WO2024070451A1 - Method for producing compressed wood - Google Patents

Method for producing compressed wood Download PDF

Info

Publication number
WO2024070451A1
WO2024070451A1 PCT/JP2023/031507 JP2023031507W WO2024070451A1 WO 2024070451 A1 WO2024070451 A1 WO 2024070451A1 JP 2023031507 W JP2023031507 W JP 2023031507W WO 2024070451 A1 WO2024070451 A1 WO 2024070451A1
Authority
WO
WIPO (PCT)
Prior art keywords
wood
compressed
organic acid
aqueous solution
heating
Prior art date
Application number
PCT/JP2023/031507
Other languages
French (fr)
Japanese (ja)
Inventor
健次 森
充伸 枡野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024070451A1 publication Critical patent/WO2024070451A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K3/00Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process
    • B27K3/34Organic impregnating agents

Definitions

  • This disclosure relates to a method for producing compressed wood.
  • Coniferous trees such as cedar and cypress grow quickly and are easy to obtain, so they are used as furniture and building materials.
  • coniferous trees are softer and less strong than hardwoods.
  • technology is being investigated that increases the specific gravity of soft wood by compressing and deforming it, primarily to improve the surface hardness.
  • Such technology is attracting attention as a way to expand the range of uses for wood with a low specific gravity and low surface hardness, such as cedar.
  • compressed wood which is obtained by compressing and deforming wood, recovers from compression by absorbing moisture or water, returning to its pre-compression state.
  • Methods for reducing this recovery phenomenon known as springback, have been investigated.
  • Non-Patent Document 1 discloses a technology for permanently fixing the compression deformation by heat treating cedar wood. Specifically, Non-Patent Document 1 discloses the following. First, water is injected under reduced pressure into the cedar sapwood, and then it is heated with hot water at 95°C. It is then compressed using a press with a hot plate temperature set to 105°C and dried in the hot plate for 3 hours. The obtained compressed test piece is then kept in a dry state and heat treated using a hot air dryer. As a result, the springback of the compressed wood was reduced and the compressed shape was almost completely fixed by performing the heat treatment at 180°C for 20 hours, 200°C for 5 hours, or 220°C for 3 hours.
  • Non-Patent Document 1 requires that the wood be compressed and dried, and then heat-treated at high temperature for a long period of time. Therefore, in order to reduce the manufacturing costs of compressed wood, there has been a demand for a method to suppress springback in compressed wood by heat-treating it at a low temperature and/or for a short period of time.
  • This disclosure has been made in light of the problems inherent in the prior art.
  • the purpose of this disclosure is to provide a method for manufacturing compressed wood that is capable of suppressing springback in compressed wood using a simple method.
  • the method for producing compressed wood includes an impregnation step in which an organic acid aqueous solution containing an organic acid is pressurized and impregnated into a block-shaped piece of wood having a thickness of 3 mm or more, a drying step in which the wood in a wet state impregnated with the organic acid aqueous solution is dried, a compression step in which the dried wood is compressed, and a heating step in which the compressed wood is heated while maintaining the compressed state.
  • FIG. 1 is an explanatory diagram showing an example of a method for producing compressed wood according to the present embodiment.
  • FIG. 2 is a graph showing the relationship between the time of steam heating treatment and the rate of change in thickness of the compressed wood pieces of the Examples, Reference Examples, and Comparative Examples.
  • the method for producing compressed wood according to the present embodiment includes an impregnation step of impregnating a block of wood with an organic acid aqueous solution containing an organic acid, and a drying step of drying the wood impregnated with the organic acid aqueous solution.
  • the method further includes a compression step of compressing the dried wood, and a heating step of heating the wood while maintaining it in a compressed state.
  • FIG. 1 shows the flow of the method for producing compressed wood according to this embodiment.
  • the first step S1 is to impregnate a block of wood with an organic acid aqueous solution containing an organic acid (impregnation step).
  • the shape of the wood may be block-like, and an example of the shape of the wood may be one processed into a board.
  • the thickness of the plank-shaped wood is preferably 3 mm or more. By processing wood having such a thickness as described below, compressed wood having a thickness of several millimeters can be obtained. Compressed wood having a thickness of several millimeters can be preferably used as a surface material to be attached to the surface of plywood, for example.
  • the thickness of the plank-shaped wood is preferably 3 mm or more, and may be 10 mm or more or 12 mm or more. There is no particular limit to the upper limit of the thickness of the plank-shaped wood, but it can be, for example, 40 mm.
  • Wood can be any of a variety of wood species used for building materials such as floors, walls, and ceilings, fixtures, furniture, and crafts. There are no particular limitations on the wood species, and not only conifers but also broadleaf trees can be used. Specifically, the wood can be at least one selected from the group consisting of cedar, larch, Douglas fir, rubber tree, birch, beech, oak, beech, oak, teak, hard maple, cherry, walnut, white ash, mahogany, and yellow birch. These wood species have a luxurious feel and are highly decorative, so by modifying these wood species, they can be suitably used for building materials, fixtures, furniture, and crafts.
  • the wood fast-growing trees that grow to large diameters in a short period of time, mainly found in Japan and Southeast Asia, etc., can be used.
  • the wood can be at least one selected from the group consisting of China chinaberry, Chinese lantern tree, alder, tulip tree, eucalyptus, poplar, Acacia mangium, and Falcata.
  • Wood may be in a raw state with a high moisture content, or in a dried state with a low moisture content. Even when wood has a high moisture content, the moisture in the vessels can be replaced with an organic acid solution, so the wood can be impregnated with the organic acid solution. Artificially dried wood (KD wood), which has been artificially dried in a drying oven or the like to reduce its moisture content, may also be used. In this case, the moisture content of KD wood is preferably 7-25%. The moisture content of wood can be measured based on Japanese Industrial Standard JIS Z2101 (Testing methods for wood).
  • the organic acid aqueous solution to be impregnated into the wood can be prepared by dissolving the organic acid in water.
  • the organic acid an organic compound that can suppress springback by heat treating the wood impregnated with the organic acid aqueous solution while it is in a compressed state, as described below, can be used.
  • the organic acid is preferably at least one selected from the group consisting of carboxylic acids, sulfonic acids, and sulfinic acids.
  • the organic acid is preferably a carboxylic acid, and more preferably a divalent or higher carboxylic acid.
  • carboxylic acid When wood impregnated with a carboxylic acid is heat-treated while in a compressed state, the compositional components of the wood are more likely to change, which makes it possible to further promote the modification of the wood.
  • the carboxylic acid is preferably at least one selected from the group consisting of citric acid, tartaric acid, malic acid, succinic acid, oxalic acid, adipic acid, malonic acid, phthalic acid, sebacic acid, maleic acid, fumaric acid, itaconic acid, glutaric acid (1,5-pentanedioic acid), gluconic acid, glutaconic acid, and pentenedioic acid.
  • the carboxylic acid is more preferably at least one selected from the group consisting of citric acid, malic acid, and succinic acid.
  • the organic acid content is preferably 3 to 30% by mass, more preferably 3 to 20% by mass, and even more preferably 3 to 10% by mass.
  • the organic acid content in the organic acid aqueous solution is within this range, the organic acid can easily penetrate the wood, and the organic acid can have a fixing effect on the compressed wood.
  • the wood may be impregnated with both the organic acid and the sugar by adding sugar to the organic acid aqueous solution.
  • the organic acid aqueous solution needs to contain at least an organic acid and does not need to contain sugar.
  • the organic acid aqueous solution does not need to contain an organic solvent. By not including an organic solvent in the organic acid aqueous solution, the environmental burden can be reduced and safety for the human body can be increased.
  • wood can be impregnated with the organic acid aqueous solution by immersing the wood in the organic acid aqueous solution and leaving it to stand.
  • the pressure to be applied is not particularly limited, but it is preferable to set it to, for example, 0.3 to 10.0 MPa.
  • the temperature of the organic acid aqueous solution is not particularly limited, but it is preferable to set it to, for example, 80°C or lower.
  • the temperature of the organic acid aqueous solution can also be room temperature.
  • the wood In order to speed up the impregnation of wood with the organic acid solution, the wood can be placed in a pressure-resistant container, the pressure reduced, the air inside the wood removed, and then the wood immersed in the organic acid solution. This allows the organic acid solution to easily penetrate into the vessels inside the wood, allowing the organic acid solution to be quickly impregnated into the wood.
  • the entire wood that is, the center of the wood
  • the organic acid aqueous solution When impregnating a block of wood with the organic acid aqueous solution, it is preferable that the entire wood, that is, the center of the wood, is impregnated with the organic acid aqueous solution. This allows the action of the organic acid to modify the wood up to the center. However, it is not necessary to impregnate the center of the wood with the organic acid aqueous solution, and it is sufficient to impregnate at least the part of the wood that is to be modified with the organic acid aqueous solution.
  • the wood in a wet state impregnated with the organic acid aqueous solution is dried to remove excess moisture from inside the wood (drying step).
  • the drying conditions are not particularly limited, but for example, natural drying can be used.
  • the wood may also be dried by heating, for example at a temperature of 80°C or less, preferably 70°C or less, and more preferably 60°C or less.
  • the drying atmosphere is not particularly limited, and for example, drying may be performed in the air.
  • the moisture inside the wood may also be removed by gradually decreasing the humidity in the drying atmosphere.
  • the drying process may be natural drying as described above, but the wood may also be dried using a drying device.
  • a drying device is a steam drying device that supplies steam to a heating tube in the drying device to gradually increase the temperature inside the drying device while gradually decreasing the humidity (relative humidity) inside the drying device.
  • Other drying devices that may be used include a dehumidifying drying device equipped with a heat pump dehumidifier, and a reduced pressure drying device that dries by reducing pressure and heating. Hot air or a radiant heater may be used when drying.
  • the moisture content of wood dried by the drying process is not particularly limited, but can be, for example, 30% or less.
  • the moisture content of dried wood may also be 20% or less, or 15% or less.
  • the lower limit of the moisture content of dried wood is not particularly limited, but may be 1% or 5%.
  • the moisture content of wood can be measured based on JIS Z2101.
  • the organic acid remains in the tiny spaces inside the wood, which helps prevent the wood from shrinking when it dries and improves its dimensional stability. Therefore, even if wood impregnated with an aqueous organic acid solution is dried as described above, deformation and cracking of the wood can be prevented.
  • the dried wood is compressed in the third step S3 (compression step).
  • the compression method is not particularly limited, and for example, the wood may be compressed after being clamped in a jig.
  • the wood 1 can be compressed by clamping the wood 1 between a pair of metal plates 10 and then applying pressure to the metal plates 10 from above and below.
  • the compression device for compressing the wood is not limited to a press device using flat plates, and a roll press device that continuously compresses the wood by passing it between a pair of rolls can also be used.
  • the compression ratio is not particularly limited, but may be 30% or more, or may be 50% or more.
  • the upper limit of the compression ratio is not particularly limited, but may be, for example, 70%.
  • the wood can be compressed in the atmosphere.
  • the temperature at which the wood is compressed is not particularly limited.
  • the wood may be compressed at room temperature, or the wood may be compressed while being heated.
  • the wood 1 may be compressed while the metal plate 10, which serves as the jig, is heated.
  • the heating temperature at which the wood is compressed while being heated is also not particularly limited, and can be, for example, 100°C or higher and 250°C or lower. Compressing the wood while heating it can soften the wood, making the compression process easier.
  • the wood compressed in the third step S3 is heated while maintaining the compressed state (heating step). Specifically, the compressed wood 1 is sandwiched between a pair of flat plates (metal plates 10) that serve as a fixing jig, and then the pair of flat plates are connected to each other using a connecting device, thereby maintaining the wood 1 in a compressed state. At this time, the compression rate of the wood can be 30% or more and 70% or less, as described above.
  • the connecting device is not particularly limited, and for example, a bolt and nut can be used. Then, as shown in FIG. 1(d), the wood 1 is heated together with the fixing jig using a heating device 20.
  • the heating atmosphere when heat treating compressed wood can be air, a water vapor atmosphere, or an inert atmosphere.
  • the inert atmosphere is an atmosphere with a reduced oxygen concentration, and can be, for example, a nitrogen gas atmosphere or a superheated water vapor atmosphere.
  • Superheated water vapor is a gas obtained by heating saturated water vapor, and therefore contains almost no oxygen.
  • the heating atmosphere when heat treating compressed wood is preferably a water vapor atmosphere, and more preferably a saturated water vapor atmosphere.
  • the temperature at which the compressed wood is heated is preferably set to a temperature at which the wood is fixed.
  • the heating temperature is preferably set to 130°C or higher and 250°C or lower, and more preferably 150°C or higher and 220°C or lower.
  • the heating time when heat treating compressed wood can be adjusted depending on the type and size of the wood, the amount of organic acid impregnated into the wood, and the heating temperature and heating atmosphere, so it is not particularly limited, but can be, for example, 1 minute to 24 hours. If the heating atmosphere is air, it is preferably 2 hours to 24 hours. If the heating atmosphere is a water vapor atmosphere, it is preferably 1 minute to 3 hours.
  • the wood is heated while still in a compressed state, and then removed from the fixture to obtain the compressed wood of this embodiment.
  • the compressed wood obtained in this manner is able to maintain its high density and improved surface hardness for a long period of time, since springback is suppressed even when the wood absorbs moisture and water.
  • the heating atmosphere when heat-treating the compressed wood can be air, steam, or an inert atmosphere.
  • the wood 1 When heat-treating in a steam atmosphere, the wood 1 is heated while clamped by a fixture to prevent the compressed wood 1 from absorbing moisture during heat-treating and springing back.
  • a dry state such as air or a nitrogen gas atmosphere
  • the wood 1 absorbs less moisture during heat-treating and is less likely to spring back. Therefore, when heat-treating in a dry state, the wood 1 may be heated while clamped by a fixture, or may be heated without clamping the wood 1 by a fixture.
  • condensed water may adhere to the wood 1 at the beginning of the heat-treating, so it is preferable to heat the wood 1 while clamping it by a fixture. However, if the heating device is preheated to a state where condensed water is unlikely to be generated, the wood 1 may be heat-treated without being clamped by a fixture.
  • Non-Patent Document 2 it has been confirmed that heat treatment (high-temperature treatment in a dry state) or steam treatment has the effect of suppressing the recovery of compressed wood due to moisture absorption and/or water absorption (fixation).
  • high-temperature treatment of wood causes a decomposition reaction of the amorphous regions of hemicellulose and cellulose.
  • the above-mentioned heat treatment in a compressed state decomposes the components of wood, reducing the restoring force of the above-mentioned wood cells to return to their original state, thereby suppressing the recovery during moisture absorption and/or water absorption.
  • Non-Patent Document 3 it is known that steam treatment is effective in fixing wood in a shorter time than high-temperature heat treatment in a dry state. This is thought to be because the decomposition reaction of wood is more likely to proceed in the presence of water, and steam treatment makes it easier to form cross-links.
  • Non-Patent Document 2 Inoue M, Norimoto M, Tanahashi M, Rowell RM, Steam or heat fixation of compressed wood, Wood and Fiber Science, 25(3), (1993) pp.224-235
  • Non-Patent Document 3 Takashi Higashihara, "Deformation fixation of compressed wood by steam treatment and its mechanism," Forest Tree Breeding Center Research Report, Forestry Agency Forest Tree Breeding Center, 2007, No. 23, pp. 255-308
  • the method for producing compressed wood of this embodiment includes an impregnation step in which an organic acid aqueous solution containing an organic acid is pressurized and impregnated into a block-shaped piece of wood having a thickness of 3 mm or more.
  • the method further includes a drying step in which the wood in a wet state impregnated with the organic acid aqueous solution is dried, a compression step in which the dried wood is compressed, and a heating step in which the compressed wood is heated while maintained in a compressed state.
  • the wood containing an organic acid is heated while still in a compressed state, so that compressed wood capable of suppressing springback can be obtained by low-temperature and/or short-time treatment.
  • the obtained compressed wood has high density and also has improved surface hardness.
  • the organic acid remaining inside the compressed wood is often used as a food additive, and is highly safe. Therefore, the compressed wood can be suitably used for various applications such as various building materials (floors, walls, ceilings, fittings, etc.), furniture, and crafts.
  • the compressed wood can be used as a surface material for various products by adhering it to a substrate.
  • the manufacturing method of this embodiment includes an impregnation step in which an organic acid aqueous solution containing an organic acid and a sugar is impregnated into a block of wood, and a drying step in which the wood impregnated with the organic acid aqueous solution is dried.
  • the manufacturing method further includes a compression step in which the dried wood is compressed, and a heating step in which the wood is heated while being kept in a compressed state.
  • compressed wood with reduced springback is obtained by impregnating the wood with only organic acid and then heating it in a compressed state.
  • compressed wood with reduced springback and increased hardness is obtained because the wood is impregnated with organic acid and sugars and then heated in a compressed state.
  • an organic acid aqueous solution containing an organic acid and a sugar is impregnated into a block of wood.
  • the shape, thickness, and species of the wood can be the same as those described in the first embodiment.
  • the type of organic acid and the content of the organic acid in the organic acid aqueous solution can also be the same as those described in the first embodiment.
  • the organic acid aqueous solution to be impregnated into wood can be prepared by dissolving an organic acid and a sugar in water.
  • the sugar can be at least one selected from the group consisting of monosaccharides, disaccharides, oligosaccharides, and polysaccharides. Examples of monosaccharides include fructose, xylose, ribose, arabinose, rhamnose, xylulose, and deoxyribose.
  • disaccharides include sucrose, maltose, trehalose, turanose, lactulose, maltulose, palatinose, gentiobiulose, melibiulose, galactosucrose, rutinulose, and planteobiose.
  • oligosaccharides include fructooligosaccharides, galtooligosaccharides, mannanoligosaccharides, and stachyose.
  • polysaccharides include starch, agarose, alginic acid, glucomannan, inulin, chitin, chitosan, hyaluronic acid, glycogen, and cellulose.
  • the sugar is preferably at least one selected from the group consisting of fructose, maltose, xylose, and sucrose. These sugars are easy to obtain and can further increase the strength of the compressed wood.
  • the sugar content is preferably 3 to 30% by mass, more preferably 3 to 20% by mass, and even more preferably 3 to 10% by mass.
  • the wet wood impregnated with the organic acid aqueous solution is dried to remove excess moisture from inside the wood. Furthermore, in the third step S3, the dried wood is compressed. Then, in the fourth step S4, the compressed wood is heated while kept in the compressed state.
  • the compressed wood obtained by the manufacturing method of this embodiment is able to maintain a high density and improved surface hardness for a long period of time because the organic acid prevents springback even when the wood absorbs moisture and water. Furthermore, sugars fill the microvoids in the cell walls of the wood instead of water molecules, and can remain in the microvoids without evaporating even when drying. Since the sugars can keep the cell walls in a swollen state, the so-called "bulk effect" can prevent the wood from shrinking during the drying process. It is also believed that the organic acid and sugars penetrate between the cellulose fibers and give the wood flexibility. Therefore, it is believed that the compressed wood of this embodiment can maintain its toughness and increase its mechanical strength compared to general compressed wood.
  • the method for producing compressed wood of this embodiment includes an impregnation step in which an organic acid aqueous solution containing an organic acid and sugars is pressurized and impregnated into a block-shaped piece of wood having a thickness of 3 mm or more.
  • the method further includes a drying step in which the wood in a wet state impregnated with the organic acid aqueous solution is dried, a compression step in which the dried wood is compressed, and a heating step in which the compressed wood is heated while maintained in a compressed state.
  • the method for producing compressed wood of this embodiment also heats wood containing an organic acid while it is in a compressed state, so that compressed wood capable of suppressing springback can be obtained by low-temperature and/or short-time treatment. Furthermore, the obtained compressed wood has a high density and improved surface hardness, and furthermore, the mechanical strength is improved due to the effect of the sugars. Therefore, the compressed wood can be suitably used for various purposes such as building materials, fittings, furniture, crafts, and surface materials.
  • compressed wood with reduced springback to be obtained by low-temperature and/or short-time processing. Furthermore, compressed wood obtained in this manner is able to maintain a high density and improved surface hardness for a long period of time, since springback is reduced even when the wood absorbs moisture and water. This compressed wood can therefore be used for a variety of purposes, including building materials, fixtures, furniture, crafts, and surface materials.
  • Technique 3 The method for producing compressed wood described in Technique 1 or 2, in which the drying process is a process for reducing the moisture content of the wood to 5-30%.
  • This configuration removes excess moisture from the wood, increasing the reactivity of the organic acid with the wood.
  • This composition allows the organic acid to easily react with the hemicellulose in the wood, making it possible to obtain compressed wood that can suppress springback by treating it at a lower temperature and/or for a shorter period of time.
  • This composition allows the organic acid to easily penetrate the wood, which helps to suppress springback in the wood.
  • Example 1 Preparation of test samples
  • Example 1 and Reference Example 1 First, a plurality of pieces of cedar wood with a width of 30 mm, a thickness of 20 mm, and a length of 25 mm were prepared as wood. The grain of the wood was in the width direction, and the length direction of the wood was in the fiber direction. The following tests were performed using continuous test pieces.
  • an impregnation solution with a citric acid concentration of 5% by mass was prepared by mixing citric acid, which is an organic acid, with water.
  • the impregnation liquid was placed in a pressure-resistant container and multiple pieces of wood were immersed in it. Then, while the wood was immersed in the impregnation liquid, the atmospheric pressure was set at -0.09 MPa and held for 20 minutes, and then at 0.8 MPa and held for 3 hours, to carry out a pressurized impregnation process. Furthermore, after carrying out the pressurized impregnation process, the wood was aged for at least 12 hours under atmospheric pressure while immersed in the impregnation liquid. In this way, by aging the wood while immersed in the impregnation liquid, it is possible to reliably impregnate the cell walls of the wood with organic acids.
  • the impregnated wood was removed from the impregnation liquid and then dried.
  • the drying process was carried out using a steam drying device, with the drying conditions changed in the order of steps 1 to 7 shown in Table 2.
  • the moisture content of the wood after the drying process was measured in accordance with JIS Z2101 and was found to be approximately 8%.
  • the wood that had been dried was compressed using a hand press equipped with hot plates that could control the temperature above and below. Specifically, the wood after the drying process was first placed between the top and bottom hot plates that were heated to 200°C so that they were in contact with each other, and the wood was then preheated for three minutes. Next, spacers with a thickness of approximately 10 mm were placed on both sides of the wood between the hot plates, and the wood was then compressed. The wood was compressed until a sufficient load was applied to the spacers on both sides, and then held for three minutes.
  • the wood sandwiched between the metal plates was subjected to a heat treatment in a saturated water vapor atmosphere at 150°C.
  • the heat treatment times were 0, 5, 15, 30, 60, and 120 minutes.
  • the wood was cooled to body temperature and the fixture was removed to obtain compressed wood of Example 1, which had been heated for 5, 15, 30, 60, and 120 minutes, and compressed wood of Reference Example 1, which had been heated for 0 minutes.
  • Example 2 and Reference Example 2 The same process as in Example 1 and Reference Example 1 was used except that the concentration of citric acid contained in the impregnation liquid was 10 mass %. Compressed wood of Example 2 was obtained with heat treatment times of 5 minutes, 15 minutes, 30 minutes, 60 minutes, and 120 minutes, respectively, and compressed wood of Reference Example 2 with a heat treatment time of 0 minutes.
  • Comparative Example Comparative examples of compressed wood were obtained by the same process as in Example 1 and Reference Example 1, except that water was used as the impregnation liquid, and the heat treatment times were 0, 5, 15, 30, 60, and 120 minutes, respectively.
  • a hot water immersion test was carried out on the compressed wood of Examples 1-2, Reference Examples 1-2, and Comparative Example. Specifically, first, the dimensions in the thickness direction of the compressed wood of Examples 1-2, Reference Examples 1-2, and Comparative Example were measured. Next, the compressed wood of each example was immersed in boiling water for one hour. Then, the dimensions in the thickness direction of the compressed wood of each example after immersion were measured.
  • the thickness change rate of each example of compressed wood in the thickness direction was calculated from the following formula 2.
  • the dimensions of each example of compressed wood in the thickness direction before hot water immersion, the dimensions of each example of compressed wood in the thickness direction after hot water immersion, and the thickness change rate are shown in Table 3.
  • Table 3 also shows the dimensions of each example of compressed wood in the thickness direction before immersion in the impregnation liquid.
  • Thickness change rate in thickness direction (%) [(dimension in thickness direction after immersion) - (dimension in thickness direction before immersion)] / [dimension in thickness direction before immersion]
  • Figure 2 shows the relationship between the time of steam heating treatment and the thickness change rate of the test pieces for the compressed wood of the Examples, Reference Examples, and Comparative Examples. From Figure 2, it can be seen that the compressed wood of the Examples, which was impregnated with organic acid, had a significantly lower thickness change rate compared to the compressed wood of the Comparative Example, which was impregnated with water only. In particular, it can be seen that the thickness change rate is significantly reduced by impregnating with organic acid, even if the heating treatment time is as short as 30 minutes or less. This shows that by impregnating wood with organic acid, it is possible to carry out a fixation treatment to suppress springback in a shorter time than with conventional manufacturing methods.
  • the heat treatment temperature was 150°C, but it is easy to imagine that by increasing the heat treatment temperature, the reaction between the wood and the organic acid will be accelerated, allowing the fixation process to be completed in a shorter time.
  • the compression process was carried out at 200°C, and the preheating and holding times after compression were each 3 minutes.
  • the heating times after preheating and pressing are short, the wood will not dry sufficiently and various bonds will not be sufficiently formed, which may result in recovery in the thickness direction when released. For this reason, it is necessary to optimize the pressing temperature and time, and the release temperature according to the dimensions of the wood and the moisture content to be adjusted. Also, it is believed that fixation is progressing even during compression due to the impregnation with organic acid. For this reason, it is possible to design the fixation level by combining the heating process after release and the temperature and time of the compression process.
  • This disclosure provides a simple method for producing compressed wood that can suppress springback in compressed wood.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)

Abstract

A method for producing compressed wood, comprising an infiltration step in which an aqueous organic-acid solution containing an organic acid is pressurized and infiltrated into block-shaped wood having a thickness of 3 mm or larger, a drying step in which the wet wood impregnated with the aqueous organic-acid solution is dried, a compression step in which the dried wood is compressed, and a heating step in which the compressed wood is heated while being kept in the compressed state.

Description

圧縮木材の製造方法Manufacturing method of compressed wood
 本開示は、圧縮木材の製造方法に関する。 This disclosure relates to a method for producing compressed wood.
 スギやヒノキ等の針葉樹は、成長が早く入手しやすいことから、家具材料又は建材として利用されている。しかしながら、針葉樹は広葉樹に比べて軟質であって強度が低い。そのため、軟質の木材を圧縮変形することで高比重化し、主に表面硬度を向上させる技術が検討されている。そして、このような技術は、特にスギ材などの低比重で表面硬度が低い木材の利用範囲を拡大する技術として注目されている。 Coniferous trees such as cedar and cypress grow quickly and are easy to obtain, so they are used as furniture and building materials. However, coniferous trees are softer and less strong than hardwoods. For this reason, technology is being investigated that increases the specific gravity of soft wood by compressing and deforming it, primarily to improve the surface hardness. Such technology is attracting attention as a way to expand the range of uses for wood with a low specific gravity and low surface hardness, such as cedar.
 一方、木材を圧縮変形することにより得られる圧縮木材は、吸湿又は吸水により圧縮が回復し、圧縮前の状態に戻ることが知られている。このようなスプリングバックと呼ばれる回復現象を減少させる手法が、従来より検討されている。 On the other hand, it is known that compressed wood, which is obtained by compressing and deforming wood, recovers from compression by absorbing moisture or water, returning to its pre-compression state. Methods for reducing this recovery phenomenon, known as springback, have been investigated.
 非特許文献1では、スギ材を熱処理することにより、圧縮変形を永久固定する技術が開示されている。具体的には、非特許文献1では次のことが開示されている。まず、スギ辺材に対して水を減圧注入して、さらに95℃の熱水で加熱した後、熱板温度を105℃に設定したプレス機を用いて圧縮し、3時間熱板中で乾燥した。その後、得られた圧縮試験片を乾燥状態で保持し、温風乾燥機を用いて熱処理を行った。その結果、当該熱処理として180℃で20時間、200℃で5時間又は220℃で3時間の処理を行うことにより、圧縮木材のスプリングバックが減少し、圧縮形状がほぼ完全に固定することができた。 Non-Patent Document 1 discloses a technology for permanently fixing the compression deformation by heat treating cedar wood. Specifically, Non-Patent Document 1 discloses the following. First, water is injected under reduced pressure into the cedar sapwood, and then it is heated with hot water at 95°C. It is then compressed using a press with a hot plate temperature set to 105°C and dried in the hot plate for 3 hours. The obtained compressed test piece is then kept in a dry state and heat treated using a hot air dryer. As a result, the springback of the compressed wood was reduced and the compressed shape was almost completely fixed by performing the heat treatment at 180°C for 20 hours, 200°C for 5 hours, or 220°C for 3 hours.
 しかしながら、非特許文献1の手法では、木材を圧縮しつつ乾燥させた後に、高温かつ長時間の熱処理を行う必要がある。そのため、圧縮木材の製造コストを削減するために、低温及び/又は短時間での熱処理により、圧縮木材のスプリングバックを抑制する手法が求められていた。 However, the method described in Non-Patent Document 1 requires that the wood be compressed and dried, and then heat-treated at high temperature for a long period of time. Therefore, in order to reduce the manufacturing costs of compressed wood, there has been a demand for a method to suppress springback in compressed wood by heat-treating it at a low temperature and/or for a short period of time.
 本開示は、このような従来技術の有する課題に鑑みてなされたものである。そして、本開示の目的は、簡易な方法により、圧縮木材のスプリングバックを抑制することが可能な圧縮木材の製造方法を提供することにある。 This disclosure has been made in light of the problems inherent in the prior art. The purpose of this disclosure is to provide a method for manufacturing compressed wood that is capable of suppressing springback in compressed wood using a simple method.
 上記課題を解決するために、本開示の態様に係る圧縮木材の製造方法は、有機酸を含有する有機酸水溶液を、厚み3mm以上のブロック状の木材に加圧含浸させる含浸工程と、有機酸水溶液を含浸した湿潤状態の木材を乾燥させる乾燥工程と、乾燥させた木材を圧縮する圧縮工程と、圧縮させた前記木材を、圧縮状態を維持して加熱する加熱工程と、を含む。 In order to solve the above problems, the method for producing compressed wood according to the disclosed embodiment includes an impregnation step in which an organic acid aqueous solution containing an organic acid is pressurized and impregnated into a block-shaped piece of wood having a thickness of 3 mm or more, a drying step in which the wood in a wet state impregnated with the organic acid aqueous solution is dried, a compression step in which the dried wood is compressed, and a heating step in which the compressed wood is heated while maintaining the compressed state.
図1は、本実施形態に係る圧縮木材の製造方法の一例を示す説明図である。FIG. 1 is an explanatory diagram showing an example of a method for producing compressed wood according to the present embodiment. 図2は、実施例、参考例及び比較例の圧縮木材における水蒸気加熱処理時間と当該圧縮木材の厚み変化率との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the time of steam heating treatment and the rate of change in thickness of the compressed wood pieces of the Examples, Reference Examples, and Comparative Examples.
 以下、図面を用いて本実施形態に係る圧縮木材の製造方法について詳細に説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率と異なる場合がある。 The manufacturing method for compressed wood according to this embodiment will be described in detail below with reference to the drawings. Note that the dimensional proportions in the drawings have been exaggerated for the sake of explanation and may differ from the actual proportions.
[第一実施形態]
 本実施形態に係る圧縮木材の製造方法は、有機酸を含有する有機酸水溶液を、ブロック状の木材に含浸させる含浸工程と、有機酸水溶液を含浸した木材を乾燥させる乾燥工程とを有している。当該製造方法は、さらに、乾燥させた木材を圧縮する圧縮工程と、木材を圧縮状態のまま保持して加熱する加熱工程とを有している。
[First embodiment]
The method for producing compressed wood according to the present embodiment includes an impregnation step of impregnating a block of wood with an organic acid aqueous solution containing an organic acid, and a drying step of drying the wood impregnated with the organic acid aqueous solution. The method further includes a compression step of compressing the dried wood, and a heating step of heating the wood while maintaining it in a compressed state.
 図1の(a)は、本実施形態に係る圧縮木材の製造方法のフローを示している。本実施形態の製造方法では、第一の工程S1として、有機酸を含有する有機酸水溶液を、ブロック状の木材に含浸させる(含浸工程)。木材の形状は、ブロック状であればよく、例えば板状に加工されたものを例示することができる。 (a) in Figure 1 shows the flow of the method for producing compressed wood according to this embodiment. In the method for producing compressed wood according to this embodiment, the first step S1 is to impregnate a block of wood with an organic acid aqueous solution containing an organic acid (impregnation step). The shape of the wood may be block-like, and an example of the shape of the wood may be one processed into a board.
 板状の木材の厚みは3mm以上であることが好ましい。このような厚みを有する木材を後述のように処理することにより、厚みが数ミリである圧縮木材を得ることができる。厚みが数ミリの圧縮木材は、例えば合板の表面に貼付する表面材として好ましく用いることができる。なお、板状の木材の厚みは3mm以上であることが好ましく、10mm以上又は12mm以上としてもよい。板状の木材における厚みの上限は特に限定されないが、例えば40mmとすることができる。 The thickness of the plank-shaped wood is preferably 3 mm or more. By processing wood having such a thickness as described below, compressed wood having a thickness of several millimeters can be obtained. Compressed wood having a thickness of several millimeters can be preferably used as a surface material to be attached to the surface of plywood, for example. The thickness of the plank-shaped wood is preferably 3 mm or more, and may be 10 mm or more or 12 mm or more. There is no particular limit to the upper limit of the thickness of the plank-shaped wood, but it can be, for example, 40 mm.
 木材としては、床、壁、天井などの建材、造作部材、家具、工芸品などに使用される各種の樹種からなる木材を挙げることができる。木材の樹種は特に限定されないが、針葉樹だけでなく、広葉樹も用いることができる。具体的には、木材は、スギ、カラマツ、ベイマツ、ゴムの木、カバ、ブナ、ナラ、ビーチ、オーク、チーク、ハードメープル、チェリー、ウォールナット、ホワイトアッシュ、マホガニー及びイエローバーチからなる群より選ばれる少なくとも一つを用いることができる。これらの木材は高級感があり意匠性が高いことから、これらの木材を改質させることにより、建材、造作部材、家具、工芸品に好適に用いることができる。 Wood can be any of a variety of wood species used for building materials such as floors, walls, and ceilings, fixtures, furniture, and crafts. There are no particular limitations on the wood species, and not only conifers but also broadleaf trees can be used. Specifically, the wood can be at least one selected from the group consisting of cedar, larch, Douglas fir, rubber tree, birch, beech, oak, beech, oak, teak, hard maple, cherry, walnut, white ash, mahogany, and yellow birch. These wood species have a luxurious feel and are highly decorative, so by modifying these wood species, they can be suitably used for building materials, fixtures, furniture, and crafts.
 また、木材としては、主に日本をはじめ東南アジア等で短期間に大径木となる早生樹を使用することもできる。具体的には、木材は、センダン、チャンチンモドキ、ハンノキ、ユリノキ、ユーカリ、ポプラ、アカシアマンギウム及びファルカタからなる群より選ばれる少なくとも一つを用いることができる。 Furthermore, as for the wood, fast-growing trees that grow to large diameters in a short period of time, mainly found in Japan and Southeast Asia, etc., can be used. Specifically, the wood can be at least one selected from the group consisting of China chinaberry, Chinese lantern tree, alder, tulip tree, eucalyptus, poplar, Acacia mangium, and Falcata.
 木材は、含水率が高い生の状態であってもよく、含水率が低い乾燥状態であってもよい。木材の含水率が高い状態であっても、道管中の水分と有機酸水溶液とを置換することができるため、木材の内部に有機酸水溶液を含浸させることができる。なお、木材としては、人工的に乾燥釜などで乾燥させ、含水率を下げた人工乾燥材(KD材)を用いてもよい。この際、KD材の含水率は、7~25%とすることが好ましい。木材の含水率は、日本産業規格JIS Z2101(木材の試験方法)に基づき測定することができる。 Wood may be in a raw state with a high moisture content, or in a dried state with a low moisture content. Even when wood has a high moisture content, the moisture in the vessels can be replaced with an organic acid solution, so the wood can be impregnated with the organic acid solution. Artificially dried wood (KD wood), which has been artificially dried in a drying oven or the like to reduce its moisture content, may also be used. In this case, the moisture content of KD wood is preferably 7-25%. The moisture content of wood can be measured based on Japanese Industrial Standard JIS Z2101 (Testing methods for wood).
 上述の木材に含浸させる有機酸水溶液は、水に有機酸を溶解させることにより、調製することができる。有機酸としては、後述するように、有機酸水溶液を含浸させた木材を圧縮状態のまま加熱処理することにより、スプリングバックを抑制することが可能な有機化合物を用いることができる。具体的には、有機酸は、カルボン酸、スルホン酸及びスルフィン酸からなる群より選ばれる少なくとも一つであることが好ましい。 The organic acid aqueous solution to be impregnated into the wood can be prepared by dissolving the organic acid in water. As the organic acid, an organic compound that can suppress springback by heat treating the wood impregnated with the organic acid aqueous solution while it is in a compressed state, as described below, can be used. Specifically, the organic acid is preferably at least one selected from the group consisting of carboxylic acids, sulfonic acids, and sulfinic acids.
 有機酸は、カルボン酸であることが好ましく、2価以上のカルボン酸であることがより好ましい。カルボン酸を含浸した木材を圧縮状態のまま加熱処理した場合、木材の組成成分が変質しやすくなるため、木材の改質をより促進することが可能となる。 The organic acid is preferably a carboxylic acid, and more preferably a divalent or higher carboxylic acid. When wood impregnated with a carboxylic acid is heat-treated while in a compressed state, the compositional components of the wood are more likely to change, which makes it possible to further promote the modification of the wood.
 カルボン酸は、クエン酸、酒石酸、リンゴ酸、コハク酸、シュウ酸、アジピン酸、マロン酸、フタル酸、セバシン酸、マレイン酸、フマル酸、イタコン酸、グルタル酸(1,5-ペンタン二酸)、グルコン酸、グルタコン酸、ペンテン二酸からなる群より選ばれる少なくとも一つであることが好ましい。また、カルボン酸は、クエン酸、リンゴ酸及びコハク酸からなる群より選ばれる少なくとも一つであることがより好ましい。クエン酸、リンゴ酸及びコハク酸を用いることにより、低温及び/又は短時間での加熱処理により圧縮木材を得ることができる。さらに、これらのカルボン酸は、天然由来の材料から得ることができるため、環境負荷を低減することが可能となる。 The carboxylic acid is preferably at least one selected from the group consisting of citric acid, tartaric acid, malic acid, succinic acid, oxalic acid, adipic acid, malonic acid, phthalic acid, sebacic acid, maleic acid, fumaric acid, itaconic acid, glutaric acid (1,5-pentanedioic acid), gluconic acid, glutaconic acid, and pentenedioic acid. The carboxylic acid is more preferably at least one selected from the group consisting of citric acid, malic acid, and succinic acid. By using citric acid, malic acid, and succinic acid, compressed wood can be obtained by low-temperature and/or short-time heat treatment. Furthermore, these carboxylic acids can be obtained from naturally occurring materials, which makes it possible to reduce the environmental impact.
 有機酸水溶液において、有機酸の含有量は3~30質量%であることが好ましく、3~20質量%であることがより好ましく、3~10質量%であることがさらに好ましい。有機酸水溶液における有機酸の含有量がこの範囲内であることにより、木材に有機酸が浸透しやすくなるため、有機酸による圧縮木材の固定化効果を得ることができる。 In the organic acid aqueous solution, the organic acid content is preferably 3 to 30% by mass, more preferably 3 to 20% by mass, and even more preferably 3 to 10% by mass. When the organic acid content in the organic acid aqueous solution is within this range, the organic acid can easily penetrate the wood, and the organic acid can have a fixing effect on the compressed wood.
 第二実施形態で説明するように、有機酸水溶液に糖類を添加することにより、木材に対して有機酸と糖類の両方を含浸させてもよい。ただ、木材に有機酸のみを含浸させた後に圧縮状態のまま加熱することにより、圧縮木材が固定化され、スプリングバックを十分に抑制することができる。そのため、有機酸水溶液は少なくとも有機酸を含んでいればよく、糖類を含まなくてもよい。 As described in the second embodiment, the wood may be impregnated with both the organic acid and the sugar by adding sugar to the organic acid aqueous solution. However, by impregnating the wood with only the organic acid and then heating it in a compressed state, the compressed wood is fixed and springback can be sufficiently suppressed. Therefore, the organic acid aqueous solution needs to contain at least an organic acid and does not need to contain sugar.
 有機酸は水への溶解性が高いため、有機酸水溶液は有機溶剤を含まなくてもよい。有機酸水溶液が有機溶剤を含まないことにより、環境負荷を低減し、人体への安全性を高めることができる。 Since organic acids are highly soluble in water, the organic acid aqueous solution does not need to contain an organic solvent. By not including an organic solvent in the organic acid aqueous solution, the environmental burden can be reduced and safety for the human body can be increased.
 有機酸水溶液をブロック状の木材に含浸させる方法は、特に限定されない。例えば、木材を有機酸水溶液に浸漬して放置することにより、木材に有機酸水溶液を含浸させることができる。なお、木材に対する有機酸水溶液の含浸を早めるために、有機酸水溶液を満たした耐圧容器に木材を投入して加圧することが好ましい。この際、加圧する圧力は特に限定されないが、例えば0.3~10.0MPaとすることが好ましい。 There are no particular limitations on the method for impregnating a block of wood with the organic acid aqueous solution. For example, wood can be impregnated with the organic acid aqueous solution by immersing the wood in the organic acid aqueous solution and leaving it to stand. In order to speed up the impregnation of the wood with the organic acid aqueous solution, it is preferable to place the wood in a pressure-resistant container filled with the organic acid aqueous solution and pressurize it. In this case, the pressure to be applied is not particularly limited, but it is preferable to set it to, for example, 0.3 to 10.0 MPa.
 木材に対して有機酸水溶液を含浸させる際、有機酸水溶液の温度は特に限定されないが、例えば80℃以下とすることが好ましい。また、有機酸水溶液の温度は常温とすることもできる。 When impregnating wood with an organic acid aqueous solution, the temperature of the organic acid aqueous solution is not particularly limited, but it is preferable to set it to, for example, 80°C or lower. The temperature of the organic acid aqueous solution can also be room temperature.
 木材に対する有機酸水溶液の含浸を早めるために、耐圧容器に木材を投入した状態で減圧して、木材の内部の空気を除去した後に、木材を有機酸水溶液に浸漬してもよい。これにより、木材の道管の内部に有機酸水溶液が浸透しやすくなるため、木材に有機酸水溶液をすばやく含浸させることができる。 In order to speed up the impregnation of wood with the organic acid solution, the wood can be placed in a pressure-resistant container, the pressure reduced, the air inside the wood removed, and then the wood immersed in the organic acid solution. This allows the organic acid solution to easily penetrate into the vessels inside the wood, allowing the organic acid solution to be quickly impregnated into the wood.
 ここで、ブロック状の木材に有機酸水溶液を含浸させる際、有機酸水溶液は、木材の全体、つまり木材の中心部まで含浸していることが好ましい。これにより、有機酸の作用により、木材の中心部まで改質することができる。ただ、必ずしも木材の中心部に有機酸水溶液を含浸させる必要はなく、少なくとも木材を改質させる部位に有機酸水溶液を含浸させればよい。 When impregnating a block of wood with the organic acid aqueous solution, it is preferable that the entire wood, that is, the center of the wood, is impregnated with the organic acid aqueous solution. This allows the action of the organic acid to modify the wood up to the center. However, it is not necessary to impregnate the center of the wood with the organic acid aqueous solution, and it is sufficient to impregnate at least the part of the wood that is to be modified with the organic acid aqueous solution.
 本実施形態の製造方法では、第二の工程S2として、有機酸水溶液を含浸させた湿潤状態の木材を乾燥させて、木材内部の余分な水分を除去する(乾燥工程)。乾燥条件は特に限定されないが、例えば自然乾燥とすることができる。また、加熱して乾燥させてもよく、例えば80℃以下、好ましくは70℃以下、より好ましくは60℃以下の温度で乾燥させてもよい。さらに、乾燥雰囲気も特に限定されず、例えば大気下で乾燥させてもよい。また、乾燥雰囲気における湿度を徐々に低下させながら、木材内部の水分を除去してもよい。 In the manufacturing method of this embodiment, in the second step S2, the wood in a wet state impregnated with the organic acid aqueous solution is dried to remove excess moisture from inside the wood (drying step). The drying conditions are not particularly limited, but for example, natural drying can be used. The wood may also be dried by heating, for example at a temperature of 80°C or less, preferably 70°C or less, and more preferably 60°C or less. Furthermore, the drying atmosphere is not particularly limited, and for example, drying may be performed in the air. The moisture inside the wood may also be removed by gradually decreasing the humidity in the drying atmosphere.
 乾燥工程について、より詳細に説明する。乾燥工程は、上述のように自然乾燥でもよいが、乾燥装置を用いて木材に乾燥処理を施してもよい。このような乾燥装置としては、乾燥装置内の加熱管に蒸気を供給して乾燥装置内の温度を段階的に上昇させながら、乾燥装置内の湿度(相対湿度)を段階的に低下させるように制御される蒸気式乾燥装置を挙げることができる。また、乾燥装置としては、ヒートポンプ式の除湿機を設けた除湿式乾燥装置、減圧と加熱によって乾燥する減圧式乾燥装置などを用いてもよい。乾燥する際には、熱風や輻射式ヒータを用いてもよい。 The drying process will now be described in more detail. The drying process may be natural drying as described above, but the wood may also be dried using a drying device. An example of such a drying device is a steam drying device that supplies steam to a heating tube in the drying device to gradually increase the temperature inside the drying device while gradually decreasing the humidity (relative humidity) inside the drying device. Other drying devices that may be used include a dehumidifying drying device equipped with a heat pump dehumidifier, and a reduced pressure drying device that dries by reducing pressure and heating. Hot air or a radiant heater may be used when drying.
 乾燥工程により乾燥させた木材の含水率は特に限定されないが、例えば30%以下とすることができる。また、乾燥させた木材の含水率は、20%以下としてもよく、15%以下としてもよい。乾燥させた木材の含水率の下限は特に限定されないが、1%としてもよく、5%としてもよい。なお、木材の含水率は、JIS Z2101に基づき測定することができる。 The moisture content of wood dried by the drying process is not particularly limited, but can be, for example, 30% or less. The moisture content of dried wood may also be 20% or less, or 15% or less. The lower limit of the moisture content of dried wood is not particularly limited, but may be 1% or 5%. The moisture content of wood can be measured based on JIS Z2101.
 ここで、有機酸は木材内部の微小空間に留まるため、乾燥時における木材の収縮を抑制し、寸法安定性を高めることができる。そのため、有機酸水溶液を含浸させた木材を上述のように乾燥させても、木材の変形や割れを抑制することができる。 Here, the organic acid remains in the tiny spaces inside the wood, which helps prevent the wood from shrinking when it dries and improves its dimensional stability. Therefore, even if wood impregnated with an aqueous organic acid solution is dried as described above, deformation and cracking of the wood can be prevented.
 本実施形態の製造方法では、第三の工程S3として、乾燥させた木材を圧縮する(圧縮工程)。圧縮する方法は特に限定されず、例えば治具で木材を挟持した後に、木材を圧縮してもよい。具体的には、図1の(b)及び(c)に示すように、例えば一対の金属板10で木材1を挟み込んだ後、金属板10を上下方向から加圧することにより、木材1を圧縮することができる。なお、木材を圧縮する圧縮装置としては、平板を用いたプレス装置に限定されず、一対のロール間に木材を通して木材を連続的に圧縮するロールプレス装置も用いることができる。 In the manufacturing method of this embodiment, the dried wood is compressed in the third step S3 (compression step). The compression method is not particularly limited, and for example, the wood may be compressed after being clamped in a jig. Specifically, as shown in (b) and (c) of FIG. 1, for example, the wood 1 can be compressed by clamping the wood 1 between a pair of metal plates 10 and then applying pressure to the metal plates 10 from above and below. Note that the compression device for compressing the wood is not limited to a press device using flat plates, and a roll press device that continuously compresses the wood by passing it between a pair of rolls can also be used.
 乾燥させた木材を圧縮する際、圧縮率は特に限定されないが、30%以上とすることができ、50%以上とすることもできる。圧縮率の上限は特に限定されないが、例えば70%とすることができる。なお、本明細書において、圧縮率は数式1で算出される値である。
 [数1]
 圧縮率(%)=[(圧縮前の木材の厚みT1)-(圧縮後の木材の厚みT2)]/[圧縮前の木材の厚みT1]
When compressing the dried wood, the compression ratio is not particularly limited, but may be 30% or more, or may be 50% or more. The upper limit of the compression ratio is not particularly limited, but may be, for example, 70%. In this specification, the compression ratio is a value calculated by Equation 1.
[Equation 1]
Compression rate (%) = [(thickness of wood before compression T1) - (thickness of wood after compression T2)] / [thickness of wood before compression T1]
 木材の圧縮は大気下で行うことができる。また、木材を圧縮する際の温度は特に限定されない。木材を常温で圧縮してもよく、木材を加熱しながら圧縮してもよい。具体的には、治具である金属板10を加熱しながら木材1を圧縮してもよい。木材を加熱しながら圧縮する際の加熱温度も特に限定されず、例えば100℃以上250℃以下とすることができる。木材を加熱しながら圧縮することにより木材を軟化させることができるため、圧縮工程を容易に行うことができる。 The wood can be compressed in the atmosphere. The temperature at which the wood is compressed is not particularly limited. The wood may be compressed at room temperature, or the wood may be compressed while being heated. Specifically, the wood 1 may be compressed while the metal plate 10, which serves as the jig, is heated. The heating temperature at which the wood is compressed while being heated is also not particularly limited, and can be, for example, 100°C or higher and 250°C or lower. Compressing the wood while heating it can soften the wood, making the compression process easier.
 本実施形態の製造方法では、第四の工程S4として、第三の工程S3で圧縮させた木材を、圧縮状態を維持して加熱する(加熱工程)。具体的には、固定治具である一対の平板(金属板10)の間に圧縮した木材1を挟持した後、連結具を用いて一対の平板同士を連結することにより、木材1を圧縮させた状態で保持する。この際、木材の圧縮率は、上述と同様に30%以上70%以下とすることができる。なお、連結具は特に限定されないが、例えばボルトとナットを用いることができる。そして、図1の(d)に示すように、加熱装置20を用いて固定治具と共に木材1を加熱する。 In the manufacturing method of this embodiment, in the fourth step S4, the wood compressed in the third step S3 is heated while maintaining the compressed state (heating step). Specifically, the compressed wood 1 is sandwiched between a pair of flat plates (metal plates 10) that serve as a fixing jig, and then the pair of flat plates are connected to each other using a connecting device, thereby maintaining the wood 1 in a compressed state. At this time, the compression rate of the wood can be 30% or more and 70% or less, as described above. Note that the connecting device is not particularly limited, and for example, a bolt and nut can be used. Then, as shown in FIG. 1(d), the wood 1 is heated together with the fixing jig using a heating device 20.
 圧縮状態の木材を加熱処理する際の加熱雰囲気は、空気下、水蒸気雰囲気又は不活性雰囲気とすることができる。不活性雰囲気は、酸素濃度を低減した雰囲気であり、例えば、窒素ガス雰囲気又は過熱水蒸気雰囲気とすることができる。過熱水蒸気は、飽和水蒸気を加熱したガスであることから、酸素を殆ど含有していない。ただ、圧縮状態の木材を加熱処理する際の加熱雰囲気は、水蒸気雰囲気とすることが好ましく、飽和水蒸気雰囲気とすることがより好ましい。加熱処理を水蒸気雰囲気下で行うことにより、木材と有機酸との反応が促進されるため、短時間でスプリングバック抑制のための固定化を行うことができる。 The heating atmosphere when heat treating compressed wood can be air, a water vapor atmosphere, or an inert atmosphere. The inert atmosphere is an atmosphere with a reduced oxygen concentration, and can be, for example, a nitrogen gas atmosphere or a superheated water vapor atmosphere. Superheated water vapor is a gas obtained by heating saturated water vapor, and therefore contains almost no oxygen. However, the heating atmosphere when heat treating compressed wood is preferably a water vapor atmosphere, and more preferably a saturated water vapor atmosphere. By carrying out the heat treatment in a water vapor atmosphere, the reaction between the wood and the organic acid is promoted, and fixation to suppress springback can be achieved in a short period of time.
 圧縮状態の木材を加熱処理する際の温度は、木材が固定化される温度とすることが好ましい。具体的には、当該加熱温度は130℃以上250℃以下とすることが好ましく、150℃以上220℃以下とすることがより好ましい。 The temperature at which the compressed wood is heated is preferably set to a temperature at which the wood is fixed. Specifically, the heating temperature is preferably set to 130°C or higher and 250°C or lower, and more preferably 150°C or higher and 220°C or lower.
 圧縮状態の木材を加熱処理する際の加熱時間は木材の種類及び大きさ、木材に含浸した有機酸の量、並びに加熱温度及び加熱雰囲気により調整することができるため、特に限定されないが、例えば1分~24時間とすることができる。なお、加熱雰囲気が空気下である場合には、2時間~24時間とすることが好ましい。また、加熱雰囲気が水蒸気雰囲気である場合には、1分~3時間とすることが好ましい。 The heating time when heat treating compressed wood can be adjusted depending on the type and size of the wood, the amount of organic acid impregnated into the wood, and the heating temperature and heating atmosphere, so it is not particularly limited, but can be, for example, 1 minute to 24 hours. If the heating atmosphere is air, it is preferably 2 hours to 24 hours. If the heating atmosphere is a water vapor atmosphere, it is preferably 1 minute to 3 hours.
 そして、木材を圧縮状態のまま加熱した後、固定治具から取り外すことにより、本実施形態の圧縮木材を得ることができる。このようにして得られた圧縮木材は、吸湿及び吸水した場合でもスプリングバックが抑制されるため、高密度化して表面硬度が向上した状態を長期間に亘って維持することができる。 Then, the wood is heated while still in a compressed state, and then removed from the fixture to obtain the compressed wood of this embodiment. The compressed wood obtained in this manner is able to maintain its high density and improved surface hardness for a long period of time, since springback is suppressed even when the wood absorbs moisture and water.
 上述のように、圧縮状態の木材を加熱処理する際の加熱雰囲気は、空気下、水蒸気雰囲気又は不活性雰囲気とすることができる。そして、水蒸気雰囲気で加熱処理する場合、圧縮状態の木材1が加熱処理中に水分を吸収してスプリングバックしてしまうことを抑制するために、固定治具で木材1を挟持した状態で加熱する。ただ、空気下及び窒素ガス雰囲気のような乾燥状態で加熱処理する場合、木材1は加熱処理中に水分を吸収することが少なく、スプリングバックし難い。そのため、乾燥状態で加熱処理する場合には、固定治具で木材1を挟持した状態で加熱してもよく、固定治具で木材1を挟持しない状態で加熱処理してもよい。なお、過熱水蒸気雰囲気で加熱処理する場合、加熱処理の初期に結露水が木材1に付着する可能性があるため、固定治具で木材1を挟持した状態で加熱することが好ましい。ただし、加熱装置を事前に加温するなどして結露水を発生し難い状態にした場合には、固定治具で木材1を挟持しない状態で加熱処理することができる。 As described above, the heating atmosphere when heat-treating the compressed wood can be air, steam, or an inert atmosphere. When heat-treating in a steam atmosphere, the wood 1 is heated while clamped by a fixture to prevent the compressed wood 1 from absorbing moisture during heat-treating and springing back. However, when heat-treating in a dry state such as air or a nitrogen gas atmosphere, the wood 1 absorbs less moisture during heat-treating and is less likely to spring back. Therefore, when heat-treating in a dry state, the wood 1 may be heated while clamped by a fixture, or may be heated without clamping the wood 1 by a fixture. When heat-treating in a superheated steam atmosphere, condensed water may adhere to the wood 1 at the beginning of the heat-treating, so it is preferable to heat the wood 1 while clamping it by a fixture. However, if the heating device is preheated to a state where condensed water is unlikely to be generated, the wood 1 may be heat-treated without being clamped by a fixture.
 本実施形態の製造方法により、圧縮木材のスプリングバックが抑制されて固定化される理由は必ずしも明確ではないが、次のメカニズムが考えられる。なお、本実施形態の技術的範囲は、このようなメカニズムによって効果が発現する実施態様に限定されない。 The reason why the manufacturing method of this embodiment suppresses and stabilizes the springback of compressed wood is not entirely clear, but the following mechanism is thought to be the cause. Note that the technical scope of this embodiment is not limited to embodiments in which the effect is achieved by such a mechanism.
 まず、圧縮木材の吸湿及び/又は吸水によるスプリングバックについて説明する。従来の圧縮木材は、木材に圧縮方向の外力を加えて変形した状態で乾燥させることにより得ている。この際に、細胞壁内及び細胞壁間に水素結合が形成されるため、外力を除荷した時点では、元の厚みに戻り難い状態にすることができる。一方で、この状態では、細胞壁内及び細胞壁間を水素結合により保持しているため、吸湿及び/又は吸水により水素結合が切断されてしまい、木材が元の厚みに戻ってしまうスプリングバックが発生する。これはつまり、木材を圧縮変形させた際に、変形した細胞は元に戻ろうとする復元力(残留応力)が残っている状態ではあるものの、これを水素結合で抑えている状態であると考えられる。 First, we will explain springback caused by moisture and/or water absorption in compressed wood. Conventional compressed wood is obtained by applying an external force in the compressive direction to wood and drying it in a deformed state. During this process, hydrogen bonds are formed within and between the cell walls, making it difficult for the wood to return to its original thickness when the external force is removed. However, in this state, hydrogen bonds are held within and between the cell walls, so moisture and/or water absorption breaks the hydrogen bonds, causing springback, which causes the wood to return to its original thickness. In other words, when wood is compressed and deformed, the deformed cells still have a restoring force (residual stress) that tries to return to their original state, but this is suppressed by hydrogen bonds.
 これに対し、非特許文献2で述べられているように、熱処理(乾燥状態での高温処理)又は水蒸気処理を行うことで、圧縮木材の吸湿及び/又は吸水による回復を抑制する効果(固定化)が確認されている。この現象に関してメカニズムは明確ではないが、次のように推測される。木材は高温処理により、ヘミセルロースやセルロースの非結晶領域の分解反応が起こることが知られている。圧縮状態で上記熱処理を行うことで、木材の構成成分が分解され、上述した木材の細胞が元に戻ろうとする復元力が低下するために、吸湿及び/又は吸水時の復元が抑制されると推測される。また、非特許文献3で述べられているように、木材の固定化では、水蒸気処理の方が乾燥状態での高温熱処理に比べて、短時間で効果が生じることが知られている。これは、木材は、水が存在している方が分解反応が進行しやすいことに加え、水蒸気処理によって架橋結合が形成やすくなると考えられる。 In response to this, as described in Non-Patent Document 2, it has been confirmed that heat treatment (high-temperature treatment in a dry state) or steam treatment has the effect of suppressing the recovery of compressed wood due to moisture absorption and/or water absorption (fixation). The mechanism of this phenomenon is not clear, but it is speculated as follows. It is known that high-temperature treatment of wood causes a decomposition reaction of the amorphous regions of hemicellulose and cellulose. It is speculated that the above-mentioned heat treatment in a compressed state decomposes the components of wood, reducing the restoring force of the above-mentioned wood cells to return to their original state, thereby suppressing the recovery during moisture absorption and/or water absorption. In addition, as described in Non-Patent Document 3, it is known that steam treatment is effective in fixing wood in a shorter time than high-temperature heat treatment in a dry state. This is thought to be because the decomposition reaction of wood is more likely to proceed in the presence of water, and steam treatment makes it easier to form cross-links.
 本実施形態では、有機酸が上記のような熱処理による分解を促進しつつ、さらに有機酸が木材内で架橋結合するため、圧縮木材の固定化をより短縮化していると推測される。
[非特許文献2]Inoue M, Norimoto M, Tanahashi M, Rowell R.M., Steam or heat fixation of compressed wood,Wood and Fiber Science,25(3), (1993) pp.224-235
[非特許文献3]東原貴志著、「水蒸気処理による圧縮木材の変形固定とその機構」、林木育種センター研究報告、林野庁林木育種センター、2007年、第23号、p.255-308
In this embodiment, it is presumed that the organic acid promotes decomposition by the heat treatment as described above, and further cross-links the wood, thereby shortening the time required for fixation of the compressed wood.
[Non-Patent Document 2] Inoue M, Norimoto M, Tanahashi M, Rowell RM, Steam or heat fixation of compressed wood, Wood and Fiber Science, 25(3), (1993) pp.224-235
[Non-Patent Document 3] Takashi Higashihara, "Deformation fixation of compressed wood by steam treatment and its mechanism," Forest Tree Breeding Center Research Report, Forestry Agency Forest Tree Breeding Center, 2007, No. 23, pp. 255-308
 このように、本実施形態の圧縮木材の製造方法は、有機酸を含有する有機酸水溶液を、厚み3mm以上のブロック状の木材に加圧含浸させる含浸工程を含む。当該製造方法は、さらに、有機酸水溶液を含浸した湿潤状態の木材を乾燥させる乾燥工程と、乾燥させた木材を圧縮する圧縮工程と、圧縮させた木材を、圧縮状態を維持して加熱する加熱工程とを含む。本実施形態の製造方法では、有機酸を含んだ木材を圧縮状態のまま加熱しているため、低温及び/又は短時間の処理により、スプリングバックを抑制することが可能な圧縮木材を得ることができる。さらに、得られた圧縮木材は、高密度化しており、さらに表面硬度も向上している。また、圧縮木材の内部に残存している有機酸は、食品添加物などに多く使用され、安全性が高い。そのため、当該圧縮木材は、各種建材(床、壁、天井、造作部材等)、家具、工芸品など、様々な用途に好適に用いることができる。また、圧縮木材を基材に接着することにより、各種製品の表面材として使用することもできる。 In this way, the method for producing compressed wood of this embodiment includes an impregnation step in which an organic acid aqueous solution containing an organic acid is pressurized and impregnated into a block-shaped piece of wood having a thickness of 3 mm or more. The method further includes a drying step in which the wood in a wet state impregnated with the organic acid aqueous solution is dried, a compression step in which the dried wood is compressed, and a heating step in which the compressed wood is heated while maintained in a compressed state. In the method for producing compressed wood of this embodiment, the wood containing an organic acid is heated while still in a compressed state, so that compressed wood capable of suppressing springback can be obtained by low-temperature and/or short-time treatment. Furthermore, the obtained compressed wood has high density and also has improved surface hardness. In addition, the organic acid remaining inside the compressed wood is often used as a food additive, and is highly safe. Therefore, the compressed wood can be suitably used for various applications such as various building materials (floors, walls, ceilings, fittings, etc.), furniture, and crafts. In addition, the compressed wood can be used as a surface material for various products by adhering it to a substrate.
[第二実施形態]
 次に、第二実施形態に係る圧縮木材の製造方法について、詳細に説明する。なお、第一実施形態と重複する説明は省略する。
[Second embodiment]
Next, a method for producing compressed wood material according to a second embodiment will be described in detail. Note that the description overlapping with the first embodiment will be omitted.
 本実施形態の製造方法は、有機酸及び糖類を含有する有機酸水溶液を、ブロック状の木材に含浸させる含浸工程と、有機酸水溶液を含浸した木材を乾燥させる乾燥工程とを有している。当該製造方法は、さらに、乾燥させた木材を圧縮する圧縮工程と、木材を圧縮状態のまま保持して加熱する加熱工程とを有している。 The manufacturing method of this embodiment includes an impregnation step in which an organic acid aqueous solution containing an organic acid and a sugar is impregnated into a block of wood, and a drying step in which the wood impregnated with the organic acid aqueous solution is dried. The manufacturing method further includes a compression step in which the dried wood is compressed, and a heating step in which the wood is heated while being kept in a compressed state.
 第一実施形態の製造方法では、木材に有機酸のみを含浸させた後に圧縮状態のまま加熱することにより、スプリングバックが抑制された圧縮木材を得ている。ただ、本実施形態では、木材に有機酸と糖類を含浸させた後に圧縮状態のまま加熱するため、スプリングバックを抑制しつつも硬度がより高められた圧縮木材を得ることができる。 In the manufacturing method of the first embodiment, compressed wood with reduced springback is obtained by impregnating the wood with only organic acid and then heating it in a compressed state. However, in this embodiment, compressed wood with reduced springback and increased hardness is obtained because the wood is impregnated with organic acid and sugars and then heated in a compressed state.
 本実施形態の製造方法では、第一の工程S1として、有機酸及び糖類を含有する有機酸水溶液を、ブロック状の木材に含浸させる。木材の形状、厚み及び樹種は、第一実施形態で説明したものと同じとすることができる。また、有機酸の種類及び有機酸水溶液における有機酸の含有量も第一実施形態で説明したものと同じとすることができる。 In the manufacturing method of this embodiment, in the first step S1, an organic acid aqueous solution containing an organic acid and a sugar is impregnated into a block of wood. The shape, thickness, and species of the wood can be the same as those described in the first embodiment. In addition, the type of organic acid and the content of the organic acid in the organic acid aqueous solution can also be the same as those described in the first embodiment.
 木材に含浸させる有機酸水溶液は、水に有機酸及び糖類を溶解させることにより、調製することができる。糖類は、単糖、二糖、オリゴ糖及び多糖からなる群より選ばれる少なくとも一つを用いることができる。単糖としては、フルクトース、キシロース、リボース、アラビノース、ラムノース、キシルロース、デオキシリボース等が挙げられる。二糖としては、スクロース、マルトース、トレハロース、ツラノース、ラクツロース、マルツロース、パラチノース、ゲンチオビウロース、メリビウロース、ガラクトスクロース、ルチヌロース、プランテオビオース等が挙げられる。オリゴ糖としては、フラクトオリゴ糖、ガラクトオリゴ糖、マンナンオリゴ糖、スタキオース等が挙げられる。多糖としては、デンプン、アガロース、アルギン酸、グルコマンナン、イヌリン、キチン、キトサン、ヒアルロン酸、グリコーゲン、セルロース等が挙げられる。 The organic acid aqueous solution to be impregnated into wood can be prepared by dissolving an organic acid and a sugar in water. The sugar can be at least one selected from the group consisting of monosaccharides, disaccharides, oligosaccharides, and polysaccharides. Examples of monosaccharides include fructose, xylose, ribose, arabinose, rhamnose, xylulose, and deoxyribose. Examples of disaccharides include sucrose, maltose, trehalose, turanose, lactulose, maltulose, palatinose, gentiobiulose, melibiulose, galactosucrose, rutinulose, and planteobiose. Examples of oligosaccharides include fructooligosaccharides, galtooligosaccharides, mannanoligosaccharides, and stachyose. Examples of polysaccharides include starch, agarose, alginic acid, glucomannan, inulin, chitin, chitosan, hyaluronic acid, glycogen, and cellulose.
 ここで、糖類は、フルクトース、マルトース、キシロース及びスクロースからなる群より選ばれる少なくとも一つであることが好ましい。これらの糖類は入手が容易であり、さらに圧縮木材の強度をより高めることが可能となる。 Here, the sugar is preferably at least one selected from the group consisting of fructose, maltose, xylose, and sucrose. These sugars are easy to obtain and can further increase the strength of the compressed wood.
 有機酸水溶液において、糖類の含有量は3~30質量%であることが好ましく、3~20質量%であることがより好ましく、3~10質量%であることがさらに好ましい。有機酸水溶液における糖類の含有量がこの範囲内であることにより、木材に糖類が浸透しやすくなるため、圧縮木材の強度向上効果を得ることができる。 In the organic acid aqueous solution, the sugar content is preferably 3 to 30% by mass, more preferably 3 to 20% by mass, and even more preferably 3 to 10% by mass. By having the sugar content in the organic acid aqueous solution within this range, the sugars can easily penetrate the wood, thereby improving the strength of the compressed wood.
 本実施形態の製造方法では、第二の工程S2として、有機酸水溶液を含浸させた湿潤状態の木材を乾燥させて、木材内部の余分な水分を除去する。さらに、第三の工程S3として、乾燥させた木材を圧縮する。そして、第四の工程S4として、圧縮させた木材を圧縮状態のまま保持して加熱する。これら第二~第四の工程は、第一実施形態と同じように行うことができる。 In the manufacturing method of this embodiment, in the second step S2, the wet wood impregnated with the organic acid aqueous solution is dried to remove excess moisture from inside the wood. Furthermore, in the third step S3, the dried wood is compressed. Then, in the fourth step S4, the compressed wood is heated while kept in the compressed state. These second to fourth steps can be carried out in the same way as in the first embodiment.
 本実施形態の製造方法により得られた圧縮木材は、有機酸の効果により、吸湿及び吸水した場合でもスプリングバックが抑制されるため、高密度化して表面硬度が向上した状態を長期間に亘って維持することができる。さらに、糖類は、水分子の代わりに木材の細胞壁中の微小空隙に入り込んで充填され、乾燥時においても蒸発することなく当該微小空隙に留まることができる。そして、糖類によって細胞壁を膨潤状態に維持できることから、いわゆる「かさ効果」によって、乾燥工程における木材の収縮を抑制することができる。また、有機酸及び糖類は、セルロースの繊維間に侵入して、木材に柔軟性を付与する効果もあると考えられる。そのため、本実施形態の圧縮木材は、一般的な圧縮木材に比べて粘りを維持し、機械的強度を高めることが可能となると考えられる。 The compressed wood obtained by the manufacturing method of this embodiment is able to maintain a high density and improved surface hardness for a long period of time because the organic acid prevents springback even when the wood absorbs moisture and water. Furthermore, sugars fill the microvoids in the cell walls of the wood instead of water molecules, and can remain in the microvoids without evaporating even when drying. Since the sugars can keep the cell walls in a swollen state, the so-called "bulk effect" can prevent the wood from shrinking during the drying process. It is also believed that the organic acid and sugars penetrate between the cellulose fibers and give the wood flexibility. Therefore, it is believed that the compressed wood of this embodiment can maintain its toughness and increase its mechanical strength compared to general compressed wood.
 このように、本実施形態の圧縮木材の製造方法は、有機酸及び糖類を含有する有機酸水溶液を、厚み3mm以上のブロック状の木材に加圧含浸させる含浸工程を含む。当該製造方法は、さらに、有機酸水溶液を含浸した湿潤状態の木材を乾燥させる乾燥工程と、乾燥させた木材を圧縮する圧縮工程と、圧縮させた木材を、圧縮状態を維持して加熱する加熱工程とを含む。本実施形態の製造方法も、第一実施形態と同様に、有機酸を含んだ木材を圧縮状態のままで加熱しているため、低温及び/又は短時間の処理により、スプリングバックを抑制することが可能な圧縮木材を得ることができる。さらに、得られた圧縮木材は、高密度化して表面硬度が向上しており、さらに糖類の効果により機械的強度も向上している。そのため、当該圧縮木材は、例えば、建材、造作部材、家具、工芸品、表面材など、様々な用途に好適に用いることができる。 In this way, the method for producing compressed wood of this embodiment includes an impregnation step in which an organic acid aqueous solution containing an organic acid and sugars is pressurized and impregnated into a block-shaped piece of wood having a thickness of 3 mm or more. The method further includes a drying step in which the wood in a wet state impregnated with the organic acid aqueous solution is dried, a compression step in which the dried wood is compressed, and a heating step in which the compressed wood is heated while maintained in a compressed state. As in the first embodiment, the method for producing compressed wood of this embodiment also heats wood containing an organic acid while it is in a compressed state, so that compressed wood capable of suppressing springback can be obtained by low-temperature and/or short-time treatment. Furthermore, the obtained compressed wood has a high density and improved surface hardness, and furthermore, the mechanical strength is improved due to the effect of the sugars. Therefore, the compressed wood can be suitably used for various purposes such as building materials, fittings, furniture, crafts, and surface materials.
[付記]
 以上の実施の形態の記載により、下記の技術が開示される。
[Additional Notes]
The above description of the embodiments discloses the following techniques.
(技術1)有機酸を含有する有機酸水溶液を、厚み3mm以上のブロック状の木材に加圧含浸させる含浸工程と、
 前記有機酸水溶液を含浸した湿潤状態の前記木材を乾燥させる乾燥工程と、
 乾燥させた前記木材を圧縮する圧縮工程と、
 圧縮させた前記木材を、圧縮状態を維持して加熱する加熱工程と、
を含む、圧縮木材の製造方法。
(Technology 1) An impregnation step in which an organic acid aqueous solution containing an organic acid is pressurized and impregnated into a block-shaped wood having a thickness of 3 mm or more;
a drying step of drying the wood in a wet state impregnated with the organic acid aqueous solution;
a compressing step of compressing the dried wood;
A heating step of heating the compressed wood while maintaining the compressed state;
A method for producing compressed wood, comprising:
 この構成により、低温及び/又は短時間の処理により、スプリングバックが抑制された圧縮木材を得ることができる。そして、このようにして得られた圧縮木材は、吸湿及び吸水した場合でもスプリングバックが抑制されるため、高密度化して表面硬度が向上した状態を長期間に亘って維持することができる。よって、当該圧縮木材は、建材、造作部材、家具、工芸品、表面材など、様々な用途に好適に用いることができる。 This configuration allows compressed wood with reduced springback to be obtained by low-temperature and/or short-time processing. Furthermore, compressed wood obtained in this manner is able to maintain a high density and improved surface hardness for a long period of time, since springback is reduced even when the wood absorbs moisture and water. This compressed wood can therefore be used for a variety of purposes, including building materials, fixtures, furniture, crafts, and surface materials.
(技術2)前記加熱工程は、水蒸気雰囲気下で圧縮状態の前記木材を加熱する工程である、技術1に記載の圧縮木材の製造方法。 (Technology 2) The method for producing compressed wood described in Technology 1, in which the heating step is a step of heating the wood in a compressed state in a water vapor atmosphere.
 加熱処理を水蒸気雰囲気下で行うことにより、木材と有機酸との反応が促進されるため、短時間でスプリングバック抑制のための固定化を行うことができる。 By carrying out the heat treatment in a water vapor atmosphere, the reaction between the wood and the organic acid is accelerated, allowing for fixation to be achieved in a short period of time in order to prevent springback.
(技術3)前記乾燥工程は、前記木材の含水率を5~30%にする工程である、技術1又は2に記載の圧縮木材の製造方法。 (Technique 3) The method for producing compressed wood described in Technique 1 or 2, in which the drying process is a process for reducing the moisture content of the wood to 5-30%.
 この構成により、木材中の余分な水分が除去されるため、木材に対する有機酸の反応性を高めることができる。 This configuration removes excess moisture from the wood, increasing the reactivity of the organic acid with the wood.
(技術4)前記有機酸は、クエン酸、リンゴ酸及びコハク酸からなる群より選ばれる少なくとも一つである、技術1から3のいずれか一つに記載の圧縮木材の製造方法。 (Technology 4) The method for producing compressed wood described in any one of Technology 1 to 3, wherein the organic acid is at least one selected from the group consisting of citric acid, malic acid, and succinic acid.
 この構成により、当該有機酸が木材のヘミセルロースに作用しやすくなるため、より低温及び/又は短時間の処理により、スプリングバックを抑制できる圧縮木材を得ることができる。 This composition allows the organic acid to easily react with the hemicellulose in the wood, making it possible to obtain compressed wood that can suppress springback by treating it at a lower temperature and/or for a shorter period of time.
(技術5)前記有機酸水溶液において、前記有機酸の含有量は3~30質量%である、技術1から4のいずれか一つに記載の圧縮木材の製造方法。 (Technology 5) A method for producing compressed wood described in any one of Technology 1 to 4, in which the organic acid content in the organic acid aqueous solution is 3 to 30 mass %.
 この構成により、木材に有機酸が浸透しやすくなるため、木材のスプリングバック抑制効果を得ることができる。 This composition allows the organic acid to easily penetrate the wood, which helps to suppress springback in the wood.
 以下、本実施形態を実施例、参考例及び比較例によりさらに詳細に説明するが、本実施形態はこれらの実施例に限定されるものではない。 The present embodiment will be described in more detail below with reference to examples, reference examples, and comparative examples, but the present embodiment is not limited to these examples.
[試験サンプルの調製]
 (実施例1及び参考例1)
 まず、木材として、幅が30mm、厚みが20mm、長さが25mmのスギ材を複数準備した。木材の木目は幅方向に板目とし、当該木材の長さ方向は繊維方向とした。なお、以下の試験は、連続試験片を用いて行った。
[Preparation of test samples]
(Example 1 and Reference Example 1)
First, a plurality of pieces of cedar wood with a width of 30 mm, a thickness of 20 mm, and a length of 25 mm were prepared as wood. The grain of the wood was in the width direction, and the length direction of the wood was in the fiber direction. The following tests were performed using continuous test pieces.
 次に、表1に示すように、有機酸であるクエン酸及び水を混合することにより、クエン酸濃度が5質量%である含浸液を調製した。 Next, as shown in Table 1, an impregnation solution with a citric acid concentration of 5% by mass was prepared by mixing citric acid, which is an organic acid, with water.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次いで、含浸液を耐圧容器内に入れ、複数の上記木材を浸漬した。そして、木材を含浸液に浸漬させた状態で、雰囲気圧力を-0.09MPaとして20分間保持した後、0.8MPaとして3時間保持する加圧含浸処理を行った。さらに、当該加圧含浸処理を施した後、木材を含浸液に浸漬させた状態で、大気圧雰囲気下で12時間以上養生した。このように、木材を含浸液に浸漬させた状態で養生することにより、木材の細胞壁に有機酸を確実に含浸させることができる。 Then, the impregnation liquid was placed in a pressure-resistant container and multiple pieces of wood were immersed in it. Then, while the wood was immersed in the impregnation liquid, the atmospheric pressure was set at -0.09 MPa and held for 20 minutes, and then at 0.8 MPa and held for 3 hours, to carry out a pressurized impregnation process. Furthermore, after carrying out the pressurized impregnation process, the wood was aged for at least 12 hours under atmospheric pressure while immersed in the impregnation liquid. In this way, by aging the wood while immersed in the impregnation liquid, it is possible to reliably impregnate the cell walls of the wood with organic acids.
 次に、含浸処理後の木材を含浸液から取り出した後、木材を乾燥させた。なお、乾燥工程は、蒸気式乾燥装置を用い、表2に示すステップ1~7の順に乾燥条件を変化させて行った。乾燥工程後の木材の含水率をJIS Z2101に沿って測定した結果、概ね8%程度であった。 Next, the impregnated wood was removed from the impregnation liquid and then dried. The drying process was carried out using a steam drying device, with the drying conditions changed in the order of steps 1 to 7 shown in Table 2. The moisture content of the wood after the drying process was measured in accordance with JIS Z2101 and was found to be approximately 8%.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 そして、乾燥工程を施した木材に対して、上下で温度を制御できる熱板を備えたハンドプレスを用いて圧縮処理を行った。具体的には、まず、200℃に加熱した上下面の熱板の間に、乾燥工程後の木材が接触するように設置した後、当該木材に対して3分間の予備加熱を行った。次いで、厚みが約10mmのスペーサーを、熱板間の木材の両脇に設置した後、木材を圧縮した。なお、木材への圧縮は、両脇のスペーサーに対して十分に荷重が加わるまで実施した後、3分間保持を行った。 Then, the wood that had been dried was compressed using a hand press equipped with hot plates that could control the temperature above and below. Specifically, the wood after the drying process was first placed between the top and bottom hot plates that were heated to 200°C so that they were in contact with each other, and the wood was then preheated for three minutes. Next, spacers with a thickness of approximately 10 mm were placed on both sides of the wood between the hot plates, and the wood was then compressed. The wood was compressed until a sufficient load was applied to the spacers on both sides, and then held for three minutes.
 次に、固定治具として、四隅に孔を開けたステンレス鋼製の一対の金属板を準備した。そして、圧縮後の木材を当該金属板で挟み込んだ後、ステンレス鋼製のネジ及びナットを用いて一対の金属板の四隅を固定した。このように、一対の金属板で木材を挟持することにより、木材を圧縮状態のまま保持した。 Next, a pair of stainless steel metal plates with holes drilled in the four corners were prepared as fixing jigs. The compressed wood was then sandwiched between the metal plates, and the four corners of the pair of metal plates were then fixed using stainless steel screws and nuts. In this way, the wood was held in a compressed state by being sandwiched between the pair of metal plates.
 次いで、金属板で挟持された木材に対して、150℃の飽和水蒸気雰囲気にて加熱処理を行った。なお、加熱処理時間は、それぞれ0分、5分、15分、30分、60分、120分とした。そして、加熱処理終了後、木材が人肌程度になるまで冷却した後、固定治具を取り外すことにより、加熱処理時間がそれぞれ5分、15分、30分、60分、120分である実施例1の圧縮木材、及び加熱処理時間が0分である参考例1の圧縮木材を得た。 Then, the wood sandwiched between the metal plates was subjected to a heat treatment in a saturated water vapor atmosphere at 150°C. The heat treatment times were 0, 5, 15, 30, 60, and 120 minutes. After the heat treatment, the wood was cooled to body temperature and the fixture was removed to obtain compressed wood of Example 1, which had been heated for 5, 15, 30, 60, and 120 minutes, and compressed wood of Reference Example 1, which had been heated for 0 minutes.
 (実施例2及び参考例2)
 含浸液に含まれるクエン酸の濃度を10質量%としたこと以外は実施例1及び参考例1と同じ工程により、加熱処理時間がそれぞれ5分、15分、30分、60分、120分である実施例2の圧縮木材、及び加熱処理時間が0分である参考例2の圧縮木材を得た。
(Example 2 and Reference Example 2)
The same process as in Example 1 and Reference Example 1 was used except that the concentration of citric acid contained in the impregnation liquid was 10 mass %. Compressed wood of Example 2 was obtained with heat treatment times of 5 minutes, 15 minutes, 30 minutes, 60 minutes, and 120 minutes, respectively, and compressed wood of Reference Example 2 with a heat treatment time of 0 minutes.
 (比較例)
 含浸液として水を用いたこと以外は実施例1及び参考例1と同じ工程により、加熱処理時間がそれぞれ0分、5分、15分、30分、60分、120分である比較例の圧縮木材を得た。
Comparative Example
Comparative examples of compressed wood were obtained by the same process as in Example 1 and Reference Example 1, except that water was used as the impregnation liquid, and the heat treatment times were 0, 5, 15, 30, 60, and 120 minutes, respectively.
[評価]
 実施例1~2、参考例1~2及び比較例の圧縮木材に対して、熱水浸漬試験を行った。具体的には、まず、実施例1~2、参考例1~2及び比較例の圧縮木材における厚み方向の寸法を測定した。次に、各例の圧縮木材を、沸騰水中に1時間浸漬させた。次いで、浸漬後の各例の圧縮木材における厚み方向の寸法を測定した。
[evaluation]
A hot water immersion test was carried out on the compressed wood of Examples 1-2, Reference Examples 1-2, and Comparative Example. Specifically, first, the dimensions in the thickness direction of the compressed wood of Examples 1-2, Reference Examples 1-2, and Comparative Example were measured. Next, the compressed wood of each example was immersed in boiling water for one hour. Then, the dimensions in the thickness direction of the compressed wood of each example after immersion were measured.
 そして、次の数式2から、各例の圧縮木材における厚み方向の厚み変化率を算出した。表3に、各例の圧縮木材における、熱水浸漬前の厚み方向の寸法、熱水浸漬後の厚み方向の寸法、及び厚み変化率を示す。なお、参考までに、表3には、各例の圧縮木材における、含浸液に浸漬する前の木材の厚み方向の寸法も合わせて示す。
 [数2]
 厚み方向の厚み変化率(%)=[(浸漬後の厚み方向の寸法)-(浸漬前の厚み方向の寸法)]/[浸漬前の厚み方向の寸法]
The thickness change rate of each example of compressed wood in the thickness direction was calculated from the following formula 2. The dimensions of each example of compressed wood in the thickness direction before hot water immersion, the dimensions of each example of compressed wood in the thickness direction after hot water immersion, and the thickness change rate are shown in Table 3. For reference, Table 3 also shows the dimensions of each example of compressed wood in the thickness direction before immersion in the impregnation liquid.
[Equation 2]
Thickness change rate in thickness direction (%) = [(dimension in thickness direction after immersion) - (dimension in thickness direction before immersion)] / [dimension in thickness direction before immersion]
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図2は、実施例、参考例及び比較例の圧縮木材における水蒸気加熱処理時間と試験片の厚み変化率との関係を示している。図2より、有機酸を含浸させた実施例の圧縮木材は水のみを含浸させた比較例の圧縮木材と比べて、厚み変化率が大きく低下していることが分かる。特に、加熱処理時間が30分以下という短時間であっても、有機酸を含浸させることにより、厚み変化率が大きく低下することが分かる。このことから、木材に有機酸を含浸させることにより、従来の製造方法に比べて、短時間でスプリングバック抑制のための固定化処理を行えることが分かる。 Figure 2 shows the relationship between the time of steam heating treatment and the thickness change rate of the test pieces for the compressed wood of the Examples, Reference Examples, and Comparative Examples. From Figure 2, it can be seen that the compressed wood of the Examples, which was impregnated with organic acid, had a significantly lower thickness change rate compared to the compressed wood of the Comparative Example, which was impregnated with water only. In particular, it can be seen that the thickness change rate is significantly reduced by impregnating with organic acid, even if the heating treatment time is as short as 30 minutes or less. This shows that by impregnating wood with organic acid, it is possible to carry out a fixation treatment to suppress springback in a shorter time than with conventional manufacturing methods.
 なお、本例では、加熱処理の温度を150℃としたが、加熱処理の温度を高めることにより、木材と有機酸との反応が促進され、より短時間で固定化処理を行えることは、容易に推測できる。 In this example, the heat treatment temperature was 150°C, but it is easy to imagine that by increasing the heat treatment temperature, the reaction between the wood and the organic acid will be accelerated, allowing the fixation process to be completed in a shorter time.
 また、本例では、圧縮処理を200℃で行い、予備加熱及び圧縮後の保持時間を各3分とした。ただ、予備加熱及び圧締後の加熱時間が短い場合、木材の乾燥や各種結合が不十分なままであるため、解圧時に厚み方向に回復することがある。そのため、木材の寸法や調整する含水率に応じて、プレス温度及び時間、解圧温度を適正化する必要がある。また、有機酸を含浸していることで圧縮処理時にも固定化が進んでいると考えられる。そのため、解圧後の加熱処理、並びに圧縮処理の温度及び時間の組合せで、固定化レベルを設計することが可能である。 In this example, the compression process was carried out at 200°C, and the preheating and holding times after compression were each 3 minutes. However, if the heating times after preheating and pressing are short, the wood will not dry sufficiently and various bonds will not be sufficiently formed, which may result in recovery in the thickness direction when released. For this reason, it is necessary to optimize the pressing temperature and time, and the release temperature according to the dimensions of the wood and the moisture content to be adjusted. Also, it is believed that fixation is progressing even during compression due to the impregnation with organic acid. For this reason, it is possible to design the fixation level by combining the heating process after release and the temperature and time of the compression process.
 以上、本実施形態を説明したが、本実施形態はこれらに限定されるものではなく、本実施形態の要旨の範囲内で種々の変形が可能である。 The present embodiment has been described above, but the present embodiment is not limited to this, and various modifications are possible within the scope of the gist of the present embodiment.
 特願2022-157002号(出願日:2022年9月29日)の全内容は、ここに援用される。 The entire contents of Patent Application No. 2022-157002 (filing date: September 29, 2022) are hereby incorporated by reference.
 本開示によれば、簡易な方法により、圧縮木材のスプリングバックを抑制することが可能な圧縮木材の製造方法を提供することができる。 This disclosure provides a simple method for producing compressed wood that can suppress springback in compressed wood.
 1 木材 1 Wood

Claims (5)

  1.  有機酸を含有する有機酸水溶液を、厚み3mm以上のブロック状の木材に加圧含浸させる含浸工程と、
     前記有機酸水溶液を含浸した湿潤状態の前記木材を乾燥させる乾燥工程と、
     乾燥させた前記木材を圧縮する圧縮工程と、
     圧縮させた前記木材を、圧縮状態を維持して加熱する加熱工程と、を含む、圧縮木材の製造方法。
    an impregnation step of pressurizing and impregnating an organic acid aqueous solution containing an organic acid into a block-shaped wood having a thickness of 3 mm or more;
    a drying step of drying the wood in a wet state impregnated with the organic acid aqueous solution;
    a compressing step of compressing the dried wood;
    and a heating step of heating the compressed wood while maintaining the compressed state.
  2.  前記加熱工程は、水蒸気雰囲気下で圧縮状態の前記木材を加熱する工程である、請求項1に記載の圧縮木材の製造方法。 The method for producing compressed wood according to claim 1, wherein the heating step is a step of heating the wood in a compressed state in a water vapor atmosphere.
  3.  前記乾燥工程は、前記木材の含水率を5~30%にする工程である、請求項1又は2に記載の圧縮木材の製造方法。 The method for manufacturing compressed wood according to claim 1 or 2, wherein the drying process is a process for reducing the moisture content of the wood to 5 to 30%.
  4.  前記有機酸は、クエン酸、リンゴ酸及びコハク酸からなる群より選ばれる少なくとも一つである、請求項1から3のいずれか一項に記載の圧縮木材の製造方法。 The method for producing compressed wood according to any one of claims 1 to 3, wherein the organic acid is at least one selected from the group consisting of citric acid, malic acid, and succinic acid.
  5.  前記有機酸水溶液において、前記有機酸の含有量は3~30質量%である、請求項1から4のいずれか一項に記載の圧縮木材の製造方法。 The method for producing compressed wood according to any one of claims 1 to 4, wherein the organic acid content in the organic acid aqueous solution is 3 to 30 mass %.
PCT/JP2023/031507 2022-09-29 2023-08-30 Method for producing compressed wood WO2024070451A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-157002 2022-09-29
JP2022157002A JP2024050254A (en) 2022-09-29 2022-09-29 Method for producing compressed wood

Publications (1)

Publication Number Publication Date
WO2024070451A1 true WO2024070451A1 (en) 2024-04-04

Family

ID=90477182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031507 WO2024070451A1 (en) 2022-09-29 2023-08-30 Method for producing compressed wood

Country Status (2)

Country Link
JP (1) JP2024050254A (en)
WO (1) WO2024070451A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119803A (en) * 1982-01-11 1983-07-16 森 一郎 Pressing impregnating treating method for wood
JP2003211412A (en) * 2001-11-16 2003-07-29 Asano Mokuzai Kogyo Kk Method for manufacturing incombustible lumber
JP2007090839A (en) * 2005-09-30 2007-04-12 Takeji Motai Fireproof wooden material or fireproof building material, manufacturing process thereof and fireproofing agent
WO2021049057A1 (en) * 2019-09-12 2021-03-18 パナソニックIpマネジメント株式会社 Woody laminate and method for manufacturing same, and consolidated veneer and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119803A (en) * 1982-01-11 1983-07-16 森 一郎 Pressing impregnating treating method for wood
JP2003211412A (en) * 2001-11-16 2003-07-29 Asano Mokuzai Kogyo Kk Method for manufacturing incombustible lumber
JP2007090839A (en) * 2005-09-30 2007-04-12 Takeji Motai Fireproof wooden material or fireproof building material, manufacturing process thereof and fireproofing agent
WO2021049057A1 (en) * 2019-09-12 2021-03-18 パナソニックIpマネジメント株式会社 Woody laminate and method for manufacturing same, and consolidated veneer and method for manufacturing same

Also Published As

Publication number Publication date
JP2024050254A (en) 2024-04-10

Similar Documents

Publication Publication Date Title
Morsing Densification of Wood.: The influence of hygrothermal treatment on compression of beech perpendicular to gain
Kristiina et al. Reducing the set-recovery of surface densified solid Scots pine wood by hydrothermal post-treatment
Pfriem et al. Furfuryl alcohol impregnation for improved plasticization and fixation during the densification of wood
Ayrilmis et al. Effects of thermal treatment of rubberwood fibres on physical and mechanical properties of medium density fibreboard
US3282313A (en) Method of forming wood and formed wood product
US10668645B2 (en) Process for the acetylation of wood
JP2018051837A (en) Method for producing modified wood
Gao et al. Effects of pressurized superheated-steam heat treatment on set recovery and mechanical properties of surface-compressed wood
Cao et al. Effect of steam-heat treatment on mechanical properties of Chinese fir
WO2024070451A1 (en) Method for producing compressed wood
WO2024070452A1 (en) Production method of compressed wood
WO2020080046A1 (en) Method for producing biomass-molded material, biomass-molded material, and method for producing biomass-molded article
US3894569A (en) Method for plasticizing wood
Navickas et al. Effect of heat treatment on sorption properties and dimensional stability of wood
JP2010030081A (en) Method for reforming lumber
AU2018418814B2 (en) Acetylated wood and method of making same
US3788929A (en) Method for plasticizing wood
WO2024014037A1 (en) Method for producing modified wood
EP0197674B1 (en) Process for densifying low density woods
Chen et al. Study of Chemical Modification by Impregnation of Fresh Poplar Log and by Hot-Press Drying Process.
Altgen Impact of process conditions in open and closed reactor systems on the properties of thermally modified wood
WO2024014038A1 (en) Method for producing modified wood
NO813990L (en) PROCEDURE FOR DIMENSIONAL STABILIZATION OF PRESSED TREMATERIALS
WO2022163565A1 (en) Method for producing colored wood
JP7569991B2 (en) How to make colored wood

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871691

Country of ref document: EP

Kind code of ref document: A1