WO2024070897A1 - Composition, film, circuit sheet, and sensor sheet - Google Patents

Composition, film, circuit sheet, and sensor sheet Download PDF

Info

Publication number
WO2024070897A1
WO2024070897A1 PCT/JP2023/034344 JP2023034344W WO2024070897A1 WO 2024070897 A1 WO2024070897 A1 WO 2024070897A1 JP 2023034344 W JP2023034344 W JP 2023034344W WO 2024070897 A1 WO2024070897 A1 WO 2024070897A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
resin
composition
film
weight
Prior art date
Application number
PCT/JP2023/034344
Other languages
French (fr)
Japanese (ja)
Inventor
佳苗 宮永
Original Assignee
積水ポリマテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水ポリマテック株式会社 filed Critical 積水ポリマテック株式会社
Publication of WO2024070897A1 publication Critical patent/WO2024070897A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • This disclosure relates to a coating that can be used as a protective layer for a circuit sheet or a sensor sheet, a composition capable of forming the coating, and a circuit sheet and a sensor sheet that include the coating as a protective layer.
  • the conductive wires on the circuit sheet or the sensor electrodes on the sensor sheet are sometimes made from a silver paste containing silver, or a transparent conductive polymer called PEDOT/PSS.
  • the circuit sheet or sensor sheet has a highly transparent protective layer covering its surface to protect the conductive wires or sensor electrodes from breakage, corrosion, etc.
  • Patent Document 1 Japanese Patent No. 6167103
  • circuit sheets and sensor sheets As the fields in which circuit sheets and sensor sheets are used expand, there is a demand for circuit sheets or sensor sheets with even greater protective performance.
  • One aspect of the present disclosure is a composition containing a COP resin or a COC resin and an epoxy group-containing condensed polycyclic hydrocarbon monomer.
  • the composition contains a COP resin or a COC resin, a film having excellent transparency and robustness can be formed.
  • the composition contains an epoxy group-containing condensed polycyclic hydrocarbon monomer, the composition can be cured to form a film having improved printability and quality.
  • the composition contains a solvent, a film can be formed by a method such as printing.
  • the epoxy group-containing condensed polycyclic hydrocarbon monomer is a cycloalkene oxide type condensed ring structure diepoxide. According to one aspect of the present disclosure, since the epoxy group-containing condensed polycyclic hydrocarbon monomer is a cycloalkene oxide-type condensed ring-structure diepoxide, the composition can be cured to form a coating having excellent qualities such as printability, transparency, robustness, etc.
  • the coating has excellent adhesion to a substrate (e.g., a substrate sheet of a circuit sheet) when formed.
  • One embodiment of the present disclosure is a composition, wherein the epoxy group-containing condensed polycyclic hydrocarbon monomer is at least one selected from bicyclononadiene diepoxide, tricyclopentadiene diepoxide, dicyclopentadiene diepoxide, and 5,12-dioxahexacyclo[7.6.1.0 2,8 . 0 4,6 . 0 10,15 . 0 11,13 ]hexadecane.
  • the epoxy group-containing condensed polycyclic hydrocarbon monomer is at least any one selected from bicyclononadiene diepoxide, tricyclopentadiene diepoxide, dicyclopentadiene diepoxide, and 5,12 -dioxahexacyclo[ 7.6.1.02,8.04,6.010,15.011,13 ] hexadecane , and therefore the formed coating has excellent adhesion to a substrate (e.g., a substrate sheet of a circuit sheet).
  • a substrate e.g., a substrate sheet of a circuit sheet.
  • One aspect of the present disclosure is a composition further comprising a physical property adjuster.
  • the printability of the composition can be improved by containing a physical property adjusting agent.
  • the quality of the film formed by curing the composition can be improved by containing a physical property adjusting agent.
  • One aspect of the present disclosure is a composition in which the blending ratio of the epoxy group-containing condensed polycyclic hydrocarbon monomer per 100 parts by mass of the COP resin or COC resin is 8 parts by weight or more and 35 parts by weight or less.
  • the blending ratio of the epoxy group-containing condensed polycyclic hydrocarbon monomer to the COP resin or COC resin is 8 parts by weight or more and 35 parts by weight or less, so that a coating can be formed that has high adhesion to the substrate (e.g., the substrate sheet of a circuit sheet) and is not easily peeled off from the substrate.
  • One aspect of the present disclosure is a composition in which the blending ratio of the physical property adjuster per 100 parts by weight of the COP resin or COC resin is 140 parts by weight or less.
  • the blending ratio of the physical property adjusting material per 100 parts by weight of the COP resin or COC resin is 140 parts by weight or less, so that the adhesion of the coating to the substrate (e.g., the substrate sheet of a circuit sheet) can be increased without deteriorating the heat resistance, sulfidation resistance, or bending whitening resistance or cracking resistance.
  • One aspect of the present disclosure is a coating formed from a reaction-cured product of any of the compositions described above.
  • the coating is made of a reaction-cured product of any one of the compositions described above, and therefore the coating can be of excellent quality.
  • One aspect of the present disclosure is a circuit sheet having a base sheet, circuit wiring, and a protective layer made of a reaction-cured product of any one of the compositions described above.
  • the circuit sheet has a base sheet, circuit wiring, and a protective layer made of a reaction-cured product of any of the compositions described above, and therefore can provide excellent protection for the circuit wiring sandwiched between the base sheet and the protective layer.
  • One aspect of the present disclosure is a circuit sheet having a three-dimensional shape with a curved surface. According to one aspect of the present disclosure, since the circuit sheet has a three-dimensional shape with curved surfaces, the circuit sheet can be shaped to better fit the space it is to be used in. Therefore, according to one aspect of the present disclosure, the degree of freedom in designing a device that uses the circuit sheet is increased.
  • One aspect of the present disclosure may be a sensor sheet having a base sheet, circuit wiring, a sensor electrode, and a protective layer made of a reaction-cured product of any one of the compositions described above.
  • a sensor sheet is provided having a base sheet, circuit wiring, sensor electrodes, and a protective layer made of a reaction-cured product of any of the compositions described above, thereby providing a sensor sheet that is excellent in protecting the circuit wiring and sensor electrodes sandwiched between the base sheet and the protective layer.
  • One aspect of the present disclosure is a sensor sheet having a three-dimensional shape with a curved surface. According to one aspect of the present disclosure, since the sensor sheet has a three-dimensional shape with a curved surface, the sensor sheet can be formed to better fit the space it is to be used in. Therefore, according to one aspect of the present disclosure, the degree of freedom in designing devices that use the sensor sheet is increased.
  • a printable composition can be provided.
  • a coating having excellent protective performance can be provided.
  • a circuit sheet or a sensor sheet having a coating with excellent protective performance can be provided.
  • FIG. 1A and 1B are schematic diagrams of a circuit sheet according to one embodiment of the present disclosure, with FIG. 1A being a front view and FIG. 1B being a plan view.
  • 2A and 2B are schematic diagrams of a sensor sheet according to one embodiment of the present disclosure, in which FIG. 2A is a front view and FIG. 2B is a plan view.
  • 3A and 3B are schematic diagrams of a sensor sheet according to another embodiment of the present disclosure, in which FIG. 3A is a cross-sectional view taken along line IIIA-IIIA in FIG. 3B, and FIG. 3B is a plan view.
  • a “range” is defined in the form of a lower limit and an upper limit
  • a “predetermined range” is defined by selecting one lower limit and one upper limit that specify the boundaries of the range.
  • Such a defined range may or may not include the end values. That is, any lower limit and any upper limit may be combined to form a range. For example, if ranges of 5 to 10 and 6 to 9 are listed for a particular parameter, the ranges of 5 to 9 and 6 to 10 are also understood. If the minimum range values listed are 1 and 2, and the maximum range values listed are 3, 4, and 5, then the ranges of 1 to 3, 1 to 4, 1 to 5, 2 to 3, 2 to 4, and 2 to 5 are all contemplated.
  • the numerical ranges "a to b" and “a to b” are shorthand for all real number combinations between a and b, where a and b are both real numbers.
  • a numerical range of "0 to 5" means that all real numbers between “0 and 5" are listed in this specification, with “0 to 5" being merely a shorthand for combinations of these numbers.
  • a parameter is described as an integer ⁇ 2, this is equivalent to disclosing that the parameter is, for example, the integers 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, etc.
  • steps in the methods of the present disclosure may be performed sequentially or randomly.
  • steps Sa and Sb it means that the method may include steps Sa and Sb performed sequentially, or may include steps Sb and Sa performed sequentially.
  • steps Sb and Sa performed sequentially.
  • step Sc it also means that step Sc can be added to the method in any order.
  • the method may include steps Sa, Sb, Sc, or may include steps Sa, Sc, Sb, or may include steps Sc, Sa, and Sb, etc.
  • any of the following three conditions each satisfy “A or B”: A is true (or exists) and B is false (or does not exist), A is false (or does not exist) and B is true (or exists), or A and B are both true (or exist).
  • composition described in this embodiment is applied to a substrate sheet such as a circuit sheet or a sensor sheet to form a film, and is used as a protective layer for protecting circuit wiring (conductive wire) or sensor electrodes, and has high transparency and high protective performance for the object to be covered.
  • This composition contains a COP resin or a COC resin and an epoxy group-containing condensed polycyclic hydrocarbon monomer. The composition of this composition will be described below.
  • COP resin or COC resin When dissolved in a solvent, COP resin or COC resin has a high cohesive force and tends to form threads when used as a coating liquid such as printing ink, and is generally not suitable for printing. In addition, COP resin or COC resin has poor adhesion to resin films such as PET, which serve as base sheets, and is easily peeled off. Therefore, although COP resin or COC resin may be used as a pre-formed plate material, it is difficult to say that it is a binder resin suitable for printing, and it is difficult to use it as a coating liquid. However, since COP resin or COC resin is amorphous, it has the characteristics of high transparency and low birefringence.
  • COP resin or COC resin since COP resin or COC resin has an alicyclic structure, it has a high glass transition point Tg and is excellent in heat resistance and robustness. Furthermore, since COP resin or COC resin has a hydrocarbon structure with few polar groups, it has low moisture absorption and is also excellent in light resistance and chemical resistance. Therefore, the inventor of the present invention has considered how to use this COP resin or COC resin as a binder resin for coating materials.
  • COP resin or COC resin is a polymer with an alicyclic structure in the polymer main chain, and is obtained by polymerizing cycloolefin.
  • COP resin is a ring-opening polymer of cycloolefins or a hydrogenated product thereof, and examples thereof include norbornene, tetracyclododecene, or derivatives thereof.
  • COC resin is a cycloolefin copolymer, which is a copolymer of a cyclic olefin and an olefin, and examples thereof include copolymers in which a cyclopentyl residue or a substituted cyclopentyl residue is inserted in the molecular chain by polymerization of a cycloolefin such as norbornene, tetracyclododecene, or a derivative thereof, with ethylene or propylene.
  • the cycloolefin used as the raw material for COP resin or COC resin may be monocyclic or polycyclic.
  • Hydrocarbon structures with fewer polar groups result in reduced hygroscopicity, but it is a preferred embodiment to use COP or COC resins that have polar groups in the cyclo ring in order to improve adhesion, adhesion, and miscibility.
  • COP or COC resins with such polar groups are preferred in that they have good solubility in highly polar solvents, such as ethyl acetate and butyl acetate, and the types and amounts of compatible physical property adjusters can be increased.
  • COP or COC resins may have functional groups such as hydroxyl, amino, carbonyl, carboxyl, nitro, sulfo, ester, and amide groups. Reactive functional groups such as epoxy, methacryl, vinyl, mercapto, and amino groups can improve the adhesion of the composition to the substrate sheet or circuit wiring to which it is applied.
  • COP resins include, for example, Zeonex (registered trademark; manufactured by Zeon Corporation), Zeonor (registered trademark; manufactured by Zeon Corporation), and Arton (registered trademark; manufactured by JSR Corporation).
  • COC resins include, for example, Apel (registered trademark; manufactured by Mitsui Chemicals), and Topas (registered trademark; manufactured by Polyplastics).
  • the amount of COP resin or COC resin in the composition including the solvent can be 5% by weight or more and 70% by weight or less, preferably 20% by weight or more and 60% by weight or less.
  • the amount of COP resin or COC resin in the composition is 5% by weight or more, the desired thickness can be formed.
  • the amount is 70% by weight or less, the viscosity does not become too high and the composition has excellent printability.
  • the amount is 20% by weight or more and 60% by weight or less, the composition has suitable printability.
  • Epoxy group-containing condensed polycyclic hydrocarbon monomer By adding an epoxy group-containing condensed polycyclic hydrocarbon monomer to a liquid in which a COP resin or COC resin has been dissolved or dispersed, the epoxy group-containing condensed polycyclic hydrocarbon monomer gives the liquid properties that cannot be obtained by simply dissolving or dispersing the COP resin or COC resin.
  • the COP resin or COC resin can be used as a binder for coating materials such as printing ink.
  • the epoxy group-containing condensed polycyclic hydrocarbon monomer is a monomer containing an epoxy group among condensed polycyclic hydrocarbons having a condensed ring hydrocarbon formed by two or more single rings supplying (condensing) only one side of each ring to each other, and is preferably a cycloalkene oxide type condensed ring structure diepoxide.
  • epoxy group-containing condensed polycyclic hydrocarbon monomers include bicyclononadiene diepoxide (1,2:5,6-diepoxyhexahydroindan) (Epocalic THI-DE (trade name) manufactured by ENEOS Corporation), 5,12-dioxahexacyclo[7.6.1.0 2,8 . 0 4,6 . 0 10,15 .
  • bicyclononadiene diepoxide (1,2:5,6-diepoxyhexahydroindan) also functions as a viscosity adjuster that reduces viscosity and a reactivity improver that shortens the curing reaction time.
  • the amount of epoxy group-containing condensed polycyclic hydrocarbon monomer can be 8 parts by weight or more and 35 parts by weight or less per 100 parts by weight of COP resin or COC resin, and can be 9 parts by weight, 10 parts by weight, 30 parts by weight, 31 parts by weight, 32 parts by weight, 33 parts by weight, or 34 parts by weight.
  • the amount of epoxy group-containing condensed polycyclic hydrocarbon monomer is 8 parts by weight or more per 100 parts by weight of COP resin or COC resin, adhesion to the base sheet and sulfurization resistance are excellent.
  • the amount of epoxy group-containing condensed polycyclic hydrocarbon monomer is 35 parts by weight or less per 100 parts by weight of COP resin or COC resin, adhesion to the base sheet, resistance to whitening due to bending, and resistance to cracking are excellent.
  • solvent dissolves or disperses the COP resin or COC resin, and imparts an appropriate viscosity to the solution or dispersion, thereby resulting in a composition with properties suitable for the coating liquid.
  • solvents include organic solvents such as hydrocarbons, aromatics, ethers, and ketones, and more specifically, pentane, hexane, octane, cyclohexane, methylcyclohexane, ethylcyclohexane, 1,2-dimethylcyclohexane, cyclohexene, toluene, xylene, ethyl ether, tetrahydrofuran, cyclohexanone, methyl ethyl ketone, methyl isobutyl ketone (MIBK), cyclohexyl propionate, 2-cyclohexyl-4-methyl-1,3-dioxane, terpineol, dihydroterpin
  • ester-based solvents such as ethyl acetate and butyl acetate. Solvents with high boiling points are preferable because they improve printability.
  • the amount of the solvent can be 25% by weight or more and 90% by weight or less, preferably 35% by weight or more and 80% by weight or less, based on the total amount of the composition. If the amount of the solvent in the composition is 25% by weight or more, the non-volatile components will not be too high, and the composition will have excellent printability. If the amount is 90% by weight or less, the non-volatile components will not be too low, and the composition can be formed to the desired thickness. If the amount is 35% by weight or more and 80% by weight or less, the composition will have suitable printability.
  • Physical property adjusters are added to liquids in which COP resin or COC resin has been dissolved or dispersed, to give the liquid properties that cannot be obtained by simply dissolving or dispersing the polymer. In this respect, they are similar to epoxy group-containing condensed polycyclic hydrocarbon monomers, but in this specification and claims, when referring to physical property adjusters, this excludes epoxy group-containing condensed polycyclic hydrocarbon monomers.
  • Physical property adjusting agents include viscosity adjusting agents such as plasticizers, low molecular weight compounds, monomers, and oligomers that adjust the viscosity, thixotropy imparting agents that impart thixotropy, foam suppressing agents such as defoamers that suppress foaming during printing, stringing inhibitors that suppress stringing, wettability improving agents that prevent repellency on the printing substrate and prevent the occurrence of uneven printing and mottled patterns, cutting improving agents that enable continuous printing, and coating liquid stabilizers such as silane coupling agents, polymerization inhibitors, or antioxidants that stabilize the properties of the composition.
  • viscosity adjusting agents such as plasticizers, low molecular weight compounds, monomers, and oligomers that adjust the viscosity
  • thixotropy imparting agents that impart thixotropy
  • foam suppressing agents such as defoamers that suppress foaming during printing
  • stringing inhibitors that suppress stringing
  • wettability improving agents that prevent repellency on the printing
  • the physical property adjusting materials include film quality improving materials that improve the quality of the film itself, and smoothing materials that improve the surface smoothness when the film is formed.
  • examples include moisture resistance improving materials that improve moisture resistance, sulfurization resistance improving materials that improve sulfurization resistance, gas barrier improving materials that suppress the permeability of gases such as oxygen, heat resistance improving materials that improve heat resistance, light resistance improving materials that prevent discoloration, ultraviolet light inhibitors that suppress the transmission of ultraviolet light, and adhesion improving materials that improve adhesion to the base sheet.
  • moisture resistance improving materials moisture resistance improving materials, sulfurization resistance improving materials, gas barrier improving materials, heat resistance improving materials, light resistance improving materials, and ultraviolet light inhibitors from the viewpoint of a protective layer are included in weather resistance improving materials. They can also be said to be names that express the barrier improving materials in terms of their functions.
  • Examples of physical property adjusting agents include petroleum-based hydrocarbons such as aromatic, paraffinic, and naphthenic, polyolefins and their derivatives such as liquid polyisobutylene, liquid polybutene, and hydrogenated liquid polyisoprene, petroleum-based asphalts, etc. These substances improve printability and also improve film quality, such as weather resistance. These can be used alone or in combination.
  • Physical property adjusting materials having polar groups such as hydroxyl, amino, carbonyl, carboxyl, nitro, sulfo, ester, and amide groups are adhesion improving materials that contribute to improving the adhesion of the composition to the substrate sheet or circuit wiring to which it is applied.
  • Physical property adjusting materials having reactive functional groups such as epoxy, methacryl, vinyl, mercapto, and amino groups contribute to improving the adhesion of the composition to the substrate sheet or circuit wiring to which it is applied.
  • Functional fillers such as titanium oxide or zinc oxide function as film quality improvers, such as moisture resistance improvers that suppress water vapor permeability, ultraviolet light inhibitors that suppress ultraviolet light transmission, sulfurization resistance improvers that suppress sulfur gas permeability, or gas barrier improvers. In addition, they also function as printability improvers, such as viscosity adjusters, foam inhibitors, or thixotropic agents.
  • Polyolefin resins such as maleic anhydride-modified polypropylene have adhesion to non-polar resins and function as an agent for improving adhesion to the base sheet and an agent for improving solvent resistance.
  • copolymers of isobutylene and maleic anhydride, copolymers of olefin resins and maleic anhydride, maleated hydrogenated styrene butadiene styrene block copolymers, etc. also have adhesion to non-polar resins and function as adhesion improvers to base sheets.
  • the amount of the physical property adjuster can be 140 parts by weight or less per 100 parts by weight of COP resin or COC resin, and can be 130 parts by weight, 120 parts by weight, 110 parts by weight, or 100 parts by weight. It is also preferable that the amount of the physical property adjuster is 80 parts by weight or more and 90 parts by weight or less.
  • the amount of the physical property adjuster is 140 parts by weight or less per 100 parts by weight of COP resin or COC resin, the resin has excellent sulfur resistance, permeability, and heat resistance.
  • the amount is 80 parts by weight or more and 90 parts by weight or less, the effect of adding the physical property adjuster can be fully expected, and a high transmittance can be obtained from the perspective of permeability.
  • the initiator is added to react the COP resin or COC resin with the epoxy group-containing condensed polycyclic hydrocarbon monomer.
  • a thermal polymerization initiator or a photopolymerization initiator is used.
  • an azo compound such as 2,2'-azobisisobutyronitrile (AIBN) or a peroxide such as benzoyl peroxide (BPO) can be used as an initiator.
  • a thermal cationic polymerization initiator a sulfonium salt compound such as a benzenesulfonate ester or an alkylsulfonium salt can be used.
  • the photopolymerization initiator generates active species such as radicals, cations, and anions, and photoradical initiators (such as benzoin derivatives) that generate radicals when irradiated with ultraviolet rays or electron beams, photoacid generators that generate cations (acids), and photobase generators that generate anions (bases) can be used.
  • a thermal cationic polymerization initiator is preferable because it has excellent storage stability of the composition, and a sulfonium salt compound is particularly preferable.
  • anions that pair with sulfonium salt compounds include phosphorus-based anions, antimony-based anions, and borate-based anions, with phosphorus-based anions being preferred because they pose fewer safety concerns.
  • the amount of initiator can be 0.1% by weight or more and 10.0% by weight or less based on the epoxy group-containing condensed polycyclic hydrocarbon monomer. If it is 0.1% by weight or more, the epoxy group-containing condensed polycyclic hydrocarbon monomer can be sufficiently reacted. Also, if it is 10.0% by weight or less, there is no waste because no initiator that does not contribute to the curing reaction of the monomer is included.
  • the composition is prepared by dissolving or dispersing the COP resin or COC resin in a solvent, adding and mixing the epoxy group-containing condensed polycyclic hydrocarbon monomer and, if desired, a physical property adjusting agent.
  • the viscosity of the obtained composition measured using a rotational viscometer at a rotation speed of 5 rpm and 25°C, is preferably 0.1 Pa ⁇ s or more and 300 Pa ⁇ s or less, and can be appropriately changed depending on the application method.
  • the viscosity when spray application is performed, it is preferable to set the viscosity to 0.1 Pa ⁇ s or more and less than 1.0 Pa ⁇ s, when applying by screen printing or a coater, it is preferable to set the viscosity to 1.0 Pa ⁇ s or more and less than 5.0 Pa ⁇ s, and when applying by a dispenser, it is preferable to set the viscosity to 5.0 Pa ⁇ s or more and less than 300 Pa ⁇ s. If the viscosity of the composition is 0.1 Pa ⁇ s or more, the coating liquid will not flow from the desired application surface. Also, if the viscosity is 300 Pa ⁇ s or less, the composition spreads well on the application surface. The viscosity can be adjusted by adjusting the amount of the solvent or physical property adjusting agent, or by adding a filler, etc.
  • the composition described above has a suitable viscosity and is suitable for printing on a substrate sheet. Furthermore, the composition is less likely to produce pinholes or the like during application, such as printing, and can form a smooth film. In addition, when the composition hardens, it forms a film that can function as a high-quality protective layer.
  • the composition can be applied by screen printing or the like to a base sheet made of a resin film or the like, and solidified to form a film that can function as a protective layer for the base sheet.
  • the protective layer can be a highly transparent film due to the properties of the COP or COC resin.
  • the average light transmittance of the protective layer in the visible light range of 400 nm to 800 nm can be preferably 80% or more, more preferably 85% or more.
  • other application methods that can be used include spray application, dispenser application, coater printing, transfer printing, and immersion methods.
  • the thickness of the film as a protective layer that protects the circuit wiring or sensor electrodes can be 0.5 ⁇ m to 50 ⁇ m, preferably 3 ⁇ m to 30 ⁇ m, and more preferably 5 ⁇ m to 15 ⁇ m.
  • the thickness of the film as a protective layer can also be greater than 50 ⁇ m.
  • a film that is too thick goes against the demand for thin films.
  • the film is 3 ⁇ m or thicker, it is possible to protect the circuit wiring or sensor electrodes.
  • the film can be laminated to increase the thickness. This makes it possible to thicken the film to about 100 ⁇ m.
  • the coating has excellent moisture resistance, light resistance, and sulfuration resistance, low reactivity to chemicals, and solvent barrier properties.
  • the coating itself is low volatile and does not bleed out.
  • the coating does not migrate to other components that adhere to the surface of the coating, does not attack resins, and is less likely to contaminate these other components.
  • a composition having a desired viscosity can be prepared by mixing pulverized solid COP resin or COC resin with an epoxy group-containing condensed polycyclic hydrocarbon monomer without using a solvent, and adding a viscosity adjuster that does not dissolve the COP resin or COC resin.
  • a composition can be prepared by mixing a pulverized solid COP resin or COC resin with an epoxy group-containing condensed polycyclic hydrocarbon monomer without using a solvent or a viscosity modifier. All of these embodiments may be combined, and both may be added to compensate for insufficient solvent function with a viscosity modifier.
  • ⁇ Circuit sheet> An embodiment of a circuit sheet having a protective layer that protects the circuit wiring provided on the base sheet by forming a coating film by applying a composition on the base sheet is shown in a front view in Fig. 1A and a plan view in Fig. 1B.
  • the circuit sheet 10 shown in these figures is formed by applying a composition to cover conductive wires 12 provided on a base sheet 11 to form a protective layer 13, and these figures show only one conductive wire 12 that forms a circuit. Note that the thickness is shown thicker than the width in the drawings in order to clearly show the layer structure, so the aspect ratio is different from the actual one.
  • Base sheet It is preferable to use a transparent resin film for the base sheet 11, which is the base material of the circuit sheet.
  • resin films include polyethylene terephthalate (PET) resin, polyethylene naphthalate (PEN) resin, polycarbonate (PC) resin, methacrylic (PMMA) resin, polypropylene (PP) resin, polyurethane (PU) resin, polyamide (PA) resin, polyethersulfone (PES) resin, polyetheretherketone (PEEK) resin, triacetylcellulose (TAC) resin, and COP resin (cycloolefin polymer).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PMMA methacrylic
  • PP polypropylene
  • PU polyurethane
  • PA polyamide
  • PA polyethersulfone
  • PEEK polyetheretherketone
  • TAC triacetylcellulose
  • COP resin cycloolefin polymer
  • the base sheet 11 may be provided with a primer layer for improving adhesion with the conductive wire 12 or protective layer 13, a surface protective layer, or an overcoat layer for the purpose of antistatic, or may be surface-treated by corona treatment, plasma treatment, ultraviolet irradiation, or the like.
  • Circuit wiring For ease of explanation, only one conductive wire 12 that constitutes the circuit wiring is shown in FIG. 1, but generally, such conductive wires 12 are arranged in a pattern on the base sheet 11 to form a circuit (circuit wiring network).
  • Examples of materials for the conductive wires 12 include conductive pastes and conductive inks that contain powder of highly conductive metals such as copper, aluminum, silver, or alloys containing these metals. Of these metals and alloys, it is preferable to use silver wiring that mainly uses silver because it has high conductivity and is less susceptible to oxidation than copper.
  • the conductive wires 12 can also be wiring that uses graphite powder, carbon powder such as carbon fiber or carbon black, or wiring made from materials that mix these with metals.
  • the circuit wiring can be formed by forming conductive parts on the base sheet 11 using metal vapor deposition, and then generating a circuit pattern by etching or the like.
  • metals such as copper, aluminum, nickel, chromium, zinc, and gold can be used. Of these, copper is preferred because of its low electrical resistance and low cost.
  • the circuit sheet 10 is manufactured by printing circuit wiring (conductive wires 12) at predetermined locations on a transparent resin film that serves as the base sheet 11. A composition is then applied onto the circuit wiring and cured to form a protective layer 13. In this manner, the circuit sheet 10 can be obtained. If the COP resin or COC resin, epoxy group-containing condensed polycyclic hydrocarbon monomer, or physical property adjuster contains a reactive functional group, it can also be reacted with the base film.
  • a sensor sheet 20 such as a capacitance sensor sheet shown in these figures is formed by applying a composition so as to cover conductive wires 22 and sensor electrodes 24 provided on a base sheet 21 to form a protective layer 23.
  • only one sensor electrode 24 is shown for convenience, and an explanation is given as an example of a sensor sheet 20 having the sensor electrode 24 together with circuit wiring.
  • the base sheet 21 or conductive wire 22 that serves as the base material for the sensor sheet 20 is the same as that used for the circuit sheet 10.
  • the sensor electrode 24 can be formed from a conductive paste or conductive ink that forms circuit wiring, a metal deposition film, etc., but it can also be formed from a transparent conductive polymer, etc. If a highly transparent material is used, it becomes possible to illuminate the sensor position by transmitting backlight illumination.
  • transparent conductive polymers examples include polythiophene, polypyrrole, polyaniline, polyparaphenylene, and polyacetylene. Specific examples include PEDOT/PSS (poly-3,4-ethylenedioxythiophene-polystyrene sulfonic acid). Transparent conductive polymers that are commercially available as paints or printing inks can be used. Alternatively, the sensor electrode 24 can be made using a conductive paste or ink that contains a highly transparent material, such as metal nanoparticles such as silver nanoparticles, carbon nanoparticles, or indium tin oxide (ITO) powder.
  • PEDOT/PSS poly-3,4-ethylenedioxythiophene-polystyrene sulfonic acid
  • Transparent conductive polymers that are commercially available as paints or printing inks can be used.
  • the sensor electrode 24 can be made using a conductive paste or ink that contains a highly transparent material, such as metal nanoparticles such as silver nanop
  • the sensor sheet 20 is manufactured by printing circuit wiring (conductive wires 22) and sensor electrodes 24 at predetermined locations on a transparent resin film that serves as a base sheet 21. A composition is then applied onto the substrate, and the solvent is evaporated and cured to form a protective layer 23. In this manner, the sensor sheet 20 can be obtained.
  • ⁇ Sensor sheet (part 2)> Another embodiment of the sensor sheet 30 is shown in a cross-sectional view seen from the front direction in Fig. 3A and a plan view in Fig. 3B.
  • the sensor sheet 30 shown in these figures is the same as the sensor sheet 20 described above in that the circuit wiring (conductive wires 32) and the sensor electrodes 34 on the base sheet 31 are covered with a protective layer 33 formed by applying a composition.
  • the sensor sheet 30 of this embodiment is different in that it is bent or stretched on an uneven surface to be formed into a three-dimensional shape having a curved surface.
  • the raw materials of each component can be selected in the same way.
  • the sensor sheet 30 can be formed by forming the circuit wiring (conductive wires 32), the sensor electrodes 34, and the protective layer 33 on a flat base sheet 31 in the same manner as the sensor sheet 20, and then thermally deforming the same, or by forming the circuit wiring (conductive wires 32), the sensor electrodes 34, and the protective layer 33 on the base sheet 31 formed into a three-dimensional shape by printing or deposition, etc.
  • the glass transition point Tg of the COP resin or COC resin contained in the composition that will become the protective layer 33 is close to the glass transition point Tg of the base sheet 31. This is because the closer the glass transition points Tg are, the more similar the deformation of the base sheet 31 and the protective layer 33 will be, and distortion, deformation, cracking, etc. will be less likely to occur.
  • the sensor sheet may be formed into a three-dimensional shape having a curved surface by bending or stretching the uneven surface, and then covered with a protective layer.
  • the protective layer can be provided by applying a composition to the three-dimensional surface using a spray coating method or the like.
  • the sensor sheet may be integrated with a resin housing on its upper or lower surface.
  • the integration of the sensor sheet and the resin housing may be achieved by a bonding method using a pressure sensitive adhesive or a bonding agent, a method of engaging with an engaging structure provided on the resin housing, or an integral molding method such as insert molding.
  • any of the compositions of samples 1 to 68 was applied to a thickness of 10 ⁇ m, and the resulting mixture was heated and cured at 90° C. to prepare a test circuit sheet having a film covering the conductive film and conductive wire.
  • the conductive film no film was provided for resistance measurement, and exposed portions (exposed portions) of the conductive film were provided.
  • the same sample number as the composition applied was assigned to each of the obtained test circuit sheets.
  • COP resin is a COP resin (cycloolefin copolymer, product name: R-5000, manufactured by JSR Corporation, Tg 137°C).
  • Monomer A is an epoxy group-containing condensed polycyclic hydrocarbon monomer (bicyclononadiene diepoxide, trade name: Epocalic THI-DE, manufactured by ENEOS Corporation)
  • Monomer B is an epoxy group-containing condensed polycyclic hydrocarbon monomer (5,12-dioxahexacyclo[7.6.1.0 2,8 .0 4,6 .0 10,15 .0 11,13 ]hexadecane, product name: Epocalic DE-102, manufactured by ENEOS Corporation)
  • Monomer C is an epoxy group-containing condensed polycyclic hydrocarbon monomer (tricyclopentadiene diepoxide, also known as 5,12-dioxaheptacyclo[7.6.1.1 3,7 .0
  • “Monomer E” is an epoxy group-containing alicyclic monomer (3',4'-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, trade name: CELLOXIDE 2021P, manufactured by Daicel Corporation)
  • “monomer F” an epoxy group-containing alicyclic monomer (1,2-epoxy-4-(2-oxiranyl)cyclohexane adduct of 2,2-bis(hydroxymethyl)-1-butanol, trade name: EHPE3150CE, manufactured by Daicel Corporation) was used.
  • polyolefin resin maleic anhydride modified polypropylene, product name: Surflen P-1000, manufactured by Mitsubishi Chemical Corporation
  • initiator a thermal cationic polymerization initiator (sulfonium salt compound, trade name: San-Aid SI-300, manufactured by Sanshin Chemical Industry Co., Ltd.) was used.
  • solvent dihydroterpinyl acetate (boiling point 225°C) was used.
  • Viscosity To measure printability, the viscosity of each sample composition was measured using a rotational viscometer (Brookfield rotational viscometer DV-E) (spindle SC4-14, chamber SC4-6R/RP, rotation speed 5 rpm, measurement temperature 25°C). The results are shown in the "Printability (viscosity)" column of each table. The viscosity values in the tables indicate Pa ⁇ s.
  • Adhesion In order to evaluate the film quality from the viewpoint of adhesion to the base sheet, the cross-cut method was performed on each sample based on JIS K5600-5-6:1999 to perform an adhesion test. More specifically, a single-blade cutting tool (a typical Olfa cutter) was used to make multiple 1 mm-wide lattice-shaped cuts in the film, and a 24 mm-wide transparent pressure-sensitive adhesive tape (product name: Cellotape (registered trademark) CT-24, manufactured by Nichiban Co., Ltd.) was applied to the surface of the film and then peeled off.
  • a single-blade cutting tool a typical Olfa cutter
  • a 24 mm-wide transparent pressure-sensitive adhesive tape product name: Cellotape (registered trademark) CT-24, manufactured by Nichiban Co., Ltd.
  • Classification 0 is when there is no peeling of any of the grids
  • Classification 1 is when there is small peeling of the coating at the intersections of the cuts but does not clearly exceed 5%
  • Classification 2 is when the coating has peeled off at the intersections along the cut lines but the peeling covers between 5% and 15% of the entire area where the tape is applied
  • Classification 3 is when the coating has peeled off partially or completely along the cut lines and the peeling is between 15% and 35%
  • Classification 4 is when there is large peeling of the coating partially or completely along the cut lines and the peeling is between 35% and 65%
  • Classification 5 is when the adhesion exceeds Classification 4. Therefore, if it is 0 or 1, the adhesion is good.
  • Moisture and heat resistance In order to evaluate the film quality from the viewpoint of moisture and heat resistance, a moisture and heat resistance test was conducted on each of the above samples. More specifically, the test circuit sheet of each sample was left in an atmosphere of 85% humidity and 85°C temperature for 250 hours, 500 hours, 750 hours, and 1000 hours, and the color of the conductive film made of transparent conductive polymer was observed after each time, and the moisture and heat resistance was evaluated from the change in color. At the same time, moisture and heat resistance was also evaluated from the change in resistance value of the conductive film made of transparent conductive polymer after each time.
  • the "Moisture and heat resistance color change" column in each table shows the color difference ⁇ E after 1000 hours.
  • the "Moisture and heat resistance resistance change rate” column in each table also shows the resistance change rate ⁇ after 1000 hours.
  • the color change of the conductive film was evaluated as color difference ⁇ E based on an index defined as the distance between coordinates in the CIE1976 L*a*b* color space in accordance with JIS Z 8781-4.
  • This color difference can be determined, for example, using a handy spectrophotometer ("JX777" manufactured by Color Techno Systems Co., Ltd.) or a color difference meter ("CR-400” manufactured by Konica Minolta, Inc.).
  • the resistance value was measured using a resistance meter (tester) from the exposed parts at both ends of the conductive film made of transparent conductive polymer.
  • Viscosity The viscosity of each sample in each table was greater than or equal to 1.0 Pa ⁇ s and less than 5.0 Pa ⁇ s, indicating that all samples had suitable viscosities for screen printing.
  • the monomer content was 5% or less or 50%, it was rated 2 or more.
  • the monomer content of sample 17 and sample 18 was 20%, the property modifier was contained in an amount of 7.5 parts by weight or more, and it was found that excessive mixing of the property modifier had a negative effect on adhesion.
  • sample 27 which contains 40% of monomer B, an epoxy group-containing condensed polycyclic hydrocarbon monomer, relative to the COP resin content, had an adhesion of 2
  • sample 40 which contains 40% of monomer B but has a property-adjusting agent added, had an adhesion of 0, a dramatic improvement in adhesion. The same results were obtained when comparing other samples that differ only in the presence or absence of a property-adjusting agent.
  • Moisture and heat resistance From the viewpoint of moisture and heat resistance, the addition of property-adjusting agents appears to be somewhat undesirable, but it was favorable when the content of epoxy-containing condensed polycyclic hydrocarbon monomer was in the range of 10% to 40%. On the other hand, it was found that the heat resistance of samples using epoxy-containing alicyclic monomers was easily deteriorated by the addition of property-adjusting agents.
  • Circuit sheet 11 Base sheet 12 Conductive wire (circuit wiring) 13 Protective layer (film) 20: sensor sheet 21: base sheet 22: conductive wire (circuit wiring) 23 Protective layer (film) 24 Sensor electrode 30 Sensor sheet 31 Base sheet 32 Conductive wire (circuit wiring) 33 Protective layer (film) 34 Sensor electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Paints Or Removers (AREA)

Abstract

With regard to a film for protecting the circuit wiring or the sensor electrode of a circuit sheet or a sensor sheet, the present invention makes it possible to form a protective film which has reduced thickness and has an exceptional ability to protect the circuit wiring or the sensor electrode. The present invention also obtains a composition for forming said film. The present invention provides a composition that contains a COP resin or a COC resin, and an epoxy group–containing condensed polycyclic hydrocarbon monomer. The present invention alternatively provides a composition that contains a COP resin or a COC resin, a physical property adjusting material, and an epoxy group–containing condensed polycyclic hydrocarbon monomer. The present invention further provides a film that comprises the composition.

Description

組成物、皮膜、回路シート及びセンサシートComposition, film, circuit sheet and sensor sheet
 本開示は、回路シート又はセンサシートの保護層等として用いることのできる皮膜と、その皮膜を形成し得る組成物、及びその皮膜を保護層として備える回路シート及びセンサシートに関する。 This disclosure relates to a coating that can be used as a protective layer for a circuit sheet or a sensor sheet, a composition capable of forming the coating, and a circuit sheet and a sensor sheet that include the coating as a protective layer.
 回路シートに配置される導電線又はセンサシートに配置されるセンサ電極は、銀を含む銀ペースト、又はPEDOT/PSSと称される透明導電高分子にて形成されているものがある。回路シート又はセンサシートには、これらの導電線又はセンサ電極を断線、腐食等から保護するため、その表面を被覆する透明性の高い保護層が設けられている。 The conductive wires on the circuit sheet or the sensor electrodes on the sensor sheet are sometimes made from a silver paste containing silver, or a transparent conductive polymer called PEDOT/PSS. The circuit sheet or sensor sheet has a highly transparent protective layer covering its surface to protect the conductive wires or sensor electrodes from breakage, corrosion, etc.
 しかしながら、銀ペースト又は透明導電高分子は、水蒸気、紫外光等による劣化、硫黄ガス等による硫化を生じ易い。このため前記保護層は、これらの現象を生じさせ難い性質を備えることが望まれる。導電線を保護層で被覆する技術は、例えば特許第6167103号公報(特許文献1)に記載されている。 However, silver paste or transparent conductive polymers are susceptible to deterioration due to water vapor and ultraviolet light, and sulfurization due to sulfur gas. For this reason, it is desirable for the protective layer to have properties that make it difficult for these phenomena to occur. Technology for covering conductive wires with a protective layer is described, for example, in Japanese Patent No. 6167103 (Patent Document 1).
特許第6167103号公報Patent No. 6167103
 回路シート及びセンサシートの利用分野の拡大に伴って回路シート又はセンサシートには、より一層の保護性能の向上が要請されている。 As the fields in which circuit sheets and sensor sheets are used expand, there is a demand for circuit sheets or sensor sheets with even greater protective performance.
 本開示の一態様は、COP樹脂又はCOC樹脂と、エポキシ基含有縮合多環炭化水素モノマーと、を含有する組成物である。
 本開示の一態様によれば、COP樹脂又はCOC樹脂を含有するため、透明性、及び堅牢性に優れた皮膜を形成し得る。また、組成物がエポキシ基含有縮合多環炭化水素モノマーを含有するため、組成物が硬化することで印刷適性及び品質等が向上した皮膜を形成し得る。さらに、組成物が溶剤を含有することにより、印刷等の手法により皮膜を形成することができる。
One aspect of the present disclosure is a composition containing a COP resin or a COC resin and an epoxy group-containing condensed polycyclic hydrocarbon monomer.
According to one aspect of the present disclosure, since the composition contains a COP resin or a COC resin, a film having excellent transparency and robustness can be formed. In addition, since the composition contains an epoxy group-containing condensed polycyclic hydrocarbon monomer, the composition can be cured to form a film having improved printability and quality. Furthermore, since the composition contains a solvent, a film can be formed by a method such as printing.
 本開示の一態様は、前記エポキシ基含有縮合多環炭化水素モノマーが、シクロアルケンオキサイド型の縮環構造ジエポキシドである。
 本開示の一態様によれば、前記エポキシ基含有縮合多環炭化水素モノマーが、シクロアルケンオキサイド型の縮環構造ジエポキシドであるため、組成物が硬化することで印刷適性、及び透明性、堅牢性等の品質に優れた皮膜を形成し得る。また、前記エポキシ基含有縮合多環炭化水素モノマーが、シクロアルケンオキサイド型の縮環構造ジエポキシドであるため、皮膜が形成された際の皮膜の基材(例えば回路シートの基材シート)に対する密着性に優れる。
In one embodiment of the present disclosure, the epoxy group-containing condensed polycyclic hydrocarbon monomer is a cycloalkene oxide type condensed ring structure diepoxide.
According to one aspect of the present disclosure, since the epoxy group-containing condensed polycyclic hydrocarbon monomer is a cycloalkene oxide-type condensed ring-structure diepoxide, the composition can be cured to form a coating having excellent qualities such as printability, transparency, robustness, etc. In addition, since the epoxy group-containing condensed polycyclic hydrocarbon monomer is a cycloalkene oxide-type condensed ring-structure diepoxide, the coating has excellent adhesion to a substrate (e.g., a substrate sheet of a circuit sheet) when formed.
 本開示の一態様は、前記エポキシ基含有縮合多環炭化水素モノマーが、ビシクロノナジエンジエポキシド、トリシクロペンタジエンジエポキシド、ジシクロペンタジエンジエポキシド、5,12-ジオキサヘキサシクロ[7.6.1.02,8.04,6.010,15.011,13]ヘキサデカンから選択される少なくともいずれかである組成物である。
 本開示の一態様によれば、前記エポキシ基含有縮合多環炭化水素モノマーが、ビシクロノナジエンジエポキシド、トリシクロペンタジエンジエポキシド、ジシクロペンタジエンジエポキシド、5,12-ジオキサヘキサシクロ[7.6.1.02,8.04,6.010,15.011,13]ヘキサデカンから選択される少なくともいずれかであるため、皮膜が形成された際の皮膜の基材(例えば回路シートの基材シート)に対する密着性に優れる。
One embodiment of the present disclosure is a composition, wherein the epoxy group-containing condensed polycyclic hydrocarbon monomer is at least one selected from bicyclononadiene diepoxide, tricyclopentadiene diepoxide, dicyclopentadiene diepoxide, and 5,12-dioxahexacyclo[7.6.1.0 2,8 . 0 4,6 . 0 10,15 . 0 11,13 ]hexadecane.
According to one aspect of the present disclosure, the epoxy group-containing condensed polycyclic hydrocarbon monomer is at least any one selected from bicyclononadiene diepoxide, tricyclopentadiene diepoxide, dicyclopentadiene diepoxide, and 5,12 -dioxahexacyclo[ 7.6.1.02,8.04,6.010,15.011,13 ] hexadecane , and therefore the formed coating has excellent adhesion to a substrate (e.g., a substrate sheet of a circuit sheet).
 本開示の一態様は、物性調整材をさらに含有する組成物である。
 本開示の一態様によれば、物性調整材を含有するため、組成物の印刷適性を向上させることができる。さらに、物性調整材を含有するため、組成物が硬化してなる皮膜の品質等を向上させることができる。
One aspect of the present disclosure is a composition further comprising a physical property adjuster.
According to one aspect of the present disclosure, the printability of the composition can be improved by containing a physical property adjusting agent. Furthermore, the quality of the film formed by curing the composition can be improved by containing a physical property adjusting agent.
 本開示の一態様は、前記COP樹脂又はCOC樹脂100質量部に対する前記エポキシ基含有縮合多環炭化水素モノマーの配合割合は、8重量部以上35重量部以下である組成物である。
 本開示の一態様によれば、前記COP樹脂又はCOC樹脂に対する前記エポキシ基含有縮合多環炭化水素モノマーの配合割合が8重量部以上35重量部以下であるため、皮膜の基材(例えば回路シートの基材シート)に対する密着性が高く基材から剥がれ難い皮膜を形成することができる。
One aspect of the present disclosure is a composition in which the blending ratio of the epoxy group-containing condensed polycyclic hydrocarbon monomer per 100 parts by mass of the COP resin or COC resin is 8 parts by weight or more and 35 parts by weight or less.
According to one aspect of the present disclosure, the blending ratio of the epoxy group-containing condensed polycyclic hydrocarbon monomer to the COP resin or COC resin is 8 parts by weight or more and 35 parts by weight or less, so that a coating can be formed that has high adhesion to the substrate (e.g., the substrate sheet of a circuit sheet) and is not easily peeled off from the substrate.
 本開示の一態様は、前記COP樹脂又はCOC樹脂の100重量部に対する前記物性調整材の配合割合は、140重量部以下である組成物である。
 本開示の一態様によれば、前記COP樹脂又はCOC樹脂の100重量部に対する前記物性調整材の配合割合が140重量部以下であるため、耐熱性、耐硫化性又は耐折曲げ白化性や耐割れ性を悪化させずに皮膜の基材(例えば回路シートの基材シート)に対する密着性を高めることができる。
One aspect of the present disclosure is a composition in which the blending ratio of the physical property adjuster per 100 parts by weight of the COP resin or COC resin is 140 parts by weight or less.
According to one aspect of the present disclosure, the blending ratio of the physical property adjusting material per 100 parts by weight of the COP resin or COC resin is 140 parts by weight or less, so that the adhesion of the coating to the substrate (e.g., the substrate sheet of a circuit sheet) can be increased without deteriorating the heat resistance, sulfidation resistance, or bending whitening resistance or cracking resistance.
 本開示の一態様は、前記いずれかの組成物の反応硬化物でなる皮膜である。
 本開示の一態様によれば、前記いずれかの組成物の反応硬化物でなる皮膜であるため、品質に優れた皮膜とすることができる。
One aspect of the present disclosure is a coating formed from a reaction-cured product of any of the compositions described above.
According to one aspect of the present disclosure, the coating is made of a reaction-cured product of any one of the compositions described above, and therefore the coating can be of excellent quality.
 本開示の一態様は、基材シートと、回路配線と、前記いずれかの組成物の反応硬化物でなる保護層を有する回路シートである。
 本開示の一態様によれば、基材シートと、回路配線と、前記いずれかの組成物の反応硬化物でなる保護層を有するため、基材シートと保護層との間に挟まれる回路配線の保護に優れた回路シートとすることができる。
One aspect of the present disclosure is a circuit sheet having a base sheet, circuit wiring, and a protective layer made of a reaction-cured product of any one of the compositions described above.
According to one aspect of the present disclosure, the circuit sheet has a base sheet, circuit wiring, and a protective layer made of a reaction-cured product of any of the compositions described above, and therefore can provide excellent protection for the circuit wiring sandwiched between the base sheet and the protective layer.
 本開示の一態様は、前記回路シートが曲面を有する立体形状である回路シートである。
 本開示の一態様によれば、回路シートが曲面を有する立体形状であるため、回路シートを、それを適用する空間により沿わせた形状とすることができる。したがって、本開示の一態様によれば、回路シートを利用する機器の設計自由度が拡大する。
One aspect of the present disclosure is a circuit sheet having a three-dimensional shape with a curved surface.
According to one aspect of the present disclosure, since the circuit sheet has a three-dimensional shape with curved surfaces, the circuit sheet can be shaped to better fit the space it is to be used in. Therefore, according to one aspect of the present disclosure, the degree of freedom in designing a device that uses the circuit sheet is increased.
 本開示の一態様は、基材シートと、回路配線と、センサ電極と、前記いずれかの組成物の反応硬化物でなる保護層を有するセンサシートとすることができる。
 本開示の一態様によれば、基材シートと、回路配線と、センサ電極と、前記いずれかの組成物の反応硬化物でなる保護層を有するセンサシートとしたため、基材シートと保護層との間に挟まれる回路配線及びセンサ電極の保護に優れたセンサシートとすることができる。
One aspect of the present disclosure may be a sensor sheet having a base sheet, circuit wiring, a sensor electrode, and a protective layer made of a reaction-cured product of any one of the compositions described above.
According to one aspect of the present disclosure, a sensor sheet is provided having a base sheet, circuit wiring, sensor electrodes, and a protective layer made of a reaction-cured product of any of the compositions described above, thereby providing a sensor sheet that is excellent in protecting the circuit wiring and sensor electrodes sandwiched between the base sheet and the protective layer.
 本開示の一態様は、前記センサシートが曲面を有する立体形状であるセンサシートである。
 本開示の一態様によれば、センサシートが曲面を有する立体形状であるため、センサシートを、それを適用する空間により沿わせた形成とすることができる。したがって、本開示の一態様によれば、センサシートを利用する機器の設計自由度が拡大する。
One aspect of the present disclosure is a sensor sheet having a three-dimensional shape with a curved surface.
According to one aspect of the present disclosure, since the sensor sheet has a three-dimensional shape with a curved surface, the sensor sheet can be formed to better fit the space it is to be used in. Therefore, according to one aspect of the present disclosure, the degree of freedom in designing devices that use the sensor sheet is increased.
 本開示の一態様によれば、印刷適性のある組成物を提供できる。
 本開示の一態様によれば、保護性能に優れた皮膜を提供できる。
 本開示の一態様によれば、保護性能に優れた皮膜を有する回路シート又はセンサシートを提供できる。
According to one aspect of the present disclosure, a printable composition can be provided.
According to one aspect of the present disclosure, a coating having excellent protective performance can be provided.
According to one aspect of the present disclosure, a circuit sheet or a sensor sheet having a coating with excellent protective performance can be provided.
本開示の一態様による回路シートの模式図であり、図1Aは正面図、図1Bは平面図である。1A and 1B are schematic diagrams of a circuit sheet according to one embodiment of the present disclosure, with FIG. 1A being a front view and FIG. 1B being a plan view. 本開示の一態様によるセンサシートの模式図であり、図2Aは正面図、図2Bは平面図である。2A and 2B are schematic diagrams of a sensor sheet according to one embodiment of the present disclosure, in which FIG. 2A is a front view and FIG. 2B is a plan view. 本開示の別の態様によるセンサシートの模式図であり、図3Aは図3BのIIIA-IIIA線断面図、図3Bは平面図である。3A and 3B are schematic diagrams of a sensor sheet according to another embodiment of the present disclosure, in which FIG. 3A is a cross-sectional view taken along line IIIA-IIIA in FIG. 3B, and FIG. 3B is a plan view.
 以下、本開示の一態様による実施形態について、図面を参照しながら説明する。以下に説明する実施形態は、特許請求の範囲の記載を不当に限定するものではなく、本実施形態で説明される構成の全てが本開示の解決手段として必須であるとは限らない。 Below, an embodiment according to one aspect of the present disclosure will be described with reference to the drawings. The embodiment described below does not unduly limit the scope of the claims, and not all of the configurations described in this embodiment are necessarily essential as a solution to the present disclosure.
 本開示の一態様にて示す「範囲」は、下限及び上限の形式で限定され、「所定範囲」は、範囲の境界を特定する1つの下限値と1つの上限値を選定することにより限定される。そのように限定される範囲は、端値を含んでもよく含まなくてもよい。即ち、任意の下限値と任意の上限値とを組み合わせて1つの範囲を形成してもよい。例えば特定のパラメータに対して5~10と6~9の範囲がリストアップされた場合、5~9と6~10の範囲も理解され得る。列挙された最小範囲値が1と2で、かつリストアップされた最大範囲値が3、4と5である場合、1~3、1~4、1~5、2~3、2~4と2~5の範囲は、全て想定し得る。本開示の中に別段の記載がない限り、数値範囲「a~b」「a以上b以下」は、aないしbの間の全ての実数の組合せを簡略に表すものであり、ここでaとbはいずれも実数である。例えば、数値範囲「0~5」は、本明細書で「0~5」の間の全ての実数がリストアップされていることを意味し、「0~5」はこれら数値の組合せの省略表示にすぎない。また、あるパラメータ≧2の整数であると記述している場合、このパラメータは例えば、整数2、3、4、5、6、7、8、9、10、11、12などであることを開示していることに相当する。 In one embodiment of the present disclosure, a "range" is defined in the form of a lower limit and an upper limit, and a "predetermined range" is defined by selecting one lower limit and one upper limit that specify the boundaries of the range. Such a defined range may or may not include the end values. That is, any lower limit and any upper limit may be combined to form a range. For example, if ranges of 5 to 10 and 6 to 9 are listed for a particular parameter, the ranges of 5 to 9 and 6 to 10 are also understood. If the minimum range values listed are 1 and 2, and the maximum range values listed are 3, 4, and 5, then the ranges of 1 to 3, 1 to 4, 1 to 5, 2 to 3, 2 to 4, and 2 to 5 are all contemplated. Unless otherwise specified in this disclosure, the numerical ranges "a to b" and "a to b" are shorthand for all real number combinations between a and b, where a and b are both real numbers. For example, a numerical range of "0 to 5" means that all real numbers between "0 and 5" are listed in this specification, with "0 to 5" being merely a shorthand for combinations of these numbers. Also, when a parameter is described as an integer ≧2, this is equivalent to disclosing that the parameter is, for example, the integers 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, etc.
 本開示に含む全ての実施形態及び選択可能な実施形態は、互いに組み合わせて新たな技術案を形成してもよい。 All of the embodiments and optional embodiments contained in this disclosure may be combined with each other to form new technical solutions.
 本出願の全ての技術的特徴及び選択可能な技術的特徴は、互いに組み合わせて新たな技術案を形成してもよい。 All technical features and optional technical features of this application may be combined with each other to form a new technical solution.
 特に説明されていない限り、本開示の方法における全てのステップは、順次又はランダムに行われてもよい。例えば前記方法がステップSaとステップSbとを含むことは、前記方法が順次行われるステップSaとステップSbとを含んでもよく、順次行われるステップSbとステップSaとを含んでもよい。例えば前記方法がステップScをさらに含んでもよいことは、ステップScを任意の順で前記方法に追加できることでもある。例えば前記方法は、ステップSa、Sb、Scを含んでもよく、ステップSa、Sc、Sbを含んでもよく、ステップSc、SaとSbなどを含んでもよい。 Unless otherwise stated, all steps in the methods of the present disclosure may be performed sequentially or randomly. For example, when the method includes steps Sa and Sb, it means that the method may include steps Sa and Sb performed sequentially, or may include steps Sb and Sa performed sequentially. For example, when the method may further include step Sc, it also means that step Sc can be added to the method in any order. For example, the method may include steps Sa, Sb, Sc, or may include steps Sa, Sc, Sb, or may include steps Sc, Sa, and Sb, etc.
 本開示で使用する「含む」と「包含」は、開放型を表し、閉鎖型であってもよい。例えば、前記「含む」と「包含」は、リストアップされていない他の成分をさらに含み又は包含してもよく、リストアップされた成分のみを含み又は包含してもよい。 As used in this disclosure, "comprise" and "include" refer to open forms and may also be closed forms. For example, the terms "comprise" and "include" may further include or include other ingredients not listed, or may include or include only the ingredients listed.
 本開示で使用する用語「又は」は包括的である。例えば、「A又はB」という語句は、「A、B、又はAとBの両方」を表す。より具体的には、Aが真であり(又は存在し)かつBが偽であり(又は存在せず)、Aが偽であり(又は存在せず)かつBが真であり(又は存在し)、又はAとBがいずれも真である(又は存在する)、という3つの条件は、いずれもそれぞれが「A又はB」を満たす。 The term "or" as used in this disclosure is inclusive. For example, the phrase "A or B" means "A, B, or both A and B." More specifically, any of the following three conditions each satisfy "A or B": A is true (or exists) and B is false (or does not exist), A is false (or does not exist) and B is true (or exists), or A and B are both true (or exist).
 本明細書及び特許請求の範囲において「第1」、「第2」・・・「第n(nは任意の自然数)」と記載する場合、それらは、異なる構成要素を区別するために用いるものであり、特定の順序や優劣等を示すために用いるものではない。また、各実施形態で共通する構成で同一の効果を奏するものについては、同一符号を付して重複説明を省略する。 In this specification and claims, when the terms "first," "second," ... "nth (n is any natural number)" are used, they are used to distinguish between different components, and are not used to indicate a specific order or superiority or inferiority. In addition, components that are common to each embodiment and have the same effect are given the same reference numerals and duplicated explanations are omitted.
 <組成物>
 本実施形態で説明する組成物は、回路シート又はセンサシート等の基材シートに塗布して皮膜を形成し、回路配線(導電線)又はセンサ電極を保護する保護層としての用途等に用いられ、透明性が高く被覆対象の保護性能が高い。この組成物は、COP樹脂又はCOC樹脂と、エポキシ基含有縮合多環炭化水素モノマーとを含有している。以下、この組成物の組成について説明する。
<Composition>
The composition described in this embodiment is applied to a substrate sheet such as a circuit sheet or a sensor sheet to form a film, and is used as a protective layer for protecting circuit wiring (conductive wire) or sensor electrodes, and has high transparency and high protective performance for the object to be covered. This composition contains a COP resin or a COC resin and an epoxy group-containing condensed polycyclic hydrocarbon monomer. The composition of this composition will be described below.
 COP樹脂又はCOC樹脂: COP樹脂又はCOC樹脂は、溶剤に溶解した際に、凝集力が高く印刷インキ等の塗液とするには糸を引き易く一般的に印刷適正は好ましくなかった。また、COP樹脂又はCOC樹脂は、基材シートとなるPET等の樹脂フィルムへの密着性が弱く剥離し易かった。したがって、COP樹脂又はCOC樹脂は、予め成形した板材として用いることはあっても、印刷等に好適なバインダー樹脂とは言い難く、塗液としては利用し難い樹脂であった。しかしながら、COP樹脂又はCOC樹脂は、非晶質であることから、透明性が高く、複屈折率が低いという特徴がある。また、COP樹脂又はCOC樹脂は、脂環構造を有するため、ガラス転移点Tgが高く、耐熱性、堅牢性に優れる。さらにはCOP樹脂又はCOC樹脂は、極性基の少ない炭化水素構造を有するため、吸湿性が低く、加えて耐光性、耐薬品性にも優れている。そのため、本発明者は、このCOP樹脂又はCOC樹脂をどのようにしたら塗布材のバインダー樹脂として利用できるかを検討した。 COP resin or COC resin: When dissolved in a solvent, COP resin or COC resin has a high cohesive force and tends to form threads when used as a coating liquid such as printing ink, and is generally not suitable for printing. In addition, COP resin or COC resin has poor adhesion to resin films such as PET, which serve as base sheets, and is easily peeled off. Therefore, although COP resin or COC resin may be used as a pre-formed plate material, it is difficult to say that it is a binder resin suitable for printing, and it is difficult to use it as a coating liquid. However, since COP resin or COC resin is amorphous, it has the characteristics of high transparency and low birefringence. In addition, since COP resin or COC resin has an alicyclic structure, it has a high glass transition point Tg and is excellent in heat resistance and robustness. Furthermore, since COP resin or COC resin has a hydrocarbon structure with few polar groups, it has low moisture absorption and is also excellent in light resistance and chemical resistance. Therefore, the inventor of the present invention has considered how to use this COP resin or COC resin as a binder resin for coating materials.
 COP樹脂又はCOC樹脂は、ポリマー主鎖に脂環構造を有するポリマーであり、シクロオレフィンを重合して得られる。COP樹脂は、シクロオレフィン類開環重合体又はその水素添加物であり、ノルボルネン若しくはテトラシクロドデセン又はそれらの誘導体などが挙げられる。COC樹脂は、環状オレフィンとオレフィンの共重合体であるシクロオレフィンコポリマーであり、ノルボルネン若しくはテトラシクロドデセン又はその誘導体などのシクロオレフィンと、エチレン又はプロピレンとの重合により分子鎖にシクロペンチル残基又は置換シクロペンチル残基が挿入された共重合体などが挙げられる。COP樹脂又はCOC樹脂の原料となるシクロオレフィンは、単環式であっても多環式であっても良い。 COP resin or COC resin is a polymer with an alicyclic structure in the polymer main chain, and is obtained by polymerizing cycloolefin. COP resin is a ring-opening polymer of cycloolefins or a hydrogenated product thereof, and examples thereof include norbornene, tetracyclododecene, or derivatives thereof. COC resin is a cycloolefin copolymer, which is a copolymer of a cyclic olefin and an olefin, and examples thereof include copolymers in which a cyclopentyl residue or a substituted cyclopentyl residue is inserted in the molecular chain by polymerization of a cycloolefin such as norbornene, tetracyclododecene, or a derivative thereof, with ethylene or propylene. The cycloolefin used as the raw material for COP resin or COC resin may be monocyclic or polycyclic.
 極性基の少ない炭化水素構造は吸湿性の低下をもたらすが、COP樹脂又はCOC樹脂としては、密着性、接着性、混和性を高める観点からシクロ環中に極性基を持っているものを利用することは好ましい一態様である。こうした極性基を有するCOP樹脂又はCOC樹脂は、極性の高い溶媒、例えば酢酸エチル、酢酸ブチル等に対しても溶解性が良く、相溶する物性調整材の種類、配合量も増える点で好ましい。COP樹脂又はCOC樹脂は、水酸基、アミノ基、カルボニル基、カルボキシル基、ニトロ基、スルホ基、エステル基、アミド基等の官能基を有していても良い。エポキシ基、メタクリル基、ビニル基、メルカプト基、アミノ基等の反応性官能基を有すると、塗布対象となる基材シート又は回路配線等に対する組成物の密着性を向上させることができる。 Hydrocarbon structures with fewer polar groups result in reduced hygroscopicity, but it is a preferred embodiment to use COP or COC resins that have polar groups in the cyclo ring in order to improve adhesion, adhesion, and miscibility. COP or COC resins with such polar groups are preferred in that they have good solubility in highly polar solvents, such as ethyl acetate and butyl acetate, and the types and amounts of compatible physical property adjusters can be increased. COP or COC resins may have functional groups such as hydroxyl, amino, carbonyl, carboxyl, nitro, sulfo, ester, and amide groups. Reactive functional groups such as epoxy, methacryl, vinyl, mercapto, and amino groups can improve the adhesion of the composition to the substrate sheet or circuit wiring to which it is applied.
 COP樹脂の市販品には、例えばゼオネックス(登録商標;日本ゼオン社製)、ゼオノア(登録商標;日本ゼオン社製)、アートン(登録商標;JSR社製)等がある。またCOC樹脂の市販品には、例えばアペル(登録商標;三井化学社製)、トパス(登録商標;ポリプラスチックス社製)等が挙げられる。 Commercially available COP resins include, for example, Zeonex (registered trademark; manufactured by Zeon Corporation), Zeonor (registered trademark; manufactured by Zeon Corporation), and Arton (registered trademark; manufactured by JSR Corporation). Commercially available COC resins include, for example, Apel (registered trademark; manufactured by Mitsui Chemicals), and Topas (registered trademark; manufactured by Polyplastics).
 COP樹脂又はCOC樹脂の配合量は、溶剤を含む組成物中に5重量%以上70重量%以下、好ましくは20重量%以上60重量%以下とすることができる。組成物中のCOP樹脂又はCOC樹脂の配合量が5重量%以上であると、所望の厚みを形成することができる。また、前記配合量が70重量%以下であると、粘度が高くなりすぎずに印刷適性に優れる。前記配合量が20重量%以上60重量%以下であれば、組成物が好適な印刷適性を有する。 The amount of COP resin or COC resin in the composition including the solvent can be 5% by weight or more and 70% by weight or less, preferably 20% by weight or more and 60% by weight or less. When the amount of COP resin or COC resin in the composition is 5% by weight or more, the desired thickness can be formed. Furthermore, when the amount is 70% by weight or less, the viscosity does not become too high and the composition has excellent printability. When the amount is 20% by weight or more and 60% by weight or less, the composition has suitable printability.
 エポキシ基含有縮合多環炭化水素モノマー: エポキシ基含有縮合多環炭化水素モノマーは、COP樹脂又はCOC樹脂を溶解又は分散させた液状物に含有させることで、COP樹脂又はCOC樹脂が溶解又は分散させただけでは得られない特性を液状物に与えるものである。その一例として、COP樹脂又はCOC樹脂にエポキシ基含有縮合多環炭化水素モノマーを加えることで、COP樹脂又はCOC樹脂を印刷インキ等の塗布材のバインダーとして用いることができる。また、基材シートとの密着性や、耐熱性、耐硫化性、耐折曲げ白化性、耐割れ性等を維持したり、向上させたりすることができる。 Epoxy group-containing condensed polycyclic hydrocarbon monomer: By adding an epoxy group-containing condensed polycyclic hydrocarbon monomer to a liquid in which a COP resin or COC resin has been dissolved or dispersed, the epoxy group-containing condensed polycyclic hydrocarbon monomer gives the liquid properties that cannot be obtained by simply dissolving or dispersing the COP resin or COC resin. As an example, by adding an epoxy group-containing condensed polycyclic hydrocarbon monomer to a COP resin or COC resin, the COP resin or COC resin can be used as a binder for coating materials such as printing ink. In addition, it is possible to maintain or improve adhesion to the base sheet, heat resistance, sulfurization resistance, resistance to whitening due to folding, cracking resistance, etc.
 エポキシ基含有縮合多環炭化水素モノマーは、2つ以上の単環がそれぞれの環の辺を互いに1つだけ供給して(縮合して)できる縮合環の炭化水素を有する縮合多環炭化水素のうち、エポキシ基を含有するモノマーであり、シクロアルケンオキサイド型の縮環構造ジエポキシドであることが好ましい。 The epoxy group-containing condensed polycyclic hydrocarbon monomer is a monomer containing an epoxy group among condensed polycyclic hydrocarbons having a condensed ring hydrocarbon formed by two or more single rings supplying (condensing) only one side of each ring to each other, and is preferably a cycloalkene oxide type condensed ring structure diepoxide.
 エポキシ基含有縮合多環炭化水素モノマーの具体例としては、ビシクロノナジエンジエポキシド(1,2:5,6-ジエポキシヘキサヒドロインダン)(エポカリックTHI-DE(商品名)ENEOS社製)、5,12-ジオキサヘキサシクロ[7.6.1.02,8.04,6.010,15.011,13]ヘキサデカン(エポカリックDE-102(商品名)ENEOS社製)、トリシクロペンタジエンジエポキシド(5,12-ジオキサヘプタシクロ[7.6.1.13,7.02,8.04,6.010,15.011,13]ヘプタデカン)(エポカリックDE-103(商品名)ENEOS社製)、ジシクロペンタジエンジエポキシド(4,5:8,9-ジエポキシトリシクロ[5.2.1.02,6]デカン)(DCPD-DE(商品名)日本材料技研社製)等が挙げられる。 Specific examples of epoxy group-containing condensed polycyclic hydrocarbon monomers include bicyclononadiene diepoxide (1,2:5,6-diepoxyhexahydroindan) (Epocalic THI-DE (trade name) manufactured by ENEOS Corporation), 5,12-dioxahexacyclo[7.6.1.0 2,8 . 0 4,6 . 0 10,15 . 0 11,13 ]hexadecane (Epocalic DE-102 (trade name) manufactured by ENEOS Corporation), tricyclopentadiene diepoxide (5,12-dioxaheptacyclo[7.6.1.1 3,7 .0 2,8 .0 4,6 .0 10,15 .0 11,13 ]heptadecane) (Epocalic DE-103 (trade name) manufactured by ENEOS Corporation), dicyclopentadiene diepoxide (4,5:8,9-diepoxytricyclo[5.2.1.0 2,6 ]decane) (DCPD-DE (trade name) manufactured by Japan Material Technology Co., Ltd.), and the like.
 これらの化合物は、縮環構造ではない他のエポキシ基含有モノマーよりも剛直な骨格であることと、脂環式骨格により高耐光性、高耐熱性及び低吸水性があり、耐光性向上材、耐熱性向上材、耐湿性向上材として機能し得る。また、ビシクロノナジエンジエポキシド(1,2:5,6-ジエポキシヘキサヒドロインダン)は、粘度を低下させる粘度調整材や、硬化する反応時間を短縮させる反応性向上材としても機能する。 These compounds have a more rigid skeleton than other epoxy group-containing monomers that do not have a condensed ring structure, and due to their alicyclic skeleton they have high light resistance, high heat resistance and low water absorption, and can function as light resistance improvers, heat resistance improvers and moisture resistance improvers. In addition, bicyclononadiene diepoxide (1,2:5,6-diepoxyhexahydroindan) also functions as a viscosity adjuster that reduces viscosity and a reactivity improver that shortens the curing reaction time.
 エポキシ基含有縮合多環炭化水素モノマーの配合量は、COP樹脂又はCOC樹脂100重量部に対して8重量部以上35重量部以下とすることができ、9重量部、10重量部、30重量部、31重量部、32重量部、33重量部、34重量部とすることができる。エポキシ基含有縮合多環炭化水素モノマーの配合量がCOP樹脂又はCOC樹脂100重量部に対して8重量部以上であると、基材シートに対する密着性、耐硫化性に優れる。他方で、エポキシ基含有縮合多環炭化水素モノマーの配合量がCOP樹脂又はCOC樹脂100重量部に対して35重量部以下であると、基材シートに対する密着性や、耐折曲げ白化性、耐割れ性に優れる。 The amount of epoxy group-containing condensed polycyclic hydrocarbon monomer can be 8 parts by weight or more and 35 parts by weight or less per 100 parts by weight of COP resin or COC resin, and can be 9 parts by weight, 10 parts by weight, 30 parts by weight, 31 parts by weight, 32 parts by weight, 33 parts by weight, or 34 parts by weight. When the amount of epoxy group-containing condensed polycyclic hydrocarbon monomer is 8 parts by weight or more per 100 parts by weight of COP resin or COC resin, adhesion to the base sheet and sulfurization resistance are excellent. On the other hand, when the amount of epoxy group-containing condensed polycyclic hydrocarbon monomer is 35 parts by weight or less per 100 parts by weight of COP resin or COC resin, adhesion to the base sheet, resistance to whitening due to bending, and resistance to cracking are excellent.
 溶剤: 溶剤は、COP樹脂又はCOC樹脂を溶解又は分散し、その溶解物又は分散物に適度な粘度を与えることで塗液に適した性状の組成物をもたらすことができる。こうした溶剤には、炭化水素系、芳香族系、エーテル系、ケトン系などの有機溶剤が挙げられ、より具体的には、ペンタン、ヘキサン、オクタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、1,2-ジメチルシクロヘキサン、シクロヘキセン、トルエン、キシレン、エチルエーテル、テトラヒドロフラン、シクロヘキサノン、メチルエチルケトン、メチルイソブチルケトン(MIBK)、シクロヘキシルプロピオネート、2-シクロヘキシル-4-メチル-1,3-ジオキサン、ターピネオール、ジヒドロターピネオール、ジヒドロターピニルアセテート、イソボルニルアセテート、イソボルニルプロピオネート、イソボルニルブチレート、イソボルニルイソブチレート等を例示できる。COP樹脂又はCOC樹脂は、シクロ環等の分子鎖中に極性基を持つため、エステル系溶剤である酢酸エチル、酢酸ブチル等を用いることが好ましい。高沸点の溶剤は、印刷適性が向上する点で好ましい。  Solvent: The solvent dissolves or disperses the COP resin or COC resin, and imparts an appropriate viscosity to the solution or dispersion, thereby resulting in a composition with properties suitable for the coating liquid. Such solvents include organic solvents such as hydrocarbons, aromatics, ethers, and ketones, and more specifically, pentane, hexane, octane, cyclohexane, methylcyclohexane, ethylcyclohexane, 1,2-dimethylcyclohexane, cyclohexene, toluene, xylene, ethyl ether, tetrahydrofuran, cyclohexanone, methyl ethyl ketone, methyl isobutyl ketone (MIBK), cyclohexyl propionate, 2-cyclohexyl-4-methyl-1,3-dioxane, terpineol, dihydroterpineol, dihydroterpinyl acetate, isobornyl acetate, isobornyl propionate, isobornyl butyrate, isobornyl isobutyrate, etc. Since COP resin or COC resin has polar groups in the molecular chain such as cyclo rings, it is preferable to use ester-based solvents such as ethyl acetate and butyl acetate. Solvents with high boiling points are preferable because they improve printability.
 溶剤の配合量は、組成物全量中に25重量%以上90重量%以下、好ましくは35重量%以上80重量%以下とすることができる。溶剤の組成物中の配合量が25重量%以上であると、不揮発成分が多くなりすぎずに印刷適性に優れる。前記配合量が90重量%以下であると、不揮発成分が少なくなりすぎずに組成物を所望の厚みで形成することができる。前記配合量が35重量%以上80重量%以下であれば、組成物が好適な印刷適性を有する。 The amount of the solvent can be 25% by weight or more and 90% by weight or less, preferably 35% by weight or more and 80% by weight or less, based on the total amount of the composition. If the amount of the solvent in the composition is 25% by weight or more, the non-volatile components will not be too high, and the composition will have excellent printability. If the amount is 90% by weight or less, the non-volatile components will not be too low, and the composition can be formed to the desired thickness. If the amount is 35% by weight or more and 80% by weight or less, the composition will have suitable printability.
 物性調整材: 物性調整材は、COP樹脂又はCOC樹脂を溶解又は分散させた液状物に含有させることで、ポリマーを溶解又は分散させただけでは得られない特性を液状物に与えるものであり、この点でエポキシ基含有縮合多環炭化水素モノマーと同様であるが、本明細書及び特許請求の範囲で物性調整材という場合にはエポキシ基含有縮合多環炭化水素モノマーを除くものとする。 Physical property adjusters: Physical property adjusters are added to liquids in which COP resin or COC resin has been dissolved or dispersed, to give the liquid properties that cannot be obtained by simply dissolving or dispersing the polymer. In this respect, they are similar to epoxy group-containing condensed polycyclic hydrocarbon monomers, but in this specification and claims, when referring to physical property adjusters, this excludes epoxy group-containing condensed polycyclic hydrocarbon monomers.
 物性調整材には、印刷適性を向上させる印刷適性向上材として、粘度を調整する可塑剤や低分子量の化合物、モノマー、オリゴマー等の粘度調整材、チキソ性を付与するチキソ性付与材、印刷時の発泡を抑える消泡剤等の発泡抑制材、糸引きを抑える糸引き抑制材、印刷基材上でのはじきを防ぎ印刷むら及びマダラ模様の発生を防ぐぬれ性向上材、連続印刷を可能とする切れ向上材、若しくは組成物の性状を安定化するシランカップリング剤、重合禁止剤、又は酸化防止剤等の塗液安定材等が挙げられる。 Physical property adjusting agents include viscosity adjusting agents such as plasticizers, low molecular weight compounds, monomers, and oligomers that adjust the viscosity, thixotropy imparting agents that impart thixotropy, foam suppressing agents such as defoamers that suppress foaming during printing, stringing inhibitors that suppress stringing, wettability improving agents that prevent repellency on the printing substrate and prevent the occurrence of uneven printing and mottled patterns, cutting improving agents that enable continuous printing, and coating liquid stabilizers such as silane coupling agents, polymerization inhibitors, or antioxidants that stabilize the properties of the composition.
 さらに物性調整材には、皮膜品質を向上させる皮膜品質向上材として、皮膜自体の品質を高める観点から、皮膜となった際の表面平滑性を高める平滑化材が挙げられる。また、皮膜が保護層として機能し内部に被覆する導電部の品質を保護する観点から、耐湿性を高める耐湿性向上材、耐硫化性を高める耐硫化性向上材、酸素等のガス透過性を抑制するガスバリヤ性向上材、耐熱性を高める耐熱性向上材、変色を防止する耐光性向上材、紫外線の透過を抑制する紫外線抑制材、又は基材シートへの密着を高める密着性向上材等が挙げられる。この中でも保護層としての観点から見た耐湿性向上材、耐硫化性向上材、ガスバリヤ性向上材、耐熱性向上材、耐光性向上材、又は紫外線抑制材は、耐候性向上材に含まれる。それらは、またバリヤ性向上材を1つ機能面で表現した名称ということもできる。 Furthermore, the physical property adjusting materials include film quality improving materials that improve the quality of the film itself, and smoothing materials that improve the surface smoothness when the film is formed. Also, from the viewpoint of the film functioning as a protective layer and protecting the quality of the conductive part that is covered inside, examples include moisture resistance improving materials that improve moisture resistance, sulfurization resistance improving materials that improve sulfurization resistance, gas barrier improving materials that suppress the permeability of gases such as oxygen, heat resistance improving materials that improve heat resistance, light resistance improving materials that prevent discoloration, ultraviolet light inhibitors that suppress the transmission of ultraviolet light, and adhesion improving materials that improve adhesion to the base sheet. Among these, moisture resistance improving materials, sulfurization resistance improving materials, gas barrier improving materials, heat resistance improving materials, light resistance improving materials, and ultraviolet light inhibitors from the viewpoint of a protective layer are included in weather resistance improving materials. They can also be said to be names that express the barrier improving materials in terms of their functions.
 物性調整材としては、芳香族系、パラフィン系、ナフテン系などの石油系炭化水素、又は液状ポリイソブチレン、液状ポリブテン、水素添加された液状ポリイソプレンなどのポリオレフィン及びその誘導体、ペトロラクタム、石油系アスファルト類などを挙げることができる。これらの物質は、印刷適性向上材であり、耐候性向上材等の皮膜品質向上材でもある。これらは、1種又は2種以上を適宜使用することができる。 Examples of physical property adjusting agents include petroleum-based hydrocarbons such as aromatic, paraffinic, and naphthenic, polyolefins and their derivatives such as liquid polyisobutylene, liquid polybutene, and hydrogenated liquid polyisoprene, petroleum-based asphalts, etc. These substances improve printability and also improve film quality, such as weather resistance. These can be used alone or in combination.
 水酸基、アミノ基、カルボニル基、カルボキシル基、ニトロ基、スルホ基、エステル基、アミド基等の極性基を有する物性調整材は、塗布対象となる基材シート又は回路配線等に対する組成物の密着性向上に寄与する密着性向上材である。エポキシ基、メタクリル基、ビニル基、メルカプト基、アミノ基等の反応性官能基を有する物性調整材は、塗布対象となる基材シート又は回路配線等に対する組成物の密着性向上に寄与する。 Physical property adjusting materials having polar groups such as hydroxyl, amino, carbonyl, carboxyl, nitro, sulfo, ester, and amide groups are adhesion improving materials that contribute to improving the adhesion of the composition to the substrate sheet or circuit wiring to which it is applied. Physical property adjusting materials having reactive functional groups such as epoxy, methacryl, vinyl, mercapto, and amino groups contribute to improving the adhesion of the composition to the substrate sheet or circuit wiring to which it is applied.
 酸化チタン又は酸化亜鉛等の機能性フィラーは、水蒸気の透過性を抑制する耐湿性向上材、紫外線透過を抑制する紫外線抑制材、硫黄ガスのガス透過性を抑制する耐硫化性向上材、又はガスバリヤ性向上材等の皮膜品質向上材として機能する。加えて、粘度調整材、発泡抑制材、又はチキソ性付与材等の印刷適性向上材としても機能する。 Functional fillers such as titanium oxide or zinc oxide function as film quality improvers, such as moisture resistance improvers that suppress water vapor permeability, ultraviolet light inhibitors that suppress ultraviolet light transmission, sulfurization resistance improvers that suppress sulfur gas permeability, or gas barrier improvers. In addition, they also function as printability improvers, such as viscosity adjusters, foam inhibitors, or thixotropic agents.
 無水マレイン酸変性ポリプロピレン等のポリオレフィン樹脂は、非極性樹脂への密着性があり、基材シートへの密着性向上材、耐溶剤性向上材として機能する。
 また、イソブチレンと無水マレイン酸の共重合体や、オレフィン系樹脂と無水マレイン酸の共重合体、マレイン化水添スチレンブタジエンスチレンブロック共重合体等も、同様に非極性樹脂への密着性があり、基材シートへの密着性向上材として機能する。
Polyolefin resins such as maleic anhydride-modified polypropylene have adhesion to non-polar resins and function as an agent for improving adhesion to the base sheet and an agent for improving solvent resistance.
In addition, copolymers of isobutylene and maleic anhydride, copolymers of olefin resins and maleic anhydride, maleated hydrogenated styrene butadiene styrene block copolymers, etc. also have adhesion to non-polar resins and function as adhesion improvers to base sheets.
 物性調整材の配合量は、COP樹脂又はCOC樹脂100重量部に対して140重量部以下とすることができ、130重量部、120重量部、110重量部、100重量部とすることができる。また、物性調整材の配合量を80重量部以上90重量部以下とすることが好ましい。物性調整材の配合量がCOP樹脂又はCOC樹脂100重量部に対して140重量部以下であると、耐硫化性や透過性、耐熱性に優れる。さらに、80重量部以上90重量部以下であれば、物性調整材の添加効果が十分に期待でき、透過性の観点からも高い透過率が得られる。 The amount of the physical property adjuster can be 140 parts by weight or less per 100 parts by weight of COP resin or COC resin, and can be 130 parts by weight, 120 parts by weight, 110 parts by weight, or 100 parts by weight. It is also preferable that the amount of the physical property adjuster is 80 parts by weight or more and 90 parts by weight or less. When the amount of the physical property adjuster is 140 parts by weight or less per 100 parts by weight of COP resin or COC resin, the resin has excellent sulfur resistance, permeability, and heat resistance. Furthermore, when the amount is 80 parts by weight or more and 90 parts by weight or less, the effect of adding the physical property adjuster can be fully expected, and a high transmittance can be obtained from the perspective of permeability.
 開始剤: 開始剤は、COP樹脂又はCOC樹脂と、エポキシ基含有縮合多環炭化水素モノマーとを反応させるために添加される。熱や光を用いて重合を開始させるために、熱重合開始剤や光重合開始剤等が用いられる。熱ラジカル重合開始剤としては、2,2’-アゾビスイソブチロニトリル(AIBN)のようなアゾ化合物や、過酸化ベンゾイル(BPO)などの過酸化物を開始剤として用いることができる。熱カチオン重合開始剤としてはベンゼンスルホン酸エステルやアルキルスルホニウム塩などのスルホニウム塩化合物などを用いることができる。光重合開始剤は、ラジカル,カチオン,アニオンのような活性種を発生するものであり、紫外線や電子線などの照射によりラジカルを発生する光ラジカル開始剤(例えばベンゾイン誘導体など)や、カチオン(酸)を発生する光酸発生剤、アニオン(塩基)を発生する光塩基発生剤を用いることができる。なかでも熱カチオン重合開始剤は、組成物の保存安定性に優れるため好ましく、特にスルホニウム塩化合物が好ましい。スルホニウム塩化合物と対になるアニオンとしてはリン系アニオン、アンチモン系アニオン、ボレート系アニオンなどがあり、安全上の懸念の少ないリン系アニオンが好ましい。 Initiator: The initiator is added to react the COP resin or COC resin with the epoxy group-containing condensed polycyclic hydrocarbon monomer. To initiate polymerization using heat or light, a thermal polymerization initiator or a photopolymerization initiator is used. As a thermal radical polymerization initiator, an azo compound such as 2,2'-azobisisobutyronitrile (AIBN) or a peroxide such as benzoyl peroxide (BPO) can be used as an initiator. As a thermal cationic polymerization initiator, a sulfonium salt compound such as a benzenesulfonate ester or an alkylsulfonium salt can be used. The photopolymerization initiator generates active species such as radicals, cations, and anions, and photoradical initiators (such as benzoin derivatives) that generate radicals when irradiated with ultraviolet rays or electron beams, photoacid generators that generate cations (acids), and photobase generators that generate anions (bases) can be used. Among them, a thermal cationic polymerization initiator is preferable because it has excellent storage stability of the composition, and a sulfonium salt compound is particularly preferable. Examples of anions that pair with sulfonium salt compounds include phosphorus-based anions, antimony-based anions, and borate-based anions, with phosphorus-based anions being preferred because they pose fewer safety concerns.
 開始剤の配合量は、エポキシ基含有縮合多環炭化水素モノマーに対して0.1重量%以上10.0重量%以下とすることができる。0.1重量%以上であれば、エポキシ基含有縮合多環炭化水素モノマーを十分に反応させることができる。また、10.0重量%以下の場合には、モノマーの硬化反応に寄与しない開始剤が含まれないため、無駄がない。 The amount of initiator can be 0.1% by weight or more and 10.0% by weight or less based on the epoxy group-containing condensed polycyclic hydrocarbon monomer. If it is 0.1% by weight or more, the epoxy group-containing condensed polycyclic hydrocarbon monomer can be sufficiently reacted. Also, if it is 10.0% by weight or less, there is no waste because no initiator that does not contribute to the curing reaction of the monomer is included.
 組成物の調製: 組成物の調製は、COP樹脂又はCOC樹脂を溶剤に溶解又は分散させるとともに、エポキシ基含有縮合多環炭化水素モノマーと、所望の場合は物性調整材を添加し、混合して行う。得られた組成物は、回転粘度計を用いて回転速度5rpm、25℃で測定される粘度が、0.1Pa・s以上300Pa・s以下であることが好ましく、塗布方法によって適宜変更することができる。例えばスプレー塗布を行う場合には、0.1Pa・s以上1.0Pa・s未満、スクリーン印刷又はコーターで塗布する場合には1.0Pa・s以上5.0Pa・s未満、ディスペンサ塗布をする場合には5.0Pa・s以上300Pa・s未満とすることが好適である。組成物の粘度が0.1Pa・s以上であると所望の塗布面から塗液が流れることがない。また、粘度が300Pa・s以下であると組成物の塗布面への広がりが良好である。前記粘度の調整は、溶剤や物性調整材の量の調整、又はフィラーの添加等で行うことができる。  Preparation of the composition: The composition is prepared by dissolving or dispersing the COP resin or COC resin in a solvent, adding and mixing the epoxy group-containing condensed polycyclic hydrocarbon monomer and, if desired, a physical property adjusting agent. The viscosity of the obtained composition, measured using a rotational viscometer at a rotation speed of 5 rpm and 25°C, is preferably 0.1 Pa·s or more and 300 Pa·s or less, and can be appropriately changed depending on the application method. For example, when spray application is performed, it is preferable to set the viscosity to 0.1 Pa·s or more and less than 1.0 Pa·s, when applying by screen printing or a coater, it is preferable to set the viscosity to 1.0 Pa·s or more and less than 5.0 Pa·s, and when applying by a dispenser, it is preferable to set the viscosity to 5.0 Pa·s or more and less than 300 Pa·s. If the viscosity of the composition is 0.1 Pa·s or more, the coating liquid will not flow from the desired application surface. Also, if the viscosity is 300 Pa·s or less, the composition spreads well on the application surface. The viscosity can be adjusted by adjusting the amount of the solvent or physical property adjusting agent, or by adding a filler, etc.
 以上のような組成物によれば、適度な粘度を有し、基材シートに対する印刷適性を有している。また、組成物は、印刷等の塗工時に、ピンホール等が生じ難く、平滑な皮膜を形成することができる。加えて、組成物が固まれば皮膜を形成し、高品質の保護層として機能させることができる。 The composition described above has a suitable viscosity and is suitable for printing on a substrate sheet. Furthermore, the composition is less likely to produce pinholes or the like during application, such as printing, and can form a smooth film. In addition, when the composition hardens, it forms a film that can function as a high-quality protective layer.
 皮膜の形成: 組成物は、樹脂フィルム等からなる基材シート上にスクリーン印刷等により塗布し、固化させて皮膜とすることで基材シートの保護層として機能させることができる。保護層は、COP樹脂又はCOC樹脂の特性により、透明性の高い皮膜とすることができる。可視光域400nm以上800nm以下における保護層の平均光透過率は、好ましくは80%以上、さらに好ましくは85%以上とすることができる。塗布方法はスクリーン印刷のほか、スプレー塗布、ディスペンサ塗布、コーター印刷、転写印刷、浸漬法等を用いることができる。  Film formation: The composition can be applied by screen printing or the like to a base sheet made of a resin film or the like, and solidified to form a film that can function as a protective layer for the base sheet. The protective layer can be a highly transparent film due to the properties of the COP or COC resin. The average light transmittance of the protective layer in the visible light range of 400 nm to 800 nm can be preferably 80% or more, more preferably 85% or more. In addition to screen printing, other application methods that can be used include spray application, dispenser application, coater printing, transfer printing, and immersion methods.
 回路配線又はセンサ電極を保護する保護層としての皮膜の厚みは、0.5μm以上50μm以下、好ましくは3μm以上30μm以下とすることができ、より好ましくは5μm以上15μm以下とすることができる。保護層としての皮膜の厚みを、50μmを超えて成膜することもできる。しかしながら、厚すぎる皮膜は、薄膜化の要請に反することになる。他方で、前記皮膜の厚みが3μm以上であれば、回路配線又はセンサ電極の保護をすることが可能である。さらに、皮膜を積層して厚みを増やすこともできる。これによって100μm程度まで皮膜を厚くすることも可能である。 The thickness of the film as a protective layer that protects the circuit wiring or sensor electrodes can be 0.5 μm to 50 μm, preferably 3 μm to 30 μm, and more preferably 5 μm to 15 μm. The thickness of the film as a protective layer can also be greater than 50 μm. However, a film that is too thick goes against the demand for thin films. On the other hand, if the film is 3 μm or thicker, it is possible to protect the circuit wiring or sensor electrodes. Furthermore, the film can be laminated to increase the thickness. This makes it possible to thicken the film to about 100 μm.
 前記皮膜によれば、耐湿性、耐光性、耐硫化性に優れ、薬剤に対しては低反応性、溶剤バリヤ性があり、皮膜自体は低揮発性で染み出しが無い。そして、皮膜の表面に密着する他部材への非移行性、非樹脂アタック性を有し、これら他部材に対する汚染性が小さい。 The coating has excellent moisture resistance, light resistance, and sulfuration resistance, low reactivity to chemicals, and solvent barrier properties. The coating itself is low volatile and does not bleed out. In addition, the coating does not migrate to other components that adhere to the surface of the coating, does not attack resins, and is less likely to contaminate these other components.
 本開示の別の態様となる実施形態では、溶剤を用いずに、粉砕した固形のCOP樹脂又はCOC樹脂をエポキシ基含有縮合多環炭化水素モノマーと混合し、COP樹脂又はCOC樹脂を溶解しない粘度調整材を加えて所望の粘度とした組成物とすることができる。
 また、さらに別の態様となる実施形態では、溶剤や粘度調整材を用いずに、粉砕した固形のCOP樹脂又はCOC樹脂をエポキシ基含有縮合多環炭化水素モノマーと混合した組成物とすることができる。
 なお、これらの全ての態様は混合した態様とすることができ、不十分な溶剤の機能を粘度調整材で補うようにこれらの両方を加える態様でも良い。
In another embodiment of the present disclosure, a composition having a desired viscosity can be prepared by mixing pulverized solid COP resin or COC resin with an epoxy group-containing condensed polycyclic hydrocarbon monomer without using a solvent, and adding a viscosity adjuster that does not dissolve the COP resin or COC resin.
In yet another embodiment, a composition can be prepared by mixing a pulverized solid COP resin or COC resin with an epoxy group-containing condensed polycyclic hydrocarbon monomer without using a solvent or a viscosity modifier.
All of these embodiments may be combined, and both may be added to compensate for insufficient solvent function with a viscosity modifier.
 <回路シート>
 組成物を基材シート上に塗工することで、塗膜を形成し、基材シート上に設けた回路配線を保護する保護層を備えた回路シートの実施形態について、図1Aの正面図、及び図1Bの平面図にそれぞれ示す。これらの図で示す回路シート10は、基材シート11上に設けた導電線12を被覆するように組成物を塗布して保護層13としたものであり、それらの図では回路を形成する導電線12を模式的に1本だけ示している。なお、図面においては層構成を分かり易く示すことを目的に横幅に比べて厚みを厚く表示しているため、その縦横比は実際とは異なる。
<Circuit sheet>
An embodiment of a circuit sheet having a protective layer that protects the circuit wiring provided on the base sheet by forming a coating film by applying a composition on the base sheet is shown in a front view in Fig. 1A and a plan view in Fig. 1B. The circuit sheet 10 shown in these figures is formed by applying a composition to cover conductive wires 12 provided on a base sheet 11 to form a protective layer 13, and these figures show only one conductive wire 12 that forms a circuit. Note that the thickness is shown thicker than the width in the drawings in order to clearly show the layer structure, so the aspect ratio is different from the actual one.
 基材シート: 回路シートの基材となる基材シート11には、透明性のある樹脂フィルムを用いることが好ましい。こうした樹脂フィルムには、例えば、ポリエチレンテレフタレート(PET)樹脂、ポリエチレンナフタレート(PEN)樹脂、ポリカーボネート(PC)樹脂、メタアクリル(PMMA)樹脂、ポリプロピレン(PP)樹脂、ポリウレタン(PU)樹脂、ポリアミド(PA)樹脂、ポリエーテルサルフォン(PES)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、トリアセチルセルロース(TAC)樹脂、COP樹脂(シクロオレフィンポリマー)等が挙げられる。基材シート11としてはまた、組成物からなる皮膜を基材シート11として用いてもよい。あるいはまた基材シート11には、導電線12又は保護層13との密着性を高めるプライマー層、表面保護層、若しくは帯電防止等を目的とするオーバーコート層などを設けたり、コロナ処理やプラズマ処理、紫外線照射処理等により、表面処理がなされたものを利用しても良い。  Base sheet: It is preferable to use a transparent resin film for the base sheet 11, which is the base material of the circuit sheet. Examples of such resin films include polyethylene terephthalate (PET) resin, polyethylene naphthalate (PEN) resin, polycarbonate (PC) resin, methacrylic (PMMA) resin, polypropylene (PP) resin, polyurethane (PU) resin, polyamide (PA) resin, polyethersulfone (PES) resin, polyetheretherketone (PEEK) resin, triacetylcellulose (TAC) resin, and COP resin (cycloolefin polymer). A film made of a composition may also be used as the base sheet 11. Alternatively, the base sheet 11 may be provided with a primer layer for improving adhesion with the conductive wire 12 or protective layer 13, a surface protective layer, or an overcoat layer for the purpose of antistatic, or may be surface-treated by corona treatment, plasma treatment, ultraviolet irradiation, or the like.
 回路配線: 図1では回路配線を構成する導電線12を説明の便宜上、1本だけ示しているが、一般的にはこうした導電線12をパターン状に基材シート11上に配置して回路(回路配線網)を形成する。導電線12の材質としては、銅、アルミニウム、銀又はそれらの金属を含む合金等の高導電性金属の粉末を含む導電ペーストや導電インキを例示することができる。これらの金属又は合金の中では、導電性が高く、銅よりも酸化し難いという理由から銀を主に利用する銀配線とすることが好ましい。また導電線12は、黒鉛粉末又は炭素繊維、カーボンブラック等のカーボン粉末を用いた配線、あるいはこれらと金属とを混合した原料からなる配線とすることもできる。 Circuit wiring: For ease of explanation, only one conductive wire 12 that constitutes the circuit wiring is shown in FIG. 1, but generally, such conductive wires 12 are arranged in a pattern on the base sheet 11 to form a circuit (circuit wiring network). Examples of materials for the conductive wires 12 include conductive pastes and conductive inks that contain powder of highly conductive metals such as copper, aluminum, silver, or alloys containing these metals. Of these metals and alloys, it is preferable to use silver wiring that mainly uses silver because it has high conductivity and is less susceptible to oxidation than copper. The conductive wires 12 can also be wiring that uses graphite powder, carbon powder such as carbon fiber or carbon black, or wiring made from materials that mix these with metals.
 回路配線の形成は、印刷の他にも、金属蒸着を利用して基材シート11上に導電部を設けた後、エッチング等により回路パターンを生じさせることで回路配線を形成しても良い。金属蒸着を行う場合は、銅、アルミニウム、ニッケル、クロム、亜鉛、金等の金属を使用することができる。これらの中でも、電気抵抗が低く、低コストであることから、銅が好ましい。 In addition to printing, the circuit wiring can be formed by forming conductive parts on the base sheet 11 using metal vapor deposition, and then generating a circuit pattern by etching or the like. When performing metal vapor deposition, metals such as copper, aluminum, nickel, chromium, zinc, and gold can be used. Of these, copper is preferred because of its low electrical resistance and low cost.
 回路シート10の製造は、基材シート11となる透明樹脂フィルム上の所定の箇所に回路配線(導電線12)を印刷形成する。そしてその上に組成物を塗布し、硬化させて保護層13を形成する。こうして回路シート10を得ることができる。COP樹脂又はCOC樹脂や、エポキシ基含有縮合多環炭化水素モノマー、物性調整材に反応性官能基を含む場合は、基材フィルムと反応させることもできる。 The circuit sheet 10 is manufactured by printing circuit wiring (conductive wires 12) at predetermined locations on a transparent resin film that serves as the base sheet 11. A composition is then applied onto the circuit wiring and cured to form a protective layer 13. In this manner, the circuit sheet 10 can be obtained. If the COP resin or COC resin, epoxy group-containing condensed polycyclic hydrocarbon monomer, or physical property adjuster contains a reactive functional group, it can also be reacted with the base film.
 <センサシート(その1)>
 組成物を基材シート上に塗工して形成した皮膜を保護層として有する別の実施形態について、図2Aの正面図、及び図2Bの平面図にそれぞれ示す。これらの図で示す静電容量センサシート等のセンサシート20は、基材シート21上に設けた導電線22及びセンサ電極24を被覆するように組成物を塗布して保護層23を形成したものである。ここではセンサ電極24を便宜的に1つだけ示し、回路配線とともにセンサ電極24を有するセンサシート20の例として説明する。
<Sensor sheet (part 1)>
Another embodiment having a coating formed by applying the composition onto a base sheet as a protective layer is shown in the front view of Fig. 2A and the plan view of Fig. 2B. A sensor sheet 20 such as a capacitance sensor sheet shown in these figures is formed by applying a composition so as to cover conductive wires 22 and sensor electrodes 24 provided on a base sheet 21 to form a protective layer 23. Here, only one sensor electrode 24 is shown for convenience, and an explanation is given as an example of a sensor sheet 20 having the sensor electrode 24 together with circuit wiring.
 センサ電極: センサシート20の基材となる基材シート21又は導電線22は回路シート10に用いたものと同じである。センサ電極24は、回路配線を形成した導電ペースト又は導電インキ、金属蒸着膜等で形成することも可能だが、透明性のある導電性高分子等により形成することもできる。透明性の高い材質を用いると、バックライト照光を透過させることによってセンサ位置を発光させることが可能になる。 Sensor electrode: The base sheet 21 or conductive wire 22 that serves as the base material for the sensor sheet 20 is the same as that used for the circuit sheet 10. The sensor electrode 24 can be formed from a conductive paste or conductive ink that forms circuit wiring, a metal deposition film, etc., but it can also be formed from a transparent conductive polymer, etc. If a highly transparent material is used, it becomes possible to illuminate the sensor position by transmitting backlight illumination.
 透明性のある導電性高分子には、ポリチオフェン、ポリピロール、ポリアニリン、ポリパラフェニレン、ポリアセチレン等が挙げられる。具体的には、PEDOT/PSS(ポリ-3,4-エチレンジオキシチオフェン-ポリスチレンスルホン酸)等を例示できる。透明性のある導電性高分子は、塗料化した印刷インキとして市販されたものを用いることができる。あるいはまた、導電ペースト又は導電インキの中でも透明性が高い材料、例えば銀ナノ粒子等の金属ナノ粒子、カーボンナノ粒子、又は酸化インジウム錫(ITO)粉末等を含む導電ペースト又は導電インキを用いたセンサ電極24とすることもできる。 Examples of transparent conductive polymers include polythiophene, polypyrrole, polyaniline, polyparaphenylene, and polyacetylene. Specific examples include PEDOT/PSS (poly-3,4-ethylenedioxythiophene-polystyrene sulfonic acid). Transparent conductive polymers that are commercially available as paints or printing inks can be used. Alternatively, the sensor electrode 24 can be made using a conductive paste or ink that contains a highly transparent material, such as metal nanoparticles such as silver nanoparticles, carbon nanoparticles, or indium tin oxide (ITO) powder.
 センサシート20の製造は、基材シート21となる透明樹脂フィルム上の所定の箇所に回路配線(導電線22)とセンサ電極24を印刷形成する。そしてその上に組成物を塗布し、溶剤を揮発し硬化させて保護層23を形成する。こうしてセンサシート20を得ることができる。 The sensor sheet 20 is manufactured by printing circuit wiring (conductive wires 22) and sensor electrodes 24 at predetermined locations on a transparent resin film that serves as a base sheet 21. A composition is then applied onto the substrate, and the solvent is evaporated and cured to form a protective layer 23. In this manner, the sensor sheet 20 can be obtained.
 <センサシート(その2)>
 センサシート30のまた別の実施形態について、図3Aの正面方向から見た断面図、及び図3Bの平面図にそれぞれ示す。これらの図で示すセンサシート30は、基材シート31上の回路配線(導電線32)及びセンサ電極34を、組成物を塗布して形成した保護層33で被覆する点では先に説明したセンサシート20と同じである。しかしながら、本実施形態のセンサシート30では、凹凸面に屈曲又は延伸されて曲面を有する立体形状に形成されている点が異なる。なお、各部材の原料等は同じように選択可能である。
<Sensor sheet (part 2)>
Another embodiment of the sensor sheet 30 is shown in a cross-sectional view seen from the front direction in Fig. 3A and a plan view in Fig. 3B. The sensor sheet 30 shown in these figures is the same as the sensor sheet 20 described above in that the circuit wiring (conductive wires 32) and the sensor electrodes 34 on the base sheet 31 are covered with a protective layer 33 formed by applying a composition. However, the sensor sheet 30 of this embodiment is different in that it is bent or stretched on an uneven surface to be formed into a three-dimensional shape having a curved surface. The raw materials of each component can be selected in the same way.
 センサシート30の形成は、センサシート20と同様に平板状の基材シート31上に回路配線(導電線32)及びセンサ電極34と保護層33を形成した後、熱変形させる方法の他、立体形状に形成された基材シート31上に印刷又は蒸着等で回路配線(導電線32)及びセンサ電極34と保護層33を形成する方法とすることができる。後工程で基材シート31を熱変形させる場合には、保護層33となる組成物に含まれるCOP樹脂又はCOC樹脂のガラス転移点Tgと、基材シート31のガラス転移点Tgの温度が接近していることが好ましい。ガラス転移点Tgの温度が接近しているほど基材シート31と保護層33の変形の程度が同じとなり、歪、変形、割れ等が生じ難いからである。 The sensor sheet 30 can be formed by forming the circuit wiring (conductive wires 32), the sensor electrodes 34, and the protective layer 33 on a flat base sheet 31 in the same manner as the sensor sheet 20, and then thermally deforming the same, or by forming the circuit wiring (conductive wires 32), the sensor electrodes 34, and the protective layer 33 on the base sheet 31 formed into a three-dimensional shape by printing or deposition, etc. When the base sheet 31 is thermally deformed in a later process, it is preferable that the glass transition point Tg of the COP resin or COC resin contained in the composition that will become the protective layer 33 is close to the glass transition point Tg of the base sheet 31. This is because the closer the glass transition points Tg are, the more similar the deformation of the base sheet 31 and the protective layer 33 will be, and distortion, deformation, cracking, etc. will be less likely to occur.
 <センサシート(その3)>
 センサシートは、凹凸面に屈曲又は延伸され曲面を有する立体形状に形成された後に保護層を被覆したものでもよい。スプレー塗布法などを用いて、立体形状面に対して組成物を塗布することで保護層を設けることができる。
<Sensor sheet (part 3)>
The sensor sheet may be formed into a three-dimensional shape having a curved surface by bending or stretching the uneven surface, and then covered with a protective layer. The protective layer can be provided by applying a composition to the three-dimensional surface using a spray coating method or the like.
 <センサシート(その4)>
 センサシートは、その上面又は下面に樹脂筐体が一体化したものとすることができる。センサシートと樹脂筐体との一体化は、粘着剤や接着剤などを用いた貼合せ方法や、樹脂筐体に設けた係止構造部に係止させる方法、インサート成形などの一体成形方法などで行うことができる。
<Sensor sheet (part 4)>
The sensor sheet may be integrated with a resin housing on its upper or lower surface. The integration of the sensor sheet and the resin housing may be achieved by a bonding method using a pressure sensitive adhesive or a bonding agent, a method of engaging with an engaging structure provided on the resin housing, or an integral molding method such as insert molding.
 なお、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には容易に理解できるであろう。したがって、このような変形例は、全て本発明の範囲に含まれる。例えば明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語とともに記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、実施形態の構成も前記実施形態で説明したものに限定されず、種々の変形実施が可能である。 It will be readily apparent to those skilled in the art that many modifications are possible that do not substantially depart from the novel features and effects of the present invention. Therefore, all such modifications are included in the scope of the present invention. For example, a term described at least once in the specification or drawings together with a different term having a broader or similar meaning can be replaced with that different term anywhere in the specification or drawings. Furthermore, the configuration of the embodiment is not limited to that described in the above embodiment, and various modifications are possible.
 <試料1~試料68の作製>
 次に実施例(比較例)に基づいて本開示をさらに説明する。以下の各表に示す材料を、各表に示す分量(重量部)だけ混合してなる組成物を作製して試料1~試料68とした。また、PETフィルムを基材シートとして、その表面にPEDOT/PSS(商品名;オルガコンEL-P3145、AGFA社製)で厚み0.5μmの導電膜と、銀ペースト(商品名;FA-323、藤倉化成社製)で厚み7μmの導電線とを並列に並べて形成し、その後、これらの導電膜及び導電線を形成した基材シートの表面に、試料1~試料68のいずれかの組成物を厚み10μmで塗布し、90℃で加熱硬化させて、導電膜と導電線を被覆する皮膜を形成した試験回路シートを作製した。但し、導電膜の両端には、抵抗値測定用に皮膜を設けずに導電膜の露出した箇所(露出部)を設けた。得られた各試験回路シートには、塗布した組成物と同じ試料番号を付した。
<Preparation of Samples 1 to 68>
Next, the present disclosure will be further described based on examples (comparative examples). The materials shown in the following tables were mixed in the amounts (parts by weight) shown in each table to prepare compositions as samples 1 to 68. In addition, a PET film was used as a base sheet, and a conductive film having a thickness of 0.5 μm was formed on the surface of the film using PEDOT/PSS (trade name: Orgacon EL-P3145, manufactured by AGFA) and a conductive wire having a thickness of 7 μm was formed in parallel using silver paste (trade name: FA-323, manufactured by Fujikura Kasei Co., Ltd.). Then, on the surface of the base sheet on which these conductive films and conductive wires were formed, any of the compositions of samples 1 to 68 was applied to a thickness of 10 μm, and the resulting mixture was heated and cured at 90° C. to prepare a test circuit sheet having a film covering the conductive film and conductive wire. However, at both ends of the conductive film, no film was provided for resistance measurement, and exposed portions (exposed portions) of the conductive film were provided. The same sample number as the composition applied was assigned to each of the obtained test circuit sheets.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 各表において、ベースポリマーの種類として「COP樹脂」は、COP樹脂(シクロオレフィンコポリマー、商品名;R-5000、JSR社製、Tg137℃)を用いた。また、エポキシ基含有モノマーとして、
「モノマーA」は、エポキシ基含有縮合多環炭化水素モノマー(ビシクロノナジエンジエポキシド、商品名;エポカリックTHI-DE、ENEOS社製)を、
「モノマーB」は、エポキシ基含有縮合多環炭化水素モノマー(5,12-ジオキサヘキサシクロ[7.6.1.02,8.04,6.010,15.011,13]ヘキサデカン、商品名;エポカリックDE-102、ENEOS社製)を、
「モノマーC」は、エポキシ基含有縮合多環炭化水素モノマー(トリシクロペンタジエンジエポキシド。別名としては、5,12-ジオキサヘプタシクロ[7.6.1.13,7.02,8.04,6.010,15.011,13]ヘプタデカン、商品名;エポカリックDE-103、ENEOS社製)を、
「モノマーD」は、エポキシ基含有縮合多環炭化水素モノマー(ジシクロペンタジエンジエポキシド。別名としては、4,5:8,9-ジエポキシトリシクロ[5.2.1.02,6]デカン、商品名;DCPD-DE、日本材料技研社製)を、それぞれ用いた。
In each table, the type of base polymer "COP resin" is a COP resin (cycloolefin copolymer, product name: R-5000, manufactured by JSR Corporation, Tg 137°C).
"Monomer A" is an epoxy group-containing condensed polycyclic hydrocarbon monomer (bicyclononadiene diepoxide, trade name: Epocalic THI-DE, manufactured by ENEOS Corporation),
"Monomer B" is an epoxy group-containing condensed polycyclic hydrocarbon monomer (5,12-dioxahexacyclo[7.6.1.0 2,8 .0 4,6 .0 10,15 .0 11,13 ]hexadecane, product name: Epocalic DE-102, manufactured by ENEOS Corporation),
"Monomer C" is an epoxy group-containing condensed polycyclic hydrocarbon monomer (tricyclopentadiene diepoxide, also known as 5,12-dioxaheptacyclo[7.6.1.1 3,7 .0 2,8 .0 4,6 .0 10,15 .0 11,13 ]heptadecane, product name: Epocalic DE-103, manufactured by ENEOS Corporation),
As "monomer D", an epoxy group-containing condensed polycyclic hydrocarbon monomer (dicyclopentadiene diepoxide, also known as 4,5:8,9-diepoxytricyclo[5.2.1.0 2,6 ]decane, trade name: DCPD-DE, manufactured by Japan Material Technology Co., Ltd.) was used.
 さらに、エポキシ基含有モノマーとして、
「モノマーE」は、エポキシ基含有脂環式モノマー(3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート、商品名;セロキサイド2021P、ダイセル社製)を、
「モノマーF」は、エポキシ基含有脂環式モノマー(2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物、商品名;EHPE3150CE、ダイセル社製)を、それぞれ用いた。
Further, as the epoxy group-containing monomer,
"Monomer E" is an epoxy group-containing alicyclic monomer (3',4'-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, trade name: CELLOXIDE 2021P, manufactured by Daicel Corporation),
As "monomer F", an epoxy group-containing alicyclic monomer (1,2-epoxy-4-(2-oxiranyl)cyclohexane adduct of 2,2-bis(hydroxymethyl)-1-butanol, trade name: EHPE3150CE, manufactured by Daicel Corporation) was used.
 また、「物性調整材」としては、ポリオレフィン樹脂(無水マレイン酸変性ポリプロピレン、商品名;サーフレンP-1000、三菱化学社製)を、
 「開始剤」としては、熱カチオン重合開始剤(スルホニウム塩系化合物、商品名;サンエイドSI-300、三新化学工業社製)を、
 「溶剤」としては、ジヒドロターピニルアセテート(沸点225℃)を、それぞれ用いた。
As the "physical property adjusting material", polyolefin resin (maleic anhydride modified polypropylene, product name: Surflen P-1000, manufactured by Mitsubishi Chemical Corporation) was used.
As the "initiator", a thermal cationic polymerization initiator (sulfonium salt compound, trade name: San-Aid SI-300, manufactured by Sanshin Chemical Industry Co., Ltd.) was used.
As the "solvent", dihydroterpinyl acetate (boiling point 225°C) was used.
 <各種試験>
 前記各試料について、以下に説明する各種試験を行った。
<Various tests>
The samples were subjected to the various tests described below.
 〔印刷適性〕粘度: 印刷適性を計るために、回転粘度計(BROOKFIELD製回転粘度計DV-E)(スピンドルSC4-14、チャンバーSC4-6R/RPを使用、回転速度5rpm、測定温度25℃)にて各試料の組成物の粘度を測定した。その結果を各表の「印刷適性(粘度)」の欄に記載した。表中の粘度の数値はPa・sを示す。 [Printability] Viscosity: To measure printability, the viscosity of each sample composition was measured using a rotational viscometer (Brookfield rotational viscometer DV-E) (spindle SC4-14, chamber SC4-6R/RP, rotation speed 5 rpm, measurement temperature 25°C). The results are shown in the "Printability (viscosity)" column of each table. The viscosity values in the tables indicate Pa·s.
 〔皮膜品質1〕密着性: 皮膜品質を基材シートへの密着性の観点から評価するため、前記各試料についてクロスカット法:JIS K5600-5-6:1999に基づいた評価を行って密着性試験とした。より具体的には、単一刃切り込み工具(一般的なオルファカッター)で、皮膜に1mm幅の格子状に複数の切り込みを入れ、24mm幅の透明感圧付着テープ(商品名;セロテープ(登録商標)CT-24、ニチバン社製)をその皮膜表面に貼って剥がした。  [Film quality 1] Adhesion: In order to evaluate the film quality from the viewpoint of adhesion to the base sheet, the cross-cut method was performed on each sample based on JIS K5600-5-6:1999 to perform an adhesion test. More specifically, a single-blade cutting tool (a typical Olfa cutter) was used to make multiple 1 mm-wide lattice-shaped cuts in the film, and a 24 mm-wide transparent pressure-sensitive adhesive tape (product name: Cellotape (registered trademark) CT-24, manufactured by Nichiban Co., Ltd.) was applied to the surface of the film and then peeled off.
 その結果を各表の「密着性」の欄に示す。各表において、0~5の6つの各数字は、クロスカット法による試験結果の分類であり、分類0は、どの格子の目もはがれがない場合、分類1は、カットの交差点における皮膜の小さな剥がれがあるが、明確に5%を上回らない場合、分類2は、塗膜がカットの線に沿って、交差点において剥がれているが、その剥がれがテープを貼った全体のうち5%以上15%未満である場合、分類3は、皮膜がカットの線に沿って部分的、全面的に剥がれており、その剥がれが15%以上35%未満である場合、分類4は、皮膜がカットの線に沿って部分的、全面的に大はがれを生じており、その剥がれが35%以上65%未満である場合、そして分類5は、分類4を超える場合である。したがって、0又は1であれば密着性が良好である。 The results are shown in the "Adhesion" column of each table. In each table, six numbers from 0 to 5 indicate the classification of the test results using the cross-cut method. Classification 0 is when there is no peeling of any of the grids, Classification 1 is when there is small peeling of the coating at the intersections of the cuts but does not clearly exceed 5%, Classification 2 is when the coating has peeled off at the intersections along the cut lines but the peeling covers between 5% and 15% of the entire area where the tape is applied, Classification 3 is when the coating has peeled off partially or completely along the cut lines and the peeling is between 15% and 35%, Classification 4 is when there is large peeling of the coating partially or completely along the cut lines and the peeling is between 35% and 65%, and Classification 5 is when the adhesion exceeds Classification 4. Therefore, if it is 0 or 1, the adhesion is good.
 〔皮膜品質2〕耐湿熱性: 皮膜品質を耐湿熱性の観点から評価するため、前記各試料について耐湿熱性試験を行った。より具体的には、各試料の試験回路シートを湿度85%、温度85℃の雰囲気下に250時間、500時間、750時間、及び1000時間置き、各時間経過後の透明導電高分子による導電膜の色味を観察し色味の変化から耐湿熱性を評価した。そうした一方で、各時間経過後の透明導電高分子による導電膜の抵抗値変化からも耐湿熱性を評価した。各表の「耐湿熱性 色味変化」の欄には、1000時間後の色差ΔEを示した。また各表の「耐湿熱性 抵抗値変化率」の欄には、1000時間後の抵抗値変化率Δを示した。  [Film quality 2] Moisture and heat resistance: In order to evaluate the film quality from the viewpoint of moisture and heat resistance, a moisture and heat resistance test was conducted on each of the above samples. More specifically, the test circuit sheet of each sample was left in an atmosphere of 85% humidity and 85°C temperature for 250 hours, 500 hours, 750 hours, and 1000 hours, and the color of the conductive film made of transparent conductive polymer was observed after each time, and the moisture and heat resistance was evaluated from the change in color. At the same time, moisture and heat resistance was also evaluated from the change in resistance value of the conductive film made of transparent conductive polymer after each time. The "Moisture and heat resistance color change" column in each table shows the color difference ΔE after 1000 hours. The "Moisture and heat resistance resistance change rate" column in each table also shows the resistance change rate Δ after 1000 hours.
 なお、導電膜の色味変化は、色差ΔEとして、JIS Z 8781-4に準拠して、CIE1976 L*a*b*色空間における座標間の距離として定義される指標に基づいて評価した。この色差は、例えばハンディ分光測色計(株式会社カラーテクノシステム製「JX777」)又は色彩色差計(コニカミノルタ社製「CR-400」)を用いて求めることができる。抵抗値の測定は、透明導電高分子による導電膜の両端の露出部から抵抗計(テスター)を用いて行った。 The color change of the conductive film was evaluated as color difference ΔE based on an index defined as the distance between coordinates in the CIE1976 L*a*b* color space in accordance with JIS Z 8781-4. This color difference can be determined, for example, using a handy spectrophotometer ("JX777" manufactured by Color Techno Systems Co., Ltd.) or a color difference meter ("CR-400" manufactured by Konica Minolta, Inc.). The resistance value was measured using a resistance meter (tester) from the exposed parts at both ends of the conductive film made of transparent conductive polymer.
 〔皮膜品質3〕耐熱性: 皮膜品質を耐熱性の観点から評価するため、前記各試料の試験回路シートについてヒートサイクル試験を行った。より具体的には、温度設定範囲-40℃~+85℃、昇温速度3℃/min、降温速度2℃/minとした恒温恒湿槽に、各試験回路シートを投入した。そして、1000時間経過後の透明導電高分子による導電膜の色味変化と、抵抗値変化とから耐熱性を評価した。各表の「耐熱性 色味変化」の欄には、1000時間後の色差ΔEを示した。また各表の「耐熱性 抵抗値変化率」の欄には、1000時間後の抵抗値変化率Δを示した。  [Film quality 3] Heat resistance: In order to evaluate the film quality from the viewpoint of heat resistance, a heat cycle test was conducted on the test circuit sheet of each sample. More specifically, each test circuit sheet was placed in a thermo-hygrostat with a temperature setting range of -40°C to +85°C, a heating rate of 3°C/min, and a cooling rate of 2°C/min. Heat resistance was then evaluated from the change in color and resistance value of the conductive film made of transparent conductive polymer after 1000 hours. The "Heat resistance color change" column in each table shows the color difference ΔE after 1000 hours. Additionally, the "Heat resistance resistance change rate" column in each table shows the resistance change rate Δ after 1000 hours.
 〔皮膜品質4〕耐硫化性: 皮膜品質を耐硫化性の観点から評価するため、耐硫化性試験を行った。より具体的には、硫黄粉末を置いた密閉空間内に各試験回路シートを入れ、85℃の飽和硫黄蒸気雰囲気中に250時間放置した。そして、250時間経過後の銀ペーストによる導電線の様子を目視及び抵抗値測定により観察した。そして、耐硫化性試験前と比較して低抵抗値のままでほとんど変化なく、断線しなかったものを「A」、導電線の幅全てに亘って黒色化した箇所が生じ、また抵抗値がテスターの表示可能値である2MΩを越えて断線したと判断できるものを「C」と評価した。  [Film quality 4] Sulfuration resistance: A sulfuration resistance test was conducted to evaluate the film quality from the viewpoint of sulfuration resistance. More specifically, each test circuit sheet was placed in an airtight space containing sulfur powder and left in a saturated sulfur vapor atmosphere at 85°C for 250 hours. After 250 hours, the condition of the conductive wire made of silver paste was observed visually and by measuring the resistance value. Those that remained at a low resistance value compared to before the sulfuration resistance test and did not break were rated as "A", and those that showed blackened areas across the entire width of the conductive wire and were judged to have broken because the resistance value exceeded 2 MΩ, the maximum value that can be displayed on the tester, were rated as "C".
 〔皮膜品質5〕耐折曲げ白化性、耐割れ性: 皮膜品質を皮膜強度の観点から評価するため、皮膜を形成した基材フィルムを撓ませたときの様子を観察した。そして、半径1mmで180度に30回折り曲げても白化したり割れたりせず、強靭な強度がある場合を「A」、半径1mmで180度に30回折り曲げても割れない強度はあるが曲がり箇所が白くなった場合を「B」、半径1mmで二つ折りに折り曲げると皮膜が割れた場合を「C」と評価した。  [Film quality 5] Resistance to whitening and cracking due to bending: In order to evaluate the quality of the film from the viewpoint of film strength, the condition of the base film on which the film was formed was observed when it was bent. If it was strong enough to not whiten or crack even when bent 30 times at 180 degrees with a radius of 1 mm, it was rated as "A". If it was strong enough to not crack even when bent 30 times at 180 degrees with a radius of 1 mm, but the bent parts turned white, it was rated as "B". If the film cracked when folded in half with a radius of 1 mm, it was rated as "C".
 〔皮膜品質6〕透過性: 皮膜品質を皮膜の透明性から評価するため、前記各試料の組成物をPETフィルムに塗布し厚み8μm以上25μm以下の皮膜を形成した。そして、この皮膜について分光光度計(島津製作所社製「UV-1900i」)を用いて、波長200nm以上800nm以下での平行光線透過率を測定した。そして、その透過率が80%以上の場合を「A」、70%以上80%未満の場合を「B」、70%未満の場合を「C」と評価した。  [Film quality 6] Transparency: In order to evaluate the film quality from the transparency of the film, the composition of each sample was applied to a PET film to form a film with a thickness of 8 μm to 25 μm. The film was then measured for parallel light transmittance at wavelengths of 200 nm to 800 nm using a spectrophotometer (Shimadzu Corporation's "UV-1900i"). A transmittance of 80% or more was rated as "A," a transmittance of 70% to less than 80% was rated as "B," and a transmittance of less than 70% was rated as "C."
 <考察>
 前記各試験の各結果に基づき、以下の考察を行った。
<Considerations>
Based on the results of each of the above tests, the following considerations were made.
 〔印刷適性〕粘度:各表の各試料の粘度は、いずれも1.0Pa・s以上5.0Pa・s未満であり、スクリーン印刷を行うにはいずれの試料も好適な粘度であることがわかった。 [Printing suitability] Viscosity: The viscosity of each sample in each table was greater than or equal to 1.0 Pa·s and less than 5.0 Pa·s, indicating that all samples had suitable viscosities for screen printing.
 〔皮膜品質1〕密着性: 密着性の試験から、基材シートがPETでもPCでも材質の違いによる影響はなかった。一方、エポキシ含有モノマーの種類によって差が生じたことがわかった。エポキシ含有脂環式モノマーであるモノマーE及びFを用いた試料では、モノマーEに物性調整材を10.0重量部加えた試料54以外の試料は、いずれも密着性の評価が2以上となり好適な密着性が得られなかった。そうした一方で、エポキシ基含有縮合多環炭化水素モノマーであるモノマーA,B,C,Dのいずれかを用いた試料では、試料17及び試料18を除き、モノマー含有量がCOP樹脂の含有量に対して10%以上30%以下の場合で0又は1となった。但し、モノマー含有量が5%以下又は50%の場合は2以上となった。また、試料17及び試料18は、モノマー含有量が20%ではあるが、物性調整材が7.5重量部以上含まれており、物性調整材の過度な混入は密着性に悪影響があることがわかった。  [Film quality 1] Adhesion: From the adhesion test, there was no effect due to the difference in material, whether the base sheet was PET or PC. However, it was found that differences occurred depending on the type of epoxy-containing monomer. In the samples using the epoxy-containing alicyclic monomers E and F, all samples except for sample 54, which was monomer E with 10.0 parts by weight of a property modifier added, were rated 2 or higher for adhesion, and suitable adhesion was not obtained. On the other hand, in the samples using the epoxy-containing condensed polycyclic hydrocarbon monomers A, B, C, or D, except for sample 17 and sample 18, the monomer content was 0 or 1 when it was 10% or more and 30% or less of the COP resin content. However, when the monomer content was 5% or less or 50%, it was rated 2 or more. In addition, although the monomer content of sample 17 and sample 18 was 20%, the property modifier was contained in an amount of 7.5 parts by weight or more, and it was found that excessive mixing of the property modifier had a negative effect on adhesion.
 また、エポキシ基含有縮合多環炭化水素モノマーであるモノマーBをCOP樹脂の含有量に対して40%含有する試料27で密着性が2であったが、モノマーBを40%含んでいても、物性調整材を加えた試料40では密着性0と劇的に密着性が向上した。この結果は、物性調整材の有無だけ相違する他の試料の比較でも同様であった。 In addition, sample 27, which contains 40% of monomer B, an epoxy group-containing condensed polycyclic hydrocarbon monomer, relative to the COP resin content, had an adhesion of 2, but sample 40, which contains 40% of monomer B but has a property-adjusting agent added, had an adhesion of 0, a dramatic improvement in adhesion. The same results were obtained when comparing other samples that differ only in the presence or absence of a property-adjusting agent.
 〔皮膜品質2〕耐湿熱性: 耐湿熱性の観点から見ると、物性調整材の添加は若干好ましくない方向に見えるが、エポキシ基含有縮合多環炭化水素モノマーの含有量が10%以上40%以下の範囲では好ましいものであった。一方、エポキシ含有脂環式モノマーを用いた試料では、物性調整材の添加により耐熱性が悪化し易いことがわかった。 [Film quality 2] Moisture and heat resistance: From the viewpoint of moisture and heat resistance, the addition of property-adjusting agents appears to be somewhat undesirable, but it was favorable when the content of epoxy-containing condensed polycyclic hydrocarbon monomer was in the range of 10% to 40%. On the other hand, it was found that the heat resistance of samples using epoxy-containing alicyclic monomers was easily deteriorated by the addition of property-adjusting agents.
 〔皮膜品質3〕耐熱性 耐熱性の観点から各試料を見ても、耐湿熱性の結果とほぼ同様の結果となった。即ち、物性調整材の添加は若干好ましくない方向に見えるが、エポキシ基含有縮合多環炭化水素モノマーの含有量がCOP樹脂含有量の10%以上40%以下の範囲では好ましいものであった。一方、エポキシ含有脂環式モノマーを用いた試料では、物性調整材の添加により耐熱性が悪化し易いことがわかった。  [Film quality 3] Heat resistance When examining each sample from the standpoint of heat resistance, the results were almost the same as those for moist heat resistance. In other words, the addition of a property-adjusting agent appears to be slightly undesirable, but it was preferable when the content of epoxy-containing condensed polycyclic hydrocarbon monomer was in the range of 10% to 40% of the COP resin content. On the other hand, it was found that the addition of a property-adjusting agent tended to deteriorate heat resistance in samples that used epoxy-containing alicyclic monomers.
 〔皮膜品質4〕耐硫化性: 耐硫化性の観点からは、密着性と同様のことが言え、エポキシ基含有縮合多環炭化水素モノマー含有量がCOP樹脂含有量の5%以下、物性調整材の含有量がCOP樹脂含有量の150%(7.5重量部)以上の含有で評価がCとなった。また、エポキシ含有脂環式モノマーを用いた場合はエポキシ基含有縮合多環炭化水素モノマーの場合よりも悪化し易いことがわかった。 [Film quality 4] Sulfuration resistance: From the viewpoint of sulfuration resistance, the same can be said as for adhesion, and the evaluation was C when the epoxy group-containing condensed polycyclic hydrocarbon monomer content was 5% or less of the COP resin content, and the content of physical property adjusters was 150% (7.5 parts by weight) or more of the COP resin content. It was also found that when epoxy-containing alicyclic monomers were used, the resistance was more likely to deteriorate than when epoxy group-containing condensed polycyclic hydrocarbon monomers were used.
 〔皮膜品質5〕耐折曲げ白化性、耐割れ性: 皮膜強度の観点からは、エポキシ基含有縮合多環炭化水素モノマーの含有量がCOP樹脂含有量の40%以上となるとCとなる場合があったが、30%以下であれば評価はAであり、耐折曲げ白化性及び耐割れ性を有していることがわかった。このことから、エポキシ基含有縮合多環炭化水素モノマーの含有量はCOP樹脂含有量の30%以下であれば、曲げ加工や立体形状への熱成形を問題なく行えることがわかった。 [Film quality 5] Resistance to whitening due to bending, resistance to cracking: From the viewpoint of film strength, if the content of epoxy group-containing condensed polycyclic hydrocarbon monomer is 40% or more of the COP resin content, it may be rated as C, but if it is 30% or less, it is rated as A, and it is found to have resistance to whitening due to bending and resistance to cracking. From this, it was found that if the content of epoxy group-containing condensed polycyclic hydrocarbon monomer is 30% or less of the COP resin content, bending processing and thermoforming into three-dimensional shapes can be carried out without any problems.
 〔皮膜品質6〕透過性: 透過率を見ると、物性調整材を5.0重量部含有する試料16及び試料36で評価がBとなっていることから、物性調整材の添加は4.0重量部以下、即ちCOP樹脂含有量に対して80%以下が好ましいことがわかった。 [Film quality 6] Transmittance: Looking at the transmittance, samples 16 and 36, which contain 5.0 parts by weight of property-adjusting agent, were rated B, indicating that the amount of property-adjusting agent added should be 4.0 parts by weight or less, i.e., 80% or less of the COP resin content.
 10 回路シート
 11 基材シート
 12 導電線(回路配線)
 13 保護層(皮膜)
 20 センサシート
 21 基材シート
 22 導電線(回路配線)
 23 保護層(皮膜)
 24 センサ電極
 30 センサシート
 31 基材シート
 32 導電線(回路配線)
 33 保護層(皮膜)
 34 センサ電極
10 Circuit sheet 11 Base sheet 12 Conductive wire (circuit wiring)
13 Protective layer (film)
20: sensor sheet 21: base sheet 22: conductive wire (circuit wiring)
23 Protective layer (film)
24 Sensor electrode 30 Sensor sheet 31 Base sheet 32 Conductive wire (circuit wiring)
33 Protective layer (film)
34 Sensor electrode

Claims (11)

  1. COP樹脂又はCOC樹脂と、エポキシ基含有縮合多環炭化水素モノマーと、を含有する
    組成物。
    A composition containing a COP resin or a COC resin and an epoxy group-containing condensed polycyclic hydrocarbon monomer.
  2. 前記エポキシ基含有縮合多環炭化水素モノマーが、シクロアルケンオキサイド型の縮環構造ジエポキシドである
    請求項1記載の組成物。
    2. The composition according to claim 1, wherein the epoxy group-containing condensed polycyclic hydrocarbon monomer is a cycloalkene oxide type condensed ring diepoxide.
  3. 前記エポキシ基含有縮合多環炭化水素モノマーが、ビシクロノナジエンジエポキシド、トリシクロペンタジエンジエポキシド、ジシクロペンタジエンジエポキシド、5,12-ジオキサヘキサシクロ[7.6.1.02,8.04,6.010,15.011,13]ヘキサデカンから選択される少なくともいずれかである
    請求項1又は請求項2記載の組成物。
    The composition according to claim 1 or 2, wherein the epoxy group-containing condensed polycyclic hydrocarbon monomer is at least one selected from the group consisting of bicyclononadiene diepoxide, tricyclopentadiene diepoxide, dicyclopentadiene diepoxide, and 5,12-dioxahexacyclo[7.6.1.0 2,8 . 0 4,6 . 0 10,15 . 0 11,13 ]hexadecane.
  4. 物性調整材をさらに含有する
    請求項1~請求項3いずれか1項記載の組成物。
    The composition according to any one of claims 1 to 3, further comprising a property adjusting material.
  5. 前記COP樹脂又はCOC樹脂の100重量部に対する前記物性調整材の配合割合は、140重量部以下である
    請求項4記載の組成物。
    5. The composition according to claim 4, wherein the mixing ratio of said physical property adjusting agent per 100 parts by weight of said COP resin or COC resin is 140 parts by weight or less.
  6. 前記COP樹脂又はCOC樹脂の100重量部に対する前記エポキシ基含有縮合多環炭化水素モノマーの配合割合は、8重量部以上35重量部以下である
    請求項1~請求項5いずれか1項記載の組成物。
    The composition according to any one of claims 1 to 5, wherein the mixing ratio of the epoxy group-containing condensed polycyclic hydrocarbon monomer to 100 parts by weight of the COP resin or COC resin is 8 parts by weight or more and 35 parts by weight or less.
  7. 請求項1~請求項6いずれか1項記載の組成物の反応硬化物でなる皮膜。 A coating formed by reaction and curing the composition described in any one of claims 1 to 6.
  8. 基材シートと、
    回路配線と、
    請求項1~請求項6いずれか1項記載の組成物の反応硬化物でなる保護層を有する
    回路シート。
    A base sheet;
    Circuit wiring,
    A circuit sheet having a protective layer made of a reaction-cured product of the composition according to any one of claims 1 to 6.
  9. 前記回路シートは、曲面を有する立体形状である
    請求項8記載の回路シート。
    The circuit sheet according to claim 8 , wherein the circuit sheet has a three-dimensional shape having a curved surface.
  10. 基材シートと、
    回路配線と、
    センサ電極と、
    請求項1~請求項6いずれか1項記載の組成物の反応硬化物でなる保護層を有する
    センサシート。
    A base sheet;
    Circuit wiring,
    A sensor electrode;
    A sensor sheet having a protective layer made of a reaction-cured product of the composition according to any one of claims 1 to 6.
  11. 前記センサシートは、曲面を有する立体形状である
    請求項10記載のセンサシート。
    The sensor sheet according to claim 10 , wherein the sensor sheet has a three-dimensional shape having a curved surface.
PCT/JP2023/034344 2022-09-29 2023-09-21 Composition, film, circuit sheet, and sensor sheet WO2024070897A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-156555 2022-09-29
JP2022156555 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024070897A1 true WO2024070897A1 (en) 2024-04-04

Family

ID=90477641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034344 WO2024070897A1 (en) 2022-09-29 2023-09-21 Composition, film, circuit sheet, and sensor sheet

Country Status (1)

Country Link
WO (1) WO2024070897A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004213A1 (en) * 1999-06-30 2001-01-18 Nippon Zeon Co., Ltd. Curable composition, cured article, and layered product
JP2002201338A (en) * 2000-10-06 2002-07-19 Ind Technol Res Inst Resin composition having excellent dielectric characteristic
JP2006278994A (en) * 2005-03-30 2006-10-12 Sumitomo Bakelite Co Ltd Resin composition, laminated body, wiring board, and manufacturing method thereof
JP2017125175A (en) * 2016-08-31 2017-07-20 三井化学株式会社 Curable resin composition, cured product, dry film, film, prepreg, metal-clad laminate, printed wiring board and electronic apparatus
WO2019150446A1 (en) * 2018-01-30 2019-08-08 日立化成株式会社 Adhesive composition, filmy adhesive, adhesive sheet, and production method for semiconductor device
WO2020262205A1 (en) * 2019-06-28 2020-12-30 日本ゼオン株式会社 Resin composition, electronic component, and method for producing resin film
WO2021024956A1 (en) * 2019-08-06 2021-02-11 Rimtec株式会社 Polymerizable composition, cycloolefin-based polymer, and metal/resin composite

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004213A1 (en) * 1999-06-30 2001-01-18 Nippon Zeon Co., Ltd. Curable composition, cured article, and layered product
JP2002201338A (en) * 2000-10-06 2002-07-19 Ind Technol Res Inst Resin composition having excellent dielectric characteristic
JP2006278994A (en) * 2005-03-30 2006-10-12 Sumitomo Bakelite Co Ltd Resin composition, laminated body, wiring board, and manufacturing method thereof
JP2017125175A (en) * 2016-08-31 2017-07-20 三井化学株式会社 Curable resin composition, cured product, dry film, film, prepreg, metal-clad laminate, printed wiring board and electronic apparatus
WO2019150446A1 (en) * 2018-01-30 2019-08-08 日立化成株式会社 Adhesive composition, filmy adhesive, adhesive sheet, and production method for semiconductor device
WO2020262205A1 (en) * 2019-06-28 2020-12-30 日本ゼオン株式会社 Resin composition, electronic component, and method for producing resin film
WO2021024956A1 (en) * 2019-08-06 2021-02-11 Rimtec株式会社 Polymerizable composition, cycloolefin-based polymer, and metal/resin composite

Similar Documents

Publication Publication Date Title
US7687593B2 (en) Fluorinated polymer and polymer composition
CN110603277B (en) Image display device sealing material and image display device sealing sheet
TW201921052A (en) Laminated optical film and method for manufacturing same, and image display device
CN104011161A (en) Adhesive especially for an encapsulation of electronic assembly
WO2007088922A1 (en) Conductive transparent film and use thereof
KR20140130040A (en) Resin laminate
CN108250367B (en) Photo-curing composition, optical film and manufacturing method thereof
KR20170139600A (en) A photocurable resin composition, a process for producing a cured film using the same, and a laminate including the cured film
JP2011154267A (en) Polarizing plate with adhesive layer
BR112015012517B1 (en) ADHESIVE COMPOSITION, PROTECTIVE FILM, PROCESS FOR MANUFACTURING AN ADHESIVE COMPOSITION, AND, USE OF AN ADHESIVE COMPOSITION
JP7105361B2 (en) POLARIZING PLATE COMPOSITION FOR PROTECTING POLARIZER AND PROTECTIVE LAYER MADE FROM THE COMPOSITION
WO2024070897A1 (en) Composition, film, circuit sheet, and sensor sheet
EP1302496A1 (en) Insulating resin composition, adhesive resin composition and adhesive sheeting
TWI527695B (en) Polarizing plate and image display apparatus comprising the same
CN112088185B (en) Resin composition, sealing sheet, and sealing body
JP7001000B2 (en) Adhesive layer and laminate
US20190055432A1 (en) Curing type adhesive composition for polarizing film and manufacturing method therefor, polarizing film and manufacturing method therefor, optical film and image display device
TWI731116B (en) Polarizing film with adhesion layer and manufacturing method of polarizing film with adhesion layer
JP3189364B2 (en) Resin composition and optical material comprising the same
EP3835059A1 (en) Laminate for molding
KR102263799B1 (en) Cyclic olefin resin composition film
CN116323836A (en) Film-forming composition, film, circuit sheet, and sensor sheet
JP6565541B2 (en) Double-sided adhesive sheet and optical member
EP3006533A1 (en) Pressure sensitive adhesive tape
WO2023027034A1 (en) Circuit sheet, sensor sheet, and film-forming composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872123

Country of ref document: EP

Kind code of ref document: A1