotary laser device 10 is erected on a measurement reference point RP on the ground via a leveling stand, and the rotary head 11 is rotated to rotate the laser light B so as to revolve around a horizontal reference plane 12 that is at a height H used for leveling from the measurement reference point RP.
  • the rotary head 11 emits pulsed light that is intensity modulated to a predetermined frequency as the laser light B.
  • the receiver 20 is supported by an operator W by a handle 22 directly above the measurement point X, as shown in FIG. 1. Alternatively, it may be supported by a known fixture on a support member such as a pole or a staff
  • the receiver 20 includes a case 21, a handle 22, a first vertical receiver tube 23, a horizontal receiver tube 24, a second vertical receiver tube 25, a display unit 26, an operation unit 27, and a light-emitting indicator 28.
  • the first vertical receiver tube 23, the horizontal receiver tube 24, the second vertical receiver tube 25, the display unit 26, and the operation unit 27 are arranged on the front of the case 21.
  • the light-emitting indicator 28 is arranged in a position that is easily visible to the operator W, such as on the top surface of the case 21.
  • the handles 22 are arranged in a pair on the left and right on the rear surface of the case 21 (the left handle cannot be seen when viewed from the front in FIG. 2).
  • the first vertical receiver tube 23, the horizontal receiver tube 24, and the second vertical receiver tube 25 are the light-receiving sensors of the receiver 20.
  • the display unit 26 and the operation unit 27 are arranged in the margins of the above-mentioned light-receiving sensors.
  • the receiver 20 is equipped with a first vertical receiver tube 23, a horizontal receiver tube 24, and a second vertical receiver tube 25, which are light receiving sensors, arranged in an "H" shape.
  • the central axis of the horizontal receiver tube 24 is aligned with the central position M of the length L of each of the first vertical receiver tube 23 and the second vertical receiver tube 25, and they are arranged in an "H" shape so that the receiver center C is at the central position M of the length L of the horizontal receiver tube 24.
  • the central position M of the first vertical receiver tube 23 and the second vertical receiver tube 25, the central position M of the horizontal receiver tube 24, and the position of the receiver center C in the horizontal receiver tube 24 are measured in advance and stored as known values in a memory unit 33 described later.
  • the first vertical light receiving tube 23 and the second vertical light receiving tube 25 are arranged with their axial direction vertical, while the horizontal light receiving tube 24 is arranged with their axial direction horizontal, and all have the same configuration, so the configuration of the light receiving sensor will be explained using the first vertical light receiving tube 23.
  • Figure 3 is a diagram explaining the light receiving sensor (first vertical light receiving tube 23) of the receiver 20, and is a diagram showing the side of the first vertical light receiving tube 23. In Figure 3, the left is the front of the case 21, which is the side that receives the laser light B.
  • the first vertical light receiving tube 23 includes a cylindrical light guide 231, a light receiving section 232 arranged at one end of the light guide 231, and a light receiving section 233 arranged at the other end.
  • the light receiving sections 232 and 233 are photodiodes, avalanche photodiodes (APDs), or equivalent photoelectric conversion elements.
  • the light receiving signals detected by the light receiving sections 232 and 233 are processed by the calculation processing section 31 described later.
  • the material of the light guide 231 is not limited as long as it guides the laser light B inside the body, but it is, for example, transparent glass or quartz, or a resin such as acrylic or polycarbonate.
  • the light guide 231 is formed in a cylindrical shape, an elliptical cylinder, or a cylinder capable of guiding light by total reflection, with a specified length L in the axial direction.
  • An optical coupling layer 234 is formed on the light guide 231 (see cross-sectional view).
  • the optical coupling layer 234 couples the laser light B to the light guide 231 using the principles of light diffraction, refraction, scattering, reflection, dispersion, and/or fluorescence (the laser light is not reflected outside the light guide, but is incident on the light guide).
  • the optical coupling layer 234 is formed, for example, by applying a paint having fluorescent particles dispersed in a solution to the surface of the light guide 231, or by providing a resin layer containing fluorescent particles on the surface of the light guide 231.
  • collision position 235 when laser light B collides with light guide 231, at collision position 235, laser light B is coupled into light guide 231 by optical coupling layer 234 and split into laser light B1 traveling toward one light receiving section 232 and laser light B2 traveling toward the other light receiving section 233 in the opposite direction. If collision position 235 is the central position M of light guide 231 in the axial direction, distance L1 guided by laser light B1 and distance L2 guided by laser light B2 are the same, so the waveforms of the light receiving signals of light receiving sections 232 and 233 match.
  • collision position 235 is shifted from central position M of light guide 231, distances L1 and L2 guided by laser light B1 and B2 are different, so a shift occurs in the waveforms of the light receiving signals of light receiving sections 232 and 233.
  • the collision position 235 is above the center position M of the light guide 231, and because the distance L1 is shorter than the distance L2, a delay occurs in the light receiving signal of the light receiving unit 233 relative to the light receiving signal of the light receiving unit 232.
  • the calculation processing unit 31 calculates the distances L1 and L2 from the time difference or phase difference between these light receiving signals, the specified length L, and the light transmission speed of the light guide 231 to identify the collision position 235.
  • the calculation unit 31 calculates which side of the center position M the collision position 235 is on and the differential distance D from the center position M of the collision position 235 from the specified length L and the distance L1 or L2. For example, in FIG. 3, D is calculated from L/2-L1 or L2-L/2.
  • FIG. 4 is a diagram for explaining the detection of height changes when the receiver 20 is not tilted.
  • the collision position 235 of both the first vertical receiver tube 23 and the second vertical receiver tube 25 shifts below the center position M, causing a shift in the light receiving signals at the respective light receiving units 232, 233 and light receiving units 252, 253, and negative differential distances D23, D25 are detected on the lower light receiving unit 233 (253) side relative to the center position M.
  • FIG. 4(1) when the height of the receiver center C is above the laser light B, the collision position 235 of both the first vertical receiver tube 23 and the second vertical receiver tube 25 shifts below the center position M, causing a shift in the light receiving signals at the respective light receiving units 232, 233 and light receiving units 252, 253, and negative differential distances D23, D25 are detected on the lower light receiving unit 233 (253) side relative to the center position M.
  • the height of the light receiving device 20 (center C of the light receiving device) has moved upward by the differential distance D23 (D25) based on the height H of the laser light B, and it can be seen that the measurement point X has become higher by the differential distance D, which is the same amount as D23 (D25), relative to the measurement reference point RP.
  • the height of the light receiving device 20 (center C of the light receiving device) has moved downward by the differential distance D23 (D25), and it can be seen that the measurement point X has also become lower by the same amount D as D23 (D25) relative to the measurement reference point RP.
  • Figures 5 to 7 are diagrams explaining the detection of height changes when the receiver 20 is tilted.
  • Figure 5 is a diagram explaining the detection of left/right tilt changes by the receiver 20.
  • the collision position 235 in the first vertical receiver tube 23 shifts above the center position M, and a positive difference distance D23 is detected on the upper receiver 232 side relative to the center position M, while the collision position 235 in the second vertical receiver tube 25 shifts below the center position M, and a negative difference distance D25 is detected on the lower receiver 253 side relative to the center position M.
  • a positive difference distance D23 is detected on the upper receiver 232 side relative to the center position M
  • a negative difference distance D25 is detected on the lower receiver 253 side relative to the center position M.
  • the difference distance D23 of the first vertical light receiving tube 23 is a positive value and the difference distance D25 of the second vertical light receiving tube 25 is a negative value, it is understood that the light receiver 20 is tilted to the left. If the difference distance D23 of the first vertical light receiving tube 23 is a negative value and the difference distance D25 of the second vertical light receiving tube 25 is a positive value, it is understood that the light receiver 20 is tilted to the right.
  • the difference distance D23 (D25) becomes longer as the left-right tilt increases, and it can be seen that the difference distance D23 (D25) and the tilt angle ⁇ have a one-to-one correspondence. Therefore, by creating a left-right tilt detection table 342 that stores the correspondence between the difference distance D23 (D25) and the left-right tilt angle ⁇ , the left-right tilt angle ⁇ can be calculated according to the value of the difference distance.
  • FIG. 6 shows an example of the left-right tilt detection table 342 when the resolution is set to 0.5 mm units.
  • the center position M of the vertical light receiving tube 23 (25) is set to 0 [mm]
  • the difference distance D23 (D25) detected on the lower light receiving unit 233 (253) side with respect to the center position M as a negative value and the tilt angle ⁇ corresponding to each difference distance D23 (D25) is stored.
  • FIG. 7 is a diagram explaining the detection of the change in height when the receiver 20 is tilted. If the height of the receiver 20 changes while the receiver 20 is tilted left or right, the collision position 235 of the laser light B on the horizontal receiver tube 24 shifts from the central position M, causing a shift in the received light signals at the light receiving sections 242, 243 of the horizontal receiver tube 24, and the differential distance D24 from the central position M is detected.
  • the change in height h of the receiver center C can be found from Equation 1 using trigonometric functions.
  • h is the change in height
  • D is the difference in distance detected by the horizontal receiver
  • is the inclination angle of the laser receiver in the left-right direction.
  • the differential distance D24 will have a positive value on the light receiving unit 243 side.
  • the differential distance D24 will have a negative value on the light receiving unit 242 side.
  • the differential distance D24 When the light receiving unit 20 is tilted to the right and the collision position 235 is shifted above the center C of the light receiving unit, as shown in FIG. 7 (3), the differential distance D24 will have a negative value on the light receiving unit 242 side. As shown in FIG. 7 (4), if the receiver 20 is tilted to the right and the collision position 235 is shifted below the receiver center C, the differential distance D24 will be a positive value on the receiver 243 side.
  • FIG. 8 is a block diagram of the leveling system 1.
  • the rotary laser device 10 is equipped with a rotary head 11 that emits laser light B.
  • the receiver 20 is equipped with an arithmetic processing unit 31, a buzzer 32, a memory unit 33, light receiving units (of the first vertical light receiving tube 23) 232, 233, light receiving units (of the second vertical light receiving tube 25) 252, 253, light receiving units (of the horizontal light receiving tube 24) 242, 243, a display unit 26, an operation unit 27, and a light emitting indicator 28.
  • the display unit 26 is a liquid crystal or organic EL display that displays tilt detection and height change detection.
  • the operation unit 27 is a button or switch that can be used to perform operations for tilt detection and height change detection.
  • the light receiving units 232, 233 (of the first vertical light receiving tube 23), the light receiving units 252, 253 (of the second vertical light receiving tube 25), and the light receiving units 242, 243 (of the horizontal light receiving tube) are as described above, and each sends a light receiving signal to the calculation processing unit 31.
  • the light-emitting indicator 28 and the buzzer 32 are controlled by the calculation processing unit 31 (the alignment unit 311 described later) to flash and/or emit a signal sound to guide the user to align the rotary laser device 10 and the receiver 20.
  • the storage unit 33 includes RAM and ROM as main storage devices, and a HDD (Hard Disc Drive) as an auxiliary storage device.
  • the storage unit 33 stores the various processing programs executed by the arithmetic processing unit 31.
  • the arithmetic processing unit 31 includes an integrated circuit in which at least a CPU (Central Processing Unit) and memory (RAM (Random Access Memory), ROM (Read Only Memory), etc.) are implemented in an integrated circuit, a collection of integrated circuits, a microcontroller, or a microprocessor.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the calculation processing unit 31 has the functional units of an alignment unit 311 and a tilt/height change detection unit 312.
  • Each functional unit is composed of electronic circuits such as a CPU, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device) such as an FPGA (Field Programmable Gate Array), etc.
  • the tilt/height change detection unit 312 receives light receiving signals from the light receiving sections 232, 233, 242, 243, 252, and 253 of the first vertical light receiving tube 23, horizontal light receiving tube 24, and second vertical light receiving tube 25, respectively, and detects the respective difference distances D23, D24, and D25, including whether they are positive or negative values, to measure the difference in elevation at measurement point X.
  • the tilt/height change detection unit 312 detects that the measurement point X has become higher by the differential distance D relative to the measurement reference point RP (detection pattern 4-1).
  • the tilt/height change detection unit 312 detects that the measurement point X has become lower by the differential distance D relative to the measurement reference point RP (detection pattern 4-2).
  • the tilt/height change detection unit 312 detects that the light receiver 20 is tilted to the left and the measurement point X has become lower by the height change h relative to the measurement reference point RP (detection pattern 7-1). As explained in FIG.
  • the tilt/height change detection unit 312 detects that the light receiver 20 is tilted to the left and the measurement point X has become higher by the height change h relative to the measurement reference point RP (detection pattern 7-2). As explained in (3) of FIG.
  • the alignment unit 311 aligns the rotary laser device 10 and the receiver 20, i.e., aligns the laser light B and the receiver center C, by placing the receiver 20 close to the rotary laser device 10 when starting to measure the height difference so that the tilt/height change detection unit 312 can perform the above detection.
  • the operator W holds the receiver 20 upright and horizontally using a horizontal bubble tube (not shown) as a guide, and issues an instruction for alignment from the operation unit 27.
  • the alignment unit 311 guides the difference from the receiver center C (the difference in the vertical direction can be detected by the vertical receiver tube 23, and the difference in the horizontal direction can be detected by the horizontal receiver tube 24) up, down, left and right on the display unit 26 using arrows or the like to the range where measurement is possible, and also notifies the operator W by flashing the light-emitting indicator 28 and/or sounding a signal from the buzzer 32.
  • the alignment unit 311 constantly detects whether a light reception signal is received from the light receiving units 242, 243 of the horizontal light receiving tube 24 so that the tilt/height change detection unit 312 can perform the above detection pattern 7-1 to detection pattern 7-4. If a light reception signal is not received, the above detection pattern 7-1 to detection pattern 7-4 cannot be performed, so the light emitting indicator 28 flashes and/or the buzzer 32 sounds a signal.
  • the receiver 20 is equipped with a pair of first vertical receiver tubes 23 and second vertical receiver tubes 25 and a horizontal receiver tube 24 arranged in an H-shape as light receiving sensors, so that by looking at the positive/negative detection patterns of each received light signal, it is possible to determine whether or not the receiver 20 is tilted, and an accurate height difference can be measured according to each detection pattern.
  • the tilt/height change detection unit 312 can determine whether the tilt is to the left or right, it is also preferred to notify the worker W of the tilt direction by using any one or a combination of the display unit 26, buzzer 32, and light-emitting indicator 28. In this case, it is also preferred that the signal sound, lighting color, or flashing pattern be changed in relation to the previous alignment.
  • the radius d24 of the horizontal light receiving tube 24 it is preferable to make the radius d24 of the horizontal light receiving tube 24 larger than the radii d23, d25 of the vertical light receiving tubes 23, 25 so that the inclination/height change detection unit 312 can perform the above detection patterns 7-1 to 7-4, thereby widening the incidence range of the laser light B, i.e., the measurable range MA.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

According to the present invention, a height difference between measurement points is measured using a laser receiver. A leveling system (1) comprises a rotating laser device (10) for emitting a laser beam (B) horizontally at a predetermined height (H) from a measurement reference point, and a laser receiver (20) for receiving the laser beam at a measurement point, wherein the laser receiver: is provided with a first vertical light receiving tube (23), a second vertical light receiving tube (25) and a horizontal light receiving tube (24) which are arranged in an H-shape and each of which comprises light receiving units disposed at both ends of a light guide, and an arithmetic processing unit (31) connected to the light receiving units; identifies a collision position (235) of the laser beam from light reception signals of the light receiving units; detects differential distances of the collision position from a central position, and detects whether each differential distance is on a plus side or a minus side of a boundary at a central position in the length of each light guide; and measures a height difference of the measurement point relative to the measurement reference point in accordance with a combination of the plus/minus of each differential distance of the first vertical light receiving tube, the second vertical light receiving tube, and the horizontal light receiving tube.

Description

レベリングシステムおよびレーザ受光器Leveling system and laser receiver
 本発明は、回転レーザ装置からの水平なレーザ光を受光してレベリングするための、レベリングシステムおよびレーザ受光器に関する。 The present invention relates to a leveling system and a laser receiver for receiving and leveling horizontal laser light from a rotary laser device.
 建築・土木・内装工事などの測量作業では、水平出し(レベリング)のために、回転レーザ装置とレーザ受光器が利用されている。回転レーザ装置は、測定基準点に据え付けられ、レーザ光源を備えた回転ヘッドを備え、基準とする高さで水平にレーザ光を旋回させる。レーザ受光器は、受光センサを備えた検出体内でレーザ光の衝突位置を検出して、レーザ光に対するレーザ受光器の高さ方向(鉛直方向)の位置を検出する。例えば特許文献1では、受光センサとして複数のフォトダイオートを鉛直な軸線周りに設け、かつ受光センサを鉛直方向に移動可能に構成して、レーザ光を常に受光センサの高さ方向(鉛直方向)中央位置で受光することで、測定基準点からの高低差を算出するレーザ受光器が開示されている。 In surveying work such as architectural, civil engineering, and interior construction, a rotary laser device and a laser receiver are used for leveling. The rotary laser device is installed at the measurement reference point, has a rotating head equipped with a laser light source, and rotates the laser light horizontally at the reference height. The laser receiver detects the collision position of the laser light within a detection body equipped with a light receiving sensor, and detects the height (vertical) position of the laser receiver relative to the laser light. For example, Patent Document 1 discloses a laser receiver that calculates the height difference from the measurement reference point by providing multiple photodiodes as a light receiving sensor around a vertical axis and configuring the light receiving sensor to be movable in the vertical direction, so that the laser light is always received at the center position of the light receiving sensor in the height (vertical) direction.
特開2020-169921号公報JP 2020-169921 A
 しかしながら、特許文献1のレーザ受光器は、高低差を算出するために、受光センサの高さを調節するボールねじ直動機構が必要であった。また、レーザ受光器の傾斜に起因する誤差を防止するために、チルトセンサを備える必要があった。 However, the laser receiver in Patent Document 1 required a ball screw linear motion mechanism to adjust the height of the light receiving sensor in order to calculate the height difference. Also, a tilt sensor was required to prevent errors caused by the tilt of the laser receiver.
 本発明は、係る課題を解決するためになされたものであり、ボールねじ直動機構やチルトセンサを使用せずに、測定点の高低差を測定することを目的とする。 The present invention was made to solve these problems, and aims to measure the elevation difference between measurement points without using a ball screw linear motion mechanism or tilt sensor.
 上記課題を解決するために、本発明の第1の態様のレベリングシステムは、測定基準点から所定の高さで水平にレーザ光を出射する回転レーザ装置と、測定点で前記レーザ光を受光するレーザ受光器と、を備え、前記レーザ受光器は、受光センサとして,柱状の導光体,前記導光体の両端部に配置された受光部,前記レーザ光を前記導光体の前記両端部に向かって分割する光結合層,を備え、H型に配置された、第1の鉛直受光管、第2の鉛直受光管、および水平受光管と、前記受光部に接続された演算処理部を備え、前記演算処理部は、前記受光部の各受光信号から前記レーザ光の衝突位置を特定し、前記衝突位置の前記中央位置からの差分距離と、前記差分距離が前記導光体の長さの中央位置を境にプラス側とマイナス側のどちらにあるかを検出し、前記第1の鉛直受光管、前記第2の鉛直受光管、および前記水平受光管の前記差分距離のプラス/マイナスの組み合わせに応じて、前記測定点の前記測定基準点に対する高低差を測定する。 In order to solve the above problem, the leveling system of the first aspect of the present invention comprises a rotary laser device that emits laser light horizontally at a predetermined height from a measurement reference point, and a laser receiver that receives the laser light at the measurement point. The laser receiver comprises a columnar light guide, light receiving units arranged at both ends of the light guide, and an optical coupling layer that divides the laser light toward both ends of the light guide, as a light receiving sensor. The system comprises a first vertical light receiving tube, a second vertical light receiving tube, and a horizontal light receiving tube arranged in an H shape, and a calculation processing unit connected to the light receiving units. The calculation processing unit identifies the collision position of the laser light from each light receiving signal of the light receiving units, detects the difference distance from the center position of the collision position and whether the difference distance is on the positive or negative side of the center position of the length of the light guide, and measures the height difference of the measurement point with respect to the measurement reference point according to the positive/negative combination of the difference distance of the first vertical light receiving tube, the second vertical light receiving tube, and the horizontal light receiving tube.
 第2の態様のレベリングシステムでは、第1の態様において、前記演算処理部は、前記第1の鉛直受光管と前記第2の鉛直受光管の前記差分距離が同じ値でともにマイナス値の場合は、前記測定点Xが前記測定基準点に対して前記差分距離と同量だけ高くなったと検出し、前記第1の鉛直受光管と前記第2の鉛直受光管の前記差分距離が同じ値でともにプラス値の場合は、前記測定点Xが前記測定基準点に対して前記差分距離と同量だけ低くなったと検出するのも好ましい。 In the leveling system of the second aspect, in the first aspect, when the differential distances of the first vertical light receiving tube and the second vertical light receiving tube are the same value and both are negative values, the calculation processing unit detects that the measurement point X has become higher than the measurement reference point by an amount equal to the differential distance, and when the differential distances of the first vertical light receiving tube and the second vertical light receiving tube are the same value and both are positive values, it is also preferable to detect that the measurement point X has become lower than the measurement reference point by an amount equal to the differential distance.
 第3の態様のレベリングシステムでは、第1の態様において、前記演算処理部は、前記第1の鉛直受光管の前記差分距離がプラス値、前記第2の鉛直受光管の前記差分距離がマイナス値、前記水平受光管の前記差分距離がプラスの値の場合、前記レーザ受光器は左に傾いており、前記測定点は前記測定基準点に対して数式1で求める高さ変化hだけ低くなったと検出し、前記第1の鉛直受光管の前記差分距離がプラス値、前記第2の鉛直受光管の前記差分距離がマイナス値、前記水平受光管の前記差分距離がマイナス値の場合、前記レーザ受光器は左に傾いており、前記測定点は前記測定基準点に対して数式1で求める高さ変化hだけ高くなったと検出し、前記第1の鉛直受光管の前記差分距離がマイナス値、前記第2の鉛直受光管の前記差分距離がプラス値、前記水平受光管の前記差分距離がマイナスの値の場合、前記レーザ受光器は右に傾いており、前記測定点は前記測定基準点に対して数式1で求める高さ変化hだけ低くなったと検出し、前記第1の鉛直受光管の前記差分距離がマイナス値、前記第2の鉛直受光管の前記差分距離がプラス値、前記水平受光管の前記差分距離がプラス値の場合、前記レーザ受光器は右に傾いており、前記測定点は前記測定基準点に対して数式1で求める高さ変化hだけ高くなったと検出するのも好ましい。 In the leveling system of the third aspect, in the first aspect, the calculation processing unit detects that the laser receiver is tilted to the left and the measurement point is lower than the measurement reference point by the height change h calculated by formula 1 when the difference distance of the first vertical light receiving tube is a positive value, the difference distance of the second vertical light receiving tube is a negative value, and the difference distance of the horizontal light receiving tube is a positive value, and detects that the laser receiver is tilted to the left and the measurement point is lower than the measurement reference point by the height change h calculated by formula 1 when the difference distance of the first vertical light receiving tube is a positive value, the difference distance of the second vertical light receiving tube is a negative value, and the difference distance of the horizontal light receiving tube is a negative value. When the difference distance of the first vertical light receiving tube is a negative value, the difference distance of the second vertical light receiving tube is a positive value, and the difference distance of the horizontal light receiving tube is a negative value, the laser receiver is tilted to the right and the measurement point is lowered by the height change h calculated by formula 1 relative to the measurement reference point. When the difference distance of the first vertical light receiving tube is a negative value, the difference distance of the second vertical light receiving tube is a positive value, and the difference distance of the horizontal light receiving tube is a positive value, the laser receiver is tilted to the right and the measurement point is higher by the height change h calculated by formula 1 relative to the measurement reference point.
 第4の態様のレベリングシステムでは、第1~3のいずれかの態様において、前記水平受光管の前記導光体の半径は、前記第1の鉛直受光管および前記第2の鉛直受光管の半径よりも大きく構成されるのも好ましい。 In the leveling system of the fourth aspect, in any of the first to third aspects, it is also preferable that the radius of the light guide of the horizontal light receiving tube is larger than the radius of the first vertical light receiving tube and the second vertical light receiving tube.
 第5の態様のレベリングシステムでは、第1~3のいずれかの態様において、前記水平受光管の数が、高さ方向に増設されるのも好ましい。 In the fifth aspect of the leveling system, in any of the first to third aspects, it is also preferable that the number of horizontal light receiving tubes is increased in the height direction.
 また、第6の態様のレーザ受光器は、測定基準点から所定の高さで水平に出射されるレーザ光を測定点で受光するレーザ受光器であって、前記レーザ受光器は、受光センサとして,柱状の導光体,前記導光体の両端部に配置された受光部,前記レーザ光を前記導光体の前記両端部に向かって分割する光結合層,を備え、H型に配置された、第1の鉛直受光管、第2の鉛直受光管、および水平受光管と、前記受光部に接続された演算処理部を備え、前記演算処理部は、前記受光部の各受光信号から前記レーザ光の衝突位置を特定し、前記衝突位置の前記中央位置からの差分距離と、前記差分距離が前記導光体の長さの中央位置を境にプラス側とマイナス側のどちらにあるかを検出し、前記第1の鉛直受光管、前記第2の鉛直受光管、および前記水平受光管の前記差分距離のプラス/マイナスの組み合わせに応じて、前記測定点の前記測定基準点に対する高低差を測定するのも好ましい。 The sixth aspect of the laser receiver is a laser receiver that receives at a measurement point a laser beam emitted horizontally at a predetermined height from a measurement reference point, and the laser receiver includes a columnar light guide, light receiving sections arranged at both ends of the light guide, and an optical coupling layer that divides the laser beam toward both ends of the light guide, as a light receiving sensor. The laser receiver includes a first vertical light receiving tube, a second vertical light receiving tube, and a horizontal light receiving tube arranged in an H shape, and a calculation processing section connected to the light receiving sections. The calculation processing section identifies the collision position of the laser beam from each light receiving signal of the light receiving sections, detects the difference distance from the center position of the collision position and whether the difference distance is on the positive or negative side of the center position of the length of the light guide, and preferably measures the difference in height of the measurement point relative to the measurement reference point according to the positive/negative combination of the difference distance of the first vertical light receiving tube, the second vertical light receiving tube, and the horizontal light receiving tube.
 本発明によれば、レベリングのためのレーザ受光器において、ボールねじ直動機構やチルトセンサを使用せずに、測定点の高低差を測定することができる。 According to the present invention, the height difference between measurement points can be measured in a laser receiver for leveling without using a ball screw linear motion mechanism or tilt sensor.
本発明の実施の形態に係るレベリングシステムの外観斜視図である。1 is an external perspective view of a leveling system according to an embodiment of the present invention. 同レベリングシステムの受光器の正面斜視図である。FIG. 2 is a front perspective view of a receiver of the leveling system. 同レベリングシステムの受光器の受光センサを説明する図である。4 is a diagram illustrating a light receiving sensor of a light receiver of the leveling system. FIG. 同レベリングシステムの受光器に傾きが無い場合の、高さの変化の検出を説明する図である。13A to 13C are diagrams illustrating detection of a change in height when the light receiver of the leveling system is not tilted. 同レベリングシステムの受光器による左右への傾きの変化の検出を説明する図である。10A to 10C are diagrams illustrating detection of changes in left and right tilt by a light receiver of the leveling system. 同レベリングシステムの左右傾斜検出テーブルの例である。3 is an example of a left/right tilt detection table for the leveling system. 同レベリングシステムの受光器に傾きが有る場合の、高さの変化の検出を説明する図である。13A to 13C are diagrams illustrating detection of a change in height when the light receiver of the leveling system is tilted. 同レベリングシステムの構成ブロック図である。FIG. 2 is a configuration block diagram of the leveling system. 同レベリングシステムの変形例に係る受光器の正面斜視図である。FIG. 11 is a front perspective view of a receiver according to a modified example of the leveling system.
 次に、本発明の好適な実施の形態について、図面を参照して説明する。以下の実施の形態の説明において、同種の構成には同一の名称を付して、重複する説明は適宜省略する。 Next, a preferred embodiment of the present invention will be described with reference to the drawings. In the following description of the embodiment, the same names will be used for similar configurations, and duplicate descriptions will be omitted as appropriate.
 図1は本発明の実施の形態に係るレベリングシステム1の外観斜視図、図2は受光器20の正面斜視図である。レベリングシステム1は、回転レーザ装置10と、レーザ受光器(以下、単に受光器と言う。)20を備える。 FIG. 1 is an external perspective view of a leveling system 1 according to an embodiment of the present invention, and FIG. 2 is a front perspective view of a receiver 20. The leveling system 1 includes a rotary laser device 10 and a laser receiver (hereinafter simply referred to as the receiver) 20.
 回転レーザ装置10は、発光ダイオード(LED)、半導体レーザ(LD)、またはSLED(Super Luminescent Diode)などのレーザ光源を備えた回転ヘッド11を備えている。回転レーザ装置10は、地面上の一測定基準点RPに整準台を介して立設され、回転ヘッド11を回転させて、測定基準点RPからレベリングに用いる高さHとなる水平基準面12を旋回するように、レーザ光Bを回転させる。回転ヘッド11は、レーザ光Bとして、所定周波数に強度変調されたパルス光を出射する。受光器20は、図1に示すように、測定点Xの直上に、ハンドル22によって作業者Wに支持される。または、測定点Xに立てられたポールまたは標尺などの支持部材に既知の固定具を使用して支持されてもよい。 The rotary laser device 10 has a rotary head 11 equipped with a laser light source such as a light emitting diode (LED), a semiconductor laser (LD), or an SLED (Super Luminescent Diode). The rotary laser device 10 is erected on a measurement reference point RP on the ground via a leveling stand, and the rotary head 11 is rotated to rotate the laser light B so as to revolve around a horizontal reference plane 12 that is at a height H used for leveling from the measurement reference point RP. The rotary head 11 emits pulsed light that is intensity modulated to a predetermined frequency as the laser light B. The receiver 20 is supported by an operator W by a handle 22 directly above the measurement point X, as shown in FIG. 1. Alternatively, it may be supported by a known fixture on a support member such as a pole or a staff erected at the measurement point X.
 受光器20は、図2に示すように、ケース21と、ハンドル22と、第1の鉛直受光管23と、水平受光管24と、第2の鉛直受光管25と、表示部26と、操作部27と、発光インジケータ28を備える。第1の鉛直受光管23,水平受光管24,第2の鉛直受光管25,表示部26,および操作部27は、ケース21の前面に配置されている。発光インジケータ28は、ケース21の上面など作業者Wに視認されやすい位置に配置されている。ハンドル22は、ケース21の後面に左右一対に配置されている(図2では正面視左のハンドルは見えない状態となっている)。第1の鉛直受光管23、水平受光管24、および第2の鉛直受光管25が、受光器20の受光センサである。表示部26および操作部27は、上記の受光センサの余白に配置されている。 As shown in FIG. 2, the receiver 20 includes a case 21, a handle 22, a first vertical receiver tube 23, a horizontal receiver tube 24, a second vertical receiver tube 25, a display unit 26, an operation unit 27, and a light-emitting indicator 28. The first vertical receiver tube 23, the horizontal receiver tube 24, the second vertical receiver tube 25, the display unit 26, and the operation unit 27 are arranged on the front of the case 21. The light-emitting indicator 28 is arranged in a position that is easily visible to the operator W, such as on the top surface of the case 21. The handles 22 are arranged in a pair on the left and right on the rear surface of the case 21 (the left handle cannot be seen when viewed from the front in FIG. 2). The first vertical receiver tube 23, the horizontal receiver tube 24, and the second vertical receiver tube 25 are the light-receiving sensors of the receiver 20. The display unit 26 and the operation unit 27 are arranged in the margins of the above-mentioned light-receiving sensors.
 受光器20は、受光センサである第1の鉛直受光管23、水平受光管24、および第2の鉛直受光管25を、「H」型に備える。詳細には、図2に示すように、第1の鉛直受光管23および第2の鉛直受光管25のそれぞれの長さLの中央位置Mに水平受光管24の中心軸が合わされ、受光器中心Cが水平受光管24の長さLの中央位置Mになるように、「H」型に配置されている。第1の鉛直受光管23および第2の鉛直受光管25の中央位置M、水平受光管24の中央位置M、および水平受光管24にある受光器中心Cの位置は、予め計測し既知の数値として、後述する記憶部33に記憶されている。 The receiver 20 is equipped with a first vertical receiver tube 23, a horizontal receiver tube 24, and a second vertical receiver tube 25, which are light receiving sensors, arranged in an "H" shape. In detail, as shown in FIG. 2, the central axis of the horizontal receiver tube 24 is aligned with the central position M of the length L of each of the first vertical receiver tube 23 and the second vertical receiver tube 25, and they are arranged in an "H" shape so that the receiver center C is at the central position M of the length L of the horizontal receiver tube 24. The central position M of the first vertical receiver tube 23 and the second vertical receiver tube 25, the central position M of the horizontal receiver tube 24, and the position of the receiver center C in the horizontal receiver tube 24 are measured in advance and stored as known values in a memory unit 33 described later.
 第1の鉛直受光管23および第2の鉛直受光管25は軸方向を鉛直方向に配置したもので、水平受光管24は軸方向を水平方向に配置したものであって、全て同一の構成であるため、第1の鉛直受光管23を用いて受光センサの構成を説明する。図3は受光器20の受光センサ(第1の鉛直受光管23)を説明する図であり、第1の鉛直受光管23の側面を表した図である。図3において、左がケース21の前面であり、レーザ光Bを受光する側である。 The first vertical light receiving tube 23 and the second vertical light receiving tube 25 are arranged with their axial direction vertical, while the horizontal light receiving tube 24 is arranged with their axial direction horizontal, and all have the same configuration, so the configuration of the light receiving sensor will be explained using the first vertical light receiving tube 23. Figure 3 is a diagram explaining the light receiving sensor (first vertical light receiving tube 23) of the receiver 20, and is a diagram showing the side of the first vertical light receiving tube 23. In Figure 3, the left is the front of the case 21, which is the side that receives the laser light B.
 第1の鉛直受光管23は、柱状の導光体231と、導光体231の一方の端部に配置された受光部232と、他方の端部に配置された受光部233を備える。受光部232,233は、フォトダイオード、アバランシェフォトダイオード(APD)、または同等の光電変換素子である。受光部232,233が検出した各受光信号は、後述する演算処理部31にて処理される。導光体231は、レーザ光Bを体内で導光すれば材料は限定されないが、例えば透明なガラスや石英、またはアクリルやポリカーボネイトなどの樹脂である。導光体231は、軸方向に規定の長さLを備える、円柱、楕円柱、または全反射による導光が可能な柱状に形成される。導光体231には、光結合層234が形成される(横断面図を参照)。光結合層234は、光の回折、屈折、散乱、反射、分散、および/または蛍光の原理を使用して、レーザ光Bを導光体231に結合する(導光体外にレーザ光を反射せず、導光体内にレーザ光を入射させる)。光結合層234は、例えば蛍光粒子を溶液に分散させた塗料を導光体231の表面に塗布するか、または、蛍光粒子を含有する樹脂層を導光体231の表面に設けることで、形成される。 The first vertical light receiving tube 23 includes a cylindrical light guide 231, a light receiving section 232 arranged at one end of the light guide 231, and a light receiving section 233 arranged at the other end. The light receiving sections 232 and 233 are photodiodes, avalanche photodiodes (APDs), or equivalent photoelectric conversion elements. The light receiving signals detected by the light receiving sections 232 and 233 are processed by the calculation processing section 31 described later. The material of the light guide 231 is not limited as long as it guides the laser light B inside the body, but it is, for example, transparent glass or quartz, or a resin such as acrylic or polycarbonate. The light guide 231 is formed in a cylindrical shape, an elliptical cylinder, or a cylinder capable of guiding light by total reflection, with a specified length L in the axial direction. An optical coupling layer 234 is formed on the light guide 231 (see cross-sectional view). The optical coupling layer 234 couples the laser light B to the light guide 231 using the principles of light diffraction, refraction, scattering, reflection, dispersion, and/or fluorescence (the laser light is not reflected outside the light guide, but is incident on the light guide). The optical coupling layer 234 is formed, for example, by applying a paint having fluorescent particles dispersed in a solution to the surface of the light guide 231, or by providing a resin layer containing fluorescent particles on the surface of the light guide 231.
 図3に示すように、レーザ光Bが導光体231に衝突すると、衝突位置235において、レーザ光Bは、光結合層234によって導光体231内に結合されるとともに、一方の受光部232へ向かうレーザ光B1と、反対方向にある他方の受光部233へ向かうレーザ光B2に分割される。衝突位置235が導光体231の軸方向の中央位置Mであれば、レーザ光B1が導光した距離L1とレーザ光B2が導光した距離L2は同じであるため、受光部232、233の受光信号の波形は一致する。しかしながら、衝突位置235が導光体231の中央位置Mからずれると、レーザ光B1,B2が導光した距離L1,L2は異なるため、受光部232、233の受光信号の波形にズレが生じる。例えば図3では、衝突位置235は導光体231の中央位置Mより上で、距離L1が距離L2より短いため、受光部232の受光信号に対して受光部233の受光信号に遅れが生じる。演算処理部31では、これらの受光信号の時間差または位相差と、規定の長さLと、導光体231の光伝番速度から、距離L1およびL2を算出して、衝突位置235を特定する。また、衝突位置235は中央位置Mを境にしたどちら側にあるかと、衝突位置235の中央位置Mからの差分距離Dを、規定の長さLと、距離L1またはL2から算出する。例えば図3であれば、L/2-L1またはL2-L/2からDを求める。 3, when laser light B collides with light guide 231, at collision position 235, laser light B is coupled into light guide 231 by optical coupling layer 234 and split into laser light B1 traveling toward one light receiving section 232 and laser light B2 traveling toward the other light receiving section 233 in the opposite direction. If collision position 235 is the central position M of light guide 231 in the axial direction, distance L1 guided by laser light B1 and distance L2 guided by laser light B2 are the same, so the waveforms of the light receiving signals of light receiving sections 232 and 233 match. However, if collision position 235 is shifted from central position M of light guide 231, distances L1 and L2 guided by laser light B1 and B2 are different, so a shift occurs in the waveforms of the light receiving signals of light receiving sections 232 and 233. For example, in FIG. 3, the collision position 235 is above the center position M of the light guide 231, and because the distance L1 is shorter than the distance L2, a delay occurs in the light receiving signal of the light receiving unit 233 relative to the light receiving signal of the light receiving unit 232. The calculation processing unit 31 calculates the distances L1 and L2 from the time difference or phase difference between these light receiving signals, the specified length L, and the light transmission speed of the light guide 231 to identify the collision position 235. In addition, the calculation unit 31 calculates which side of the center position M the collision position 235 is on and the differential distance D from the center position M of the collision position 235 from the specified length L and the distance L1 or L2. For example, in FIG. 3, D is calculated from L/2-L1 or L2-L/2.
 図4は受光器20に傾きが無い場合の、高さの変化の検出を説明する図である。受光器20に傾きが無い場合、図4の(1)に示すように、受光器中心Cの高さがレーザ光Bより上になった場合、第1の鉛直受光管23、第2の鉛直受光管25ともに、衝突位置235が中央位置Mより下にずれ、それぞれの受光部232,233、受光部252,253での受光信号にズレが生じ、中央位置Mに対して下の受光部233(253)側にマイナスの差分距離D23,D25が検出される。図4の(2)に示すように、受光器中心Cの高さがレーザ光Bより下になった場合、第1の鉛直受光管23、第2の鉛直受光管25ともに、衝突位置235が中央位置Mより上にずれ、中央位置Mに対して上の受光部232(252)側にプラスの差分距離D23,D25が検出される。 FIG. 4 is a diagram for explaining the detection of height changes when the receiver 20 is not tilted. When the receiver 20 is not tilted, as shown in FIG. 4(1), when the height of the receiver center C is above the laser light B, the collision position 235 of both the first vertical receiver tube 23 and the second vertical receiver tube 25 shifts below the center position M, causing a shift in the light receiving signals at the respective light receiving units 232, 233 and light receiving units 252, 253, and negative differential distances D23, D25 are detected on the lower light receiving unit 233 (253) side relative to the center position M. As shown in FIG. 4(2), when the height of the receiver center C is below the laser light B, the collision position 235 of both the first vertical receiver tube 23 and the second vertical receiver tube 25 shifts above the center position M, and positive differential distances D23, D25 are detected on the upper light receiving unit 232 (252) side relative to the center position M.
 すなわち、第1の鉛直受光管23、第2の鉛直受光管25の差分距離D23,D25が同じ値で、ともにマイナス値の場合は、レーザ光Bの高さHを基準にして、受光器20(の受光器中心C)の高さが差分距離D23(D25)だけ上に移動しているので、測定点Xが測定基準点RPに対してD23(D25)と同量の差分距離Dだけ高くなったことが分かる。第1の鉛直受光管23、第2の鉛直受光管25の差分距離D23,D25が同じ値で、ともにプラス値の場合は、受光器20(の受光器中心C)の高さが差分距離D23(D25)だけ下に移動しているので、測定点Xも、測定基準点RPに対してD23(D25)と同量のDだけ低くなったことが分かる。 In other words, when the differential distances D23, D25 of the first vertical light receiving tube 23 and the second vertical light receiving tube 25 are the same and both are negative values, the height of the light receiving device 20 (center C of the light receiving device) has moved upward by the differential distance D23 (D25) based on the height H of the laser light B, and it can be seen that the measurement point X has become higher by the differential distance D, which is the same amount as D23 (D25), relative to the measurement reference point RP. When the differential distances D23, D25 of the first vertical light receiving tube 23 and the second vertical light receiving tube 25 are the same and both are positive values, the height of the light receiving device 20 (center C of the light receiving device) has moved downward by the differential distance D23 (D25), and it can be seen that the measurement point X has also become lower by the same amount D as D23 (D25) relative to the measurement reference point RP.
 図5~図7は受光器20に傾きが有る場合の、高さの変化の検出を説明する図である。まず、図5は受光器20による左右への傾きの変化の検出を説明する図である。図5の(1)に示すように受光器20が左へ傾いた場合、第1の鉛直受光管23では衝突位置235が中央位置Mより上にずれ、中央位置Mに対して上の受光部232側にプラスの差分距離D23が検出され、第2の鉛直受光管25では衝突位置235が中央位置Mより下にずれ、中央位置Mに対して下の受光部253側にマイナスの差分距離D25が検出される。図5の(2)に示すように受光器20が右へ傾いた場合、第1の鉛直受光管23では衝突位置235が中央位置Mより下にずれ、中央位置Mに対して下の受光部233側にマイナスの差分距離D23が検出され、第2の鉛直受光管25では衝突位置235が中央位置Mより上にずれ、中央位置Mに対して中央位置Mに対して上の受光部252側にプラスプラスの差分距離D25が検出される。 Figures 5 to 7 are diagrams explaining the detection of height changes when the receiver 20 is tilted. First, Figure 5 is a diagram explaining the detection of left/right tilt changes by the receiver 20. When the receiver 20 is tilted to the left as shown in Figure 5 (1), the collision position 235 in the first vertical receiver tube 23 shifts above the center position M, and a positive difference distance D23 is detected on the upper receiver 232 side relative to the center position M, while the collision position 235 in the second vertical receiver tube 25 shifts below the center position M, and a negative difference distance D25 is detected on the lower receiver 253 side relative to the center position M. As shown in FIG. 5 (2), when the light receiver 20 is tilted to the right, the collision position 235 in the first vertical light receiver tube 23 shifts downward from the center position M, and a negative differential distance D23 is detected toward the light receiver 233 below the center position M, while the collision position 235 in the second vertical light receiver tube 25 shifts upward from the center position M, and a positive differential distance D25 is detected toward the light receiver 252 above the center position M.
 すなわち、第1の鉛直受光管23の差分距離D23がプラス値、第2の鉛直受光管25の差分距離D25がマイナス値の場合は、受光器20は左に傾いていると分かる。第1の鉛直受光管23の差分距離D23がマイナス値、第2の鉛直受光管25の差分距離D25がプラス値の場合は、受光器20は右に傾いていること分かる。 In other words, if the difference distance D23 of the first vertical light receiving tube 23 is a positive value and the difference distance D25 of the second vertical light receiving tube 25 is a negative value, it is understood that the light receiver 20 is tilted to the left. If the difference distance D23 of the first vertical light receiving tube 23 is a negative value and the difference distance D25 of the second vertical light receiving tube 25 is a positive value, it is understood that the light receiver 20 is tilted to the right.
 このとき、差分距離D23(D25)は、左右傾斜が大きくなるほど長くなり、差分距離D23(D25)と傾斜角δの値は一対一対応することが分かる。このため、差分距離D23(D25)と左右の傾斜角δの対応関係を記憶した左右傾斜検出テーブル342を作成しておくことで、左右の傾斜角δは、差分距離の値に応じて算出することができる。図6は分解能0.5mm単位とした場合の左右傾斜検出テーブル342を例示している。左右傾斜検出テーブル342では、鉛直受光管23(25)の中央位置Mを0[mm]とし、中央位置Mを境に上の受光部232(252)側で検出された差分距離D23(D25)をプラス、中央位置Mを境に下の受光部233(253)側で検出された差分距離D23(D25)をマイナスとし、各差分距離D23(D25)に対応する傾斜角δが記憶されている。 In this case, the difference distance D23 (D25) becomes longer as the left-right tilt increases, and it can be seen that the difference distance D23 (D25) and the tilt angle δ have a one-to-one correspondence. Therefore, by creating a left-right tilt detection table 342 that stores the correspondence between the difference distance D23 (D25) and the left-right tilt angle δ, the left-right tilt angle δ can be calculated according to the value of the difference distance. FIG. 6 shows an example of the left-right tilt detection table 342 when the resolution is set to 0.5 mm units. In the left-right tilt detection table 342, the center position M of the vertical light receiving tube 23 (25) is set to 0 [mm], the difference distance D23 (D25) detected on the upper light receiving unit 232 (252) side with respect to the center position M as a positive value, and the difference distance D23 (D25) detected on the lower light receiving unit 233 (253) side with respect to the center position M as a negative value, and the tilt angle δ corresponding to each difference distance D23 (D25) is stored.
 以上により左右の傾斜角δが分かると、受光器20に傾きが有る場合の、高さの変化の検出ができる。図7は受光器20に傾きが有る場合の、高さの変化の検出を説明する図である。受光器20が左右に傾いた状態で、受光器20の高さが変わった場合は、水平受光管24のレーザ光Bの衝突位置235が中央位置Mからずれ、水平受光管24の受光部242,243での受光信号にズレが生じ、中央位置Mからの差分距離D24が検出される。受光器中心Cの高さ変化hは、三角関数を用いて数式1から求められる。 By knowing the left and right tilt angle δ from the above, it is possible to detect the change in height when the receiver 20 is tilted. Figure 7 is a diagram explaining the detection of the change in height when the receiver 20 is tilted. If the height of the receiver 20 changes while the receiver 20 is tilted left or right, the collision position 235 of the laser light B on the horizontal receiver tube 24 shifts from the central position M, causing a shift in the received light signals at the light receiving sections 242, 243 of the horizontal receiver tube 24, and the differential distance D24 from the central position M is detected. The change in height h of the receiver center C can be found from Equation 1 using trigonometric functions.
但し、 h:高さ変化
    D:水平受光管が検出した差分距離
    δ:レーザ受光器の左右方向の傾斜角
where h is the change in height, D is the difference in distance detected by the horizontal receiver, and δ is the inclination angle of the laser receiver in the left-right direction.
 さらに、水平受光管24の中央位置Mを境に左の受光部242側をマイナス、右の受光部243側をプラスとすると、図7の(1)に示すように、受光器20が左に傾き、衝突位置235が受光器中心Cより上にずれた場合、受光部243側に差分距離D24はプラスの値が出る。図7の(2)に示すように、受光器20が左に傾き、衝突位置235が受光器中心Cより下にずれた場合、受光部242側に差分距離D24はマイナスの値が出る。図7の(3)に示すように、受光器20が、右に傾き、衝突位置235が受光器中心Cより上にずれた場合、受光部242側に差分距離D24はマイナスの値が出る。図7の(4)に示すように、受光器20が、右に傾き、衝突位置235が受光器中心Cより下にずれた場合、受光部243側に差分距離D24はプラスの値が出る。 Furthermore, if the left light receiving unit 242 side is negative and the right light receiving unit 243 side is positive with respect to the center position M of the horizontal light receiving tube 24, when the light receiving unit 20 is tilted to the left and the collision position 235 is shifted above the center C of the light receiving unit, as shown in FIG. 7 (1), the differential distance D24 will have a positive value on the light receiving unit 243 side. When the light receiving unit 20 is tilted to the left and the collision position 235 is shifted below the center C of the light receiving unit, as shown in FIG. 7 (2), the differential distance D24 will have a negative value on the light receiving unit 242 side. When the light receiving unit 20 is tilted to the right and the collision position 235 is shifted above the center C of the light receiving unit, as shown in FIG. 7 (3), the differential distance D24 will have a negative value on the light receiving unit 242 side. As shown in FIG. 7 (4), if the receiver 20 is tilted to the right and the collision position 235 is shifted below the receiver center C, the differential distance D24 will be a positive value on the receiver 243 side.
 すなわち、左への傾きか右への傾きかは第1の鉛直受光管23および第2の鉛直受光管25の差分距離のプラスマイナスから検出できるから、図7の(1):左へ傾き水平受光管24でプラスの差分距離D24が出た時および図7の(3):右へ傾き水平受光管24でマイナスの差分距離D24が出た時は、レーザ光Bの高さHを基準にして、受光器20(の受光器中心C)の高さが、数式1で求まる高さ変化hだけ下に移動しているので、測定点Xも測定基準点RPに対して高さ変化hだけ低くなったことが分かる。図7の(2):左へ傾き水平受光管24でマイナスの差分距離D24が出た時および図7の(4):右へ傾き水平受光管24でプラスの差分距離D24が出た時、レーザ光Bの高さHを基準にして、受光器20(の受光器中心C)の高さが、数式1で求まる高さ変化hだけ上に移動しているので、測定点Xも測定基準点RPに対して高さ変化hだけ高くなったことが分かる。 In other words, whether the tilt is to the left or right can be detected from the positive or negative differential distance of the first vertical light receiving tube 23 and the second vertical light receiving tube 25. Therefore, in Figure 7 (1): when a positive differential distance D24 is obtained from the horizontal light receiving tube 24 tilted to the left, and in Figure 7 (3): when a negative differential distance D24 is obtained from the horizontal light receiving tube 24 tilted to the right, it can be seen that the height of the light receiving device 20 (its center C of the light receiving device) has moved downward by the height change h calculated by equation 1 based on the height H of the laser light B, and therefore the measurement point X has also become lower by the height change h relative to the measurement reference point RP. In Figure 7 (2): when a negative differential distance D24 is obtained with the horizontal light receiving tube 24 tilted to the left, and in Figure 7 (4): when a positive differential distance D24 is obtained with the horizontal light receiving tube 24 tilted to the right, the height of the light receiving device 20 (the center C of the light receiving device) has moved upward by the height change h calculated by Equation 1, based on the height H of the laser light B, so it can be seen that the measurement point X has also become higher by the height change h relative to the measurement reference point RP.
 以上を踏まえて、図8はレベリングシステム1の構成ブロック図である。回転レーザ装置10は、前述の通り、レーザ光Bを出射する回転ヘッド11を備える。受光器20は、演算処理部31と、ブザー32と、記憶部33と、受光部(第1の鉛直受光管23のもの)232,233と、受光部(第2の鉛直受光管25のもの)252,253と、受光部(水平受光管24のもの)242,243と、表示部26と、操作部27と、発光インジケータ28を備える。 With the above in mind, FIG. 8 is a block diagram of the leveling system 1. As described above, the rotary laser device 10 is equipped with a rotary head 11 that emits laser light B. The receiver 20 is equipped with an arithmetic processing unit 31, a buzzer 32, a memory unit 33, light receiving units (of the first vertical light receiving tube 23) 232, 233, light receiving units (of the second vertical light receiving tube 25) 252, 253, light receiving units (of the horizontal light receiving tube 24) 242, 243, a display unit 26, an operation unit 27, and a light emitting indicator 28.
 表示部26は液晶または有機ELディスプレイであり、傾斜検知および高さ変化検知の表示をする。操作部27はボタンやスイッチであり、傾斜検知および高さ変化検知の際の操作が行える。受光部232,233(第1の鉛直受光管23のもの)、受光部252,253(第2の鉛直受光管25のもの)および受光部242,243(水平受光管のもの)は前述の通りであり、それぞれ、受光信号を演算処理部31に送る。 The display unit 26 is a liquid crystal or organic EL display that displays tilt detection and height change detection. The operation unit 27 is a button or switch that can be used to perform operations for tilt detection and height change detection. The light receiving units 232, 233 (of the first vertical light receiving tube 23), the light receiving units 252, 253 (of the second vertical light receiving tube 25), and the light receiving units 242, 243 (of the horizontal light receiving tube) are as described above, and each sends a light receiving signal to the calculation processing unit 31.
 発光インジケータ28およびブザー32は、演算処理部31(後述する位置合わせ部311)に制御されて、点滅発光および/または信号音を鳴らし、回転レーザ装置10と受光器20の位置合わせを行うよう誘導する。 The light-emitting indicator 28 and the buzzer 32 are controlled by the calculation processing unit 31 (the alignment unit 311 described later) to flash and/or emit a signal sound to guide the user to align the rotary laser device 10 and the receiver 20.
 記憶部33は、主記憶装置としてのRAM、ROM、補助記憶装置としてのHDD(Hard・Disc・Drive)等を含むものである。記憶部33は、演算処理部31の行う各処理プログラムを格納している。 The storage unit 33 includes RAM and ROM as main storage devices, and a HDD (Hard Disc Drive) as an auxiliary storage device. The storage unit 33 stores the various processing programs executed by the arithmetic processing unit 31.
 演算処理部31は、少なくともCPU(Central Processing Unit)およびメモリ(RAM(Random・Access・Memory),ROM(Read・Only・Memory)等)を集積回路に実装した集積回路、集積回路の集合、マイクロコントローラ、マイクロプロセッサを含むものである。 The arithmetic processing unit 31 includes an integrated circuit in which at least a CPU (Central Processing Unit) and memory (RAM (Random Access Memory), ROM (Read Only Memory), etc.) are implemented in an integrated circuit, a collection of integrated circuits, a microcontroller, or a microprocessor.
 演算処理部31は、位置合わせ部311と傾斜・高さ変化検出部312の機能部を備える。各機能部は、CPU、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)などのPLD(Programmable Logic Device)などの電子回路により構成される。 The calculation processing unit 31 has the functional units of an alignment unit 311 and a tilt/height change detection unit 312. Each functional unit is composed of electronic circuits such as a CPU, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device) such as an FPGA (Field Programmable Gate Array), etc.
 傾斜・高さ変化検出部312は、第1の鉛直受光管23、水平受光管24、第2の鉛直受光管25のそれぞれの受光部232.233,242,243,252,253から受光信号を受け取り、それぞれの差分距離D23,D24,D25を、プラス値かマイナス値かも含めて検出して、測定点Xの高低差を測定する。 The tilt/height change detection unit 312 receives light receiving signals from the light receiving sections 232, 233, 242, 243, 252, and 253 of the first vertical light receiving tube 23, horizontal light receiving tube 24, and second vertical light receiving tube 25, respectively, and detects the respective difference distances D23, D24, and D25, including whether they are positive or negative values, to measure the difference in elevation at measurement point X.
 傾斜・高さ変化検出部312は、図4の(1)で説明した通り、第1の鉛直受光管23、第2の鉛直受光管25の差分距離D23,D25が同じ値でともにマイナス値の場合、測定点Xは測定基準点RPに対して差分距離Dだけ高くなったことを検出する(検出パターン4の1)。図4の(2)で説明した通り、第1の鉛直受光管23、第2の鉛直受光管25の差分距離D23,D25が同じ値でともにプラス値の場合は、測定点Xは測定基準点RPに対して差分距離Dだけ低くなったことを検出する(検出パターン4の2)。 As explained in FIG. 4(1), when the differential distances D23, D25 of the first vertical light receiving tube 23 and the second vertical light receiving tube 25 are the same and both are negative values, the tilt/height change detection unit 312 detects that the measurement point X has become higher by the differential distance D relative to the measurement reference point RP (detection pattern 4-1). As explained in FIG. 4(2), when the differential distances D23, D25 of the first vertical light receiving tube 23 and the second vertical light receiving tube 25 are the same and both are positive values, the tilt/height change detection unit 312 detects that the measurement point X has become lower by the differential distance D relative to the measurement reference point RP (detection pattern 4-2).
 傾斜・高さ変化検出部312は、図7の(1)で説明した通り、第1の鉛直受光管23の差分距離D23がプラス値、第2の鉛直受光管25の差分距離D25がマイナス値、水平受光管24の差分距離D24がプラスの値の場合、受光器20は左に傾いており、測定点Xは測定基準点RPに対して高さ変化hだけ低くなったことを検出する(検出パターン7の1)。図7の(2)で説明した通り、第1の鉛直受光管23の差分距離D23がプラス値、第2の鉛直受光管25の差分距離D25がマイナス値、水平受光管24の差分距離D24がマイナス値の場合、受光器20は左に傾いており、測定点Xは測定基準点RPに対して高さ変化hだけ高くなったことを検出する(検出パターン7の2)。図7の(3)で説明した通り、第1の鉛直受光管23の差分距離D23がマイナス値、第2の鉛直受光管25の差分距離D25がプラス値、水平受光管24の差分距離D24がマイナスの値の場合、受光器20は右に傾いており、測定点Xは測定基準点RPに対して高さ変化hだけ低くなったことを検出する(検出パターン7の3)。図7の(4)で説明した通り、第1の鉛直受光管23の差分距離D23がマイナス値、第2の鉛直受光管25の差分距離D25がプラス値、水平受光管24の差分距離D24がプラス値の場合、受光器20は右に傾いており、測定点Xは測定基準点RPに対して高さ変化hだけ高くなったことを検出する(検出パターン7の4)。 7(1), when the differential distance D23 of the first vertical light receiving tube 23 is a positive value, the differential distance D25 of the second vertical light receiving tube 25 is a negative value, and the differential distance D24 of the horizontal light receiving tube 24 is a positive value, the tilt/height change detection unit 312 detects that the light receiver 20 is tilted to the left and the measurement point X has become lower by the height change h relative to the measurement reference point RP (detection pattern 7-1). As explained in FIG. 7(2), when the differential distance D23 of the first vertical light receiving tube 23 is a positive value, the differential distance D25 of the second vertical light receiving tube 25 is a negative value, and the differential distance D24 of the horizontal light receiving tube 24 is a negative value, the tilt/height change detection unit 312 detects that the light receiver 20 is tilted to the left and the measurement point X has become higher by the height change h relative to the measurement reference point RP (detection pattern 7-2). As explained in (3) of FIG. 7, when the difference distance D23 of the first vertical light receiving tube 23 is a negative value, the difference distance D25 of the second vertical light receiving tube 25 is a positive value, and the difference distance D24 of the horizontal light receiving tube 24 is a negative value, the light receiver 20 is tilted to the right, and the measurement point X is detected to be lower than the measurement reference point RP by the height change h (detection pattern 7-3). As explained in (4) of FIG. 7, when the difference distance D23 of the first vertical light receiving tube 23 is a negative value, the difference distance D25 of the second vertical light receiving tube 25 is a positive value, and the difference distance D24 of the horizontal light receiving tube 24 is a positive value, the light receiver 20 is tilted to the right, and the measurement point X is detected to be higher than the measurement reference point RP by the height change h (detection pattern 7-4).
 位置合わせ部311は、傾斜・高さ変化検出部312が上記の検出を行えるように、高低差の測定開始時に、回転レーザ装置10の直近に受光器20を配置して、回転レーザ装置10と受光器20の位置合わせを、すなわちレーザ光Bと受光器中心Cの位置合わせを行う。作業者Wは、図示しない水平気泡管などをガイドに受光器20を直立水平に保ち、操作部27から位置合わせを指示する。位置合わせ部311は、レーザ光Bが受光器中心Cに衝突しない場合、表示部26に受光器中心Cとの差(鉛直方向の差は鉛直受光管23,水平方向の差は水平受光管24で検出できる)を矢印などを用いて測定が可能な範囲に上下・左右に誘導し、また、発光インジケータ28を点滅および/またはブザー32の信号音を鳴らし、作業者Wに通知する。 The alignment unit 311 aligns the rotary laser device 10 and the receiver 20, i.e., aligns the laser light B and the receiver center C, by placing the receiver 20 close to the rotary laser device 10 when starting to measure the height difference so that the tilt/height change detection unit 312 can perform the above detection. The operator W holds the receiver 20 upright and horizontally using a horizontal bubble tube (not shown) as a guide, and issues an instruction for alignment from the operation unit 27. If the laser light B does not collide with the receiver center C, the alignment unit 311 guides the difference from the receiver center C (the difference in the vertical direction can be detected by the vertical receiver tube 23, and the difference in the horizontal direction can be detected by the horizontal receiver tube 24) up, down, left and right on the display unit 26 using arrows or the like to the range where measurement is possible, and also notifies the operator W by flashing the light-emitting indicator 28 and/or sounding a signal from the buzzer 32.
 位置合わせ後、位置合わせ部311は、傾斜・高さ変化検出部312が上記の検出パターン7の1~検出パターン7の4を行えるように、水平受光管24の受光部242,243から受光信号が届いているかを常に検出する。受光信号が届かない場合は、上記の検出パターン7の1~検出パターン7の4を行えないので、発光インジケータ28を点滅および/またはブザー32の信号音を鳴らす。 After alignment, the alignment unit 311 constantly detects whether a light reception signal is received from the light receiving units 242, 243 of the horizontal light receiving tube 24 so that the tilt/height change detection unit 312 can perform the above detection pattern 7-1 to detection pattern 7-4. If a light reception signal is not received, the above detection pattern 7-1 to detection pattern 7-4 cannot be performed, so the light emitting indicator 28 flashes and/or the buzzer 32 sounds a signal.
 以上、本形態のレベリングシステム1によれば、受光器20が、受光センサとして、一対の第1の鉛直受光管23および第2の鉛直受光管25と水平受光管24をH型に備えているから、それぞれの受光信号のプラス/マイナスの検出パターンを見て、受光器20に傾きが有るか無いか判別することができるとともに、それぞれの検出パターンに応じて、正確な高低差を測定することができる。 As described above, according to this embodiment of the leveling system 1, the receiver 20 is equipped with a pair of first vertical receiver tubes 23 and second vertical receiver tubes 25 and a horizontal receiver tube 24 arranged in an H-shape as light receiving sensors, so that by looking at the positive/negative detection patterns of each received light signal, it is possible to determine whether or not the receiver 20 is tilted, and an accurate height difference can be measured according to each detection pattern.
 なお、本形態の好ましい変形例として、傾斜・高さ変化検出部312は、左の傾斜か右の傾斜かを判別することができるから、表示部26、ブザー32、発光インジケータ28のいずれかまたは組み合わせにより、作業者Wに傾き方向を通知するのも好ましい。この場合、先の位置合わせとは、信号音、点灯色、または点滅パターンが変更されるのも好ましい。 In addition, as a preferred modification of this embodiment, since the tilt/height change detection unit 312 can determine whether the tilt is to the left or right, it is also preferred to notify the worker W of the tilt direction by using any one or a combination of the display unit 26, buzzer 32, and light-emitting indicator 28. In this case, it is also preferred that the signal sound, lighting color, or flashing pattern be changed in relation to the previous alignment.
 また、傾斜・高さ変化検出部312が上記の検出パターン7の1~検出パターン7の4を行えるように、図9の(1)で示すように、水平受光管24の半径d24を、鉛直受光管23,25の半径d23,d25より大きくし、レーザ光Bの入射範囲すなわち測定可能範囲MAを広げるのも好ましい。または、図9の(2)で示すように、水平受光管24の数を高さ方向に増設して、いずれかの水平受光管24で受光信号が得られるように構成することで、レーザ光Bの入射範囲すなわち測定可能範囲MAを広げるのも好ましい。これにより、高低差の大きい現場であっても、上記の検出パターン7の1~検出パターン7の4を機能させることができる。 Furthermore, as shown in FIG. 9(1), it is preferable to make the radius d24 of the horizontal light receiving tube 24 larger than the radii d23, d25 of the vertical light receiving tubes 23, 25 so that the inclination/height change detection unit 312 can perform the above detection patterns 7-1 to 7-4, thereby widening the incidence range of the laser light B, i.e., the measurable range MA. Alternatively, as shown in FIG. 9(2), it is preferable to increase the number of horizontal light receiving tubes 24 in the height direction so that a light receiving signal can be obtained from any of the horizontal light receiving tubes 24, thereby widening the incidence range of the laser light B, i.e., the measurable range MA. This allows the above detection patterns 7-1 to 7-4 to function even in sites with large elevation differences.
 以上、本発明の好ましい実施の形態および変形例を述べたが、上記は本発明の一例であり、これらを当業者の知識に基づいて組み合わせることが可能であり、そのような形態も本発明の範囲に含まれる。 The above describes preferred embodiments and modifications of the present invention, but the above is merely an example of the present invention, and these can be combined based on the knowledge of those skilled in the art, and such forms are also included in the scope of the present invention.
1 レベリングシステム
10 回転レーザ装置
 11 回転ヘッド
 12 水平基準面
20 レーザ受光器
 21 ケース
 22 ハンドル
 23 第1の鉛直受光管
  231 導光体
  232 受光部
  233 受光部
  234 光結合層
  235 衝突位置
 24 水平受光管
  242 受光部
  243 受光部
 25 第2の鉛直受光管
  252 受光部
  253 受光部
 26 表示部
 27 操作部
 28 発光インジケータ
 31 演算処理部
  311 位置合わせ部
  312 傾斜・高さ変化検出部
  313 高さ誤差補正部
 32 ブザー
 33 記憶部
  342 左右傾斜検出テーブル
LIST OF SYMBOLS 1 Leveling system 10 Rotary laser device 11 Rotating head 12 Horizontal reference surface 20 Laser receiver 21 Case 22 Handle 23 First vertical light receiving tube 231 Light guide 232 Light receiving section 233 Light receiving section 234 Optical coupling layer 235 Collision position 24 Horizontal light receiving tube 242 Light receiving section 243 Light receiving section 25 Second vertical light receiving tube 252 Light receiving section 253 Light receiving section 26 Display section 27 Operation section 28 Light emitting indicator 31 Arithmetic processing section 311 Positioning section 312 Tilt/height change detection section 313 Height error correction section 32 Buzzer 33 Memory section 342 Left/right tilt detection table

Claims (6)

  1.  測定基準点から所定の高さで水平にレーザ光を出射する回転レーザ装置と、測定点で前記レーザ光を受光するレーザ受光器と、を備え、
     前記レーザ受光器は、受光センサとして,柱状の導光体,前記導光体の両端部に配置された受光部,前記レーザ光を前記導光体の前記両端部に向かって分割する光結合層,を備え、H型に配置された、第1の鉛直受光管、第2の鉛直受光管、および水平受光管と、前記受光部に接続された演算処理部を備え、
     前記演算処理部は、
     前記受光部の各受光信号から前記レーザ光の衝突位置を特定し、前記衝突位置の前記中央位置からの差分距離と、前記差分距離が前記導光体の長さの中央位置を境にプラス側とマイナス側のどちらにあるかを検出し、
     前記第1の鉛直受光管、前記第2の鉛直受光管、および前記水平受光管の前記差分距離のプラス/マイナスの組み合わせに応じて、前記測定点の前記測定基準点に対する高低差を測定する
     ことを特徴とするレベリングシステム。
    A rotary laser device that emits a laser beam horizontally at a predetermined height from a measurement reference point, and a laser receiver that receives the laser beam at a measurement point,
    The laser receiver includes a columnar light guide as a light receiving sensor, light receiving units arranged at both ends of the light guide, and an optical coupling layer that divides the laser light toward both ends of the light guide, and includes a first vertical light receiving tube, a second vertical light receiving tube, and a horizontal light receiving tube arranged in an H shape, and a calculation processing unit connected to the light receiving units.
    The arithmetic processing unit is
    identifying a collision position of the laser light from each light receiving signal of the light receiving unit, and detecting a difference distance from the center position of the collision position and whether the difference distance is on the plus side or the minus side of the center position of the length of the light guide;
    A leveling system characterized by measuring the elevation difference of the measurement point relative to the measurement reference point according to a plus/minus combination of the differential distances of the first vertical light receiving tube, the second vertical light receiving tube, and the horizontal light receiving tube.
  2.  前記演算処理部は、
     前記第1の鉛直受光管と前記第2の鉛直受光管の前記差分距離が同じ値でともにマイナス値の場合は、前記測定点Xが前記測定基準点に対して前記差分距離と同量だけ高くなったと検出し、
     前記第1の鉛直受光管と前記第2の鉛直受光管の前記差分距離が同じ値でともにプラス値の場合は、前記測定点Xが前記測定基準点に対して前記差分距離と同量だけ低くなったと検出する
     ことを特徴とする請求項1に記載のレベリングシステム。
    The arithmetic processing unit is
    When the difference distance between the first vertical light receiving tube and the second vertical light receiving tube is the same value and both are negative values, it is detected that the measurement point X is higher than the measurement reference point by the same amount as the difference distance,
    The leveling system according to claim 1, characterized in that, when the differential distances of the first vertical light receiving tube and the second vertical light receiving tube are the same value and both are positive values, it is detected that the measurement point X is lower than the measurement reference point by an amount equal to the differential distance.
  3.  前記演算処理部は、
     前記第1の鉛直受光管の前記差分距離がプラス値、前記第2の鉛直受光管の前記差分距離がマイナス値、前記水平受光管の前記差分距離がプラスの値の場合、前記レーザ受光器は左に傾いており、前記測定点は前記測定基準点に対して数式1で求める高さ変化hだけ低くなったと検出し、
     前記第1の鉛直受光管の前記差分距離がプラス値、前記第2の鉛直受光管の前記差分距離がマイナス値、前記水平受光管の前記差分距離がマイナス値の場合、前記レーザ受光器は左に傾いており、前記測定点は前記測定基準点に対して数式1で求める高さ変化hだけ高くなったと検出し、
     前記第1の鉛直受光管の前記差分距離がマイナス値、前記第2の鉛直受光管の前記差分距離がプラス値、前記水平受光管の前記差分距離がマイナスの値の場合、前記レーザ受光器は右に傾いており、前記測定点は前記測定基準点に対して数式1で求める高さ変化hだけ低くなったと検出し、
     前記第1の鉛直受光管の前記差分距離がマイナス値、前記第2の鉛直受光管の前記差分距離がプラス値、前記水平受光管の前記差分距離がプラス値の場合、前記レーザ受光器は右に傾いており、前記測定点は前記測定基準点に対して数式1で求める高さ変化hだけ高くなったと検出する
     ことを特徴とする請求項1に記載のレベリングシステム。
     但し、h:高さ変化
        D:水平受光管が検出した差分距離
        δ:レーザ受光器の左右方向の傾斜角
    The arithmetic processing unit is
    When the difference distance of the first vertical light receiving tube is a positive value, the difference distance of the second vertical light receiving tube is a negative value, and the difference distance of the horizontal light receiving tube is a positive value, the laser receiver is tilted to the left, and it is detected that the measurement point is lower than the measurement reference point by a height change h calculated by Equation 1;
    When the difference distance of the first vertical light receiving tube is a positive value, the difference distance of the second vertical light receiving tube is a negative value, and the difference distance of the horizontal light receiving tube is a negative value, the laser receiver is tilted to the left, and it is detected that the measurement point is higher than the measurement reference point by a height change h calculated by Equation 1;
    When the difference distance of the first vertical light receiving tube is a negative value, the difference distance of the second vertical light receiving tube is a positive value, and the difference distance of the horizontal light receiving tube is a negative value, the laser receiver is tilted to the right, and it is detected that the measurement point is lower than the measurement reference point by a height change h calculated by Equation 1;
    The leveling system of claim 1, characterized in that when the difference distance of the first vertical light receiving tube is a negative value, the difference distance of the second vertical light receiving tube is a positive value, and the difference distance of the horizontal light receiving tube is a positive value, the laser receiver is tilted to the right and it is detected that the measurement point has become higher than the measurement reference point by a height change h calculated by equation 1.
    where h is the change in height, D is the difference in distance detected by the horizontal receiver, and δ is the inclination angle of the laser receiver in the left-right direction.
  4.  前記水平受光管の前記導光体の半径は、前記第1の鉛直受光管および前記第2の鉛直受光管の半径よりも大きく構成されることを特徴とする請求項1に記載のレベリングシステム。 The leveling system of claim 1, characterized in that the radius of the light guide of the horizontal light receiving tube is configured to be larger than the radius of the first vertical light receiving tube and the second vertical light receiving tube.
  5.  前記水平受光管の数が、高さ方向に増設されることを特徴とする請求項1に記載のレベリングシステム。 The leveling system according to claim 1, characterized in that the number of horizontal light receiving tubes is increased in the height direction.
  6.  測定基準点から所定の高さで水平に出射されるレーザ光を測定点で受光するレーザ受光器であって、
     前記レーザ受光器は、受光センサとして,柱状の導光体,前記導光体の両端部に配置された受光部,前記レーザ光を前記導光体の前記両端部に向かって分割する光結合層,を備え、H型に配置された、第1の鉛直受光管、第2の鉛直受光管、および水平受光管と、前記受光部に接続された演算処理部を備え、
     前記演算処理部は、
     前記受光部の各受光信号から前記レーザ光の衝突位置を特定し、前記衝突位置の前記中央位置からの差分距離と、前記差分距離が前記導光体の長さの中央位置を境にプラス側とマイナス側のどちらにあるかを検出し、
     前記第1の鉛直受光管、前記第2の鉛直受光管、および前記水平受光管の前記差分距離のプラス/マイナスの組み合わせに応じて、前記測定点の前記測定基準点に対する高低差を測定する
     ことを特徴とするレーザ受光器。
    A laser receiver that receives at a measurement point a laser beam that is horizontally emitted at a predetermined height from a measurement reference point,
    The laser receiver includes a columnar light guide as a light receiving sensor, light receiving units arranged at both ends of the light guide, and an optical coupling layer that divides the laser light toward both ends of the light guide, and includes a first vertical light receiving tube, a second vertical light receiving tube, and a horizontal light receiving tube arranged in an H shape, and a calculation processing unit connected to the light receiving units.
    The arithmetic processing unit is
    identifying a collision position of the laser light from each light receiving signal of the light receiving unit, and detecting a difference distance from the center position of the collision position and whether the difference distance is on the plus side or the minus side of the center position of the length of the light guide;
    A laser receiver characterized by measuring the elevation difference of the measurement point relative to the measurement reference point according to the plus/minus combination of the differential distances of the first vertical light receiving tube, the second vertical light receiving tube, and the horizontal light receiving tube.
PCT/JP2023/035365 2022-09-30 2023-09-28 Leveling system, and laser receiver WO2024071289A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-157330 2022-09-30
JP2022157330A JP2024051267A (en) 2022-09-30 2022-09-30 Leveling system and laser receiver

Publications (1)

Publication Number Publication Date
WO2024071289A1 true WO2024071289A1 (en) 2024-04-04

Family

ID=90478065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035365 WO2024071289A1 (en) 2022-09-30 2023-09-28 Leveling system, and laser receiver

Country Status (2)

Country Link
JP (1) JP2024051267A (en)
WO (1) WO2024071289A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337308A (en) * 1998-05-25 1999-12-10 Nikon Corp Light receiving position detecting device
WO2012059276A1 (en) * 2010-11-04 2012-05-10 Robert Bosch Gmbh Light-beam receiver with voice output
EP3404361A1 (en) * 2017-05-18 2018-11-21 Leica Geosystems AG Light receiver
JP2020169921A (en) * 2019-04-04 2020-10-15 株式会社トプコン Surveying robot and surveying robot system
JP2022519319A (en) * 2019-02-08 2022-03-22 トプコン ポジショニング システムズ, インク. Reference laser tracking system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337308A (en) * 1998-05-25 1999-12-10 Nikon Corp Light receiving position detecting device
WO2012059276A1 (en) * 2010-11-04 2012-05-10 Robert Bosch Gmbh Light-beam receiver with voice output
EP3404361A1 (en) * 2017-05-18 2018-11-21 Leica Geosystems AG Light receiver
JP2022519319A (en) * 2019-02-08 2022-03-22 トプコン ポジショニング システムズ, インク. Reference laser tracking system and method
JP2020169921A (en) * 2019-04-04 2020-10-15 株式会社トプコン Surveying robot and surveying robot system

Also Published As

Publication number Publication date
JP2024051267A (en) 2024-04-11

Similar Documents

Publication Publication Date Title
US8581978B2 (en) Geodetic apparatus and method for controlling the same
US8520192B2 (en) Distance-measuring system
US11112242B2 (en) Light receiver
EP0661520A1 (en) Laser surveying system
JPWO2012036075A1 (en) Refractive index measuring device and refractive index measuring method
JP6653028B2 (en) Method for comparing a receiving laser beam and a rotating laser beam incident on a laser receiver
CN108205141B (en) Method for operating a laser distance measuring device
WO2024071289A1 (en) Leveling system, and laser receiver
WO2024071291A1 (en) Leveling system and laser optical receiver
US20080137102A1 (en) Device For Positioning Markings
WO2024071290A1 (en) Surveying system and laser receiver
CN1912544A (en) High precision dip measuring device
JPH10274528A (en) Plumbing device for surveying
JP4335271B2 (en) Vertical judgment sensor and vertical survey system
JP4074971B2 (en) Tilt-setting rotating laser device
CN113639960B (en) Multispectral image inclination detection device
JP2024080088A (en) Rotating laser receiving system
TW201403019A (en) Laser aspect measuring instrument
CN212008278U (en) Strong light lamp for detecting reticle
KR100629765B1 (en) a measurement apparatus for a number of rotation and a twisted angle of a torsion bar
JP2724239B2 (en) Displacement detector
CN113048917A (en) Semiconductor laser instrument based on geometric optics
JP4975508B2 (en) Tilt angle detector
CN116892915A (en) Measuring device
CN110542411A (en) Novel sensor and application thereof on laser level meter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872511

Country of ref document: EP

Kind code of ref document: A1