WO2024071266A1 - Method for manufacturing substrate provided with bumps, and laminate - Google Patents

Method for manufacturing substrate provided with bumps, and laminate Download PDF

Info

Publication number
WO2024071266A1
WO2024071266A1 PCT/JP2023/035304 JP2023035304W WO2024071266A1 WO 2024071266 A1 WO2024071266 A1 WO 2024071266A1 JP 2023035304 W JP2023035304 W JP 2023035304W WO 2024071266 A1 WO2024071266 A1 WO 2024071266A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
self
solder particles
anisotropic conductive
aggregating
Prior art date
Application number
PCT/JP2023/035304
Other languages
French (fr)
Japanese (ja)
Inventor
翼 大村
雅俊 加藤
尚史 小坂
雄一郎 宍戸
卓司 桶結
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2024071266A1 publication Critical patent/WO2024071266A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Definitions

  • the present invention relates to a method for manufacturing a substrate with bumps and a laminate.
  • solder bumps are formed on wiring circuit boards and used as external connection terminals.
  • a method for manufacturing solder bumps includes, for example, the steps of providing a substrate, forming a dry film resist having openings on the substrate, filling the openings with solder paste, reflowing the solder paste, and removing the dry film resist (see, for example, Patent Document 1).
  • the openings are filled with solder paste, so if the distance between the electrodes becomes narrow, the openings cannot be filled with solder paste reliably, and it may not be possible to manufacture solder bumps. This causes a problem of reduced reliability.
  • the present invention provides a method for manufacturing a bumped substrate that can produce a highly reliable bumped substrate even when the distance between adjacent electrodes is narrow.
  • the present invention [1] is a method for manufacturing a substrate with bumps, comprising a first step of preparing a substrate having a wiring circuit board and a plurality of electrodes arranged in the surface direction of the wiring circuit board, a second step of arranging a self-aggregating anisotropic conductive adhesive layer containing a resin component and solder particles on one surface of the substrate in the thickness direction, a third step of melting the solder particles to aggregate the molten solder particles on one surface of the electrodes in the thickness direction to form bumps, and a fourth step of removing the resin component from the substrate.
  • the present invention [2] includes the method for manufacturing a bumped substrate described in [1] above, in which the maximum length of the electrodes in the surface direction of the substrate is 100 ⁇ m or less.
  • the present invention [3] includes the method for manufacturing a bumped substrate described in [1] or [2] above, in which the distance between adjacent electrodes in the surface direction of the substrate is 200 ⁇ m or less.
  • the present invention [4] includes the method for manufacturing a bumped substrate described in any one of [1] to [3] above, in which the self-aggregating anisotropic conductive adhesive layer contains flux.
  • the present invention [5] includes the method for manufacturing a substrate with bumps described in any one of [1] to [4] above, in which both the average primary particle size of the solder particles and the average secondary particle size of the solder particles are 20 ⁇ m or less.
  • the present invention [6] includes the method for manufacturing a substrate with bumps described in any one of [1] to [5] above, in which the viscosity of the resin component at the melting point of the solder particles is 5000 mPa ⁇ s or less.
  • the present invention [7] includes the method for manufacturing a bumped substrate described in any one of [1] to [6] above, in which the self-aggregating anisotropic conductive adhesive layer is formed from a self-aggregating anisotropic conductive adhesive film.
  • the present invention [8] is a laminate comprising a substrate having a wiring circuit board and a plurality of electrodes arranged in the surface direction of the wiring circuit board, and a self-aggregating anisotropic conductive adhesive layer containing a resin component and solder particles, arranged in this order toward one side in the thickness direction, and one surface in the thickness direction of the self-aggregating anisotropic conductive adhesive layer is exposed.
  • the method for manufacturing a bumped substrate of the present invention melts the solder particles in a self-aggregating anisotropic conductive adhesive layer, causing the molten solder particles to aggregate on one surface in the thickness direction of multiple electrodes to form bumps. Therefore, even if the distance between adjacent electrodes is narrow, a highly reliable bumped substrate can be manufactured.
  • the laminate of the present invention comprises, in order toward one side in the thickness direction, a substrate having a wiring circuit board and a plurality of electrodes arranged in the surface direction of the wiring circuit board, and a self-aggregating anisotropic conductive adhesive layer containing a resin component and solder particles. Therefore, by using this laminate, a highly reliable substrate with bumps can be manufactured even if the distance between adjacent electrodes spaced apart is narrow.
  • FIG. 1A to 1F show an embodiment of a method for manufacturing a substrate with bumps.
  • FIG. 1A shows a first step of preparing a substrate.
  • FIG. 1B shows a second step of preparing a release liner.
  • FIG. 1C shows a second step of arranging a self-aggregating anisotropic conductive adhesive film on one surface in the thickness direction of the release liner.
  • FIG. 1D shows a second step of arranging a self-aggregating anisotropic conductive adhesive layer on one surface in the thickness direction of the substrate.
  • FIG. 1E shows a third step of melting solder particles to aggregate the molten solder particles on one surface in the thickness direction of a plurality of electrodes to form bumps.
  • FIG. 1A shows a first step of preparing a substrate.
  • FIG. 1B shows a second step of preparing a release liner.
  • FIG. 1C shows a second step of arranging a self-aggregating anisotropic conductive adhesive film on one
  • FIG. 1F shows a fourth step of removing a resin component from the substrate.
  • FIG. 2 shows a digital microscope photograph of the self-aggregating anisotropic conductive adhesive layer of Example 1.
  • FIG. 3 shows a digital microscope photograph of the self-aggregating anisotropic conductive adhesive layer of Example 2.
  • FIG. 4 shows a digital microscope photograph of the self-aggregating anisotropic conductive adhesive layer of Example 3.
  • the up-down direction on the paper surface is the up-down direction (thickness direction), with the upper side of the paper surface being the top side (one side in the thickness direction) and the lower side of the paper surface being the bottom side (the other side in the thickness direction).
  • the left-right direction and depth direction on the paper surface are surface directions that are perpendicular to the up-down direction. Specifically, they follow the directional arrows in each figure.
  • the method for manufacturing a substrate with bumps includes a first step of preparing a substrate 2 having a wiring circuit board 11 and a plurality of electrodes 12 arranged in the surface direction of the wiring circuit board 11; a second step of arranging a self-aggregating anisotropic conductive adhesive layer 3 containing a resin component and solder particles on one thickness-wise surface of the substrate 2; a third step of melting the solder particles 5 to aggregate the molten solder particles 5 on one thickness-wise surface of the plurality of electrodes 12 to form bumps 7; and a fourth step of removing the resin component from the substrate 2.
  • a substrate 2 is prepared as shown in FIG. 1A.
  • the substrate 2 has a flat plate shape.
  • the substrate 2 includes a wiring circuit board 11 and a plurality of electrodes 12 arranged in the surface direction of the wiring circuit board 11.
  • the substrate 2 includes a wiring circuit board 11 and a plurality of electrodes 12 provided on the surface (one surface in the thickness direction) of the wiring circuit board 11.
  • the wiring circuit board 11 is formed, for example, from an insulating material and a semiconductor material.
  • the thickness of the wiring circuit board 11 is, for example, 5 ⁇ m or more and, for example, 1000 ⁇ m or less.
  • the electrode 12 is made of metal.
  • the electrodes 12 are arranged in a dot pattern on the substrate 2.
  • the electrode 12 has a circular shape in a plan view. Furthermore, the multiple electrodes 12 are evenly aligned in the planar direction.
  • the thickness of the electrode 12 is, for example, 0 ⁇ m or more, preferably 0.001 ⁇ m or more, and for example, 5 ⁇ m or less. When the surface of the substrate 2 and the surface of the electrode 12 are flush with each other, the thickness of the electrode 12 is 0 ⁇ m.
  • the maximum length of the electrode 12 in the surface direction of the substrate 2 is, from the viewpoint of miniaturization and low height, for example, 100 ⁇ m or less, preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, even more preferably 20 ⁇ m or less, and for example, 1 ⁇ m or more.
  • the distance (pitch) between adjacent electrodes 12 in the surface direction is, for example, 3 ⁇ m or more, preferably 5 ⁇ m or more, and from the viewpoint of miniaturization and low height, for example, 200 ⁇ m or less, preferably 100 ⁇ m or less, more preferably 60 ⁇ m or less, and even more preferably 40 ⁇ m or less.
  • a self-aggregating anisotropic conductive adhesive layer 3 is disposed on one surface of the substrate 2 in the thickness direction.
  • the self-aggregating anisotropic conductive adhesive layer 3 which will be described in detail later, refers to a layer containing solder particles 5 that self-aggregate when heated, and is distinguished from an anisotropic conductive film in which the solder particles 5 come into contact with each other when pressure is applied, for example.
  • the self-aggregating anisotropic conductive adhesive layer 3 is formed from the self-aggregating anisotropic conductive adhesive film 1.
  • productivity is excellent.
  • a self-aggregating anisotropic conductive adhesive composition is prepared.
  • the self-aggregating anisotropic conductive adhesive composition contains a resin component, solder particles 5, and, if necessary, flux.
  • the self-aggregating anisotropic conductive adhesive film 1 contains a resin component, solder particles 5, and, if necessary, flux.
  • the resin component includes a thermoplastic resin.
  • thermoplastic resin examples include thermoplastic epoxy resin, thermoplastic phenol resin, phenoxy resin, polyolefin (e.g., polyethylene, polypropylene, ethylene-propylene copolymer, etc.), thermoplastic acrylic resin, thermoplastic polyester, polyvinyl acetate, ethylene-vinyl acetate copolymer, polyvinyl chloride, polystyrene, polyacrylonitrile, polyamide (Nylon (registered trademark)), polycarbonate, polyacetal, polyethylene terephthalate, polyphenylene oxide, polyphenylene sulfide, polysulfone, polyether sulfone, polyether ether ketone, polyaryl sulfone, thermoplastic polyimide, thermoplastic polyurethane, polyamino bismaleimide, polyamide imide, polyether imide, bismaleimide triazine resin, polymethylpentene, fluorinated resin, liquid crystal polymer, olefin-
  • polyolefin e
  • thermoplastic epoxy resins include thermoplastic bisphenol type epoxy resins (e.g., thermoplastic bisphenol A type epoxy resins, thermoplastic bisphenol F type epoxy resins, and thermoplastic bisphenol S type epoxy resins), thermoplastic novolac type epoxy resins (e.g., thermoplastic phenol novolac type epoxy resins, thermoplastic cresol novolac type epoxy resins, and thermoplastic biphenyl type epoxy resins), thermoplastic naphthalene type epoxy resins, thermoplastic fluorene type epoxy resins (e.g., bisarylfluorene type epoxy resins), and thermoplastic triphenylmethane type epoxy resins (e.g., trishydroxyphenylmethane type epoxy resins).
  • thermoplastic bisphenol type epoxy resins are used as thermoplastic epoxy resins. More preferably, thermoplastic bisphenol A type epoxy resins are used as thermoplastic epoxy resins.
  • thermoplastic resins may be in any form, such as solid, semi-solid, or liquid, at room temperature (25°C).
  • a solid at 25°C means that it does not flow and has no viscosity at 25°C.
  • a liquid at 25°C means that it has viscosity at 25°C, including liquids and fluids (the same applies below).
  • the thermoplastic resin is preferably a solid thermoplastic resin.
  • the softening point of the thermoplastic resin is, for example, 90°C or higher, preferably 110°C or higher, more preferably 120°C or higher, even more preferably more than 120°C, particularly preferably 125°C or higher, and, for example, 230°C or lower, preferably 200°C or lower, more preferably less than 150°C, even more preferably 140°C or lower.
  • both the average primary particle size and the average secondary particle size of the solder particles 5 described below can be reduced.
  • the thermoplastic resin can suppress the aggregation of the solder particles 5 in the arrangement step of the method for producing the self-aggregating anisotropic conductive adhesive film 1 described below. As a result, it is possible to reduce both the average primary particle size and the average secondary particle size of the solder particles 5 described below.
  • the softening point can be measured using a thermomechanical analyzer.
  • Thermoplastic resins can be used alone or in combination of two or more types.
  • the content of the thermoplastic resin is, for example, 30 parts by mass or more, preferably 40 parts by mass or more, and, for example, 70 parts by mass or less, preferably 60 parts by mass or less, per 100 parts by mass of the resin component.
  • the resin component optionally contains a curable resin.
  • thermosetting resins examples include thermosetting epoxy resins.
  • thermosetting resin examples include thermosetting epoxy resins, urea resins, melamine resins, diallyl phthalate resins, silicone resins, phenolic resins, thermosetting acrylic resins, thermosetting polyesters, thermosetting polyimides, and thermosetting polyurethanes.
  • a preferred example of the curable resin is thermosetting epoxy resin.
  • thermosetting epoxy resin examples include thermosetting bisphenol type epoxy resins (e.g., thermosetting bisphenol A type epoxy resins, thermosetting bisphenol F type epoxy resins, and thermosetting bisphenol S type epoxy resins), thermosetting novolac type epoxy resins (e.g., thermosetting phenol novolac type epoxy resins, thermosetting cresol novolac type epoxy resins, and thermosetting biphenyl type epoxy resins), thermosetting naphthalene type epoxy resins, thermosetting fluorene type epoxy resins (e.g., thermosetting bisarylfluorene type epoxy resins), and thermosetting triphenylmethane type epoxy resins (e.g., thermosetting trishydroxyphenylmethane type epoxy resins).
  • thermosetting epoxy resin preferably, a thermosetting bisphenol type epoxy resin is used, and more preferably, a thermosetting bisphenol A type epoxy resin is used.
  • thermosetting resins may be in any form, such as solid, semi-solid, or liquid, at room temperature (25°C).
  • Thermosetting resin is preferably a liquid thermosetting resin.
  • the resin component preferably contains a solid thermoplastic resin and a liquid thermosetting resin.
  • the adhesive sheet has excellent formability and adhesive strength.
  • the resin component more preferably comprises a solid thermoplastic resin and a liquid thermosetting resin.
  • the curable resins can be used alone or in combination of two or more types.
  • the content of the curable resin is, for example, 30 parts by mass or more, preferably 40 parts by mass or more, and, for example, 70 parts by mass or less, preferably 60 parts by mass or less, per 100 parts by mass of the resin component.
  • the viscosity of the resin component at the melting point of the solder particles 5 described below is, for example, 1 mPa ⁇ s or more, preferably 100 mPa ⁇ s or more, and, for example, 5000 mPa ⁇ s or less, preferably 2000 mPa ⁇ s or less, more preferably 1000 mPa ⁇ s or less, and even more preferably 500 mPa ⁇ s or less.
  • the viscosity is equal to or greater than the lower limit and equal to or less than the upper limit, the amount of unaccumulated solder particles 5 (described below) can be reduced. As a result, productivity can be improved.
  • the viscosity can be measured using a rheometer.
  • the method for measuring the viscosity will be described in detail in the examples below.
  • the content of the resin component in the self-aggregating anisotropic conductive adhesive composition is, for example, 20% by mass or more, preferably 30% by mass or more, and, for example, 60% by mass or less, preferably 40% by mass or less.
  • the mass ratio of the curable resin to the thermoplastic resin is, for example, 0.6 or more, preferably 0.9 or more, and, for example, 1.5 or less, preferably 1.1 or less.
  • the solder material forming the solder particles 5 may be a solder material that does not contain lead (lead-free solder material).
  • the solder material include tin and tin alloys.
  • the tin alloy include tin-bismuth alloy (Sn-Bi), tin-silver-copper alloy (Sn-Ag-Cu), and tin-silver alloy (Sn-Ag).
  • the tin content in the tin-silver alloy is, for example, 90% by mass or more, preferably 95% by mass or more.
  • the silver content in the tin-silver alloy is, for example, 10% by mass or less, preferably 5% by mass or less.
  • the tin content in the tin-silver-copper alloy is, for example, 90% by mass or more, preferably 95% by mass or more.
  • the silver content in the tin-silver-copper alloy is, for example, 10% by mass or less, preferably 5% by mass or less.
  • the copper content in the tin-silver-copper alloy is, for example, 1% by mass or less, preferably 0.5% by mass or less.
  • the tin content in the tin-bismuth alloy is, for example, 30% by mass or more, preferably 40% by mass or more.
  • the bismuth content in the tin-bismuth alloy is, for example, 70% by mass or less, preferably 60% by mass or less.
  • solder materials include tin-silver alloy (Sn-Ag) and tin-silver-copper alloy (Sn-Ag-Cu).
  • the melting point of the solder material (i.e., the melting point of the solder particles 5) is, for example, 260° C. or less, preferably 235° C. or less, and, for example, 100° C. or more, preferably 130° C. or more.
  • the melting point is determined by differential scanning calorimetry (DSC) (same below).
  • the shape of the solder particles 5 is not particularly limited, and examples thereof include a spherical shape, a plate shape, and a needle shape.
  • a preferable shape of the solder particles 5 is a spherical shape. Note that although the shape of the solder particles 5 is shown as a sphere in Figs. 1C and 1D, the shape of the solder particles 5 is not limited to this.
  • the surface of the solder particles 5 is generally covered with an oxide film made of an oxide of the solder material.
  • the thickness of the oxide film is, for example, 1 nm or more and, for example, 20 nm or less.
  • the self-aggregating anisotropic conductive adhesive film 1 contains primary particles of the solder particles 5 and/or secondary particles of the solder particles 5.
  • the average primary particle diameter of the solder particles 5 and the average secondary particle diameter of the solder particles 5 are both, for example, 20 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 7 ⁇ m or less, and from the standpoint of small size, low height, and reliability, are even more preferably 5 ⁇ m or less, and for example, 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more.
  • a primary particle is the smallest unit of a particle and is an independent particle without aggregation.
  • the average primary particle diameter of the solder particles 5 is, for example, 20 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 7 ⁇ m or less, and from the viewpoint of small size and low height and reliability, even more preferably 5 ⁇ m or less, and, for example, 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more.
  • Secondary particles are particles formed by agglomeration of primary particles.
  • the average secondary particle diameter is larger than the average primary particle diameter, for example, 20 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 7 ⁇ m or less, and from the viewpoint of small size, low height, and reliability, even more preferably 5 ⁇ m or less, and for example, 1 ⁇ m or more.
  • the self-aggregating anisotropic conductive adhesive film 1 contains primary particles of solder particles 5 and/or secondary particles of solder particles 5.
  • the self-aggregating anisotropic conductive adhesive film 1 contains only primary particles of solder particles 5, or only secondary particles of solder particles 5, or primary particles of solder particles 5 and secondary particles of solder particles 5, but in any case, both the average primary particle diameter of the solder particles 5 and the average secondary particle diameter of the solder particles 5 are, for example, 20 ⁇ m or less.
  • both the average primary particle size and the average secondary particle size are equal to or less than the upper limit, unevenness in the self-aggregation described below can be suppressed. As a result, bridging (described below) can be suppressed, and reliability can be improved.
  • the above average primary particle size can be measured using a laser diffraction particle size distribution analyzer.
  • the method for measuring the above average secondary particle size will be described in detail in the Examples below.
  • the solder particles 5 can be used alone or in combination of two or more types.
  • the content of the solder particles 5 in the self-aggregating anisotropic conductive adhesive composition is, for example, 50% by mass or more, preferably 55% by mass or more, and, for example, 95% by mass or less, preferably 80% by mass or less, and more preferably 60% by mass or less.
  • the flux is a component for removing the oxide film (the oxide film made of an oxide of the solder material) on the surface of the solder particles 5 .
  • Examples of the flux material include organic acid salts.
  • Examples of the organic acid salts include organic acids, quinolinol derivatives, and metal carbonyl acid salts.
  • Examples of the organic acids include aliphatic carboxylic acids and aromatic carboxylic acids.
  • Examples of the aliphatic carboxylic acids include aliphatic dicarboxylic acids. Specific examples of the aliphatic dicarboxylic acids include adipic acid, malic acid, malonic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, and sebacic acid.
  • Examples of the aromatic carboxylic acids include benzoic acid, 2-phenoxybenzoic acid, phthalic acid, diphenylacetic acid, trimellitic acid, and pyromellitic acid.
  • an organic acid is used as the flux material. More preferably, malic acid is used as the flux material.
  • the melting point of the flux is, for example, 250°C or less, preferably 180°C or less, more preferably 160°C or less, and, for example, 100°C or more, preferably 120°C or more, more preferably 130°C or more.
  • the shape of the flux is not particularly limited, but examples include plate, needle, and spherical shapes.
  • Flux can also be dissolved in a known solvent to prepare a flux solution.
  • the solids concentration of the flux solution is, for example, 10% by mass or more and, for example, 40% by mass or less.
  • Flux can be used alone or in combination of two or more types.
  • the content of the flux in the self-aggregating anisotropic conductive adhesive composition is, for example, 1 mass % or more, preferably 5 mass % or more, and, for example, 20 mass % or less, preferably 10 mass % or less.
  • the self-aggregating anisotropic conductive adhesive composition may contain additives (for example, a curing agent, a curing accelerator, and a silane coupling agent) in appropriate proportions, if necessary.
  • additives for example, a curing agent, a curing accelerator, and a silane coupling agent
  • the self-aggregating anisotropic conductive adhesive composition is prepared by mixing a resin component, solder particles 5, an optional flux, and an optional additive, and stirring the mixture as required.
  • solder particles 5 are mixed without stirring in the above preparation, most of the solder particles 5 will aggregate and become secondary particles. On the other hand, if the solder particles 5 are mixed with stirring in the above preparation, they will remain as primary particles.
  • the self-aggregating anisotropic conductive adhesive composition can also be mixed with a known solvent to prepare the self-aggregating anisotropic conductive adhesive composition as a varnish.
  • the solids concentration of the varnish containing the self-aggregating anisotropic conductive adhesive composition is, for example, 50% by mass or more, preferably 60% by mass or more, and for example, 80% by mass or less.
  • the release liner is a film that covers and protects the self-cohesive anisotropic conductive adhesive film 1.
  • the release liner 10 has a film shape.
  • the release liner 10 is, for example, a plastic substrate (plastic film).
  • plastic substrates include polyester sheets (polyethylene terephthalate (PET) sheets), polyolefin sheets (e.g., polyethylene sheets, polypropylene sheets), polyvinyl chloride sheets, polyimide sheets, and polyamide sheets (nylon sheets).
  • PET polyethylene terephthalate
  • polyolefin sheets e.g., polyethylene sheets, polypropylene sheets
  • polyvinyl chloride sheets e.g., polyethylene sheets, polypropylene sheets
  • polyamide sheets nylon sheets.
  • the surface of the release liner 10 may be subjected to a surface treatment such as silicone treatment.
  • the thickness of the release liner 10 is, for example, 1 ⁇ m or more and, for example, 100 ⁇ m or less.
  • a self-cohesive anisotropic conductive adhesive film 1 is placed on one surface of the release liner 10 in the thickness direction.
  • a self-aggregating anisotropic conductive adhesive composition (varnish of a self-aggregating anisotropic conductive adhesive composition) is applied to one surface in the thickness direction of the release liner 10, and then dried as necessary.
  • the drying conditions are, for example, a drying temperature of 40°C or higher and, for example, 100°C or lower.
  • the drying time is, for example, 1 minute or longer and, for example, 60 minutes or shorter.
  • the heating during the drying process may cause the resin components to flow, which may cause the solder particles 5 to flow accordingly. This causes some or all of the solder particles 5 to aggregate and become secondary particles.
  • the higher the drying temperature the more the solder particles 5 tend to aggregate, but by increasing the softening point of the thermoplastic resin described above, the flow of the resin components can be suppressed, and the aggregation of the solder particles 5 can be suppressed even if the drying temperature is high.
  • the drying temperature is adjusted so that the difference between the softening point of the thermoplastic resin and the drying temperature (softening point of the thermoplastic resin - drying temperature) is, for example, 50°C or higher, and preferably 60°C or higher.
  • the above steps produce a self-cohesive anisotropic conductive adhesive film 1 that is arranged on one side of the release liner 10 in the thickness direction.
  • Such a self-aggregating anisotropic conductive adhesive film 1 contains a resin component and solder particles 5 (primary particles and secondary particles of solder particles 5) dispersed in the resin component. Note that in FIG. 1C, solder particles 5 are described without distinguishing between primary particles and secondary particles (the same applies below).
  • the thickness of the self-aggregating anisotropic conductive adhesive film 1 is, for example, 15 ⁇ m or less, preferably 7 ⁇ m or less, more preferably 6 ⁇ m or less, and for example, 1 ⁇ m or more.
  • a self-aggregating anisotropic conductive adhesive film 1 is placed on one surface in the thickness direction of the substrate 2, and the release liner 10 is peeled off. This places a self-aggregating anisotropic conductive adhesive layer 3 on one surface in the thickness direction of the substrate 2.
  • the second process produces a laminate 6 having a substrate 2 and a self-aggregating anisotropic conductive adhesive layer 3 arranged in order toward one side in the thickness direction.
  • the laminate 6 includes only one substrate 2 and one self-aggregating anisotropic conductive adhesive layer 3.
  • This laminate 6 is distinguished from a laminate 6 in which one self-aggregating anisotropic conductive adhesive layer 3 is sandwiched between two substrates 2.
  • Such a laminate 6 can be traded commercially as a component of the bumped substrate 20.
  • ⁇ Third step> In the third step, as shown in FIG. 1E, the solder particles 5 are melted to cause the molten solder particles 5 to aggregate on one surface in the thickness direction of the plurality of electrodes 12, thereby forming bumps 7.
  • the laminate 6 is heated.
  • the heating temperature is equal to or higher than the melting point of the solder particles 5, and, if the resin component contains a curable resin, is lower than the curing temperature of the curable resin.
  • the heating temperature is, for example, 100°C or higher, preferably 130°C or higher, and, for example, 300°C or lower, preferably 280°C or lower, and more preferably 270°C or lower.
  • the heating time is, for example, 120 seconds or less, preferably 60 seconds or less, more preferably 30 seconds or less, and even more preferably 10 seconds or less, and 1 second or more.
  • the heating temperature and heating time are equal to or higher than the lower limit and equal to or lower than the upper limit, and if the resin component contains a curable resin, the solder particles 5 can be melted without curing the curable resin, and the molten solder particles 5 can be caused to self-aggregate (described below) into multiple electrodes 12. Because the curable resin is not cured, the resin components (particularly the curable resin) can be more reliably removed in the fourth step described below.
  • solder particles 5 melt due to this heating.
  • the melted solder particles 5 gather (self-aggregate) on one side of the thickness direction of the multiple electrodes 12 to form bumps 7.
  • the resin components are removed from the substrate 2, and the flux, which is added as required, the additives, which are added as required, and the unaccumulated solder particles 5 are also removed.
  • a cleaning solution is used to dissolve the resin components from the substrate 2.
  • the cleaning liquid is selected appropriately depending on the type of resin component.
  • cleaning liquids include organic solvents (e.g., methyl ethyl ketone) and water.
  • the method for removing the resin component from the substrate 2 is not particularly limited, but an example is a method in which the substrate 2 after the third step is immersed in a cleaning solution and subjected to ultrasonic treatment.
  • the bumped substrate 20 comprises a wiring circuit board 11, a substrate 2 having a plurality of electrodes 12 arranged in the surface direction of the wiring circuit board 11, and a bump 7 covering one surface of the electrodes 12 on the substrate 2 in the thickness direction.
  • the bumps 7 are preferably used as external connection terminals.
  • the method for manufacturing the bumped substrate 20 involves melting the solder particles 5 in the self-aggregating anisotropic conductive adhesive layer 3, causing the molten solder particles 5 to aggregate on one surface in the thickness direction of the multiple electrodes 12, thereby forming bumps 7. Therefore, even if the distance between adjacent electrodes 12 spaced apart is narrow, a highly reliable bumped substrate 20 can be manufactured.
  • this method utilizes the self-aggregation of the solder particles 5 when forming the bumps 7, so even if the distance (pitch) between adjacent electrodes 12 is narrow (specifically, even if the distance (pitch) between adjacent electrodes 12 is 200 ⁇ m), the bumps 7 can be reliably formed. This provides excellent reliability.
  • the self-aggregation of the solder particles 5 is utilized, so that it is possible to prevent adjacent bumps 7 in the planar direction from being electrically connected (i.e., two adjacent electrodes 12 from being electrically connected (bridged)). Therefore, even if the distance between adjacent electrodes 12 is narrow, excellent reliability is achieved.
  • the laminate 6 also includes a wiring circuit board 11, a substrate 2 having a plurality of electrodes 12 arranged in the surface direction of the wiring circuit board 11, and a self-aggregating anisotropic conductive adhesive layer 3, which are arranged in order toward one side in the thickness direction. Therefore, by using this laminate 6, a highly reliable substrate 20 with bumps can be manufactured even if the distance between adjacent electrodes 12 is narrow.
  • the electrodes 12 are arranged in a dot pattern, but the arrangement of the electrodes 12 is not limited to this.
  • the electrode 12 has a circular shape in a planar view, but the shape of the electrode 12 is not limited to this and may be, for example, a square shape in a planar view.
  • the self-aggregating anisotropic conductive adhesive layer 3 is formed from the self-aggregating anisotropic conductive adhesive film 1, but there are no particular limitations as long as it is capable of forming the self-aggregating anisotropic conductive adhesive layer 3; for example, an anisotropic conductive adhesive paste may also be used.
  • the self-aggregating anisotropic conductive adhesive paste contains a resin component, solder particles 5, a flux that is mixed in as needed, and an additive that is mixed in as needed.
  • the anisotropic conductive adhesive paste is applied to one surface in the thickness direction of the substrate 2, and dried as necessary to form a self-aggregating anisotropic conductive adhesive layer 3.
  • jER1004 Bisphenol A type epoxy resin, solid at 25°C, thermoplastic resin, softening point 97°C, manufactured by Mitsubishi Chemical Corporation
  • jER1007 Bisphenol A type epoxy resin, solid at 25°C, thermoplastic resin, softening point 128°C, manufactured by Mitsubishi Chemical Corporation
  • jER1009 Bisphenol A type epoxy resin, solid at 25°C, thermoplastic resin, softening point 144°C, manufactured by Mitsubishi Chemical Corporation jER1010: Bisphenol A type epoxy resin, solid at 25°C, thermoplastic resin, softening point 144°C, manufactured by Mitsubishi Chemical Corporation Phenol A type epoxy resin, solid at 25°C, thermoplastic resin, softening point 150°C or higher, manufactured by Mitsubishi Chemical Corporation jER828: bisphenol A type epoxy resin, epoxy equivalent 184-194g/eq, liquid at 25°C, thermosetting resin, manufactured by Mitsubishi Chemical Corporation S
  • the resin component, solder particles, and flux were mixed according to the formulation shown in Table 1, and added to methyl ethyl ketone (MEK) to prepare a self-aggregating anisotropic conductive adhesive composition (solid concentration 70% by mass).
  • MEK methyl ethyl ketone
  • the flux used was a flux solution (solid concentration 30% by mass) in which malic acid was added and dissolved in ethanol.
  • a release liner was prepared.
  • a self-aggregating anisotropic conductive adhesive film was placed on one surface of the release liner in the thickness direction.
  • a varnish of a self-aggregating anisotropic conductive adhesive composition was applied to one surface of the release liner in the thickness direction, and then dried.
  • the drying temperature was 60°C, and the drying time was 5 minutes.
  • a self-aggregating anisotropic conductive adhesive film (thickness 5 ⁇ m) was prepared on one surface of the release liner in the thickness direction.
  • a self-aggregating anisotropic conductive adhesive film was placed on one surface of the substrate in the thickness direction. This resulted in a self-aggregating anisotropic conductive adhesive layer being placed on one surface of the substrate in the thickness direction, resulting in a laminate.
  • the laminate was placed on a hot plate preheated to 40° C., and then heated to 260° C. (170° C. in Examples 5 and 7) at a heating rate of 20° C./sec, kept at that temperature for 5 seconds, and then cooled again by radiation to 40° C. This caused the solder particles to melt, and the molten solder particles were agglomerated on one surface in the thickness direction of the multiple electrodes to form bumps.
  • the still images obtained were binarized using the "Threshold" function of the image processing software "imageJ, developed by Wayne Rasband (NIH)".
  • imageJ developed by Wayne Rasband
  • a straight line was drawn from one side of the captured image to the corresponding side, and the pixels on that line were displayed in grayscale.
  • the number of pixels was counted for each part that continuously showed a value of 255 in grayscale notation.
  • the number of pixels in the length of the scale bar in the image (100 ⁇ m) was counted and standardized by this to determine the secondary particle diameter of the solder particles from each part that continuously showed a value of 255 in grayscale notation, and these were averaged to calculate the average secondary particle diameter of the solder particles.
  • Table 1 The results are shown in Table 1.
  • the bumped substrate and laminate produced by the bumped substrate manufacturing method of the present invention are suitable for use as external connection terminals in the manufacture of electronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

This method for manufacturing a substrate (20) provided with bumps comprises: a first step for preparing a substrate (2) provided with a wiring circuit board (11) and a plurality of electrodes (12) that are lined up in a surface direction of the wiring circuit board (11); a second step for disposing a self-flocculating anisotropic electroconductive adhesive layer (3) that includes a resin component and solder particles (5) on one thickness-direction surface of the substrate (2); a third step for melting the solder particles (5) to thereby flocculate the molten solder particles (5) on one thickness-direction surface of the plurality of electrodes (12) and form bumps (7); and a fourth step for removing the resin component from the substrate (2).

Description

バンプ付き基板の製造方法および積層体Manufacturing method of substrate with bumps and laminate
 本発明は、バンプ付き基板の製造方法および積層体に関する。 The present invention relates to a method for manufacturing a substrate with bumps and a laminate.
 従来、集積回路技術分野では、配線回路基板に半田バンプを形成し、これを外部接続端子として用いている。 Traditionally, in the field of integrated circuit technology, solder bumps are formed on wiring circuit boards and used as external connection terminals.
 半田バンプの製造方法として、例えば、基板を設ける段階と、基板上に開口部を有するドライフィルムレジストを形成する段階と、開口部に半田ペーストを充填する段階と、半田ペーストをリフローする段階と、ドライフィルムレジストを除去する段階とを含む半田バンプの製造方法が提案されている(例えば、特許文献1参照。)。 A method for manufacturing solder bumps has been proposed that includes, for example, the steps of providing a substrate, forming a dry film resist having openings on the substrate, filling the openings with solder paste, reflowing the solder paste, and removing the dry film resist (see, for example, Patent Document 1).
特開2015-213956号公報JP 2015-213956 A
 近年、小型低背化の観点から、配線回路基板の面方向において、互いに間隔を隔てて隣り合う電極間の距離を狭くする要求がある。 In recent years, there has been a demand to reduce the distance between adjacent electrodes spaced apart in the surface direction of the wiring circuit board in order to make it smaller and thinner.
 しかし、半田バンプの製造方法では、開口部に半田ペーストを充填しているため、上記電極間の距離が狭くなると、開口部に半田ペーストを確実に充填できず、半田バンプを製造できない場合がある。そうすると、信頼性が低下するという不具合がある。 However, in the method of manufacturing solder bumps, the openings are filled with solder paste, so if the distance between the electrodes becomes narrow, the openings cannot be filled with solder paste reliably, and it may not be possible to manufacture solder bumps. This causes a problem of reduced reliability.
 本発明は、互いに間隔を隔てて隣り合う電極間の距離が狭くても、信頼性に優れるバンプ付き基板を製造できるバンプ付き基板の製造方法を提供する。 The present invention provides a method for manufacturing a bumped substrate that can produce a highly reliable bumped substrate even when the distance between adjacent electrodes is narrow.
 本発明[1]は、配線回路基板および前記配線回路基板の面方向に並ぶ複数の電極を備える基板を準備する第1工程と、前記基板の厚み方向一方面に、樹脂成分および半田粒子を含む自己凝集型異方性導電性接着層を配置する第2工程と、前記半田粒子を溶融させることにより、前記複数の電極の厚み方向一方面に、溶融した半田粒子を凝集させて、バンプを形成する第3工程と、前記基板から、前記樹脂成分を除去する第4工程とを備える、バンプ付き基板の製造方法である。 The present invention [1] is a method for manufacturing a substrate with bumps, comprising a first step of preparing a substrate having a wiring circuit board and a plurality of electrodes arranged in the surface direction of the wiring circuit board, a second step of arranging a self-aggregating anisotropic conductive adhesive layer containing a resin component and solder particles on one surface of the substrate in the thickness direction, a third step of melting the solder particles to aggregate the molten solder particles on one surface of the electrodes in the thickness direction to form bumps, and a fourth step of removing the resin component from the substrate.
 本発明[2]は、前記基板の面方向における前記電極の最大長さが、100μm以下である、上記[1]に記載のバンプ付き基板の製造方法を含んでいる。 The present invention [2] includes the method for manufacturing a bumped substrate described in [1] above, in which the maximum length of the electrodes in the surface direction of the substrate is 100 μm or less.
 本発明[3]は、前記基板の面方向において、隣り合う電極の距離が、200μm以下である、上記[1]または[2]に記載のバンプ付き基板の製造方法を含んでいる。 The present invention [3] includes the method for manufacturing a bumped substrate described in [1] or [2] above, in which the distance between adjacent electrodes in the surface direction of the substrate is 200 μm or less.
 本発明[4]は、前記自己凝集型異方性導電性接着層が、フラックスを含む、上記[1]~[3]のいずれか一項に記載のバンプ付き基板の製造方法を含んでいる。 The present invention [4] includes the method for manufacturing a bumped substrate described in any one of [1] to [3] above, in which the self-aggregating anisotropic conductive adhesive layer contains flux.
 本発明[5]は、前記半田粒子の平均一次粒子径および前記半田粒子の平均二次粒子径の両方が、20μm以下である、上記[1]~[4]のいずれか一項に記載のバンプ付き基板の製造方法を含んでいる。 The present invention [5] includes the method for manufacturing a substrate with bumps described in any one of [1] to [4] above, in which both the average primary particle size of the solder particles and the average secondary particle size of the solder particles are 20 μm or less.
 本発明[6]は、前記半田粒子の融点における、前記樹脂成分の粘度が、5000mPa・s以下である、上記[1]~[5]のいずれか一項に記載のバンプ付き基板の製造方法を含んでいる。 The present invention [6] includes the method for manufacturing a substrate with bumps described in any one of [1] to [5] above, in which the viscosity of the resin component at the melting point of the solder particles is 5000 mPa·s or less.
 本発明[7]は、前記自己凝集型異方性導電性接着層が、自己凝集型異方性導電性接着フィルムから形成される、上記[1]~[6]のいずれか一項に記載のバンプ付き基板の製造方法を含んでいる。 The present invention [7] includes the method for manufacturing a bumped substrate described in any one of [1] to [6] above, in which the self-aggregating anisotropic conductive adhesive layer is formed from a self-aggregating anisotropic conductive adhesive film.
 本発明[8]は、配線回路基板および前記配線回路基板の面方向に並ぶ複数の電極を備える基板と、樹脂成分および半田粒子を含む自己凝集型異方性導電性接着層とを厚み方向一方側に向かって順に備え、前記自己凝集型異方性導電性接着層の厚み方向一方面が、露出している、積層体である。 The present invention [8] is a laminate comprising a substrate having a wiring circuit board and a plurality of electrodes arranged in the surface direction of the wiring circuit board, and a self-aggregating anisotropic conductive adhesive layer containing a resin component and solder particles, arranged in this order toward one side in the thickness direction, and one surface in the thickness direction of the self-aggregating anisotropic conductive adhesive layer is exposed.
 本発明のバンプ付き基板の製造方法は、自己凝集型異方性導電性接着層における半田粒子を溶融させることにより、複数の電極の厚み方向一方面に、溶融した半田粒子を凝集させて、バンプを形成する。そのため、互いに間隔を隔てて隣り合う電極間の距離が狭くても、信頼性に優れるバンプ付き基板を製造できる。 The method for manufacturing a bumped substrate of the present invention melts the solder particles in a self-aggregating anisotropic conductive adhesive layer, causing the molten solder particles to aggregate on one surface in the thickness direction of multiple electrodes to form bumps. Therefore, even if the distance between adjacent electrodes is narrow, a highly reliable bumped substrate can be manufactured.
 本発明の積層体は、配線回路基板および前記配線回路基板の面方向に並ぶ複数の電極を備える基板と、樹脂成分および半田粒子を含む自己凝集型異方性導電性接着層とを厚み方向一方側に向かって順に備える。そのため、この積層体を用いれば、互いに間隔を隔てて隣り合う電極間の距離が狭くても、信頼性に優れるバンプ付き基板を製造できる。 The laminate of the present invention comprises, in order toward one side in the thickness direction, a substrate having a wiring circuit board and a plurality of electrodes arranged in the surface direction of the wiring circuit board, and a self-aggregating anisotropic conductive adhesive layer containing a resin component and solder particles. Therefore, by using this laminate, a highly reliable substrate with bumps can be manufactured even if the distance between adjacent electrodes spaced apart is narrow.
図1A~図1Fは、バンプ付き基板の製造方法の一実施形態を示す。図1Aは、基板を準備する第1工程を示す。図1Bは、第2工程において、はく離ライナーを準備する工程を示す。図1Cは、第2工程において、はく離ライナーの厚み方向一方面に、自己凝集型異方性導電性接着フィルムを配置する配置工程を示す。図1Dは、基板の厚み方向一方面に、自己凝集型異方性導電性接着層を配置する第2工程を示す。図1Eは、半田粒子を溶融させることにより、複数の電極の厚み方向一方面に、溶融した半田粒子を凝集させて、バンプを形成する第3工程を示す。図1Fは、基板から、樹脂成分を除去する第4工程を示す。1A to 1F show an embodiment of a method for manufacturing a substrate with bumps. FIG. 1A shows a first step of preparing a substrate. FIG. 1B shows a second step of preparing a release liner. FIG. 1C shows a second step of arranging a self-aggregating anisotropic conductive adhesive film on one surface in the thickness direction of the release liner. FIG. 1D shows a second step of arranging a self-aggregating anisotropic conductive adhesive layer on one surface in the thickness direction of the substrate. FIG. 1E shows a third step of melting solder particles to aggregate the molten solder particles on one surface in the thickness direction of a plurality of electrodes to form bumps. FIG. 1F shows a fourth step of removing a resin component from the substrate. 図2は、実施例1の自己凝集型異方性導電性接着層について、デジタルマイクロスコープの観察写真を示す。FIG. 2 shows a digital microscope photograph of the self-aggregating anisotropic conductive adhesive layer of Example 1. 図3は、実施例2の自己凝集型異方性導電性接着層について、デジタルマイクロスコープの観察写真を示す。FIG. 3 shows a digital microscope photograph of the self-aggregating anisotropic conductive adhesive layer of Example 2. 図4は、実施例3の自己凝集型異方性導電性接着層について、デジタルマイクロスコープの観察写真を示す。FIG. 4 shows a digital microscope photograph of the self-aggregating anisotropic conductive adhesive layer of Example 3.
 図1A~図1Fを参照して、バンプ付き基板の製造方法の一実施形態を説明する。 With reference to Figures 1A to 1F, one embodiment of a method for manufacturing a substrate with bumps will be described.
 図1A~図1Fにおいて、紙面上下方向は、上下方向(厚み方向)であって、紙面上側が、上側(厚み方向一方側)、紙面下側が、下側(厚み方向他方側)である。また、紙面左右方向および奥行き方向は、上下方向に直交する面方向である。具体的には、各図の方向矢印に準拠する。 In Figures 1A to 1F, the up-down direction on the paper surface is the up-down direction (thickness direction), with the upper side of the paper surface being the top side (one side in the thickness direction) and the lower side of the paper surface being the bottom side (the other side in the thickness direction). Additionally, the left-right direction and depth direction on the paper surface are surface directions that are perpendicular to the up-down direction. Specifically, they follow the directional arrows in each figure.
 バンプ付き基板の製造方法は、配線回路基板11および配線回路基板11の面方向に並ぶ複数の電極12を備える基板2を準備する第1工程と、基板2の厚み方向一方面に、樹脂成分および半田粒子を含む自己凝集型異方性導電性接着層3を配置する第2工程と、半田粒子5を溶融させることにより、複数の電極12の厚み方向一方面に、溶融した半田粒子5を凝集させて、バンプ7を形成する第3工程と、基板2から、樹脂成分を除去する第4工程とを備える。
<第1工程>
 第1工程では、図1Aに示すように、基板2を準備する。
The method for manufacturing a substrate with bumps includes a first step of preparing a substrate 2 having a wiring circuit board 11 and a plurality of electrodes 12 arranged in the surface direction of the wiring circuit board 11; a second step of arranging a self-aggregating anisotropic conductive adhesive layer 3 containing a resin component and solder particles on one thickness-wise surface of the substrate 2; a third step of melting the solder particles 5 to aggregate the molten solder particles 5 on one thickness-wise surface of the plurality of electrodes 12 to form bumps 7; and a fourth step of removing the resin component from the substrate 2.
<First step>
In the first step, a substrate 2 is prepared as shown in FIG. 1A.
 基材2は、平板形状を有する。 The substrate 2 has a flat plate shape.
 基材2は、配線回路基板11と、配線回路基板11の面方向に並ぶ複数の電極12とを備える。換言すれば、基材2は、配線回路基板11と、配線回路基板11の表面(厚み方向一方面)に設けられた複数の電極12とを備える。 The substrate 2 includes a wiring circuit board 11 and a plurality of electrodes 12 arranged in the surface direction of the wiring circuit board 11. In other words, the substrate 2 includes a wiring circuit board 11 and a plurality of electrodes 12 provided on the surface (one surface in the thickness direction) of the wiring circuit board 11.
 配線回路基板11は、例えば、絶縁材料および半導体材料から形成されている。 The wiring circuit board 11 is formed, for example, from an insulating material and a semiconductor material.
 配線回路基板11の厚みは、例えば、5μm以上、また、例えば、1000μm以下である。 The thickness of the wiring circuit board 11 is, for example, 5 μm or more and, for example, 1000 μm or less.
 電極12は、金属からなる。 The electrode 12 is made of metal.
 電極12は、基材2において、ドットパターンとして配置されている。 The electrodes 12 are arranged in a dot pattern on the substrate 2.
 詳しくは、電極12は、平面視円形状を有する。また、複数の電極12は、面方向に、均等に整列配置されている。 In more detail, the electrode 12 has a circular shape in a plan view. Furthermore, the multiple electrodes 12 are evenly aligned in the planar direction.
 電極12の厚みは、例えば、0μm以上、好ましくは、0.001μm以上、また、例えば、5μm以下である。なお、基材2の表面と電極12の表面とが一致している場合には、電極12の厚みは、0μmである。 The thickness of the electrode 12 is, for example, 0 μm or more, preferably 0.001 μm or more, and for example, 5 μm or less. When the surface of the substrate 2 and the surface of the electrode 12 are flush with each other, the thickness of the electrode 12 is 0 μm.
 基板2の面方向における電極12の最大長さ(電極12が、平面視円形状である場合には、直径)は、小型低背化の観点から、例えば、100μm以下、好ましくは、50μm以下、より好ましくは、30μm以下、さらに好ましくは、20μm以下、また、例えば、1μm以上である。 The maximum length of the electrode 12 in the surface direction of the substrate 2 (if the electrode 12 is circular in plan view, the diameter) is, from the viewpoint of miniaturization and low height, for example, 100 μm or less, preferably 50 μm or less, more preferably 30 μm or less, even more preferably 20 μm or less, and for example, 1 μm or more.
 また、面方向において、隣り合う電極12の距離(ピッチ)は、例えば、3μm以上、好ましくは、5μm以上、また、小型低背化の観点から、例えば、200μm以下、好ましくは、100μm以下、より好ましくは、60μm以下、さらに好ましくは、40μm以下である。 In addition, the distance (pitch) between adjacent electrodes 12 in the surface direction is, for example, 3 μm or more, preferably 5 μm or more, and from the viewpoint of miniaturization and low height, for example, 200 μm or less, preferably 100 μm or less, more preferably 60 μm or less, and even more preferably 40 μm or less.
<第2工程>
 第2工程では、基板2の厚み方向一方面に、自己凝集型異方性導電性接着層3を配置する。
<Second step>
In the second step, a self-aggregating anisotropic conductive adhesive layer 3 is disposed on one surface of the substrate 2 in the thickness direction.
 自己凝集型異方性導電性接着層3とは、詳しくは後述するが、加熱によって自己凝集する半田粒子5を含む層を意味し、例えば、圧力を加えることによって、半田粒子5同士を接触させる異方性導電フィルムとは区別される。 The self-aggregating anisotropic conductive adhesive layer 3, which will be described in detail later, refers to a layer containing solder particles 5 that self-aggregate when heated, and is distinguished from an anisotropic conductive film in which the solder particles 5 come into contact with each other when pressure is applied, for example.
 基板2の厚み方向一方面に、自己凝集型異方性導電性接着層3を配置するには、まず、自己凝集型異方性導電性接着フィルム1を準備する。つまり、この方法では、自己凝集型異方性導電性接着層3が、自己凝集型異方性導電性接着フィルム1から形成される。自己凝集型異方性導電性接着層3が、自己凝集型異方性導電性接着フィルム1から形成されると、生産性に優れる。 To place the self-aggregating anisotropic conductive adhesive layer 3 on one surface in the thickness direction of the substrate 2, first prepare the self-aggregating anisotropic conductive adhesive film 1. That is, in this method, the self-aggregating anisotropic conductive adhesive layer 3 is formed from the self-aggregating anisotropic conductive adhesive film 1. When the self-aggregating anisotropic conductive adhesive layer 3 is formed from the self-aggregating anisotropic conductive adhesive film 1, productivity is excellent.
 自己凝集型異方性導電性接着フィルム1を準備するには、自己凝集型異方性導電性接着組成物を準備する。 To prepare the self-aggregating anisotropic conductive adhesive film 1, a self-aggregating anisotropic conductive adhesive composition is prepared.
 自己凝集型異方性導電性接着組成物は、樹脂成分と、半田粒子5と、必要により、フラックスとを含む。つまり、自己凝集型異方性導電性接着フィルム1は、樹脂成分と、半田粒子5と、必要により、フラックスとを含む。 The self-aggregating anisotropic conductive adhesive composition contains a resin component, solder particles 5, and, if necessary, flux. In other words, the self-aggregating anisotropic conductive adhesive film 1 contains a resin component, solder particles 5, and, if necessary, flux.
<樹脂成分>
 樹脂成分は、熱可塑性樹脂を含む。
<Resin Component>
The resin component includes a thermoplastic resin.
[熱可塑性樹脂]
 熱可塑性樹脂としては、例えば、熱可塑性エポキシ樹脂、熱可塑性フェノール樹脂、フェノキシ樹脂、ポリオレフィン(例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体など)、熱可塑性アクリル樹脂、熱可塑性ポリエステル、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、ポリスチレン、ポリアクリロニトリル、ポリアミド(ナイロン(登録商標))、ポリカーボネート、ポリアセタール、ポリエチレンテレフタレート、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリアリルスルホン、熱可塑性ポリイミド、熱可塑性ポリウレタン、ポリアミノビスマレイミド、ポリアミドイミド、ポリエーテルイミド、ビスマレイミドトリアジン樹脂、ポリメチルペンテン、フッ化樹脂、液晶ポリマー、オレフィン-ビニルアルコール共重合体、アイオノマー、ポリアリレート、アクリロニトリル-エチレン-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリル-スチレン共重合体、および、ブタジエン-スチレン共重合体が挙げられる。熱可塑性樹脂として、好ましくは、熱可塑性エポキシ樹脂および熱可塑性フェノール樹脂が挙げられる。
[Thermoplastic resin]
Examples of the thermoplastic resin include thermoplastic epoxy resin, thermoplastic phenol resin, phenoxy resin, polyolefin (e.g., polyethylene, polypropylene, ethylene-propylene copolymer, etc.), thermoplastic acrylic resin, thermoplastic polyester, polyvinyl acetate, ethylene-vinyl acetate copolymer, polyvinyl chloride, polystyrene, polyacrylonitrile, polyamide (Nylon (registered trademark)), polycarbonate, polyacetal, polyethylene terephthalate, polyphenylene oxide, polyphenylene sulfide, polysulfone, polyether sulfone, polyether ether ketone, polyaryl sulfone, thermoplastic polyimide, thermoplastic polyurethane, polyamino bismaleimide, polyamide imide, polyether imide, bismaleimide triazine resin, polymethylpentene, fluorinated resin, liquid crystal polymer, olefin-vinyl alcohol copolymer, ionomer, polyarylate, acrylonitrile-ethylene-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-styrene copolymer, and butadiene-styrene copolymer. Examples of the thermoplastic resin include preferably thermoplastic epoxy resin and thermoplastic phenol resin.
 熱可塑性エポキシ樹脂として、例えば、熱可塑性ビスフェノール型エポキシ樹脂(例えば、熱可塑性ビスフェノールA型エポキシ樹脂、熱可塑性ビスフェノールF型エポキシ樹脂、および、熱可塑性ビスフェノールS型エポキシ樹脂)、熱可塑性ノボラック型エポキシ樹脂(例えば、熱可塑性フェノールノボラック型エポキシ樹脂、熱可塑性クレゾールノボラック型エポキシ樹脂、および、熱可塑性ビフェニル型エポキシ樹脂)、熱可塑性ナフタレン型エポキシ樹脂、熱可塑性フルオレン型エポキシ樹脂(例えば、ビスアリールフルオレン型エポキシ樹脂)、および、熱可塑性トリフェニルメタン型エポキシ樹脂(例えば、トリスヒドロキシフェニルメタン型エポキシ樹脂)が挙げられる。熱可塑性エポキシ樹脂として、好ましくは、熱可塑性ビスフェノール型エポキシ樹脂が挙げられる。熱可塑性エポキシ樹脂として、より好ましくは、熱可塑性ビスフェノールA型エポキシ樹脂が挙げられる。 Examples of thermoplastic epoxy resins include thermoplastic bisphenol type epoxy resins (e.g., thermoplastic bisphenol A type epoxy resins, thermoplastic bisphenol F type epoxy resins, and thermoplastic bisphenol S type epoxy resins), thermoplastic novolac type epoxy resins (e.g., thermoplastic phenol novolac type epoxy resins, thermoplastic cresol novolac type epoxy resins, and thermoplastic biphenyl type epoxy resins), thermoplastic naphthalene type epoxy resins, thermoplastic fluorene type epoxy resins (e.g., bisarylfluorene type epoxy resins), and thermoplastic triphenylmethane type epoxy resins (e.g., trishydroxyphenylmethane type epoxy resins). Preferably, thermoplastic bisphenol type epoxy resins are used as thermoplastic epoxy resins. More preferably, thermoplastic bisphenol A type epoxy resins are used as thermoplastic epoxy resins.
 また、これらの熱可塑性樹脂は、常温(25℃)で、固体、半固体および液状のいずれの形態であってもよい。 Furthermore, these thermoplastic resins may be in any form, such as solid, semi-solid, or liquid, at room temperature (25°C).
 なお、25℃で固体とは、25℃で流動せず、粘度を有しない性状である。また、25℃で液状とは、25℃で、液体および流動体を含み、粘度を有する性状である(以下同様)。 Note that a solid at 25°C means that it does not flow and has no viscosity at 25°C. Also, a liquid at 25°C means that it has viscosity at 25°C, including liquids and fluids (the same applies below).
 熱可塑性樹脂として、好ましくは、固体の熱可塑性樹脂が挙げられる。 The thermoplastic resin is preferably a solid thermoplastic resin.
 また、熱可塑性樹脂の軟化点は、例えば、90℃以上、好ましくは、110℃以上、より好ましくは、120℃以上、さらに好ましくは、120℃超過、とりわけ好ましくは、125℃以上、また、例えば、230℃以下、好ましくは、200℃以下、より好ましくは、150℃未満、さらに好ましくは、140℃以下である。 The softening point of the thermoplastic resin is, for example, 90°C or higher, preferably 110°C or higher, more preferably 120°C or higher, even more preferably more than 120°C, particularly preferably 125°C or higher, and, for example, 230°C or lower, preferably 200°C or lower, more preferably less than 150°C, even more preferably 140°C or lower.
 上記軟化点が、上記下限以上であれば、後述する半田粒子5の平均一次粒子径および平均二次粒子径の両方を小さくできる。 If the softening point is equal to or higher than the lower limit, both the average primary particle size and the average secondary particle size of the solder particles 5 described below can be reduced.
 詳しくは、上記軟化点が、上記下限以上であれば、後述する自己凝集型異方性導電性接着フィルム1の製造方法の配置工程おいて、熱可塑性樹脂が半田粒子5の凝集を抑制することができる。その結果、後述する半田粒子5の平均一次粒子径および平均二次粒子径の両方を小さくできる。 In more detail, if the softening point is equal to or higher than the lower limit, the thermoplastic resin can suppress the aggregation of the solder particles 5 in the arrangement step of the method for producing the self-aggregating anisotropic conductive adhesive film 1 described below. As a result, it is possible to reduce both the average primary particle size and the average secondary particle size of the solder particles 5 described below.
 なお、上記軟化点は、熱機械分析装置により測定することができる。 The softening point can be measured using a thermomechanical analyzer.
 熱可塑性樹脂は、単独使用または2種以上を併用することができる。 Thermoplastic resins can be used alone or in combination of two or more types.
 熱可塑性樹脂の含有割合は、樹脂成分100質量部に対して、例えば、30質量部以上、好ましくは、40質量部以上、また、例えば、70質量部以下、好ましくは、60質量部以下である。 The content of the thermoplastic resin is, for example, 30 parts by mass or more, preferably 40 parts by mass or more, and, for example, 70 parts by mass or less, preferably 60 parts by mass or less, per 100 parts by mass of the resin component.
[硬化性樹脂]
 樹脂成分は、必要により、硬化性樹脂を含む。
[Hardening resin]
The resin component optionally contains a curable resin.
 硬化性樹脂としては、例えば、熱硬化性樹脂が挙げられる。熱硬化性樹脂としては、例えば、熱硬化性エポキシ樹脂、ユリア樹脂、メラミン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、フェノール樹脂、熱硬化性アクリル樹脂、熱硬化性ポリエステル、熱硬化性ポリイミド、および、熱硬化性ポリウレタンが挙げられる。硬化性樹脂として、好ましくは、熱硬化性エポキシ樹脂が挙げられる。 Examples of the curable resin include thermosetting resins. Examples of the thermosetting resin include thermosetting epoxy resins, urea resins, melamine resins, diallyl phthalate resins, silicone resins, phenolic resins, thermosetting acrylic resins, thermosetting polyesters, thermosetting polyimides, and thermosetting polyurethanes. A preferred example of the curable resin is thermosetting epoxy resin.
 熱硬化性エポキシ樹脂としては、例えば、熱硬化性ビスフェノール型エポキシ樹脂(例えば、熱硬化性ビスフェノールA型エポキシ樹脂、熱硬化性ビスフェノールF型エポキシ樹脂、および、熱硬化性ビスフェノールS型エポキシ樹脂)、熱硬化性ノボラック型エポキシ樹脂(例えば、熱硬化性フェノールノボラック型エポキシ樹脂、熱硬化性クレゾールノボラック型エポキシ樹脂、および、熱硬化性ビフェニル型エポキシ樹脂)、熱硬化性ナフタレン型エポキシ樹脂、熱硬化性フルオレン型エポキシ樹脂(例えば、熱硬化性ビスアリールフルオレン型エポキシ樹脂)、および、熱硬化性トリフェニルメタン型エポキシ樹脂(例えば、熱硬化性トリスヒドロキシフェニルメタン型エポキシ樹脂)が挙げられる。
熱硬化性エポキシ樹脂として、好ましくは、熱硬化性ビスフェノール型エポキシ樹脂が挙げられる。熱硬化性エポキシ樹脂として、より好ましくは、熱硬化性ビスフェノールA型エポキシ樹脂が挙げられる。
Examples of the thermosetting epoxy resin include thermosetting bisphenol type epoxy resins (e.g., thermosetting bisphenol A type epoxy resins, thermosetting bisphenol F type epoxy resins, and thermosetting bisphenol S type epoxy resins), thermosetting novolac type epoxy resins (e.g., thermosetting phenol novolac type epoxy resins, thermosetting cresol novolac type epoxy resins, and thermosetting biphenyl type epoxy resins), thermosetting naphthalene type epoxy resins, thermosetting fluorene type epoxy resins (e.g., thermosetting bisarylfluorene type epoxy resins), and thermosetting triphenylmethane type epoxy resins (e.g., thermosetting trishydroxyphenylmethane type epoxy resins).
As the thermosetting epoxy resin, preferably, a thermosetting bisphenol type epoxy resin is used, and more preferably, a thermosetting bisphenol A type epoxy resin is used.
 また、これらの熱硬化性樹脂は、常温(25℃)で、固体、半固体および液状のいずれの形態であってもよい。 Furthermore, these thermosetting resins may be in any form, such as solid, semi-solid, or liquid, at room temperature (25°C).
 熱硬化性樹脂として、好ましくは、液状の熱硬化性樹脂が挙げられる。 Thermosetting resin is preferably a liquid thermosetting resin.
 そして、樹脂成分は、好ましくは、固体の熱可塑性樹脂および液状の熱硬化性樹脂を含む。樹脂成分が、固体の熱可塑性樹脂および液状の熱硬化性樹脂を含むと、粘着性シートとしての成形性および粘着力に優れる。 The resin component preferably contains a solid thermoplastic resin and a liquid thermosetting resin. When the resin component contains a solid thermoplastic resin and a liquid thermosetting resin, the adhesive sheet has excellent formability and adhesive strength.
 樹脂成分は、より好ましくは、固体の熱可塑性樹脂および液状の熱硬化性樹脂からなる。 The resin component more preferably comprises a solid thermoplastic resin and a liquid thermosetting resin.
 硬化性樹脂は、単独使用または2種以上を併用することができる。 The curable resins can be used alone or in combination of two or more types.
 硬化性樹脂の含有割合は、樹脂成分100質量部に対して、例えば、30質量部以上、好ましくは、40質量部以上、また、例えば、70質量部以下、好ましくは、60質量部以下である。 The content of the curable resin is, for example, 30 parts by mass or more, preferably 40 parts by mass or more, and, for example, 70 parts by mass or less, preferably 60 parts by mass or less, per 100 parts by mass of the resin component.
 そして、後述する半田粒子5の融点における、樹脂成分の粘度は、例えば、1mPa・s以上、好ましくは、100mPa・s以上、また、例えば、5000mPa・s以下、好ましくは、2000mPa・s以下、より好ましくは、1000mPa・s以下、さらに好ましくは、500mPa・s以下である。 The viscosity of the resin component at the melting point of the solder particles 5 described below is, for example, 1 mPa·s or more, preferably 100 mPa·s or more, and, for example, 5000 mPa·s or less, preferably 2000 mPa·s or less, more preferably 1000 mPa·s or less, and even more preferably 500 mPa·s or less.
 上記粘度が、上記下限以上および上記上限以下であれば、未集積の半田粒子5(後述)を低減できる。その結果、生産性を向上できる。 If the viscosity is equal to or greater than the lower limit and equal to or less than the upper limit, the amount of unaccumulated solder particles 5 (described below) can be reduced. As a result, productivity can be improved.
 なお、粘度は、レオメータにより測定できる。また、粘度の測定に行いては、後述する実施例にて詳述する。 The viscosity can be measured using a rheometer. The method for measuring the viscosity will be described in detail in the examples below.
 また、樹脂成分の含有割合は、自己凝集型異方性導電性接着組成物(自己凝集型異方性導電性接着フィルム1)に対して、例えば、20質量%以上、好ましくは、30質量%以上、また、例えば、60質量%以下、好ましくは、40質量%以下である。 The content of the resin component in the self-aggregating anisotropic conductive adhesive composition (self-aggregating anisotropic conductive adhesive film 1) is, for example, 20% by mass or more, preferably 30% by mass or more, and, for example, 60% by mass or less, preferably 40% by mass or less.
 また、樹脂成分において、熱可塑性樹脂に対する硬化性樹脂の質量比は、例えば、0.6以上、好ましくは、0.9以上、また、例えば、1.5以下、好ましくは、1.1以下である。 In addition, in the resin component, the mass ratio of the curable resin to the thermoplastic resin is, for example, 0.6 or more, preferably 0.9 or more, and, for example, 1.5 or less, preferably 1.1 or less.
<半田粒子>
 半田粒子5を形成する半田材料は、環境適正の観点から、鉛を含有しない半田材料(鉛フリー半田材料)が挙げられる。具体的には、半田材料として、例えば、錫および錫合金が挙げられる。錫合金として、例えば、錫-ビスマス合金(Sn-Bi)、錫-銀-銅合金(Sn-Ag-Cu)、および、錫-銀合金(Sn-Ag)が挙げられる。
<Solder particles>
From the viewpoint of environmental friendliness, the solder material forming the solder particles 5 may be a solder material that does not contain lead (lead-free solder material). Specifically, examples of the solder material include tin and tin alloys. Examples of the tin alloy include tin-bismuth alloy (Sn-Bi), tin-silver-copper alloy (Sn-Ag-Cu), and tin-silver alloy (Sn-Ag).
 錫-銀合金における錫の含有割合は、例えば、90質量%以上、好ましくは、95%質量%以上である。また、錫-銀合金における銀の含有割合は、例えば、10質量%以下、好ましくは、5質量%以下である。 The tin content in the tin-silver alloy is, for example, 90% by mass or more, preferably 95% by mass or more. The silver content in the tin-silver alloy is, for example, 10% by mass or less, preferably 5% by mass or less.
 また、錫-銀-銅合金における錫の含有割合は、例えば、90質量%以上、好ましくは、95%質量%以上である。また、錫-銀-銅合金における銀の含有割合は、例えば、10質量%以下、好ましくは、5質量%以下である。また、錫-銀-銅合金における銅の含有割合は、例えば、1質量%以下、好ましくは、0.5質量%以下である。 The tin content in the tin-silver-copper alloy is, for example, 90% by mass or more, preferably 95% by mass or more. The silver content in the tin-silver-copper alloy is, for example, 10% by mass or less, preferably 5% by mass or less. The copper content in the tin-silver-copper alloy is, for example, 1% by mass or less, preferably 0.5% by mass or less.
 また、錫-ビスマス合金における錫の含有割合は、例えば、30質量%以上、好ましくは、40質量%以上である。錫-ビスマス合金におけるビスマスの含有割合は、例えば、70質量%以下、好ましくは、60質量%以下である。 The tin content in the tin-bismuth alloy is, for example, 30% by mass or more, preferably 40% by mass or more. The bismuth content in the tin-bismuth alloy is, for example, 70% by mass or less, preferably 60% by mass or less.
 半田材料として、好ましくは、錫-銀合金(Sn-Ag)および錫-銀-銅合金(Sn-Ag-Cu)が挙げられる。 Preferred solder materials include tin-silver alloy (Sn-Ag) and tin-silver-copper alloy (Sn-Ag-Cu).
 半田材料の融点(すなわち、半田粒子5の融点)は、例えば、260℃以下、好ましくは、235℃以下、また、例えば、100℃以上、好ましくは、130℃以上である。融点は、示差走査熱量測定(DSC)により求められる(以下同様)。 The melting point of the solder material (i.e., the melting point of the solder particles 5) is, for example, 260° C. or less, preferably 235° C. or less, and, for example, 100° C. or more, preferably 130° C. or more. The melting point is determined by differential scanning calorimetry (DSC) (same below).
 半田粒子5の形状としては、特に限定されず、例えば、球形状、板形状、および、針形状が挙げられる。半田粒子5の形状として、好ましくは、球形状が挙げられる。なお、図1Cおよび図1Dでは、半田粒子5の形状を球形状として示しているが、半田粒子5の形状はこれに限定されない。 The shape of the solder particles 5 is not particularly limited, and examples thereof include a spherical shape, a plate shape, and a needle shape. A preferable shape of the solder particles 5 is a spherical shape. Note that although the shape of the solder particles 5 is shown as a sphere in Figs. 1C and 1D, the shape of the solder particles 5 is not limited to this.
 半田粒子5の表面は、一般的に、半田材料の酸化物からなる酸化膜で被覆されている。酸化膜の厚みは、例えば、1nm以上、また、例えば、20nm以下である。 The surface of the solder particles 5 is generally covered with an oxide film made of an oxide of the solder material. The thickness of the oxide film is, for example, 1 nm or more and, for example, 20 nm or less.
 また、半田粒子5は、後述する自己凝集型異方性導電性接着組成物の調製、および/または、後述する自己凝集型異方性導電性接着フィルム1の製造方法の配置工程において、半田粒子5の一部または全部が凝集して二次粒子となる場合がある。つまり、自己凝集型異方性導電性接着フィルム1は、半田粒子5の一次粒子および/または半田粒子5の二次粒子を含む。 Furthermore, in the preparation of the self-aggregating anisotropic conductive adhesive composition described below and/or in the arrangement step of the manufacturing method of the self-aggregating anisotropic conductive adhesive film 1 described below, some or all of the solder particles 5 may aggregate to become secondary particles. In other words, the self-aggregating anisotropic conductive adhesive film 1 contains primary particles of the solder particles 5 and/or secondary particles of the solder particles 5.
 そして、半田粒子5の平均一次粒子径および半田粒子5の平均二次粒子径の両方が、例えば、20μm以下、好ましくは、10μm以下、より好ましくは、7μm以下、小型低背化および信頼性の観点から、さらに好ましくは、5μm以下、また、例えば、0.1μm以上、好ましくは、0.5μm以上である。 The average primary particle diameter of the solder particles 5 and the average secondary particle diameter of the solder particles 5 are both, for example, 20 μm or less, preferably 10 μm or less, more preferably 7 μm or less, and from the standpoint of small size, low height, and reliability, are even more preferably 5 μm or less, and for example, 0.1 μm or more, preferably 0.5 μm or more.
 詳しくは、一次粒子とは、粒子の最小単位であって、凝集のない独立した粒子である。半田粒子5の平均一次粒子径は、例えば、20μm以下、好ましくは、10μm以下、より好ましくは、7μm以下、小型低背化および信頼性の観点から、さらに好ましくは、5μm以下、また、例えば、0.1μm以上、好ましくは、0.5μm以上である。 More specifically, a primary particle is the smallest unit of a particle and is an independent particle without aggregation. The average primary particle diameter of the solder particles 5 is, for example, 20 μm or less, preferably 10 μm or less, more preferably 7 μm or less, and from the viewpoint of small size and low height and reliability, even more preferably 5 μm or less, and, for example, 0.1 μm or more, preferably 0.5 μm or more.
 また、二次粒子とは、一次粒子が凝集した粒子である。平均二次粒子径は、平均一次粒子径よりも大きく、例えば、20μm以下、好ましくは、10μm以下、より好ましくは、7μm以下、小型低背化および信頼性の観点から、さらに好ましくは、5μm以下、また、例えば、1μm以上である。 Secondary particles are particles formed by agglomeration of primary particles. The average secondary particle diameter is larger than the average primary particle diameter, for example, 20 μm or less, preferably 10 μm or less, more preferably 7 μm or less, and from the viewpoint of small size, low height, and reliability, even more preferably 5 μm or less, and for example, 1 μm or more.
 上記したように、自己凝集型異方性導電性接着フィルム1は、半田粒子5の一次粒子および/または半田粒子5の二次粒子を含む。つまり、自己凝集型異方性導電性接着フィルム1は、半田粒子5の一次粒子のみを含むか、または、半田粒子5の二次粒子のみを含むか、または、半田粒子5の一次粒子および半田粒子5の二次粒子を含むが、いずれの場合であっても、半田粒子5の平均一次粒子径および半田粒子5の平均二次粒子径の両方が、例えば、20μm以下である。 As described above, the self-aggregating anisotropic conductive adhesive film 1 contains primary particles of solder particles 5 and/or secondary particles of solder particles 5. In other words, the self-aggregating anisotropic conductive adhesive film 1 contains only primary particles of solder particles 5, or only secondary particles of solder particles 5, or primary particles of solder particles 5 and secondary particles of solder particles 5, but in any case, both the average primary particle diameter of the solder particles 5 and the average secondary particle diameter of the solder particles 5 are, for example, 20 μm or less.
 上記平均一次粒子径および上記平均二次粒子径の両方が、上記上限以下であれば、後述する自己凝集において、ムラを抑制できる。その結果、ブリッジ(後述)を抑制でき、信頼性を向上させることができる。 If both the average primary particle size and the average secondary particle size are equal to or less than the upper limit, unevenness in the self-aggregation described below can be suppressed. As a result, bridging (described below) can be suppressed, and reliability can be improved.
 なお、上記平均一次粒子径は、レーザー回折式粒度分布測定装置により測定できる。また、上記平均二次粒子径の測定方法は、後述する実施例で詳述する。 The above average primary particle size can be measured using a laser diffraction particle size distribution analyzer. The method for measuring the above average secondary particle size will be described in detail in the Examples below.
 半田粒子5は、単独使用または2種以上を併用することができる。 The solder particles 5 can be used alone or in combination of two or more types.
 半田粒子5の含有割合は、自己凝集型異方性導電性接着組成物(自己凝集型異方性導電性接着フィルム1)に対して、例えば、50質量%以上、好ましくは、55質量%以上、また、例えば、95質量%以下、好ましくは、80質量%以下、より好ましくは、60質量%以下である。 The content of the solder particles 5 in the self-aggregating anisotropic conductive adhesive composition (self-aggregating anisotropic conductive adhesive film 1) is, for example, 50% by mass or more, preferably 55% by mass or more, and, for example, 95% by mass or less, preferably 80% by mass or less, and more preferably 60% by mass or less.
<フラックス>
 フラックスは、半田粒子5の表面における酸化膜(半田材料の酸化物からなる酸化膜)を除去するための成分である。
<Flux>
The flux is a component for removing the oxide film (the oxide film made of an oxide of the solder material) on the surface of the solder particles 5 .
 フラックスの材料としては、例えば、有機酸塩が挙げられる。有機酸塩としては、例えば、有機酸、キノリノール誘導体、および、金属カルボニル酸塩が挙げられる。有機酸としては、例えば、脂肪族カルボン酸および芳香族カルボン酸が挙げられる。脂肪族カルボン酸としては、例えば、脂肪族ジカルボン酸が挙げられる。脂肪族ジカルボン酸としては、具体的には、アジピン酸、リンゴ酸、マロン酸、コハク酸、グルタル酸、ピメリン酸、スベリン酸、およびセバシン酸が挙げられる。芳香族カルボン酸としては、例えば、安息香酸、2-フェノキシ安息香酸、フタル酸、ジフェニル酢酸、トリメリット酸、および、ピロメリット酸が挙げられる。フラックスの材料として、好ましくは、有機酸が挙げられる。フラックスの材料として、より好ましくは、リンゴ酸が挙げられる。 Examples of the flux material include organic acid salts. Examples of the organic acid salts include organic acids, quinolinol derivatives, and metal carbonyl acid salts. Examples of the organic acids include aliphatic carboxylic acids and aromatic carboxylic acids. Examples of the aliphatic carboxylic acids include aliphatic dicarboxylic acids. Specific examples of the aliphatic dicarboxylic acids include adipic acid, malic acid, malonic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, and sebacic acid. Examples of the aromatic carboxylic acids include benzoic acid, 2-phenoxybenzoic acid, phthalic acid, diphenylacetic acid, trimellitic acid, and pyromellitic acid. Preferably, an organic acid is used as the flux material. More preferably, malic acid is used as the flux material.
 フラックスの融点は、例えば、250℃以下、好ましくは、180℃以下、より好ましくは、160℃以下、また、例えば、100℃以上、好ましくは、120℃以上、より好ましくは、130℃以上である。 The melting point of the flux is, for example, 250°C or less, preferably 180°C or less, more preferably 160°C or less, and, for example, 100°C or more, preferably 120°C or more, more preferably 130°C or more.
 フラックスの形状としては、特に制限されず、例えば、板形状、針形状、および、球形状が挙げられる。 The shape of the flux is not particularly limited, but examples include plate, needle, and spherical shapes.
 また、フラックスは、公知の溶剤に溶解させ、フラックスの溶液とすることもできる。フラックスの溶液の固形分濃度は、例えば、10質量%以上、また、例えば、40質量%以下である。 Flux can also be dissolved in a known solvent to prepare a flux solution. The solids concentration of the flux solution is, for example, 10% by mass or more and, for example, 40% by mass or less.
 フラックスは、単独使用または2種以上を併用することができる。 Flux can be used alone or in combination of two or more types.
 フラックスの含有割合は、自己凝集型異方性導電性接着組成物(自己凝集型異方性導電性接着フィルム1)に対して、例えば、1質量%以上、好ましくは、5質量%以上、また、例えば、20質量%以下、好ましくは、10質量%以下である。 The content of the flux in the self-aggregating anisotropic conductive adhesive composition (self-aggregating anisotropic conductive adhesive film 1) is, for example, 1 mass % or more, preferably 5 mass % or more, and, for example, 20 mass % or less, preferably 10 mass % or less.
<添加剤>
 自己凝集型異方性導電性接着組成物は、必要により、添加剤(例えば、硬化剤、硬化促進剤およびシランカップリング剤)を適宜の割合で含むことができる。
<Additives>
The self-aggregating anisotropic conductive adhesive composition may contain additives (for example, a curing agent, a curing accelerator, and a silane coupling agent) in appropriate proportions, if necessary.
<自己凝集型異方性導電性接着組成物の調製>
 自己凝集型異方性導電性接着組成物は、樹脂成分と、半田粒子5と、必要により配合されるフラックスと、必要により配合される添加剤とを混合し、必要により攪拌することにより調製される。
<Preparation of Self-Aggregating Anisotropic Electroconductive Adhesive Composition>
The self-aggregating anisotropic conductive adhesive composition is prepared by mixing a resin component, solder particles 5, an optional flux, and an optional additive, and stirring the mixture as required.
 上記調製において、攪拌することなく、半田粒子5を混合する場合には、半田粒子5の大部分は凝集して、二次粒子となる。一方、上記調製において、攪拌して、半田粒子5を混合する場合には、一次粒子のまま、存在する。 If the solder particles 5 are mixed without stirring in the above preparation, most of the solder particles 5 will aggregate and become secondary particles. On the other hand, if the solder particles 5 are mixed with stirring in the above preparation, they will remain as primary particles.
 また、自己凝集型異方性導電性接着組成物を、公知の溶剤に配合して、自己凝集型異方性導電性接着組成物をワニスとして調製することもできる。自己凝集型異方性導電性接着組成物をワニスの固形分濃度は、例えば、50質量%以上、好ましくは、60質量%以上、また、例えば、80質量%以下である。 The self-aggregating anisotropic conductive adhesive composition can also be mixed with a known solvent to prepare the self-aggregating anisotropic conductive adhesive composition as a varnish. The solids concentration of the varnish containing the self-aggregating anisotropic conductive adhesive composition is, for example, 50% by mass or more, preferably 60% by mass or more, and for example, 80% by mass or less.
 そして、自己凝集型異方性導電性接着フィルム1を製造するには、図1Bに示すように、まず、はく離ライナー10を準備する。 To manufacture the self-cohesive anisotropic conductive adhesive film 1, first prepare a release liner 10 as shown in Figure 1B.
 はく離ライナーは、自己凝集型異方性導電性接着フィルム1を被覆して保護するためのフィルムである。はく離ライナー10は、フィルム形状を有する。 The release liner is a film that covers and protects the self-cohesive anisotropic conductive adhesive film 1. The release liner 10 has a film shape.
 はく離ライナー10は、例えば、プラスチック基材(プラスチックフィルム)である。プラスチック基材としては、例えば、ポリエステルシート(ポリエチレンテレフタレート(PET)シート)、ポリオレフィンシート(例えば、ポリエチレンシート、ポリプロピレンシート)、ポリ塩化ビニルシート、ポリイミドシート、および、ポリアミドシート(ナイロンシート)が挙げられる。はく離ライナー10の表面(厚み方向一方面)には、シリコーン処理などの表面処理が施されていてもよい。 The release liner 10 is, for example, a plastic substrate (plastic film). Examples of plastic substrates include polyester sheets (polyethylene terephthalate (PET) sheets), polyolefin sheets (e.g., polyethylene sheets, polypropylene sheets), polyvinyl chloride sheets, polyimide sheets, and polyamide sheets (nylon sheets). The surface of the release liner 10 (one side in the thickness direction) may be subjected to a surface treatment such as silicone treatment.
 はく離ライナー10の厚みは、例えば、例えば、1μm以上、また、例えば、100μm以下である。 The thickness of the release liner 10 is, for example, 1 μm or more and, for example, 100 μm or less.
 次いで、図1Cに示すように、はく離ライナー10の厚み方向一方面に、自己凝集型異方性導電性接着フィルム1を配置する。 Next, as shown in FIG. 1C, a self-cohesive anisotropic conductive adhesive film 1 is placed on one surface of the release liner 10 in the thickness direction.
 はく離ライナー10の厚み方向一方面に、自己凝集型異方性導電性接着フィルム1を配置するには、はく離ライナー10の厚み方向一方面に、自己凝集型異方性導電性接着組成物(自己凝集型異方性導電性接着組成物のワニス)を塗布し、その後、必要により、乾燥する。 To place the self-aggregating anisotropic conductive adhesive film 1 on one surface in the thickness direction of the release liner 10, a self-aggregating anisotropic conductive adhesive composition (varnish of a self-aggregating anisotropic conductive adhesive composition) is applied to one surface in the thickness direction of the release liner 10, and then dried as necessary.
 乾燥条件として、乾燥温度は、例えば、40℃以上、また、例えば、100℃以下である。乾燥時間は、例えば、1分以上、また、例えば、60分以下である。 The drying conditions are, for example, a drying temperature of 40°C or higher and, for example, 100°C or lower. The drying time is, for example, 1 minute or longer and, for example, 60 minutes or shorter.
 また、上記乾燥時の加熱によって、樹脂成分が流動し、これに応じて、半田粒子5が流動する場合がある。そうすると、半田粒子5の一部または全部が凝集して二次粒子となる。乾燥温度が高くなるほど、半田粒子5が凝集する傾向があるが、上記した熱可塑性樹脂の軟化点を高くすることで、樹脂成分の流動を抑制でき、乾燥温度が高くても、半田粒子5の凝集を抑制できる。好ましくは、熱可塑性樹脂の軟化点と乾燥温度との差(熱可塑性樹脂の軟化点-乾燥温度)が、例えば、50℃以上、好ましくは、60℃以上となるように、乾燥温度を調整する。 Furthermore, the heating during the drying process may cause the resin components to flow, which may cause the solder particles 5 to flow accordingly. This causes some or all of the solder particles 5 to aggregate and become secondary particles. The higher the drying temperature, the more the solder particles 5 tend to aggregate, but by increasing the softening point of the thermoplastic resin described above, the flow of the resin components can be suppressed, and the aggregation of the solder particles 5 can be suppressed even if the drying temperature is high. Preferably, the drying temperature is adjusted so that the difference between the softening point of the thermoplastic resin and the drying temperature (softening point of the thermoplastic resin - drying temperature) is, for example, 50°C or higher, and preferably 60°C or higher.
 以上より、はく離ライナー10の厚み方向一方面に配置された自己凝集型異方性導電性接着フィルム1を製造できる。 The above steps produce a self-cohesive anisotropic conductive adhesive film 1 that is arranged on one side of the release liner 10 in the thickness direction.
 このような自己凝集型異方性導電性接着フィルム1は、樹脂成分と、樹脂成分中に分散された半田粒子5(半田粒子5の一次粒子および二次粒子)とを含む。なお、図1Cでは、一次粒子および二次粒子を区別することなく、半田粒子5を記載する(以下同様)。 Such a self-aggregating anisotropic conductive adhesive film 1 contains a resin component and solder particles 5 (primary particles and secondary particles of solder particles 5) dispersed in the resin component. Note that in FIG. 1C, solder particles 5 are described without distinguishing between primary particles and secondary particles (the same applies below).
 自己凝集型異方性導電性接着フィルム1の厚みは、小型低背化の観点から、例えば、15μm以下、好ましくは、7μm以下、より好ましくは、6μm以下、また、例えば、1μm以上である。 From the viewpoint of achieving a small size and low profile, the thickness of the self-aggregating anisotropic conductive adhesive film 1 is, for example, 15 μm or less, preferably 7 μm or less, more preferably 6 μm or less, and for example, 1 μm or more.
 これにより、自己凝集型異方性導電性接着フィルム1を準備する。 This prepares the self-cohesive anisotropic conductive adhesive film 1.
 そして、図1Dに示すように、基板2の厚み方向一方面に、自己凝集型異方性導電性接着フィルム1を配置して、はく離ライナー10を剥離する。これにより、基板2の厚み方向一方面に、自己凝集型異方性導電性接着層3を配置する。 Then, as shown in FIG. 1D, a self-aggregating anisotropic conductive adhesive film 1 is placed on one surface in the thickness direction of the substrate 2, and the release liner 10 is peeled off. This places a self-aggregating anisotropic conductive adhesive layer 3 on one surface in the thickness direction of the substrate 2.
 また、第2工程により、基板2と、自己凝集型異方性導電性接着層3とを厚み方向一方側に向かって順に備える積層体6が製造される。 In addition, the second process produces a laminate 6 having a substrate 2 and a self-aggregating anisotropic conductive adhesive layer 3 arranged in order toward one side in the thickness direction.
 このような積層体6において、自己凝集型異方性導電性接着層3の厚み方向一方面が、露出している。すなわち、積層体6は、1つの基板2と、1つの自己凝集型異方性導電性接着層3とのみを備えている。このような積層体6は、1つの自己凝集型異方性導電性接着層3が、2つの基板2に挟まれる積層体6とは区別される。 In such a laminate 6, one surface in the thickness direction of the self-aggregating anisotropic conductive adhesive layer 3 is exposed. In other words, the laminate 6 includes only one substrate 2 and one self-aggregating anisotropic conductive adhesive layer 3. This laminate 6 is distinguished from a laminate 6 in which one self-aggregating anisotropic conductive adhesive layer 3 is sandwiched between two substrates 2.
 このような積層体6は、バンプ付き基板20の部品として単独で商取引の対象となる。 Such a laminate 6 can be traded commercially as a component of the bumped substrate 20.
<第3工程>
 第3工程では、図1Eに示すように、半田粒子5を溶融させることにより、複数の電極12の厚み方向一方面に、溶融した半田粒子5を凝集させて、バンプ7を形成する。
<Third step>
In the third step, as shown in FIG. 1E, the solder particles 5 are melted to cause the molten solder particles 5 to aggregate on one surface in the thickness direction of the plurality of electrodes 12, thereby forming bumps 7.
 半田粒子5を溶融させるには、積層体6を加熱する。 To melt the solder particles 5, the laminate 6 is heated.
 加熱温度は、半田粒子5の融点以上の温度であり、かつ、樹脂成分が硬化性樹脂を含む場合には、硬化性樹脂の硬化温度未満である。具体的には、加熱温度は、例えば、100以上、好ましくは、130℃以上、また、例えば、300℃以下、好ましくは、280℃以下、より好ましくは、270℃以下である。 The heating temperature is equal to or higher than the melting point of the solder particles 5, and, if the resin component contains a curable resin, is lower than the curing temperature of the curable resin. Specifically, the heating temperature is, for example, 100°C or higher, preferably 130°C or higher, and, for example, 300°C or lower, preferably 280°C or lower, and more preferably 270°C or lower.
 加熱時間は、例えば、120秒以下、好ましくは、60秒以下、より好ましくは、30秒以下、さらに好ましくは、10秒以下、また、1秒以上である。 The heating time is, for example, 120 seconds or less, preferably 60 seconds or less, more preferably 30 seconds or less, and even more preferably 10 seconds or less, and 1 second or more.
 加熱温度および加熱時間が、上記下限以上および上記上限以下であれば、樹脂成分が硬化性樹脂を含む場合には、硬化性樹脂を硬化させることなく、半田粒子5を融解させ、融解した半田粒子5を複数の電極12に自己凝集(後述)させることができる。硬化性樹脂を硬化させないため、後述する第4工程において、より確実に、樹脂成分(とりわけ、硬化性樹脂)を除去することができる。 If the heating temperature and heating time are equal to or higher than the lower limit and equal to or lower than the upper limit, and if the resin component contains a curable resin, the solder particles 5 can be melted without curing the curable resin, and the molten solder particles 5 can be caused to self-aggregate (described below) into multiple electrodes 12. Because the curable resin is not cured, the resin components (particularly the curable resin) can be more reliably removed in the fourth step described below.
 そして、このような加熱によって、半田粒子5が融解する。融解した半田粒子5は、複数の電極12の厚み方向一方面に集まり(自己凝集)、バンプ7を形成する。 The solder particles 5 melt due to this heating. The melted solder particles 5 gather (self-aggregate) on one side of the thickness direction of the multiple electrodes 12 to form bumps 7.
<第4工程>
 第4工程では、図1Fに示すように、基板2から、樹脂成分を除去する。
<Fourth step>
In the fourth step, as shown in FIG. 1F, the resin component is removed from the substrate 2.
 詳しくは、基板2から、樹脂成分を除去するとともに、必要により配合されるフラックスと、必要により配合される添加剤と、未集積の半田粒子5とを除去する。 In more detail, the resin components are removed from the substrate 2, and the flux, which is added as required, the additives, which are added as required, and the unaccumulated solder particles 5 are also removed.
 基板2から、樹脂成分を除去するには、例えば、洗浄液を用いて、基板2から、樹脂成分を溶解する。 To remove the resin components from the substrate 2, for example, a cleaning solution is used to dissolve the resin components from the substrate 2.
 洗浄液は、樹脂成分の種類によって適宜選択される。洗浄液として、例えば、有機溶剤(例えば、メチルエチルケトン)、および、水が挙げられる。 The cleaning liquid is selected appropriately depending on the type of resin component. Examples of cleaning liquids include organic solvents (e.g., methyl ethyl ketone) and water.
 基板2から、樹脂成分を除去する方法としては、特に限定されないが、例えば、第3工程後の基材2を、洗浄液に浸漬し、超音波処理を施す方法が挙げられる。 The method for removing the resin component from the substrate 2 is not particularly limited, but an example is a method in which the substrate 2 after the third step is immersed in a cleaning solution and subjected to ultrasonic treatment.
 これにより、基板2から、樹脂成分と、必要により配合されるフラックスと、必要により配合される添加剤と、未集積の半田粒子5とを除去する。以上により、バンプ付き基板20を製造できる。 This removes the resin component, any flux that is added as required, any additives that are added as required, and any unaccumulated solder particles 5 from the substrate 2. This allows the substrate 20 with bumps to be manufactured.
 バンプ付き基板20は、配線回路基板11と、配線回路基板11の面方向に並ぶ複数の電極12とを備える基材2と、基材2における電極12の厚み方向一方面を被覆するバンプ7と備える。 The bumped substrate 20 comprises a wiring circuit board 11, a substrate 2 having a plurality of electrodes 12 arranged in the surface direction of the wiring circuit board 11, and a bump 7 covering one surface of the electrodes 12 on the substrate 2 in the thickness direction.
 このようなバンプ付き基板20において、バンプ7は、外部接続端子として好適に用いられる。 In such a bumped substrate 20, the bumps 7 are preferably used as external connection terminals.
<作用効果>
 バンプ付き基板20の製造方法は、自己凝集型異方性導電性接着層3における半田粒子5を溶融させることにより、複数の電極12の厚み方向一方面に、溶融した半田粒子5を凝集させて、バンプ7を形成する。そのため、互いに間隔を隔てて隣り合う電極12間の距離が狭くても、信頼性に優れるバンプ付き基板20を製造できる。
<Action and effect>
The method for manufacturing the bumped substrate 20 involves melting the solder particles 5 in the self-aggregating anisotropic conductive adhesive layer 3, causing the molten solder particles 5 to aggregate on one surface in the thickness direction of the multiple electrodes 12, thereby forming bumps 7. Therefore, even if the distance between adjacent electrodes 12 spaced apart is narrow, a highly reliable bumped substrate 20 can be manufactured.
 詳しくは、この方法では、バンプ7を形成する際に、半田粒子5の自己凝集を利用するため、隣り合う電極12の距離(ピッチ)が狭くても(具体的には、隣り合う電極12の距離(ピッチ)が200μmであっても)、バンプ7を確実に形成できる。そのため、信頼性に優れる。 In more detail, this method utilizes the self-aggregation of the solder particles 5 when forming the bumps 7, so even if the distance (pitch) between adjacent electrodes 12 is narrow (specifically, even if the distance (pitch) between adjacent electrodes 12 is 200 μm), the bumps 7 can be reliably formed. This provides excellent reliability.
 また、バンプ7を形成する際に、半田粒子5の自己凝集を利用するため、面方向に隣り合うバンプ7が電気的に接続される(つまり、隣り合う2つの電極12が電気的に接続(ブリッジ)される)ことを抑制できる。そのため、互いに間隔を隔てて隣り合う電極12間の距離が狭くても、信頼性に優れる。 In addition, when forming the bumps 7, the self-aggregation of the solder particles 5 is utilized, so that it is possible to prevent adjacent bumps 7 in the planar direction from being electrically connected (i.e., two adjacent electrodes 12 from being electrically connected (bridged)). Therefore, even if the distance between adjacent electrodes 12 is narrow, excellent reliability is achieved.
 また、積層体6は、配線回路基板11および配線回路基板11の面方向に並ぶ複数の電極12を備える基板2と、自己凝集型異方性導電性接着層3とを厚み方向一方側に向かって順に備える。そのため、この積層体6を用いれば、互いに間隔を隔てて隣り合う電極12間の距離が狭くても、信頼性に優れるバンプ付き基板20を製造できる。 The laminate 6 also includes a wiring circuit board 11, a substrate 2 having a plurality of electrodes 12 arranged in the surface direction of the wiring circuit board 11, and a self-aggregating anisotropic conductive adhesive layer 3, which are arranged in order toward one side in the thickness direction. Therefore, by using this laminate 6, a highly reliable substrate 20 with bumps can be manufactured even if the distance between adjacent electrodes 12 is narrow.
<変形例>
 変形例において、一実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、変形例は、特記する以外、一実施形態と同様の作用効果を奏することができる。さらに、一実施形態および変形例を適宜組み合わせることができる。
<Modification>
In the modified example, the same reference numerals are used for the same components and steps as those in the first embodiment, and detailed descriptions thereof will be omitted. In addition, the modified example can achieve the same effects as those in the first embodiment, unless otherwise specified. Furthermore, the first embodiment and the modified example can be appropriately combined.
 また、上記した説明では、電極12は、ドットパターンとして配置されているが、電極12の配置は、これに限定されない。 In addition, in the above description, the electrodes 12 are arranged in a dot pattern, but the arrangement of the electrodes 12 is not limited to this.
 また、上記した説明では、電極12は、平面視円形状を有するが、電極12の形状は、これに限定されず、例えば、平面視四角状でもよい。 In addition, in the above description, the electrode 12 has a circular shape in a planar view, but the shape of the electrode 12 is not limited to this and may be, for example, a square shape in a planar view.
 また、上記した説明では、自己凝集型異方性導電性接着層3が、自己凝集型異方性導電性接着フィルム1から形成されるが、自己凝集型異方性導電性接着層3を形成できるものであれば、特に限定されず、例えば、異方性導電性接着ペーストを用いることもできる。 In the above description, the self-aggregating anisotropic conductive adhesive layer 3 is formed from the self-aggregating anisotropic conductive adhesive film 1, but there are no particular limitations as long as it is capable of forming the self-aggregating anisotropic conductive adhesive layer 3; for example, an anisotropic conductive adhesive paste may also be used.
 自己凝集型異方性導電性接着ペーストは、樹脂成分と、半田粒子5と、必要により配合されるフラックスと、必要により配合される添加剤とを含む。 The self-aggregating anisotropic conductive adhesive paste contains a resin component, solder particles 5, a flux that is mixed in as needed, and an additive that is mixed in as needed.
 自己凝集型異方性導電性接着ペーストを用いる場合には、第2工程において、基板2の厚み方向一方面に、異方性導電性接着ペーストを塗布し、必要により乾燥させることにより、自己凝集型異方性導電性接着層3を形成する。 When a self-aggregating anisotropic conductive adhesive paste is used, in the second step, the anisotropic conductive adhesive paste is applied to one surface in the thickness direction of the substrate 2, and dried as necessary to form a self-aggregating anisotropic conductive adhesive layer 3.
 次に、本発明を、実施例および比較例に基づいて説明するが、本発明は、下記の実施例によって限定されるものではない。なお、「部」および「%」は、特に言及がない限り、質量基準である。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。 Next, the present invention will be described based on examples and comparative examples, but the present invention is not limited to the following examples. Note that "parts" and "%" are by mass unless otherwise specified. In addition, specific numerical values such as blending ratios (content ratios), physical property values, parameters, etc. used in the following description can be replaced with the upper limit values (numerical values defined as "equal to or less than") or lower limit values (numerical values defined as "equal to or more than" or "exceeding") of the corresponding blending ratios (content ratios), physical property values, parameters, etc. described in the above "Form for carrying out the invention".
<成分の詳細>
 各実施例および各比較例で用いた成分の、商品名および略語について、詳述する。
jER1004:ビスフェノールA型エポキシ樹脂、25℃で固体、熱可塑性樹脂、軟化点97℃、三菱ケミカル社製
jER1007:ビスフェノールA型エポキシ樹脂、25℃で固体、熱可塑性樹脂、軟化点128℃、三菱ケミカル社製
jER1009:ビスフェノールA型エポキシ樹脂、25℃で固体、熱可塑性樹脂、軟化点144℃、三菱ケミカル社製
jER1010:ビスフェノールA型エポキシ樹脂、25℃で固体、熱可塑性樹脂、軟化点150℃以上、三菱ケミカル社製
jER828:ビスフェノールA型エポキシ樹脂,エポキシ当量184~194g/eq、25℃で液状、熱硬化性樹脂、三菱ケミカル社製
SnAg:半田粒子、(Sn96.5質量%Ag3.5質量%,融点221℃、球形状、平均一次粒子径3μm、酸素濃度1100ppm)
SnAgCu:半田粒子、(Sn96.5質量%Ag3.0質量%Cu0.5質量%,融点217~219℃、球形状、平均一次粒子径3μm、酸素濃度1100ppm)
SnBi:半田粒子、(Sn42質量%Bi58質量%,融点139℃、球形状、平均一次粒子径3μm、酸素濃度1100ppm)
<Ingredient details>
The trade names and abbreviations of the components used in each Example and Comparative Example are described in detail below.
jER1004: Bisphenol A type epoxy resin, solid at 25°C, thermoplastic resin, softening point 97°C, manufactured by Mitsubishi Chemical Corporation jER1007: Bisphenol A type epoxy resin, solid at 25°C, thermoplastic resin, softening point 128°C, manufactured by Mitsubishi Chemical Corporation jER1009: Bisphenol A type epoxy resin, solid at 25°C, thermoplastic resin, softening point 144°C, manufactured by Mitsubishi Chemical Corporation jER1010: Bisphenol A type epoxy resin, solid at 25°C, thermoplastic resin, softening point 144°C, manufactured by Mitsubishi Chemical Corporation Phenol A type epoxy resin, solid at 25°C, thermoplastic resin, softening point 150°C or higher, manufactured by Mitsubishi Chemical Corporation jER828: bisphenol A type epoxy resin, epoxy equivalent 184-194g/eq, liquid at 25°C, thermosetting resin, manufactured by Mitsubishi Chemical Corporation SnAg: solder particles, (Sn 96.5% by mass, Ag 3.5% by mass, melting point 221°C, spherical shape, average primary particle diameter 3μm, oxygen concentration 1100ppm)
SnAgCu: solder particles (Sn 96.5% by mass, Ag 3.0% by mass, Cu 0.5% by mass, melting point 217-219°C, spherical shape, average primary particle diameter 3 μm, oxygen concentration 1100 ppm)
SnBi: solder particles (Sn 42% by mass, Bi 58% by mass, melting point 139°C, spherical shape, average primary particle diameter 3 μm, oxygen concentration 1100 ppm)
<バンプ付き基板の製造>
  実施例1~実施例7
[第1工程]
 基材として、複数の模擬電極のついた基板(電極は円柱状、直径15μm、高さ1μm、電極ピッチ(中心間距離)30μm、(L/S=15/15μm))を準備した。
<Manufacturing of Substrates with Bumps>
Examples 1 to 7
[First step]
As a substrate, a substrate with a plurality of simulated electrodes (electrodes were cylindrical, with a diameter of 15 μm and a height of 1 μm, and an electrode pitch (center-to-center distance) of 30 μm, (L/S=15/15 μm)) was prepared.
[第2工程]
 まず、自己凝集型異方性導電性接着組成物を調製した。
[Second step]
First, a self-aggregating anisotropic conductive adhesive composition was prepared.
 具体的には、表1に記載の配合処方に従って、樹脂成分と、半田粒子と、フラックスとを混合し、メチルエチルケトン(MEK)に加えて、自己凝集型異方性導電性接着組成物(固形分濃度70質量%)を調製した。なお、フラックスとしては、リンゴ酸をエタノールに加えて溶解させたフラックスの溶液(固形分濃度30質量%)を用いた。 Specifically, the resin component, solder particles, and flux were mixed according to the formulation shown in Table 1, and added to methyl ethyl ketone (MEK) to prepare a self-aggregating anisotropic conductive adhesive composition (solid concentration 70% by mass). The flux used was a flux solution (solid concentration 30% by mass) in which malic acid was added and dissolved in ethanol.
 次いで、自己凝集型異方性導電性接着フィルムを準備した。 Next, a self-cohesive anisotropic conductive adhesive film was prepared.
 具体的には、まず、はく離ライナーを準備した。 Specifically, first, a release liner was prepared.
 次いで、はく離ライナーの厚み方向一方面に、自己凝集型異方性導電性接着フィルムを配置した。具体的には、はく離ライナーの厚み方向一方面に、自己凝集型異方性導電性接着組成物のワニスを塗布し、乾燥した。乾燥温度は60℃とし、乾燥時間は5分間とした。これにより、はく離ライナーの厚み方向一方面に、自己凝集型異方性導電性接着フィルム(厚み5μm)を調製した。 Next, a self-aggregating anisotropic conductive adhesive film was placed on one surface of the release liner in the thickness direction. Specifically, a varnish of a self-aggregating anisotropic conductive adhesive composition was applied to one surface of the release liner in the thickness direction, and then dried. The drying temperature was 60°C, and the drying time was 5 minutes. In this way, a self-aggregating anisotropic conductive adhesive film (thickness 5 μm) was prepared on one surface of the release liner in the thickness direction.
 これにより、自己凝集型異方性導電性接着フィルムを準備した。 This resulted in the preparation of a self-aggregating anisotropic conductive adhesive film.
 次いで、基板の厚み方向一方面に、自己凝集型異方性導電性接着フィルムを配置した。これにより、基板の厚み方向一方面に、自己凝集型異方性導電性接着層を配置し、積層体を得た。 Next, a self-aggregating anisotropic conductive adhesive film was placed on one surface of the substrate in the thickness direction. This resulted in a self-aggregating anisotropic conductive adhesive layer being placed on one surface of the substrate in the thickness direction, resulting in a laminate.
[第3工程]
 積層体を、予め、40℃に加温したホットプレートに配置し、その後、20℃/秒の昇温速度で260℃(なお、実施例5および実施例7では、170℃)まで昇温し、その温度を5秒間保ち、その後、再び、40℃まで放熱冷却した。これにより、半田粒子を溶融させ、複数の電極の厚み方向一方面に、溶融した半田粒子を凝集させて、バンプを形成した。
[Third step]
The laminate was placed on a hot plate preheated to 40° C., and then heated to 260° C. (170° C. in Examples 5 and 7) at a heating rate of 20° C./sec, kept at that temperature for 5 seconds, and then cooled again by radiation to 40° C. This caused the solder particles to melt, and the molten solder particles were agglomerated on one surface in the thickness direction of the multiple electrodes to form bumps.
[第4工程]
 次いで、第3工程後の基板を、メチルエチルケトンに浸漬した。その後、30分間超音波照射することで樹脂成分を溶解させた。その後、メチルエチルケトンで洗浄した。これにより、基板から、樹脂成分を除去した。以上により、バンプ付き基板を製造した。
[Fourth step]
Next, the substrate after the third process was immersed in methyl ethyl ketone. After that, the substrate was irradiated with ultrasonic waves for 30 minutes to dissolve the resin component. Then, the substrate was washed with methyl ethyl ketone. In this way, the resin component was removed from the substrate. In this manner, a substrate with bumps was manufactured.
 また、各実施例において、基板を、基板(L/S=30/30μm、具体的には、電極は円柱状、直径30μm、高さ1μm、電極ピッチ(中心間距離)60μm)および基板(L/S=50/50μm、具体的には、電極は円柱状、直径50μm、高さ1μm、電極ピッチ(中心間距離)100μm)に変更して、同様の手順で、バンプ付き基板を製造した。 In addition, in each example, the substrate was changed to a substrate (L/S = 30/30 μm, specifically, the electrodes were cylindrical, with a diameter of 30 μm, a height of 1 μm, and an electrode pitch (center-to-center distance) of 60 μm) and a substrate (L/S = 50/50 μm, specifically, the electrodes were cylindrical, with a diameter of 50 μm, a height of 1 μm, and an electrode pitch (center-to-center distance) of 100 μm), and a substrate with bumps was manufactured using the same procedure.
<評価>
[半田粒子が溶融した時の樹脂成分の粘度]
 各実施例および各比較例について、半田粒子が溶融した時の樹脂成分の粘度を測定した。具体的には、レオメータ(商品名「MCR302e」,アントンパール社製)を使用して、昇温速度10℃/分、ひずみ0.05%、周波数1Hzの条件で測定した。各実施例および各比較例の樹脂成分のみからなる、厚さ300μmのシートをそれぞれ作製し、φ12mmの治具を用いて測定した。その結果を表1に示す。
<Evaluation>
[Viscosity of resin components when solder particles melt]
For each example and each comparative example, the viscosity of the resin component when the solder particles melted was measured. Specifically, a rheometer (product name "MCR302e", manufactured by Anton Paar) was used to measure under the conditions of a temperature rise rate of 10°C/min, a strain of 0.05%, and a frequency of 1 Hz. A sheet of 300 μm thickness consisting of only the resin component of each example and each comparative example was prepared, and measured using a jig with a diameter of 12 mm. The results are shown in Table 1.
[半田粒子の平均二次粒子径]
 各実施例の自己凝集型異方性導電性接着フィルムを、デジタルマイクロスコープ(商品名「VHX-8000」,キーエンス社製)を使用して、1000倍の拡大倍率で自己凝集型異方性導電性接着フィルムを観察し、静止画を撮影した。その結果を図2~図4に示す。具体的には、図2は、実施例1を示し、図3は、実施例2を示し、図4は、実施例3を示す。
[Average secondary particle size of solder particles]
The self-aggregating anisotropic conductive adhesive film of each example was observed at a magnification of 1000 times using a digital microscope (product name "VHX-8000", manufactured by Keyence Corporation), and still images were taken. The results are shown in Figures 2 to 4. Specifically, Figure 2 shows Example 1, Figure 3 shows Example 2, and Figure 4 shows Example 3.
 次いで、得られた静止画について、画像処理ソフト「imageJ, 開発元Wayne Rasband (NIH)」の”Threshold”機能を用いて二値化を実施した。二値化を実施した画像に対して、撮影した画像の一辺から対応する一辺までの任意の直線を引き、当該線上にあるピクセルについてグレースケール表示を実施した。グレースケール表記で255の値を連続的に示す部分について、それぞれピクセル数を数えた。画像中のスケールーバーの長さ(100 μm)のピクセル数を数え、それで規格化することにより、グレースケール表記で255の値を連続的に示す部分のそれぞれから半田粒子の二次粒子径を求め、これらを平均することにより半田粒子の平均二次粒子径を算出した。その結果を表1に示す。 Then, the still images obtained were binarized using the "Threshold" function of the image processing software "imageJ, developed by Wayne Rasband (NIH)". For the binarized images, a straight line was drawn from one side of the captured image to the corresponding side, and the pixels on that line were displayed in grayscale. The number of pixels was counted for each part that continuously showed a value of 255 in grayscale notation. The number of pixels in the length of the scale bar in the image (100 μm) was counted and standardized by this to determine the secondary particle diameter of the solder particles from each part that continuously showed a value of 255 in grayscale notation, and these were averaged to calculate the average secondary particle diameter of the solder particles. The results are shown in Table 1.
[ブリッジの発生]
 各実施例のバンプ付き基板について、デジタルマイクロスコープ(商品名「VHX-8000」,キーエンス社製、500倍の拡大倍率)を用いて、隣り合う電極の間をつなぐブリッジの有無を観察した。ブリッジ発生について、以下の基準に基づき、評価した。その結果を表1に示す。
{基準}
〇:ブリッジの発生が、全体の1%以下であった。
×:ブリッジの発生が、全体の1%超過であった。
[Bridge occurrence]
The bumped substrate of each example was observed for the presence or absence of bridges connecting adjacent electrodes using a digital microscope (product name "VHX-8000", manufactured by Keyence Corporation, 500x magnification). The occurrence of bridges was evaluated based on the following criteria. The results are shown in Table 1.
{standard}
A: The occurrence of bridges was 1% or less of the total.
×: The occurrence of bridges exceeded 1% of the total.
[電極に対する集積の観察]
 各実施例のバンプ付き基板について、デジタルマイクロスコープ(商品名「VHX-8000」,キーエンス社製、500倍の拡大倍率)を用いて、電極に対する集積の様子を観察した。電極に対する集積について、以下の基準に基づき、評価した。その結果を表1に示す。
{基準}
◎:電極の半分以上が半田粒子によって被覆されてない割合が、全体の1%未満であった。
〇:電極の半分以上が半田粒子によって被覆されてない割合が、全体の1%以上10%未満であった。
×:電極の半分以上が半田粒子によって被覆されていない割合が、全体の10%超過であった。
[Observation of accumulation on electrodes]
For the bumped substrate of each example, the state of accumulation on the electrodes was observed using a digital microscope (product name "VHX-8000", manufactured by Keyence Corporation, magnification of 500 times). The accumulation on the electrodes was evaluated based on the following criteria. The results are shown in Table 1.
{standard}
⊚: The proportion of the electrodes where half or more was not covered with solder particles was less than 1% of the total.
Good: The proportion of the electrodes in which half or more was not covered with solder particles was 1% or more and less than 10% of the total.
x: The proportion of the electrodes in which half or more was not covered with solder particles exceeded 10% of the total.
[未集積の半田粒子の確認]
 各実施例の第4工程後の電極について、デジタルマイクロスコープ(商品名「VHX-8000」,キーエンス社製、500倍の拡大倍率)を用いて、電極に集積されなかった半田粒子の数を計測した。未集積の半田粒子について、以下の基準に基づき、評価した。その結果を表1に示す。
{基準}
ほぼなし:未集積の半田粒子の数が、100×100μm当たり、100個以下であった。
わずかにある:未集積の半田粒子の数が、100×100μm当たり、100個超過200個以下であった。
ある:未集積の半田粒子の数が、100×100μm当たり、200個超過であった。
[Confirmation of unaccumulated solder particles]
For the electrodes after the fourth step of each example, the number of solder particles that were not accumulated on the electrodes was counted using a digital microscope (product name "VHX-8000", manufactured by Keyence Corporation, 500x magnification). The unaccumulated solder particles were evaluated based on the following criteria. The results are shown in Table 1.
{standard}
Almost none: The number of unaccumulated solder particles was 100 or less per 100 × 100 μm2 .
Slight: The number of unaccumulated solder particles was more than 100 and not more than 200 per 100× 100 μm2.
Yes: The number of unaccumulated solder particles was more than 200 per 100 x 100 μm2 .
 実施例1~実施例7は、電極ピッチ(中心間距離)が60μmであっても(基板として、基板(L/S=30/30μm)を用いた場合であっても)、信頼性に優れるバンプ付き基板を製造できるとわかる。とりわけ、実施例1~実施例5は、電極ピッチ(中心間距離)が30μmであっても(基板として、基板(L/S=15/15μm)を用いた場合であっても)、信頼性に優れるバンプ付き基板を製造できるとわかる。 It can be seen that in Examples 1 to 7, even if the electrode pitch (center distance) is 60 μm (even if a substrate (L/S = 30/30 μm) is used as the substrate), a highly reliable substrate with bumps can be manufactured. In particular, it can be seen that in Examples 1 to 5, even if the electrode pitch (center distance) is 30 μm (even if a substrate (L/S = 15/15 μm) is used as the substrate), a highly reliable substrate with bumps can be manufactured.

 
 

 
 
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示にすぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれるものである。 The above invention is provided as an exemplary embodiment of the present invention, but this is merely an example and should not be interpreted as limiting. Modifications of the present invention that are obvious to those skilled in the art are intended to be included in the scope of the claims below.
 本発明のバンプ付き基板の製造方法により製造されるバンプ付き基板、および、積層体は、外部接続端子として、電子機器の製造に好適に用いられる。 The bumped substrate and laminate produced by the bumped substrate manufacturing method of the present invention are suitable for use as external connection terminals in the manufacture of electronic devices.
 1  自己凝集型異方性導電性接着フィルム
 2  基板
 3  自己凝集型異方性導電性接着層
 5  半田粒子
 6  積層体
 7  バンプ
11  配線回路基板
12  電極
20  バンプ付き基板
REFERENCE SIGNS LIST 1 Self-aggregating anisotropic conductive adhesive film 2 Substrate 3 Self-aggregating anisotropic conductive adhesive layer 5 Solder particles 6 Laminate 7 Bump 11 Wiring circuit board 12 Electrode 20 Substrate with bump

Claims (8)

  1.  配線回路基板および前記配線回路基板の面方向に並ぶ複数の電極を備える基板を準備する第1工程と、
     前記基板の厚み方向一方面に、樹脂成分および半田粒子を含む自己凝集型異方性導電性接着層を配置する第2工程と、
     前記半田粒子を溶融させることにより、前記複数の電極の厚み方向一方面に、溶融した半田粒子を凝集させて、バンプを形成する第3工程と、
     前記基板から、前記樹脂成分を除去する第4工程とを備える、バンプ付き基板の製造方法。
    A first step of preparing a substrate including a wiring circuit board and a plurality of electrodes arranged in a surface direction of the wiring circuit board;
    A second step of disposing a self-aggregating anisotropic conductive adhesive layer containing a resin component and solder particles on one surface of the substrate in a thickness direction;
    a third step of melting the solder particles to aggregate the molten solder particles on one surface in a thickness direction of the plurality of electrodes to form bumps;
    and a fourth step of removing the resin component from the substrate.
  2.  前記基板の面方向における前記電極の最大長さが、100μm以下である、請求項1に記載のバンプ付き基板の製造方法。 The method for manufacturing a bumped substrate according to claim 1, wherein the maximum length of the electrodes in the surface direction of the substrate is 100 μm or less.
  3.  前記基板の面方向において、隣り合う電極の距離が、200μm以下である、請求項1に記載のバンプ付き基板の製造方法。 The method for manufacturing a bumped substrate according to claim 1, wherein the distance between adjacent electrodes in the surface direction of the substrate is 200 μm or less.
  4.  前記自己凝集型異方性導電性接着層が、フラックスを含む、請求項1に記載のバンプ付き基板の製造方法。 The method for manufacturing a bumped substrate according to claim 1, wherein the self-aggregating anisotropic conductive adhesive layer contains flux.
  5.  前記半田粒子の平均一次粒子径および前記半田粒子の平均二次粒子径の両方が、20μm以下である、請求項1に記載のバンプ付き基板の製造方法。 The method for manufacturing a bumped substrate according to claim 1, wherein both the average primary particle diameter of the solder particles and the average secondary particle diameter of the solder particles are 20 μm or less.
  6.  前記半田粒子の融点における、前記樹脂成分の粘度が、5000mPa・s以下である、請求項1に記載のバンプ付き基板の製造方法。 The method for manufacturing a substrate with bumps according to claim 1, wherein the viscosity of the resin component at the melting point of the solder particles is 5000 mPa·s or less.
  7.  前記自己凝集型異方性導電性接着層が、自己凝集型異方性導電性接着フィルムから形成される、請求項1~6のいずれか一項に記載のバンプ付き基板の製造方法。 The method for manufacturing a bumped substrate according to any one of claims 1 to 6, wherein the self-aggregating anisotropic conductive adhesive layer is formed from a self-aggregating anisotropic conductive adhesive film.
  8.  配線回路基板および前記配線回路基板の面方向に並ぶ複数の電極を備える基板と、
     樹脂成分および半田粒子を含む自己凝集型異方性導電性接着層とを厚み方向一方側に向かって順に備え、
     前記自己凝集型異方性導電性接着層の厚み方向一方面が、露出している、積層体。
    a substrate including a wiring circuit board and a plurality of electrodes arranged in a surface direction of the wiring circuit board;
    a self-aggregating anisotropic conductive adhesive layer containing a resin component and solder particles,
    A laminate, wherein one surface in the thickness direction of the self-aggregating anisotropic conductive adhesive layer is exposed.
PCT/JP2023/035304 2022-09-30 2023-09-27 Method for manufacturing substrate provided with bumps, and laminate WO2024071266A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022158535 2022-09-30
JP2022-158535 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024071266A1 true WO2024071266A1 (en) 2024-04-04

Family

ID=90478008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035304 WO2024071266A1 (en) 2022-09-30 2023-09-27 Method for manufacturing substrate provided with bumps, and laminate

Country Status (1)

Country Link
WO (1) WO2024071266A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114865A (en) * 2004-09-15 2006-04-27 Matsushita Electric Ind Co Ltd Flip chip mounting method and flip chip mounter
JP2013110402A (en) * 2011-10-26 2013-06-06 Hitachi Chemical Co Ltd Reflow film, method for forming solder bump, method for forming solder join, and semiconductor device
US20140287556A1 (en) * 2013-03-20 2014-09-25 Electronics And Telecommunications Research Institute Methods of forming bump and semiconductor device with the same
KR20210076511A (en) * 2019-12-16 2021-06-24 주식회사 노피온 Anisotropic conductive adhesive containing polyurethane resin which is a thermoplastic resin, a method of forming solder bumps and a method of manufacturing a bonded structure using the same
WO2022168209A1 (en) * 2021-02-03 2022-08-11 昭和電工マテリアルズ株式会社 Solder paste, method for forming solder bumps, and method for producing member with solder bumps

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114865A (en) * 2004-09-15 2006-04-27 Matsushita Electric Ind Co Ltd Flip chip mounting method and flip chip mounter
JP2013110402A (en) * 2011-10-26 2013-06-06 Hitachi Chemical Co Ltd Reflow film, method for forming solder bump, method for forming solder join, and semiconductor device
US20140287556A1 (en) * 2013-03-20 2014-09-25 Electronics And Telecommunications Research Institute Methods of forming bump and semiconductor device with the same
KR20210076511A (en) * 2019-12-16 2021-06-24 주식회사 노피온 Anisotropic conductive adhesive containing polyurethane resin which is a thermoplastic resin, a method of forming solder bumps and a method of manufacturing a bonded structure using the same
WO2022168209A1 (en) * 2021-02-03 2022-08-11 昭和電工マテリアルズ株式会社 Solder paste, method for forming solder bumps, and method for producing member with solder bumps

Similar Documents

Publication Publication Date Title
CN102144432B (en) Conductive connecting material, use this conductive connecting material terminal between method of attachment and the manufacture method of splicing ear
CN102687603B (en) Conductive connection material, electronic component producing method, and electronic member and electronic component with conductive connection material
CN102725912B (en) The formation method of the method for attachment between conductive connecting piece, terminal, splicing ear, semiconductor device and electronic equipment
CN102576948B (en) Conductive connection material and terminal-to-terminal connection method using same
JP4730484B2 (en) Conductive connection material, connection method between terminals, and manufacturing method of connection terminals
EP2157146A1 (en) Filmy adhesive for circuit connection
WO2024071266A1 (en) Method for manufacturing substrate provided with bumps, and laminate
JP2011171258A (en) Conductive connection sheet, method of connecting between terminals, method of forming connection terminal, semiconductor device, and electronic apparatus
WO2024071265A1 (en) Bonding sheet
JP5351786B2 (en) Thermosetting resin composition and method for producing the same
JP5471551B2 (en) Conductive connection sheet, connection method between terminals, formation method of connection terminal, semiconductor device and electronic device
JP5482143B2 (en) Conductive connection material, connection method between terminals, and manufacturing method of connection terminals
JP2011159481A (en) Conductive connection sheet, connection method between terminals, forming method of connection terminal, semiconductor device, and electronic equipment
JP5381774B2 (en) Method for forming solder layer, method for connecting terminals, semiconductor device and electronic device
JP2011165954A (en) Conductive connection material, connection method between terminals, method of manufacturing connection terminal, electronic member, and electric and electronic component
KR100619390B1 (en) Conductive adhesive and circuit comprising it
KR20240034511A (en) Solder paste comprising minute particle and electronic device comprising thereof
JP5381784B2 (en) Conductive connection sheet, connection method between terminals, formation method of connection terminal, semiconductor device and electronic device
JP5544915B2 (en) Conductive connection sheet, connection method between terminals, formation method of connection terminal, semiconductor device and electronic device
JP5381783B2 (en) Conductive connection sheet, connection method between terminals, formation method of connection terminal, semiconductor device and electronic device
JP2013225702A (en) Connection method between terminals, and connection terminal manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872488

Country of ref document: EP

Kind code of ref document: A1