WO2024071112A1 - 抗体の製造方法 - Google Patents

抗体の製造方法 Download PDF

Info

Publication number
WO2024071112A1
WO2024071112A1 PCT/JP2023/034929 JP2023034929W WO2024071112A1 WO 2024071112 A1 WO2024071112 A1 WO 2024071112A1 JP 2023034929 W JP2023034929 W JP 2023034929W WO 2024071112 A1 WO2024071112 A1 WO 2024071112A1
Authority
WO
WIPO (PCT)
Prior art keywords
domain
antibody
tag
domains
producing
Prior art date
Application number
PCT/JP2023/034929
Other languages
English (en)
French (fr)
Inventor
孝行 岩城
Original Assignee
国立大学法人浜松医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人浜松医科大学 filed Critical 国立大学法人浜松医科大学
Publication of WO2024071112A1 publication Critical patent/WO2024071112A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/10Libraries containing peptides or polypeptides, or derivatives thereof

Definitions

  • the present invention relates to a method for producing an antibody having high affinity for an antigen with less labor.
  • Antibodies consist of two identical heavy chains and two identical light chains linked by disulfide bonds in a Y-shaped structure.
  • the light chains contain one variable region and one constant region.
  • the heavy chains are made up of one variable region and three or four constant regions. Each variable region contains three hypervariable regions called complementarity determining regions (CDRs).
  • CDRs complementarity determining regions
  • Hybridoma technology is a method for producing full-length antibodies.
  • Hybridomas can be established by immunizing an animal and isolating a single B cell.
  • genes can be extracted from the isolated B cell to produce a recombinant that expresses one heavy chain gene and one light chain gene to produce a unique full-length monoclonal antibody against the corresponding antigen.
  • Both genes from each hybridoma are cloned and transfected into a mammalian cell line, allowing stable production of recombinant full-length antibodies.
  • scFv single-chain variable fragments
  • Non-Patent Document 2 Camelids (camels and llamas) are known to have fully functional antibodies with only a heavy chain consisting of one variable domain and two constant domains (Non-Patent Document 2). This single variable domain can be expressed well in the cytosol of Escherichia coli (Non-Patent Document 3), and this structure is called a "nanobody (NB)" (Non-Patent Document 4).
  • NBs are used as research reagents as an alternative to conventional antibodies, and are also expected to be used as antibody drugs.
  • a simple soluble secretory expression system for NBs derived from Escherichia coli has been developed (Non-Patent Document 5).
  • Non-Patent Document 6 a sample solution containing a VH domain fused with alkaline phosphatase is added to a plate on which a VL domain is immobilized, incubated, and then washed, and a reaction system is used in which the VH domain captured by the VL domain is detected using alkaline phosphatase activity as an indicator. The detected alkaline phosphatase activity increases depending on the amount of antigen contained in the sample solution.
  • the affinity and specificity for the antigen have been improved.
  • the affinity for the antigen is optimized by the combination of the VH domain and the VL domain.
  • the phage display method (Non-Patent Document 7) has been used as a method for investigating the combination of the VH domain and the VL domain with high antigen affinity.
  • the VH domain and the VL domain are individually PCR amplified from an antibody gene pool consisting of various clonotypes (amino acid sequences unique to each antibody) derived from B cells.
  • the amplified VH domain and the VL domain are randomly linked by assembly PCR using a linker DNA encoding a linker peptide sequence, and recombined into a phagemid vector to create an scFv library. From this scFv library, an antibody with high affinity and specificity can be obtained by screening scFv with high antigen binding ability.
  • the number of possible combinations of the VH domain and the VL domain is theoretically N ⁇ M.
  • the number of clonotypes of the VH domain and the VL domain is large, and therefore, in the case of the conventional phage display method, in order to obtain a clone having high affinity and specificity, it is necessary to screen scFvs of a huge sample size (number of specimens), and there is a problem that the size of the scFv library exceeds the physical limit.
  • an object of the present invention is to provide a method for producing, with less labor, an antibody consisting of a combination of a VH domain and a VL domain that has high affinity for an antigen.
  • the present inventors have discovered that when selecting a combination having high affinity with an antigen from among combinations of N VH domain clonotypes and M VL domain clonotypes, it is possible to perform an antigen-binding assay for all combinations of VH domain clonotypes and VL domain clonotypes (i.e., N ⁇ M combinations) simply by preparing N+M peptides by preparing separate tagged peptides for the VH domain and VL domain, and binding both peptides to an antigen together with a cross-linking member that binds to each tag, thereby completing the present invention.
  • a method for producing an antibody against a target antigen comprising the steps of: providing a VH domain pool containing two or more VH domains consisting of antibody heavy chain variable regions, and a VL domain pool containing two or more VL domains consisting of antibody light chain variable regions; preparing tagged VH peptides to which a first tag has been added, for each of all VH domains included in the VH domain pool; For each of all VL domains included in the VL domain pool, a tagged VL peptide having a second tag added thereto is prepared; All combinations of VH domains contained in the VH domain pool and VL domains contained in the VL domain pool are set up; For each of the set combinations, contacting the tagged VH peptide and tagged VL peptide of the combination with a bridging member that binds to both the first tag and the second tag, and the target antigen, and measuring the amount of a complex consisting of the tagged VH
  • the VH domain pool is composed of two or more VH domains selected from a VH domain library consisting of heavy chain variable regions expressed in antibody-producing cells collected from an animal immunized with the target antigen ;
  • VH domains constituting the VH domain pool are selected from the VH domains constituting the VH domain library in order of their expression frequency in the antibody-producing cells;
  • the VH domain constituting the VH domain library is the amino acid sequence being encoded by an amplicon obtained by RT-PCR using total RNA as a template extracted from a tissue containing antibody-producing cells collected from an animal immunized with the target antigen and a primer set for comprehensively amplifying a heavy chain variable region;
  • the VL domain constituting the VL domain library is The method for producing the antibody according to the above [2] or [3], wherein the antibody has an amino acid sequence encoded by an amplicon obtained by RT-PCR using the total RNA as a template and a primer set for comprehensively amplifying the light chain variable region.
  • the primer set for comprehensively amplifying heavy chain variable regions comprises 41 types of forward primers having the nucleotide sequences represented by SEQ ID NOs: 1 to 41, and 4 types of reverse primers having the nucleotide sequences represented by SEQ ID NOs: 42 to 45;
  • the method for producing the antibody according to [4] above, wherein the primer set for comprehensively amplifying the light chain variable region comprises 26 types of forward primers consisting of the nucleotide sequences represented by SEQ ID NOs: 46 to 71, and 4 types of reverse primers consisting of the nucleotide sequences represented by SEQ ID NOs: 72 to 75.
  • the first tag and the second tag are both His tags; The method for producing an antibody according to any one of [1] to [5] above, wherein the bridging member is an anti-His tag antibody.
  • the first tag and the second tag are both biotin; The method for producing an antibody according to any one of [1] to [5] above, wherein the bridging member is avidin or streptavidin.
  • a complex comprising: a tagged VH peptide comprising an antibody heavy chain variable region and a first tag; a tagged VL peptide comprising an antibody light chain variable region and a second tag; and a cross-linking member that binds to both the first tag and the second tag.
  • an antigen binding assay is performed using a peptide containing a VH domain and a peptide containing a VL domain, rather than a molecule in which a VH domain and a VL domain are statically bound by a covalent bond. Therefore, by using the antibody production method according to the present invention, a combination having high affinity for an antigen can be selected with less effort from a very large number of combinations of VH domain clonotypes and VL domain clonotypes.
  • FIG. 1 shows a genetic map of pMAK636 and the site into which a nucleic acid fragment containing a nucleotide sequence encoding a VK domain and a VH domain is integrated.
  • FIG. 1 shows a gene map of pMAK161 and the site into which a nucleic acid fragment containing a base sequence encoding a VK domain and a VH domain is integrated.
  • FIG. 1 shows the results of measuring the amount of anti-plasminogen antibody in diluted serum (10 3 to 10 6 fold dilution) collected 21 days after immunization for mice immunized with FCA and Plg and mice immunized with FCA only in Example 1.
  • FIG. 4 shows the results for the V K region
  • Fig. 4 (B) shows the results for the V H region.
  • FIG. 1 shows the distribution of clonotypes based on the amino acid sequence of CDR3 of the VK region in Example 1.
  • FIG. 1 shows the distribution of clonotypes based on the amino acid sequence of CDR3 of the VH region in Example 1.
  • VK c1 domain, VK c2 domain, VK c4 domain, and VK c5 domain shows an alignment of amino acid sequences of full-length variable regions ( VK c1 domain, VK c2 domain, VK c4 domain, and VK c5 domain) containing the top 1, 2, 4, and 5 clonotypes in terms of expression frequency of VK
  • full-length variable regions VH c1 domain, VH c2 domain, VH c3 domain, and VH c4 domain
  • This figure shows the results of SDS-PAGE of a solution of solubilized His-tagged peptides of VKc1 domain, VKc2 domain, VKc4 domain, VKc5 domain, VHc1 domain, VHc2 domain, VHc3 domain, and VHc4 domain expressed in transformed Escherichia coli in Example 1.
  • This figure shows the results of ELISA in Example 1, in which the binding to plasminogen was investigated for all 16 combinations (16 combinations) of VKc1 domain, VKc2 domain, VKc4 domain, and VKc5 domain with VHc1 domain, VHc2 domain, VHc3 domain, and VHc4 domain.
  • the method for producing an antibody according to the present invention is a method for producing an antibody against a target antigen, which is a method for producing an antibody with high affinity to an antigen by selecting a combination with high affinity to the antigen from among multiple clonotypes of heavy chain variable regions ( VH domains) and multiple clonotypes of light chain variable regions ( VL domains).
  • VH domains heavy chain variable regions
  • VL domains multiple clonotypes of light chain variable regions
  • N is an integer of 2 or more
  • M is an integer of 2 or more
  • N x M recombinant proteins in order to examine and compare the binding affinities of all combinations in the case of a protein in which the VH domain and the VL domain are covalently bonded.
  • the method for producing an antibody according to the present invention requires only the number of each clonotype, that is, a total of N+M recombinant proteins consisting of N VH domains and M VL domains.
  • the antigen affinity is significantly lower than that of a full-length antibody of the same combination. Therefore, in the present invention, when forming a complex between the VH domain, the VL domain, and the antigen, a bridging member that bridges the VH domain and the VL domain is also used. The bridging member allows the complex between the VH domain, the VL domain, and the antigen to be formed more stably.
  • a tagged VH peptide having a tag (first tag) added to the VH domain a tagged VL peptide having a tag (second tag) added to the VL domain, and a cross-linking member that binds to both the first tag and the second tag are used.
  • the first tag and the second tag may be the same tag or may be different tags.
  • the VH domain and the first tag may be linked directly or via a suitable linker peptide.
  • the first tag may be linked to either the C-terminal side or the N-terminal side of the VH domain.
  • the amino acid sequence of the linker peptide linking the VH domain and the first tag is not particularly limited as long as it does not inhibit the binding of the VH domain to the antigen or the binding of the first tag to the bridging member.
  • the tagged VH peptide may contain a tag other than the first tag.
  • the VL domain and the second tag may be linked directly or via a suitable linker peptide.
  • the second tag may be linked to either the C-terminal side or the N-terminal side of the VL domain.
  • the amino acid sequence of the linker peptide linking the VL domain and the second tag is not particularly limited as long as it does not inhibit the binding of the VL domain to the antigen or the binding of the second tag to the bridging member.
  • the tagged VL peptide may contain a tag other than the second tag.
  • the first tag and the second tag may be a peptide tag consisting of 3 to 20 amino acids, a tag consisting of a low molecular weight molecule, or a tag consisting of a sugar.
  • peptide tags include His tags (e.g., HHHHHH (SEQ ID NO: 86)), HQ tags (e.g., HQHQHQ (SEQ ID NO: 87)), HN tags (e.g., HNHNHNHNHNHN (SEQ ID NO: 88)), HAT tags (e.g., KDHLIHNVHKEEHAHAHNK (SEQ ID NO: 89)), glutathione (e.g., ECG), Flag tags (e.g., DYKDDDDK (SEQ ID NO: 90)), and Myc tags (e.g., EQKLISEEDL (SEQ ID NO: 91)).
  • tags consisting of low molecular weight molecules include biotin, DNP (dinitrophenol), digoxigenin, and digoxi
  • the bridging member used in the present invention is a molecule that binds to both the first tag and the second tag.
  • the bridging member is not particularly limited as long as it has a portion that binds to the first tag and a portion that binds to the second tag in one molecule and can bind to both the first tag and the second tag to form a ternary complex.
  • the first tag and the second tag are peptide tags or tags consisting of low molecules
  • the portion that binds to the first tag and the second tag or the binding portion can be an antibody against these tags.
  • the antibody can be a full-length antibody or an scFv.
  • the portion that binds to the first tag and the second tag or the binding portion can be avidin or streptavidin.
  • the first tag and the second tag are glutathione, glutathione-S-transferase (GST) can be used.
  • GST glutathione-S-transferase
  • the portion that binds to the first tag and the second tag or the portion that binds to the first tag can be maltose binding protein.
  • a full-length antibody has two binding sites with an antigen. Therefore, for example, if the first tag and the second tag are of the same type, a full-length antibody against the tag can be used as a bridging member. Furthermore, avidin and streptavidin usually form tetramers, and since each monomer binds to one molecule of biotin, the tetramer binds to a maximum of four biotins. Therefore, if both the first tag and the second tag are biotin, avidin or streptavidin can be used as a bridging member.
  • the method for producing an antibody according to the present invention includes first preparing a VH domain pool containing two or more VH domains of an antibody and a VL domain pool containing two or more VL domains of an antibody. Next, for all VH domains contained in the VH domain pool, a tagged VH peptide with a first tag is prepared. Similarly, for all VL domains contained in the VL domain pool, a tagged VL peptide with a second tag is prepared.
  • All combinations of the VH domains contained in the VH domain pool and the VL domains contained in the VL domain pool are set, and for each combination, the tagged VH peptide and tagged VL peptide of the combination are contacted with a bridging member that binds to both the first tag and the second tag, and a target antigen to form a four-part complex consisting of the tagged VH peptide, the tagged VL peptide, the bridging member, and the antigen.
  • the amount of the quaternary complex formed is measured, and a combination of VH domain and VL domain with high affinity to the target antigen is selected based on the amount of the quaternary complex.
  • the number (N H ) of VH domains contained in the VH domain pool used in the antibody production method of the present invention is not particularly limited as long as it is 2 or more, and the clonotype of each VH domain contained in the VH domain pool is also not particularly limited.
  • the number (N L ) of VL domains contained in the VL domain pool used in the antibody production method of the present invention is not particularly limited as long as it is 2 or more, and the clonotype of each VL domain contained in the VL domain pool is also not particularly limited.
  • N H ⁇ N L combinations all combinations (N H ⁇ N L combinations ) of VH domains contained in a VH domain pool and VL domains contained in a VL domain pool are determined, and for each combination, the amount of a quaternary complex consisting of a tagged VH peptide, a tagged VL peptide, a bridging member, and an antigen is measured, and combinations with high antigen affinity are screened based on the results. Since the screening sample size (N H ⁇ N L ) is likely to fall within a reasonable range, N H and N L are each independently preferably 100 or less, more preferably 50 or less, and even more preferably 10 or less.
  • the VH domain pool used in the method for producing an antibody according to the present invention preferably consists of two or more VH domains selected from a VH domain library (hereinafter, sometimes referred to as a "target antigen-sensitized animal-derived VH domain library") consisting of VH domains expressed in antibody-producing cells collected from an animal immunized with a target antigen (hereinafter, sometimes referred to as a “target antigen-sensitized animal-derived VH domain library " ).
  • a VH domain library hereinafter, sometimes referred to as a "target antigen-sensitized animal-derived VH domain library"
  • the VL domain pool used in the method for producing an antibody according to the present invention preferably consists of two or more VL domains selected from a VL domain library (hereinafter, sometimes referred to as a "target antigen-sensitized animal-derived VL domain library") consisting of VL domains expressed in antibody-producing cells collected from a target antigen-sensitized animal.
  • VL domain library hereinafter, sometimes referred to as a "target antigen-sensitized animal-derived VL domain library” consisting of VL domains expressed in antibody-producing cells collected from a target antigen-sensitized animal.
  • the "antibody-producing cells” include one or more types of antibody-producing cells that produce antibodies against the antigen by the immunization.
  • the target antigen-sensitized animal-derived VH domain library includes a VH domain expressed by antibody-producing cells that produce antibodies against the target antigen
  • the target antigen-sensitized animal-derived VL domain library includes a VL domain expressed by antibody-producing cells that produce antibodies against the target antigen. Therefore, by using the VH domains and VL domains contained in these libraries, it is possible to more efficiently screen for combinations of VH domains and VL domains with high affinity for the target antigen.
  • a group of peptides consisting of amino acid sequences encoded by a group of amplicons obtained by RT-PCR using a primer set for comprehensively amplifying VH domains, with total RNA extracted from tissues containing antibody-producing cells collected from a target antigen-sensitized animal as a template, can be used as a VH domain library derived from a target antigen-sensitized animal.
  • a group of peptides consisting of amino acid sequences encoded by a group of amplicons obtained by RT-PCR using a primer set for comprehensively amplifying VL domains, with total RNA extracted from tissues containing antibody-producing cells collected from a target antigen-sensitized animal as a template, can be used as a VL domain library derived from a target antigen-sensitized animal.
  • Tissues containing antibody-producing cells include lymph nodes, blood, spleen, etc.
  • Total RNA can be extracted from tissues containing antibody-producing cells collected from animals sensitized with a target antigen by standard methods using commercially available RNA extraction kits, etc.
  • RT-PCR using total RNA extracted from tissues containing antibody-producing cells as a template can be performed by a conventional method, except that a primer set for comprehensively amplifying VH domains or a primer set for comprehensively amplifying VL domains is used.
  • a primer set for comprehensively amplifying VH domains or a primer set for comprehensively amplifying VL domains of each organism can be designed from the nucleotide sequence information of the genomic DNA of the target organism.
  • nucleotide sequence of the Ig heavy chain locus on chromosome 14 (NCBI Gene ID: 3492), the nucleotide sequence of the IgK (kappa) locus on chromosome 2 (NCBI Gene ID: 50802), and the nucleotide sequence of the IgL (lambda) locus on chromosome 22 (NCBI Gene ID: 3535).
  • the VH domain is composed of a V gene fragment, a D gene fragment, and a J gene fragment in an antibody gene linked together
  • the VL domain is composed of a V gene fragment and a J gene fragment linked together.
  • a forward primer is designed at the 5' end of the V gene fragment-derived region
  • a reverse primer is designed at the 3' end of the J gene fragment-derived region, so that each VH domain and VL domain can be PCR amplified. Therefore, the base sequences of the V domain and the J domain are extracted from the base sequence of the genomic DNA, and a base sequence group (a V domain group and a J domain group) in which pseudogenes are excluded is created. Next, a primer that can cover all the domains constituting each group is designed.
  • the method of designing the primer is not particularly limited, and for example, the base length of the primer is fixed to a specific length (e.g., 20 bases long), the mismatch that can be tolerated is only one base, and further, the primer is designed so that non-specific amplification does not occur in RT-PCR using total RNA as a template.
  • a specific length e.g. 20 bases long
  • the mismatch that can be tolerated is only one base
  • the primer is designed so that non-specific amplification does not occur in RT-PCR using total RNA as a template.
  • a primer set for comprehensively amplifying mouse VH domains can be made up of 41 types of forward primers (VH1 to VH41) shown in Table 1 below and 4 types of reverse primers (JH1 to JH4) shown in Table 2.
  • a primer set for comprehensively amplifying mouse VL domains can be made up of 26 types of forward primers (VK1 to VK26) shown in Table 3 below and 4 types of reverse primers (JK1 to JK4) shown in Table 4.
  • the amplicons obtained by comprehensive amplification can be analyzed by next-generation sequencing (NGS) to identify the base sequence and number (Counts) of each amplicon.
  • NGS can be performed by referring to the recommended protocol for the NGS system used. Examples of NGS systems include "MiSeq" (manufactured by Illumina).
  • the results of NGS can be further subjected to discrete calculation processing by MiXCR (manufactured by MiLaboratories), which can further improve the accuracy of identification of the base sequence of the amplicon and the analytical accuracy of the abundance ratio (the ratio of the number of each amplicon to the total number of amplicons).
  • the VH domain pool used in the method for producing an antibody according to the present invention is preferably one selected from among the VH domains constituting the VH domain library derived from a target antigen-sensitized animal in the order of expression frequency in antibody-producing cells in the target antigen-sensitized animal.
  • the VL domain pool used in the method for producing an antibody according to the present invention is preferably one selected from among the VL domains constituting the VL domain library derived from a target antigen-sensitized animal in the order of expression frequency in antibody-producing cells in the target antigen-sensitized animal.
  • Clonotypes with high expression frequency in antibody-producing cells in a target antigen-sensitized animal are likely to be derived from B cells producing antibodies against the target antigen, that is, clonotypes of antibodies against the target antigen. For this reason, by using a VH domain pool composed of VH domains with a relatively high expression frequency in antibody-producing cells in a target antigen-sensitized animal and a VL domain pool composed of VL domains with a relatively high expression frequency in antibody-producing cells in a target antigen-sensitized animal, a combination of VH domains and VL domains with high affinity to a target antigen can be screened more efficiently.
  • VH domain pool and VL domain pool used in the present invention can be composed of VH domains and VL domains derived from various B cells.
  • VH domains and VL domains derived from various B cells For example, clonotypes derived from antibody-producing cells that produce antibodies against antigens other than the target antigen can also be included in these domain pools. This makes it possible to develop artificial antibodies with higher affinity than antibodies originally possessed by living organisms.
  • the abundance ratio of each amplicon (clonotype) in the library reflects the expression frequency in antibody-producing cells in the target antigen-sensitized animal.
  • a VL domain group selected in descending order of abundance from a VL domain library prepared by comprehensively amplifying VL domains as a VL domain pool it is preferable to use a VL domain group selected in descending order of abundance from a VL domain library prepared by comprehensively amplifying VL domains as a VL domain pool.
  • the tagged VH peptides of each VH domain contained in the VH domain pool and the tagged VL peptides of each VL domain contained in the VL domain pool can be prepared by a conventional method using a general recombinant protein expression system.
  • the expression system include expression systems using Escherichia coli, yeast, insect cells, mammalian cells, algae, etc. as hosts, and cell-free expression systems.
  • cell-free expression systems those using expression systems such as Escherichia coli, mammalian cells, and wheat are widely used, and these can also be used appropriately in the present invention.
  • the tagged VH peptides and tagged VL peptides can also be prepared by chemical synthesis.
  • a peptide consisting of a variable domain linked to a linker peptide is prepared, and then each tag is bound to the linker peptide.
  • the binding of the tag and the linker peptide can be performed by a method commonly used for tag modification of peptides.
  • a VH domain pool contains N H (N H is an integer of 2 or more) VH domains and a VL domain pool contains N L (N L is an integer of 2 or more)
  • the number of recombinant proteins required to examine and compare the binding affinities of all combinations must be N H ⁇ N L in the conventional method using an scFv in which the VH and VL domains are covalently linked.
  • the antibody production method of the present invention requires only a total of N H +N L recombinant proteins, consisting of N H tagged VH peptides and N L tagged VL peptides.
  • the contact of the tagged VH peptide, the tagged VL peptide, the cross-linking member, and the antigen and the formation of the four-component complex can be carried out, for example, by incubating a reaction solution prepared by adding these four components to a reaction solvent for a predetermined period of time.
  • a reaction solvent various buffer solutions such as water, phosphate saline (PBS), Tris-buffered saline (TBS), phosphate buffer, Tris-HCl buffer, carbonate/bicarbonate buffer, HEPES buffer, PIPES buffer, MOPS buffer, and MES buffer can be used.
  • the incubation temperature and time can be, for example, 4 to 37°C and 10 minutes to 24 hours, respectively.
  • the amount of the quaternary complex formed can be quantified using various methods commonly used for detecting complexes, such as enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance, and quartz crystal microbalance.
  • ELISA enzyme-linked immunosorbent assay
  • surface plasmon resonance surface plasmon resonance
  • quartz crystal microbalance quartz crystal microbalance
  • a solid phase on which a target antigen is immobilized and an enzyme-labeled crosslinking member are used.
  • a 96-well plate on which the target antigen is immobilized on the bottom surface of the well can be used.
  • the enzyme for labeling the crosslinking member various labeling enzymes commonly used in ELISA, such as horseradish peroxidase (HRP) and alkaline phosphatase (AP), can be used.
  • HRP horseradish peroxidase
  • AP alkaline phosphatase
  • a solution in which a tagged VH peptide, a tagged VL peptide, and a labeled crosslinking member are mixed in a buffer is poured into the 96-well plate, incubated for a predetermined time, and then washed to remove free labeled crosslinking members. Then, a solution containing a substrate for the enzyme that labels the crosslinking member is poured into each well, and the amount of color generated by the enzyme activity is measured. By comparing the amount of color generated, the relative amount of the four-component complex formed can be examined.
  • TMB (3,3',5,5'-tetramethylbenzidine), OPD (o-phenylenediamine dihydrochloride), ABTS (2,2'-azinobis[3-ethylbenzothiazoline-6-sulfonic acid]-diammonium salt), etc.
  • AP p-nitrophenyl phosphate
  • the combination of VH and VL domains that forms the largest amount of tetrameric complexes can be selected as the combination of VH and VL domains with high affinity for the target antigen.
  • several combinations that form the largest amount of tetrameric complexes may be selected as the combination of VH and VL domains with high affinity for the target antigen.
  • an antibody with high antigen affinity By combining the VH and VL domains of an antibody with the selected VH and VL domains, an antibody with high antigen affinity can be produced.
  • the antibody is not particularly limited as long as it has at least one VH and one VL domain, and may be an scFv, a Fab fragment antibody, or a full-length antibody. It may also be a bispecific antibody having a combination of a VH and VL domain with high affinity for a certain antigen and a combination of a VH and VL domain with high affinity for another antigen. It may also be a chimeric antibody in which the VH and VL domains of the selected combination are combined with the VH and VL domains of an antibody of a different species from these variable domains. For example, a humanized antibody can be obtained by replacing a combination selected from a VH and VL domain pool derived from mouse antibody-producing cells with the VH and VL domains of a human antibody.
  • mice female, 8 weeks old were anesthetized with isoflurane (Abbvie) and the antigen emulsion (total 0.1 mL) was intramuscularly injected into the base of the tail on both sides. After the antigen emulsion injection, the mice were kept for 21 days and then euthanized by inhaling an excess of isoflurane, and serum and iliac lymph nodes were collected.
  • Abbvie isoflurane
  • ⁇ Serum antibody titer> The titer of serum antibodies against human plasminogen was determined by ELISA assay. Briefly, each well of a 96-well plate (Nunc-Immuno MaxiSorp, Thermo Fisher Scientific) was coated with human plasminogen (100 ⁇ L) prepared at a concentration of 0.2 ⁇ g/mL in carbonate/bicarbonate buffer (pH 9.7) by incubation for 3 hours. After coating, each well was blocked with bovine serum albumin (Sigma) (1%, prepared in PBS) for 1 hour.
  • human plasminogen 100 ⁇ L
  • carbonate/bicarbonate buffer pH 9.7
  • IgH primers and 26 IgK primers were designed to cover the entire functional V segment, with one degenerate V segment (Tables 1 and 3).
  • the IgK and IgH loci have four functional exons that encode joining (J) segments.
  • J joining
  • four primers were designed for each gene (Tables 2 and 4).
  • NGS all primers were added to the 5' end of the sequences listed in Tables 1 to 4, with 5'-CTCGCCAAAATCAGATCT (SEQ ID NO: 76) for the V segment primer and 5'-TCCTTGCCAGGGGATATC (SEQ ID NO: 77) for the J segment primer.
  • the primers used to construct the full-length mouse IgG had additional sequences added (5'-CAGGTCCCTTACTAGT (SEQ ID NO:78) for VK, 5'-TCGATCCCTTAGATCT (SEQ ID NO:79) for JK, 5'-TCGATCCCTTAGATCT (SEQ ID NO:80) for VH, and 5'-GGGTGTCGTTTTAGC (SEQ ID NO:81) for JH).
  • the resulting primer names were differentiated by adding an "F" to the end of the original primer name (e.g., the primer with SEQ ID NO:76 added to the 5' end of the VK1 primer was named VK1F primer).
  • RNA extraction RNA was extracted from mouse iliac lymph nodes using an RNA extraction kit (RNeasy Mini Kit, Qiagen). Total RNA quality assessment was performed using an ultra-microspectrophotometer (NanoDrop 1000, Thermo Fisher Scientific) to evaluate the RNA integrity of the samples.
  • RT-PCR Reverse Transcription-polymerase chain reaction
  • TAKARA BIO Primary RNA extraction kit
  • PCR was performed using a commercially available kit (PrimeSTAR HS DNA Polymerase, TAKARA BIO) with VH1-VH41 primers and JH1-JH4 primers for IgH and VK1-VK26 primers and JK1-JK4 primers for IgK.
  • ⁇ NGS of amplicons> The RT-PCR amplicon was further amplified by PCR using a primer set consisting of MAK629WGS.F (5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTCGCCAAAATCAGATCT; SEQ ID NO: 82) and MAK629WGD.R (5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCCTTGCCAGGGGATATC; SEQ ID NO: 83).
  • the resulting amplicons were analyzed by NGS using the MiSeq system (Illumina). The output conditions were as follows [layout, paired end; read length, 300 bp; run scale, 100,000 reads/sample].
  • the raw data in fastq format were aligned using MiXCR (MiLaboratories), after which the read counts for each primer were determined and clonotyping was performed.
  • the distribution of clonotypes was visualized using data visualization software ("VDJtools", MiLaboratories).
  • VK and VH domains in E. coli
  • the genes encoding each domain were integrated into the expression plasmid pMAK636 (SEQ ID NO:84: obtained from the Riken BioResource Center (http://www.brc.riken.jp/lab/dna/)).
  • the gene map of pMAK636 and the integration sites of the nucleic acid fragments encoding the VK domain and the VH domain are shown in FIG. 1.
  • the amplicons obtained by NGS were artificially synthesized (Twist Bioscience) and subcloned into pMAK636 digested with the restriction enzymes BglII and EcoRV using a gene recombination kit ("InFUSION Cloning Kit", TAKARA BIO).
  • the obtained plasmid was transformed into competent cells (SHuffle Express competent E. coli, NEB).
  • the transformed cells were individually plated on LB agar plates containing 100 ⁇ g/mL ampicillin. A single colony was picked from each plate and inoculated into LB medium (5 mL) containing 100 ⁇ g/mL ampicillin and grown at 37 ° C for 16 hours.
  • the obtained culture (150 ⁇ L) was diluted with LB medium (15 mL) containing 100 ⁇ g/mL ampicillin and further grown at 37 ° C for 3 hours, after which 150 ⁇ L of 10% by mass arabinose (Nacalai Tesque) was added to induce protein expression. Expression induction was carried out at 30°C for 20 hours. After induction, the culture was centrifuged at 2330 x g and 4°C for 10 minutes, and the supernatant was discarded.
  • HBSS Hank's Balanced Salt Solution
  • surfactant A product name "B-PER (registered trademark) Bacterial Cell Lysis Reagent", Thermo Fisher Scientific.
  • B-PER registered trademark Bacterial Cell Lysis Reagent
  • VK and VH were evaluated by ELISA. Combinations of VK and VH were applied to each well of the ELISA plate prepared for serum titration. Because VK and VH contain His tags at the C-terminus, the Plg-bound complexes were bound to polyclonal rabbit anti-His tag IgG (MEDICAL & BIOLOGICAL LABORATORIES) and then to HRP-conjugated anti-rabbit IgG (Cell Signaling Technology). Detection was performed using the ELISA POD Substrate TMB kit.
  • BAC Bac-to-Bac system
  • pFastBac Dual Thermo Fisher Scientific
  • pFastBac Dual Thermo Fisher Scientific
  • pFastBac Dual the bidirectional promoter sequence of pFastBac Dual was amplified by PCR to obtain a fragment with honeybee melittin signal peptides ("HBM1" and "HBM2" in Figure 2) added to both ends (“HBM2-P10 pro-PH pro-HBM1" in the figure).
  • pMAK161 SEQ ID NO:85
  • the genetic map of pMAK161 is shown in FIG.
  • the resulting plasmid was transformed into chemically competent BmDH10bac cells (provided by Dr. Maenaka, Hokkaido University).
  • the resulting BAC was purified using a "BAC/PAC Miniprep Kit" (Biomiga).
  • BmN4 cells National Agriculture and Food Research Organization
  • KBM720 medium KOHJIN BIO
  • FBS Thermo Fisher Scientific
  • antimycotic antibiotic solution for cell culture Sigma-Aldrich
  • BAC transfection 2.0 ⁇ 105 cells were seeded in a well of a 24-well plate containing 1 mL of medium. Transfection was performed using 1 ⁇ g BAC, 30 ⁇ L OptiMEM (Thermo Fisher Scientific), and 5 ⁇ L HilyMAX (DOJINDO). Recombinant baculovirus carrying full-length IgG was released after lysis of the cells.
  • Serum antibody titration Five mice were immunized with FCA and Plg, and three mice were immunized with FCA only. The iliac lymph nodes of all mice were swollen 21 days after immunization. 21 days after immunization, blood was collected from each mouse to prepare serum. The obtained serum was diluted 10 3 to 10 6 times, and the amount of anti-plasminogen antibody in each serum dilution was examined by ELISA assay using HRP-conjugated secondary antibody and TMB chromogenic substrate. The measurement results of absorbance (A 450 ) at 450 nm for each serum dilution are shown in FIG. 3.
  • FCA+Plg The A 450 of the mice immunized with FCA and Plg (in the figure, "FCA+Plg") was higher than that of the mice immunized with FCA only (in the figure, “FCA”). As shown by this, the serum antibody titer was clearly increased in the mice immunized with FCA and Plg.
  • the melting temperature (Tm) and the number of amplicons for each primer were analyzed to verify PCR bias.
  • the correlation coefficient (R 2 ) for VK was 0.059
  • the correlation coefficient for VH was 0.096. Therefore, no obvious bias due to the difference in Tm of RT-PCR was observed.
  • each clonotype was numbered in descending order of frequency of expression.
  • the obtained results were visualized in Figures 5 and 6 using VDJtools.
  • the vertical axis indicates the abundance ratio of amplicons of each clonotype ([number of amplicons of each clonotype]/[total number of all amplicons]).
  • the clonotypes ranked 1st to 10th in descending order of frequency of expression of the V K domain are shown in Figure 5 and Table 9, and the clonotypes ranked 1st to 10th in descending order of frequency of expression of the V H domain (V H c1 to V H c10) are shown in Figure 6 and Table 10, respectively.
  • VK and VH domains in E. coli The frequently expressed clonotypes are presumed to be derived from B cells producing the target antibody, anti-plasminogen antibody. Therefore, the combination of VK and VH domains with the highest plasminogen binding activity (antibody activity) was examined from the frequently expressed clonotypes.
  • VKcn domain a "full-length variable region containing the top n (n is an integer of 1 or more) clonotype of VK”
  • VHcm domain a "full-length variable region containing the top m (m is an integer of 1 or more) clonotype of VH "
  • VKcm domain The amino acid sequences (SEQ ID NOs: 112-119) of the VK c1 domain, VK c2 domain, VK c4 domain, VK c5 domain, VH c1 domain, VH c2 domain, VH c3 domain, and VH c4 domain are shown in Figure 7.
  • top 3 clonotypes and top 2 clonotypes of VK share the same V gene fragment, and therefore CDR1 and CDR2 are similar, with only CDR3, which is the fusion site of the V gene fragment and the J gene fragment, being different. Since V gene fragments of the same lineage are considered to be identical, the top 3 clonotypes of VK have been omitted.
  • signal peptide is the sequence of amino acids 1 to 28
  • signal peptide is the sequence of amino acids 1 to 28
  • an additional sequence having an avidin tag and a His tag was added to the C-terminus to design a His-tagged V K peptide.
  • pMAK636 into which the His-tagged V K c1 domain has been introduced is referred to as pMAK636VKc1
  • pMAK636VHc1 pMAK636VHc1.
  • the resulting plasmids pMAK637VKc1, 2, 4, and 5 and pMA637VHc1-4 were individually transformed into SHuffle Express cells. After induction of expression, the transformed cells were treated with a lysis solution containing detergent A to release the recombinant proteins into the periplasm. As shown in Figure 8, the recombinant His-tagged VK peptide and the recombinant His-tagged VH peptide were successfully released into the lysis solution.
  • the binding ability to plasminogen was examined by ELISA for all combinations (16 combinations) of the VKc1 domain, the VKc2 domain, the VKc4 domain, and the VKc5 domain with the VHc1 domain, the VHc2 domain, the VHc3 domain, and the VHc4 domain.
  • the measurement results are shown in FIG. 9.
  • the vertical axis is the absorbance value (A 450 ) measured by ELISA.
  • the three combinations of VKc1+VHc3, VKc4+VHc1, and VKc5+VHc4 had high binding ability to plasminogen.
  • PCR using pMAK637VHc1, VH2F, and JH2F yielded a His-tagged VHc1 domain peptide having an additional sequence (sequence number 80) added to the 5' end and an additional sequence (sequence number 81) added to the 3' end
  • PCR using pMAK637VHc3, VH1F, and JH1F yielded a His-tagged VHc3 domain peptide having an additional sequence (sequence number 80) added to the 5' end and an additional sequence (sequence number 81) added to the 3' end.
  • a combination of VK and VH with high plasminogen binding activity was introduced into pMAK161 using a bidirectional promoter and secretory signal peptide.
  • a plasmid in which a full-length IgG consisting of a combination of a VKcn domain and a VHcm domain was introduced into pMAK161 is referred to as pMAK638KcnHcm.
  • the synthesized pMAK638Kc1Hc3, pMAK638Kc4Hc1, and pMAK638Kc5Hc4 were transformed into BmDH10bac, respectively, to generate corresponding BACs such as BM638Kc1Hc3, BM638Kc4Hc1, and BM638Kc5Hc4.
  • the obtained BACs were transfected into BmN4 cells, the cells were lysed, and the culture supernatant was collected. When confirmed by Western blot, each lysate contained full-length IgG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本発明は、抗原に対する親和性の高いVドメインとVドメインの組み合わせからなる抗体を製造する方法を提供する。本発明は、抗体のVドメインに第1タグを付加したタグ付きVペプチドと、抗体のVドメインに第2タグを付加したタグ付きVペプチドとの組み合わせを複数設定し、各組み合わせについて、それぞれ、当該組み合わせのタグ付きVペプチド及びタグ付きVペプチドと、前記第1タグと前記第2タグとの両方と結合する架橋部材と、抗原とを接触させて、前記タグ付きVペプチドと前記タグ付きVペプチドと前記架橋部材と前記抗原とからなる複合体の量を測定し、前記複合体量に基づいて、前記抗原に対する親和性が高いVドメインとVドメインの組み合わせを選抜し、前記選抜された組み合わせのVドメインとVドメインを含む抗体を製造する、方法である。

Description

抗体の製造方法
 本発明は、抗原に対する親和性の高い抗体を、より少ない労力で製造する方法に関する。
 本願は、2022年9月27日に、日本に出願された特願2022-153932号に基づき優先権を主張し、その内容をここに援用する。
 抗体は、2本の同一の重鎖と2本の同一の軽鎖が、ジスルフィド結合によって連結されたY字構造からなる。軽鎖は、1つの可変領域と1つの定常領域を含む。重鎖は、1つの可変領域と3つ又は4つの定常領域で構成される。各可変領域には、相補性決定領域(CDR)と呼ばれる3つの超可変領域が含まれている。重鎖可変領域中の3つのCDRと軽鎖可変領域中の3つのCDRとが一緒になって、抗体結合部位(REF)を形成する。
 完全長の抗体を作製する方法として、ハイブリドーマ技術がある。ハイブリドーマは、動物を免疫して単一のB細胞を分離して樹立することができる。また、単離したB細胞から遺伝子を抽出して、1つの重鎖遺伝子と1つの軽鎖遺伝子を発現し、対応する抗原に対する固有の完全長のモノクローナル抗体を生成する組換え体を製造できる。各ハイブリドーマの両方の遺伝子がクローン化され、哺乳動物細胞株にトランスフェクトされることによって、組換え完全長抗体が安定して作製できる。
 免疫検出の一般的な用途には、完全長抗体ではなく、可変領域を含む複合体がよく使用されている。当該複合体としては、軽鎖可変領域(Vドメイン)と重鎖可変領域(Vドメイン)が短いリンカーペプチドで連結されたタンパク質である単鎖可変フラグメント(scFv)が知られている(非特許文献1)。
 ラクダ科動物(ラクダとラマ)は、1つの可変ドメインと2つの定常ドメインからなる重鎖のみを持つ完全に機能的な抗体を持っていることが知られている(非特許文献2)。この単一の可変ドメインは、大腸菌のサイトゾルでよく発現させることができ(非特許文献3)、この構造は、「ナノボディ(NB)」と呼ばれている(非特許文献4)。NBは、従来の抗体の代替として、研究試薬用途に使用されており、また、抗体医薬としての利用も期待されている。NBの効率的な製造のために、大腸菌由来のNBの簡易な可溶性分泌発現系が開発されている(非特許文献5)。
 抗体を、抗原検出に使用する方法として、VドメインとVドメインとの間の相互作用が抗原添加によって強められることを利用したオープンサンドイッチ法が知られている(非特許文献6)。当該方法では、Vドメインを固定化したプレートに、アルカリフォスファターゼと融合させたVドメインを含むサンプル溶液を入れてインキュベートした後、洗浄し、Vドメインによって捕捉されたVドメインを、アルカリフォスファターゼ活性を指標として検出する反応系を使用する。当該サンプル溶液に含まれている抗原の量に依存して、検出されるアルカリフォスファターゼ活性が高くなる。
 より有用な抗体とするために、抗原に対する親和性や特異性を改善させることが行われている。抗原に対する親和性は、VドメインとVドメインとの組み合わせによって最適化される。抗原親和性の高いVドメインとVドメインとの組み合わせを調べる方法として、従来、ファージディスプレイ法(非特許文献7)が利用されてきた。ファージディスプレイ法では、B細胞由来の様々なクロノタイプ(clonotype:個々の抗体に固有のアミノ酸配列)からなる抗体遺伝子プールから、VドメインとVドメインを個別にPCR増幅する。増幅されたVドメインとVドメインは、リンカーペプチド配列をコードしたリンカーDNAを用いてアセンブリPCRを行うことでランダムに結合させ、ファージミドベクターに組み替えてscFvライブラリーを作製する。このscFvライブラリーの中から、抗原に対する結合性が高いscFvをスクリーニングすることで、親和性や特異性の高い抗体が得られる。
Huston,et al.,Proceedings of the National Academy of Sciences of the United States of America, 1988, vol.85(16) p.5879-5883. Hamers-Casterman,et al.,Nature, 1993, vol.363(6428), p.446-448. Arbabi Ghahroudi,et al.,FEBS Letters, 1997, vol.414, p.521-526. Muyldermans et al, Annual Review of Biochemistry, 2013, vol.82, p.775-797. Iwaki et al, Protein Expression and Purification, 2020, vol.170, 105607. 上田宏、薬学雑誌、2007年、第127巻、第1号、第71~80ページ。 伊東裕二、薬学雑誌、2017年、第137巻、第7号、第823~830ページ。 Sado et al, Acta Histochemica et Cytochemica, 2006, vol.39(3), p.89-94.
 仮に、VドメインのクロノタイプがM通り、VドメインのクロノタイプがN通りあったとすると、VドメインとVドメインとの組み合わせは理論上N×M通りが考えられる。VドメインやVドメインのクロノタイプの数は多く、このため、従来のファージディスプレイ法の場合、高い親和性と特異性を有するクローンを得るためには、膨大なサンプルサイズ(検体数)のscFvをスクリーニングする必要があり、また、scFvライブラリーの規模が物理限界を超過してしまう問題がある。
 そこで、本発明は、抗原に対する親和性の高いVドメインとVドメインの組み合わせからなる抗体を、より少ない労力で製造する方法を提供することを目的とする。
 本発明者らは、VドメインのクロノタイプN個とVドメインのクロノタイプM個の組み合わせの中から、抗原との親和性が高い組み合わせを選抜する際に、VドメインとVドメインをそれぞれ別個のタグ付きペプチドを準備し、両ペプチドをそれぞれのタグと結合する架橋部材と共に抗原と結合させることによって、N+M個のペプチドを準備するだけで、VドメインのクロノタイプとVドメインのクロノタイプの全ての組み合わせ(すなわち、N×M個の組み合わせ)について抗原との結合アッセイを行えることを見出し、本発明を完成させた。
 すなわち、本発明は、以下の通りである。
[1] 標的とする抗原に対する抗体を製造する方法であって、
 抗体の重鎖可変領域からなるVドメインを2以上含むVドメインプールと、抗体の軽鎖可変領域からなるVドメインを2以上含むVドメインプールと、を準備し、
 前記Vドメインプールに含まれる全てのVドメインについて、それぞれ、第1のタグを付加したタグ付きVペプチドを準備し、
 前記Vドメインプールに含まれる全てのVドメインについて、それぞれ、第2のタグを付加したタグ付きVペプチドを準備し、
 前記Vドメインプールに含まれるVドメインと、前記Vドメインプールに含まれるVドメインとの全ての組み合わせを設定し、
 前記設定された各組み合わせについて、それぞれ、当該組み合わせのタグ付きVペプチド及びタグ付きVペプチドと、前記第1のタグと前記第2のタグとの両方と結合する架橋部材と、前記標的とする抗原とを接触させて、前記タグ付きVペプチドと前記タグ付きVペプチドと前記架橋部材と前記抗原とからなる複合体の量を測定し、
 前記複合体の量に基づいて、前記標的とする抗原に対する親和性が高いVドメインとVドメインの組み合わせを選抜し、
 前記選抜された組み合わせのVドメインとVドメインを含む抗体を製造する、
 抗体の製造方法。
[2] 前記Vドメインプールは、前記標的とする抗原で免疫された動物から採取された抗体産生細胞において発現している重鎖可変領域からなるVドメインライブラリーから選抜された2以上のVドメインからなり、
 前記Vドメインプールは、前記抗体産生細胞において発現している軽鎖可変領域からなるVドメインライブラリーから選抜された2以上のVドメインからなる、前記[1]の抗体の製造方法。
[3] 前記Vドメインプールを構成するVドメインは、前記Vドメインライブラリーを構成するVドメインのうち、前記抗体産生細胞における発現頻度が高い順に選抜されており、
 前記Vドメインプールを構成するVドメインは、前記Vドメインライブラリーを構成するVドメインのうち、前記抗体産生細胞における発現頻度が高い順に選抜されている、前記[2]の抗体の製造方法。
[4] 前記Vドメインライブラリーを構成するVドメインは、
 前記標的とする抗原で免疫された動物から採取された抗体産生細胞を含む組織から抽出された全RNAを鋳型とし、重鎖可変領域を網羅的に増幅するためのプライマーセットを用いたRT-PCRによって得られたアンプリコンがコードしているアミノ酸配列からなり、
 前記Vドメインライブラリーを構成するVドメインは、
 前記全RNAを鋳型とし、軽鎖可変領域を網羅的に増幅するためのプライマーセットを用いたRT-PCRによって得られたアンプリコンがコードしているアミノ酸配列からなる、前記[2]又は[3]の抗体の製造方法。
[5] 前記重鎖可変領域を網羅的に増幅するためのプライマーセットが、配列番号1~41で表される塩基配列からなる41種類のフォワードプライマーと、配列番号42~45で表される塩基配列からなる4種類のリバースプライマーとからなり、
 前記軽鎖可変領域を網羅的に増幅するためのプライマーセットが、配列番号46~71で表される塩基配列からなる26種類のフォワードプライマーと、配列番号72~75で表される塩基配列からなる4種類のリバースプライマーとからなる、前記[4]の抗体の製造方法。
[6] 前記第1のタグと前記第2のタグが、いずれもHisタグであり、
 前記架橋部材が、抗Hisタグ抗体である、前記[1]~[5]のいずれかの抗体の製造方法。
[7] 前記第1のタグと前記第2のタグが、いずれもビオチンであり、
 前記架橋部材が、アビジン又はストレプトアビジンである、前記[1]~[5]のいずれかの抗体の製造方法。
[8] 前記選抜された組み合わせのVドメインとVドメインを含む単鎖可変領域フラグメントを製造する、前記[1]~[7]のいずれかの抗体の製造方法。
[9] 前記選抜された組み合わせのVドメインとVドメインを含む完全長抗体を製造する、前記[1]~[7]のいずれかの抗体の製造方法。
[10] 抗体の重鎖可変領域と第1のタグを含むタグ付きVペプチドと、抗体の軽鎖可変領域と第2のタグを含むタグ付きVペプチドと、前記第1のタグと前記第2のタグとの両方と結合する架橋部材とを含む、複合体。
 本発明に係る抗体の製造方法は、抗原との結合アッセイを、VドメインとVドメインが共有結合で静的に結合している分子ではなく、Vドメインを含むペプチドとVドメインを含むペプチドを用いて行う。このため、本発明に係る抗体の製造方法を用いることにより、非常に多くのVドメインのクロノタイプとVドメインのクロノタイプの組み合わせの中から、抗原への親和性が高い組み合わせを、より少ない労力で選抜することができる。
pMAK636の遺伝子マップと、Vドメイン及びVドメインをコードする塩基配列を含む核酸断片を組み込む部位を示した図である。 pMAK161の遺伝子マップと、Vドメイン及びVドメインをコードする塩基配列を含む核酸断片を組み込む部位を示した図である。 実施例1において、FCA及びPlgで免疫したマウスと、FCAのみで免疫したマウスについて、免疫から21日後に採取した血清の希釈液(10~10倍希釈)中の抗プラスミノゲン抗体量の測定結果を示した図である。 実施例1において、プラスミノゲンを抗原として免疫したマウスのリンパ節から抽出した全RNAを鋳型としたRT-PCRで使用したプライマーの融解温度(Tm:℃)と、増幅産物をNGS分析して得られた各アンプリコンの数(Counts)との関係を示した図である。図4(A)は、V領域の結果であり、図4(B)は、V領域の結果である。 実施例1において、V領域のCDR3のアミノ酸配列によるクロノタイプの分布を示した図である。 実施例1において、V領域のCDR3のアミノ酸配列によるクロノタイプの分布を示した図である。 実施例1において、Vの発現頻度のトップ1、2、4、及び5のクロノタイプを含む完全長可変領域(Vc1ドメイン、Vc2ドメイン、Vc4ドメイン、及びVc5ドメイン)と、Vのトップ1~4のクロノタイプを含む完全長可変領域(Vc1ドメイン、Vc2ドメイン、Vc3ドメイン、及びVc4ドメイン)のアミノ酸配列のアラインメント図である。 実施例1において、形質転換大腸菌で発現させたVKc1ドメイン、VKc2ドメイン、VKc4ドメイン、VKc5ドメイン、VHc1ドメイン、VHc2ドメイン、VHc3ドメイン、及びVHc4ドメインのHisタグ付きペプチドを可溶化した溶液のSDS-PAGEの結果を示した図である。 実施例1において、VKc1ドメイン、VKc2ドメイン、VKc4ドメイン、及びVKc5ドメインと、VHc1ドメイン、VHc2ドメイン、VHc3ドメイン、及びVHc4ドメインとの全ての組み合わせ(16通り)について、プラスミノゲンとの結合性をELISAで調べた結果を示した図である。
 本発明に係る抗体の製造方法は、標的とする抗原に対する抗体を製造する方法であって、複数の重鎖可変領域(Vドメイン)のクロノタイプと複数の軽鎖可変領域(Vドメイン)のクロノタイプの中から、抗原に対する親和性が高い組み合わせを選抜して、抗原親和性の高い抗体を製造する方法である。本発明においては、抗原との親和性を調べる際に、VドメインとVドメインとを独立したタンパク質として調製し、これらを抗原と結合させる。これにより、scFvのようなVドメインとVドメインとが共有結合されているタンパク質を用いる従来の方法よりも、準備すべきリコンビナントタンパク質の数を抑えることができる。例えば、VドメインのクロノタイプがN(Nは2以上の整数)個あり、VドメインのクロノタイプがM(Mは2以上の整数)個ある場合、全ての組み合わせの結合親和性を調べて比較するために必要なリコンビナントタンパク質は、VドメインとVドメインとが共有結合されているタンパク質の場合はN×M個準備する必要がある。これに対して、本願発明に係る抗体の製造方法では、各クロノタイプの数だけでよい、すなわち、N個のVドメインとM個のVドメインの合計N+M個のリコンビナントタンパク質だけでよい。
 一般的に、VドメインとVドメインとを独立したタンパク質として調製し、これを抗原と結合させた場合、同じ組み合わせの完全長抗体よりも抗原親和性が顕著に低くなってしまう。そこで、本発明においては、VドメインとVドメインと抗原との複合体を形成する際に、VドメインとVドメインを架橋する架橋部材も共に使用する。当該架橋部材により、VドメインとVドメインと抗原との複合体をより安定に形成させることができる。
 本発明においては、Vドメインにタグ(第1のタグ)を付加したタグ付きVペプチドと、Vドメインにタグ(第2のタグ)を付加したタグ付きVペプチドと、第1のタグと第2のタグとの両方と結合する架橋部材とを用いる。第1のタグと第2のタグは、同一のタグであってもよく、異なっていてもよい。
 タグ付きVペプチドにおいて、Vドメインと第1のタグは、直接連結させてもよく、適当なリンカーペプチドを介して連結させてもよい。また、VドメインのC末端側とN末端側のいずれに第1のタグを連結させてもよい。Vドメインと第1のタグを連結させるリンカーペプチドのアミノ酸配列は、Vドメインと抗原の結合や第1のタグと架橋部材との結合を阻害しない配列であれば特に限定されるものではない。タグ付きVペプチドは、第1のタグ以外のタグを含んでいてもよい。
 タグ付きVペプチドにおいて、Vドメインと第2のタグは、直接連結させてもよく、適当なリンカーペプチドを介して連結させてもよい。また、VドメインのC末端側とN末端側のいずれに第2のタグを連結させてもよい。Vドメインと第2のタグを連結させるリンカーペプチドのアミノ酸配列は、Vドメインと抗原の結合や第2のタグと架橋部材との結合を阻害しない配列であれば特に限定されるものではない。タグ付きVペプチドは、第2のタグ以外のタグを含んでいてもよい。
 第1のタグ及び第2のタグとしては、3~20個のアミノ酸からなるペプチドタグであってもよく、低分子からなるタグであってもよく、糖からなるタグであってもよい。ペプチドタグとしては、Hisタグ(例えば、HHHHHH(配列番号86))、HQタグ(例えば、HQHQHQ(配列番号87))、HNタグ(例えば、HNHNHNHNHNHN(配列番号88))、HATタグ(例えば、KDHLIHNVHKEEHAHAHNK(配列番号89))、グルタチオン(例えば、ECG)、Flagタグ(例えば、DYKDDDDK(配列番号90))、Mycタグ(例えば、EQKLISEEDL(配列番号91))等が挙げられる。低分子からなるタグとしては、ビオチン、DNP(ジニトロフェノール)、ジゴキシゲニン、ジゴキシン等が挙げられる。糖からなるタグとしては、マルトース等が挙げられる。
 本発明において用いられる架橋部材は、第1のタグと第2のタグとの両方と結合する分子である。当該架橋部材としては、一分子中に、第1のタグと結合する部分と第2のタグと結合する部分とを有しており、第1のタグと第2のタグの両方と結合して3者複合体を形成し得る分子であれば、特に限定されるものではない。例えば、第1のタグと結合する部分と第2のタグや結合する部分としては、第1のタグ及び第2のタグが、ペプチドタグや低分子からなるタグの場合、これらのタグに対する抗体が挙げられる。当該抗体としては、完全長抗体であってもよく、scFvであってもよい。また、第1のタグ及び第2のタグがビオチンの場合、第1のタグと結合する部分と第2のタグや結合する部分としては、アビジンやストレプトアビジンを挙げることができる。第1のタグ及び第2のタグがグルタチオンの場合、グルタチオン-S-トランスフェラーゼ(GST)が挙げられる。第1のタグ及び第2のタグがマルトースの場合、第1のタグと結合する部分と第2のタグや結合する部分としては、マルトース結合タンパク質を挙げることができる。
 完全長抗体は、抗原との結合部位を2か所有している。このため、例えば、第1のタグと第2のタグが同種のタグである場合、当該タグに対する完全長抗体を、架橋部材として用いることができる。また、アビジンやストレプトアビジンは通常4量体を形成しているが、各単量体と1分子のビオチンが結合するため、4量体は最大4個のビオチンと結合する。そこで、第1のタグと第2のタグがいずれもビオチンの場合、アビジンやストレプトアビジンを架橋部材として用いることができる。
 本発明に係る抗体の製造方法は、具体的には、まず、抗体のVドメインを2以上含むVドメインプールと、抗体のVドメインを2以上含むVドメインプールと、を準備する。次いで、Vドメインプールに含まれる全てのVドメインについて、それぞれ、第1のタグを付加したタグ付きVペプチドを準備する。同様に、Vドメインプールに含まれる全てのVドメインについて、それぞれ、第2のタグを付加したタグ付きVペプチドを準備する。Vドメインプールに含まれるVドメインと、Vドメインプールに含まれるVドメインとの全ての組み合わせを設定し、設定された各組み合わせについて、それぞれ、当該組み合わせのタグ付きVペプチド及びタグ付きVペプチドと、第1のタグと第2のタグの両方と結合する架橋部材と、標的とする抗原とを接触させて、タグ付きVペプチドとタグ付きVペプチドと当該架橋部材と抗原とからなる4者複合体を形成させる。タグ付きVペプチド中のVドメインとタグ付きVペプチド中のVドメインの抗原親和性が高いほど、形成される4者複合体量が多くなる。そこで、形成された当該4者複合体の量を測定し、当該4者複合体量に基づいて、標的とする抗原に対する親和性が高いVドメインとVドメインの組み合わせを選抜する。抗体のVドメインとVドメインを、この選抜されたVドメインとVドメインの組み合わせにすることにより、抗原親和性の高い抗体を製造できる。
 本発明に係る抗体の製造方法において用いられるVドメインプールに含まれるVドメインの数(N)は、2以上であれば特に限定されるものではなく、また、当該Vドメインプールに含まれる各Vドメインのクロノタイプも特に限定されるものではない。本発明に係る抗体の製造方法において用いられるVドメインプールに含まれるVドメインの数(N)は、2以上であれば特に限定されるものではなく、また、当該Vドメインプールに含まれる各Vドメインのクロノタイプも特に限定されるものではない。
 本発明に係る抗体の製造方法においては、Vドメインプールに含まれるVドメインと、Vドメインプールに含まれるVドメインとの全ての組み合わせ(N×N通り)を設定し、各組み合わせについて、タグ付きVペプチドとタグ付きVペプチドと架橋部材と抗原とからなる4者複合体の量を測定し、その結果に基づいて抗原親和性の高い組み合わせをスクリーニングする。スクリーニングのサンプルサイズ(N×N)が妥当な範囲に収めやすい点から、NとNは、それぞれ独立して、100以下が好ましく、50以下がより好ましく、10以下がさらに好ましい。
 本発明に係る抗体の製造方法において用いられるVドメインプールは、標的とする抗原で免疫された動物(以下、「標的抗原感作動物」ということがある)から採取された抗体産生細胞において発現しているVドメインからなるVドメインライブラリー(以下、「標的抗原感作動物由来Vドメインライブラリー」ということがある)から選抜された2以上のVドメインからなることが好ましい。同様に、本発明に係る抗体の製造方法において用いられるVドメインプールは、標的抗原感作動物から採取された抗体産生細胞において発現しているVドメインからなるVドメインライブラリー(以下、「標的抗原感作動物由来Vドメインライブラリー」ということがある)から選抜された2以上のVドメインからなることが好ましい。「抗体産生細胞」には、当該免疫によって当該抗原に対する抗体を産生する抗体産生細胞が1種又は2種以上含まれている。つまり、標的抗原感作動物由来Vドメインライブラリーには、標的抗原に対する抗体を産生する抗体産生細胞が発現しているVドメインが含まれており、標的抗原感作動物由来Vドメインライブラリーには、標的抗原に対する抗体を産生する抗体産生細胞が発現しているVドメインが含まれている。このため、これらのライブラリーに含まれているVドメインやVドメインを用いることで、より効率よく、標的抗原に対する親和性の高いVドメインとVドメイン組み合わせをスクリーニングすることができる。
 例えば、標的抗原感作動物から採取された抗体産生細胞を含む組織から抽出された全RNAを鋳型とし、Vドメインを網羅的に増幅するためのプライマーセットを用いたRT-PCRによって得られたアンプリコン群がコードするアミノ酸配列からなるペプチド群を、標的抗原感作動物由来Vドメインライブラリーとすることができる。同様に、標的抗原感作動物から採取された抗体産生細胞を含む組織から抽出された全RNAを鋳型とし、Vドメインを網羅的に増幅するためのプライマーセットを用いたRT-PCRによって得られたアンプリコン群がコードするアミノ酸配列からなるペプチド群を、標的抗原感作動物由来Vドメインライブラリーとすることができる。
 抗体産生細胞を含む組織としては、リンパ節、血液、脾臓等が挙げられる。標的抗原感作動物から採取された抗体産生細胞を含む組織からの全RNA抽出は、市販のRNA抽出用キット等を用いて常法により行うことができる。
 抗体産生細胞を含む組織から抽出された全RNAを鋳型としたRT-PCRは、Vドメインを網羅的に増幅するためのプライマーセット又はVドメインを網羅的に増幅するためのプライマーセットを用いる以外は、常法により行うことができる。各生物種のVドメインを網羅的に増幅するためのプライマーセット又はVドメインを網羅的に増幅するためのプライマーセットは、対象の生物種のゲノムDNAの塩基配列情報から設計できる。ヒトの場合、第14染色体のIg重鎖遺伝子座の塩基配列(NCBI Gene ID:3492)、第2染色体のIgΚ(カッパ)遺伝子座の塩基配列(NCBI Gene ID:50802)、第22染色体のIgL(ラムダ)遺伝子座の塩基配列(NCBI Gene ID:3535)を用いて設計できる。
 Vドメインは、抗体遺伝子中のV遺伝子断片とD遺伝子断片とJ遺伝子断片が連結されて構成され、Vドメインは、V遺伝子断片とJ遺伝子断片が連結されて構成される。このため、V遺伝子断片由来領域の5’末端にフォワードプライマーを設計し、J遺伝子断片由来領域の3’末端にリバースプライマーを設計することで、各VドメインやVドメインをPCR増幅させることができる。そこで、ゲノムDNAの塩基配列の中から、VドメインとJドメインの塩基配列を抽出し、偽遺伝子を排除した塩基配列群(Vドメイン群とJドメイン群)を作成する。次いで、各群を構成する全てのドメインを網羅することができるプライマーを設計する。プライマーの設計方法は特に限定されるものではなく、例えば、プライマーの塩基長を特定の長さ(例えば、20塩基長)に固定し、許容できるミスマッチは1塩基のみとし、さらに、全RNAを鋳型としたRT-PCRにおいて非特異的な増幅が生じないように設計する。
 例えば、マウスのVドメインを網羅的に増幅するためのプライマーセットとしては、下記表1に示す41種類のフォワードプライマー(VH1~VH41)と表2に示す4種類のリバースプライマー(JH1~JH4)からなるものを用いることができる。また、マウスのVドメインを網羅的に増幅するためのプライマーセットとしては、下記表3に示す26種類のフォワードプライマー(VK1~VK26)と表4に示す4種類のリバースプライマー(JK1~JK4)からなるものを用いることができる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 網羅的に増幅させて得られたアンプリコンを、次世代シーケンシング(NGS)分析することによって、各アンプリコンの塩基配列や数(Counts)を同定することができる。NGSは、使用するNGSシステムの推奨プロトコルを参考に実施することができる。NGSシステムとしては、「MiSeq」(Illumina社製)等が挙げられる。NGSの結果は、さらに、MiXCR(MiLaboratories社製)による離散演算処理がなされることによって、よりアンプリコンの塩基配列の同定精度や存在比(全アンプリコン数に対する、各アンプリコンの数の割合)の分析精度を高めることができる。
 本発明に係る抗体の製造方法において用いられるVドメインプールは、標的抗原感作動物由来Vドメインライブラリーを構成するVドメインのうち、標的抗原感作動物中の抗体産生細胞における発現頻度が高い順に選抜されたものであることが好ましい。同様に、本発明に係る抗体の製造方法において用いられるVドメインプールは、標的抗原感作動物由来Vドメインライブラリーを構成するVドメインのうち、標的抗原感作動物中の抗体産生細胞における発現頻度が高い順に選抜されたものであることが好ましい。標的抗原感作動物中の抗体産生細胞における発現頻度が高いクロノタイプは、標的抗原に対する抗体を産生するB細胞に由来する、すなわち、標的抗原に対する抗体のクロノタイプである可能性が高い。このため、標的抗原感作動物中の抗体産生細胞における発現頻度が比較的高いVドメインから構成されたVドメインプールと、標的抗原感作動物中の抗体産生細胞における発現頻度が比較的高いVドメインから構成されたVドメインプールを用いることにより、より効率よく、標的抗原に対する親和性の高いVドメインとVドメイン組み合わせをスクリーニングすることができる。
 その他、本発明において用いられるVドメインプール及びVドメインプールは、様々なB細胞由来のVHドメインやVLドメインを構成させることができる。例えば、標的の抗原以外の抗原に対する抗体を産生する抗体産生細胞由来のクロノタイプも、これ等のドメインプールに含めることができる。このため、本来生体が持つ抗体よりも親和性の高い人工抗体の開発が期待できる。
 前記のように、標的抗原感作動物から採取された抗体産生細胞を含む組織から抽出された全RNAを鋳型としてVドメインを網羅的に増幅し、得られた増幅産物をNGS解析して調製したVドメインライブラリーでは、当該ライブラリー内における各アンプリコン(クロノタイプ)の存在比は、標的抗原感作動物中の抗体産生細胞における発現頻度を反映する。このため、本発明においては、Vドメインを網羅的に増幅させて調製したVドメインライブラリーから存在比が多い順に選択したVドメイン群を、Vドメインプールとすることが好ましい。同様に、Vドメインを網羅的に増幅させて調製したVドメインライブラリーから存在比が多い順に選択したVドメイン群を、Vドメインプールとすることが好ましい。
 Vドメインプールに含まれる各Vドメインのタグ付きVペプチドや、Vドメインプールに含まれる各Vドメインのタグ付きVペプチドは、一般的なリコンビナントタンパク質の発現系を利用して、常法により調製することができる。当該発現系としては、大腸菌、酵母、昆虫細胞、哺乳類細胞、藻類等を宿主とした発現系や、無細胞発現系が挙げられる。無細胞発現系としては、大腸菌、哺乳類細胞、小麦等の発現系を利用したものが汎用されており、本発明においてもこれらを適宜使用することができる。その他、タグ付きVペプチド及びタグ付きVペプチドは、化学合成により調製することもできる。タグがペプチド以外の場合には、リンカーペプチドと連結させた可変ドメインからなるペプチドを調製した後、各タグをリンカーペプチドに結合させる。タグとリンカーペプチドの結合は、ペプチドのタグ修飾で汎用されている方法により行うことができる。
 例えば、Vドメインプールに含まれるVドメインがN(Nは2以上の整数)個あり、Vドメインプールに含まれるVドメインがN(Nは2以上の整数)個ある場合、全ての組み合わせの結合親和性を調べて比較するために必要なリコンビナントタンパク質は、VドメインとVドメインとが共有結合されているscFvを用いる従来法ではN×N個準備する必要がある。これに対して、本願発明に係る抗体の製造方法では、N個のタグ付きVペプチドとN個のタグ付きVペプチドの合計N+N個のリコンビナントタンパク質だけでよい。
 タグ付きVペプチド、タグ付きVペプチド、架橋部材、及び抗原の接触及び4者複合体の形成は、例えば、反応溶媒にこれらの4成分を添加して調製した反応溶液を、所定時間インキュベートすることによって行うことができる。当該反応溶媒としては、水、リン酸生理食塩水(PBS)、トリス緩衝生理食塩水(TBS)、リン酸バッファー、トリス塩酸バッファー、炭酸/重炭酸バッファー、HEPESバッファー、PIPESバッファー、MOPSバッファー、MESバッファー等の各種緩衝液を用いることができる。インキュベートの温度及び時間は、それぞれ例えば、4~37℃、10分間~24時間で行うことができる。
 形成された4者複合体の量は、酵素結合免疫吸着法(ELISA)、表面プラズモン共鳴法、水晶振動子マイクロバランス法等の複合体の検出に一般的に使用される各種の方法を適宜使用して定量することができる。本発明においては、検出感度が高く、比較的簡便である点から、ELISAにより定量することが好ましい。
 例えば、ELISAでは、標的抗原を固定化した固相と、酵素標識した架橋部材を用いる。標的抗原を固定化した固相としては、ウェルの底面に標的抗原を固定化した96ウェルプレートを用いることができる。架橋部材を標識する酵素としては、例えば、西洋ワサビペルオキシダーゼ(HRP)、アルカリホスファターゼ(AP)等の、ELISAで一般的に使用されている各種の標識酵素を用いることができる。バッファーにタグ付きVペプチド、タグ付きVペプチド、及び標識した架橋部材を混合した溶液を、当該96ウェルプレートに注入し、所定時間インキュベートした後、洗浄して遊離の標識した架橋部材を除去する。その後、架橋部材を標識した酵素の基質を含む溶液を各ウェルに注入し、酵素活性により生じた発色量を測定する。発色量を比較することで、形成された4者複合体の相対量を調べることができる。当該基質としては、HRPについては、TMB(3,3',5,5'-テトラメチルベンジジン)、OPD(o-フェニレンジアミン二塩酸塩)、ABTS(2,2'-アジノビス[3-エチルベンゾチアゾリン-6-スルホン酸]-ジアンモニウム塩)等を用いることができ、APについては、pNPP(p-ニトロフェニルリン酸)等を用いることができる。
 形成された4者複合体の量が最も多いVドメインとVドメインの組み合わせを、標的とする抗原に対する親和性が高いVドメインとVドメインの組み合わせとして選抜することができる。また、形成された4者複合体の量が多い順に数個の組み合わせを、標的とする抗原に対する親和性が高いVドメインとVドメインの組み合わせとして選抜してもよい。
 抗体のVドメインとVドメインを、この選抜されたVドメインとVドメインの組み合わせにすることにより、抗原親和性の高い抗体を製造できる。当該抗体としては、少なくともVドメインとVドメインを1個ずつ有する抗体であれば特に限定されるものではなく、scFvであってもよく、Fabフラグメント抗体であってもよく、完全長抗体であってもよい。また、ある抗原に対する親和性が高いVドメインとVドメインの組み合わせと、別の抗原に対する親和性が高いVドメインとVドメインの組み合わせと、を備える二重特異性抗体であってもよい。また、選抜された組み合わせのVドメインとVドメインを、これらの可変ドメインとは異なる生物種の抗体のVドメインとVドメインと組みかえたキメラ抗体であってもよい。例えば、マウスの抗体産生細胞由来のVドメインプールとVドメインプールから選抜された組み合わせを、ヒト抗体のVドメインとVドメインと置き換えることによって、ヒト化抗体が得られる。
 次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 なお、以下の実施例において、全ての動物実験は、国立大学法人浜松医科大学の施設内動物管理使用委員会(IACUC)によって承認された。
<動物の免疫>
 動物の免疫は、非特許文献8に記載の方法にいくつかの修正を加えて行った。簡単には、以下の通りである。なお、ヒトプラスミノゲンは、期限切れの新鮮凍結血漿から精製されたものを用いた。フロイント完全アジュバント(FCA)(富士フィルム和光純薬製)(0.5mL)とヒトプラスミノゲン(10.5μM、0.5mL)とを1.5mL容チューブに入れ、ボルテックスミキサーで、室温で20分間混合して乳化させて、抗原エマルジョンを調製した。
 C57Bl/6J背景のLdlr-/-/Apobrec1-/-/Plg-/-マウス(雌、8週齢)に対してイソフルラン(Abbvie社製)で麻酔をかけた後、抗原エマルジョン(合計0.1mL)を左右の尾の付け根に筋肉内注射した。抗原エマルジョンを注射した後のマウスは、21日間飼育した後、イソフルランを過剰に吸入させて安楽死させ、血清と腸骨リンパ節を採取した。
<血清抗体の力価>
 ヒトプラスミノゲンに対する血清抗体の力価は、ELISAアッセイによって決定した。簡単には、以下の通りである。96ウェルプレート(Nunc-Immuno MaxiSorp、Thermo Fisher Scientific社製)の各ウェルを、炭酸/重炭酸バッファー(pH9.7)で濃度0.2μg/mLに調製したヒトプラスミノゲン(100μL)で3時間インキュベートしてコーティングした。コーティング後の各ウェルは、ウシ血清アルブミン(Sigma社製)(1%、PBSで調製)で1時間ブロッキング処理した。希釈した血清サンプルをウェルにアプライし、ウェル上のプラスミノゲンに結合した抗プラスミノゲン抗体を、HRP結合抗マウスIgG(Cell Signaling Technology社製)によって捕捉した。最後に、「ELISA POD基質TMBキット」(ナカライテスク社製)及び吸光光度計(PerkinElmer社製)を製造元の指示に従って使用して、ウェル上のプラスミノゲンに結合した抗プラスミノゲン抗体と結合したHRP結合抗マウスIgGを検出した。具体的には、各ウェルの450nmの吸光度を測定して、TMB(3,3’,5,5’-Tetramethylbenzidine)基質の発色量を測定した。
<プライマーの設計>
 C57Bl/6Jマウスの免疫グロブリン(Ig)カッパ(IgΚ)(NCBI番号:NC_000072.6)及びIg重鎖(IgH)(NCBI番号:NG_005838.1)の全ゲノムDNA配列は、NCBI Geneデータベースから取得した。Igラムダ(IgΛ)(NCBI番号:111519)によってコードされる軽鎖は非常に少ないため、このクラスはこの研究では省略した。IgΚ遺伝子座には可変(V)セグメントをコードする77個のエクソンがあり、そのうち38個が機能遺伝子で、39個が偽遺伝子である。また、IgH遺伝子座には、Vセグメントをコードする183個のエクソンがあり、そのうち118個が機能遺伝子で、65個が偽遺伝子である。合成されるプライマーの数を最小限に抑えるために、Vセグメントには1つのゆらぎ(degenerate)を許して、機能的なVセグメント全体をカバーするように、IgHプライマーとして41個、IgKプライマーとして26個が、それぞれ設計された(表1及び3)。IgK及びIgH遺伝子座には、結合(J)セグメントをエンコードする4つの機能的エクソンがある。そこで、各遺伝子について4つのプライマーを設計した(表2及び4)。NGSのために、全てのプライマーには、表1~4に記載されている配列の5’末端に、Vセグメント用プライマーには5’-CTCGCCAAAATCAGATCT(配列番号76)を、Jセグメント用プライマーには5’-TCCTTGCCAGGGGATATC(配列番号77)を、それぞれ付加した。マウスIgGの完全長を構築するために使用されるプライマーには、その他の付加配列(VKの場合は5'-CAGGTCCCTTACTAGT(配列番号78)、JKの場合は5'-TCGATCCCTTAGATCT(配列番号79)、VHの場合は5'-TCGATCCCTTAGATCT(配列番号80)、及びJHの場合は5'-GGGTGTCGTTTTAGC(配列番号81))を付加した。得られたプライマーの名称は、元のプライマーの名称の末尾に「F」を追加することによって区別された(例えば、VK1プライマーの5’末端に配列番号76を付加したプライマーは、VK1Fプライマーとした)。
<RNA抽出、RT-PCR>
 RNA抽出用キット(「RNeasy Mini Kit」、Qiagen社製)を用いて、全RNAをマウスの腸骨リンパ節から抽出した。全RNAの品質評価を、超微量分光光度計(「NanoDrop 1000」、Thermo Fisher Scientific社製)を使用して実施し、サンプルのRNAの完全性を評価した。RT-PCR(Reverse Transcription-polymerase chain reaction)は、市販のキット(「PrimeScript(登録商標) II High Fidelity RT-PCR Kit」、TAKARA BIO社製)と、IgKの場合はJK1~JK4プライマーを、IgHの場合はJH1~JH4プライマーを、それぞれ使用して実施した。PCRは、市販のキット(「PrimeSTAR(登録商標) HS DNA Polymerase」、TAKARA BIO社製)と、IgHの場合はVH1~VH41プライマーとJH1~JH4プライマーを、IgKの場合はVK1~VK26プライマーとJK1~JK4プライマーを使用して、実施した。
<アンプリコンのNGS>
 RT-PCRのアンプリコンは、MAK629WGS.F(5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTCGCCAAAATCAGATCT:配列番号82)及びMAK629WGD.R(5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCCTTGCCAGGGGATATC:配列番号83)からなるプライマーセットを使用したPCRによってさらに増幅された。得られたアンプリコンは、MiSeqシステム(イルミナ社製)を使用したNGSで分析された。出力条件は、以下の通りとした[レイアウト、ペアエンド;リード長、300bp;ランスケール、100000リード/サンプル]。fastq形式の生データは、MiXCR(MiLaboratories社製)を使用して整列され、その後、各プライマーによるリードカウントが決定され、クロノタイピングが実行された。クロノタイプの分布は、データ可視化用ソフトウェア(「VDJtools」、MiLaboratories社製)によって可視化された。
<大腸菌によるV及びVドメインの発現>
 大腸菌でリコンビナントVドメイン及びリコンビナントVドメインを発現させるために、各ドメインをコードする遺伝子を、発現用プラスミドpMAK636(配列番号84:理研バイオリソースセンター(http://www.brc.riken.jp/lab/dna/)から入手)に組み込んだ。pMAK636の遺伝子マップと、Vドメイン及びVドメインをコードする核酸断片を組み込む部位を、図1に示す。
 NGSで得られたアンプリコンは人工的に合成され(Twist Bioscience社)、遺伝子組換えキット(「InFUSION クローニング キット」、TAKARA BIO社製)を用いて、制限酵素BglII及びEcoRVによって消化されたpMAK636にサブクローニングされた。得られたプラスミドを、コンピテントセル(SHuffle Express competent E. coli、NEB社製)に形質転換した。形質転換細胞は、100μg/mL アンピシリン含有LB寒天プレートに個別に播種した。各プレートから単一のコロニーをピックアップし、100μg/mL アンピシリン含有LB培地(5mL)に接種して、37℃で16時間増殖させた。得られた培養物(150μL)を、100μg/mL アンピシリン含有LB培地(15mL)で希釈し、さらに37℃で3時間増殖させた後、150μLの10質量%アラビノース(Nacalai Tesque社製)を添加して、タンパク質発現を誘導した。発現誘導は、30℃で20時間行った。誘導後、培養物を2330×g、4℃で10分間遠心分離し、上清を捨てた。得られた沈殿物を1mLのハンクス平衡塩類溶液(HBSS、Sigma-Aldrich社製)で再懸濁し、20000×g、4℃で1分間遠心分離し、得られた沈殿物を、0.5% 界面活性剤A(製品名「B-PER(登録商標) Bacterial Cell Lysis Reagent」、Thermo Fisher Scientific社製)含有HBSS(1mL)で懸濁した。得られた懸濁物を25℃で30分間インキュベートした後、20000×g、4℃で1分間遠心分離し、V/Vドメインタンパク質を含む上清をサンプルとして保存した。
<リコンビナントV/Vのウェスタンブロット(WB)及びELISA>
 各サンプル(5μL)をドデシル硫酸ナトリウムポリアクリルアミドゲル(SDS-PAGE)で電気泳動した。WB用にゲルをPVDF膜(「Immobilon Western」、日本ミリポア社製)に転写した。当該膜をHRP結合プローブ(「HisProbe(登録商標)」、Thermo Fisher Scientific社製)に曝露し、製造元の指示に従って化学発光用キット(「SuperSignal West Picoキット」、Thermo Fisher Scientific社製)で可視化した。
 各VとVの幾つかの組み合わせをELISAで評価した。VとVからなる組み合わせを、血清滴定用に準備したELISAプレートの各ウェルにアプライした。VとVはC末端にHisタグを含んでいるため、Plg結合複合体は、ポリクローナルウサギ抗HisタグIgG(MEDICAL & BIOLOGICAL LABORATORIES社製)と結合し、次いでHRP結合抗ウサギIgG(Cell Signaling Technology社製)と結合した。検出は、ELISA POD基質TMBキットを用いて行った。
<細菌人工染色体(BAC)の構築>
 Bac-to-Bacシステム(Thermo Fisher Scientific社製)を使用するためのシャトルベクターを構築した。
 まず、プラスミドpFastBac Dual(Thermo Fisher Scientific社製)を制限酵素Acc65I及びHindIIIで消化し、マウスIgKとIgG1を組み込んだ。この組換えプラスミドを鋳型として、pFastBac Dualの双方向プロモーターの配列をPCRで増幅し、両端にミツバチのメリチン(Melittin)シグナルペプチド(図2中、「HBM1」及び「HBM2」)を付加したフラグメントを得た(図中、「HBM2-P10 pro-PH pro-HBM1」)。
 次いで、このフラグメントを、V及びVと共に、In FUSIONクローニングキットを使用して、制限酵素AfeIで消化した前記組換えプラスミドに挿入して、Bac-to-Bacシステムを使用するためのシャトルベクターであるpMAK161(配列番号85)を作製した。pMAK161の遺伝子マップを図2に示す。
 得られたプラスミドは、ケミカルコンピテントBmDH10bac細胞(北海道大学の前中博士から供与)に形質転換された。得られたBACは、「BAC/PACミニプレップキット」(Biomiga社製)を使用して精製した。
<全長IgG合成に伴うバキュロウイルス産生>
 BmN4細胞(国立研究開発法人農業・食品産業技術総合研究機構)を、10% FBS(Thermo Fisher Scientific社製)及び細胞培養用抗真菌抗生剤溶液(Sigma-Aldrich社製)を添加したKBM720培地(KOHJIN BIO社製)で維持した。BACのトランスフェクションのために、2.0×10個の細胞を1mLの培地を含む24ウェルプレートのウェルに播種した。トランスフェクションは、1μgのBAC、30μLのOptiMEM (Thermo Fisher Scientific社製)、及び5μLのHilyMAX(DOJINDO社製)を使用して実施した。全長IgGを有する組換えバキュロウイルスは、細胞の溶解後に放出された。
<血清抗体の滴定>
 5匹のマウスはFCA及びPlgで免疫し、3匹のマウスはFCAのみで免疫した。全てのマウスの腸骨リンパ節は、免疫の21日後に腫れていた。免疫の21日後に、各マウスから血液を採取して血清を調製した。得られた血清を10~10倍に希釈し、各血清希釈液中の抗プラスミノゲン抗体量を、HRP結合2次抗体とTMB発色基質を用いたELISAアッセイにより調べた。各血清希釈液の450nmの吸光度(A450)の測定結果を図3に示す。FCAとPlgで免疫したマウス(図中、「FCA+Plg」)のほうが、FCAのみで免疫したマウス(図中、「FCA」)よりも、A450が大きかった。このことが示すように、血清抗体価は、FCA及びPlgで免疫したマウスで明らかに増加していた。
<NGSとクロノタイピング>
 NGSによって生成された全ての配列を、MiXCRで分析し、各プライマー配列を含む個々のアンプリコンの数を表5~8の一番右の行(表中、「Counts」)にまとめた。また、表5~8には、各プライマーのTm値(℃)も示した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 各プライマーについて、融解温度(Tm)とアンプリコンの数を分析して、PCRの偏りを検証した。図4に示すように、Vの相関係数(R)は0.059、Vの相関係数は0.096であった。したがって、RT-PCRのTmの違いによる明らかな偏りは見られなかった。
 当該検証の後、CDR3の配列によるクロノタイプの分布が決定された。CDR3の配列によるクロノタイピングにおいて、各クロノタイプを、発現頻度が高い順にナンバリングした。得られた結果は、VDJtoolsを使用して、図5及び6に可視化した。図5及び6中、縦軸は、各クロノタイプのアンプリコンの存在比([各クロノタイプのアンプリコンの数]/[全アンプリコンの総数])を示す。Vドメインの発現頻度が高い順に1位から10位までのクロノタイプ(Vc1~Vc10)を図5及び表9に、Vドメインの発現頻度が高い順に1位から10位までのクロノタイプ(Vc1~Vc10)を図6及び表10に、それぞれ示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
<大腸菌によるV及びVドメインの発現>
 発現頻度が高いクロノタイプは、目的の抗体である抗プラスミノゲン抗体を産生するB細胞に由来すると推定される。そこで、高発現頻度のクロノタイプから最もプラスミノゲン結合活性(抗体活性)の高いV及びVドメインの組み合わせを調べた。
 Vの発現頻度のトップ1、2、4、若しくは5のクロノタイプ(Vc1、Vc2、Vc4、若しくはVc5)又はVのトップ1~4のクロノタイプ(Vc1、Vc2、Vc3、若しくはVc4)を含む完全長可変領域をコードする人工cDNA配列を個別に設計した。以下、「Vのトップn(nは1以上の整数)のクロノタイプを含む完全長可変領域」を「VKcnドメイン」、「Vのトップm(mは1以上の整数)のクロノタイプを含む完全長可変領域」を「VHcmドメイン」と表す。Vc1ドメイン、Vc2ドメイン、Vc4ドメイン、Vc5ドメイン、Vc1ドメイン、Vc2ドメイン、Vc3ドメイン、及びVc4ドメインのアミノ酸配列(配列番号112~119)を図7に示す。なお、Vのトップ3クロノタイプとトップ2クロノタイプは、V遺伝子断片が共通しており、このため、CDR1とCDR2が類似して、V遺伝子断片とJ遺伝子断片の融合部であるCDR3だけが異なっていた。同系統のV遺伝子断片は同一であると考えられるため、Vのトップ3クロノタイプは省略した。
 Vc1ドメイン等のN末端にシグナルペプチドを含む付加配列(MKIKTGARILALSALTTMMFSASALAKIRS(配列番号120:シグナルペプチドは1~28番目のアミノ酸配列))を付加し、C末端にアビジンタグとHisタグを有する付加配列(DIPWQGLNDIFEAQKIEWHGSHHHHHH(配列番号121))を付加して、Hisタグ付きVペプチドを設計した。同様に、Vc1ドメイン等のN末端にシグナルペプチドを含む付加配列(配列番号120)を付加し、C末端にアビジンタグとHisタグを有する付加配列(配列番号121)を付加して、Hisタグ付きVペプチドを設計した。設計された各Hisタグ付きペプチドを、pMAK636に導入した。以降において、Hisタグ付きVc1ドメインを導入したpMAK636を、pMAK636VKc1と称し、Hisタグ付きVc1ドメインを導入したpMAK636を、pMAK636VHc1と称する。
 得られたプラスミドpMAK637VKc1、2、4、及び5とpMA637VHc1~4とを、個別にSHuffle Express細胞に形質転換した。発現誘導後、形質転換細胞を界面活性剤Aを含む溶解液で処理して、ペリプラズムにリコンビナントタンパク質を放出させた。図8に示されるように、リコンビナントHisタグ付きVペプチド及びリコンビナントHisタグ付きVペプチドは、溶解液中に首尾よく放出された。
 合成した各Hisタグ付きペプチドを用いて、VKc1ドメイン、VKc2ドメイン、VKc4ドメイン、及びVKc5ドメインと、VHc1ドメイン、VHc2ドメイン、VHc3ドメイン、及びVHc4ドメインとの全ての組み合わせ(16通り)について、プラスミノゲンとの結合性をELISAで調べた。測定結果を図9に示す。図9中、縦軸は、ELISAで測定された吸光度値(A450)である。この結果、VKc1+VHc3、VKc4+VHc1、VKc5+VHc4の3つの組み合わせが、プラスミノゲンとの結合能が高かった。
<BACの構築とBmN4細胞へのトランスフェクション>
 pMAK637VKc1を鋳型とし、VK24F及びJK4Fをプライマーとして使用したPCRにより、PCR増幅産物として、5’末端に付加配列(配列番号78)と3’末端に付加配列(配列番号79)がそれぞれ付加されたHisタグ付きVKc1ドメインペプチドを得た。同様に、pMAK637VKc4とVK1FとJK1Fを用いたPCRにより、5’末端に付加配列(配列番号78)と3’末端に付加配列(配列番号79)がそれぞれ付加されたHisタグ付きVKc4ドメインペプチドを得、pMAK637VKc5とVK33F(1bpミスマッチを含むが、VK14Fと同等)とJK2Fを用いたPCRにより、5’末端に付加配列(配列番号78)と3’末端に付加配列(配列番号79)がそれぞれ付加されたHisタグ付きVKc5ドメインペプチドを得た。また、pMAK637VHc1とVH2FとJH2Fを用いたPCRにより、5’末端に付加配列(配列番号80)と3’末端に付加配列(配列番号81)がそれぞれ付加されたHisタグ付きVHc1ドメインペプチドを得、pMAK637VHc3とVH1FとJH1Fを用いたPCRにより、5’末端に付加配列(配列番号80)と3’末端に付加配列(配列番号81)がそれぞれ付加されたHisタグ付きVHc3ドメインペプチドを得た。
 pMAK161に、プラスミノゲン結合活性が高かったVKとVHの組み合わせを、双方向プロモーターと分泌シグナルペプチドで導入した。以降において、pMAK161に、VcnドメインとVcmドメインの組み合わせからなる全長IgGを導入したプラスミドを、pMAK638KcnHcmと称する。合成したpMAK638Kc1Hc3、pMAK638Kc4Hc1、pMAK638Kc5Hc4をそれぞれ、BmDH10bacに形質転換して、BM638Kc1Hc3、BM638Kc4Hc1、及びBM638Kc5Hc4などの対応するBACを生成した。得られたBACをBmN4細胞にトランスフェクトし、細胞を溶解した後、培養上清を回収した。ウェスタンブロットで確認したところ、各ライセートには全長IgGが含まれていた。

Claims (10)

  1.  標的とする抗原に対する抗体を製造する方法であって、
     抗体の重鎖可変領域からなるVドメインを2以上含むVドメインプールと、抗体の軽鎖可変領域からなるVドメインを2以上含むVドメインプールと、を準備し、
     前記Vドメインプールに含まれる全てのVドメインについて、それぞれ、第1のタグを付加したタグ付きVペプチドを準備し、
     前記Vドメインプールに含まれる全てのVドメインについて、それぞれ、第2のタグを付加したタグ付きVペプチドを準備し、
     前記Vドメインプールに含まれるVドメインと、前記Vドメインプールに含まれるVドメインとの全ての組み合わせを設定し、
     前記設定された各組み合わせについて、それぞれ、当該組み合わせのタグ付きVペプチド及びタグ付きVペプチドと、前記第1のタグと前記第2のタグとの両方と結合する架橋部材と、前記標的とする抗原とを接触させて、前記タグ付きVペプチドと前記タグ付きVペプチドと前記架橋部材と前記抗原とからなる複合体の量を測定し、
     前記複合体の量に基づいて、前記標的とする抗原に対する親和性が高いVドメインとVドメインの組み合わせを選抜し、
     前記選抜された組み合わせのVドメインとVドメインを含む抗体を製造する、
     抗体の製造方法。
  2.  前記Vドメインプールは、前記標的とする抗原で免疫された動物から採取された抗体産生細胞において発現している重鎖可変領域からなるVドメインライブラリーから選抜された2以上のVドメインからなり、
     前記Vドメインプールは、前記抗体産生細胞において発現している軽鎖可変領域からなるVドメインライブラリーから選抜された2以上のVドメインからなる、請求項1に記載の抗体の製造方法。
  3.  前記Vドメインプールを構成するVドメインは、前記Vドメインライブラリーを構成するVドメインのうち、前記抗体産生細胞における発現頻度が高い順に選抜されており、
     前記Vドメインプールを構成するVドメインは、前記Vドメインライブラリーを構成するVドメインのうち、前記抗体産生細胞における発現頻度が高い順に選抜されている、請求項2に記載の抗体の製造方法。
  4.  前記Vドメインライブラリーを構成するVドメインは、
     前記標的とする抗原で免疫された動物から採取された抗体産生細胞を含む組織から抽出された全RNAを鋳型とし、重鎖可変領域を網羅的に増幅するためのプライマーセットを用いたRT-PCRによって得られたアンプリコンがコードしているアミノ酸配列からなり、
     前記Vドメインライブラリーを構成するVドメインは、
     前記全RNAを鋳型とし、軽鎖可変領域を網羅的に増幅するためのプライマーセットを用いたRT-PCRによって得られたアンプリコンがコードしているアミノ酸配列からなる、請求項2に記載の抗体の製造方法。
  5.  前記重鎖可変領域を網羅的に増幅するためのプライマーセットが、配列番号1~41で表される塩基配列からなる41種類のフォワードプライマーと、配列番号42~45で表される塩基配列からなる4種類のリバースプライマーとからなり、
     前記軽鎖可変領域を網羅的に増幅するためのプライマーセットが、配列番号46~71で表される塩基配列からなる26種類のフォワードプライマーと、配列番号72~75で表される塩基配列からなる4種類のリバースプライマーとからなる、請求項4に記載の抗体の製造方法。
  6.  前記第1のタグと前記第2のタグが、いずれもHisタグであり、
     前記架橋部材が、抗Hisタグ抗体である、請求項1に記載の抗体の製造方法。
  7.  前記第1のタグと前記第2のタグが、いずれもビオチンであり、
     前記架橋部材が、アビジン又はストレプトアビジンである、請求項1に記載の抗体の製造方法。
  8.  前記選抜された組み合わせのVドメインとVドメインを含む単鎖可変領域フラグメントを製造する、請求項1に記載の抗体の製造方法。
  9.  前記選抜された組み合わせのVドメインとVドメインを含む完全長抗体を製造する、請求項1に記載の抗体の製造方法。
  10.  抗体の重鎖可変領域と第1のタグを含むタグ付きVペプチドと、抗体の軽鎖可変領域と第2のタグを含むタグ付きVペプチドと、前記第1のタグと前記第2のタグとの両方と結合する架橋部材とを含む、複合体。
PCT/JP2023/034929 2022-09-27 2023-09-26 抗体の製造方法 WO2024071112A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022153932 2022-09-27
JP2022-153932 2022-09-27

Publications (1)

Publication Number Publication Date
WO2024071112A1 true WO2024071112A1 (ja) 2024-04-04

Family

ID=90477960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034929 WO2024071112A1 (ja) 2022-09-27 2023-09-26 抗体の製造方法

Country Status (1)

Country Link
WO (1) WO2024071112A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004501379A (ja) * 2000-06-23 2004-01-15 ドマンティス リミテッド マトリクススクリーニング方法
JP2004504607A (ja) * 2000-07-19 2004-02-12 ポインティリスト・インコーポレイテッド ネスト化ソーティングおよびハイスループットスクリーニングのための結合タンパク質およびタグのコレクションならびにそれら使用
JP2016506926A (ja) * 2013-01-24 2016-03-07 スクリプス コリア アンティボディー インスティテュート タンパク質組合せ基盤のfvライブラリー及びこれの製造方法
WO2017186784A1 (en) * 2016-04-26 2017-11-02 Autodisplay Biotech Gmbh Autodisplay of antibodies

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004501379A (ja) * 2000-06-23 2004-01-15 ドマンティス リミテッド マトリクススクリーニング方法
JP2004504607A (ja) * 2000-07-19 2004-02-12 ポインティリスト・インコーポレイテッド ネスト化ソーティングおよびハイスループットスクリーニングのための結合タンパク質およびタグのコレクションならびにそれら使用
JP2016506926A (ja) * 2013-01-24 2016-03-07 スクリプス コリア アンティボディー インスティテュート タンパク質組合せ基盤のfvライブラリー及びこれの製造方法
WO2017186784A1 (en) * 2016-04-26 2017-11-02 Autodisplay Biotech Gmbh Autodisplay of antibodies

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ABURATANI T, ET AL.: "A GENERAL METHOD TO SELECT ANTIBODY FRAGMENTS SUITABLE FOR NONCOMPETITIVE DETECTION OF MONOVALENT ANTIGENS", ANALYTICAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 75, no. 16, 15 August 2003 (2003-08-15), US , pages 4057 - 4064, XP001175789, ISSN: 0003-2700, DOI: 10.1021/ac034280n *
GLOCKSHUBER, R. ET AL.: "A comparison of strategies to stabilize Immunoglobulin Fv-fragments.", BIOCHEMISTRY, AMERICAN CHEMICAL SOCIETY, vol. 29., 1 January 1990 (1990-01-01), pages 1362 - 1367., XP002114280, ISSN: 0006-2960, DOI: 10.1021/bi00458a002 *
POHLNER, J. ; KRAMER, J. ; MEYER, T.F.: "A plasmid system for high-level expression and in vitro processing of recombinant proteins", GENE, ELSEVIER AMSTERDAM, NL, vol. 130, no. 1, 16 August 1993 (1993-08-16), NL , pages 121 - 126, XP023797261, ISSN: 0378-1119, DOI: 10.1016/0378-1119(93)90354-6 *
SCHMIDT T. G. M., SKERRA A.: "THE RANDOM PEPTIDE LIBRARY-ASSISTED ENGINEERING OF A C-TERMINAL AFFINITY PEPTIDE, USEFUL FOR THE DETECTION AND PURIFICATION OF A FUNCTIONAL IG FV FRAGMENT.", PROTEIN ENGINEERING, OXFORD UNIVERSITY PRESS, SURREY., GB, vol. 06., no. 01., 1 January 1993 (1993-01-01), GB , pages 109 - 122., XP000335250, ISSN: 0269-2139 *

Similar Documents

Publication Publication Date Title
Vincke et al. Generation of single domain antibody fragments derived from camelids and generation of manifold constructs
Baral et al. Single‐domain antibodies and their utility
EP3798236B1 (en) Antibody screening methods
JPH06508511A (ja) 特異的な結合ペアーの構成員の製造方法
Finlay et al. Phage display: a powerful technology for the generation of high specificity affinity reagents from alternative immune sources
US20130085072A1 (en) Recombinant renewable polyclonal antibodies
Sellmann et al. A one-step process for the construction of phage display scFv and VHH libraries
Ferrari et al. A novel nanobody scaffold optimized for bacterial expression and suitable for the construction of ribosome display libraries
US20110052565A1 (en) Non-aggregating human vh domains
Hentrich et al. Monoclonal antibody generation by phage display: History, state-of-the-art, and future
CN112469434A (zh) 抗pla2-gib抗体及其用途
Zhong et al. Optimizing production of antigens and Fabs in the context of generating recombinant antibodies to human proteins
Hu et al. Combination of phage and Gram-positive bacterial display of human antibody repertoires enables isolation of functional high affinity binders
Kiguchi et al. The VH framework region 1 as a target of efficient mutagenesis for generating a variety of affinity-matured scFv mutants
Finlay et al. Phage display: a powerful technology for the generation of high-specificity affinity reagents from alternative immune sources
Sevy et al. Structure-and sequence-based design of synthetic single-domain antibody libraries
Ch’ng et al. Phage display-derived antibodies: Application of recombinant antibodies for diagnostics
Fang et al. Development and production of nanobodies specifically against green fluorescence protein
US10954550B2 (en) Method and system for screening nanobody
Hussack et al. A novel affinity tag, ABTAG, and its application to the affinity screening of single-domain antibodies selected by phage display
Li et al. Selection of similar single domain antibodies from two immune VHH libraries obtained from two alpacas by using different selection methods
JP7439108B2 (ja) ヒト心筋トロポニンiに対する組換え抗体
WO2024071112A1 (ja) 抗体の製造方法
Zhang et al. A platform-agnostic, function first-based antibody discovery strategy using plasmid-free mammalian expression of antibodies
Rader Generation and selection of rabbit antibody libraries by phage display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872335

Country of ref document: EP

Kind code of ref document: A1