WO2024070607A1 - Method for manufacturing laminated ceramic electronic component and laminated ceramic electronic component - Google Patents

Method for manufacturing laminated ceramic electronic component and laminated ceramic electronic component Download PDF

Info

Publication number
WO2024070607A1
WO2024070607A1 PCT/JP2023/032932 JP2023032932W WO2024070607A1 WO 2024070607 A1 WO2024070607 A1 WO 2024070607A1 JP 2023032932 W JP2023032932 W JP 2023032932W WO 2024070607 A1 WO2024070607 A1 WO 2024070607A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminate
green sheet
margin portion
faces
multilayer ceramic
Prior art date
Application number
PCT/JP2023/032932
Other languages
French (fr)
Japanese (ja)
Inventor
恒 佐藤
亮太 蓮沼
大俊 江藤
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2024070607A1 publication Critical patent/WO2024070607A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • This disclosure relates to a method for manufacturing a multilayer ceramic electronic component and a multilayer ceramic electronic component.
  • Patent Document 1 A conventional method for manufacturing multilayer ceramic electronic components is described, for example, in Patent Document 1.
  • the method for manufacturing a multilayer ceramic electronic component disclosed herein includes preparing a laminate having a substantially rectangular parallelepiped shape in which dielectric layers and internal electrode layers are alternately stacked, the laminate having mutually opposing first and second faces, mutually opposing first side faces and second side faces, and mutually opposing first end faces and second end faces, with the ends of the internal electrode layers exposed on the first side faces and the second side faces, producing ceramic green sheets, subjecting the ceramic green sheets to a pressure treatment, forming side margin portions on the first side faces and the second side faces of the laminate using the pressure-treated ceramic green sheets, and firing the laminate with the side margin portions formed thereon.
  • the multilayer ceramic electronic component of the present disclosure is a generally rectangular parallelepiped laminate formed by alternately stacking dielectric layers and internal electrode layers, the laminate having mutually opposing first and second faces, mutually opposing first side faces and second side faces, and mutually opposing first end faces and second end faces, with the ends of the internal electrode layers exposed to the first side face and the second side face, and a side margin portion located on the first side face and the second side face, the side margin portion having a plurality of voids, and in a cross section of the side margin portion parallel to the first end face, the plurality of voids have an average aspect ratio of 1.1 or more, which is expressed as the ratio of the dimension in the direction perpendicular to the first face to the dimension in the direction perpendicular to the first side face.
  • FIG. 1 is a perspective view showing a multilayer ceramic capacitor according to an embodiment of the present disclosure.
  • FIG. 2 is a perspective view showing a main body of the multilayer ceramic capacitor of FIG. 1 .
  • 3 is a cross-sectional view taken along the line III-III in FIG. 1.
  • 4 is a cross-sectional view taken along the line IV-IV in FIG. 2.
  • FIG. 5 is an enlarged cross-sectional view showing a portion V in FIG. 4 .
  • FIG. 5 is an enlarged cross-sectional view showing a portion VI of FIG. 4 .
  • FIG. 4 is a perspective view showing a process for producing a temporary laminate.
  • FIG. 2 is a perspective view showing a base laminate.
  • FIG. 2 is a perspective view showing a plurality of laminates obtained by cutting a base laminate.
  • FIG. 2 is a cross-sectional view showing a ceramic green sheet formed on a resin film.
  • FIG. 2 is a side view showing an example of a pressure treatment using a die press device.
  • FIG. 11 is a side view showing another example of pressure treatment using a die press device.
  • FIG. 11 is a side view showing another example of pressure treatment using a die press device.
  • FIG. 2 is a side view showing an example of a pressure treatment using a roll press device.
  • FIG. 11 is a side view showing another example of pressure treatment using a roll press device.
  • FIG. 11 is a side view showing another example of pressure treatment using a roll press device.
  • FIG. 11 is a side view showing a step of forming a side margin portion on a side surface of the laminate.
  • FIG. 11 is a side view showing a step of forming a side margin portion on a side surface of the laminate.
  • FIG. 11 is a side view showing a step of forming a side margin portion on a side surface of the laminate.
  • FIG. 1 is a perspective view showing a laminate having side margin portions formed on a first side and a second side.
  • Multilayer ceramic capacitors one example of multilayer ceramic electronic components
  • a side length of 1 mm or less but there is a demand for them to be even smaller and have a larger capacity.
  • it is effective to make the side margins thinner, but if the side margins are made thinner, the moisture resistance of the side margins decreases, and there is a risk that the reliability of the multilayer ceramic capacitor will deteriorate.
  • Patent Document 1 discloses a method for manufacturing a multilayer ceramic capacitor, which involves producing a laminate in which dielectric layers and internal electrode layers are alternately stacked, forming side margins on a pair of side surfaces of the laminate, applying hydrostatic pressure to the laminate with the side margins formed (hereinafter also referred to as the main body) in a direction perpendicular to the pair of side surfaces, and firing the hydrostatically pressed main body.
  • the manufacturing method of the multilayer ceramic electronic component and the embodiment of the multilayer ceramic electronic component of the present disclosure will be described with reference to the drawings.
  • a multilayer ceramic capacitor which is an example of a multilayer ceramic electronic component
  • the multilayer ceramic electronic component of the present disclosure is not limited to a multilayer ceramic capacitor, and may be a multilayer piezoelectric element, a multilayer thermistor element, a multilayer chip coil, a ceramic multilayer substrate, and the like.
  • the manufacturing method of the multilayer ceramic electronic component of the present disclosure is not limited to a manufacturing method of a multilayer ceramic capacitor, and can be applied to manufacturing methods of various multilayer ceramic electronic components such as a multilayer piezoelectric element, a multilayer thermistor element, a multilayer chip coil, and a ceramic multilayer substrate.
  • the drawings referred to below are schematic, and the dimensional ratios and the like shown in the drawings are not necessarily accurately illustrated.
  • a Cartesian coordinate system xyz is defined.
  • the x-axis direction is also referred to as the first direction or the length direction.
  • the y-axis direction is also referred to as the second direction or the width direction.
  • the z-axis direction is also referred to as the third direction or the height direction.
  • FIG. 1 is a perspective view showing a multilayer ceramic capacitor according to an embodiment of the present disclosure
  • FIG. 2 is a perspective view showing a main body of the multilayer ceramic capacitor of FIG. 1
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 1
  • FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 2.
  • FIG. 5 is an enlarged cross-sectional view showing an enlarged view of part V in FIG. 4
  • FIG. 6 is an enlarged cross-sectional view showing an enlarged view of part VI in FIG. 4.
  • the multilayer ceramic capacitor 1 includes a laminate 2 and a side margin portion 3.
  • the laminate 2 and the side margin portion 3 may be collectively referred to as the main body portions 2 and 3.
  • the laminate 2 has a substantially rectangular parallelepiped shape.
  • the laminate 2 has a first surface 7a and a second surface 7b that face each other in the third direction, a first end surface 8a and a second end surface 8b that face each other in the first direction, and a first side surface 9a and a second side surface 9b that face each other in the second direction.
  • the first surface 7a and the second surface 7b may be collectively referred to as the main surfaces 7a and 7b
  • the first end surface 8a and the second end surface 8b may be collectively referred to as the end surfaces 8a and 8b
  • the first side surface 9a and the second side surface 9b may be collectively referred to as the side surfaces 9a and 9b.
  • the main surfaces 7a and 7b may be perpendicular to the third direction
  • the end surfaces 8a and 8b may be perpendicular to the first direction
  • the side surfaces 9a and 9b may be perpendicular to the second direction.
  • the laminate 2 is constructed by alternately stacking dielectric layers 5 and internal electrode layers 6.
  • the dielectric layers 5 and internal electrode layers 6 are stacked in a third direction.
  • the internal electrode layers 6 have ends exposed on the first side surface 9a and the second side surface 9b.
  • the internal electrode layers 6 are also exposed on the first end surface 8a or the second end surface 8b depending on the polarity.
  • the dielectric layer 5 is made of an insulating material.
  • the dielectric layer 5 may be made of a ceramic material mainly composed of, for example, BaTiO 3 (barium titanate), CaTiO 3 (calcium titanate), SrTiO 3 (strontium titanate), BaZrO 3 (barium zirconate), etc.
  • the term "main component” refers to the component having the highest composition ratio in the material or member of interest.
  • the composition ratio may be a content concentration (mol %).
  • the internal electrode layer 6 is made of a conductive material.
  • the internal electrode layer 6 may be made of a metal material whose main components are, for example, Ni (nickel), Pd (palladium), Ag (silver), Cu (copper), etc.
  • the dielectric layer 5 may have a thickness of, for example, 0.1 ⁇ m or more and 10 ⁇ m or less. Furthermore, as long as the characteristics of the capacitor are ensured, the thinner the internal electrode layer 6 in the third direction, the more internal defects caused by internal stress can be suppressed and the more reliable the multilayer ceramic capacitor 1 can be.
  • the internal electrode layer 6 may have a thickness of, for example, 1.5 ⁇ m or less.
  • both ends of the laminate 2 in the third direction may be made of a cover layer 21.
  • the cover layer 21 may be made of an insulating material.
  • the cover layer 21 may be made of a ceramic material mainly composed of, for example, BaTiO3 , CaTiO3 , SrTiO3 , BaZrO3 , etc.
  • the cover layer 21 and the dielectric layer 5 may be made of a ceramic material mainly composed of the same material.
  • the cover layer 21 may be made of one or more dielectric layers 5.
  • the cover layer 21 may be made of a sintered body of one or more pressure-treated ceramic green sheets 17 (described later).
  • the side margin portion 3 is located on the first side 9a and the second side 9b of the laminate 2.
  • the side margin portion 3 has an outer side 3a opposite to the laminate 2 side.
  • the side margin portion 3 serves to electrically insulate the internal electrode layers 6 of different polarities exposed on the sides 9a and 9b from each other.
  • the side margin portion 3 also physically protects the ends of the internal electrode layers 6 exposed on the sides 9a and 9b.
  • the side margin portion 3 is made of an insulating material.
  • the side margin portion 3 may be made of a ceramic material. This configuration allows the side margin portion 3 to have insulating properties and relatively high mechanical strength.
  • the laminate 2 and the side margin portion 3 can be fired simultaneously.
  • the side margin portion 3 may be made of a ceramic material mainly composed of, for example, BaTiO 3 , CaTiO 3 , SrTiO 3 , BaZrO 3 , etc.
  • the side margin portion 3 and the dielectric layer 5 may be made of a ceramic material mainly composed of the same ceramic material.
  • the side margin portion 3 is made of a sintered body of one or more layers of pressure-treated ceramic green sheets 17 (described later). In Figures 1, 2, and 4, the boundary between the laminate 2 and the side margin portion 3 is shown by a two-dot chain line, but the actual boundary is not clearly visible.
  • the side margin portion 3 may have a thickness of, for example, about 30 ⁇ m or less.
  • the multilayer ceramic capacitor 1 further includes a first external electrode 4a and a second external electrode 4b, as shown in Figs. 1 and 3.
  • the first external electrode 4a is located from the first end face 8a to the first face 7a, the second face 7b, and the outer side face 3a, as shown in Fig. 1.
  • the first external electrode 4a is electrically connected to the internal electrode layer 6 exposed at the first end face 8a.
  • the second external electrode 4b is located from the second end face 8b to the first face 7a, the second face 7b, and the outer side face 3a, as shown in Fig. 1.
  • the second external electrode 4b is electrically connected to the internal electrode layer 6 exposed at the second end face 8b.
  • the first external electrode 4a and the second external electrode 4b may be collectively referred to as the external electrodes 4a and 4b.
  • the external electrodes 4a, 4b are composed of one or more conductive layers. As shown in FIG. 3, the external electrodes 4a, 4b may be composed of a first layer 41 and a second layer 42. The first layer 41 is also called a base layer. The second layer 42 is also called an outer layer. The base layer 41 is in direct contact with the main body parts 2, 3 and is connected to the end of the internal electrode layer 6 exposed at the end faces 8a, 8b. The outer layer 42 covers the surface of the base layer 41 opposite to the laminate 2 side. By forming the external electrodes 4a, 4b from multiple conductive layers, the adhesion between the external electrodes 4a, 4b and the main body parts 2, 3 can be improved.
  • the wettability of the external electrodes 4a, 4b with respect to the conductive bonding material used when mounting the multilayer ceramic capacitor 1 on a substrate can be improved.
  • the reliability of the multilayer ceramic capacitor 1 and the mounting structure including the multilayer ceramic capacitor 1 can be improved.
  • the underlayer 41 is made of a metal material.
  • metal materials used for the underlayer 41 include metals such as Ni, Cu, Ag, Pd, and Au, or alloys made of these metals.
  • the underlayer 41 may be formed using a thin film formation technique such as plating, sputtering, or vapor deposition, or may be formed using a thick film formation technique such as dipping, screen printing, or gravure printing.
  • the outer layer 42 is made of a metal material.
  • metal materials used for the outer layer 42 include metals such as Ni, Cu, Au, and Sn, and multiple metal layers may be formed in a layered manner.
  • the outer layer 42 may be formed using a thin film formation technique such as electroless plating or electrolytic plating.
  • FIG. 4 shows a cross section of the main body 2, 3 cut parallel to the end faces 8a, 8b.
  • the side margin 3 has a plurality of voids 31 inside.
  • the plurality of voids 31 In a cross section parallel to the end faces 8a, 8b of the side margin 3 (hereinafter also referred to as cross section C3), the plurality of voids 31 have an average aspect ratio A1 represented by the ratio Z/Y of the dimension Z in the third direction to the dimension Y in the second direction of the voids 31, of 1.1 or more (see FIG. 5).
  • the voids 31 generally have a shape that extends elongatedly in the third direction.
  • the average value of the aspect ratio A1 can be calculated, for example, by the following procedure. First, a predetermined range of the cross section C3 of the side margin portion 3 is imaged using a SEM (Scanning Electron Microscope). Next, a plurality of holes 31 shown in the image of the predetermined range of the cross section C3 are selected, and the dimensions Y and Z of each of the plurality of holes 31 are measured. Next, the aspect ratio A1 of each of the plurality of holes 31 is calculated, and the average value of the aspect ratios A1 of the plurality of holes 31 is calculated, thereby calculating the average value of the aspect ratios A1.
  • the predetermined range of the cross section C3 may be a square range.
  • the predetermined range of the cross section C3 may be a square range with the length of one side equal to the thickness of the side margin portion 3.
  • the image of the predetermined range may be analyzed using commercially available image analysis software.
  • the side margin portion 3 may have a porosity P1 of 1% or less.
  • P1 porosity
  • the side margin portion 3 is highly dense, even if the side margin portion 3 is thin, external moisture and the like are less likely to penetrate the side margin portion 3 and reach the side surfaces 9a, 9b of the laminate 2.
  • the moisture resistance of the multilayer ceramic capacitor 1 is improved, and the multilayer ceramic capacitor 1 can be made smaller and have a larger capacity.
  • Calculation of the porosity P1 of the side margin portion 3 can be performed, for example, by the following procedure. First, a predetermined range of the cross section C3 of the side margin portion 3 is imaged using an SEM. Next, multiple voids 31 shown in the image of the predetermined range of the cross section C3 are selected, and the area of each of the multiple voids 31 is measured. Next, the sum of the cross-sectional areas of the multiple voids 31 is calculated, and the ratio to the area of the predetermined range is calculated, thereby calculating the porosity P1.
  • the predetermined range of the cross section C3 may be a square range.
  • the predetermined range of the cross section C3 may be a square range with the length of one side equal to the thickness of the side margin portion 3.
  • the cover layer 21 may have a plurality of voids 22 therein, as shown in Figs. 3, 4, and 6.
  • the plurality of voids 22 may have an average aspect ratio A2 expressed as the ratio Y/Z of the dimension Y in the second direction to the dimension Z in the third direction of 1.1 or more (see Fig. 6).
  • the voids 22 may generally have a shape that extends in an elongated manner in the second direction.
  • the cover layer 21 may have a porosity P2 of 1% or less. In this case, because the cover layer 21 is highly dense, even if the cover layer 21 is made thin, external moisture and the like are less likely to penetrate the cover layer 21 and reach the laminate 2. As a result, the moisture resistance of the multilayer ceramic capacitor 1 is improved, and the multilayer ceramic capacitor 1 can be made smaller (thinner).
  • the average value of the aspect ratio A2 can be calculated in the same way as the average value of the aspect ratio A1, and the porosity P2 of the cover layer 21 can be calculated in the same way as the porosity P1 of the side margin portion 3.
  • the specified range of the cross section C21 used to calculate the average value of the aspect ratio A2 and the porosity P2 may be a square range with the length of one side equal to the thickness of the cover layer 21.
  • FIG. 7 is a perspective view showing the process of producing a temporary laminate
  • FIG. 8 is a perspective view showing a mother laminate
  • FIG. 9 is a perspective view showing a plurality of laminates obtained by cutting the mother laminate.
  • FIG. 10 is a cross-sectional view showing a ceramic green sheet formed on a resin film
  • FIG. 11 is a side view showing an example of pressure treatment using a die press device
  • FIGS. 12 and 13 are side views showing another example of pressure treatment using a die press device
  • FIG. 14 is a side view showing an example of pressure treatment using a roll press device
  • FIGS. 15 and 16 are side views showing another example of pressure treatment using a roll press device.
  • FIGS. 17A, 17B, and 17C are side views showing the process of forming side margins on the sides of the laminate
  • FIG. 18 is a perspective view showing a laminate with side margins formed on the first and second sides.
  • a powder containing, as the main component, a dielectric material such as BaTiO 3 , CaTiO 3 , SrTiO 3 , or a mixture of these is prepared as the material for the dielectric layer 5, and an organic vehicle is added to the powder to prepare a ceramic slurry.
  • a ceramic green sheet (hereinafter also simply referred to as a green sheet) 13 that will become the dielectric layer 5 is formed using a sheet forming method such as a doctor blade method or a die coater method.
  • the thickness of the green sheet 13 may be, for example, about 0.5 to 10 ⁇ m.
  • a conductive paste is prepared using a powder mainly composed of a metal material such as Ni, Cu, Ag, or a mixture of these as the material for the internal electrode layer 6.
  • the prepared conductive paste is then used to form a pattern sheet 14 on the main surface 7a of the green sheet 13, on which an electrode pattern that will become the internal electrode layer 6 is printed.
  • a printing method such as screen printing or gravure printing can be used.
  • a predetermined number of pattern sheets 14 are laminated on top of a predetermined number of stacked green sheets 13, and a predetermined number of green sheets 13 are further laminated to produce a temporary laminate.
  • the predetermined number of stacked green sheets 13 become the cover layer 21.
  • the temporary laminate is pressed in the stacking direction to obtain a mother laminate 15 (see FIG. 8). Pressurization of the temporary laminate can be performed using, for example, a hydrostatic press.
  • a plurality of unfired laminates 2 are produced by cutting the mother laminate 15 along the virtual parting lines 16 (see FIG. 9). Cutting of the mother laminate 15 can be performed using, for example, a press cutter or a dicing saw. Since the unfired laminate 2 has the same structure as the laminate 2 after firing, the following terms and reference symbols such as the main surfaces 7a, 7b, end surfaces 8a, 8b, and side surfaces 9a, 9b are also used for the unfired laminate 2.
  • the unfired side margin portion 3 is formed on the first side surface 9a and the second side surface 9b of the laminate 2.
  • a powder containing a dielectric material such as BaTiO 3 , CaTiO 3 , SrTiO 3 or a mixture thereof as a main component is prepared, and an organic vehicle is added to the powder to prepare a ceramic slurry.
  • a ceramic green sheet (hereinafter, also simply referred to as a green sheet) 17 that will become the side margin portion 3 is formed on a resin film 18 using a sheet forming method such as a doctor blade method or a die coater method.
  • the green sheet 17 is hatched to facilitate illustration. The same is true in FIGS.
  • the thickness of the green sheet 17 may be, for example, about 10 ⁇ m to 30 ⁇ m.
  • the ceramic slurry used to form the green sheet 17 may have the same main component as the ceramic slurry used to form the green sheet 13.
  • the green sheet 17 may be formed using the ceramic slurry used to form the green sheet 13.
  • the resin film 18 serves as a support for supporting the green sheet 17.
  • the resin film 18 may be a smooth film having a thickness of, for example, about 10 ⁇ m to 40 ⁇ m.
  • the resin film 18 may be flexible.
  • the resin film 18 may be made of, for example, PET (polyethylene terephthalate), PP (polypropylene), or the like.
  • the green sheet 17 formed on the resin film 18 may be referred to as the green sheet 17 with the resin film 18.
  • the green sheet 17 is subjected to a pressure treatment to compress the green sheet 17 in its thickness direction.
  • the pressure treatment is a treatment for compressing the green sheet 17 to obtain the desired average aspect ratio of the pores in the green sheet 17 after firing, the porosity, etc.
  • the pressure treatment can be performed using, for example, a die press device 100.
  • the die press device 100 has an upper punch 101 and a lower punch 102.
  • the die press device 100 may be a uniaxial molding press device that pressurizes the pressurized object placed between the upper punch 101 and the lower punch 102 by moving the upper punch 101 toward the fixed lower punch 102.
  • the green sheet 17 with the resin film 18 may be pressed instead of pressing only the green sheet 17. This reduces the risk of the green sheet 17 being damaged during the pressure treatment.
  • the green sheet 17 with the resin film 18 may be placed in the die press device 100 so that the upper punch 101 abuts against the green sheet 17. This allows the green sheet 17 to be compressed effectively.
  • the green sheet 17 may be pressed while being heated to a temperature of about 20°C to 50°C. This allows the green sheet 17 to be compressed effectively and reduces the risk of the green sheet 17 being damaged during the pressing process.
  • the upper punch 101 that contacts the green sheet 17 may have a heater 103 for heating the green sheet 17. Before pressing the green sheet 17, the green sheet 17 may be preheated to a temperature of about 20°C to 60°C.
  • the pressure applied to the green sheet 17 may be equal to or greater than the pressure applied to the temporary laminate (see FIG. 7).
  • the pressure applied to the green sheet 17 may be, for example, 1000 N/cm 2 to 5000 N/cm 2.
  • the pressure time for pressing the green sheet 17 may be, for example, about 30 seconds to 5 minutes.
  • the green sheet 17 may be pressurized while the green sheet 17 with the resin film 18 is fed intermittently between the upper punch 101 and the lower punch 102. This allows the green sheet 17 to be compressed efficiently, improving productivity.
  • multiple green sheets 17 with resin film 18 may be stacked and multiple green sheets 17 may be compressed simultaneously.
  • multiple green sheets 17 with resin film 18 are stacked such that the green sheets 17 and the resin films 18 are alternately positioned as shown in FIG. 12, multiple green sheets 17 can be compressed simultaneously, improving productivity.
  • FIG. 12 shows an example in which two green sheets 17 with resin film 18 are stacked, but three or more green sheets 17 with resin film 18 may be stacked.
  • two green sheets 17 with resin film 18 may be stacked so that the green sheets 17 are in contact with each other, and the two green sheets 17 may be pressed at the same time.
  • a green sheet in which three or more compressed green sheets 17 are stacked can be produced by the following procedure. First, two green sheets 17 with resin film 18 are stacked and compressed so that the green sheets 17 and the resin films 18 are alternately positioned, and the resin film 18 located on the upper side (upper punch 101 side) is removed.
  • Another green sheet 17 with resin film 18 is prepared and placed on the two compressed green sheets 17 so that the green sheet 17 of the green sheet 17 with resin film 18 is located on the lower side (lower punch 102 side). After that, by applying pressure again, a green sheet in which three compressed green sheets 17 are stacked can be produced. By repeating the same procedure, a green sheet in which four or more green sheets 17 are stacked can be produced. A green sheet consisting of multiple compressed green sheets 17 stacked together may be used to form a cover layer 21 (see Figure 7).
  • the pressurization treatment applied to the green sheet 17 is not limited to the pressurization treatment using the die press device 100.
  • the pressurization treatment of the green sheet 17 may be performed using a roll press device 200 as shown in FIG. 14.
  • the roll press device 200 has an upper roll 201 and a lower roll 202.
  • the arrow on the upper roll 201 indicates the rotation direction of the upper roll 201
  • the arrow on the lower roll 202 indicates the rotation direction of the lower roll 202.
  • the roll press device 200 rotates the upper roll 201 and the lower roll 202 in opposite directions to each other, thereby continuously pressing the pressurized object placed in the gap between the upper roll 201 and the lower roll 202.
  • the upper roll 201 and the lower roll 202 may be made of a metal material such as SUS430, SKD11, or SKH51, or may be made of a ceramic material such as zirconia or silicon nitride.
  • one of the upper roll 201 and the lower roll 202 may be covered with a thin elastic body.
  • both axial ends of one of the upper roll 201 and the lower roll 202 may be pressed against the other of the upper roll 201 and the lower roll 202 by a spring, a hydraulic cylinder, or the like. This can reduce variations in the gap between the upper roll 201 and the lower roll 202, the linear pressure, and the like during pressurization.
  • the roll press device 200 may pressurize the green sheet 17 with a linear pressure of 300 N/cm to 2000 N/cm. Pressurization of the green sheet 17 may be performed while heating the green sheet 17 to a temperature of about 20°C to 50°C. This allows the green sheet 17 to be compressed effectively and reduces the risk of the green sheet 17 being damaged during the pressurization process.
  • the upper roll 201 that contacts the green sheet 17 may have a heater 203 for heating the green sheet 17. Before pressing the green sheet 17, the green sheet 17 may be preheated to a temperature of about 20°C to 60°C.
  • the diameter, rotation speed, etc. of the upper roll 201 and the lower roll 202 may be set so that the conveying speed of the green sheet 17 with the resin film 18 is about 20 m/min. Pressurization may also be applied by passing the green sheet 17 through multiple consecutive rolls.
  • multiple green sheets 17 with resin film 18 may be stacked and multiple green sheets 17 may be compressed simultaneously.
  • multiple green sheets 17 with resin film 18 when multiple green sheets 17 with resin film 18 are stacked so that the green sheets 17 and the resin films 18 are positioned alternately, multiple green sheets 17 can be compressed simultaneously, improving productivity.
  • FIG. 15 shows an example in which two green sheets 17 with resin film 18 are stacked, but three or more green sheets 17 with resin film 18 may be stacked.
  • two green sheets 17 with resin film 18 may be stacked so that the green sheets 17 are in contact with each other, and the two green sheets 17 may be pressed at the same time.
  • a green sheet in which three or more compressed green sheets 17 are stacked can be produced by the following procedure. First, two green sheets 17 with resin film 18 are stacked and compressed so that the green sheets 17 and the resin films 18 are alternately positioned, and the resin film 18 located on the upper side (upper roll 201 side) is removed.
  • Another green sheet 17 with resin film 18 is prepared and placed on the two compressed green sheets 17 so that the green sheet 17 of the green sheet 17 with resin film 18 is located on the lower side (lower roll 202 side). After that, by applying pressure again, a green sheet in which three compressed green sheets 17 are stacked can be produced. By repeating the same procedure, a green sheet in which four or more green sheets 17 are stacked can be produced. A green sheet consisting of multiple compressed green sheets 17 stacked together may be used to form a cover layer 21 (see Figure 7).
  • the compressed green sheet 17 is used to form unsintered side margin portions 3 on the side surfaces 9a, 9b of the laminate 2.
  • the second side surface 9b of the laminate 2 is fixed to the underside of the first base 20a via an adhesive and peelable support sheet 19.
  • a second base 20b is disposed below the laminate 2 fixed to the first base 20a.
  • the compressed green sheet 17 is disposed on the upper surface of the second base 20b via a resin film 23.
  • the resin film 23 may be the resin film 18 used when compressing the green sheet 17.
  • the first base 20a to which the laminate 2 is fixed is moved downward to press the green sheet 17 against the first side surface 9a.
  • the green sheet 17 may be heated to increase the pressing force between the green sheet 17 and the first side surface 9a.
  • an adhesive that does not affect the product may be placed between the green sheet 17 and the first side surface 9a.
  • the first base 20a to which the laminate 2 is fixed is moved upward.
  • the portion of the green sheet 17 that is not in contact with the first side surface 9a remains on the resin film 23, so that the green sheet 17 can be attached to the first side surface 9a.
  • the green sheet 17 can be attached to the second side surface 9b in the same manner as in the process shown in Figures 17A, 17B, and 17C.
  • Figure 18 shows the main body portions 2 and 3 before firing, with the green sheet 17 attached to the first side surface 9a and the second side surface 9b.
  • the main body parts 2, 3 are degreased at atmospheric pressure or reduced pressure in an air atmosphere, an inert gas atmosphere, or a reducing atmosphere, and then fired in a reducing atmosphere.
  • the firing temperature may be, for example, about 1100°C to 1300°C.
  • the fired main body parts 2, 3 are reoxidized in a nitrogen atmosphere.
  • the reoxidized main body parts 2, 3 are placed in a pot containing polishing powder, polishing media, etc., and rotated to polish, thereby removing corners and burrs of the main body parts 2, 3, and the main body parts 2, 3 shown in Figure 2 are obtained.
  • the multilayer ceramic capacitor 1 can be manufactured by forming external electrodes 4a, 4b on the obtained main body parts 2, 3.
  • the method for manufacturing a multilayer ceramic electronic component disclosed herein forms the side margin portion 3 using a pressure-treated green sheet 17, so that the average aspect ratio A1 of the multiple voids 31 present in the side margin portion 3 after firing can be set to 1.1 or more. This makes it possible to manufacture a multilayer ceramic capacitor 1 with reduced deterioration in moisture resistance, as described above.
  • the method for manufacturing a multilayer ceramic electronic component disclosed herein forms the side margin portion 3 using a pressure-treated green sheet 17 rather than applying pressure to the main body portions 2, 3, so that the risk of delamination occurring between the dielectric layer 5 and the internal electrode layer 6 can be reduced.
  • productivity since there is no need to apply pressure to a large number of main body portions 2, 3, productivity can be improved, and therefore manufacturing costs can be reduced.
  • the side margin portion 3 is formed using the pressure-treated green sheet 17, so the porosity P1 of the side margin portion 3 after firing can be set to 1% or less. Therefore, as described above, it is possible to manufacture a small-sized, large-capacity multilayer ceramic capacitor 1 with improved moisture resistance.
  • a predetermined number of pattern sheets 14 may be laminated on top of a predetermined number of laminated green sheets 17, and then a predetermined number of green sheets 17 may be laminated.
  • a multilayer ceramic capacitor 1 with reduced deterioration in moisture resistance can be manufactured. It is also possible to make the porosity P2 of the cover layer 21 after firing 1% or less. This allows a small (thin) multilayer ceramic capacitor 1 with improved moisture resistance to be manufactured.
  • the method for manufacturing a multilayer ceramic electronic component disclosed herein can efficiently manufacture a multilayer ceramic electronic component with excellent moisture resistance.
  • the multilayer ceramic electronic component disclosed herein can provide a multilayer ceramic electronic component with excellent moisture resistance.
  • the method for manufacturing a multilayer ceramic electronic component according to the present disclosure can be implemented in the following aspects (1) and (2).
  • a ceramic green sheet is prepared. The ceramic green sheet is subjected to a pressure treatment, forming side margin portions on the first side surface and the second side surface of the laminate using the pressurized ceramic green sheets; the laminate having the side margin portion formed thereon is fired.
  • the multilayer ceramic electronic component according to the present disclosure can be implemented in the following aspects (3) and (4).

Abstract

A method for manufacturing a laminated ceramic electronic component according to the present disclosure involves: preparing a laminate which has a substantially rectangular parallelepiped shape, is obtained by alternately laminating dielectric layers and inner electrode layers, and has a first surface and a second surface which face each other, a first end surface and a second end surface which face each other, and a first side surface and a second side surface which face each other, wherein an end section of the inner electrode layer is open in the first side surface and the second side surface; producing a ceramic green sheet; performing a pressing process on the ceramic green sheet; using the pressed ceramic green sheet to form side margin portions on the first side surface and the second side surface of the laminate; and firing the laminate on which the side margin portions have been formed.

Description

積層セラミック電子部品の製造方法および積層セラミック電子部品Manufacturing method for multilayer ceramic electronic component and multilayer ceramic electronic component
 本開示は、積層セラミック電子部品の製造方法および積層セラミック電子部品に関する。 This disclosure relates to a method for manufacturing a multilayer ceramic electronic component and a multilayer ceramic electronic component.
 従来技術の積層セラミック電子部品の製造方法は、例えば特許文献1に記載されている。 A conventional method for manufacturing multilayer ceramic electronic components is described, for example, in Patent Document 1.
特開2019-145834号公報JP 2019-145834 A
 本開示の積層セラミック電子部品の製造方法は、誘電体層と内部電極層とが交互に積層されてなる略直方体状の積層体であって、互いに対向する第1面および第2面、互いに対向する第1側面および第2側面、ならびに、互いに対向する第1端面および第2端面を有し、前記内部電極層の端部が前記第1側面および前記第2側面に露出している積層体を準備し、セラミックグリーンシートを作製し、前記セラミックグリーンシートに加圧処理を施し、加圧処理された前記セラミックグリーンシートを用いて、前記積層体の前記第1側面および前記第2側面にサイドマージン部を形成し、前記サイドマージン部が形成された前記積層体を焼成する。 The method for manufacturing a multilayer ceramic electronic component disclosed herein includes preparing a laminate having a substantially rectangular parallelepiped shape in which dielectric layers and internal electrode layers are alternately stacked, the laminate having mutually opposing first and second faces, mutually opposing first side faces and second side faces, and mutually opposing first end faces and second end faces, with the ends of the internal electrode layers exposed on the first side faces and the second side faces, producing ceramic green sheets, subjecting the ceramic green sheets to a pressure treatment, forming side margin portions on the first side faces and the second side faces of the laminate using the pressure-treated ceramic green sheets, and firing the laminate with the side margin portions formed thereon.
 本開示の積層セラミック電子部品は、誘電体層と内部電極層とが交互に積層されてなる略直方体状の積層体であって、互いに対向する第1面および第2面、互いに対向する第1側面および第2側面、ならびに、互いに対向する第1端面および第2端面を有し、前記内部電極層の端部が前記第1側面および前記第2側面に露出している積層体と、前記第1側面および前記第2側面に位置するサイドマージン部と、を含み、前記サイドマージン部は、複数の空孔を有し、前記サイドマージン部の、前記第1端面と平行な断面において、前記複数の空孔は、前記第1側面に垂直な方向の寸法に対する前記第1面に垂直な方向の寸法の比で表されるアスペクト比の平均値が1.1以上を有する。 The multilayer ceramic electronic component of the present disclosure is a generally rectangular parallelepiped laminate formed by alternately stacking dielectric layers and internal electrode layers, the laminate having mutually opposing first and second faces, mutually opposing first side faces and second side faces, and mutually opposing first end faces and second end faces, with the ends of the internal electrode layers exposed to the first side face and the second side face, and a side margin portion located on the first side face and the second side face, the side margin portion having a plurality of voids, and in a cross section of the side margin portion parallel to the first end face, the plurality of voids have an average aspect ratio of 1.1 or more, which is expressed as the ratio of the dimension in the direction perpendicular to the first face to the dimension in the direction perpendicular to the first side face.
 本開示の目的、特色、及び利点は、下記の詳細な説明と図面とからより明確になるであろう。
本開示の実施形態に係る積層セラミックコンデンサを示す斜視図である。 図1の積層セラミックコンデンサの本体部を示す斜視図である。 図1の切断面線III-IIIから見た断面図である。 図2の切断面線IV-IVから見た断面図である。 図4のV部を拡大して示す拡大断面図である。 図4のVI部を拡大して示す拡大断面図である。 仮積層体の作製工程を示す斜視図である。 母積層体を示す斜視図である。 母積層体を切断して得た複数の積層体を示す斜視図である。 樹脂フィルム上に成形されたセラミックグリーンシートを示す断面図である。 金型プレス装置を用いた加圧処理の一例を示す側面図である。 金型プレス装置を用いた加圧処理の他の例を示す側面図である。 金型プレス装置を用いた加圧処理の他の例を示す側面図である。 ロールプレス装置を用いた加圧処理の一例を示す側面図である。 ロールプレス装置を用いた加圧処理の他の例を示す側面図である。 ロールプレス装置を用いた加圧処理の他の例を示す側面図である。 積層体の側面にサイドマージン部を形成する工程を示す側面図である。 積層体の側面にサイドマージン部を形成する工程を示す側面図である。 積層体の側面にサイドマージン部を形成する工程を示す側面図である。 第1側面および第2側面にサイドマージン部が形成された積層体を示す斜視図である。
The objects, features, and advantages of the present disclosure will become more apparent from the following detailed description and drawings.
FIG. 1 is a perspective view showing a multilayer ceramic capacitor according to an embodiment of the present disclosure. FIG. 2 is a perspective view showing a main body of the multilayer ceramic capacitor of FIG. 1 . 3 is a cross-sectional view taken along the line III-III in FIG. 1. 4 is a cross-sectional view taken along the line IV-IV in FIG. 2. FIG. 5 is an enlarged cross-sectional view showing a portion V in FIG. 4 . FIG. 5 is an enlarged cross-sectional view showing a portion VI of FIG. 4 . FIG. 4 is a perspective view showing a process for producing a temporary laminate. FIG. 2 is a perspective view showing a base laminate. FIG. 2 is a perspective view showing a plurality of laminates obtained by cutting a base laminate. FIG. 2 is a cross-sectional view showing a ceramic green sheet formed on a resin film. FIG. 2 is a side view showing an example of a pressure treatment using a die press device. FIG. 11 is a side view showing another example of pressure treatment using a die press device. FIG. 11 is a side view showing another example of pressure treatment using a die press device. FIG. 2 is a side view showing an example of a pressure treatment using a roll press device. FIG. 11 is a side view showing another example of pressure treatment using a roll press device. FIG. 11 is a side view showing another example of pressure treatment using a roll press device. 11 is a side view showing a step of forming a side margin portion on a side surface of the laminate. FIG. 11 is a side view showing a step of forming a side margin portion on a side surface of the laminate. FIG. 11 is a side view showing a step of forming a side margin portion on a side surface of the laminate. FIG. 1 is a perspective view showing a laminate having side margin portions formed on a first side and a second side. FIG.
 近年、電子機器の小型高機能化に伴い、電子機器に搭載される電子部品においても小型化が求められている。積層セラミック電子部品の一例である積層セラミックコンデンサは、一辺の長さが1mm以下である製品が主流となっているが、さらなる小型化大容量化が求められている。積層セラミックコンデンサを小型大容量化するためには、サイドマージン部を薄くすることが有効であるが、サイドマージン部を薄くした場合、サイドマージン部の耐湿性が低下してしまい、積層セラミックコンデンサの信頼性が劣化する虞がある。 In recent years, as electronic devices have become smaller and more functional, there is a demand for smaller electronic components installed in electronic devices. Multilayer ceramic capacitors, one example of multilayer ceramic electronic components, are currently mainstream with a side length of 1 mm or less, but there is a demand for them to be even smaller and have a larger capacity. In order to make multilayer ceramic capacitors smaller and with a larger capacity, it is effective to make the side margins thinner, but if the side margins are made thinner, the moisture resistance of the side margins decreases, and there is a risk that the reliability of the multilayer ceramic capacitor will deteriorate.
 特許文献1は、誘電体層と内部電極層とが交互に積層されてなる積層体を作製し、積層体の一対の側面にサイドマージン部を形成し、サイドマージン部が形成された積層体(以下、本体部ともいう)に対して一対の側面と垂直な方向に静水圧加圧を施し、静水圧加圧を施した本体部を焼成する、積層セラミックコンデンサの製造方法を開示している。 Patent Document 1 discloses a method for manufacturing a multilayer ceramic capacitor, which involves producing a laminate in which dielectric layers and internal electrode layers are alternately stacked, forming side margins on a pair of side surfaces of the laminate, applying hydrostatic pressure to the laminate with the side margins formed (hereinafter also referred to as the main body) in a direction perpendicular to the pair of side surfaces, and firing the hydrostatically pressed main body.
 従来の積層セラミックコンデンサの製造方法では、本体部に静水圧加圧を施す際、誘電体層と内部電極層との間においてデラミネーションが発生する可能性があった。また、多数の本体部を整列させて静水圧加圧を施す工程に手間がかかり、生産性低下および製造コストの増大を招く可能性があった。  In conventional manufacturing methods for multilayer ceramic capacitors, when applying hydrostatic pressure to the main body, there was a possibility that delamination would occur between the dielectric layer and the internal electrode layer. In addition, the process of aligning a large number of main body parts and applying hydrostatic pressure was time-consuming, which could lead to reduced productivity and increased manufacturing costs.
 以下、図面を参照しつつ、本開示の積層セラミック電子部品の製造方法および積層セラミック電子部品の実施形態について説明する。以下では、積層セラミック電子部品の一例である積層セラミックコンデンサについて説明するが、本開示の積層セラミック電子部品は、積層セラミックコンデンサに限られず、積層型圧電素子、積層サーミスタ素子、積層チップコイル、およびセラミック多層基板等であってもよい。また、本開示の積層セラミック電子部品の製造方法は、積層セラミックコンデンサの製造方法に限られず、積層型圧電素子、積層サーミスタ素子、積層チップコイル、およびセラミック多層基板等の様々な積層セラミック電子部品の製造方法にも適用することができる。以下で参照する図面は、模式的なものであり、図面に示された寸法比率等は、必ずしも正確に図示されたものではない。また、本明細書においては、便宜的に、直交座標系xyzを定義する。x軸方向は、第1方向または長さ方向とも称される。y軸方向は、第2方向または幅方向とも称される。z軸方向は、第3方向または高さ方向とも称される。 Below, the manufacturing method of the multilayer ceramic electronic component and the embodiment of the multilayer ceramic electronic component of the present disclosure will be described with reference to the drawings. Below, a multilayer ceramic capacitor, which is an example of a multilayer ceramic electronic component, will be described. However, the multilayer ceramic electronic component of the present disclosure is not limited to a multilayer ceramic capacitor, and may be a multilayer piezoelectric element, a multilayer thermistor element, a multilayer chip coil, a ceramic multilayer substrate, and the like. In addition, the manufacturing method of the multilayer ceramic electronic component of the present disclosure is not limited to a manufacturing method of a multilayer ceramic capacitor, and can be applied to manufacturing methods of various multilayer ceramic electronic components such as a multilayer piezoelectric element, a multilayer thermistor element, a multilayer chip coil, and a ceramic multilayer substrate. The drawings referred to below are schematic, and the dimensional ratios and the like shown in the drawings are not necessarily accurately illustrated. In addition, in this specification, for convenience, a Cartesian coordinate system xyz is defined. The x-axis direction is also referred to as the first direction or the length direction. The y-axis direction is also referred to as the second direction or the width direction. The z-axis direction is also referred to as the third direction or the height direction.
 図1は、本開示の実施形態に係る積層セラミックコンデンサを示す斜視図であり、図2は、図1の積層セラミックコンデンサの本体部を示す斜視図であり、図3は、図1の切断面線III-IIIから見た断面図であり、図4は、図2の切断面線IV-IVから見た断面図である。図5は、図4のV部を拡大して示す拡大断面図であり、図6は、図4のVI部を拡大して示す拡大断面図である。 FIG. 1 is a perspective view showing a multilayer ceramic capacitor according to an embodiment of the present disclosure, FIG. 2 is a perspective view showing a main body of the multilayer ceramic capacitor of FIG. 1, FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 1, and FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 2. FIG. 5 is an enlarged cross-sectional view showing an enlarged view of part V in FIG. 4, and FIG. 6 is an enlarged cross-sectional view showing an enlarged view of part VI in FIG. 4.
 本開示の実施形態に係る積層セラミックコンデンサ1は、図1,2に示すように、積層体2とサイドマージン部3とを備える。以下では、積層体2およびサイドマージン部3を纏めて、本体部2,3と記載することがある。 As shown in Figures 1 and 2, the multilayer ceramic capacitor 1 according to the embodiment of the present disclosure includes a laminate 2 and a side margin portion 3. Hereinafter, the laminate 2 and the side margin portion 3 may be collectively referred to as the main body portions 2 and 3.
 積層体2は、略直方体状の形状を有している。積層体2は、第3方向に互いに対向する第1面7aおよび第2面7b、第1方向に互いに対向する第1端面8aおよび第2端面8b、ならびに、第2方向に互いに対向する第1側面9aおよび第2側面9bを有している。以下では、第1面7aおよび第2面7bを纏めて主面7a,7bと記載することがあり、第1端面8aおよび第2端面8bを纏めて端面8a,8bと記載することがあり、第1側面9aおよび第2側面9bを纏めて側面9a,9bと記載することがある。主面7a,7bは第3方向に垂直であってよく、端面8a,8bは第1方向に垂直であってよく、側面9a,9bは、第2方向に垂直であってよい。 The laminate 2 has a substantially rectangular parallelepiped shape. The laminate 2 has a first surface 7a and a second surface 7b that face each other in the third direction, a first end surface 8a and a second end surface 8b that face each other in the first direction, and a first side surface 9a and a second side surface 9b that face each other in the second direction. Hereinafter, the first surface 7a and the second surface 7b may be collectively referred to as the main surfaces 7a and 7b, the first end surface 8a and the second end surface 8b may be collectively referred to as the end surfaces 8a and 8b, and the first side surface 9a and the second side surface 9b may be collectively referred to as the side surfaces 9a and 9b. The main surfaces 7a and 7b may be perpendicular to the third direction, the end surfaces 8a and 8b may be perpendicular to the first direction, and the side surfaces 9a and 9b may be perpendicular to the second direction.
 積層体2は、誘電体層5と内部電極層6とが交互に積層されて構成されている。誘電体層5と内部電極層6とは、第3方向に積層されている。内部電極層6は、第1側面9aおよび第2側面9bに端部が露出している。また、内部電極層6は、極性別に第1端面8aまたは第2端面8bに露出している。 The laminate 2 is constructed by alternately stacking dielectric layers 5 and internal electrode layers 6. The dielectric layers 5 and internal electrode layers 6 are stacked in a third direction. The internal electrode layers 6 have ends exposed on the first side surface 9a and the second side surface 9b. The internal electrode layers 6 are also exposed on the first end surface 8a or the second end surface 8b depending on the polarity.
 誘電体層5は、絶縁性を有する材料で構成されている。誘電体層5は、例えばBaTiO(チタン酸バリウム)、CaTiO(チタン酸カルシウム)、SrTiO(チタン酸ストロンチウム)、BaZrO(ジルコン酸バリウム)等を主成分とするセラミック材料で構成されていてもよい。なお、本明細書において、「主成分」とは、着目する材料または部材等において最も構成比率の高い成分のことを言う。構成比率は、含有濃度(mol%)であってよい。 The dielectric layer 5 is made of an insulating material. The dielectric layer 5 may be made of a ceramic material mainly composed of, for example, BaTiO 3 (barium titanate), CaTiO 3 (calcium titanate), SrTiO 3 (strontium titanate), BaZrO 3 (barium zirconate), etc. In this specification, the term "main component" refers to the component having the highest composition ratio in the material or member of interest. The composition ratio may be a content concentration (mol %).
 内部電極層6は、導電性を有する材料で構成されている。内部電極層6は、例えばNi(ニッケル)、Pd(パラジウム)、Ag(銀)、Cu(銅)等を主成分とする金属材料で構成されていてもよい。 The internal electrode layer 6 is made of a conductive material. The internal electrode layer 6 may be made of a metal material whose main components are, for example, Ni (nickel), Pd (palladium), Ag (silver), Cu (copper), etc.
 誘電体層5の第3方向における厚みが薄いほど、積層セラミックコンデンサ1の静電容量(以下、単に、容量ともいう)を増加させることが可能となる。誘電体層5は、例えば0.1μm以上10μm以下の厚みを有していてもよい。また、コンデンサとしての特性が確保できる限りにおいて、内部電極層6の第3方向における厚みが薄いほど、内部応力に起因する内部欠陥を抑制し、積層セラミックコンデンサ1の信頼性を向上させることができる。内部電極層6は、例えば1.5μm以下の厚みを有していてもよい。 The thinner the dielectric layer 5 in the third direction, the more the electrostatic capacitance (hereinafter also simply referred to as capacitance) of the multilayer ceramic capacitor 1 can be increased. The dielectric layer 5 may have a thickness of, for example, 0.1 μm or more and 10 μm or less. Furthermore, as long as the characteristics of the capacitor are ensured, the thinner the internal electrode layer 6 in the third direction, the more internal defects caused by internal stress can be suppressed and the more reliable the multilayer ceramic capacitor 1 can be. The internal electrode layer 6 may have a thickness of, for example, 1.5 μm or less.
 図3,4に示すように、第3方向における積層体2の両端部は、カバー層21で構成されていてもよい。カバー層21は、絶縁性を有する材料で構成されている。カバー層21は、例えばBaTiO、CaTiO、SrTiO、BaZrO等を主成分とするセラミック材料で構成されていてもよい。カバー層21と誘電体層5とは、主成分が同一のセラミック材料で構成されていてもよい。カバー層21は、1層または複数層の誘電体層5で構成されていてもよい。カバー層21は、1層または複数層の加圧処理されたセラミックグリーンシート17(後述する)の焼結体で構成されていてもよい。 As shown in Figures 3 and 4, both ends of the laminate 2 in the third direction may be made of a cover layer 21. The cover layer 21 may be made of an insulating material. The cover layer 21 may be made of a ceramic material mainly composed of, for example, BaTiO3 , CaTiO3 , SrTiO3 , BaZrO3 , etc. The cover layer 21 and the dielectric layer 5 may be made of a ceramic material mainly composed of the same material. The cover layer 21 may be made of one or more dielectric layers 5. The cover layer 21 may be made of a sintered body of one or more pressure-treated ceramic green sheets 17 (described later).
 サイドマージン部3は、積層体2の第1側面9aおよび第2側面9bに位置している。サイドマージン部3は、積層体2側とは反対側の外側面3aを有している。サイドマージン部3は、側面9a,9bに露出した極性の異なる内部電極層6同士を電気的に絶縁する役割を有している。また、サイドマージン部3は、側面9a,9bに露出した内部電極層6の端部を物理的に保護している。 The side margin portion 3 is located on the first side 9a and the second side 9b of the laminate 2. The side margin portion 3 has an outer side 3a opposite to the laminate 2 side. The side margin portion 3 serves to electrically insulate the internal electrode layers 6 of different polarities exposed on the sides 9a and 9b from each other. The side margin portion 3 also physically protects the ends of the internal electrode layers 6 exposed on the sides 9a and 9b.
 サイドマージン部3は、絶縁性を有する材料で構成されている。サイドマージン部3は、セラミック材料で構成されていてもよい。この構成により、サイドマージン部3は、絶縁性および比較的高い機械的強度を有することができる。また、サイドマージン部3がセラミック材料で構成されている場合、積層体2とサイドマージン部3とを同時に焼成することが可能となる。サイドマージン部3は、例えばBaTiO、CaTiO、SrTiO、BaZrO等を主成分とするセラミック材料で構成されていてもよい。サイドマージン部3と誘電体層5とは、主成分が同一のセラミック材料で構成されていてもよい。サイドマージン部3は、1層または複数層の加圧処理されたセラミックグリーンシート17(後述する)の焼結体で構成されている。図1,2,4では、積層体2とサイドマージン部3との境界を二点鎖線で示しているが、実際の境界は明瞭に現われるわけではない。 The side margin portion 3 is made of an insulating material. The side margin portion 3 may be made of a ceramic material. This configuration allows the side margin portion 3 to have insulating properties and relatively high mechanical strength. In addition, when the side margin portion 3 is made of a ceramic material, the laminate 2 and the side margin portion 3 can be fired simultaneously. The side margin portion 3 may be made of a ceramic material mainly composed of, for example, BaTiO 3 , CaTiO 3 , SrTiO 3 , BaZrO 3 , etc. The side margin portion 3 and the dielectric layer 5 may be made of a ceramic material mainly composed of the same ceramic material. The side margin portion 3 is made of a sintered body of one or more layers of pressure-treated ceramic green sheets 17 (described later). In Figures 1, 2, and 4, the boundary between the laminate 2 and the side margin portion 3 is shown by a two-dot chain line, but the actual boundary is not clearly visible.
 サイドマージン部3の第2方向における厚みが薄いほど、積層セラミックコンデンサ1を小型大容量化することができる。サイドマージン部3は、例えば30μm程度以下の厚みを有していてもよい。 The thinner the side margin portion 3 in the second direction, the smaller the size and larger the capacity of the multilayer ceramic capacitor 1 can be. The side margin portion 3 may have a thickness of, for example, about 30 μm or less.
 積層セラミックコンデンサ1は、図1,3に示すように、第1外部電極4aおよび第2外部電極4bをさらに備える。第1外部電極4aは、図1に示すように、第1端面8aから、第1面7a、第2面7b、および外側面3aにかけて位置している。第1外部電極4aは、第1端面8aに露出した内部電極層6と電気的に接続されている。第2外部電極4bは、図1に示すように、第2端面8bから、第1面7a、第2面7b、および外側面3aにかけて位置している。第2外部電極4bは、第2端面8bに露出した内部電極層6と電気的に接続されている。以下では、第1外部電極4aおよび第2外部電極4bを纏めて外部電極4a,4bと記載することがある。 The multilayer ceramic capacitor 1 further includes a first external electrode 4a and a second external electrode 4b, as shown in Figs. 1 and 3. The first external electrode 4a is located from the first end face 8a to the first face 7a, the second face 7b, and the outer side face 3a, as shown in Fig. 1. The first external electrode 4a is electrically connected to the internal electrode layer 6 exposed at the first end face 8a. The second external electrode 4b is located from the second end face 8b to the first face 7a, the second face 7b, and the outer side face 3a, as shown in Fig. 1. The second external electrode 4b is electrically connected to the internal electrode layer 6 exposed at the second end face 8b. Hereinafter, the first external electrode 4a and the second external electrode 4b may be collectively referred to as the external electrodes 4a and 4b.
 外部電極4a,4bは、1層または複数層の導電層で構成されている。外部電極4a,4bは、図3に示すように、第1層41および第2層42を含んで構成されていてもよい。第1層41は、下地層とも称される。第2層42は、外層とも称される。下地層41は、本体部2,3に直接接しており、端面8a,8bに露出した、内部電極層6の端部と接続されている。外層42は、下地層41における積層体2側とは反対側の面を覆っている。外部電極4a,4bを複数層の導電層で構成することで、外部電極4a,4bと本体部2,3との密着性を高めることができる。さらに、積層セラミックコンデンサ1を基板に実装する際に用いる導電性接合材に対する外部電極4a,4bの濡れ性を高めることができる。その結果、積層セラミックコンデンサ1および積層セラミックコンデンサ1を含む実装構造体の信頼性を向上させることができる。 The external electrodes 4a, 4b are composed of one or more conductive layers. As shown in FIG. 3, the external electrodes 4a, 4b may be composed of a first layer 41 and a second layer 42. The first layer 41 is also called a base layer. The second layer 42 is also called an outer layer. The base layer 41 is in direct contact with the main body parts 2, 3 and is connected to the end of the internal electrode layer 6 exposed at the end faces 8a, 8b. The outer layer 42 covers the surface of the base layer 41 opposite to the laminate 2 side. By forming the external electrodes 4a, 4b from multiple conductive layers, the adhesion between the external electrodes 4a, 4b and the main body parts 2, 3 can be improved. Furthermore, the wettability of the external electrodes 4a, 4b with respect to the conductive bonding material used when mounting the multilayer ceramic capacitor 1 on a substrate can be improved. As a result, the reliability of the multilayer ceramic capacitor 1 and the mounting structure including the multilayer ceramic capacitor 1 can be improved.
 下地層41は、金属材料から構成されている。下地層41に用いられる金属材料としては、例えば、Ni、Cu、Ag、Pd、Au等の金属またはこれらの金属から成る合金が挙げられる。下地層41は、例えば、めっき法、スパッタリング法、蒸着法等の薄膜形成技術を用いて形成されていてもよく、ディップ法、スクリーン印刷法、グラビア印刷法等の厚膜形成技術を用いて形成されていてもよい。 The underlayer 41 is made of a metal material. Examples of metal materials used for the underlayer 41 include metals such as Ni, Cu, Ag, Pd, and Au, or alloys made of these metals. The underlayer 41 may be formed using a thin film formation technique such as plating, sputtering, or vapor deposition, or may be formed using a thick film formation technique such as dipping, screen printing, or gravure printing.
 外層42は、金属材料から構成されている。外層42に用いられる金属材料としては、例えば、Ni、Cu、Au、Sn等の金属が挙げられ、複数の金属層が層状に形成されていてもよい。外層42は、例えば、無電解めっき法、電解めっき法等の薄膜形成技術を用いて形成されていてもよい。 The outer layer 42 is made of a metal material. Examples of metal materials used for the outer layer 42 include metals such as Ni, Cu, Au, and Sn, and multiple metal layers may be formed in a layered manner. The outer layer 42 may be formed using a thin film formation technique such as electroless plating or electrolytic plating.
 図4は、本体部2,3を端面8a,8bと平行に切断した断面を示している。サイドマージン部3は、図4,5に示すように、複数の空孔31を内部に有している。サイドマージン部3の端面8a,8bと平行な断面(以下、断面C3ともいう)において、複数の空孔31は、第2方向の寸法Yに対する第3方向の寸法Zの比Z/Yで表されるアスペクト比A1の平均値が1.1以上である(図5参照)。言い換えると、空孔31は、概して、第3方向に細長く延びる形状を有している。この場合、積層セラミックコンデンサ1の製造工程または積層セラミックコンデンサ1の駆動時において、サイドマージン部3にクラックが発生したとしても、クラックは、空孔31が細長く延びる第3方向に進展しやすく、第2方向に進展しにくい。このため、外部と積層体2とがクラックによって連通する虞を低減することができる。したがって、積層セラミックコンデンサ1の耐湿性の低下を低減することができる。 FIG. 4 shows a cross section of the main body 2, 3 cut parallel to the end faces 8a, 8b. As shown in FIGS. 4 and 5, the side margin 3 has a plurality of voids 31 inside. In a cross section parallel to the end faces 8a, 8b of the side margin 3 (hereinafter also referred to as cross section C3), the plurality of voids 31 have an average aspect ratio A1 represented by the ratio Z/Y of the dimension Z in the third direction to the dimension Y in the second direction of the voids 31, of 1.1 or more (see FIG. 5). In other words, the voids 31 generally have a shape that extends elongatedly in the third direction. In this case, even if a crack occurs in the side margin 3 during the manufacturing process of the multilayer ceramic capacitor 1 or during operation of the multilayer ceramic capacitor 1, the crack is likely to progress in the third direction in which the voids 31 extend elongatedly, and is unlikely to progress in the second direction. This reduces the risk of the crack communicating with the outside and the laminate 2. This reduces the deterioration of the moisture resistance of the multilayer ceramic capacitor 1.
 アスペクト比A1の平均値の算出は、例えば、次の手順で行うことができる。先ず、SEM(Scanning Electron Microscope)を用いて、サイドマージン部3の断面C3の所定範囲を撮像する。次に、断面C3の所定範囲を撮像した撮像画像に写っている複数の空孔31を選択し、複数の空孔31それぞれの寸法Yおよび寸法Zを測定する。続いて、複数の空孔31それぞれのアスペクト比A1を算出し、複数の空孔31のアスペクト比A1の平均値を算出することで、アスペクト比A1の平均値を算出することができる。なお、断面C3の所定範囲は、正方形状の範囲であってもよい。断面C3の所定範囲は、一辺の長さがサイドマージン部3の厚みに等しい正方形状の範囲であってもよい。アスペクト比A1の平均値を算出する際、市販の画像解析ソフトウエアを用いて、所定範囲の撮像画像の画像解析を行ってもよい。 The average value of the aspect ratio A1 can be calculated, for example, by the following procedure. First, a predetermined range of the cross section C3 of the side margin portion 3 is imaged using a SEM (Scanning Electron Microscope). Next, a plurality of holes 31 shown in the image of the predetermined range of the cross section C3 are selected, and the dimensions Y and Z of each of the plurality of holes 31 are measured. Next, the aspect ratio A1 of each of the plurality of holes 31 is calculated, and the average value of the aspect ratios A1 of the plurality of holes 31 is calculated, thereby calculating the average value of the aspect ratios A1. The predetermined range of the cross section C3 may be a square range. The predetermined range of the cross section C3 may be a square range with the length of one side equal to the thickness of the side margin portion 3. When calculating the average value of the aspect ratio A1, the image of the predetermined range may be analyzed using commercially available image analysis software.
 サイドマージン部3は、空孔率P1が1%以下であってもよい。この場合、サイドマージン部3の緻密性が高いため、サイドマージン部3を薄くしても、外部の水分等が、サイドマージン部3に侵入しにくくなり、積層体2の側面9a,9bに到達しにくくなる。その結果、積層セラミックコンデンサ1の耐湿性を向上させるとともに、積層セラミックコンデンサ1を小型大容量化することができる。 The side margin portion 3 may have a porosity P1 of 1% or less. In this case, since the side margin portion 3 is highly dense, even if the side margin portion 3 is thin, external moisture and the like are less likely to penetrate the side margin portion 3 and reach the side surfaces 9a, 9b of the laminate 2. As a result, the moisture resistance of the multilayer ceramic capacitor 1 is improved, and the multilayer ceramic capacitor 1 can be made smaller and have a larger capacity.
 サイドマージン部3の空孔率P1の算出は、例えば、次の手順で行うことができる。先ず、SEMを用いて、サイドマージン部3の断面C3の所定範囲を撮像する。次に、断面C3の所定範囲を撮像した撮像画像に写っている複数の空孔31を選択し、複数の空孔31それぞれの面積を測定する。続いて、複数の空孔31の断面積の和を算出し、上記所定範囲の面積に対する比率を算出することで、空孔率P1を算出することができる。なお、断面C3の所定範囲は、正方形状の範囲であってもよい。断面C3の所定範囲は、一辺の長さがサイドマージン部3の厚みに等しい正方形状の範囲であってもよい。空孔率を算出する際、市販の画像解析ソフトウエアを用いて、所定範囲の撮像画像の画像解析を行ってもよい。 Calculation of the porosity P1 of the side margin portion 3 can be performed, for example, by the following procedure. First, a predetermined range of the cross section C3 of the side margin portion 3 is imaged using an SEM. Next, multiple voids 31 shown in the image of the predetermined range of the cross section C3 are selected, and the area of each of the multiple voids 31 is measured. Next, the sum of the cross-sectional areas of the multiple voids 31 is calculated, and the ratio to the area of the predetermined range is calculated, thereby calculating the porosity P1. The predetermined range of the cross section C3 may be a square range. The predetermined range of the cross section C3 may be a square range with the length of one side equal to the thickness of the side margin portion 3. When calculating the porosity, image analysis of the image of the predetermined range may be performed using commercially available image analysis software.
 カバー層21は、図3,4,6に示すように、複数の空孔22を内部に有していてもよい。カバー層21の端面8a,8bと平行な断面(以下、断面C21ともいう)において、複数の空孔22は、第3方向の寸法Zに対する第2方向の寸法Yの比Y/Zで表されるアスペクト比A2の平均値が1.1以上であってもよい(図6参照)。言い換えると、空孔22は、概して、第2方向に細長く延びる形状を有していてもよい。この場合、積層セラミックコンデンサ1の製造工程または積層セラミックコンデンサ1の駆動時において、カバー層21にクラックが発生したとしても、クラックは、空孔22が細長く延びる第2方向に進展しやすく、第3方向に進展しにくい。このため、外部と積層体2とがクラックによって連通する虞を低減することができる。したがって、積層セラミックコンデンサ1の耐湿性の低下を低減することができる。 The cover layer 21 may have a plurality of voids 22 therein, as shown in Figs. 3, 4, and 6. In a cross section (hereinafter also referred to as cross section C21) parallel to the end faces 8a and 8b of the cover layer 21, the plurality of voids 22 may have an average aspect ratio A2 expressed as the ratio Y/Z of the dimension Y in the second direction to the dimension Z in the third direction of 1.1 or more (see Fig. 6). In other words, the voids 22 may generally have a shape that extends in an elongated manner in the second direction. In this case, even if a crack occurs in the cover layer 21 during the manufacturing process of the multilayer ceramic capacitor 1 or during operation of the multilayer ceramic capacitor 1, the crack is likely to progress in the second direction in which the voids 22 extend in an elongated manner, and is unlikely to progress in the third direction. This can reduce the risk of the crack communicating with the outside and the laminate 2. This can reduce the decrease in the moisture resistance of the multilayer ceramic capacitor 1.
 カバー層21は、空孔率P2が1%以下であってもよい。この場合、カバー層21の緻密性が高いため、カバー層21を薄くしても、外部の水分等が、カバー層21に侵入しにくくなり、積層体2に到達しにくくなる。その結果、積層セラミックコンデンサ1の耐湿性を向上させるとともに、積層セラミックコンデンサ1を小型化(薄型化)することができる。 The cover layer 21 may have a porosity P2 of 1% or less. In this case, because the cover layer 21 is highly dense, even if the cover layer 21 is made thin, external moisture and the like are less likely to penetrate the cover layer 21 and reach the laminate 2. As a result, the moisture resistance of the multilayer ceramic capacitor 1 is improved, and the multilayer ceramic capacitor 1 can be made smaller (thinner).
 アスペクト比A2の平均値は、アスペクト比A1の平均値と同様に算出することができ、カバー層21の空孔率P2は、サイドマージン部3の空孔率P1と同様に算出することができる。アスペクト比A2の平均値および空孔率P2の算出に用いる断面C21の所定範囲は、一辺の長さがカバー層21の厚みに等しい正方形状の範囲であってもよい。 The average value of the aspect ratio A2 can be calculated in the same way as the average value of the aspect ratio A1, and the porosity P2 of the cover layer 21 can be calculated in the same way as the porosity P1 of the side margin portion 3. The specified range of the cross section C21 used to calculate the average value of the aspect ratio A2 and the porosity P2 may be a square range with the length of one side equal to the thickness of the cover layer 21.
 次に、積層セラミックコンデンサ1の製造方法について説明する。図7は、仮積層体の作製工程を示す斜視図であり、図8は、母積層体を示す斜視図であり、図9は、母積層体を切断して得た複数の積層体を示す斜視図である。図10は、樹脂フィルム上に成形されたセラミックグリーンシートを示す断面図であり、図11は、金型プレス装置を用いた加圧処理の一例を示す側面図であり、図12,13は、金型プレス装置を用いた加圧処理の他の例を示す側面図であり、図14は、ロールプレス装置を用いた加圧処理の一例を示す側面図であり、図15,16は、ロールプレス装置を用いた加圧処理の他の例を示す側面図である。図17A,17B,17Cは、積層体の側面にサイドマージン部を形成する工程を示す側面図であり、図18は、第1側面および第2側面にサイドマージン部が形成された積層体を示す斜視図である。 Next, a method for manufacturing the multilayer ceramic capacitor 1 will be described. FIG. 7 is a perspective view showing the process of producing a temporary laminate, FIG. 8 is a perspective view showing a mother laminate, and FIG. 9 is a perspective view showing a plurality of laminates obtained by cutting the mother laminate. FIG. 10 is a cross-sectional view showing a ceramic green sheet formed on a resin film, FIG. 11 is a side view showing an example of pressure treatment using a die press device, FIGS. 12 and 13 are side views showing another example of pressure treatment using a die press device, FIG. 14 is a side view showing an example of pressure treatment using a roll press device, and FIGS. 15 and 16 are side views showing another example of pressure treatment using a roll press device. FIGS. 17A, 17B, and 17C are side views showing the process of forming side margins on the sides of the laminate, and FIG. 18 is a perspective view showing a laminate with side margins formed on the first and second sides.
 先ず、誘電体層5の材料として、BaTiO、CaTiO、SrTiO等の誘電体材料またはこれらの混合物を主成分とする粉末を準備し、当該粉末に有機ビヒクルを加えて、セラミックスラリーを調製する。次に、ドクターブレード法、ダイコーター法等のシート成形法を用いて、誘電体層5となるセラミックグリーンシート(以下、単に、グリーンシートともいう)13を成形する。グリーンシート13の厚みは、例えば0.5~10μm程度であってもよい。 First, a powder containing, as the main component, a dielectric material such as BaTiO 3 , CaTiO 3 , SrTiO 3 , or a mixture of these is prepared as the material for the dielectric layer 5, and an organic vehicle is added to the powder to prepare a ceramic slurry. Next, a ceramic green sheet (hereinafter also simply referred to as a green sheet) 13 that will become the dielectric layer 5 is formed using a sheet forming method such as a doctor blade method or a die coater method. The thickness of the green sheet 13 may be, for example, about 0.5 to 10 μm.
 次に、内部電極層6の材料として、Ni、Cu、Ag等の金属材料またはこれらの混合物を主成分とする粉末を用いて、導電性ペーストを調製する。続いて、調整した導電性ペーストを用いて、グリーンシート13の主面7a上に内部電極層6となる電極パターンが印刷されたパターンシート14を形成する。電極パターンの印刷には、例えばスクリーン印刷法、グラビア印刷法等の印刷法を用いることができる。 Next, a conductive paste is prepared using a powder mainly composed of a metal material such as Ni, Cu, Ag, or a mixture of these as the material for the internal electrode layer 6. The prepared conductive paste is then used to form a pattern sheet 14 on the main surface 7a of the green sheet 13, on which an electrode pattern that will become the internal electrode layer 6 is printed. For printing the electrode pattern, a printing method such as screen printing or gravure printing can be used.
 次に、図7に示すように、所定枚数積層したグリーンシート13の上に、パターンシート14を所定枚数積層し、さらに、グリーンシート13を所定枚数積層することによって、仮積層体を作製する。所定枚数積層したグリーンシート13は、カバー層21となる。続いて、仮積層体を積層方向に加圧することによって、母積層体15を得る(図8参照)。仮積層体の加圧は、例えば静水圧プレス装置を用いて行うことができる。続いて、母積層体15を仮想分割ライン16に沿って切断することによって、未焼成の積層体2を複数作製する(図9参照)。母積層体15の切断は、例えば押切切断機、ダイシングソウ装置等を用いて行うことができる。未焼成の積層体2は、焼成後の積層体2と同一構造であるため、以下では、未焼成の積層体2についても、主面7a,7b、端面8a,8bおよび側面9a,9b等の用語および参照符号を用いる。 Next, as shown in FIG. 7, a predetermined number of pattern sheets 14 are laminated on top of a predetermined number of stacked green sheets 13, and a predetermined number of green sheets 13 are further laminated to produce a temporary laminate. The predetermined number of stacked green sheets 13 become the cover layer 21. Next, the temporary laminate is pressed in the stacking direction to obtain a mother laminate 15 (see FIG. 8). Pressurization of the temporary laminate can be performed using, for example, a hydrostatic press. Next, a plurality of unfired laminates 2 are produced by cutting the mother laminate 15 along the virtual parting lines 16 (see FIG. 9). Cutting of the mother laminate 15 can be performed using, for example, a press cutter or a dicing saw. Since the unfired laminate 2 has the same structure as the laminate 2 after firing, the following terms and reference symbols such as the main surfaces 7a, 7b, end surfaces 8a, 8b, and side surfaces 9a, 9b are also used for the unfired laminate 2.
 次に、積層体2の第1側面9aおよび第2側面9bに未焼成のサイドマージン部3を形成する。先ず、BaTiO、CaTiO、SrTiO等の誘電体材料またはこれらの混合物を主成分とする粉末を準備し、当該粉末に有機ビヒクルを加えて、セラミックスラリーを調製する。次に、ドクターブレード法、ダイコーター法等のシート成形法を用いて、図10に示すように、サイドマージン部3となるセラミックグリーンシート(以下、単に、グリーンシートともいう)17を樹脂フィルム18上に成形する。図10において、図解を容易にするために、グリーンシート17にハッチングを付している。図11~16,17A,17B,17Cにおいても、同様である。グリーンシート17の厚みは、例えば10μm~30μm程度であってよい。グリーンシート17の成形に用いられるセラミックスラリーは、グリーンシート13の成形に用いられるセラミックスラリーと主成分が同一であってもよい。グリーンシート17は、グリーンシート13の成形に用いられるセラミックスラリーを用いて成形されてもよい。樹脂フィルム18は、グリーンシート17を支持する支持体としての役割を有する。樹脂フィルム18は、例えば10μm~40μm程度の厚みを有する平滑なフィルムであってもよい。樹脂フィルム18は、可撓性を有していてもよい。樹脂フィルム18は、例えばPET(ポリエチレンテレフタレート)、PP(ポリプロピレン)等で構成されていてもよい。以下では、樹脂フィルム18上に成形されたグリーンシート17を、樹脂フィルム18付グリーンシート17と記載することがある。 Next, the unfired side margin portion 3 is formed on the first side surface 9a and the second side surface 9b of the laminate 2. First, a powder containing a dielectric material such as BaTiO 3 , CaTiO 3 , SrTiO 3 or a mixture thereof as a main component is prepared, and an organic vehicle is added to the powder to prepare a ceramic slurry. Next, as shown in FIG. 10, a ceramic green sheet (hereinafter, also simply referred to as a green sheet) 17 that will become the side margin portion 3 is formed on a resin film 18 using a sheet forming method such as a doctor blade method or a die coater method. In FIG. 10, the green sheet 17 is hatched to facilitate illustration. The same is true in FIGS. 11 to 16, 17A, 17B, and 17C. The thickness of the green sheet 17 may be, for example, about 10 μm to 30 μm. The ceramic slurry used to form the green sheet 17 may have the same main component as the ceramic slurry used to form the green sheet 13. The green sheet 17 may be formed using the ceramic slurry used to form the green sheet 13. The resin film 18 serves as a support for supporting the green sheet 17. The resin film 18 may be a smooth film having a thickness of, for example, about 10 μm to 40 μm. The resin film 18 may be flexible. The resin film 18 may be made of, for example, PET (polyethylene terephthalate), PP (polypropylene), or the like. Hereinafter, the green sheet 17 formed on the resin film 18 may be referred to as the green sheet 17 with the resin film 18.
 続いて、図11に示すように、グリーンシート17に加圧処理を施し、グリーンシート17をその厚み方向に圧縮する。加圧処理は、グリーンシート17を圧縮することで、焼成後のグリーンシート17における空孔のアスペクト比の平均値、空孔率等を所望の値とするための処理である。加圧処理は、例えば、金型プレス装置100を用いて行うことができる。金型プレス装置100は、図11に示すように、上パンチ101および下パンチ102を有している。金型プレス装置100は、固定された下パンチ102に向かって上パンチ101を移動させることにより、上パンチ101と下パンチ102との間に配置された被加圧物を加圧する、一軸成形プレス装置であってもよい。グリーンシート17に加圧処理を施す際、グリーンシート17のみを加圧するのではなく、樹脂フィルム18付グリーンシート17を加圧してよい。これにより、グリーンシート17が加圧処理中に破損する虞を低減することができる。樹脂フィルム18付グリーンシート17を加圧する場合、樹脂フィルム18付グリーンシート17は、上パンチ101がグリーンシート17に当接するように、金型プレス装置100内に配置してもよい。これにより、グリーンシート17を効果的に圧縮できる。 Next, as shown in FIG. 11, the green sheet 17 is subjected to a pressure treatment to compress the green sheet 17 in its thickness direction. The pressure treatment is a treatment for compressing the green sheet 17 to obtain the desired average aspect ratio of the pores in the green sheet 17 after firing, the porosity, etc. The pressure treatment can be performed using, for example, a die press device 100. As shown in FIG. 11, the die press device 100 has an upper punch 101 and a lower punch 102. The die press device 100 may be a uniaxial molding press device that pressurizes the pressurized object placed between the upper punch 101 and the lower punch 102 by moving the upper punch 101 toward the fixed lower punch 102. When the green sheet 17 is subjected to the pressure treatment, the green sheet 17 with the resin film 18 may be pressed instead of pressing only the green sheet 17. This reduces the risk of the green sheet 17 being damaged during the pressure treatment. When pressing the green sheet 17 with the resin film 18, the green sheet 17 with the resin film 18 may be placed in the die press device 100 so that the upper punch 101 abuts against the green sheet 17. This allows the green sheet 17 to be compressed effectively.
 グリーンシート17の加圧は、グリーンシート17を20℃~50℃程度の温度に加熱しながら行ってもよい。これにより、グリーンシート17を効果的に圧縮できるとともに、グリーンシート17が加圧処理中に破損する虞を低減することができる。グリーンシート17に当接する上パンチ101は、グリーンシート17を加熱するためのヒータ103を有していてもよい。グリーンシート17を加圧する前に、グリーンシート17を20℃~60℃程度の温度に予備加熱してもよい。 The green sheet 17 may be pressed while being heated to a temperature of about 20°C to 50°C. This allows the green sheet 17 to be compressed effectively and reduces the risk of the green sheet 17 being damaged during the pressing process. The upper punch 101 that contacts the green sheet 17 may have a heater 103 for heating the green sheet 17. Before pressing the green sheet 17, the green sheet 17 may be preheated to a temperature of about 20°C to 60°C.
 グリーンシート17に加える圧力は、仮積層体(図7参照)に加える圧力と同等またはそれ以上の圧力であってよい。グリーンシート17に加える圧力は、例えば1000N/cm~5000N/cmであってよい。また、グリーンシート17を加圧する加圧時間は、例えば30秒~5分程度であってよい。 The pressure applied to the green sheet 17 may be equal to or greater than the pressure applied to the temporary laminate (see FIG. 7). The pressure applied to the green sheet 17 may be, for example, 1000 N/cm 2 to 5000 N/cm 2. The pressure time for pressing the green sheet 17 may be, for example, about 30 seconds to 5 minutes.
 グリーンシート17の加圧処理は、樹脂フィルム18付グリーンシート17を、上パンチ101と下パンチ102との間で間欠送りしながら行ってもよい。これにより、グリーンシート17を効率的に圧縮できるため、生産性を向上させることができる。 The green sheet 17 may be pressurized while the green sheet 17 with the resin film 18 is fed intermittently between the upper punch 101 and the lower punch 102. This allows the green sheet 17 to be compressed efficiently, improving productivity.
 図12に示すように、樹脂フィルム18付グリーンシート17を複数枚重ね、複数枚のグリーンシート17を同時に加圧してもよい。図12に示すように、複数枚の樹脂フィルム18付グリーンシート17を、グリーンシート17と樹脂フィルム18とが交互に位置するように重ねる場合、複数枚のグリーンシート17を同時に圧縮できるため、生産性を向上させることができる。図12は、2枚の樹脂フィルム18付グリーンシート17を重ねる例を示しているが、3枚以上の樹脂フィルム18付グリーンシート17を重ねてもよい。 As shown in FIG. 12, multiple green sheets 17 with resin film 18 may be stacked and multiple green sheets 17 may be compressed simultaneously. When multiple green sheets 17 with resin film 18 are stacked such that the green sheets 17 and the resin films 18 are alternately positioned as shown in FIG. 12, multiple green sheets 17 can be compressed simultaneously, improving productivity. FIG. 12 shows an example in which two green sheets 17 with resin film 18 are stacked, but three or more green sheets 17 with resin film 18 may be stacked.
 図13に示すように、2枚の樹脂フィルム18付グリーンシート17をグリーンシート17同士が接するように重ね、2枚のグリーンシート17を同時に加圧してもよい。これにより、圧縮されたグリーンシート17を2枚重ねたグリーンシートを作製することができる。また、次の手順により、圧縮されたグリーンシート17を3枚以上重ねたグリーンシートを作製することもできる。先ず、2枚の樹脂フィルム18付グリーンシート17を、グリーンシート17と樹脂フィルム18とが交互に位置するように重ねて圧縮した後、上側(上パンチ101側)に位置する樹脂フィルム18を取り除く。続いて、別の樹脂フィルム18付グリーンシート17を準備し、該樹脂フィルム18付グリーンシート17のグリーンシート17が下側(下パンチ102側)に位置するように、圧縮された2枚のグリーンシート17上に配置する。その後、再度加圧を行うことで、圧縮されたグリーンシート17を3枚重ねたグリーンシートを作製することができる。同様の手順を繰り返すことによって、グリーンシート17を4枚以上重ねたグリーンシートを作製することができる。圧縮されたグリーンシート17を複数枚重ねたグリーンシートは、カバー層21を形成するために用いられてもよい(図7参照)。 As shown in FIG. 13, two green sheets 17 with resin film 18 may be stacked so that the green sheets 17 are in contact with each other, and the two green sheets 17 may be pressed at the same time. This allows a green sheet to be produced in which two compressed green sheets 17 are stacked. In addition, a green sheet in which three or more compressed green sheets 17 are stacked can be produced by the following procedure. First, two green sheets 17 with resin film 18 are stacked and compressed so that the green sheets 17 and the resin films 18 are alternately positioned, and the resin film 18 located on the upper side (upper punch 101 side) is removed. Next, another green sheet 17 with resin film 18 is prepared and placed on the two compressed green sheets 17 so that the green sheet 17 of the green sheet 17 with resin film 18 is located on the lower side (lower punch 102 side). After that, by applying pressure again, a green sheet in which three compressed green sheets 17 are stacked can be produced. By repeating the same procedure, a green sheet in which four or more green sheets 17 are stacked can be produced. A green sheet consisting of multiple compressed green sheets 17 stacked together may be used to form a cover layer 21 (see Figure 7).
 グリーンシート17に施す加圧処理は、金型プレス装置100を用いる加圧処理に限られない。グリーンシート17の加圧処理は、図14に示すように、ロールプレス装置200を用いて行ってもよい。ロールプレス装置200は、上ロール201および下ロール202を有している。上ロール201に付した矢印は、上ロール201の回転方向を示し、下ロール202に付した矢印は、下ロール202の回転方向を示している。ロールプレス装置200は、上ロール201および下ロール202を互いに逆向きに回転させることによって、上ロール201と下ロール202との間隙に配置された被加圧物を連続的に加圧する。上ロール201および下ロール202は、例えばSUS430、SKD11、SKH51等の金属材料で構成されていてもよく、例えばジルコニア、窒化ケイ素等のセラミック材料で構成されていてもよい。 The pressurization treatment applied to the green sheet 17 is not limited to the pressurization treatment using the die press device 100. The pressurization treatment of the green sheet 17 may be performed using a roll press device 200 as shown in FIG. 14. The roll press device 200 has an upper roll 201 and a lower roll 202. The arrow on the upper roll 201 indicates the rotation direction of the upper roll 201, and the arrow on the lower roll 202 indicates the rotation direction of the lower roll 202. The roll press device 200 rotates the upper roll 201 and the lower roll 202 in opposite directions to each other, thereby continuously pressing the pressurized object placed in the gap between the upper roll 201 and the lower roll 202. The upper roll 201 and the lower roll 202 may be made of a metal material such as SUS430, SKD11, or SKH51, or may be made of a ceramic material such as zirconia or silicon nitride.
 ロールプレス装置200は、上ロール201および下ロール202のうちの一方が厚みの薄い弾性体で被覆されていてもよい。あるいは、ロールプレス装置200は、上ロール201および下ロール202のうちの一方の両軸端が、ばね、油圧シリンダ等により、上ロール201および下ロール202のうちの他方に押し付けられていてもよい。これにより、加圧中における上ロール201と下ロール202との間隙、線圧等のばらつきを低減することができる。 In the roll press device 200, one of the upper roll 201 and the lower roll 202 may be covered with a thin elastic body. Alternatively, in the roll press device 200, both axial ends of one of the upper roll 201 and the lower roll 202 may be pressed against the other of the upper roll 201 and the lower roll 202 by a spring, a hydraulic cylinder, or the like. This can reduce variations in the gap between the upper roll 201 and the lower roll 202, the linear pressure, and the like during pressurization.
 ロールプレス装置200は、グリーンシート17を300N/cm~2000N/cmの線圧で加圧してよい。グリーンシート17の加圧は、グリーンシート17を20℃~50℃程度の温度に加熱しながら行ってもよい。これにより、グリーンシート17を効果的に圧縮できるとともに、グリーンシート17が加圧処理中に破損する虞を低減することができる。グリーンシート17に接触する上ロール201は、グリーンシート17を加熱するためのヒータ203を有していてもよい。グリーンシート17を加圧する前に、グリーンシート17を20℃~60℃程度の温度に予備加熱してもよい。 The roll press device 200 may pressurize the green sheet 17 with a linear pressure of 300 N/cm to 2000 N/cm. Pressurization of the green sheet 17 may be performed while heating the green sheet 17 to a temperature of about 20°C to 50°C. This allows the green sheet 17 to be compressed effectively and reduces the risk of the green sheet 17 being damaged during the pressurization process. The upper roll 201 that contacts the green sheet 17 may have a heater 203 for heating the green sheet 17. Before pressing the green sheet 17, the green sheet 17 may be preheated to a temperature of about 20°C to 60°C.
 上ロール201および下ロール202の直径、回転速度等は、樹脂フィルム18付グリーンシート17の搬送速度が20m/分程度となるように設定されていてもよい。また、連続した複数ロールを通過させて加圧してもよい。 The diameter, rotation speed, etc. of the upper roll 201 and the lower roll 202 may be set so that the conveying speed of the green sheet 17 with the resin film 18 is about 20 m/min. Pressurization may also be applied by passing the green sheet 17 through multiple consecutive rolls.
 図15に示すように、樹脂フィルム18付グリーンシート17を複数枚重ね、複数枚のグリーンシート17を同時に加圧してもよい。図15に示すように、複数枚の樹脂フィルム18付グリーンシート17を、グリーンシート17と樹脂フィルム18とが交互に位置するように重ねる場合、複数枚のグリーンシート17を同時に圧縮できるため、生産性を向上させることができる。図15は、2枚の樹脂フィルム18付グリーンシート17を重ねる例を示しているが、3枚以上の樹脂フィルム18付グリーンシート17を重ねてもよい。 As shown in FIG. 15, multiple green sheets 17 with resin film 18 may be stacked and multiple green sheets 17 may be compressed simultaneously. As shown in FIG. 15, when multiple green sheets 17 with resin film 18 are stacked so that the green sheets 17 and the resin films 18 are positioned alternately, multiple green sheets 17 can be compressed simultaneously, improving productivity. FIG. 15 shows an example in which two green sheets 17 with resin film 18 are stacked, but three or more green sheets 17 with resin film 18 may be stacked.
 図16に示すように、2枚の樹脂フィルム18付グリーンシート17をグリーンシート17同士が接するように重ね、2枚のグリーンシート17を同時に加圧してもよい。これにより、圧縮されたグリーンシート17を2枚重ねたグリーンシートを作製することができる。また、次の手順により、圧縮されたグリーンシート17を3枚以上重ねたグリーンシートを作製することもできる。先ず、2枚の樹脂フィルム18付グリーンシート17を、グリーンシート17と樹脂フィルム18とが交互に位置するように重ねて圧縮した後、上側(上ロール201側)に位置する樹脂フィルム18を取り除く。続いて、別の樹脂フィルム18付グリーンシート17を準備し、該樹脂フィルム18付グリーンシート17のグリーンシート17が下側(下ロール202側)に位置するように、圧縮された2枚のグリーンシート17上に配置する。その後、再度加圧を行うことで、圧縮されたグリーンシート17を3枚重ねたグリーンシートを作製することができる。同様の手順を繰り返すことによって、グリーンシート17を4枚以上重ねたグリーンシートを作製することができる。圧縮されたグリーンシート17を複数枚重ねたグリーンシートは、カバー層21を形成するために用いられてもよい(図7参照)。 As shown in FIG. 16, two green sheets 17 with resin film 18 may be stacked so that the green sheets 17 are in contact with each other, and the two green sheets 17 may be pressed at the same time. This allows a green sheet to be produced in which two compressed green sheets 17 are stacked. In addition, a green sheet in which three or more compressed green sheets 17 are stacked can be produced by the following procedure. First, two green sheets 17 with resin film 18 are stacked and compressed so that the green sheets 17 and the resin films 18 are alternately positioned, and the resin film 18 located on the upper side (upper roll 201 side) is removed. Next, another green sheet 17 with resin film 18 is prepared and placed on the two compressed green sheets 17 so that the green sheet 17 of the green sheet 17 with resin film 18 is located on the lower side (lower roll 202 side). After that, by applying pressure again, a green sheet in which three compressed green sheets 17 are stacked can be produced. By repeating the same procedure, a green sheet in which four or more green sheets 17 are stacked can be produced. A green sheet consisting of multiple compressed green sheets 17 stacked together may be used to form a cover layer 21 (see Figure 7).
 次に、圧縮されたグリーンシート17を用いて、積層体2の側面9a,9bに未焼成のサイドマージン部3を形成する。先ず、図17Aに示すように、積層体2の第2側面9bを、粘着および剥離が可能な支持シート19を介して、第1台座20aの下面に固定する。第1台座20aに固定されている積層体2の下方には、第2台座20bが配置されている。第2台座20bの上面には、樹脂フィルム23を介して、圧縮されたグリーンシート17が配置されている。樹脂フィルム23は、グリーンシート17を圧縮する際に用いた樹脂フィルム18であってもよい。 Next, the compressed green sheet 17 is used to form unsintered side margin portions 3 on the side surfaces 9a, 9b of the laminate 2. First, as shown in FIG. 17A, the second side surface 9b of the laminate 2 is fixed to the underside of the first base 20a via an adhesive and peelable support sheet 19. A second base 20b is disposed below the laminate 2 fixed to the first base 20a. The compressed green sheet 17 is disposed on the upper surface of the second base 20b via a resin film 23. The resin film 23 may be the resin film 18 used when compressing the green sheet 17.
 次に、図17Bに示すように、積層体2が固定されている第1台座20aを下方に移動させて、グリーンシート17を第1側面9aに圧着させる。グリーンシート17と第1側面9aとの圧着力を高めるために、グリーンシート17を加熱してもよい。あるいは、製品に影響を与えない接着剤を、グリーンシート17と第1側面9aとの間に配置しておいてもよい。 Next, as shown in FIG. 17B, the first base 20a to which the laminate 2 is fixed is moved downward to press the green sheet 17 against the first side surface 9a. The green sheet 17 may be heated to increase the pressing force between the green sheet 17 and the first side surface 9a. Alternatively, an adhesive that does not affect the product may be placed between the green sheet 17 and the first side surface 9a.
 次に、図17Cに示すように、積層体2の第1側面9aにグリーンシート17が圧着された状態で、積層体2が固定されている第1台座20aを上方に移動させる。グリーンシート17における第1側面9aに接触していない部分は樹脂フィルム23上に残るため、第1側面9aにグリーンシート17を貼り付けることができる。 Next, as shown in FIG. 17C, with the green sheet 17 pressed against the first side surface 9a of the laminate 2, the first base 20a to which the laminate 2 is fixed is moved upward. The portion of the green sheet 17 that is not in contact with the first side surface 9a remains on the resin film 23, so that the green sheet 17 can be attached to the first side surface 9a.
 図17A,17B,17Cに示す工程と同様にして、第2側面9bにグリーンシート17を貼り付けることができる。図18は、第1側面9aおよび第2側面9bにグリーンシート17が貼り付けられた、焼成前の本体部2,3を示している。 The green sheet 17 can be attached to the second side surface 9b in the same manner as in the process shown in Figures 17A, 17B, and 17C. Figure 18 shows the main body portions 2 and 3 before firing, with the green sheet 17 attached to the first side surface 9a and the second side surface 9b.
 続いて、本体部2,3に対して、大気雰囲気、不活性ガス雰囲気または還元雰囲気において、大気圧または減圧で脱脂処理を施した後、還元雰囲気で焼成する。焼成温度は、例えば1100℃~1300℃程度であってよい。続いて、焼成後の本体部2,3に対して、窒素雰囲気で再酸化処理を行う。再酸化処理後の本体部2,3を研磨粉、研磨メディア等が入ったポットの中に入れて回転させて研磨することによって、本体部2,3の角およびバリを取り除き、図2に示すような本体部2,3を得る。得られた本体部2,3に外部電極4a,4bを形成することによって、積層セラミックコンデンサ1を製造することができる。 Then, the main body parts 2, 3 are degreased at atmospheric pressure or reduced pressure in an air atmosphere, an inert gas atmosphere, or a reducing atmosphere, and then fired in a reducing atmosphere. The firing temperature may be, for example, about 1100°C to 1300°C. Next, the fired main body parts 2, 3 are reoxidized in a nitrogen atmosphere. The reoxidized main body parts 2, 3 are placed in a pot containing polishing powder, polishing media, etc., and rotated to polish, thereby removing corners and burrs of the main body parts 2, 3, and the main body parts 2, 3 shown in Figure 2 are obtained. The multilayer ceramic capacitor 1 can be manufactured by forming external electrodes 4a, 4b on the obtained main body parts 2, 3.
 本開示の積層セラミック電子部品の製造方法は、加圧処理されたグリーンシート17を用いてサイドマージン部3を形成するため、焼成後のサイドマージン部3に存在する複数の空孔31のアスペクト比A1の平均値を1.1以上とすることができる。これにより、上述のように、耐湿性の低下が低減された積層セラミックコンデンサ1を製造することができる。また、本開示の積層セラミック電子部品の製造方法は、本体部2,3に加圧処理を施すのではなく、加圧処理されたグリーンシート17を用いてサイドマージン部3を形成するため、誘電体層5と内部電極層6との間においてデラミネーションが発生する虞を低減できる。また、多数の本体部2,3に加圧処理を施す必要がないため、生産性を向上させることができ、ひいては、製造コストを軽減することができる。 The method for manufacturing a multilayer ceramic electronic component disclosed herein forms the side margin portion 3 using a pressure-treated green sheet 17, so that the average aspect ratio A1 of the multiple voids 31 present in the side margin portion 3 after firing can be set to 1.1 or more. This makes it possible to manufacture a multilayer ceramic capacitor 1 with reduced deterioration in moisture resistance, as described above. In addition, the method for manufacturing a multilayer ceramic electronic component disclosed herein forms the side margin portion 3 using a pressure-treated green sheet 17 rather than applying pressure to the main body portions 2, 3, so that the risk of delamination occurring between the dielectric layer 5 and the internal electrode layer 6 can be reduced. In addition, since there is no need to apply pressure to a large number of main body portions 2, 3, productivity can be improved, and therefore manufacturing costs can be reduced.
 また、本開示の積層セラミック電子部品の製造方法によれば、加圧処理されたグリーンシート17を用いてサイドマージン部3を形成するため、焼成後のサイドマージン部3の空孔率P1を1%以下とすることができる。したがって、上述のように、耐湿性が向上した小型大容量の積層セラミックコンデンサ1を製造することができる。 In addition, according to the manufacturing method of the multilayer ceramic electronic component disclosed herein, the side margin portion 3 is formed using the pressure-treated green sheet 17, so the porosity P1 of the side margin portion 3 after firing can be set to 1% or less. Therefore, as described above, it is possible to manufacture a small-sized, large-capacity multilayer ceramic capacitor 1 with improved moisture resistance.
 なお、仮積層体を作製する際、所定枚数積層したグリーンシート17の上に、パターンシート14を所定枚数積層し、さらに、グリーンシート17を所定枚数積層してもよい。これにより、焼成後のカバー層21に存在する複数の空孔22のアスペクト比A2の平均値を1.1以上とすることができる。これにより、上述のように、耐湿性の低下が低減された積層セラミックコンデンサ1を製造することができる。また、焼成後のカバー層21の空孔率P2を1%以下とすることもできる。これにより、耐湿性が向上した、小型(薄型)の積層セラミックコンデンサ1を製造することができる。 When preparing the temporary laminate, a predetermined number of pattern sheets 14 may be laminated on top of a predetermined number of laminated green sheets 17, and then a predetermined number of green sheets 17 may be laminated. This allows the average aspect ratio A2 of the multiple voids 22 present in the cover layer 21 after firing to be 1.1 or more. As a result, as described above, a multilayer ceramic capacitor 1 with reduced deterioration in moisture resistance can be manufactured. It is also possible to make the porosity P2 of the cover layer 21 after firing 1% or less. This allows a small (thin) multilayer ceramic capacitor 1 with improved moisture resistance to be manufactured.
 本開示の積層セラミック電子部品の製造方法によれば、耐湿性に優れた積層セラミック電子部品を効率よく製造することができる。本開示の積層セラミック電子部品によれば、耐湿性に優れた積層セラミック電子部品を提供することができる。 The method for manufacturing a multilayer ceramic electronic component disclosed herein can efficiently manufacture a multilayer ceramic electronic component with excellent moisture resistance. The multilayer ceramic electronic component disclosed herein can provide a multilayer ceramic electronic component with excellent moisture resistance.
 本開示に係る積層セラミック電子部品の製造方法は、以下の態様(1),(2)で実施可能である。 The method for manufacturing a multilayer ceramic electronic component according to the present disclosure can be implemented in the following aspects (1) and (2).
(1)誘電体層と内部電極層とが交互に積層されてなる略直方体状の積層体であって、互いに対向する第1面および第2面、互いに対向する第1端面および第2端面、ならびに、互いに対向する第1側面および第2側面を有し、前記内部電極層の端部が前記第1側面および前記第2側面に露出している積層体を準備し、
 セラミックグリーンシートを作製し、
 前記セラミックグリーンシートに加圧処理を施し、
 加圧処理された前記セラミックグリーンシートを用いて、前記積層体の前記第1側面および前記第2側面にサイドマージン部を形成し、
 前記サイドマージン部が形成された前記積層体を焼成する、積層セラミック電子部品の製造方法。
(1) A laminate having a substantially rectangular parallelepiped shape in which dielectric layers and internal electrode layers are alternately laminated, the laminate having first and second faces opposed to each other, first end faces and second end faces opposed to each other, and first side faces and second side faces opposed to each other, and ends of the internal electrode layers are exposed on the first side faces and the second side faces;
A ceramic green sheet is prepared.
The ceramic green sheet is subjected to a pressure treatment,
forming side margin portions on the first side surface and the second side surface of the laminate using the pressurized ceramic green sheets;
the laminate having the side margin portion formed thereon is fired.
(2)焼成後の前記サイドマージン部の空孔率を1%以下とする、上記(1)に記載の積層セラミック電子部品の製造方法。 (2) A method for manufacturing a multilayer ceramic electronic component as described in (1) above, in which the porosity of the side margin portion after firing is 1% or less.
 本開示に係る積層セラミック電子部品は、以下の態様(3),(4)で実施可能である。 The multilayer ceramic electronic component according to the present disclosure can be implemented in the following aspects (3) and (4).
(3)誘電体層と内部電極層とが交互に積層されてなる略直方体状の積層体であって、互いに対向する第1面および第2面、互いに対向する第1端面および第2端面、ならびに、互いに対向する第1側面および第2側面を有し、前記内部電極層の端部が前記第1側面および前記第2側面に露出している積層体と、
 前記第1側面および前記第2側面に位置するサイドマージン部と、を含み、
 前記サイドマージン部は、複数の空孔を有し、
 前記サイドマージン部の、前記第1端面と平行な断面において、前記複数の空孔は、前記第1側面に垂直な方向の寸法に対する前記第1面に垂直な方向の寸法の比で表されるアスペクト比の平均値が1.1以上を有する、積層セラミック電子部品。
(3) A laminate having a substantially rectangular parallelepiped shape in which dielectric layers and internal electrode layers are alternately laminated, the laminate having first and second faces opposed to each other, first end faces and second end faces opposed to each other, and first side faces and second side faces opposed to each other, and ends of the internal electrode layers are exposed to the first side faces and the second side faces;
a side margin portion located on the first side surface and the second side surface,
The side margin portion has a plurality of holes,
a multilayer ceramic electronic component, in a cross section of the side margin portion parallel to the first end face, the plurality of voids have an average aspect ratio, expressed as the ratio of a dimension in a direction perpendicular to the first surface to a dimension in a direction perpendicular to the first side surface, of 1.1 or more.
(4)前記サイドマージン部の空孔率が1%以下である、上記(3)に記載の積層セラミック電子部品。 (4) A multilayer ceramic electronic component as described in (3) above, in which the porosity of the side margin portion is 1% or less.
 以上、本開示の実施形態について詳細に説明したが、本開示は上述の実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲内において、種々の変更、改良等が可能である。 The above describes in detail the embodiments of the present disclosure, but the present disclosure is not limited to the above-described embodiments, and various modifications and improvements are possible without departing from the spirit and scope of the present disclosure.
 1   積層セラミックコンデンサ
 2   積層体
 21  カバー層
 22  空孔
 3   サイドマージン部
 3a  外側面
 31  空孔
 4a  第1外部電極
 4b  第2外部電極
 41  第1層(下地層)
 42  第2層(外層)
 5   誘電体層
 6   内部電極層
 7a  第1面
 7b  第2面
 8a  第1端面
 8b  第2端面
 9a  第1側面
 9b  第2側面
 13  セラミックグリーンシート
 14  パターンシート
 15  母積層体
 16  仮想分割ライン
 17  セラミックグリーンシート
 18  樹脂フィルム
 19  支持シート
 20a 第1台座
 20b 第2台座
 23  樹脂フィルム
 100 金型プレス装置
 101 上パンチ
 102 下パンチ
 103 ヒータ
 200 ロールプレス装置
 201 上ロール
 202 下ロール
 203 ヒータ
REFERENCE SIGNS LIST 1 Multilayer ceramic capacitor 2 Laminate 21 Cover layer 22 Hole 3 Side margin portion 3a Outer surface 31 Hole 4a First external electrode 4b Second external electrode 41 First layer (underlying layer)
42 Second layer (outer layer)
5 Dielectric layer 6 Internal electrode layer 7a First surface 7b Second surface 8a First end surface 8b Second end surface 9a First side surface 9b Second side surface 13 Ceramic green sheet 14 Pattern sheet 15 Base laminate 16 Virtual parting line 17 Ceramic green sheet 18 Resin film 19 Support sheet 20a First base 20b Second base 23 Resin film 100 Die press device 101 Upper punch 102 Lower punch 103 Heater 200 Roll press device 201 Upper roll 202 Lower roll 203 Heater

Claims (4)

  1.  誘電体層と内部電極層とが交互に積層されてなる略直方体状の積層体であって、互いに対向する第1面および第2面、互いに対向する第1端面および第2端面、ならびに、互いに対向する第1側面および第2側面を有し、前記内部電極層の端部が前記第1側面および前記第2側面に露出している積層体を準備し、
     セラミックグリーンシートを作製し、
     前記セラミックグリーンシートに加圧処理を施し、
     加圧処理された前記セラミックグリーンシートを用いて、前記積層体の前記第1側面および前記第2側面にサイドマージン部を形成し、
     前記サイドマージン部が形成された前記積層体を焼成する、積層セラミック電子部品の製造方法。
    a laminate having a substantially rectangular parallelepiped shape in which dielectric layers and internal electrode layers are alternately laminated, the laminate having first and second faces opposed to each other, first end faces and second end faces opposed to each other, and first and second side faces opposed to each other, with ends of the internal electrode layers exposed on the first side faces and the second side faces;
    A ceramic green sheet is prepared.
    The ceramic green sheet is subjected to a pressure treatment,
    forming side margin portions on the first side surface and the second side surface of the laminate using the pressurized ceramic green sheets;
    the laminate having the side margin portion formed thereon is fired.
  2.  焼成後の前記サイドマージン部の空孔率を1%以下とする、請求項1に記載の積層セラミック電子部品の製造方法。 The method for manufacturing a multilayer ceramic electronic component according to claim 1, in which the porosity of the side margin portion after firing is set to 1% or less.
  3.  誘電体層と内部電極層とが交互に積層されてなる略直方体状の積層体であって、互いに対向する第1面および第2面、互いに対向する第1端面および第2端面、ならびに、互いに対向する第1側面および第2側面を有し、前記内部電極層の端部が前記第1側面および前記第2側面に露出している積層体と、
     前記第1側面および前記第2側面に位置するサイドマージン部と、を含み、
     前記サイドマージン部は、複数の空孔を有し、
     前記サイドマージン部の、前記第1端面と平行な断面において、前記複数の空孔は、前記第1側面に垂直な方向の寸法に対する前記第1面に垂直な方向の寸法の比で表されるアスペクト比の平均値が1.1以上を有する、積層セラミック電子部品。
    a laminate having a substantially rectangular parallelepiped shape in which dielectric layers and internal electrode layers are alternately laminated, the laminate having mutually opposing first and second faces, mutually opposing first end faces and second end faces, and mutually opposing first side faces and second side faces, with ends of the internal electrode layers exposed to the first side faces and the second side faces;
    a side margin portion located on the first side surface and the second side surface,
    The side margin portion has a plurality of holes,
    a multilayer ceramic electronic component, in a cross section of the side margin portion parallel to the first end face, the plurality of voids have an average aspect ratio, expressed as the ratio of a dimension in a direction perpendicular to the first surface to a dimension in a direction perpendicular to the first side surface, of 1.1 or more.
  4.  前記サイドマージン部の空孔率が1%以下である、請求項3に記載の積層セラミック電子部品。 The multilayer ceramic electronic component according to claim 3, wherein the porosity of the side margin portion is 1% or less.
PCT/JP2023/032932 2022-09-30 2023-09-08 Method for manufacturing laminated ceramic electronic component and laminated ceramic electronic component WO2024070607A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-158906 2022-09-30
JP2022158906 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024070607A1 true WO2024070607A1 (en) 2024-04-04

Family

ID=90477494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032932 WO2024070607A1 (en) 2022-09-30 2023-09-08 Method for manufacturing laminated ceramic electronic component and laminated ceramic electronic component

Country Status (1)

Country Link
WO (1) WO2024070607A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003178926A (en) * 2002-12-16 2003-06-27 Murata Mfg Co Ltd Manufacturing method for monolithic ceramic electronic part
JP2005103986A (en) * 2003-09-30 2005-04-21 Asahi Kasei Chemicals Corp Green sheet integrated with support and its production method
JP2019145834A (en) * 2019-04-26 2019-08-29 太陽誘電株式会社 Method for manufacturing multilayer ceramic capacitor
JP2020036001A (en) * 2018-08-29 2020-03-05 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003178926A (en) * 2002-12-16 2003-06-27 Murata Mfg Co Ltd Manufacturing method for monolithic ceramic electronic part
JP2005103986A (en) * 2003-09-30 2005-04-21 Asahi Kasei Chemicals Corp Green sheet integrated with support and its production method
JP2020036001A (en) * 2018-08-29 2020-03-05 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer capacitor
JP2019145834A (en) * 2019-04-26 2019-08-29 太陽誘電株式会社 Method for manufacturing multilayer ceramic capacitor

Similar Documents

Publication Publication Date Title
US10622152B2 (en) Multi-layer ceramic capacitor and method of producing the same
EP2827351B1 (en) Laminated ceramic chip electronic component
US9373446B2 (en) Multilayer ceramic electronic part, board having the same mounted thereon, and manufacturing method thereof
US9974183B2 (en) Multilayer ceramic electronic component and board having the same
KR101736721B1 (en) Multi layer ceramic electronic component
US20190164698A1 (en) Multi-layer ceramic electronic component, method of producing the same, and ceramic body
US20170287643A1 (en) Method of Producing Multi-Layer Ceramic Electronic Component and Multi-Layer Ceramic Electronic Component
KR20180080690A (en) Method of manufacturing multilayer ceramic capacitor, ceramic laminate, and multilayer ceramic capacitor
KR20120062238A (en) A mullti layered ceramic device and fabricating method thereof
JP2001185437A (en) Laminated ceramic capacitor
US11011308B2 (en) Multilayer ceramic electronic component
TW201837935A (en) Multi-Layer Ceramic Capacitor
JP4574267B2 (en) Manufacturing method of multilayer electronic component and multilayer electronic component
US20200312564A1 (en) Multilayer ceramic capacitor and method of manufacturing multilayer ceramic capacitor
WO2024070607A1 (en) Method for manufacturing laminated ceramic electronic component and laminated ceramic electronic component
JP2012009556A (en) Ceramic electronic component and method of manufacturing the same
JP3460620B2 (en) Manufacturing method of ceramic laminated electronic component
JP2000243650A (en) Multilayer ceramic capacitor and its manufacture
JP4702972B2 (en) Multilayer electronic component and manufacturing method thereof
JP6189742B2 (en) Multilayer electronic component and manufacturing method thereof
JP2004095687A (en) Laminated ceramic capacitor and its manufacturing method
JP2004186343A (en) Ceramic laminate and its manufacturing method
US20210304967A1 (en) Ceramic electronic component, method of producing the same, and circuit board
US20230207220A1 (en) Multilayer electronic component
JP2024034458A (en) Multilayer ceramic capacitors and mounting structures