WO2020080046A1 - Method for producing biomass-molded material, biomass-molded material, and method for producing biomass-molded article - Google Patents

Method for producing biomass-molded material, biomass-molded material, and method for producing biomass-molded article Download PDF

Info

Publication number
WO2020080046A1
WO2020080046A1 PCT/JP2019/037269 JP2019037269W WO2020080046A1 WO 2020080046 A1 WO2020080046 A1 WO 2020080046A1 JP 2019037269 W JP2019037269 W JP 2019037269W WO 2020080046 A1 WO2020080046 A1 WO 2020080046A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass
biomass molding
molding material
unreacted
curing reaction
Prior art date
Application number
PCT/JP2019/037269
Other languages
French (fr)
Japanese (ja)
Inventor
内藤 茂樹
前田 直彦
彩乃 藤本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020080046A1 publication Critical patent/WO2020080046A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K5/00Treating of wood not provided for in groups B27K1/00, B27K3/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/02Manufacture of substantially flat articles, e.g. boards, from particles or fibres from particles

Definitions

  • the present disclosure generally relates to a method for manufacturing a biomass molding material, a biomass molding material, and a method for manufacturing a biomass molding. More specifically, the present invention relates to a method for manufacturing a biomass molding material used as a material for a biomass molding, a biomass molding material, and a method for manufacturing a biomass molding.
  • Patent document 1 discloses the manufacturing method of a molded object.
  • the composition that is cured by heating and pressurizing is put in a mold, heated to 180 ° C. to 250 ° C., and pressurized at 5 kgf / cm 2 to 70 kgf / cm 2 .
  • the above-mentioned composition contains, as a main component, a plant-derived product (a) which has been powdered or shredded and a polycarboxylic acid (b).
  • the plant-derived product (a) is selected from xylem and bark of plants.
  • the polycarboxylic acid (b) is selected from citric acid, itaconic acid and malic acid.
  • the weight ratio of the plant-derived product (a) and the polycarboxylic acid (b) is 1.0 to 8.0: 1.0.
  • Patent Document 1 the composition containing the plant-derived material (a) and the polycarboxylic acid (b) is heated and pressed as it is with a press machine having upper and lower hot plates so that a molded body is produced at a stretch. There is. However, there is room for improvement in the water resistance and strength of the thus obtained molded product.
  • a distance bar (a thickness regulating jig that regulates the distance between the upper and lower hot plates of the press) is used to control the thickness of the molded body to be obtained while heating with a press. Pressurized.
  • a distance bar a thickness regulating jig that regulates the distance between the upper and lower hot plates of the press
  • An object of the present disclosure is to provide a method for producing a biomass molding material, a biomass molding material, and a method for manufacturing a biomass molding which are suitable for producing a biomass molding having excellent water resistance and strength with high productivity. It is in.
  • the method for producing a biomass molding material is a method for producing a biomass molding material used as a material for a biomass molded body.
  • a pulverized product or veneer containing a saccharide and an unreacted product containing a polyvalent carboxylic acid are heated in a non-pressurized state to start a curing reaction, and cooled in the middle of the curing reaction, and the curing reaction is performed. Stop.
  • the biomass molding material according to one aspect of the present disclosure is used as a material for a biomass molding.
  • the biomass molding material is an intermediate product of a curing reaction between a saccharide-containing plant and a polyvalent carboxylic acid.
  • the intermediate product is in the form of powder or a single plate, and has thermosetting properties.
  • a method for manufacturing a biomass molded body according to an aspect of the present disclosure a crushed plant or a veneer containing a saccharide, and an unreacted product containing a polycarboxylic acid are heated in a non-pressurized state to start a curing reaction. Then, cooling is performed during the curing reaction to stop the curing reaction to obtain a biomass molding material, and heating and pressurizing the biomass molding material to mold the material.
  • the biomass molding material according to the present embodiment is used as a material for a biomass molding.
  • a base material crushed plant or veneer containing sugar
  • an unreacted material containing a polyvalent carboxylic acid are heated in a non-pressurized state to start a curing reaction.
  • the curing reaction is stopped by cooling halfway. Condensed water generated during the curing reaction is removed.
  • a biomass molding material is obtained. That is, the biomass molding material is an intermediate product of the curing reaction between the plant containing sugar and the polycarboxylic acid.
  • the biomass molding material is in the form of powder or a single plate, and has thermosetting properties.
  • the biomass molding material is a powder
  • the individual particles constituting the powder are bonded and integrated.
  • the biomass molding material is a single plate, when a plurality of single plates are stacked and heated and pressed, adjacent single plates are bonded and integrated.
  • the biomass molding material is suitable for producing a biomass molding having excellent water resistance and strength with high productivity.
  • the biomass molding material does not have to be used immediately after production, but may be used after being stored for a certain period of time.
  • the biomass molding material according to the present embodiment is used as a material for manufacturing a biomass molding.
  • the biomass molding material is a semi-cured material in which an unreacted material is partially hardened.
  • the unreacted material is a material before the curing reaction.
  • the semi-cured product is a substance in the intermediate stage (B stage) of the curing reaction.
  • a cured product of the biomass molding material is a biomass molding.
  • the biomass molded body is, so to speak, the final product.
  • the cured product is a substance in the final stage of the curing reaction. In other words, the cured product is a substance in a completely cured state.
  • a biomass molding material In producing a biomass molding material, firstly, the case where the unreacted material contains a pulverized product of a saccharide-containing plant and a polyvalent carboxylic acid, and secondly, the unreacted material contains a saccharide-containing plant.
  • the biomass molding material obtained in the first case is in powder form and has thermosetting properties.
  • the biomass molding material obtained in the second case is in the form of a single plate and has thermosetting properties.
  • the method for manufacturing the biomass molding material will be described in two cases.
  • the unreacted material contains a pulverized product of a plant containing saccharides and a polyvalent carboxylic acid.
  • the pulverized product of the saccharide-containing plant and the polyvalent carboxylic acid only coexist, and these have not yet reacted.
  • Plants are roughly divided into wood (so-called trees) and herbs (so-called grass), but they may be wood or grass.
  • palm coconut
  • sugar cane are preferable, and among palms, oil palm and coconut are preferable. This is because palm and sugar cane contain a relatively large amount of sugars compared to other plants.
  • Crushed plants eg crushed palm and bagasse
  • a plant trunk or the like is crushed and squeezed to separate it into a residue and juice. Then the residue is dried.
  • a plant crushed product can be obtained by air-drying the residue.
  • water may remain in the ground product of the plant. This is because the water content is removed by the heat treatment of the unreacted material described later.
  • a pulverized product of a plant can be obtained by drying the residue at 105 ° C ⁇ 2 ° C. By drying the residue in this manner, water in the residue can be evaporated.
  • the water content in the residue is preferably 20 parts by mass or less, based on 100 parts by mass of the pulverized product of the plant (in an absolutely dried state).
  • the absolutely dry state means a state in which the residue is left in a hot air dryer at 105 ° C. ⁇ 2 ° C. to have a constant weight.
  • the constant state means a state in which the mass of the residue is measured at intervals of 15 minutes or more, and the mass difference before and after the measurement is within 0.1% of the mass after the measurement. It should be noted that a plant trunk or the like may be crushed and dried without squeezing in the same manner as described above to be used as a crushed product of the plant.
  • the sugars contained in the ground product of the plant are monosaccharides, disaccharides and polysaccharides (including oligosaccharides). Disaccharides and polysaccharides are composed of a plurality of monosaccharides linked by glycosidic bonds.
  • monosaccharides include fructose, ribose, arabinose, rhamnose, xylulose and deoxyribose.
  • disaccharides examples include sucrose, maltose, trehalose, turanose, lactulose, maltulose, palatinose, gentiobiurose, melibiulose, galactosucrose, rutinulose and planteobiose.
  • polysaccharides examples include starch, agarose, alginic acid, glucomannan, inulin, chitin, chitosan, hyaluronic acid, glycogen and cellulose.
  • oligosaccharides include fructooligosaccharides, galactooligosaccharides, mannan oligosaccharides and stachyose.
  • Saccharides may be contained in the crushed plant product in only one kind or in two or more kinds.
  • the polycarboxylic acid is not particularly limited as long as it is a compound having a plurality of carboxy groups.
  • the polycarboxylic acid for example, citric acid, tartaric acid, malic acid, gluconic acid, sebacic acid, itaconic acid, succinic acid, oxalic acid, adipic acid, malonic acid, phthalic acid, maleic acid, fumaric acid, glutaric acid (1 , 5-pentanedioic acid), glutaconic acid and pentenedioic acid.
  • An acid anhydride can also be used as the polycarboxylic acid.
  • citric acid, tartaric acid, malic acid, gluconic acid, sebacic acid, and itaconic acid are particularly preferable because they are produced from plants.
  • the polycarboxylic acid may be contained in the unreacted product alone or in combination of two or more.
  • the polycarboxylic acid has the same meaning as the polycarboxylic acid.
  • the content of the polycarboxylic acid is preferably 0.3% by mass or more and 10% by mass or less, more preferably 2.7% by mass or more and 5% by mass or less, based on the total mass (charged amount) of the unreacted material. Within the range of. As a result, it is possible to suppress the strength reduction of the biomass molded body, which is a cured product of the biomass molding material, due to the acid, and to suppress the environmental deterioration due to the elution of the acid.
  • the unreacted material is obtained by blending a pulverized product of the above-mentioned plant containing saccharides and a polyvalent carboxylic acid. Since pulverized products of plants and polycarboxylic acids are generally easily available, it is possible to produce a biomass molding material at low cost.
  • the unreacted material undergoes a two-step reaction when it is heat treated, and is completely cured. That is, in the present embodiment, the first-stage reaction (hereinafter sometimes referred to as “preliminary reaction”) is advanced by heat treatment in a non-pressurized state, and the preliminary reaction is terminated by cooling in the middle of the reaction to generate biomass. Obtain a molding material. Condensed water generated at this time is removed. Further heat treatment completes the second stage reaction.
  • the non-pressurized state means a state in which a large pressure is not applied to the unreacted material from both sides (for example, upper and lower sides), and the unreacted material can be freely moved.
  • the non-pressurized state includes a state in which unreacted substances are stacked and a state in which a pressure equivalent to a stirring force when stirring the unreacted substances is applied.
  • the heat treatment in a non-pressurized state includes a heat treatment in which an unreacted material is put in a container and heated under atmospheric pressure while stirring the unreacted material with a stirring rod or the like.
  • the unreacted product becomes a semi-cured product (biomass molding material) through the first-stage reaction, and this semi-cured product becomes a cured product (biomass molded product) when the second-stage reaction is completed.
  • the biomass molding material is an intermediate product of the curing reaction between the plant containing saccharides and the polyvalent carboxylic acid. Since it is heated in a non-pressurized state, most of the condensed water generated by the preliminary reaction is removed. By removing the condensed water, it is possible to suppress the occurrence of puncture (burst) in the biomass molded body.
  • the unreacted material is heated in a non-pressurized state to start the curing reaction, and is cooled during the curing reaction to stop the curing reaction.
  • the middle of the curing reaction means the process from the first stage reaction to the second stage reaction.
  • the middle of the curing reaction is a process in which the reaction product contained in the unreacted material is in a reaction state showing the B-stage property of the thermosetting resin (the property of melting when heated and solidifying when cooled).
  • the middle of the curing reaction means a process in which the biomass molding material is in a state of having adhesiveness.
  • the course of the curing reaction does not include the process from the time when the curing reaction is almost completed to the time when it is completely completed.
  • the curing reaction does not include the process after the state where the biomass molding material has no adhesiveness.
  • it is preferable that the curing reaction is performed for less than 20 minutes from the start of heating.
  • the heating temperature in this case is preferably in the range of 110 ° C. or higher and 240 ° C. or lower. Cooling includes positively supplying cold air and simply stopping heating and leaving it at room temperature.
  • the sugars contained in the ground product of the plant are hydrolyzed to produce a hydrolysis product. Further, the hydrolysis product is dehydrated and condensed to produce a reaction product of a sugar-modified product. Condensed water generated at this time is removed.
  • sucrose sucrose
  • fructose specifically, 5- (hydroxymethyl) furfural
  • Furfural which is a sugar-modified product
  • furan resin which is a thermosetting resin
  • glucose becomes a sugar ester polymer by a dehydration condensation reaction and hardens. It is considered that the biomass molding material contains the reaction product of the sugar modified product in the state where the preliminary reaction by the heat treatment is completed.
  • the unreacted material may be heated while the unreacted material is stationary, but preferably, the unreacted material is heated while the unreacted material is being moved.
  • the unreacted material is placed in a container, and the unreacted material in the container is heated from the outside while stirring the unreacted material with a stirring rod or the like, or oscillating or rotating the container to move.
  • the unreacted material in the container is heated while being moved, shaken, or rotated by stirring.
  • Examples of the method of swinging or rotating include a method using a planetary stirring device.
  • the unreacted material in the container may be heated while the unreacted material is placed in the container and convection is performed by blowing hot air into the container. As a result, the unreacted material in the container is heated while being circulated.
  • a biomass molding material with uniform physical properties (such as thermosetting property) can be obtained as compared to when the unreacted material is stationary. can get.
  • heating while swinging or rotating can suppress the agglomeration of the biomass molding material and improve the appearance of the obtained biomass molding.
  • At least one of ammonium sulfate and ammonium chloride is preferably added to the unreacted material.
  • ammonium sulfate and ammonium chloride function as catalysts for the curing reaction of saccharides, like the polycarboxylic acid. Thereby, excellent water resistance can be imparted to the biomass molded body.
  • the esterification reaction between the hydroxy group in the ground product of the plant and the polycarboxylic acid proceeds relatively slowly over time. Therefore, the reaction time of the above esterification can be shortened by adding at least one of ammonium sulfate and ammonium chloride as a catalyst to the unreacted material.
  • the content of at least one of ammonium sulfate and ammonium chloride (the total content when both are contained) is preferably 0.3 mass% or more and 5 mass with respect to the total mass (charged amount) of the unreacted material. % Or less. Thereby, the reaction time of esterification can be further shortened. Moreover, the water resistance of the biomass molded body can be further improved. Since ammonium sulfate and ammonium chloride are relatively weakly acidic salts, the strength of the biomass molded body is maintained.
  • the second case is a case where the unreacted material contains a veneer of a plant containing a saccharide and a polyvalent carboxylic acid.
  • the veneer veneer containing the sugar and the polycarboxylic acid coexist, and they have not reacted yet.
  • the second embodiment is common to the first case, and therefore the description of common items is omitted.
  • the plant is a tree (so-called tree).
  • the plant is preferably palm (coconut), and among palms, oil palm and coconut are preferable. This is because palm contains a relatively large amount of sugar as compared with other plants.
  • a veneer of a plant can be obtained by cutting a raw tree of a plant with a cutting machine.
  • cutting machines include rotary races and slicers.
  • the thickness of the veneer is not particularly limited, but is within a range of 2 mm or more and 8 mm or less, for example.
  • the unreacted material is obtained by immersing a veneer of a plant in a polycarboxylic acid. That is, the unreacted product is a plant veneer impregnated with a polycarboxylic acid.
  • the veneer of the plant may be further impregnated with at least one of ammonium sulfate and ammonium chloride.
  • the unreacted material is heated in a non-pressurized state to start the curing reaction, and is cooled in the middle of the curing reaction to stop the curing reaction.
  • the middle of the curing reaction means a process from the first stage reaction to the second stage reaction.
  • the middle of the curing reaction means a process in which the reaction product contained in the unreacted material is in a reaction state showing the B-stage property of the thermosetting resin.
  • the middle of the curing reaction means a process in which the biomass molding material is in a state of having adhesiveness.
  • the course of the curing reaction does not include the process from the time when the curing reaction is almost completed to the time when it is completely completed.
  • the curing reaction does not include the process after the state where the biomass molding material has no adhesiveness.
  • it is preferable that the curing reaction is performed for less than 20 minutes from the start of heating.
  • the heating temperature in this case is also preferably in the range of 110 ° C or higher and 240 ° C or lower.
  • the cooling includes positively supplying cold air, simply stopping the heating, and leaving it at room temperature.
  • the biomass molding material according to the present embodiment is used as a material for manufacturing a biomass molding.
  • the biomass molding material is an intermediate product of a curing reaction between a plant containing sugar and a polycarboxylic acid. Condensed water has been removed from the intermediate product. Therefore, it is possible to suppress the occurrence of punctures in the biomass molded body. Therefore, a biomass molded body having excellent water resistance and strength can be easily obtained.
  • the intermediate product is in powder form and has thermosetting property.
  • the individual particles or particles that make up the powder are thermosetting. Therefore, the biomass molding material can be molded into any shape.
  • the intermediate product is veneer-like and has thermosetting property. Therefore, when a plurality of biomass molding materials are stacked and molded, they can be processed into plywood or the like.
  • the intermediate product contains at least one of ammonium sulfate and ammonium chloride regardless of whether it is in the form of powder or single plate.
  • excellent water resistance can be imparted to the biomass molded body.
  • Method for manufacturing biomass molded body includes a first step and a second step.
  • the first step is the step of obtaining a biomass molding material.
  • a crushed product or veneer of a plant containing a saccharide and an unreacted product containing a polyvalent carboxylic acid are heated in a non-pressurized state to start a curing reaction, and the curing is performed. By cooling in the middle of the reaction to stop the curing reaction, a biomass molding material is obtained.
  • the second step is the step of obtaining a biomass molded body. That is, in the second step, the biomass molding material obtained in the first step is heated and pressed to be molded. That is, when the biomass molding material is thermocompression-molded, a biomass molding is obtained.
  • a pressing machine having upper and lower hot plates (hot plates) is used.
  • the biomass molding material is in powder form, the biomass molding material is put into an appropriate mold and thermocompression molding is performed.
  • the shape of the biomass molded body to be obtained may be a simple shape such as a plate or a complicated shape other than the plate.
  • the biomass molding material is in the form of a single plate, a plurality of biomass molding materials are stacked and thermocompression molding is performed. In this way, a plywood-shaped biomass compact is obtained.
  • the fiber directions of the plurality of biomass molding materials may be different or the same.
  • Two or more kinds of powdery biomass molding materials may be used to produce one biomass molding. These biomass molding materials differ in, for example, the size of pulverized products of plants. The size of the crushed plant differs depending on whether or not it passes through a predetermined sieve.
  • one or more kinds of powdery biomass molding materials and one or more kinds of single plate-shaped biomass molding materials may be used.
  • the molding conditions for thermocompression molding are not particularly limited, regardless of whether the biomass molding material is in powder form or single plate form.
  • the molding temperature is, for example, in the range of 140 ° C. or higher and 240 ° C. or lower.
  • the molding time is, for example, 10 seconds or more and 20 minutes or less, preferably 10 seconds or more and 10 minutes or less.
  • the molding pressure is, for example, in the range of 0.5 MPa or more and 4 MPa or less.
  • the biomass molded body is manufactured using the above-mentioned biomass molding material, the molding time by a press machine for heating and pressurizing can be shortened as compared with Patent Document 1. Therefore, the use efficiency of the press machine is improved, and the biomass molded body can be manufactured with high productivity.
  • the biomass molded body according to the present embodiment is a cured product of a biomass molding material.
  • the biomass molded body is not obtained by subjecting an unreacted material to hot-press molding at once. That is, the biomass molded body according to the present embodiment is obtained by thermocompression molding of a biomass molding material having a small amount of excess water and having the curing reaction stopped halfway.
  • the excess water is, for example, condensed water generated by the preliminary reaction.
  • the biomass molded body according to the present embodiment has excellent water resistance and strength and is excellent in productivity.
  • Such a biomass molded body can be widely used, for example, in building materials, furniture, house interiors, and the like.
  • the method for manufacturing a biomass molding material according to the first aspect is a method for manufacturing a biomass molding material used as a material for a biomass molded body.
  • a pulverized product or veneer containing a saccharide and an unreacted product containing a polyvalent carboxylic acid are heated in a non-pressurized state to start a curing reaction, and cooled in the middle of the curing reaction, and the curing reaction is performed. Stop.
  • a biomass molding material suitable for producing a biomass molding having excellent water resistance and strength with high productivity can be obtained.
  • the unreacted material when the unreacted material contains a pulverized product of a plant containing a saccharide and a polycarboxylic acid, the unreacted material is heated. Is performed while moving the unreacted material.
  • thermosetting property a biomass molding material having uniform physical properties such as thermosetting property.
  • At least one of ammonium sulfate and ammonium chloride is added to the unreacted material.
  • the plant in any one of the first to third aspects, is palm.
  • the biomass molding material according to the fifth aspect is used as a material for a biomass molding.
  • the biomass molding material is an intermediate product of a curing reaction between a saccharide-containing plant and a polyvalent carboxylic acid.
  • the intermediate product is in the form of powder or a single plate, and has thermosetting properties.
  • the intermediate product contains at least one of ammonium sulfate and ammonium chloride.
  • the plant is palm.
  • a method for producing a biomass molded body is to start a curing reaction by heating an unreacted material containing a pulverized product or veneer of a saccharide-containing plant and a polycarboxylic acid in a non-pressurized state.
  • Examples 1 to 3 and 5 As a base material (plant containing sugar), a pulverized product of palm (oil palm) was used. First, the palm trunk was crushed and squeezed to separate it into a residue and juice. Next, the residue was dried at 105 ° C. to obtain a crushed coconut product.
  • citric acid was used as the polycarboxylic acid and ammonium sulfate was used as the additive.
  • the above biomass molding material was thermocompressed under the molding conditions (temperature, time, and pressure) shown in Table 1 to obtain a plate-shaped biomass molding ( A molded product) was manufactured.
  • the distance between the upper and lower hot plates was regulated by a distance bar so that the thickness of the biomass molded body to be obtained would be the thickness shown in Table 1.
  • the supply amount of the biomass molding material supplied between the upper and lower hot plates was adjusted so that the density was as shown in Table 1.
  • Example 4 A plate-shaped biomass molded body was produced in the same manner as in Example 1 except that the pre-reaction was carried out by heating the unreacted material while moving the unreacted material using a planetary stirring device. .
  • Example 6 A crushed palm product was obtained in the same manner as in Example 1. This crushed palm product was sifted. The sieve has a nominal opening of 500 ⁇ m according to JIS Z8801-1 standard. The first residue that passed through the sieve and the second residue that did not pass through the sieve were separated.
  • an unreacted material was obtained by blending each component in the blending amounts shown in Table 1. More specifically, the unreacted substances in this case are of two types: unreacted substances derived from the first residue and unreacted substances derived from the second residue.
  • the unreacted material derived from the first residue contains only the first residue as a crushed coconut product.
  • the unreacted material derived from the second residue contains only the second residue as a crushed coconut product.
  • the compounding amounts of the unreacted substances derived from the first residue and the second residue are not distinguished. The compounding amounts of both are the same.
  • the unreacted materials derived from the first residue and the second residue are heated in a non-pressurized state and preliminarily reacted under the conditions (charged amount, temperature, and time) shown in Table 1 to obtain a powder form.
  • Biomass molding materials derived from the first residue and the second residue were produced.
  • the three-layer structure is a structure including a core layer and surface layers on both sides of the core layer.
  • the core layer is formed of a biomass molding material derived from the second residue.
  • the surface layer is formed of the biomass molding material derived from the first residue.
  • the biomass molding material derived from the first residue, the biomass molding material derived from the second residue, and the biomass molding material derived from the first residue are supplied in this order between the upper and lower hot plates, and then shown in Table 1.
  • a plate-shaped biomass molded body having a three-layer structure was manufactured by hot pressing under the molding conditions.
  • Example 7 A biomass molding material was manufactured in the same manner as in Example 1 except that bagasse was used as the base material, and further, a plate-shaped biomass molding was manufactured using this biomass molding material. In addition, as bagasse, what was crushed with a crusher was used as the shavings after squeezing sugar cane sugar.
  • Example 8 A palm veneer was used as a base material.
  • the palm veneer was obtained by cutting a raw palm tree with a cutting machine.
  • the thickness of the coconut veneer is 4 mm.
  • Example 9 The same biomass molding material as the biomass molding material derived from the first residue of Example 6 (see “9-1” in Table 1) and the same biomass molding material as the single plate-shaped biomass molding material of Example 8 (Table 1 (See “9-2” in the above) and was used to manufacture a plate-shaped biomass molded body having a three-layer structure.
  • the three-layer structure is a structure including a core layer and surface layers on both sides of the core layer.
  • the core layer is formed of a single plate-shaped biomass molding material.
  • the surface layer is formed of the biomass molding material derived from the first residue.
  • the biomass molding material derived from the first residue, the single-plate biomass molding material, and the biomass molding material derived from the first residue were supplied in this order between the upper and lower hot plates. Then, the distance between the upper and lower hot plates was regulated by a distance bar so that the distance between the hot plates was 3 mm, and then thermocompression molding was performed under the molding conditions shown in Table 1 to produce a plate-shaped biomass molded body having a three-layer structure.
  • Example 3 A biomass molding material was manufactured in the same manner as in Example 1 except that the pre-reaction time was extended, and a plate-shaped biomass molding was manufactured using this biomass molding material.
  • the pre-reaction time was set to 20 minutes from the start of the curing reaction to the completion of the curing reaction.
  • Comparative example 4 A plate-shaped biomass molded body was manufactured in the same manner as in Comparative Example 1 except that the molding condition was extended.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)

Abstract

This biomass-molded material is used as a material for a biomass-molded article. This method for producing a biomass molded material comprises: initiating a curing reaction of unreacted material containing crushed pieces or a single sheet of a plant containing a saccharide and a polycarboxylic acid by heating in a non-pressurized state; and cooling during the curing reaction to terminate the curing reaction.

Description

バイオマス成形材料の製造方法、バイオマス成形材料、及びバイオマス成形体の製造方法Biomass molding material manufacturing method, biomass molding material, and biomass molding manufacturing method
 本開示は、一般にバイオマス成形材料の製造方法、バイオマス成形材料、及びバイオマス成形体の製造方法に関する。より詳細にはバイオマス成形体の材料として用いられるバイオマス成形材料の製造方法、バイオマス成形材料、及びバイオマス成形体の製造方法に関する。 The present disclosure generally relates to a method for manufacturing a biomass molding material, a biomass molding material, and a method for manufacturing a biomass molding. More specifically, the present invention relates to a method for manufacturing a biomass molding material used as a material for a biomass molding, a biomass molding material, and a method for manufacturing a biomass molding.
 特許文献1は、成形体の製造方法を開示する。この成形体の製造方法では、加熱・加圧により硬化する組成物を、型に入れ、180℃~250℃に加熱し、5kgf/cm~70kgf/cmで加圧している。上記の組成物は、粉末化又は小片化された植物由来物(a)とポリカルボン酸(b)とを主成分としている。植物由来物(a)は、草木の木部、樹皮から選択される。ポリカルボン酸(b)は、クエン酸、イタコン酸、リンゴ酸から選択される。植物由来物(a)とポリカルボン酸(b)との重量比は1.0~8.0:1.0である。 Patent document 1 discloses the manufacturing method of a molded object. In this method for producing a molded body, the composition that is cured by heating and pressurizing is put in a mold, heated to 180 ° C. to 250 ° C., and pressurized at 5 kgf / cm 2 to 70 kgf / cm 2 . The above-mentioned composition contains, as a main component, a plant-derived product (a) which has been powdered or shredded and a polycarboxylic acid (b). The plant-derived product (a) is selected from xylem and bark of plants. The polycarboxylic acid (b) is selected from citric acid, itaconic acid and malic acid. The weight ratio of the plant-derived product (a) and the polycarboxylic acid (b) is 1.0 to 8.0: 1.0.
 特許文献1では、上下の熱板を有するプレス機により、植物由来物(a)とポリカルボン酸(b)とを含む組成物をそのまま加熱・加圧して、一気に成形体を製造するようにしている。しかしながら、このようにして得られた成形体の耐水性及び強度には改良の余地がある。 In Patent Document 1, the composition containing the plant-derived material (a) and the polycarboxylic acid (b) is heated and pressed as it is with a press machine having upper and lower hot plates so that a molded body is produced at a stretch. There is. However, there is room for improvement in the water resistance and strength of the thus obtained molded product.
 また特許文献1では、ディスタンスバー(プレス機の上下の熱板の間隔を規制する厚さ規制治具)を用いて、得ようとする成形体の厚さを制御しながら、プレス機により加熱・加圧を行っている。しかしながら、このプレス機による成形時間が長いため、生産性にも改良の余地がある。 In Patent Document 1, a distance bar (a thickness regulating jig that regulates the distance between the upper and lower hot plates of the press) is used to control the thickness of the molded body to be obtained while heating with a press. Pressurized. However, there is room for improvement in productivity because the molding time with this press machine is long.
特許第5472639号公報Japanese Patent No. 5472639
 本開示の目的は、優れた耐水性及び強度を有するバイオマス成形体を、生産性良く製造するのに好適なバイオマス成形材料の製造方法、バイオマス成形材料、及びバイオマス成形体の製造方法を提供することにある。 An object of the present disclosure is to provide a method for producing a biomass molding material, a biomass molding material, and a method for manufacturing a biomass molding which are suitable for producing a biomass molding having excellent water resistance and strength with high productivity. It is in.
 本開示の一態様に係るバイオマス成形材料の製造方法は、バイオマス成形体の材料として用いられるバイオマス成形材料の製造方法である。糖類を含む植物の粉砕物又は単板と、多価カルボン酸とを含む未反応物を無加圧状態で加熱して硬化反応を開始させ、前記硬化反応の途中で冷却して、前記硬化反応を止める。 The method for producing a biomass molding material according to an aspect of the present disclosure is a method for producing a biomass molding material used as a material for a biomass molded body. A pulverized product or veneer containing a saccharide and an unreacted product containing a polyvalent carboxylic acid are heated in a non-pressurized state to start a curing reaction, and cooled in the middle of the curing reaction, and the curing reaction is performed. Stop.
 本開示の一態様に係るバイオマス成形材料は、バイオマス成形体の材料として用いられる。前記バイオマス成形材料は、糖類を含む植物と、多価カルボン酸との硬化反応の中間生成物である。前記中間生成物は、粉体状又は単板状であり、かつ、熱硬化性を有する。 The biomass molding material according to one aspect of the present disclosure is used as a material for a biomass molding. The biomass molding material is an intermediate product of a curing reaction between a saccharide-containing plant and a polyvalent carboxylic acid. The intermediate product is in the form of powder or a single plate, and has thermosetting properties.
 本開示の一態様に係るバイオマス成形体の製造方法は、糖類を含む植物の粉砕物又は単板と、多価カルボン酸とを含む未反応物を無加圧状態で加熱して硬化反応を開始させ、前記硬化反応の途中で冷却して、前記硬化反応を止めることにより、バイオマス成形材料を得る工程と、前記バイオマス成形材料を加熱及び加圧して成形する工程と、を含む。 A method for manufacturing a biomass molded body according to an aspect of the present disclosure, a crushed plant or a veneer containing a saccharide, and an unreacted product containing a polycarboxylic acid are heated in a non-pressurized state to start a curing reaction. Then, cooling is performed during the curing reaction to stop the curing reaction to obtain a biomass molding material, and heating and pressurizing the biomass molding material to mold the material.
 1.概要
 本実施形態に係るバイオマス成形材料は、バイオマス成形体の材料として用いられる。バイオマス成形材料の製造方法では、母材(糖類を含む植物の粉砕物又は単板)と、多価カルボン酸とを含む未反応物を無加圧状態で加熱して硬化反応を開始させ、この硬化反応を途中で冷却して止める。硬化反応時に生じる縮合水は除去される。このようにして、バイオマス成形材料が得られる。すなわち、バイオマス成形材料は、糖類を含む植物と、多価カルボン酸との硬化反応の中間生成物である。バイオマス成形材料は、粉体状又は単板状であり、かつ、熱硬化性を有する。バイオマス成形材料が粉体である場合、加熱及び加圧されると、粉体を構成する個々の粒子同士が接着して一体化される。バイオマス成形材料が単板である場合、複数の単板を重ねた状態で加熱及び加圧されると、隣り合う単板同士が接着して一体化される。
1. Overview The biomass molding material according to the present embodiment is used as a material for a biomass molding. In the method for producing a biomass molding material, a base material (crushed plant or veneer containing sugar) and an unreacted material containing a polyvalent carboxylic acid are heated in a non-pressurized state to start a curing reaction. The curing reaction is stopped by cooling halfway. Condensed water generated during the curing reaction is removed. In this way, a biomass molding material is obtained. That is, the biomass molding material is an intermediate product of the curing reaction between the plant containing sugar and the polycarboxylic acid. The biomass molding material is in the form of powder or a single plate, and has thermosetting properties. When the biomass molding material is a powder, when heated and pressed, the individual particles constituting the powder are bonded and integrated. When the biomass molding material is a single plate, when a plurality of single plates are stacked and heated and pressed, adjacent single plates are bonded and integrated.
 ここで、上記の未反応物を加熱及び加圧して、一気にバイオマス成形体を製造することも可能であるが、この場合には、未反応物の硬化反応に伴って生じる縮合水の大部分がバイオマス成形体に取り込まれるおそれがある。このような縮合水の取り込みは、バイオマス成形体の耐水性及び強度の低下の原因となり得る。 Here, it is possible to heat and pressurize the above-mentioned unreacted material to produce a biomass molded body at a stretch, but in this case, most of the condensed water generated by the curing reaction of the unreacted material is generated. There is a risk of being incorporated into the biomass compact. Incorporation of such condensed water may cause a decrease in water resistance and strength of the biomass molded body.
 これに対して、バイオマス成形材料を用いてバイオマス成形体を製造する場合には、ある程度の縮合水がバイオマス成形材料の製造時に除去されている。そのため、上記の未反応物からバイオマス成形材料を経由してバイオマス成形体を製造する方が、バイオマス成形体の耐水性及び強度の向上につながる。 On the other hand, when manufacturing a biomass molded body using a biomass molding material, a certain amount of condensed water is removed during the production of the biomass molding material. Therefore, manufacturing the biomass molded body from the unreacted material via the biomass molding material leads to improvement in water resistance and strength of the biomass molded body.
 したがって、バイオマス成形材料は、優れた耐水性及び強度を有するバイオマス成形体を、生産性良く製造するのに好適である。バイオマス成形材料は、製造後直ちに使用しなくてもよく、一定期間保管した後に使用してもよい。 Therefore, the biomass molding material is suitable for producing a biomass molding having excellent water resistance and strength with high productivity. The biomass molding material does not have to be used immediately after production, but may be used after being stored for a certain period of time.
 2.詳細
 (1)バイオマス成形材料の製造方法
 本実施形態に係るバイオマス成形材料は、バイオマス成形体を製造する材料として用いられる。バイオマス成形材料は、未反応物が途中まで硬化した半硬化物である。未反応物は、硬化反応前の物質である。半硬化物は、硬化反応の中間段階(Bステージ)にある物質である。バイオマス成形材料の硬化物がバイオマス成形体である。バイオマス成形体は、いわば最終製品である。硬化物は、硬化反応の終了段階にある物質である。換言すれば、硬化物は、完全に硬化した状態にある物質である。
2. Details (1) Manufacturing method of biomass molding material The biomass molding material according to the present embodiment is used as a material for manufacturing a biomass molding. The biomass molding material is a semi-cured material in which an unreacted material is partially hardened. The unreacted material is a material before the curing reaction. The semi-cured product is a substance in the intermediate stage (B stage) of the curing reaction. A cured product of the biomass molding material is a biomass molding. The biomass molded body is, so to speak, the final product. The cured product is a substance in the final stage of the curing reaction. In other words, the cured product is a substance in a completely cured state.
 バイオマス成形材料を製造するにあたっては、第1に、未反応物が、糖類を含む植物の粉砕物と、多価カルボン酸とを含む場合と、第2に、未反応物が、糖類を含む植物の単板と、多価カルボン酸とを含む場合と、の2つの場合がある。第1の場合に得られるバイオマス成形材料は、粉体状であり、かつ、熱硬化性を有する。第2の場合に得られるバイオマス成形材料は、単板状であり、かつ、熱硬化性を有する。以下、バイオマス成形材料の製造方法について、2つの場合に分けて説明する。 In producing a biomass molding material, firstly, the case where the unreacted material contains a pulverized product of a saccharide-containing plant and a polyvalent carboxylic acid, and secondly, the unreacted material contains a saccharide-containing plant. There are two cases, that is, the case of containing the veneer and the polyvalent carboxylic acid. The biomass molding material obtained in the first case is in powder form and has thermosetting properties. The biomass molding material obtained in the second case is in the form of a single plate and has thermosetting properties. Hereinafter, the method for manufacturing the biomass molding material will be described in two cases.
 まず、第1の場合について説明する。すなわち、未反応物が、糖類を含む植物の粉砕物と、多価カルボン酸とを含む場合である。未反応物中では、糖類を含む植物の粉砕物と、多価カルボン酸とが共存するだけで、これらはまだ反応していない。 First, the first case will be explained. That is, this is a case where the unreacted material contains a pulverized product of a plant containing saccharides and a polyvalent carboxylic acid. In the unreacted product, the pulverized product of the saccharide-containing plant and the polyvalent carboxylic acid only coexist, and these have not yet reacted.
 植物は、木本(いわゆる木)と草本(いわゆる草)とに大別されるが、木本でもよく、草本でもよい。植物は、ヤシ(椰子)及びサトウキビが好ましく、ヤシの中でもアブラヤシ及びココヤシが好ましい。ヤシ及びサトウキビは、他の植物に比べて糖類を比較的多く含むためである。 Plants are roughly divided into wood (so-called trees) and herbs (so-called grass), but they may be wood or grass. As the plant, palm (coconut) and sugar cane are preferable, and among palms, oil palm and coconut are preferable. This is because palm and sugar cane contain a relatively large amount of sugars compared to other plants.
 ところで、東南アジアではパーム油産業が盛んであるが、ヤシは20~30年で実の付きが悪くなるため、このような古木をいかに処理するかが問題となっている。それというのも、温室効果ガスの放出を防ぐなどという目的で古木の焼却処分が禁止されており、それに加えてヤシは含水率が高いため、木材としての再利用が難しいからである。このようなことから、伐採されたヤシの古木などを有効利用することが望まれており、バイオマス成形材料の原料として容易に入手することができる。 By the way, although the palm oil industry is prosperous in Southeast Asia, since the fruit of the palm becomes poor in 20 to 30 years, how to treat such old trees is a problem. This is because the incineration of old trees is prohibited for the purpose of preventing the release of greenhouse gases, and in addition, palm has a high water content, which makes it difficult to reuse as wood. For this reason, it is desired to effectively use old felled palm trees and the like, and they can be easily obtained as a raw material for a biomass molding material.
 植物の粉砕物(例えばヤシ粉砕物及びバガスなど)は、次のようにして得ることができる。まず植物の幹等を粉砕して圧搾することにより、残渣と搾汁とに分ける。次に残渣を乾燥させる。 Crushed plants (eg crushed palm and bagasse) can be obtained as follows. First, a plant trunk or the like is crushed and squeezed to separate it into a residue and juice. Then the residue is dried.
 例えば、残渣を風乾させることによって、植物の粉砕物を得ることができる。この場合、植物の粉砕物に水分が残っていてもよい。後述の未反応物の加熱処理により、水分が除去されるからである。 -For example, a plant crushed product can be obtained by air-drying the residue. In this case, water may remain in the ground product of the plant. This is because the water content is removed by the heat treatment of the unreacted material described later.
 残渣の水分を可能な限り除去しておいてもよい。すなわち、残渣を105℃±2℃で乾燥させることによって、植物の粉砕物を得ることができる。このように残渣を乾燥させることによって、残渣中の水分を蒸発させることができる。残渣中の水分量は、植物の粉砕物(絶乾状態)を100質量部として、20質量部以下であることが好ましい。絶乾状態は、105℃±2℃の熱風乾燥機中に残渣を放置して恒量になった状態を意味する。恒量になった状態とは、15分間以上の間隔で残渣の質量を測定し、その前後の質量差が後の質量の0.1%以内となった状態を意味する。なお、植物の幹等を粉砕し、圧搾せずに、上記と同様に乾燥させたものを、植物の粉砕物として用いるようにしてもよい。 ❖ You may remove the residual water as much as possible. That is, a pulverized product of a plant can be obtained by drying the residue at 105 ° C ± 2 ° C. By drying the residue in this manner, water in the residue can be evaporated. The water content in the residue is preferably 20 parts by mass or less, based on 100 parts by mass of the pulverized product of the plant (in an absolutely dried state). The absolutely dry state means a state in which the residue is left in a hot air dryer at 105 ° C. ± 2 ° C. to have a constant weight. The constant state means a state in which the mass of the residue is measured at intervals of 15 minutes or more, and the mass difference before and after the measurement is within 0.1% of the mass after the measurement. It should be noted that a plant trunk or the like may be crushed and dried without squeezing in the same manner as described above to be used as a crushed product of the plant.
 植物の粉砕物に含まれる糖類は、単糖、二糖及び多糖(オリゴ糖を含む)である。二糖及び多糖は、複数の単糖がグリコシド結合して構成されている。 The sugars contained in the ground product of the plant are monosaccharides, disaccharides and polysaccharides (including oligosaccharides). Disaccharides and polysaccharides are composed of a plurality of monosaccharides linked by glycosidic bonds.
 単糖として、例えば、フルクトース、リボース、アラビノース、ラムノース、キシルロース及びデオキシリボースが挙げられる。 Examples of monosaccharides include fructose, ribose, arabinose, rhamnose, xylulose and deoxyribose.
 二糖として、例えば、スクロース、マルトース、トレハロース、ツラノース、ラクツロース、マルツロース、パラチノース、ゲンチオビウロース、メリビウロース、ガラクトスクロース、ルチヌロース及びプランテオビオースが挙げられる。 Examples of disaccharides include sucrose, maltose, trehalose, turanose, lactulose, maltulose, palatinose, gentiobiurose, melibiulose, galactosucrose, rutinulose and planteobiose.
 多糖として、例えば、デンプン、アガロース、アルギン酸、グルコマンナン、イヌリン、キチン、キトサン、ヒアルロン酸、グリコーゲン及びセルロースが挙げられる。オリゴ糖として、例えば、フラクトオリゴ糖、ガラクトオリゴ糖、マンナンオリゴ糖及びスタキオースが挙げられる。 Examples of polysaccharides include starch, agarose, alginic acid, glucomannan, inulin, chitin, chitosan, hyaluronic acid, glycogen and cellulose. Examples of oligosaccharides include fructooligosaccharides, galactooligosaccharides, mannan oligosaccharides and stachyose.
 糖類は、植物の粉砕物に1種のみ含有されていても2種以上含有されていてもよい。 Saccharides may be contained in the crushed plant product in only one kind or in two or more kinds.
 多価カルボン酸は、複数のカルボキシ基を有する化合物であれば、特に限定されない。多価カルボン酸として、例えば、クエン酸、酒石酸、リンゴ酸、グルコン酸、セバシン酸、イタコン酸、コハク酸、シュウ酸、アジピン酸、マロン酸、フタル酸、マレイン酸、フマル酸、グルタル酸(1,5-ペンタン二酸)、グルタコン酸及びペンテン二酸が挙げられる。多価カルボン酸として、酸無水物も使用できる。 The polycarboxylic acid is not particularly limited as long as it is a compound having a plurality of carboxy groups. As the polycarboxylic acid, for example, citric acid, tartaric acid, malic acid, gluconic acid, sebacic acid, itaconic acid, succinic acid, oxalic acid, adipic acid, malonic acid, phthalic acid, maleic acid, fumaric acid, glutaric acid (1 , 5-pentanedioic acid), glutaconic acid and pentenedioic acid. An acid anhydride can also be used as the polycarboxylic acid.
 上記に列挙した多価カルボン酸のうち、クエン酸、酒石酸、リンゴ酸、グルコン酸、セバシン酸、及びイタコン酸は、植物を原料として製造されているため、特に好ましい。このように植物を原料としている場合、化石資源の使用が抑制されるため、環境へ負担をかけずにバイオマス成形材料を得ることができる。多価カルボン酸は、未反応物に1種のみ含有されていても2種以上含有されていてもよい。なお、多価カルボン酸は、ポリカルボン酸と同義である。 Among the polyvalent carboxylic acids listed above, citric acid, tartaric acid, malic acid, gluconic acid, sebacic acid, and itaconic acid are particularly preferable because they are produced from plants. When plants are used as a raw material in this way, the use of fossil resources is suppressed, so that a biomass molding material can be obtained without burdening the environment. The polycarboxylic acid may be contained in the unreacted product alone or in combination of two or more. The polycarboxylic acid has the same meaning as the polycarboxylic acid.
 多価カルボン酸の含有量は、未反応物の全体の質量(仕込み量)に対して、好ましくは0.3質量%以上10質量%以下、より好ましくは2.7質量%以上5質量%以下の範囲内である。これにより、バイオマス成形材料の硬化物であるバイオマス成形体の、酸による強度低下を抑制したり、酸の溶出による環境悪化を抑制したりすることができる。 The content of the polycarboxylic acid is preferably 0.3% by mass or more and 10% by mass or less, more preferably 2.7% by mass or more and 5% by mass or less, based on the total mass (charged amount) of the unreacted material. Within the range of. As a result, it is possible to suppress the strength reduction of the biomass molded body, which is a cured product of the biomass molding material, due to the acid, and to suppress the environmental deterioration due to the elution of the acid.
 未反応物は、上述の糖類を含む植物の粉砕物と、多価カルボン酸とを配合することにより得られる。植物の粉砕物も多価カルボン酸も一般に入手しやすいため、低コストでバイオマス成形材料を製造することが可能である。 The unreacted material is obtained by blending a pulverized product of the above-mentioned plant containing saccharides and a polyvalent carboxylic acid. Since pulverized products of plants and polycarboxylic acids are generally easily available, it is possible to produce a biomass molding material at low cost.
 未反応物は、加熱処理されると2段階の反応を経て完全に硬化する。すなわち、本実施形態では、無加圧状態での加熱処理により第1段階の反応(以下「予備反応」という場合がある。)を進行させ、途中で冷却することにより予備反応を終了させてバイオマス成形材料を得る。このとき発生した縮合水は除去される。更なる加熱処理により第2段階の反応が進行して完了する。 ㆍ The unreacted material undergoes a two-step reaction when it is heat treated, and is completely cured. That is, in the present embodiment, the first-stage reaction (hereinafter sometimes referred to as “preliminary reaction”) is advanced by heat treatment in a non-pressurized state, and the preliminary reaction is terminated by cooling in the middle of the reaction to generate biomass. Obtain a molding material. Condensed water generated at this time is removed. Further heat treatment completes the second stage reaction.
 ここで、無加圧状態とは、未反応物に両側(例えば上下)から大きな圧力が加わっておらず、未反応物を自由に動かすことが可能な状態を意味する。換言すれば、無加圧状態には、未反応物を積み重ねたときの自重、及び未反応物を攪拌するときの攪拌力程度の圧力が加わった状態は含まれる。例えば、無加圧状態での加熱処理には、容器に未反応物を入れ、この未反応物を攪拌棒などで攪拌しながら大気圧下で加熱する加熱処理は含まれる。 Here, the non-pressurized state means a state in which a large pressure is not applied to the unreacted material from both sides (for example, upper and lower sides), and the unreacted material can be freely moved. In other words, the non-pressurized state includes a state in which unreacted substances are stacked and a state in which a pressure equivalent to a stirring force when stirring the unreacted substances is applied. For example, the heat treatment in a non-pressurized state includes a heat treatment in which an unreacted material is put in a container and heated under atmospheric pressure while stirring the unreacted material with a stirring rod or the like.
 未反応物は、第1段階の反応を経て半硬化物(バイオマス成形材料)となり、この半硬化物が第2段階の反応の完了により硬化物(バイオマス成形体)となる。このように、バイオマス成形材料は、糖類を含む植物と、多価カルボン酸との硬化反応の中間生成物であるといえる。無加圧状態で加熱されるため、予備反応により発生した縮合水のほとんどが除去される。縮合水を除去することで、バイオマス成形体にパンク(破裂)が発生することを抑制することができる。 The unreacted product becomes a semi-cured product (biomass molding material) through the first-stage reaction, and this semi-cured product becomes a cured product (biomass molded product) when the second-stage reaction is completed. Thus, it can be said that the biomass molding material is an intermediate product of the curing reaction between the plant containing saccharides and the polyvalent carboxylic acid. Since it is heated in a non-pressurized state, most of the condensed water generated by the preliminary reaction is removed. By removing the condensed water, it is possible to suppress the occurrence of puncture (burst) in the biomass molded body.
 バイオマス成形材料を得るためには、未反応物を無加圧状態で加熱して硬化反応を開始させ、硬化反応の途中で冷却して、硬化反応を止める。 In order to obtain a biomass molding material, the unreacted material is heated in a non-pressurized state to start the curing reaction, and is cooled during the curing reaction to stop the curing reaction.
 ここで、硬化反応の途中とは、第1段階の反応から第2段階の反応へと至る過程を意味する。換言すれば、硬化反応の途中とは、未反応物に含まれる反応生成物が、熱硬化性樹脂のBステージの性状(加熱すると溶融し、冷却すると固化する性状)を示す反応状態にある過程を意味する。さらに言えば、硬化反応の途中とは、バイオマス成形材料が接着性を有する状態にある過程を意味する。 Here, the middle of the curing reaction means the process from the first stage reaction to the second stage reaction. In other words, the middle of the curing reaction is a process in which the reaction product contained in the unreacted material is in a reaction state showing the B-stage property of the thermosetting resin (the property of melting when heated and solidifying when cooled). Means Further, the middle of the curing reaction means a process in which the biomass molding material is in a state of having adhesiveness.
 ただし、硬化反応の途中には、硬化反応がほぼ完了した時点から完全に完了した時点までの過程は含まれない。換言すれば、硬化反応の途中には、バイオマス成形材料が接着性を有しなくなった状態以後の過程は含まれない。具体的には、硬化反応の途中は、加熱開始から20分未満までの間であることが好ましい。この場合の加熱温度は、好ましくは110℃以上240℃以下の範囲内である。冷却には、積極的に冷風を供給すること、及び単に加熱を停止して常温下に放置することなどが含まれる。 However, the course of the curing reaction does not include the process from the time when the curing reaction is almost completed to the time when it is completely completed. In other words, the curing reaction does not include the process after the state where the biomass molding material has no adhesiveness. Specifically, it is preferable that the curing reaction is performed for less than 20 minutes from the start of heating. The heating temperature in this case is preferably in the range of 110 ° C. or higher and 240 ° C. or lower. Cooling includes positively supplying cold air and simply stopping heating and leaving it at room temperature.
 予備反応のための加熱処理により、植物の粉砕物に含まれる糖類が加水分解し、加水分解生成物が生成される。さらに加水分解生成物は、脱水縮合して糖変性物の反応生成物が生成される。このとき発生する縮合水は除去される。 By the heat treatment for the preliminary reaction, the sugars contained in the ground product of the plant are hydrolyzed to produce a hydrolysis product. Further, the hydrolysis product is dehydrated and condensed to produce a reaction product of a sugar-modified product. Condensed water generated at this time is removed.
 例えば、糖類がスクロースの場合、以下のように硬化反応が進行すると推測される。まず、スクロースが加水分解してグルコースとフルクトースとが生成される。次にフルクトースの脱水反応により、フルフラール(具体的には5-(ヒドロキシメチル)フルフラール)が生成される。糖変性物であるフルフラールは、更なる加熱処理により熱硬化性樹脂であるフラン樹脂となり、多価カルボン酸の存在下で硬化する。一方、グルコースは、脱水縮合反応により糖エステルポリマーとなって硬化する。バイオマス成形材料は、加熱処理による予備反応が完了した状態では、糖変性物の反応生成物を含有していると考えられる。 For example, when the sugar is sucrose, it is presumed that the curing reaction proceeds as follows. First, sucrose is hydrolyzed to produce glucose and fructose. Then, fructose (specifically, 5- (hydroxymethyl) furfural) is produced by a dehydration reaction of fructose. Furfural, which is a sugar-modified product, becomes a furan resin, which is a thermosetting resin, by further heat treatment, and is cured in the presence of a polycarboxylic acid. On the other hand, glucose becomes a sugar ester polymer by a dehydration condensation reaction and hardens. It is considered that the biomass molding material contains the reaction product of the sugar modified product in the state where the preliminary reaction by the heat treatment is completed.
 未反応物の加熱は、未反応物を静止させた状態で行ってもよいが、好ましくは、未反応物の加熱を、未反応物を運動させながら行う。例えば、未反応物を容器に入れ、容器内の未反応物を攪拌棒などで攪拌したり、容器を揺動させたり回転させたりして運動させながら、容器を外部から加熱する。これによって容器内の未反応物は、攪拌により動いたり、揺動又は回転したりしながら加熱される。揺動又は回転させる方法としては、例えば、遊星攪拌装置を使用した方法が挙げられる。また、未反応物を容器に入れ、容器内に熱風を吹き込んで対流させながら、容器内の未反応物を加熱してもよい。これによって容器内の未反応物は、循環しながら加熱される。 The unreacted material may be heated while the unreacted material is stationary, but preferably, the unreacted material is heated while the unreacted material is being moved. For example, the unreacted material is placed in a container, and the unreacted material in the container is heated from the outside while stirring the unreacted material with a stirring rod or the like, or oscillating or rotating the container to move. As a result, the unreacted material in the container is heated while being moved, shaken, or rotated by stirring. Examples of the method of swinging or rotating include a method using a planetary stirring device. Alternatively, the unreacted material in the container may be heated while the unreacted material is placed in the container and convection is performed by blowing hot air into the container. As a result, the unreacted material in the container is heated while being circulated.
 上記のように、未反応物の加熱を、未反応物を運動させながら行うことで、未反応物を静止させている場合に比べて、物性(熱硬化性など)が均一なバイオマス成形材料が得られる。換言すれば、粉体状のバイオマス成形材料を構成する個々の粒子又は小片の物性のばらつきを小さくすることができる。特に、揺動又は回転しながら加熱すると、バイオマス成形材料の凝集を抑制し、得られるバイオマス成形体の外観を向上させることもできる。 As described above, by heating the unreacted material while moving the unreacted material, a biomass molding material with uniform physical properties (such as thermosetting property) can be obtained as compared to when the unreacted material is stationary. can get. In other words, it is possible to reduce variations in the physical properties of individual particles or particles that make up the powdery biomass molding material. In particular, heating while swinging or rotating can suppress the agglomeration of the biomass molding material and improve the appearance of the obtained biomass molding.
 未反応物には、硫酸アンモニウム及び塩化アンモニウムの少なくともいずれかを添加することが好ましい。この場合、未反応物を加熱処理すると、硫酸アンモニウム及び塩化アンモニウムは、多価カルボン酸と同様に、糖類の硬化反応の触媒として機能する。これにより、バイオマス成形体に優れた耐水性を付与することができる。 At least one of ammonium sulfate and ammonium chloride is preferably added to the unreacted material. In this case, when the unreacted material is heat-treated, ammonium sulfate and ammonium chloride function as catalysts for the curing reaction of saccharides, like the polycarboxylic acid. Thereby, excellent water resistance can be imparted to the biomass molded body.
 通常、植物の粉砕物中のヒドロキシ基と、多価カルボン酸とのエステル化反応は、比較的ゆっくりと時間をかけて進行する。そこで、触媒として硫酸アンモニウム及び塩化アンモニウムの少なくともいずれかを未反応物に添加しておくことにより、上記のエステル化の反応時間を短縮することができる。 Normally, the esterification reaction between the hydroxy group in the ground product of the plant and the polycarboxylic acid proceeds relatively slowly over time. Therefore, the reaction time of the above esterification can be shortened by adding at least one of ammonium sulfate and ammonium chloride as a catalyst to the unreacted material.
 硫酸アンモニウム及び塩化アンモニウムの少なくともいずれかの含有量(両方含有する場合には合計の含有量)は、未反応物の全体の質量(仕込み量)に対して、好ましくは0.3質量%以上5質量%以下の範囲内である。これにより、エステル化の反応時間をより短縮することができる。しかもバイオマス成形体の耐水性を更に向上させることができる。なお、硫酸アンモニウム及び塩化アンモニウムは比較的酸性の弱い塩であるため、バイオマス成形体の強度は維持される。 The content of at least one of ammonium sulfate and ammonium chloride (the total content when both are contained) is preferably 0.3 mass% or more and 5 mass with respect to the total mass (charged amount) of the unreacted material. % Or less. Thereby, the reaction time of esterification can be further shortened. Moreover, the water resistance of the biomass molded body can be further improved. Since ammonium sulfate and ammonium chloride are relatively weakly acidic salts, the strength of the biomass molded body is maintained.
 次に、第2の場合について説明する。すなわち、未反応物が、糖類を含む植物の単板と、多価カルボン酸とを含む場合である。未反応物中では、糖類を含む植物の単板と、多価カルボン酸とが共存するだけで、これらはまだ反応していない。なお、糖類を含む植物の粉砕物の代わりに、糖類を含む植物の単板を用いる以外は、第1の場合と共通するので、共通する事項については説明を省略する。 Next, the second case will be explained. That is, this is a case where the unreacted material contains a veneer of a plant containing a saccharide and a polyvalent carboxylic acid. In the unreacted material, the veneer veneer containing the sugar and the polycarboxylic acid coexist, and they have not reacted yet. It should be noted that, except that a sucrose-containing plant veneer is used in place of the saccharide-containing plant pulverized product, the second embodiment is common to the first case, and therefore the description of common items is omitted.
 植物は、木本(いわゆる木)である。植物は、ヤシ(椰子)が好ましく、ヤシの中でもアブラヤシ及びココヤシが好ましい。ヤシは、他の植物に比べて糖類を比較的多く含むためである。 The plant is a tree (so-called tree). The plant is preferably palm (coconut), and among palms, oil palm and coconut are preferable. This is because palm contains a relatively large amount of sugar as compared with other plants.
 植物の単板は、植物の原木を切削機械により切削して得ることができる。切削機械として、例えば、ロータリーレース及びスライサーが挙げられる。単板の厚さは、特に限定されないが、例えば2mm以上8mm以下の範囲内である。 ❖ A veneer of a plant can be obtained by cutting a raw tree of a plant with a cutting machine. Examples of cutting machines include rotary races and slicers. The thickness of the veneer is not particularly limited, but is within a range of 2 mm or more and 8 mm or less, for example.
 未反応物は、植物の単板を多価カルボン酸に浸漬させることにより得られる。つまり、未反応物は、植物の単板に多価カルボン酸が含浸したものである。植物の単板に硫酸アンモニウム及び塩化アンモニウムの少なくともいずれかが更に含浸していてもよい。なお、含浸前又は含浸後において、植物の単板を乾燥させて含水量を低下させておくことが好ましい。 The unreacted material is obtained by immersing a veneer of a plant in a polycarboxylic acid. That is, the unreacted product is a plant veneer impregnated with a polycarboxylic acid. The veneer of the plant may be further impregnated with at least one of ammonium sulfate and ammonium chloride. In addition, before or after the impregnation, it is preferable to dry the veneer of the plant to reduce the water content.
 第1の場合と同様に、バイオマス成形材料を得るためには、未反応物を無加圧状態で加熱して硬化反応を開始させ、硬化反応の途中で冷却して、硬化反応を止める。 Like the first case, in order to obtain the biomass molding material, the unreacted material is heated in a non-pressurized state to start the curing reaction, and is cooled in the middle of the curing reaction to stop the curing reaction.
 この場合も、硬化反応の途中とは、第1段階の反応から第2段階の反応へと至る過程を意味する。換言すれば、硬化反応の途中とは、未反応物に含まれる反応生成物が、熱硬化性樹脂のBステージの性状を示す反応状態にある過程を意味する。さらに言えば、硬化反応の途中とは、バイオマス成形材料が接着性を有する状態にある過程を意味する。 Also in this case, the middle of the curing reaction means a process from the first stage reaction to the second stage reaction. In other words, the middle of the curing reaction means a process in which the reaction product contained in the unreacted material is in a reaction state showing the B-stage property of the thermosetting resin. Further, the middle of the curing reaction means a process in which the biomass molding material is in a state of having adhesiveness.
 ただし、硬化反応の途中には、硬化反応がほぼ完了した時点から完全に完了した時点までの過程は含まれない。換言すれば、硬化反応の途中には、バイオマス成形材料が接着性を有しなくなった状態以後の過程は含まれない。具体的には、硬化反応の途中は、加熱開始から20分未満までの間であることが好ましい。この場合の加熱温度も、好ましくは110℃以上240℃以下の範囲内である。この場合も、冷却には、積極的に冷風を供給すること、及び単に加熱を停止して常温下に放置することなどが含まれる。 However, the course of the curing reaction does not include the process from the time when the curing reaction is almost completed to the time when it is completely completed. In other words, the curing reaction does not include the process after the state where the biomass molding material has no adhesiveness. Specifically, it is preferable that the curing reaction is performed for less than 20 minutes from the start of heating. The heating temperature in this case is also preferably in the range of 110 ° C or higher and 240 ° C or lower. Also in this case, the cooling includes positively supplying cold air, simply stopping the heating, and leaving it at room temperature.
 (2)バイオマス成形材料
 本実施形態に係るバイオマス成形材料は、バイオマス成形体を製造する材料として用いられる。バイオマス成形材料は、糖類を含む植物と、多価カルボン酸との硬化反応の中間生成物である。中間生成物からは縮合水が除去されている。そのため、バイオマス成形体にパンクが発生することを抑制することができる。したがって、優れた耐水性及び強度を有するバイオマス成形体が得られやすくなる。
(2) Biomass molding material The biomass molding material according to the present embodiment is used as a material for manufacturing a biomass molding. The biomass molding material is an intermediate product of a curing reaction between a plant containing sugar and a polycarboxylic acid. Condensed water has been removed from the intermediate product. Therefore, it is possible to suppress the occurrence of punctures in the biomass molded body. Therefore, a biomass molded body having excellent water resistance and strength can be easily obtained.
 特に糖類を含む植物が粉砕物である場合には、中間生成物は、粉体状であり、かつ、熱硬化性を有する。換言すれば、粉体を構成する個々の粒子又は小片が熱硬化性を有している。したがって、バイオマス成形材料は、任意の形状に成形し得る。 Especially when the plant containing sugar is a pulverized product, the intermediate product is in powder form and has thermosetting property. In other words, the individual particles or particles that make up the powder are thermosetting. Therefore, the biomass molding material can be molded into any shape.
 一方、糖類を含む植物が単板である場合には、中間生成物は、単板状であり、かつ、熱硬化性を有する。したがって、複数枚のバイオマス成形材料を重ねて成形すると、合板などに加工することができる。 On the other hand, when the plant containing sugar is a veneer, the intermediate product is veneer-like and has thermosetting property. Therefore, when a plurality of biomass molding materials are stacked and molded, they can be processed into plywood or the like.
 好ましくは、中間生成物が、粉体状及び単板状のいずれであっても、硫酸アンモニウム及び塩化アンモニウムの少なくともいずれかを含有する。これにより、バイオマス成形体に優れた耐水性を付与することができる。 Preferably, the intermediate product contains at least one of ammonium sulfate and ammonium chloride regardless of whether it is in the form of powder or single plate. Thereby, excellent water resistance can be imparted to the biomass molded body.
 (3)バイオマス成形体の製造方法
 本実施形態に係るバイオマス成形体の製造方法は、第1の工程と、第2の工程と、を含む。
(3) Method for manufacturing biomass molded body The method for manufacturing a biomass molded body according to the present embodiment includes a first step and a second step.
 第1の工程は、バイオマス成形材料を得る工程である。第1の工程では、上述のように、糖類を含む植物の粉砕物又は単板と、多価カルボン酸とを含む未反応物を無加圧状態で加熱して硬化反応を開始させ、前記硬化反応の途中で冷却して、前記硬化反応を止めることにより、バイオマス成形材料を得る。 The first step is the step of obtaining a biomass molding material. In the first step, as described above, a crushed product or veneer of a plant containing a saccharide and an unreacted product containing a polyvalent carboxylic acid are heated in a non-pressurized state to start a curing reaction, and the curing is performed. By cooling in the middle of the reaction to stop the curing reaction, a biomass molding material is obtained.
 第2の工程は、バイオマス成形体を得る工程である。すなわち、第2の工程では、第1の工程で得られたバイオマス成形材料を加熱及び加圧して成形する。すなわち、バイオマス成形材料を熱圧成形すると、バイオマス成形体が得られる。熱圧成形には、例えば、上下の熱板(熱盤)を有するプレス機が用いられる。 The second step is the step of obtaining a biomass molded body. That is, in the second step, the biomass molding material obtained in the first step is heated and pressed to be molded. That is, when the biomass molding material is thermocompression-molded, a biomass molding is obtained. For the hot press forming, for example, a pressing machine having upper and lower hot plates (hot plates) is used.
 ここで、バイオマス成形材料が粉体状である場合には、バイオマス成形材料を適当な型に入れて熱圧成形を行う。得ようとするバイオマス成形体の形状は、板状などの単純な形状でもよいし、板状以外の複雑な形状でもよい。 Here, if the biomass molding material is in powder form, the biomass molding material is put into an appropriate mold and thermocompression molding is performed. The shape of the biomass molded body to be obtained may be a simple shape such as a plate or a complicated shape other than the plate.
 一方、バイオマス成形材料が単板状である場合には、複数枚のバイオマス成形材料を重ねて熱圧成形を行う。このようにして合板状のバイオマス成形体が得られる。複数枚のバイオマス成形材料の繊維方向は異なっていてもよいし、同じでもよい。 On the other hand, when the biomass molding material is in the form of a single plate, a plurality of biomass molding materials are stacked and thermocompression molding is performed. In this way, a plywood-shaped biomass compact is obtained. The fiber directions of the plurality of biomass molding materials may be different or the same.
 1つのバイオマス成形体を製造するのに、2種以上の粉体状のバイオマス成形材料を用いてもよい。これらのバイオマス成形材料は、例えば、植物の粉砕物の大きさが異なる。所定のふるいを通過するか否かで、植物の粉砕物の大きさが異なる。 Two or more kinds of powdery biomass molding materials may be used to produce one biomass molding. These biomass molding materials differ in, for example, the size of pulverized products of plants. The size of the crushed plant differs depending on whether or not it passes through a predetermined sieve.
 また、1つのバイオマス成形体を製造するのに、1種以上の粉体状のバイオマス成形材料と、1種以上の単板状のバイオマス成形材料と、を用いてもよい。 Further, in order to produce one biomass molded body, one or more kinds of powdery biomass molding materials and one or more kinds of single plate-shaped biomass molding materials may be used.
 バイオマス成形材料が粉体状であっても単板状であっても、熱圧成形の成形条件は特に限定されない。成形温度は、例えば140℃以上240℃以下の範囲内である。成形時間は、例えば10秒以上20分以下、好ましくは10秒以上10分以下の範囲内である。成形圧力は、例えば0.5MPa以上4MPa以下の範囲内である。 The molding conditions for thermocompression molding are not particularly limited, regardless of whether the biomass molding material is in powder form or single plate form. The molding temperature is, for example, in the range of 140 ° C. or higher and 240 ° C. or lower. The molding time is, for example, 10 seconds or more and 20 minutes or less, preferably 10 seconds or more and 10 minutes or less. The molding pressure is, for example, in the range of 0.5 MPa or more and 4 MPa or less.
 バイオマス成形体は、上述のバイオマス成形材料を用いて製造されるため、加熱及び加圧するプレス機による成形時間を特許文献1に比べて短くすることができる。したがって、プレス機の使用効率が向上し、バイオマス成形体を生産性良く製造することができる。 Since the biomass molded body is manufactured using the above-mentioned biomass molding material, the molding time by a press machine for heating and pressurizing can be shortened as compared with Patent Document 1. Therefore, the use efficiency of the press machine is improved, and the biomass molded body can be manufactured with high productivity.
 本実施形態に係るバイオマス成形体は、バイオマス成形材料の硬化物である。バイオマス成形体は、未反応物を一気に熱圧成形して得られたものではない。すなわち、本実施形態に係るバイオマス成形体は、余分な水分量が少なく、かつ硬化反応を途中で停止させたバイオマス成形材料を熱圧成形して得られたものである。余分な水分とは、予備反応により発生する縮合水などである。 The biomass molded body according to the present embodiment is a cured product of a biomass molding material. The biomass molded body is not obtained by subjecting an unreacted material to hot-press molding at once. That is, the biomass molded body according to the present embodiment is obtained by thermocompression molding of a biomass molding material having a small amount of excess water and having the curing reaction stopped halfway. The excess water is, for example, condensed water generated by the preliminary reaction.
 したがって、本実施形態に係るバイオマス成形体は、優れた耐水性及び強度を有しており、かつ、生産性に優れている。このようなバイオマス成形体は、例えば、建築材、家具、及び住宅内装などに広く使用することができる。 Therefore, the biomass molded body according to the present embodiment has excellent water resistance and strength and is excellent in productivity. Such a biomass molded body can be widely used, for example, in building materials, furniture, house interiors, and the like.
 3.まとめ
 上記実施形態から明らかなように、本開示は、下記の態様を含む。
3. Summary As is clear from the above embodiments, the present disclosure includes the following aspects.
 第1の態様に係るバイオマス成形材料の製造方法は、バイオマス成形体の材料として用いられるバイオマス成形材料の製造方法である。糖類を含む植物の粉砕物又は単板と、多価カルボン酸とを含む未反応物を無加圧状態で加熱して硬化反応を開始させ、前記硬化反応の途中で冷却して、前記硬化反応を止める。 The method for manufacturing a biomass molding material according to the first aspect is a method for manufacturing a biomass molding material used as a material for a biomass molded body. A pulverized product or veneer containing a saccharide and an unreacted product containing a polyvalent carboxylic acid are heated in a non-pressurized state to start a curing reaction, and cooled in the middle of the curing reaction, and the curing reaction is performed. Stop.
 この態様によれば、優れた耐水性及び強度を有するバイオマス成形体を、生産性良く製造するのに好適なバイオマス成形材料が得られる。 According to this aspect, a biomass molding material suitable for producing a biomass molding having excellent water resistance and strength with high productivity can be obtained.
 第2の態様に係るバイオマス成形材料の製造方法は、第1の態様において、前記未反応物が、糖類を含む植物の粉砕物と、多価カルボン酸とを含む場合、前記未反応物の加熱を、前記未反応物を運動させながら行う。 In the method for producing a biomass molding material according to a second aspect, in the first aspect, when the unreacted material contains a pulverized product of a plant containing a saccharide and a polycarboxylic acid, the unreacted material is heated. Is performed while moving the unreacted material.
 この態様によれば、熱硬化性などの物性が均一なバイオマス成形材料が得られる。 According to this aspect, a biomass molding material having uniform physical properties such as thermosetting property can be obtained.
 第3の態様に係るバイオマス成形材料の製造方法は、第1又は2の態様において、前記未反応物に硫酸アンモニウム及び塩化アンモニウムの少なくともいずれかを添加する。 In the method for producing a biomass molding material according to the third aspect, in the first or second aspect, at least one of ammonium sulfate and ammonium chloride is added to the unreacted material.
 この態様によれば、優れた耐水性をバイオマス成形体に付与することができる。 According to this aspect, excellent water resistance can be imparted to the biomass molded body.
 第4の態様に係るバイオマス成形材料の製造方法は、第1~3のいずれかの態様において、前記植物が、ヤシである。 In the method for producing a biomass molding material according to the fourth aspect, in any one of the first to third aspects, the plant is palm.
 この態様によれば、ヤシの古木などを有効利用することができる。 According to this aspect, it is possible to effectively use old palm trees.
 第5の態様に係るバイオマス成形材料は、バイオマス成形体の材料として用いられる。前記バイオマス成形材料は、糖類を含む植物と、多価カルボン酸との硬化反応の中間生成物である。前記中間生成物は、粉体状又は単板状であり、かつ、熱硬化性を有する。 The biomass molding material according to the fifth aspect is used as a material for a biomass molding. The biomass molding material is an intermediate product of a curing reaction between a saccharide-containing plant and a polyvalent carboxylic acid. The intermediate product is in the form of powder or a single plate, and has thermosetting properties.
 この態様によれば、優れた耐水性及び強度を有するバイオマス成形体を、生産性良く製造するのに好適である。 According to this aspect, it is suitable for producing a biomass molded body having excellent water resistance and strength with high productivity.
 第6の態様に係るバイオマス成形材料は、第5の態様において、前記中間生成物が、硫酸アンモニウム及び塩化アンモニウムの少なくともいずれかを含有する。 In the biomass molding material according to the sixth aspect, in the fifth aspect, the intermediate product contains at least one of ammonium sulfate and ammonium chloride.
 この態様によれば、優れた耐水性をバイオマス成形体に付与することができる。 According to this aspect, excellent water resistance can be imparted to the biomass molded body.
 第7の態様に係るバイオマス成形材料は、第5又は6の態様において、前記植物が、ヤシである。 In the biomass molding material according to the seventh aspect, in the fifth or sixth aspect, the plant is palm.
 この態様によれば、ヤシの古木などを有効利用することができる。 According to this aspect, it is possible to effectively use old palm trees.
 第8の態様に係るバイオマス成形体の製造方法は、糖類を含む植物の粉砕物又は単板と、多価カルボン酸とを含む未反応物を無加圧状態で加熱して硬化反応を開始させ、前記硬化反応の途中で冷却して、前記硬化反応を止めることにより、バイオマス成形材料を得る工程と、前記バイオマス成形材料を加熱及び加圧して成形する工程と、を含む。 A method for producing a biomass molded body according to an eighth aspect is to start a curing reaction by heating an unreacted material containing a pulverized product or veneer of a saccharide-containing plant and a polycarboxylic acid in a non-pressurized state. A step of obtaining a biomass molding material by cooling in the middle of the hardening reaction to stop the hardening reaction, and a step of heating and pressing the biomass molding material to mold the material.
 この態様によれば、優れた耐水性及び強度を有するバイオマス成形体を、生産性良く製造することができる。 According to this aspect, it is possible to manufacture a biomass molded body having excellent water resistance and strength with high productivity.
 本開示を実施例によって具体的に説明するが、本開示は、以下の実施例に限定されない。 The present disclosure will be specifically described by way of examples, but the present disclosure is not limited to the following examples.
 (実施例1~3、5)
 母材(糖類を含む植物)として、ヤシ(アブラヤシ)粉砕物を用いた。まずヤシの幹を粉砕して圧搾することにより、残渣と搾汁とに分けた。次に残渣を105℃で乾燥させてヤシ粉砕物を得た。
(Examples 1 to 3 and 5)
As a base material (plant containing sugar), a pulverized product of palm (oil palm) was used. First, the palm trunk was crushed and squeezed to separate it into a residue and juice. Next, the residue was dried at 105 ° C. to obtain a crushed coconut product.
 一方、多価カルボン酸として、クエン酸を用い、添加物として、硫酸アンモニウムを用いた。 On the other hand, citric acid was used as the polycarboxylic acid and ammonium sulfate was used as the additive.
 そして、表1に示す配合量で各成分を配合することによって未反応物を得た。その後、この未反応物を表1に示す条件(仕込み量、温度、及び時間)で、無加圧状態で加熱して予備反応させることによって、粉体状のバイオマス成形材料を製造した。 Then, an unreacted material was obtained by blending each component in the blending amounts shown in Table 1. Then, the unreacted material was heated in the non-pressurized state and pre-reacted under the conditions (charged amount, temperature, and time) shown in Table 1 to produce a powdery biomass molding material.
 次に、上下の熱板を有するプレス機を用いて、上記のバイオマス成形材料を表1に示す成形条件(温度、時間、及び圧力)で熱圧成形することによって、板状のバイオマス成形体(成形品)を製造した。このとき、得ようとするバイオマス成形体の厚さが表1に示す厚さとなるように、上下の熱板の間隔をディスタンスバーで規制した。さらに表1に示す密度となるように、上下の熱板間に供給するバイオマス成形材料の供給量を調整した。 Next, by using a pressing machine having upper and lower hot plates, the above biomass molding material was thermocompressed under the molding conditions (temperature, time, and pressure) shown in Table 1 to obtain a plate-shaped biomass molding ( A molded product) was manufactured. At this time, the distance between the upper and lower hot plates was regulated by a distance bar so that the thickness of the biomass molded body to be obtained would be the thickness shown in Table 1. Further, the supply amount of the biomass molding material supplied between the upper and lower hot plates was adjusted so that the density was as shown in Table 1.
 (実施例4)
 遊星攪拌装置を用いて、未反応物を運動させながら、無加圧状態で加熱して予備反応を行うようにした以外は、実施例1と同様にして、板状のバイオマス成形体を製造した。
(Example 4)
A plate-shaped biomass molded body was produced in the same manner as in Example 1 except that the pre-reaction was carried out by heating the unreacted material while moving the unreacted material using a planetary stirring device. .
 (実施例6)
 実施例1と同様にしてヤシ粉砕物を得た。このヤシ粉砕物をふるいにかけた。ふるいの公称目開きは、JIS Z8801-1規格で500μmである。ふるいを通過した第1残渣と、ふるいを通過しなかった第2残渣とに分けた。
(Example 6)
A crushed palm product was obtained in the same manner as in Example 1. This crushed palm product was sifted. The sieve has a nominal opening of 500 μm according to JIS Z8801-1 standard. The first residue that passed through the sieve and the second residue that did not pass through the sieve were separated.
 そして、表1に示す配合量で各成分を配合することによって未反応物を得た。より詳細には、この場合の未反応物は、第1残渣由来の未反応物と、第2残渣由来の未反応物と、の2種類である。第1残渣由来の未反応物は、ヤシ粉砕物として第1残渣のみを含む。第2残渣由来の未反応物は、ヤシ粉砕物として第2残渣のみを含む。なお、表1中では、第1残渣由来及び第2残渣由来の未反応物の配合量を区別していない。両者の配合量は同じである。 Then, an unreacted material was obtained by blending each component in the blending amounts shown in Table 1. More specifically, the unreacted substances in this case are of two types: unreacted substances derived from the first residue and unreacted substances derived from the second residue. The unreacted material derived from the first residue contains only the first residue as a crushed coconut product. The unreacted material derived from the second residue contains only the second residue as a crushed coconut product. In addition, in Table 1, the compounding amounts of the unreacted substances derived from the first residue and the second residue are not distinguished. The compounding amounts of both are the same.
 その後、第1残渣由来及び第2残渣由来の未反応物を、表1に示す条件(仕込み量、温度、及び時間)で、無加圧状態で加熱して予備反応させることによって、粉体状の第1残渣由来及び第2残渣由来のバイオマス成形材料を製造した。 Then, the unreacted materials derived from the first residue and the second residue are heated in a non-pressurized state and preliminarily reacted under the conditions (charged amount, temperature, and time) shown in Table 1 to obtain a powder form. Biomass molding materials derived from the first residue and the second residue were produced.
 次に、粉体状の第1残渣由来及び第2残渣由来のバイオマス成形材料を用いて、3層構造の板状のバイオマス成形体を製造した。3層構造は、芯層と、芯層の両側の表層とからなる構造である。芯層は、第2残渣由来のバイオマス成形材料で形成される。表層は、第1残渣由来のバイオマス成形材料で形成される。 Next, a plate-shaped biomass molding having a three-layer structure was manufactured using the powder-shaped biomass molding materials derived from the first residue and the second residue. The three-layer structure is a structure including a core layer and surface layers on both sides of the core layer. The core layer is formed of a biomass molding material derived from the second residue. The surface layer is formed of the biomass molding material derived from the first residue.
 具体的には、第1残渣由来のバイオマス成形材料、第2残渣由来のバイオマス成形材料、及び第1残渣由来のバイオマス成形材料を、この順に上下の熱板間に供給した後、表1に示す成形条件で熱圧成形することによって、3層構造の板状のバイオマス成形体を製造した。 Specifically, the biomass molding material derived from the first residue, the biomass molding material derived from the second residue, and the biomass molding material derived from the first residue are supplied in this order between the upper and lower hot plates, and then shown in Table 1. A plate-shaped biomass molded body having a three-layer structure was manufactured by hot pressing under the molding conditions.
 (実施例7)
 母材として、バガスを用いた以外は、実施例1と同様にして、バイオマス成形材料を製造し、更にはこのバイオマス成形材料を用いて、板状のバイオマス成形体を製造した。なお、バガスとして、サトウキビの砂糖を搾った後の搾りかすを、粉砕機を用いて粉砕したものを用いた。
(Example 7)
A biomass molding material was manufactured in the same manner as in Example 1 except that bagasse was used as the base material, and further, a plate-shaped biomass molding was manufactured using this biomass molding material. In addition, as bagasse, what was crushed with a crusher was used as the shavings after squeezing sugar cane sugar.
 (実施例8)
 母材として、ヤシ単板を用いた。ヤシ単板は、ヤシの原木を切削機械により切削して得た。ヤシ単板の厚さは4mmである。
(Example 8)
A palm veneer was used as a base material. The palm veneer was obtained by cutting a raw palm tree with a cutting machine. The thickness of the coconut veneer is 4 mm.
 そして、ヤシ単板にクエン酸を含浸させて未反応物を得た後、この未反応物を表1に示す条件で、無加圧状態で加熱して予備反応させることによって、単板状のバイオマス成形材料を製造した。 Then, after coconut veneer was impregnated with citric acid to obtain an unreacted product, the unreacted product was heated in a non-pressurized state and pre-reacted under the conditions shown in Table 1 to obtain a veneer-like product. A biomass molding material was produced.
 次に、上記の単板状のバイオマス成形材料を3枚重ね、上下の熱板の間隔が6mmとなるようにディスタンスバーで規制した上で、表1に示す成形条件で熱圧成形することによって、合板状のバイオマス成形体を製造した。なお、3枚の単板状のバイオマス成形材料を重ねる際、中央の単板状のバイオマス成形材料の繊維方向と、その上下の単板状のバイオマス成形材料の繊維方向とが交差するように、上下の熱板間に配置した。 Next, by stacking three sheets of the above single-plate biomass molding material, regulating the distance between the upper and lower hot plates with a distance bar, and hot-pressing under the molding conditions shown in Table 1. , A plywood-shaped biomass molded body was manufactured. When stacking three single-plate biomass molding materials, the fiber direction of the central single-plate biomass molding material and the fiber directions of the upper and lower single-plate biomass molding materials cross each other. It was placed between the upper and lower hot plates.
 (実施例9)
 実施例6の第1残渣由来のバイオマス成形材料と同じバイオマス成形材料(表1中の「9-1」参照)と、実施例8の単板状のバイオマス成形材料と同じバイオマス成形材料(表1中の「9-2」参照)と、を用いて、3層構造の板状のバイオマス成形体を製造した。この場合も3層構造は、芯層と、芯層の両側の表層とからなる構造である。ただし、芯層は、単板状のバイオマス成形材料で形成される。表層は、第1残渣由来のバイオマス成形材料で形成される。
(Example 9)
The same biomass molding material as the biomass molding material derived from the first residue of Example 6 (see “9-1” in Table 1) and the same biomass molding material as the single plate-shaped biomass molding material of Example 8 (Table 1 (See “9-2” in the above) and was used to manufacture a plate-shaped biomass molded body having a three-layer structure. Also in this case, the three-layer structure is a structure including a core layer and surface layers on both sides of the core layer. However, the core layer is formed of a single plate-shaped biomass molding material. The surface layer is formed of the biomass molding material derived from the first residue.
 具体的には、第1残渣由来のバイオマス成形材料、単板状のバイオマス成形材料、及び第1残渣由来のバイオマス成形材料を、この順に上下の熱板間に供給した。その後、上下の熱板の間隔が3mmとなるようにディスタンスバーで規制した上で、表1に示す成形条件で熱圧成形することによって、3層構造の板状のバイオマス成形体を製造した。 Specifically, the biomass molding material derived from the first residue, the single-plate biomass molding material, and the biomass molding material derived from the first residue were supplied in this order between the upper and lower hot plates. Then, the distance between the upper and lower hot plates was regulated by a distance bar so that the distance between the hot plates was 3 mm, and then thermocompression molding was performed under the molding conditions shown in Table 1 to produce a plate-shaped biomass molded body having a three-layer structure.
 (比較例1)
 実施例1と同様の未反応物を得た後、予備反応させずに、この未反応物を表1に示す成形条件で熱圧成形することによって、板状のバイオマス成形体を製造した。
(Comparative Example 1)
After obtaining the same unreacted product as in Example 1, the plate-shaped biomass molded product was produced by hot pressing the unreacted product under the molding conditions shown in Table 1 without pre-reacting.
 (比較例2)
 実施例8と同様の未反応物を得た後、予備反応させずに、この未反応物を表1に示す成形条件で熱圧成形することによって、板状のバイオマス成形体を製造した。
(Comparative example 2)
After obtaining an unreacted material similar to that in Example 8, the plate-shaped biomass molded article was manufactured by subjecting this unreacted material to thermocompression molding under the molding conditions shown in Table 1 without performing a preliminary reaction.
 (比較例3)
 予備反応の時間を長くした以外は、実施例1と同様にして、バイオマス成形材料を製造し、更にはこのバイオマス成形材料を用いて、板状のバイオマス成形体を製造した。なお、予備反応の時間は、硬化反応の開始から硬化反応がほぼ完了するまでの時間である20分とした。
(Comparative example 3)
A biomass molding material was manufactured in the same manner as in Example 1 except that the pre-reaction time was extended, and a plate-shaped biomass molding was manufactured using this biomass molding material. The pre-reaction time was set to 20 minutes from the start of the curing reaction to the completion of the curing reaction.
 (比較例4)
 成形条件の時間を長くした以外は、比較例1と同様にして、板状のバイオマス成形体を製造した。
(Comparative example 4)
A plate-shaped biomass molded body was manufactured in the same manner as in Comparative Example 1 except that the molding condition was extended.
 <評価>
 [成形性(外観)]
 成形性(外観)の評価は、バイオマス成形体の外観を観察することにより行った。評価基準は、以下のとおりである。
<Evaluation>
[Moldability (appearance)]
The moldability (appearance) was evaluated by observing the appearance of the biomass molded body. The evaluation criteria are as follows.
 S:バイオマス成形材料のムラ及びダマに起因する色むら(黒い斑点)及び表層の凹凸が非常に少なく、内層でのパンク(剥離)及び表面での粉体の剥がれ(崩壊)がない
 A:上記の色むら及び表層の凹凸が上記のSの場合よりも若干多いが、内層でのパンク及び表面での粉体の剥がれはない
 B:少なくとも内層でのパンク又は表面での粉体の剥がれがある。
S: Color unevenness (black spots) and unevenness of the surface layer due to unevenness and lumps of the biomass molding material are very small, and there is no puncture (peeling) in the inner layer and peeling (collapse) of the powder on the surface A: Above There is slightly more color unevenness and unevenness on the surface layer than in the case of S above, but there is no puncture in the inner layer and peeling of the powder on the surface B: At least puncture on the inner layer or peeling of the powder on the surface .
 [吸水厚さ膨張率]
 耐水性を評価するため、JIS A 5908に準拠して吸水厚さ膨張率試験を行った。
[Water absorption thickness expansion rate]
In order to evaluate the water resistance, a water absorption thickness expansion coefficient test was performed in accordance with JIS A 5908.
 [剥離強さ]
 強度を評価するため、JIS A 5908に準拠して剥離強さ試験を行った。
[Peel strength]
In order to evaluate the strength, a peel strength test was conducted according to JIS A 5908.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~9では、バイオマス成形体が優れた耐水性及び強度を有していることが分かる。比較例4のバイオマス成形体も各実施例と同程度の耐水性及び強度を有しているが、成形条件の時間が2倍近く長くなり、生産性が悪いことが分かる。比較例3では、予備反応の時間が長く、硬化反応がほぼ完了した状態まで反応を進めたため、バイオマス成形材料の粉体同士が十分に接着せず、バイオマス成形体として用いるのは困難であった。 As is clear from Table 1, in Examples 1 to 9, it is understood that the biomass moldings have excellent water resistance and strength. The biomass molded body of Comparative Example 4 also has the same level of water resistance and strength as those of the Examples, but the molding condition time is nearly doubled and the productivity is poor. In Comparative Example 3, since the pre-reaction time was long and the reaction proceeded to a state where the curing reaction was almost completed, the powders of the biomass molding material did not adhere sufficiently to each other, and it was difficult to use as a biomass molding. .

Claims (8)

  1.  バイオマス成形体の材料として用いられるバイオマス成形材料の製造方法であって、
     糖類を含む植物の粉砕物又は単板と、多価カルボン酸とを含む未反応物を無加圧状態で加熱して硬化反応を開始させ、前記硬化反応の途中で冷却して、前記硬化反応を止める、
     バイオマス成形材料の製造方法。
    A method for producing a biomass molding material used as a material for a biomass molding, comprising:
    A pulverized product or veneer containing a saccharide and an unreacted product containing a polyvalent carboxylic acid are heated in a non-pressurized state to start a curing reaction, and cooled in the middle of the curing reaction, and the curing reaction is performed. Stop,
    Biomass molding material manufacturing method.
  2.  前記未反応物が、糖類を含む植物の粉砕物と、多価カルボン酸とを含む場合、前記未反応物の加熱を、前記未反応物を運動させながら行う、
     請求項1に記載のバイオマス成形材料の製造方法。
    If the unreacted material contains a pulverized product of a plant containing a saccharide, and a polycarboxylic acid, the unreacted material is heated while exercising the unreacted material.
    The method for producing the biomass molding material according to claim 1.
  3.  前記未反応物に硫酸アンモニウム及び塩化アンモニウムの少なくともいずれかを添加する、
     請求項1又は2に記載のバイオマス成形材料の製造方法。
    At least one of ammonium sulfate and ammonium chloride is added to the unreacted material,
    The method for producing the biomass molding material according to claim 1 or 2.
  4.  前記植物が、ヤシである、
     請求項1~3のいずれか1項に記載のバイオマス成形材料の製造方法。
    The plant is palm,
    The method for producing the biomass molding material according to any one of claims 1 to 3.
  5.  バイオマス成形体の材料として用いられるバイオマス成形材料であって、
     前記バイオマス成形材料は、糖類を含む植物と、多価カルボン酸との硬化反応の中間生成物であり、
     前記中間生成物は、粉体状又は単板状であり、かつ、熱硬化性を有する、
     バイオマス成形材料。
    A biomass molding material used as a material for a biomass molding,
    The biomass molding material is an intermediate product of a curing reaction between a plant containing saccharides and a polycarboxylic acid,
    The intermediate product is in the form of powder or a single plate, and has a thermosetting property,
    Biomass molding material.
  6.  前記中間生成物が、硫酸アンモニウム及び塩化アンモニウムの少なくともいずれかを含有する、
     請求項5に記載のバイオマス成形材料。
    The intermediate product contains at least one of ammonium sulfate and ammonium chloride,
    The biomass molding material according to claim 5.
  7.  前記植物が、ヤシである、
     請求項5又は6に記載のバイオマス成形材料。
    The plant is palm,
    The biomass molding material according to claim 5 or 6.
  8.  糖類を含む植物の粉砕物又は単板と、多価カルボン酸とを含む未反応物を無加圧状態で加熱して硬化反応を開始させ、前記硬化反応の途中で冷却して、前記硬化反応を止めることにより、バイオマス成形材料を得る工程と、
     前記バイオマス成形材料を加熱及び加圧して成形する工程と、を含む、
     バイオマス成形体の製造方法。
    A pulverized product or veneer containing a saccharide and an unreacted product containing a polyvalent carboxylic acid are heated in a non-pressurized state to start a curing reaction, and cooled in the middle of the curing reaction, and the curing reaction is performed. By stopping the step of obtaining a biomass molding material,
    Heating and pressing the biomass molding material to mold the material.
    Biomass molded product manufacturing method.
PCT/JP2019/037269 2018-10-18 2019-09-24 Method for producing biomass-molded material, biomass-molded material, and method for producing biomass-molded article WO2020080046A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-197045 2018-10-18
JP2018197045A JP2020062845A (en) 2018-10-18 2018-10-18 Manufacturing method of biomass compound, biomass compound and manufacturing method of biomass compact

Publications (1)

Publication Number Publication Date
WO2020080046A1 true WO2020080046A1 (en) 2020-04-23

Family

ID=70283398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037269 WO2020080046A1 (en) 2018-10-18 2019-09-24 Method for producing biomass-molded material, biomass-molded material, and method for producing biomass-molded article

Country Status (2)

Country Link
JP (1) JP2020062845A (en)
WO (1) WO2020080046A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7083140B1 (en) 2021-12-28 2022-06-10 株式会社パームホルツ Plate material and its manufacturing method
JP7093138B1 (en) 2021-12-07 2022-06-29 株式会社パームホルツ Wood board

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7545481B2 (en) 2020-07-31 2024-09-04 パナソニックホールディングス株式会社 Manufacturing method of wood board

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214687A (en) * 2011-03-31 2012-11-08 Panasonic Corp Bonding composition and board
JP2016196162A (en) * 2015-04-06 2016-11-24 パナソニックIpマネジメント株式会社 Method for producing fiber board
JP2017140778A (en) * 2016-02-10 2017-08-17 パナソニックIpマネジメント株式会社 Method of manufacturing board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214687A (en) * 2011-03-31 2012-11-08 Panasonic Corp Bonding composition and board
JP2016196162A (en) * 2015-04-06 2016-11-24 パナソニックIpマネジメント株式会社 Method for producing fiber board
JP2017140778A (en) * 2016-02-10 2017-08-17 パナソニックIpマネジメント株式会社 Method of manufacturing board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7093138B1 (en) 2021-12-07 2022-06-29 株式会社パームホルツ Wood board
JP2023084179A (en) * 2021-12-07 2023-06-19 株式会社パームホルツ wooden board
JP7083140B1 (en) 2021-12-28 2022-06-10 株式会社パームホルツ Plate material and its manufacturing method
JP2023097458A (en) * 2021-12-28 2023-07-10 株式会社パームホルツ Plate and production method thereof

Also Published As

Publication number Publication date
JP2020062845A (en) 2020-04-23

Similar Documents

Publication Publication Date Title
JP5472639B2 (en) Composition that cures by heating and pressing
WO2020116042A1 (en) Method for producing biomass molded body
WO2020080046A1 (en) Method for producing biomass-molded material, biomass-molded material, and method for producing biomass-molded article
JP5879521B2 (en) Adhesive composition
JP7065390B2 (en) Manufacturing method of wood composite board
WO2013018707A1 (en) Condensed tannin-containing composition which is cured by application of heat and pressure
WO2021049057A1 (en) Woody laminate and method for manufacturing same, and consolidated veneer and method for manufacturing same
JP6839825B2 (en) Method for manufacturing adhesive for thermal pressure molding and method for manufacturing wood board
JP2016196162A (en) Method for producing fiber board
JP6964251B2 (en) Biomass composition and biomass molding
JP7442150B2 (en) Method for producing biomass molded body
WO2021019946A1 (en) Wooden layered board production method
WO2021006014A1 (en) Plywood board
JP2017071168A (en) Manufacturing method of board
JP6793341B2 (en) Manufacturing method of powder adhesive for thermal pressure molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19873995

Country of ref document: EP

Kind code of ref document: A1