JP2007090839A - Fireproof wooden material or fireproof building material, manufacturing process thereof and fireproofing agent - Google Patents

Fireproof wooden material or fireproof building material, manufacturing process thereof and fireproofing agent Download PDF

Info

Publication number
JP2007090839A
JP2007090839A JP2005287043A JP2005287043A JP2007090839A JP 2007090839 A JP2007090839 A JP 2007090839A JP 2005287043 A JP2005287043 A JP 2005287043A JP 2005287043 A JP2005287043 A JP 2005287043A JP 2007090839 A JP2007090839 A JP 2007090839A
Authority
JP
Japan
Prior art keywords
resin
boron
wood material
silane coupling
coupling agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005287043A
Other languages
Japanese (ja)
Other versions
JP4369411B2 (en
Inventor
Takeji Motai
武治 甕
Kenji Morioka
健志 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUMAKILLA TOTALSYSTEM Ltd
Original Assignee
FUMAKILLA TOTALSYSTEM Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUMAKILLA TOTALSYSTEM Ltd filed Critical FUMAKILLA TOTALSYSTEM Ltd
Priority to JP2005287043A priority Critical patent/JP4369411B2/en
Publication of JP2007090839A publication Critical patent/JP2007090839A/en
Application granted granted Critical
Publication of JP4369411B2 publication Critical patent/JP4369411B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Building Environments (AREA)
  • Fireproofing Substances (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing process of a fireproof wooden material or a fireproof building material which can be used in the types of buildings where use of wooden materials are restricted because of their vulnerability to fire, and a fireproofing agent. <P>SOLUTION: The manufacturing process comprises impregnating a wooden material with a boron-containing aqueous solution which contains ≥3 wt.% and ≤8 wt.%, preferably ≥4 wt.%, more preferably ≥5 wt.% of boron and has a PH adjusted between 6 and 8, followed by drying the wooden material. The manufacturing process of the fireproof building material comprises coating the fireproof wooden materials as obtained above with a silane coupling agent and a resin-based adhesive and bonding them. The fireproofing agent used for the fireproof wooden material or the fireproof building material is an aqueous solution containing boron in an amount of ≥5 wt.% and has a pH adjusted between 6 and 8 with a compound containing Na (sodium) or K (potassium). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、従来、耐火性の問題によって木質材の利用が制限されていた建築物において利用可能な、耐火性を有する木質材または建築材の製造方法に関するものである。また、本発明は、高い耐火性能を有する木質材または建築材に関するものである。また、本発明は、高い耐火性能を付与するための耐火処理剤に関するものである。   TECHNICAL FIELD The present invention relates to a method for manufacturing a fire-resistant wood material or building material that can be used in buildings where the use of wood materials has been limited due to fire resistance problems. The present invention also relates to a wood or building material having a high fire resistance. The present invention also relates to a fireproofing agent for imparting high fireproof performance.

木質材は建築材料として極めて有用な性能を保持しているが、容易に燃焼するという弱点を有するため、高層建築物(例えば高層ビルディング)や、不特定多数の人が利用する建築物における使用が制限されていた。
こうした木質材の建築材としての欠点を克服する目的で、従来、木質材の難燃化のための研究開発が多く実施されている。即ち、難燃性の無機系被覆材の木質材表面への処理、金属系の建築材との複合、あるいは特殊な化学物質の木質材への含浸等の試行である。しかし、加工の複雑さや困難さ、価格面での問題、長期利用における品質劣化等が解決されていないため、広く実用化されるには至っていない。
Although wood materials retain extremely useful performance as building materials, they have the weakness of being easily burned, so they are not suitable for use in high-rise buildings (for example, high-rise buildings) and buildings used by an unspecified number of people. It was restricted.
In the past, many researches and developments have been carried out to make wood materials flame-retardant in order to overcome the drawbacks of wooden materials as building materials. That is, trials on the surface of a wood material of a flame-retardant inorganic coating material, a composite with a metal-based construction material, or impregnation into a wood material of a special chemical substance. However, since the complexity and difficulty of processing, the problem in price, the quality deterioration in long-term use, etc. have not been solved, it has not been put into practical use widely.

例えば、ホウ酸、ホウ砂等のホウ素系化合物は比較的安価で取り扱いが容易であるため、木質材の耐火性を高めるため、従来より使用されている。しかしながら、十分な耐火性能を得るためには多量のホウ素を安定な水溶液として調製し、これを木質材に十分量含浸させることが必要であるが、このために必要な高濃度のホウ素含有水溶液を得ることが難しく、成分の析出、凝集を生じるという問題があった。こうした成分の析出、凝集は、木質材への溶液の含浸量あるいは注入量の低下を招くと共に、水溶液中のホウ素濃度そのものの低下も招く。その結果、十分な耐火性能を得ることができなかった。これを解決するため、ホウ素含水溶液を木質材に含浸した後に、一旦これを乾燥させ、更に同様のホウ素含水溶液を木質材に含浸し、更に乾燥するという、2回に分けて注入を行う方法が実用化されているが、こうした耐火木質材の製造方法は、複雑な製造工程を必要とするため、1回のホウ素含水溶液の含浸で十分な耐火性が得られる、より簡略化された耐火木質材の製造方法の開発が望まれていた。   For example, boron compounds such as boric acid and borax are relatively inexpensive and easy to handle, and thus have been conventionally used to increase the fire resistance of wooden materials. However, in order to obtain sufficient fire resistance, it is necessary to prepare a large amount of boron as a stable aqueous solution and impregnate a sufficient amount of this into a wooden material. There was a problem that it was difficult to obtain and precipitation and aggregation of components occurred. Precipitation and aggregation of these components lead to a decrease in the amount of the solution impregnated or injected into the wood material, and also a decrease in the boron concentration itself in the aqueous solution. As a result, sufficient fire resistance performance could not be obtained. In order to solve this, after impregnating a wooden material with a boron-containing aqueous solution, once drying it, and further impregnating the same boron-containing aqueous solution into the wooden material, and further drying, a method of performing injection in two steps However, since such a method for manufacturing a refractory wood material requires a complicated manufacturing process, sufficient fire resistance can be obtained by a single impregnation with a boron-containing aqueous solution. The development of a method for manufacturing wood materials has been desired.

また、木質材中に十分量のホウ素含有水溶液を注入することは困難であり、これを解決するための方法として、厚さの薄い木質の板材、小さい木片、木質繊維などの木質材に十分量のホウ素含有水溶液を注入し、これを接着によって再度、建築材として有用な大きさに構成する方法も提案されている。しかしながら、こうした木質材に多量に含まれるホウ素系化合物が接着性を妨げるため、建築材としての十分な強度が得られないという欠点があった。特にこうした建築材を雨水等の水分に接触する環境で使用した場合、接着強度が不十分であるため、木質材同士の剥がれ、割れなどを生じるという欠点があった。   In addition, it is difficult to inject a sufficient amount of an aqueous solution containing boron into a wooden material. To solve this problem, a sufficient amount of wooden material such as thin wooden boards, small pieces of wood, and wooden fibers is sufficient. There has also been proposed a method of injecting a boron-containing aqueous solution of the above and again forming it into a size useful as a building material by bonding. However, since a boron compound contained in a large amount in such a wood material hinders adhesion, there is a drawback that sufficient strength as a building material cannot be obtained. In particular, when such building materials are used in an environment where they come into contact with moisture such as rain water, the adhesive strength is insufficient, and thus there is a drawback that the wood materials are peeled off or cracked.

また、木質材に注入されたホウ素系化合物は、木質材を雨水等の水分に接触する環境で使用すると溶脱するという問題があり、これを解決するために様々な有機系化合物をホウ素系化合物に混合し、木質材に注入する方法が行われている。しかしながら、こうした方法では、多量の有機化合物が必要であり、より経済的な方法でホウ素化合物の溶脱を防止する方法が求められていた。こうした溶脱性の抑制は、環境中の生物への悪影響を回避するためにも、また、耐火性を維持するためにも重要である。また更に、ホウ素系化合物はシロアリ、キクイムシ等の木質材を食害する昆虫に対する防虫作用も有するが、こうした防虫作用も溶脱によって同時に低下するという問題があった。   In addition, boron-based compounds injected into wooden materials have a problem of leaching when the wooden materials are used in an environment where they come into contact with moisture such as rainwater. To solve this problem, various organic compounds are converted into boron-based compounds. A method of mixing and pouring into a wooden material is performed. However, such a method requires a large amount of an organic compound, and a method for preventing leaching of a boron compound by a more economical method has been demanded. Such suppression of leaching is important for avoiding adverse effects on living organisms in the environment and for maintaining fire resistance. Furthermore, the boron compound has an insect repellent effect against insects that damage woody materials such as termites and bark beetles, but there is a problem that such an insect repellent effect is simultaneously reduced by leaching.

また、火災等により容易に着火、燃焼する物品に対し、効果的な耐火性を与えるための有効な処理剤が求められていた。   In addition, there has been a demand for an effective treatment agent for imparting effective fire resistance to an article that easily ignites and burns due to a fire or the like.

本発明の目的は、高い耐火性能を有する木質材の製造方法を与えるものである。
本発明の他の目的は、建築材として十分な接着強度を有し、且つ、高い耐火性能を有する、接着して製造される建築材の製造方法を与えるものである。
本発明の他の目的は、ホウ素系化合物の溶脱性を改善して、高い耐火性能と保護効果を付与された木質材または建築材を与えるものである。
本発明の他の目的は、高い耐火性能を付与するための耐火処理剤を与えるものである。
An object of the present invention is to provide a method for producing a wood material having high fire resistance.
Another object of the present invention is to provide a method for producing a building material produced by bonding, which has sufficient adhesive strength as a building material and has high fire resistance.
Another object of the present invention is to improve a leaching property of a boron-based compound and to provide a wood material or a building material imparted with a high fire resistance and a protective effect.
Another object of the present invention is to provide a fireproofing agent for imparting high fireproof performance.

木材の強度、色調に対する影響が小さく、且つ、安価で防虫性も有するホウ素系化合物を用い、ホウ素系化合物の接着強度への悪影響を回避し、ホウ素系化合物の雨水等による溶脱を抑制し、且つ、十分量のホウ素系化合物を木材に含浸して高い耐火性能を達成するため、鋭意、研究を行った。
その結果、特定の条件で製造されたホウ素含有水溶液を木質材等に用いることで高い耐火性能を有する処理物が得られること、また、得られた耐火木質材をシランカップリング剤と樹脂系接着剤を組み合わせて塗装及び/または接着することで、効果的にホウ素系化合物の溶脱が抑制され、高い耐火性能、更には高い接着強度を有する建築材が得られることを見出し、本発明を完成されるに至った。
Uses boron-based compounds that have a small impact on the strength and color of wood, are inexpensive and have insect repellent properties, avoids adverse effects on the bonding strength of boron-based compounds, suppresses leaching of boron-based compounds due to rainwater, etc., and In order to achieve high fire resistance by impregnating wood with a sufficient amount of boron-based compounds, intensive research was conducted.
As a result, it is possible to obtain a treated product having high fire resistance by using a boron-containing aqueous solution produced under specific conditions for a wood material, etc., and the obtained fire resistant wood material is bonded to a silane coupling agent and a resin system. The present invention has been completed by finding that by combining and / or adhering a combination of agents, it is possible to effectively suppress leaching of boron compounds and to obtain a building material having high fire resistance and further high adhesive strength. It came to be.

すなわち、本発明は以下のものを提供するものである。
本発明の請求項1に記載の耐火木質材の製造方法は、ホウ素元素の含有量が3重量%以上8重量%以下で、好ましくは4重量%以上、より好ましくは5重量%で、pHが6から8に調整されたホウ素含有水溶液を木質材に含浸し、その後、木質材を乾燥することを特徴とする。
That is, the present invention provides the following.
In the method for producing a refractory wood material according to claim 1 of the present invention, the boron element content is 3 wt% or more and 8 wt% or less, preferably 4 wt% or more, more preferably 5 wt%, and the pH is A wood material is impregnated with a boron-containing aqueous solution adjusted to 6 to 8, and then the wood material is dried.

請求項2に記載の発明は、請求項2に記載の耐火木質材の製造方法において、ホウ素含有水溶液の温度が50℃以上となるように加温しながら木質材への含浸を行うことを特徴とする。   The invention according to claim 2 is characterized in that, in the method for producing a refractory wood material according to claim 2, the wood material is impregnated while being heated so that the temperature of the boron-containing aqueous solution becomes 50 ° C. or higher. And

請求項3に記載の発明は、請求項1又は請求項2に記載の耐火木質材の製造方法において、前記請求項1または請求項2に記載の方法で得られた耐火木質材に対して、更に、シランカップリング剤及び樹脂系塗料を塗布することを特徴とする。   Invention of Claim 3 is a manufacturing method of the fire-resistant wood material of Claim 1 or Claim 2, In the fire-resistant wood material obtained by the method of the said Claim 1 or Claim 2, Furthermore, a silane coupling agent and a resin-based paint are applied.

請求項4の発明は、請求項3に記載の耐火木質材の製造方法において、シランカップリング剤及び樹脂系塗料を塗布する際に、シランカップリング剤を塗布し次に樹脂系塗料を塗布する、あるいは、シランカップリング剤と樹脂系塗料を混合したものを塗布することを特徴とする。   According to a fourth aspect of the present invention, in the method for producing a fireproof wood material according to the third aspect, when the silane coupling agent and the resin-based paint are applied, the silane coupling agent is applied and then the resin-based paint is applied. Alternatively, a mixture of a silane coupling agent and a resin paint is applied.

請求項5の発明は、請求項3または請求項4に記載の耐火木質材の製造方法において、樹脂系塗料がイソシアネート系、ウレタン系、アクリル系から成る群から選択された塗料であることを特徴とする。   The invention of claim 5 is the method for producing a refractory wood material according to claim 3 or claim 4, wherein the resin-based paint is a paint selected from the group consisting of isocyanate, urethane and acrylic. And

請求項6の発明は、請求項1〜請求項5のいずれか1つに記載の耐火性の建築材の製造方法において、前記請求項1〜請求項5のいずれか1つに記載の方法で得られた耐火木質材に対して、更に、シランカップリング剤及び樹脂系接着剤を塗布し、耐火木質材を接着することを特徴とする。   Invention of Claim 6 is the method of any one of Claims 1-5 in the manufacturing method of the fireproof construction material as described in any one of Claims 1-5. A silane coupling agent and a resin adhesive are further applied to the obtained refractory wood material to bond the refractory wood material.

請求項7の発明は、請求項6に記載の耐火性の建築材の製造方法において、 シランカップリング剤及び樹脂系接着剤を塗布する際に、シランカップリング剤を塗布し次に樹脂系接着剤を塗布する、あるいは、シランカップリング剤と樹脂系接着剤を混合したものを塗布することを特徴とする。   The invention according to claim 7 is the method for producing a fire-resistant building material according to claim 6, wherein when the silane coupling agent and the resin adhesive are applied, the silane coupling agent is applied and then the resin adhesive is applied. An agent is applied, or a mixture of a silane coupling agent and a resin adhesive is applied.

請求項8の発明は、請求項6または請求項7に記載の耐火性の建築材の製造方法において、樹脂系接着剤がフェノール樹脂系、レゾルシノール樹脂系、イソシアネート樹脂系、メラミン樹脂系、ユリア樹脂系、メラミン−ユリア樹脂系、ウレタン樹脂系、エポキシ樹脂系、アクリル樹脂系から成る群から選択された接着剤であることを特徴とする。   The invention according to claim 8 is the method for producing a fire-resistant building material according to claim 6 or 7, wherein the resin adhesive is phenol resin, resorcinol resin, isocyanate resin, melamine resin, urea resin. It is an adhesive selected from the group consisting of a series, a melamine-urea resin system, a urethane resin system, an epoxy resin system, and an acrylic resin system.

請求項9の発明は、耐火木質材または耐火性の建築材が、前記請求項1〜請求項8のいずれか1つに記載の方法で得られる耐火木質材または耐火性の建築材である。     The invention of claim 9 is a fireproof wood material or a fireproof construction material obtained by the method according to any one of claims 1 to 8, wherein the fireproof wood material or the fireproof construction material.

請求項10の発明は、請求項9に記載の耐火木質材または耐火性の建築材において、ホウ素含有水溶液を含浸する前の木質材の乾燥重量を100重量部として、2重量部以上のホウ素元素が含有されていることを特徴とする。   The invention of claim 10 is the fire-resistant wood material or fire-resistant building material according to claim 9, wherein the dry weight of the wood material before impregnating the boron-containing aqueous solution is 100 parts by weight, and 2 parts by weight or more of boron element Is contained.

請求項11の発明は、前記請求項1〜請求項8のいずれか1つに記載の耐火木質材あるいは耐火性の建築材とその製造方法において、耐火処理剤が、ホウ素元素の含有量が5重量%以上8重量%以下で、Na(ナトリウム)またはK(カリウム)を含有する化合物によってpHが6から8に調整された水溶液であることを特徴とする。   The invention of claim 11 is the fire-resistant wood material or fire-resistant building material according to any one of claims 1 to 8 and its manufacturing method, wherein the fire-resistant treatment agent has a boron element content of 5 It is an aqueous solution having a pH adjusted to 6 to 8 with a compound containing Na (sodium) or K (potassium) in an amount of 8 wt% to 8 wt%.

本発明においては、高濃度でホウ素系化合物を含有する水溶液を耐火処理剤として、木質材に含浸させ、この木質材を乾燥した後に、シランカップリング剤及び樹脂系塗料の塗布、及び/または、シランカップリング剤及び樹脂系接着剤による接着を行うことで、ホウ素化合物の溶脱性が改善され、その結果、屋外のような雨水の接触する環境で使用した場合も、良好な耐火性、防虫性を達成することができる。   In the present invention, an aqueous solution containing a boron-based compound at a high concentration is impregnated into a wooden material as a fireproofing agent, and after drying the wooden material, application of a silane coupling agent and a resin-based paint, and / or Adhesion with silane coupling agents and resin adhesives improves boron compound leaching, resulting in good fire and insect resistance even when used outdoors in environments where rainwater comes into contact. Can be achieved.

また、本発明により、高濃度でホウ素系化合物を含有する耐火木質材を、高い接着強度で接合することが可能となり、その結果、様々な用途に利用可能な、有用な耐火性の建築材を得ることが可能となる。   In addition, according to the present invention, it becomes possible to join a refractory wood material containing a boron-based compound at a high concentration with a high adhesive strength, and as a result, a useful fire-resistant building material that can be used for various applications. Can be obtained.

また、本発明の耐火処理剤によって、様々な耐火性処理物を製造することが可能となる。   Moreover, it becomes possible to manufacture various fireproof processed products by the fireproofing agent of the present invention.

本発明で使用する木質材は、木材、竹、モミ殻、藺草、藁、麻、綿等の植物体に由来する角材、板、丸棒、薄板(ラミナ)、チップ、繊維、粉体、あるいはこれらを加工した物品である。本発明にて開示するホウ素含有水溶液を含浸、乾燥して耐火木質材として使用する場合には、角材、板、丸棒が好適に使用される。   The woody material used in the present invention is a timber, board, round bar, thin plate (lamina), chip, fiber, powder, or wood derived from plants such as wood, bamboo, fir shell, cocoon grass, straw, hemp, cotton, etc. These are processed products. When impregnated and dried with the boron-containing aqueous solution disclosed in the present invention and used as a refractory wood material, square bars, plates and round bars are preferably used.

また、木質材に対して本発明にて開示するホウ素含有水溶液を含浸、乾燥し、更にこれらを本発明の接着方法により接着を行う場合は、ホウ素含有水溶液を含浸する木質材としては、好適には、薄板(ラミナ)、チップ、繊維、粉体が使用され、その結果得られる建築材は、耐火性の集成材、合板、LVL、OSB、パーティクルボード、ファイバーボード、MDF(中密度繊維板)などである。こうした方法で得られる建築材は、薄板(ラミナ)、チップ、繊維、粉体等の注入の容易な木質材において多量のホウ素含有水溶液が注入されており、これによって高い耐火性能が付与されている。また、更にこれらの建築材に、切断、穴開け、塗装等の加工を施すことで、建材としての広範な利用が可能となる。   Moreover, when the wood-containing material is impregnated with the boron-containing aqueous solution disclosed in the present invention, dried, and further bonded by the bonding method of the present invention, the wood-based material impregnated with the boron-containing aqueous solution is preferably used. Uses lamina, chips, fibers and powder, and the resulting building materials are fire-resistant laminated wood, plywood, LVL, OSB, particle board, fiber board, MDF (medium density fiber board) Etc. A building material obtained by such a method is injected with a large amount of a boron-containing aqueous solution in a wood material that can be easily injected, such as a thin plate (lamina), chip, fiber, powder, etc., thereby imparting high fire resistance performance. . Further, these building materials can be widely used as building materials by processing such as cutting, drilling and painting.

本発明で使用するホウ素含有水溶液の調製のために使用するホウ素系化合物は、ホウ素元素を含有する化合物であり、例えば、ホウ酸(オルトホウ酸)、ホウ酸塩、メタホウ酸、メタホウ酸塩、ピロホウ酸、ピロホウ酸塩、四ホウ酸、四ホウ酸塩、ホウ砂(四ホウ酸ナトリウム、Na・10HO)、無水ホウ酸ナトリウム、ホウ酸ナトリウム・5水和物、五ホウ酸ナトリウム、八ホウ酸、八ホウ酸塩、八ホウ酸二ナトリウム・4水和物、ホウ酸アンモニウム、三酸化ホウ素が挙げられる。 The boron-based compound used for the preparation of the boron-containing aqueous solution used in the present invention is a compound containing a boron element, such as boric acid (orthoboric acid), borate, metaboric acid, metaborate, pyroborate. Acid, pyroborate, tetraborate, tetraborate, borax (sodium tetraborate, Na 2 B 4 O 7 · 10H 2 O), anhydrous sodium borate, sodium borate pentahydrate, penta Examples thereof include sodium borate, octaborate, octaborate, disodium octaborate tetrahydrate, ammonium borate, and boron trioxide.

本発明により得られる耐火木質材または耐火性の建築材の耐火性のレベルは、使用するホウ素含有水溶液に含まれるホウ素元素の濃度によって調整することが可能であり、実用的な耐火性を得るために必要なこのホウ素元素含有水溶液でのホウ素元素の濃度は、3重量%以上8重量%以下で、好ましくは4重量%以上、より好ましくは5重量%以上である。   The level of fire resistance of the fire-resistant wood material or fire-resistant building material obtained by the present invention can be adjusted by the concentration of boron element contained in the boron-containing aqueous solution used, in order to obtain practical fire resistance The concentration of boron element in the boron element-containing aqueous solution necessary for the above is 3 wt% or more and 8 wt% or less, preferably 4 wt% or more, more preferably 5 wt% or more.

本発明で使用するホウ素含有水溶液の調製は、前記のホウ素系化合物を単独あるいは組み合わせて使用し、且つ、必要に応じてアルカリ金属含有化合物、アルカリ土類金属含有化合物、アンモニア化合物、アミン化合物等のアルカリ系化合物、具体的にはNaOH、KOH、Ca(OH)、NH、モノエタノールアミンを使用し、水を溶媒として、pHを6から8、より好ましくは6.5kara7.5の範囲になるよう調整することで行われる。必要に応じて、硫酸等の鉱酸、クエン酸、リンゴ酸、酢酸、オクタン酸等の有機酸をpH調整剤として使用することも可能である。 The boron-containing aqueous solution used in the present invention is prepared by using the above boron compounds alone or in combination, and, if necessary, alkali metal-containing compounds, alkaline earth metal-containing compounds, ammonia compounds, amine compounds, etc. An alkaline compound, specifically NaOH, KOH, Ca (OH) 2 , NH 3 , monoethanolamine is used, water is used as a solvent, and the pH is in the range of 6 to 8, more preferably 6.5 kara 7.5. This is done by adjusting so that If necessary, a mineral acid such as sulfuric acid, or an organic acid such as citric acid, malic acid, acetic acid, or octanoic acid can be used as a pH adjuster.

また、本発明において開示する耐火処理剤は、ホウ素元素の供給源としてホウ酸(オルトホウ酸)、ホウ酸塩、メタホウ酸、メタホウ酸塩、ピロホウ酸、ピロホウ酸塩、四ホウ酸、四ホウ酸塩、ホウ砂(四ホウ酸ナトリウム、Na・10HO、Na[B(OH)]・8HO)、無水ホウ酸ナトリウム、ホウ酸ナトリウム・5水和物、五ホウ酸ナトリウム、八ホウ酸、八ホウ酸塩、八ホウ酸二ナトリウム・4水和物、ホウ酸アンモニウム、三酸化ホウ素を用い、更には、Na(ナトリウム)またはK(カリウム)を含有する化合物、具体的には、ホウ砂、無水ホウ酸ナトリウム、ホウ酸ナトリウム・5水和物、五ホウ酸ナトリウム、八ホウ酸二ナトリウム・4水和物、NaOH、KOHをpH調整剤として用い、最終的に得られる水溶液中のホウ素元素の含有量が、5重量%以上で、pHが6から8、より好ましくは6.5から7.5の範囲になるよう調整することで得られる。 In addition, the fireproofing agent disclosed in the present invention includes boric acid (orthoboric acid), borate, metaboric acid, metaboric acid, pyroboric acid, pyroboric acid, tetraboric acid, tetraboric acid as a source of boron element. Salt, borax (sodium tetraborate, Na 2 B 4 O 7 · 10H 2 O, Na 2 [B 4 O 5 (OH) 2 ] · 8H 2 O), anhydrous sodium borate, sodium borate · 5 water Japanese, sodium pentaborate, octaborate, octaborate, disodium octaborate tetrahydrate, ammonium borate, boron trioxide, Na (sodium) or K (potassium) -Containing compounds, specifically, borax, anhydrous sodium borate, sodium borate pentahydrate, sodium pentaborate, disodium octaborate tetrahydrate, NaOH, KOH Used as The content of the boron element in the aqueous solution finally obtained, with 5 wt% or more, from the pH is 6-8, and more preferably obtained by adjusting so that the range of 6.5 to 7.5.

本発明の耐火処理剤は、前記の様々な木質材を耐火処理するための処理剤として極めて有用である。また、本発明の耐火処理剤は、紙、皮革、セルロース系素材を含む物品、合成繊維から成る不織布等の物品等の、可燃性の多孔質物品を耐火処理するための処理剤としても有用である。本発明の耐火処理剤を用いて、紙、皮革、不織布等を耐火処理する場合には、処理剤を含浸するための方法として、浸漬法、塗布法が好適に利用可能である。   The fireproofing agent of the present invention is extremely useful as a treating agent for fireproofing the various wood materials described above. The fireproofing agent of the present invention is also useful as a treating agent for fireproofing flammable porous articles such as paper, leather, articles containing cellulosic materials, articles such as nonwoven fabrics made of synthetic fibers, and the like. is there. When fireproofing paper, leather, nonwoven fabric, or the like using the fireproofing agent of the present invention, a dipping method or a coating method can be suitably used as a method for impregnating the treating agent.

本発明で使用するホウ素含有水溶液あるいは耐火処理剤の貯蔵及びその含浸工程において、ホウ素系化合物の析出、高粘性に由来する木質材等への含浸不良を回避するためには、ホウ素含有水溶液あるいは耐火処理剤を加温し、この加温された状態で木質材等へ含浸することが有用である。加温の程度は含有するホウ素系化合物の濃度に応じて決定されるが、例えば、ホウ素元素としての含有量が5.5から6重量%の場合は50℃以上、6から7重量%の場合は70℃以上であることが望ましい。加温での温度設定の上限は、水溶液としての沸点である。   In order to avoid precipitation of boron-based compounds and poor impregnation of woody materials due to high viscosity in the storage and impregnation process of boron-containing aqueous solution or refractory treatment agent used in the present invention, boron-containing aqueous solution or refractory It is useful to heat the treatment agent and impregnate the wood material or the like in the heated state. The degree of heating is determined according to the concentration of the boron-based compound contained. For example, when the content as a boron element is 5.5 to 6% by weight, it is 50 ° C. or more, and when it is 6 to 7% by weight. Is preferably 70 ° C. or higher. The upper limit of the temperature setting in heating is the boiling point as an aqueous solution.

本発明のホウ素含有水溶液を木質材に含浸する際には、加圧及び/もしくは減圧工程、浸漬、塗布等の通常用いられる様々な含浸のための工程が適用可能である。 加圧及び/もしくは減圧工程としては、具体的には、充細胞法(ベセル法)、半空細胞法(ローリー法)、複式真空法(ダブルバキューム法)、加減圧交替法(Oscillating Pressure
Method )、及びこれらの操作を組み合わせた方法が適用可能である。また、インサイジング加工法、ローラー等を用いる圧縮処理、マイクロ波加熱、凍結処理、蒸煮処理、水蒸気処理、あるいは熱処理もまた、含浸量を増大させるための木質材に対する前処理工程として適用可能である。
When the wood material is impregnated with the boron-containing aqueous solution of the present invention, various commonly used steps for impregnation such as a pressurization and / or decompression step, immersion, coating, and the like can be applied. Specifically, as the pressurization and / or depressurization step, the full cell method (Bethel method), the semi-empty cell method (Lowry method), the double vacuum method (double vacuum method), the alternating pressure-reducing method (Oscillating Pressure)
Method) and a combination of these operations are applicable. In addition, an insizing method, a compression treatment using a roller, microwave heating, freezing treatment, steaming treatment, steaming treatment, or heat treatment can also be applied as a pretreatment step for the wood material for increasing the amount of impregnation. .

本発明に開示する塗装工程あるいは接着工程を実施する前に、ホウ素含有水溶液を含浸後の木質材での水分含有量、すなわち木質材の細胞空隙部分に自由水として存在するか、あるいは木質材のセルロース構造部分またはリグニン構造部分に含まれる水分の含有量を、乾燥工程によって、ホウ素含有水溶液を含浸する前の木質材重量に対して、30重量%以下、好ましくは20重量%以下、より好ましくは10重量%以下に調整することが望ましい。こうした乾燥工程は、室温乾燥によって実施可能であり、また、通常の木材乾燥に用いる加熱乾燥設備によっても実施可能である。   Before carrying out the painting step or bonding step disclosed in the present invention, the water content in the wood material impregnated with the boron-containing aqueous solution, that is, it exists as free water in the cell void portion of the wood material, or the wood material The moisture content contained in the cellulose structure part or lignin structure part is 30% by weight or less, preferably 20% by weight or less, more preferably, based on the weight of the wood before impregnating the boron-containing aqueous solution by the drying step. It is desirable to adjust to 10% by weight or less. Such a drying step can be performed by room temperature drying, and can also be performed by a heat drying facility used for ordinary wood drying.

上記の方法で製造された乾燥された耐火木質材への塗装は、木質材に含まれるホウ素系化合物が雨水等によって溶脱することを抑制する目的で実施される。   The coating on the dried refractory wood material produced by the above method is carried out for the purpose of suppressing leaching of boron compounds contained in the wood material due to rain water or the like.

本発明の塗装方法には、大きく分けて以下の2つの方法がある。
1.木質材表面にシランカップリング剤を塗布し、その後、更にその上に、樹脂系塗料を塗布する方法。
2.シランカップリング剤と樹脂系塗料を前もって混合し、これを木質材表面に塗布する方法。
The painting method of the present invention is roughly divided into the following two methods.
1. A method in which a silane coupling agent is applied to the surface of a wooden material, and then a resin-based paint is further applied thereon.
2. A method in which a silane coupling agent and a resin-based paint are mixed in advance and this is applied to the surface of a wooden material.

本発明の意図するところは、木質材表面を、シランカップリング剤と樹脂系塗料の双方で保護することであり、そのための代表的な方法は塗布であるが、その他に吹き付け処理、浸漬処理、加圧あるいは減圧を用いる注入処理なども組み合わせて実施することが可能である。このような組み合わせ方法としては、例えば、シランカップリング剤の溶液中に耐火木質材を浸漬した後、この木質材を溶液から取り出して乾燥し、更に、樹脂系塗料を吹き付ける方法などが挙げられる。   The intention of the present invention is to protect the surface of the wood material with both the silane coupling agent and the resin-based paint, and a typical method for this is application, but in addition, spraying treatment, dipping treatment, It is possible to carry out a combination of injection treatment using pressurization or decompression. Examples of such a combination method include a method in which a refractory wood material is immersed in a solution of a silane coupling agent, the wood material is taken out from the solution, dried, and further sprayed with a resin-based paint.

本発明において、耐火木質材表面の処理に使用されるシランカップリング剤の代表的な例としては、アミノ基、ビニル基、メタクリロキシ基、グリシドキシ基、メルカプト基、クロロ基を構造部分に含み、珪素元素とその周辺の構造として、トリメトキシシリル基(Si(OMe))、メチルジメトキシシリル基(SiMe(OMe) )、トリエトキシシリル基(Si(OEt) )、メチルジエトキシシリル基(SiMe(OEt))を構造部分に含む化合物が挙げられ、好適には、γ−アミノプロピルトリエトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メルカププロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリエトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルメチルジメトキシシランが使用可能である。 In the present invention, typical examples of the silane coupling agent used for treating the surface of the refractory wood material include an amino group, a vinyl group, a methacryloxy group, a glycidoxy group, a mercapto group, and a chloro group in the structure portion, and silicon. As the structure of the element and its periphery, a trimethoxysilyl group (Si (OMe) 3 ), a methyldimethoxysilyl group (SiMe (OMe) 2 ), a triethoxysilyl group (Si (OEt) 3 ), a methyldiethoxysilyl group ( And a compound containing SiMe (OEt) 2 ) in the structural portion, preferably γ-aminopropyltriethoxysilane, γ-chloropropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycid Xylpropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxyp Propylmethyldimethoxysilane, γ-mercappropyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, N- (β-aminoethyl) -γ-aminopropyltriethoxysilane, N- (β-aminoethyl) -Γ-aminopropylmethyldimethoxysilane can be used.

これらのシランカップリング剤を、イソプロピルアルコール、エタノール、メタノール等のアルコール系溶媒、ジエチルエーテル等のエーテル系有機溶媒、フタル酸エステル、酢酸エチル等のエステル系有機溶媒、ジクロロメタン等のハロゲン化メチル系有機溶媒、ジクロロエタン等のハロゲン化エチル系有機溶媒を用いて希釈してから塗装する方法は、高価なシランカップリング剤を均一に耐火木質材表面に塗布する方法として有用である。   These silane coupling agents include alcohol solvents such as isopropyl alcohol, ethanol and methanol, ether organic solvents such as diethyl ether, ester organic solvents such as phthalate ester and ethyl acetate, and methyl halide organic such as dichloromethane. The method of coating after diluting with a solvent, an ethyl halide organic solvent such as dichloroethane, is useful as a method for uniformly applying an expensive silane coupling agent to the surface of the refractory wood.

また、シランカップリング剤に、ホウ酸、ホウ酸塩、リン酸、リン酸塩、ケイ酸、ケイ酸塩、塩化ジルコニウム、塩化アンモニウム、塩化亜鉛、塩化アルミニウム、硫酸マグネシウム、フッ化マグネシウム、あるいは本発明において開示する高濃度のホウ素含有水溶液などを加え、水で濃度を調整した後、攪拌することでシランカップリング剤を溶解し、その後に耐火木質材表面に塗布する方法は、塗装面での着火性の改善と、耐火木質材表面への均一な塗布を達成する方法として有用である。   In addition, boric acid, borate, phosphoric acid, phosphate, silicic acid, silicate, zirconium chloride, ammonium chloride, zinc chloride, aluminum chloride, magnesium sulfate, magnesium fluoride, or silane coupling agent After adding a high concentration boron-containing aqueous solution disclosed in the invention, adjusting the concentration with water, stirring, the silane coupling agent is dissolved and then applied to the surface of the refractory wood. This is useful as a method for improving the ignitability and achieving uniform application to the surface of the refractory wood.

本発明において、耐火木質材表面の処理に使用される樹脂系塗料の好適な例は、イソシアネート系塗料、ウレタン系塗料、アクリル系塗料である。特に、ポリオール、水酸基などの親水性基を持った主剤とイソシアネート基を持った硬化剤から構成されるイソシアネート系塗料、カルボキシル基、スルホン酸などの親水性基を導入した水性ウレタン系塗料、1液性のウレタン系塗料、水性ビニルウレタン系塗料、水分散型塗料、油性塗料がより好適に使用可能である。   In the present invention, suitable examples of the resin-based paint used for the treatment of the surface of the refractory wood material are isocyanate-based paint, urethane-based paint, and acrylic-based paint. In particular, an isocyanate-based paint composed of a main agent having a hydrophilic group such as polyol and hydroxyl group and a curing agent having an isocyanate group, and an aqueous urethane-based paint having a hydrophilic group such as carboxyl group and sulfonic acid introduced therein. Water-based urethane paints, water-based vinyl urethane paints, water-dispersed paints, and oil-based paints can be used more suitably.

前記の方法で製造された乾燥された耐火木質材、あるいは、上記の方法でシランカップリング剤と樹脂系塗料を組み合わせて塗装した耐火木質材を接着することで、有用な大きさ、長さ、厚さを有する建築材が製造される。こうした建築材は、ホウ素系化合物の溶脱が接着層によって抑制されているため、環境安全性の面からも、また、耐火性能の面からも極めて有用である。   By bonding the dried refractory wood material produced by the above method, or the refractory wood material coated by combining the silane coupling agent and the resin-based paint by the above method, a useful size, length, A building material having a thickness is produced. Such a building material is extremely useful from the viewpoint of environmental safety and fire resistance because the leaching of boron-based compounds is suppressed by the adhesive layer.

本発明において実施される、耐火木質材への接着剤の塗布方法は、大きく分けて以下の2つの方法がある。
1.木質材接着面にシランカップリング剤を塗布し、その後、更にその上に、あるいは、この接着面と張り合わせられるもう一方の木質材接着面に、樹脂系接着剤を塗布する方法。
2.シランカップリング剤と樹脂系接着剤を前もって混合し、これを木質材接着面に塗布する方法。
The application method of the adhesive to the fireproof wood material carried out in the present invention is roughly divided into the following two methods.
1. A method in which a silane coupling agent is applied to a wood material bonding surface, and then a resin adhesive is further applied thereon or on the other wood material bonding surface to be bonded to the bonding surface.
2. A method in which a silane coupling agent and a resin-based adhesive are mixed in advance and applied to the wood material bonding surface.

これらの方法の内、どちらを選択するかは、接着に用いる設備、投入できる人員に応じてより適切な方法を選択すればよいが、一般的にはシランカップリング剤と樹脂系接着剤を前もって混合し、これを木質材接着面に塗布する方法がより簡便である。   Of these methods, which one should be selected may be selected in accordance with the equipment used for bonding and the number of personnel that can be input, but in general, a silane coupling agent and a resin adhesive are used in advance. The method of mixing and apply | coating this to a wooden material adhesion surface is simpler.

本発明において、耐火木質材の接着に使用されるシランカップリング剤の代表的な例は、前記のシランカップリング剤であり、前記と同様に有機溶媒を用いて希釈してから接着面に塗布する方法は、高価なシランカップリング剤を均一に接着面に塗布する方法として有用である。   In the present invention, a typical example of the silane coupling agent used for adhesion of the refractory wood material is the above-mentioned silane coupling agent, which is applied to the adhesion surface after being diluted with an organic solvent in the same manner as described above. This method is useful as a method for uniformly applying an expensive silane coupling agent to an adhesive surface.

また、前記と同様に、シランカップリング剤に、ホウ酸、ホウ酸塩、リン酸、リン酸塩、ケイ酸、ケイ酸塩、塩化ジルコニウム、塩化アンモニウム、塩化亜鉛、塩化アルミニウム、硫酸マグネシウム、フッ化マグネシウム、あるいは本発明において開示する高濃度のホウ素含有水溶液などを加え、水で濃度を調整した後、攪拌することでシランカップリング剤を溶解し、その後に耐火木質材接着面に塗布する方法は、接着面での耐火性の改善と、接着面への均一な塗布を達成する方法として有用である。   As described above, boric acid, borate, phosphoric acid, phosphate, silicic acid, silicate, zirconium chloride, ammonium chloride, zinc chloride, aluminum chloride, magnesium sulfate, fluorine A method in which magnesium silane or a high concentration boron-containing aqueous solution disclosed in the present invention is added, the concentration is adjusted with water, and then the silane coupling agent is dissolved by stirring and then applied to the fire-resistant wood material bonding surface Is useful as a method for achieving improved fire resistance on the bonded surface and uniform application to the bonded surface.

本発明において、シランカップリング剤と共に接着工程において使用される樹脂系接着剤は、フェノール樹脂、レゾルシノール樹脂、イソシアネート樹脂、メラミン樹脂、ユリア樹脂、メラミン−ユリア樹脂、ウレタン樹脂、エポキシ樹脂、アクリル樹脂から成る群から選択される接着剤であり、こうした接着剤の硬化条件は、これらの接着剤の硬化に用いる通常の条件をそのまま適用することが可能である。例えば、フェノール樹脂、レゾルシノール樹脂、メラミン樹脂、ユリア樹脂、メラミン−ユリア樹脂等の熱硬化性樹脂を用いる場合は、通常、これらの樹脂系接着剤に添加して用いられる、小麦粉、炭酸カルシウム、硬化促進剤等が併せて使用可能である。   In the present invention, the resin adhesive used in the bonding step together with the silane coupling agent is selected from phenol resin, resorcinol resin, isocyanate resin, melamine resin, urea resin, melamine-urea resin, urethane resin, epoxy resin, and acrylic resin. It is an adhesive selected from the group consisting of, and the conditions for curing these adhesives can be the same as the usual conditions used for curing these adhesives. For example, when using thermosetting resins such as phenol resin, resorcinol resin, melamine resin, urea resin, melamine-urea resin, it is usually added to these resin adhesives, flour, calcium carbonate, cured An accelerator or the like can also be used.

本発明において使用される、シランカップリング剤と、樹脂系塗料または樹脂系接着剤の組み合わせは、様々な組み合わせで実施可能であるが、好適には、シランカップリング剤としてはアミノ基またはグリシドキシ基を構造部分に含むシランカップリング剤、樹脂系塗料としてはイソシアネート系塗料またはウレタン系塗料、樹脂系接着剤としては、フェノール樹脂またはイソシアネート樹脂が組み合わせて使用される。   The combination of the silane coupling agent and the resin-based paint or resin-based adhesive used in the present invention can be implemented in various combinations. Preferably, the silane coupling agent is an amino group or a glycidoxy group. As a silane coupling agent, a resin-based paint, an isocyanate-based paint or a urethane-based paint, and a resin-based adhesive used in combination with a phenol resin or an isocyanate resin.

本発明において使用されるシランカップリング剤の好適な使用量は、塗装面あるいは接着面の面積1m当たり1〜200gであり、より好適には4〜40gである。 The suitable usage-amount of the silane coupling agent used in this invention is 1-200g per 1 m < 2 > of the area of a coating surface or an adhesion surface, More preferably, it is 4-40g.

また、本発明において、シランカップリングと共に使用される樹脂系塗料の好適な使用量は、塗装面の面積1m 当たり40〜800g、より好適には、100〜300gである。また、シランカップリング剤と樹脂系塗料を混合して使用する場合も、同様の量で使用され、従って、この場合のシランカップリング剤と樹脂系塗料との好適な混合比は、0.001〜5であり、より好適には0.01〜2である。 Moreover, in this invention, the suitable usage-amount of the resin-type coating material used with a silane coupling is 40-800g per 1 m < 2 > of a coated surface, More preferably, it is 100-300g. Further, when the silane coupling agent and the resin-based paint are mixed and used, they are used in the same amount. Therefore, a suitable mixing ratio of the silane coupling agent and the resin-based paint in this case is 0.001. -5, more preferably 0.01-2.

また、本発明において、シランカップリングと共に使用される樹脂系接着剤の好適な使用量は、接着面の面積1m 当たり50〜1000g、より好適には150〜500gである。また、シランカップリング剤と樹脂系接着剤を混合して使用する場合も、同様の量で使用され、従って、この場合のシランカップリング剤と樹脂系接着剤との好適な混合比は、0.001〜4であり、より好適には0.008〜1である。 Moreover, in this invention, the suitable usage-amount of the resin-type adhesive agent used with a silane coupling is 50-1000g per 1 m < 2 > of an adhesive surface, More preferably, it is 150-500g. Further, when the silane coupling agent and the resin adhesive are mixed and used, they are used in the same amount. Accordingly, in this case, the preferred mixing ratio of the silane coupling agent and the resin adhesive is 0. 0.001 to 4, more preferably 0.008 to 1.

本発明において開示する技術を用いて得られる耐火木質材または耐火性の建築材において、十分な耐火性を得るためには、ホウ素含有水溶液を含浸する前の木質材の乾燥重量を100重量部として、耐火木質材または耐火性の建築材に含まれるホウ素元素の重量を2重量部以上、より好ましくは5重量部以上とすることが望ましい。また、低いレベルの耐火性能でも利用可能な用途においては、耐火木質材または耐火性の建築材に含まれるホウ素元素の重量を2重量部未満として使用することも可能である。   In the fire-resistant wood material or fire-resistant building material obtained by using the technology disclosed in the present invention, in order to obtain sufficient fire resistance, the dry weight of the wood material before impregnating the boron-containing aqueous solution is 100 parts by weight. It is desirable that the weight of the boron element contained in the fire-resistant wood material or the fire-resistant building material is 2 parts by weight or more, more preferably 5 parts by weight or more. In applications that can be used even at low levels of fire resistance, it is also possible to use less than 2 parts by weight of boron element contained in refractory wood or fire resistant building materials.

また、本発明によって得られる耐火木質材または耐火性の建築材は、ホウ素系化合物に由来する防虫性を有するが、木質材に対して抗菌性もしくは防虫性を更に付与するために、相乗的な効果を有する他の防腐剤もしくは防虫剤を組み合わせて使用することで、シロアリ、キクイムシ、フナムシ、白色腐朽菌、褐色腐朽菌、軟腐朽菌などに対する効果的な木質材の保護が可能である。   In addition, the fire-resistant wood material or fire-resistant building material obtained by the present invention has insect repellent properties derived from boron compounds, but in order to further impart antibacterial or insect repellent properties to the wood material, it is synergistic. By using a combination of other preservatives or insecticides having an effect, it is possible to effectively protect the woody material against termites, bark beetles, fungi, white rot fungi, brown rot fungi, soft rot fungi, and the like.

また、本発明において開示する耐火処理剤に、ホウ素系化合物と相乗的な効果を有する防腐剤もしくは防虫剤を更に添加することで、処理物に効果的な防腐性もしくは防虫性を与えることが可能である。   In addition, by adding a preservative or insecticide having a synergistic effect with the boron compound to the fireproofing agent disclosed in the present invention, it is possible to give effective antiseptic or insecticidal properties to the treated product. It is.

このような目的で使用される防腐剤もしくは防虫剤の好適な例として、アゾール類、スルフェンアミド類、ベンズイミダゾール類、チオシアネート類、モルホリン誘導体、有機ヨード類、有機ブロモ類、イソチアゾリン類、ベンズイソチアゾリン類、ピリジン類、ジアルキルジチオカルバメート類、ニトリル類、活性ハロゲン原子を有する微生物剤、ベンズチアゾール類、シクロジエン類、ニトロソ類、キノリン類、ホルムアルデヒドならびにホルムアルデヒド生成物質、フッ素系物質、有機リン系化合物、リン酸エステル類、カルバメート類、ピレスロイド類、ニトロイミノ及びニトロメチレン類、第四級アンモニウム化合物類、フェノール誘導体、金属化合物、金属セッケン類、尿素化合物類が挙げられる。   Preferred examples of the preservative or insecticide used for such purposes include azoles, sulfenamides, benzimidazoles, thiocyanates, morpholine derivatives, organic iodines, organic bromos, isothiazolines, benzisothiazolines. , Pyridines, dialkyldithiocarbamates, nitriles, microbial agents with active halogen atoms, benzthiazoles, cyclodienes, nitroso, quinolines, formaldehyde and formaldehyde-forming substances, fluorine-based substances, organophosphorus compounds, phosphorus Examples include acid esters, carbamates, pyrethroids, nitroimino and nitromethylenes, quaternary ammonium compounds, phenol derivatives, metal compounds, metal soaps, and urea compounds.

上記の目的で使用される相乗的な効果を有する防腐剤もしくは防虫剤の具体的な例として、アザコナゾール、エタコナゾール、プロピコナゾール、ブロモコナゾール、ジフェノコナゾール、イトラコナゾール、フルトリアホール、ミクロブタニル、フェネタミル、ペンコナゾール、テトラコナゾール、ヘキサコナゾール、テブコナゾール、イミベンコナゾール、フルシラゾール、リバビリン、トリアミホス、イサゾホス、トリアゾホス、イジンホス、フルオトリマゾール、トリアジメホン、トリアジメノール、ジクロブトラゾール、ジニコナゾール、ジニコナゾールM、ビテルタノール、エポキシコナゾール、トリチコナゾール、メトコナゾール、イプコナゾール、フルコナゾール、フルコナゾール・シス、シプロコナゾールなどのアゾール類;ジクロロフルアニド(エウパレン)、トリフルアニド(メチルレウパレン)、シクロフルアニド、フォルペット、フルオロフォルペットなどのスルフォンアミド類;カルベンダジム、ベノミル、フベリタゾール、チアベンダゾール、またはこれらの塩類などのベンズイミダゾール類;チオシアネートメチルチオベンゾチアゾール、メチレンビスチオシアネートなどのチオシアネート類;C11〜C14−4−アルキル−2,6−ジメチルモルホリン同族体(トリデモルフ)、(±)−シス−4−[3−(t−ブチルフェニル)−2−メチルプロピル]−2,6−ジメチルモルホリン(フェンプロピモルフ、ファリモルフ)などのモルホリン誘導体;3−ヨード−2−プロピル−n−ブチルカルバメート、3−ヨード−2−プロピル−n−ヘキシルカルバメート、3−ヨード−2−プロピルシクロヘキシルカルバメート、3−ヨード−2−プロピルフェニルカルバメート、p−クロロフェニル−3−ヨードプロパギルホルマール、3−ブロモ−2,3−ジヨード−2−プロペニルエチルカルボナート(サンプラス)、1−[(ジヨードメチル)スルホニル]−4−メチルベンゼン(アミカル)などの有機ヨード類;2−ブロモ−2−ニトロ−1,3−プロパンジオール、2−ブロモ−2−ブロムメチルグルタールジニトリル、ブロノポルなどの有機ブロモ類;N−メチルイソチアゾリン−3−オン、5−クロロ−N−メチルイソチアゾリン−3−オン、4,5−ジクロロ−N−オクチルイソチアゾリン−3−オン、N−オクチルイソチアゾリン−3−オン(オクチリノン)などのイソチアゾリン類;シクロペンタイソチアゾリン、4,5−トリスメチレン−N−メチルイソチアゾール−3−オンなどのベンズイソチアゾリン類;1−ヒドロキシ−2−ピリジンチオン(またはそのナトリウム塩、鉄塩、マンガン塩、亜鉛塩など)、テトラクロロ−4−メチルスルフォニルピリジンなどのピリジン類;ジアルキルジチオカルバメートのナトリウム塩または亜鉛塩、テトラメチルジウラムジサルファイド(TMTD)などのジアルキルジチオカルバメート類;2,4,5,6−テトラクロロイソフタロニトリル(クロロタロニル)などのニトリル類;C1−Ac、MCA、テクタマー、ブロノポル、ブルミドックスなどの活性ハロゲン原子を有する微生物剤;2−メルカプトベンゾチアゾール類、ダゾメットなどのベンズチアゾール類;クロルデン、ディルドリン、アルドリン、ヘプタクロルなどのシクロジエン類;N−ニトロソ−N−シクロヘキシルヒドロキシルアミンなどのニトロソ類;8−ヒドロキシキノリン及びその銅塩などのキノリン類;ベンジルアルコールモノ(ポリ)ヘミフォルマール、オキサゾリジン、ヘキサヒドロ−s−トリアジン、N−メチロールクロロアセトアミド、パラホルムアルデヒドなどのホルムアルデヒド生成物質;フッ化ナトリウム、フッ化カリウム、ケイフッ化ナトリウム、ケイフッ化マグネシウム等のフッ素系物質;チオファメートメチル、ダスバン、ダイアジノン等の有機リン系化合物;アジノフォス−エチル、アジノフォス−メチル、1−(4−クロロフェニル)−4−(O−エチル、S−プロピル)ホスホリルオキシピラゾル(TIA−230)、クロロピリフォス、テトラクロロビンホス、クマフォス、デトメン−S−メチル、ジアジノン、ジクロルボス、ジメトエート、エトプロフォス、エトリムフォス、フェニトロチオン、ピリダフェンチオン、ヘプテノフォス、パラチオン、パラチオン−メチル、プロペタンホス、フォサロン、フォキシム、ピリムフォス−エチル、ピリミフォス−メチル、プロフェノフォス、プロチオフォース、スルプロフォス、トリアゾフォス、トルクロルフォンなどのリン酸エステル類;アルジカーブ、ベニオカーブ、BPMC、2−(1−メチルプロピル)フェニルメチルカルバメート、ブトカルボキシム、ブトキシカルボキシム、カルバリル、カルボフラン、カルボスルファン、クロエトカルブ、イソプロカルブ、メトミル、オキサミル、ピリミカルブ、プロメカルブ、プロポクスル、チジカルブ、バイゴン、ジメチラン、セビンなどのカルバメート類;アレトリン、アルファメトリン、ビオレスメトリン、シクロプロトリン、シフルトリン、デカメトリン、シハロトリン、シペルメトリン、デルタメトリン、α−シアノ−3−フェニル−2−メチルベンジル−2,2−ジメチル−2−(2−クロロ−2−トリフルオロメチルビニル)シクロプロパン−1−プロパンカルボキシレート、フェンプロパトリン、フェンフルトリン、フェンバレレート、フルシトリネート、フルムトリン、フルバリネート、ペルメトリン、エトフェンプロックス、レスメトリン、シラフルオフェンなどのピレスロイド類;イミダクロプリド、アセタミプリド、ニテンピラム、チアメトキサム、チアクロプリド、ジノテフラン、クロチアニジンなどのニトロイミノ及びニトロメチレン類;塩化ジデシルジメチルアンモニウム、塩化ベンジルジメチルドデシルアンモニウム、塩化ベンザルコニウムなどの第四級アンモニウム化合物類;o−フェニルフェノール、p−フェニルフェノール、トリブロモフェノール、ジクロロフェンなどのフェノール誘導体;酸化第二銅、酸化第一銅、塩化銅、水酸化銅、硫酸銅、燐酸銅、炭酸銅、塩基性炭酸銅、酸化亜鉛、燐酸亜鉛、これらの銅あるいは亜鉛化合物をアンモニアあるいはアミン系化合物で安定化した化合物、トリス−N−(シクロヘキシルジアゼニウムジオキシン)−トリブチル錫またはカリウム塩、ビス−(N−シクロヘキシル)ジアジニウム−ジオキシン銅またはアルミニウムなどの金属化合物;ナフテン酸、オクタン酸、2−エチルヘキサン酸、安息香酸、オレイン酸などの有機酸と銅あるいは亜鉛との化合物である金属セッケン類;ジフルベンズロン、ノバルロン、ルフェヌロン、ヘキサフルムロン、フルフェノックスロン、クロロフルアズロン、ノビフルムロン、テフルベンズロンなどの尿素化合物類などが挙げられる。   Specific examples of synergistic preservatives or insecticides used for the above purposes include azaconazole, etaconazole, propiconazole, bromoconazole, difenoconazole, itraconazole, flutriahol, microbutanyl, phenetamil, penconazole , Tetraconazole, hexaconazole, tebuconazole, imibenconazole, flusilazole, ribavirin, triamifos, isazofos, triazophos, idinphos, flutrimazole, triadimethone, triadimenol, diclobutrazole, diniconazole, diniconazole M, viteltanol, epoxy Azole such as conazole, triticonazole, metconazole, ipconazole, fluconazole, fluconazole cis, cyproconazole Sulfonamides such as dichlorofluanide (Eupalene), trifluanide (Methylreupalene), cyclofluoride, phorpet, fluorophorpet; benzimidazoles such as carbendazim, benomyl, fuberitazole, thiabendazole, or salts thereof; thiocyanate methylthio Thiocyanates such as benzothiazole, methylenebisthiocyanate; C11-C14-4-alkyl-2,6-dimethylmorpholine homologue (tridemorph), (±) -cis-4- [3- (t-butylphenyl) -2 Morpholine derivatives such as -methylpropyl] -2,6-dimethylmorpholine (fenpropimorph, farimorph); 3-iodo-2-propyl-n-butylcarbamate, 3-iodo-2-propyl-n-he Xyl carbamate, 3-iodo-2-propylcyclohexyl carbamate, 3-iodo-2-propylphenyl carbamate, p-chlorophenyl-3-iodopropargyl formal, 3-bromo-2,3-diiodo-2-propenylethyl carbonate (Sanplus), organic iodines such as 1-[(diiodomethyl) sulfonyl] -4-methylbenzene (amicar); 2-bromo-2-nitro-1,3-propanediol, 2-bromo-2-bromomethyl Organic bromos such as glutardinitrile and bronopol; N-methylisothiazolin-3-one, 5-chloro-N-methylisothiazolin-3-one, 4,5-dichloro-N-octylisothiazolin-3-one, N -Octylisothiazolin-3-one (octyrinone) Thiazolines; cyclopentaisothiazoline, benzisothiazolines such as 4,5-trismethylene-N-methylisothiazol-3-one; 1-hydroxy-2-pyridinethione (or its sodium, iron, manganese, zinc) Pyridines such as tetrachloro-4-methylsulfonylpyridine; sodium or zinc salts of dialkyldithiocarbamates, dialkyldithiocarbamates such as tetramethyldiuram disulfide (TMTD); 2,4,5,6- Nitriles such as tetrachloroisophthalonitrile (chlorothalonil); microbial agents having an active halogen atom such as C1-Ac, MCA, tectamer, bronopol, blomidox; benzthia such as 2-mercaptobenzothiazoles and dazomet Cyclodienes such as chlordane, dieldrin, aldrin, heptachlor; Nitroso such as N-nitroso-N-cyclohexylhydroxylamine; Quinolines such as 8-hydroxyquinoline and its copper salt; Benzyl alcohol mono (poly) hemi Formaldehyde-generating substances such as formal, oxazolidine, hexahydro-s-triazine, N-methylol chloroacetamide, paraformaldehyde; fluorine-based substances such as sodium fluoride, potassium fluoride, sodium silicofluoride, magnesium silicofluoride; thiofamate methyl , Dasban, diazinon and other organic phosphorus compounds; azinophos-ethyl, azinophos-methyl, 1- (4-chlorophenyl) -4- (O-ethyl, S-propyl) phosphoryloxypyra Sol (TIA-230), chloropyrifos, tetrachlorobinphos, coumafos, detomen-S-methyl, diazinone, dichlorvos, dimethoate, etoprofos, etrimphos, fenitrothion, pyridafenthione, heptenophos, parathion, parathion-methyl, propetanephos, fosalon, Phosphate, pyrimphos-ethyl, pyrimiphos-methyl, profenofos, prothiofos, sulfophos, triazophos, torquelophone, etc .; aldicarb, Beniocurve, BPMC, 2- (1-methylpropyl) phenylmethylcarbamate, Butcarboxyme, butoxycarboxyme, carbaryl, carbofuran, carbosulfan, chloetocarb, isoprocarb, methomyl, Carbamates such as oxamyl, pirimicarb, promecarb, propoxur, tidicarb, bigon, dimethylane, sebin; alletrin, alphamethrin, violethmethrin, cycloprotorin, cyfluthrin, decamethrin, cyhalothrin, cypermethrin, deltamethrin, α-cyano-3-phenyl -2-methylbenzyl-2,2-dimethyl-2- (2-chloro-2-trifluoromethylvinyl) cyclopropane-1-propanecarboxylate, phenpropatoline, fenfluthrin, fenvalerate, flucitrinate, Pyrethroids such as flumtrin, fulvalinate, permethrin, etofenprox, resmethrin, silafluophene; imidacloprid, acetamiprid, nitenpyram, thiamethoxam , Nitroimino and nitromethylenes such as thiacloprid, dinotefuran, clothianidin; quaternary ammonium compounds such as didecyldimethylammonium chloride, benzyldimethyldodecylammonium chloride, benzalkonium chloride; o-phenylphenol, p-phenylphenol, tri Phenol derivatives such as bromophenol and dichlorophen; cupric oxide, cuprous oxide, copper chloride, copper hydroxide, copper sulfate, copper phosphate, copper carbonate, basic copper carbonate, zinc oxide, zinc phosphate, these copper Alternatively, a compound obtained by stabilizing a zinc compound with ammonia or an amine compound, tris-N- (cyclohexyldiazeniumdioxin) -tributyltin or potassium salt, bis- (N-cyclohexyl) diazinium-dioxin copper or aluminum, etc. Metal compounds: Metal soaps that are compounds of organic acids such as naphthenic acid, octanoic acid, 2-ethylhexanoic acid, benzoic acid, oleic acid and copper or zinc; diflubenzuron, novallon, lufenuron, hexaflumuron, flufenoxuron And urea compounds such as chlorofluazuron, nobiflumuron, and teflubenzuron.

上記の防腐剤もしくは防虫剤の好適な使用量は、最終的に得られる耐火木質材または耐火性の建築材1mに含まれる防腐剤もしくは防虫剤の重量として、1g〜20kgであり、更に好適には10g〜5kgである。また、本発明の耐火処理剤中の防腐剤もしくは防虫剤の好適な濃度は0.1ppm〜20重量%、更に好適には5ppm〜5重量%である。 A suitable amount of the above-mentioned preservative or insecticide is 1 to 20 kg as the weight of the preservative or insecticide contained in 1 m 3 of the fireproof wood material or fireproof construction material finally obtained, and more preferably 10 g to 5 kg. Moreover, the suitable density | concentration of antiseptic | preservative or insecticide in the fireproofing agent of this invention is 0.1 ppm-20 weight%, More preferably, it is 5 ppm-5 weight%.

また、こうした防腐剤もしくは防虫剤を本発明の耐火木質材または耐火性の建築材に付与するための具体的な製造方法として、以下4種類の方法が挙げられる。
1.本発明にて開示する木質材の耐火処理に使用するホウ素含有水溶液に、防腐剤もしくは防虫剤を加えたものを木質材に含浸する方法。
2.本発明にて開示する塗布剤に、防腐剤もしくは防虫剤を加えて使用する方法。
3.本発明にて開示する接着剤に、防腐剤もしくは防虫剤を加えて使用する方法。
(すなわち接着剤混入法)。
4.本発明にて開示する方法で得られた耐火木質材または耐火性の建築材に対して、
最後に、防腐剤もしくは防虫剤を含有する溶液などを含浸あるいは塗布する方法。
Moreover, the following four types of methods are mentioned as a specific manufacturing method for providing such a preservative or insect repellent to the fireproof woody material or fireproof building material of the present invention.
1. A method of impregnating a wood material with a boron-containing aqueous solution used for the fireproofing treatment of the wood material disclosed in the present invention to which a preservative or an insecticide is added.
2. A method of adding a preservative or insect repellent to the coating agent disclosed in the present invention.
3. A method of adding an antiseptic or insect repellent to the adhesive disclosed in the present invention.
(Ie adhesive mixing method).
4). For fireproof woody materials or fireproof building materials obtained by the method disclosed in the present invention,
Finally, a method of impregnating or applying a solution containing a preservative or insect repellent.

本発明による耐火木質材または耐火性の建築材は、高い耐火性能を有し、接着して製造されたものも建築材として十分な接着強度を有し、且つ、防腐性もしくは防虫性を効果的に付与することも可能であるため、長期間に亘って使用可能な、有用な木質材あるいは建築材として、構造材、内装材、外構材などの様々な用途で利用可能である。また、本発明の耐火木質材または耐火性の建築材には、多量のホウ素系化合物に起因する寸法安定化効果も付与されているため、木材の強度を損なう割れも抑制されており、木材の様々な欠点を補う処理方法として、本発明は極めて有用である。   The fire-resistant woody material or fire-resistant building material according to the present invention has high fire-resistant performance, and those produced by bonding have sufficient adhesive strength as a building material, and are effective in antiseptic or insect-proofing properties. Therefore, it can be used for various purposes such as a structural material, an interior material, and an exterior material as a useful wood material or building material that can be used for a long period of time. In addition, since the refractory wood material or the fire-resistant building material of the present invention also has a dimensional stabilization effect due to a large amount of boron-based compounds, cracks that impair the strength of the wood are also suppressed, and the wood The present invention is extremely useful as a processing method that compensates for various drawbacks.

以下、本発明について実施例を基に説明するが、本実施例は本発明の代表的例を示したものであり、本発明はこの記載内容に限るものではない。尚、本実施例における%は重量%を意味する。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this Example shows the typical example of this invention, and this invention is not limited to this description content. In addition,% in a present Example means weight%.

オルトホウ酸粉末40kgと無水四硼酸ナトリウム粉末31.7kgを混合し、80℃の熱水228.3kg中へ投入し、透明溶液になるまで溶解し、pH6.9の清澄な水溶液を得た。こうして得られたホウ素含有水溶液でのホウ素元素の含有量は4.6%であった。   40 kg of orthoboric acid powder and 31.7 kg of anhydrous sodium tetraborate powder were mixed, poured into 228.3 kg of hot water at 80 ° C., and dissolved until a transparent solution was obtained to obtain a clear aqueous solution having a pH of 6.9. The boron element content in the boron-containing aqueous solution thus obtained was 4.6%.

このホウ素含有水溶液を用いて、木口面が100mm×10mmで、長さ100mm、乾燥比重0.43のスギ板材に対する含浸処理を行った。浸漬処理は、0.1kg/cmでの30分間の減圧処理と、14kg/cmでの60分間の加圧処理を組み合わせた充細胞法(ベセル法)によって実施した。含浸処理後のスギ角材を雨水の当たらない屋外に1ケ月間放置して乾燥し、耐火処理された木質材を得た。この木質材に含まれるホウ素の含有量は、含浸されたホウ素含有水溶液の重量から、31kg/mと算出された。即ち、含浸前のスギ板材の乾燥重量を100部として、約7.2部の重量のホウ素が含有されていた。 Using this boron-containing aqueous solution, impregnation treatment was performed on a cedar board material having a mouth end surface of 100 mm × 10 mm, a length of 100 mm, and a dry specific gravity of 0.43. Immersion treatment was performed with vacuum for 30 minutes at 0.1kg / cm 2, 14kg / cm 2 charge cell method combines pressure treatment of 60 minutes at the (Bethel method). The impregnated cedar timber was left outside for one month outside where it was not exposed to rainwater and dried to obtain a fire-resistant woody material. The boron content contained in the wood material was calculated to be 31 kg / m 3 from the weight of the impregnated boron-containing aqueous solution. That is, about 7.2 parts by weight of boron was contained with the dry weight of the cedar board before impregnation as 100 parts.

この耐火処理材において、ISO 5660に規定されるコーンカロリーメーターを用いる燃焼試験を行ったところ、総発熱量が8MJ/mに至るまで15分間を要し、その間、裏面まで貫通する亀裂及び穴は認められず、且つ、最高発熱速度が10秒以上継続して200kW/mを超えることがなかったことから、本材が準不燃材に相当する耐火性を有することが示された。 When this refractory material was subjected to a combustion test using a corn calorimeter specified in ISO 5660, it took 15 minutes until the total calorific value reached 8 MJ / m 2 , while cracks and holes penetrating to the back surface. The maximum heat generation rate did not exceed 200 kW / m 2 continuously for 10 seconds or more, indicating that this material has fire resistance equivalent to that of a semi-incombustible material.

オルトホウ酸粉末44kgとホウ砂(Na・10HO)粉末81kgを水に加え、60℃で加温しながら攪拌・溶解し、pH7.2の清澄な水溶液を得た。こうして得られたホウ素含有水溶液でのホウ素元素の含有量は5.6%であった。 Orthoboric acid powder 44kg and borax the (Na 2 B 4 O 7 · 10H 2 O) powder 81kg added to water, heated at 60 ° C. with stirring and dissolved to yield a clear aqueous solution of pH 7.2. The boron element content in the boron-containing aqueous solution thus obtained was 5.6%.

含浸処理の工程において、このホウ素含有水溶液を加温して60℃で含浸を行ったことの他は実施例1と同様にして、スギ板材に対する操作を行い、耐火処理された木質材を得た。   In the impregnation process, the cedar board was operated in the same manner as in Example 1 except that this boron-containing aqueous solution was heated and impregnated at 60 ° C. to obtain a fire-resistant wood material. .

この耐火処理材において、実施例1記載の方法で燃焼試験を行ったところ、20分間の試験時間において、総発熱量は8MJ/m以下であり、裏面まで貫通する亀裂及び穴は認められず、また、最高発熱速度が10秒以上継続して200kW/mを超えることがなかったことから、本材が不燃材に相当する耐火性を有することが示された。 In this refractory material, when a combustion test was performed by the method described in Example 1, the total heat generation amount was 8 MJ / m 2 or less in the test time of 20 minutes, and cracks and holes penetrating to the back surface were not recognized. Moreover, since the maximum heat generation rate did not exceed 200 kW / m 2 continuously for 10 seconds or more, it was shown that this material has fire resistance equivalent to a non-combustible material.

オルトホウ酸粉末80kgに水と20%苛性ソーダ水溶液を加えて攪拌し、pH7.0の清澄な水溶液を得た。こうして得られたホウ素含有水溶液でのホウ素元素の含有量は、4.7%であった。   Water and 20% aqueous sodium hydroxide solution were added to 80 kg of orthoboric acid powder and stirred to obtain a clear aqueous solution having pH 7.0. The boron element content in the boron-containing aqueous solution thus obtained was 4.7%.

このホウ素含有水溶液を用いて、厚さ3mm、縦300mm×横300mm、
含水率7%のラジアータパイン単板に対する含浸処理を行った。浸漬処理は、浸漬した状態で0.1kg/cmにて30分間減圧処理し、更に、浸漬した状態で8kg/cmにて30分間加圧処理することで実施した。含浸処理後の単板をホウ素含有水溶液から取り出し、35℃で1週間の乾燥を行い、含水率7%の耐火処理単板を得た。
Using this boron-containing aqueous solution, thickness 3mm, length 300mm × width 300mm,
An impregnation treatment was performed on a radialata pine veneer having a water content of 7%. The dipping treatment was performed by subjecting to a reduced pressure treatment at 0.1 kg / cm 2 for 30 minutes in the dipped state, and further performing a pressure treatment at 8 kg / cm 2 for 30 minutes in the dipped state. The impregnated veneer was taken out from the boron-containing aqueous solution and dried at 35 ° C. for 1 week to obtain a fireproof veneer with a moisture content of 7%.

つぎに、70℃の熱水50kgに、オルトホウ酸粉末5kgとホウ砂(Na・10HO)粉末2kgを加えて攪拌溶解した後、室温まで冷却して得た溶液97重量部に対して、γ−グリシドキシプロピルトリメトキシシラン3重量部を混合し、10分間攪拌することで、シランカップリング剤を含む清澄な溶液を得た。この溶液を上記の耐火処理単板の接着面の片面当たり250g/mの量で、接着面の両面に塗布して乾燥した。
更に、この接着面に、株式会社オーシカ製のフェノール樹脂D−120を4kg、小麦粉を0.3kg、炭酸カルシウムを0.3kg、炭酸ナトリウムを0.05kg、水を0.2kg使用して混合して得られるフェノール樹脂系接着剤を、接着面の片面当たり200g/mの量で、接着面の両面に塗布し、張り合わせて9プライのLVLを構成し、ここに130℃、12kg/cmの条件でホットプレスを20分間実施することで接着を行った。
Next, 5 kg of orthoboric acid powder and 2 kg of borax (Na 2 B 4 O 7 · 10H 2 O) powder were added to 50 kg of hot water at 70 ° C., dissolved by stirring, and then cooled to room temperature. A clear solution containing a silane coupling agent was obtained by mixing 3 parts by weight of γ-glycidoxypropyltrimethoxysilane and stirring for 10 minutes. This solution was applied to both sides of the adhesive surface in an amount of 250 g / m 2 per side of the adhesive surface of the fireproof treated veneer and dried.
Further, 4 kg of phenol resin D-120 manufactured by Oshika Co., Ltd., 0.3 kg of wheat flour, 0.3 kg of calcium carbonate, 0.05 kg of sodium carbonate, and 0.2 kg of water were mixed on this adhesive surface. The phenol resin adhesive obtained in this manner was applied to both sides of the adhesive surface in an amount of 200 g / m 2 per side of the adhesive surface, and bonded to form a 9-ply LVL, where 130 ° C., 12 kg / cm 2 Adhesion was performed by carrying out hot pressing for 20 minutes under the conditions described above.

更に、対照とするため、シランカップリング剤溶液を用いず、他は同じ条件でLVLを製造した。これらのLVLにおいて、構造用単板積層材の日本農林規格(第3条構造用単板積層材の規格「接着の程度」)に準拠して試験行ったところ、シランカップリング剤とフェノール樹脂系接着剤の双方を用いて製造したLVLは、浸漬剥離試験と煮沸剥離試験の双方において剥離を生じず良好な接着性を示したが、対照のフェノール樹脂系接着剤のみを用いて製造したLVLでは浸漬剥離試験にて剥離率13%でラミナの剥離が認められた。   Furthermore, as a control, LVL was produced under the same conditions except that no silane coupling agent solution was used. In these LVLs, when tested in accordance with the Japanese Agricultural Standard for structural veneer laminates (standard of the Article 3 structural veneer laminate “degree of adhesion”), silane coupling agent and phenol resin system The LVL produced using both adhesives showed good adhesion without causing peeling in both the immersion peel test and the boil peel test. However, in the LVL produced using only the control phenol resin adhesive, In the immersion peeling test, lamina peeling was observed at a peeling rate of 13%.

また、ここで得られた、シランカップリング剤とフェノール樹脂系接着剤の双方を用いて製造したLVLから、100mm×100mmの大きさで試験片を切り出し、これを用いて実施例1記載の方法で燃焼試験を行ったところ、本材が不燃材に相当する耐火性を有することが示された。   Further, from the LVL produced using both the silane coupling agent and the phenol resin adhesive obtained here, a test piece having a size of 100 mm × 100 mm was cut out, and the method described in Example 1 was used. When a combustion test was performed at, it was shown that this material has fire resistance equivalent to that of a non-combustible material.

株式会社オーシカ製のイソシアネート系接着剤ピーアイボンドTP−111を100重量部、硬化剤H−3Mを15重量部、更に、γ−グリシドキシプロピルトリメトキシシラン3重量部を混合後、5分間攪拌して、イソシアネート系接着剤とシランカップリング剤の混合接着剤を準備した。   After mixing 100 parts by weight of the isocyanate adhesive PI bond TP-111 manufactured by Oshika Co., Ltd., 15 parts by weight of the curing agent H-3M, and 3 parts by weight of γ-glycidoxypropyltrimethoxysilane, the mixture is stirred for 5 minutes. Then, a mixed adhesive of an isocyanate adhesive and a silane coupling agent was prepared.

次に、この混合接着剤を、実施例3に記載の方法で得られた耐火処理単板の接着面の片面当たり200g/mの量で、接着面の両面に塗布し、張り合わせて9プライのLVLを構成し、ここに10kg/cmの圧力を50分間加えることで接着を行い、耐火性のLVLを得た。 Next, this mixed adhesive was applied to both sides of the adhesive surface in an amount of 200 g / m 2 per side of the adhesive surface of the fireproof veneer obtained by the method described in Example 3, and bonded to 9 ply. The LVL was constructed and bonded by applying a pressure of 10 kg / cm 2 for 50 minutes to obtain a fire-resistant LVL.

更に、対照とするため、シランカップリング剤溶液を用いず、他は同じ条件でLVLを製造した。これらのLVLにおいて、実施例3と同様の浸せきはく離試験と煮沸はく離試験を行ったところ、シランカップリング剤とイソシアネート系接着剤の双方を用いて製造したLVLは、浸漬剥離試験と煮沸剥離試験の双方において剥離を生じず良好な接着性を示したが、対照のイソシアネート系接着剤のみを用いて製造したLVLでは浸漬剥離試験にて剥離率25%でラミナの剥離が認められた。   Furthermore, as a control, LVL was produced under the same conditions except that no silane coupling agent solution was used. In these LVLs, the same immersion peel test and boiling peel test as in Example 3 were performed. The LVL produced using both the silane coupling agent and the isocyanate-based adhesive was subjected to the immersion peel test and the boiling peel test. Although peeling did not occur in both cases, good adhesion was shown. However, in the LVL produced using only the control isocyanate-based adhesive, peeling of lamina was observed at a peeling rate of 25% in the immersion peeling test.

また、ここで得られた、シランカップリング剤とイソシアネート系接着剤の双方を用いて製造したLVLから、100mm×100mmの大きさで試験片を切り出し、これを用いて実施例1記載の方法で燃焼試験を行ったところ、本材が不燃材に相当する耐火性を有することが示された。   Moreover, from the LVL produced using both the silane coupling agent and the isocyanate-based adhesive obtained here, a test piece was cut out with a size of 100 mm × 100 mm, and using this, the method described in Example 1 was used. When a combustion test was performed, it was shown that this material has fire resistance equivalent to that of a non-combustible material.

実施例3記載のホウ素含有水溶液に、更に、シプロコナゾールを50ppm、アセタミプリドを50ppmの濃度で溶解したものを処理溶液として用いて、厚さ2.5mm、縦300mm×横300mm、含水率10%のラワン単板に対する含浸処理を行った。浸漬処理は、浸漬した状態で0.1kg/cmにて20分間減圧処理し、更に、浸漬した状態で10kg/cmにて20分間加圧処理することで実施した。含浸処理後の単板を処理溶液から取り出し、35℃で1週間の乾燥を行い、含水率8%の耐火処理単板を得た。 In the boron-containing aqueous solution described in Example 3, a solution obtained by dissolving cyproconazole at 50 ppm and acetamiprid at a concentration of 50 ppm was used as a treatment solution, and the thickness was 2.5 mm, length 300 mm × width 300 mm, water content 10%. An impregnation treatment was performed on the lauan single plate. The dipping treatment was carried out by subjecting to a reduced pressure treatment at 0.1 kg / cm 2 for 20 minutes in the dipped state and further a pressure treatment at 10 kg / cm 2 for 20 minutes in the dipped state. The impregnated veneer was taken out from the treatment solution and dried at 35 ° C. for 1 week to obtain a fireproof veneer with a moisture content of 8%.

次に、塩化メチレン95重量部にγ−アミノプロピルトリメトキシシラン5重量部を混合した溶液を、上記の耐火処理単板の接着面の片面当たり200g/mの量で、接着面の両面に塗布して乾燥した。更にこの接着面に、実施例3記載のフェノール樹脂系接着剤を、接着面の片面当たり200g/mの量で、接着面の両面に塗布し、張り合わせて9プライの合板を構成し、ここに130℃、12kg/cmの条件でホットプレスを20分間実施することで接着を行った。 Next, a solution prepared by mixing 95 parts by weight of methylene chloride with 5 parts by weight of γ-aminopropyltrimethoxysilane was applied to both sides of the adhesive surface in an amount of 200 g / m 2 per side of the adhesive surface of the above fireproof veneer. It was applied and dried. Furthermore, the phenolic resin-based adhesive described in Example 3 was applied to both sides of the adhesive surface in an amount of 200 g / m 2 per side of the adhesive surface to form a 9-ply plywood. Adhesion was performed by performing hot pressing for 20 minutes at 130 ° C. and 12 kg / cm 2 .

こうして得られた耐火処理合板を、鹿児島県内のイエシロアリが生息している松林内において、合板を地面に対して垂直に埋め込み、合板の上部5cmのみが地面の上に出ている状態で設置し、1年間、雨水と日光に暴露される環境で放置し、その後、合板を取り出して状態を観察したところ、シロアリによる食害を受けておらず、しかも、腐朽も認められず、本発明の耐火性の建築材に優れた保護効果が与えられていることが示された。   The fireproof plywood obtained in this way is installed in a pine forest inhabited by termites in Kagoshima Prefecture, with the plywood embedded perpendicular to the ground, with only the upper 5 cm of the plywood protruding above the ground, When left in an environment exposed to rainwater and sunlight for one year, the plywood was taken out and the condition was observed. As a result, it was not damaged by termites, and no decay was observed. It was shown that the building material has an excellent protective effect.

厚さ3mm、縦300mm×横300mm、含水率7%のラジアータパイン単板に対して、実施例3記載のフェノール樹脂系接着剤を用いて、9プライのLVLを構成し、ここに130℃、12kg/cmの条件でホットプレスを20分間実施することで接着を行った。
こうして得られたホウ素系化合物で処理されていない通常のLVLから、100mm×100mmの大きさで試験片を切り出し、この試験片を対照として用いて、実施例1記載の耐火処理材(スギ板材)、実施例2記載の耐火処理材(スギ板材)、更には、実施例4記載のシランカップリング剤とイソシアネート系接着剤の双方を用いて製造したLVLから100mm×100mmの大きさで切り出された試験片での、木材保護効果の比較試験を行った。比較試験は、鹿児島県内のイエシロアリが生息している松林内において、試験片を地面の上に設置し、6ケ月間、雨水と日光に暴露することで行った。
A 9-ply LVL was constructed using a phenolic resin-based adhesive described in Example 3 for a 3 mm thick, 300 mm long x 300 mm wide, radialitapine single plate having a water content of 7%. Bonding was performed by performing hot pressing for 20 minutes under the condition of 12 kg / cm 2 .
A test piece having a size of 100 mm × 100 mm was cut out from a normal LVL that was not treated with the boron-based compound thus obtained, and this test piece was used as a control. The refractory material (cedar plate material) described in Example 2 was cut out in a size of 100 mm × 100 mm from the LVL produced using both the silane coupling agent and the isocyanate-based adhesive described in Example 4. A comparative test of the wood protective effect of the test piece was performed. A comparative test was conducted in a pine forest inhabited by termites in Kagoshima Prefecture by placing the test piece on the ground and exposing it to rainwater and sunlight for 6 months.

その結果、対照の試験片は著しいシロアリの食害を受けており、試験片の乾燥重量が12%低下していた。しかしながら、ホウ素系化合物で処理された試験片は全てシロアリの食害を受けておらず、しかも割れ、反りなどの寸法変化に伴う現象も認められず、寸法安定性という点でも優れていることが示された。   As a result, the control specimen was severely damaged by termites, and the dry weight of the specimen was reduced by 12%. However, all the test pieces treated with boron-based compounds are not damaged by termites, and there are no phenomena associated with dimensional changes such as cracking and warping, which indicates that they are excellent in terms of dimensional stability. It was done.

また、これらの暴露後の試験片を40℃で4週間、通風しながら乾燥し、その乾燥重量を測定した結果から、実施例1由来の試験片では75%、実施例2由来の試験片では71%、実施例4由来の試験片では92%のホウ素系化合物が残存しており、本発明の木材質が、雨水に暴露される環境下でも、良好にホウ素系化合物を保持していることが示された。   In addition, these exposed test pieces were dried while ventilating at 40 ° C. for 4 weeks, and the dry weight was measured. As a result, the test piece derived from Example 1 was 75%, and the test piece derived from Example 2 was used. 71%, 92% of the boron compound remains in the test piece derived from Example 4, and the wood material of the present invention retains the boron compound well even in an environment exposed to rainwater. It has been shown.

また、これらの暴露後の試験片を用いて、実施例1記載の方法で燃焼試験を行ったところ、実施例1由来の試験片は難燃、実施例2由来の試験片は準不燃、実施例4由来の試験片は不燃と判定され、本発明の木質材が耐火性を良好に維持していることが示された。   Moreover, when the combustion test was performed by the method of Example 1 using the test piece after these exposure, the test piece derived from Example 1 was flame-retardant, the test piece derived from Example 2 was semi-incombustible, and implemented. The test piece derived from Example 4 was determined to be nonflammable, indicating that the wood material of the present invention maintained good fire resistance.

塩化メチレン95重量部にγ−アミノプロピルトリメトキシシラン5重量部を混合した溶液を、実施例2記載の方法で製造された耐火処理された木質材(スギ板材)の表面に、160g/mの量で塗布して乾燥した。更に表面に、大日本インキ化学工業株式会社製の水分散性ポリイシシアネート硬化剤BURNOCK(バーノック)DNW−5000を水で2倍に希釈後、250/mの量で塗布して乾燥した。 A solution prepared by mixing 95 parts by weight of methylene chloride with 5 parts by weight of γ-aminopropyltrimethoxysilane was added to the surface of a fire-resistant wood material (cedar board) manufactured by the method described in Example 2 at 160 g / m 2. Was applied and dried. Further, a water dispersible polyisocyanate curing agent BURNOCK (Burnock) DNW-5000 manufactured by Dainippon Ink & Chemicals, Inc. was diluted twice with water, applied in an amount of 250 / m 2 and dried.

得られた塗装処理済みの耐火木質材を、実施例6と同様にして屋外に暴露し、この暴露後の試験片を用いて、実施例1記載の方法で燃焼試験を行ったところ、不燃と判定され、本発明の木質材が耐火性を良好に維持していることが示された。   The painted fire-resistant wood material thus obtained was exposed outdoors in the same manner as in Example 6. Using the test piece after this exposure, a combustion test was performed by the method described in Example 1. It was judged that the woody material of the present invention maintained good fire resistance.

50mm×50mm、厚さ約1.5mmの牛革を40℃で6時間乾燥後、実施例2記載のホウ素含有水溶液に5分間浸漬して、耐火処理された皮革を得た。
この処理物を家庭用ガスコンロの炎の中に30秒間投じたところ、乾燥による収縮は生じたが、着火は認められなかった。対照として、無処理の皮革で同様に試験したところ、3秒で皮革に着火した。
A 50 mm × 50 mm cowhide having a thickness of about 1.5 mm was dried at 40 ° C. for 6 hours and then immersed in a boron-containing aqueous solution described in Example 2 for 5 minutes to obtain a fire-resistant leather.
When this treated product was thrown into the flame of a household gas stove for 30 seconds, shrinkage due to drying occurred, but no ignition was observed. As a control, the same test was performed on untreated leather, which ignited the leather in 3 seconds.

Claims (11)

ホウ素元素の含有量が3重量%以上8重量%以下で、pHが6から8に調整されたホウ素含有水溶液を木質材に含浸し、その後、木質材を乾燥することを特徴とする耐火木質材の製造方法。   A fire-resistant wood material characterized by impregnating a wood material with a boron-containing aqueous solution having a boron element content of 3 wt% to 8 wt% and a pH adjusted to 6 to 8, and then drying the wood material Manufacturing method. ホウ素含有水溶液の温度が50℃以上となるように加温しながら木質材への含浸を行うことを特徴とする請求項1に記載の耐火木質材の製造方法。   The method for producing a refractory wood material according to claim 1, wherein the wood material is impregnated while being heated so that the temperature of the boron-containing aqueous solution is 50 ° C or higher. 請求項1または2に記載の方法で得られた耐火木質材に対して、更に、シランカップリング剤及び樹脂系塗料を塗布することを特徴とする耐火木質材の製造方法。   A method for producing a refractory wood material, further comprising applying a silane coupling agent and a resin-based paint to the refractory wood material obtained by the method according to claim 1 or 2. シランカップリング剤及び樹脂系塗料を塗布する際に、シランカップリング剤を塗布し次に樹脂系塗料を塗布する、あるいは、シランカップリング剤と樹脂系塗料を混合したものを塗布することを特徴とする請求項3に記載の耐火木質材の製造方法。   When applying a silane coupling agent and a resin-based paint, apply a silane coupling agent and then a resin-based paint, or apply a mixture of a silane coupling agent and a resin-based paint. The manufacturing method of the refractory wood material of Claim 3. 樹脂系塗料がイソシアネート系、ウレタン系、アクリル系から成る群から選択された塗料であることを特徴とする請求項3または4に記載の耐火木質材の製造方法。   The method for producing a refractory wood material according to claim 3 or 4, wherein the resin-based paint is a paint selected from the group consisting of isocyanate, urethane, and acrylic. 請求項1から5のいずれかに記載の方法で得られた耐火木質材に対して、更に、シランカップリング剤及び樹脂系接着剤を塗布し、耐火木質材を接着することを特徴とする耐火性の建築材の製造方法。   A fireproof wood material obtained by the method according to any one of claims 1 to 5, further comprising applying a silane coupling agent and a resin adhesive to bond the fireproof wood material. Manufacturing method for building materials. シランカップリング剤及び樹脂系接着剤を塗布する際に、シランカップリング剤を塗布し次に樹脂系接着剤を塗布する、あるいは、シランカップリング剤と樹脂系接着剤を混合したものを塗布することを特徴とする請求項6に記載の耐火性の建築材の製造方法。   When applying the silane coupling agent and the resin adhesive, apply the silane coupling agent and then the resin adhesive, or apply a mixture of the silane coupling agent and the resin adhesive. The manufacturing method of the fire-resistant building material of Claim 6 characterized by the above-mentioned. 樹脂系接着剤がフェノール樹脂系、レゾルシノール樹脂系、イソシアネート樹脂系、メラミン樹脂系、ユリア樹脂系、メラミン−ユリア樹脂系、ウレタン樹脂系、エポキシ樹脂系、アクリル樹脂系から成る群から選択された接着剤であることを特徴とする請求項6または7に記載の耐火性の建築材の製造方法。   Adhesive selected from the group consisting of a phenolic resin, a resorcinol resin, an isocyanate resin, a melamine resin, a urea resin, a melamine-urea resin, a urethane resin, an epoxy resin, and an acrylic resin. The method for producing a fireproof building material according to claim 6 or 7, wherein the method is a chemical agent. 請求項1から8のいずれか1つに記載の方法で得られる耐火木質材または耐火性の建築材。   A fire-resistant wooden material or a fire-resistant building material obtained by the method according to any one of claims 1 to 8. ホウ素含有水溶液を含浸する前の木質材の乾燥重量を100重量部として、2重量部以上のホウ素元素が含有されていることを特徴とする請求項9に記載の耐火木質材または耐火性の建築材。   The fire-resistant wood material or fire-resistant building according to claim 9, wherein the dry weight of the wood material before impregnating the boron-containing aqueous solution is 100 parts by weight, and 2 parts by weight or more of boron element is contained. Wood. 前記請求項1〜8のいずれか1つに記載の耐火木質材あるいは耐火性の建築材とその製造方法において、ホウ素元素の含有量が5重量%以上8重量%以下で、Na(ナトリウム)またはK(カリウム)を含有する化合物によってpHが6から8に調整された水溶液であることを特徴とする耐火処理剤。







In the refractory wood material or the refractory building material according to any one of claims 1 to 8, and the manufacturing method thereof, the content of boron element is 5 wt% or more and 8 wt% or less, and Na (sodium) or A fireproofing agent characterized by being an aqueous solution having a pH adjusted to 6 to 8 with a compound containing K (potassium).







JP2005287043A 2005-09-30 2005-09-30 Refractory wood or fire-resistant building material, method for producing the same, and fireproofing agent Active JP4369411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005287043A JP4369411B2 (en) 2005-09-30 2005-09-30 Refractory wood or fire-resistant building material, method for producing the same, and fireproofing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005287043A JP4369411B2 (en) 2005-09-30 2005-09-30 Refractory wood or fire-resistant building material, method for producing the same, and fireproofing agent

Publications (2)

Publication Number Publication Date
JP2007090839A true JP2007090839A (en) 2007-04-12
JP4369411B2 JP4369411B2 (en) 2009-11-18

Family

ID=37977076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005287043A Active JP4369411B2 (en) 2005-09-30 2005-09-30 Refractory wood or fire-resistant building material, method for producing the same, and fireproofing agent

Country Status (1)

Country Link
JP (1) JP4369411B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149721A (en) * 2007-12-19 2009-07-09 Achilles Corp Flame retardant polyurethane foam
JP2013091692A (en) * 2011-10-24 2013-05-16 Shirakawa Kotomi Incombustible composition
JP2017136811A (en) * 2016-02-02 2017-08-10 水川 伸行 Processing and manufacturing method of wood wool insulation material and use thereof
JP2018016010A (en) * 2016-07-29 2018-02-01 株式会社アサノ不燃 Manufacturing method of wood flour board
WO2020054838A1 (en) * 2018-09-14 2020-03-19 公立大学法人北九州市立大学 Method for producing noncombustible material, and noncombustible material
KR102183151B1 (en) * 2019-06-28 2020-11-25 한남대학교 산학협력단 a method manufacturing bamboo for industrial materials
JP2021017422A (en) * 2019-07-23 2021-02-15 日本ボレイト株式会社 Boron compound solution
JP2021055088A (en) * 2019-09-30 2021-04-08 大建工業株式会社 Flame-retarding chemical liquid and non-inflammable lumber treated therewith
JP6984928B1 (en) * 2021-06-09 2021-12-22 デザインアンドイノベーション株式会社 Manufacturing method of veneer laminated wood and veneer laminated wood reinforced with carbon fiber sheet
WO2024070452A1 (en) * 2022-09-29 2024-04-04 パナソニックIpマネジメント株式会社 Production method of compressed wood
WO2024070451A1 (en) * 2022-09-29 2024-04-04 パナソニックIpマネジメント株式会社 Method for producing compressed wood

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149721A (en) * 2007-12-19 2009-07-09 Achilles Corp Flame retardant polyurethane foam
JP2013091692A (en) * 2011-10-24 2013-05-16 Shirakawa Kotomi Incombustible composition
JP2017136811A (en) * 2016-02-02 2017-08-10 水川 伸行 Processing and manufacturing method of wood wool insulation material and use thereof
JP2018016010A (en) * 2016-07-29 2018-02-01 株式会社アサノ不燃 Manufacturing method of wood flour board
JP7391333B2 (en) 2018-09-14 2023-12-05 公立大学法人北九州市立大学 Method for manufacturing noncombustible materials and noncombustible materials
WO2020054838A1 (en) * 2018-09-14 2020-03-19 公立大学法人北九州市立大学 Method for producing noncombustible material, and noncombustible material
JPWO2020054838A1 (en) * 2018-09-14 2020-03-19
KR102183151B1 (en) * 2019-06-28 2020-11-25 한남대학교 산학협력단 a method manufacturing bamboo for industrial materials
JP2021017422A (en) * 2019-07-23 2021-02-15 日本ボレイト株式会社 Boron compound solution
JP2021055088A (en) * 2019-09-30 2021-04-08 大建工業株式会社 Flame-retarding chemical liquid and non-inflammable lumber treated therewith
JP7080289B2 (en) 2019-09-30 2022-06-03 大建工業株式会社 Flame-retardant chemicals, non-combustible wood using them, and methods for adjusting flame-retardant chemicals
JP6984928B1 (en) * 2021-06-09 2021-12-22 デザインアンドイノベーション株式会社 Manufacturing method of veneer laminated wood and veneer laminated wood reinforced with carbon fiber sheet
JP2022188506A (en) * 2021-06-09 2022-12-21 デザインアンドイノベーション株式会社 Production method of single laminated lumber and single laminated lumber reinforced with carbon fiber sheet
WO2024070452A1 (en) * 2022-09-29 2024-04-04 パナソニックIpマネジメント株式会社 Production method of compressed wood
WO2024070451A1 (en) * 2022-09-29 2024-04-04 パナソニックIpマネジメント株式会社 Method for producing compressed wood

Also Published As

Publication number Publication date
JP4369411B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JP4369411B2 (en) Refractory wood or fire-resistant building material, method for producing the same, and fireproofing agent
CN107880708B (en) Waterproof durable fireproof wood and preparation method thereof
US20050126430A1 (en) Building materials with bioresistant properties
JP2004504329A (en) Borate preservatives with mixed solubility.
JP4805432B2 (en) Chemicals for admixing adhesives used in manufacturing wood materials or wood composite materials
US20030104135A1 (en) Method and composition for treating wood
AU2014203830B2 (en) Methods of employing enhanced penetration of wood preservatives to protect wood and related solutions
US10119034B2 (en) Wood preservation products protected with a durable coating system
JPH03202528A (en) Insect, mold, and fungi protecting building material
MX2007012874A (en) Method for impregnating lignocellulosic materials with effect agents.
AU2016202069A1 (en) Wood preservative formulation
Smith et al. Durability improvement for structural wood composites through chemical treatments: current state of the art
JP2002337116A (en) Woody fiber plate and its manufacturing method
Gao et al. Physico-mechanical properties of plywood bonded by nano cupric oxide (CuO) modified pf resins against subterranean termites
JP2009509807A (en) Panels containing bamboo and fungicides
TW202138150A (en) A green process for modifying wood
KR20040038926A (en) Fire retardant cellulose preservative treatment process
US20120100361A1 (en) Antiseptic composition for engineering wood production, and engineering wood
US20110151129A1 (en) Wood treatment solution and process
WO2014101979A2 (en) Wood preservation method using sodium silicate and sodium bicarbonate
Gao et al. Some physical, mechanical properties and termite resistance of ammonium pentaborate-treated strand board
EP2700312B1 (en) Method of particleboard protection against fungi and substance for particleboard protection against fungi
Vidrine Copper compounds for durable composites: effects on material properties
KR20240016299A (en) Flame retardant composition for natural fiber products
JPH01190405A (en) Method for manufacturing woody board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090827

R150 Certificate of patent or registration of utility model

Ref document number: 4369411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250