WO2020054838A1 - Method for producing noncombustible material, and noncombustible material - Google Patents

Method for producing noncombustible material, and noncombustible material Download PDF

Info

Publication number
WO2020054838A1
WO2020054838A1 PCT/JP2019/036071 JP2019036071W WO2020054838A1 WO 2020054838 A1 WO2020054838 A1 WO 2020054838A1 JP 2019036071 W JP2019036071 W JP 2019036071W WO 2020054838 A1 WO2020054838 A1 WO 2020054838A1
Authority
WO
WIPO (PCT)
Prior art keywords
boric acid
aqueous solution
temperature
acid aqueous
concentration
Prior art date
Application number
PCT/JP2019/036071
Other languages
French (fr)
Japanese (ja)
Inventor
展淳 福田
達明 谷山
大塚 正彦
Original Assignee
公立大学法人北九州市立大学
株式会社三栄建築設計
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人北九州市立大学, 株式会社三栄建築設計 filed Critical 公立大学法人北九州市立大学
Priority to JP2020546216A priority Critical patent/JP7391333B2/en
Publication of WO2020054838A1 publication Critical patent/WO2020054838A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K3/00Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process
    • B27K3/02Processes; Apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K3/00Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process
    • B27K3/16Inorganic impregnating agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/02Inorganic materials

Definitions

  • the present invention relates to a method for producing a non-combustible material and a non-combustible material, and more particularly to non-combustible material using boric acid.
  • Non-Patent Document 1 generally states that when performing a fire protection treatment using an inorganic salt, it is difficult to obtain a sufficient fire protection effect with a single agent, and two or more types of agents may be mixed and used. Many points are pointed out. Also, it has been pointed out that boric acid and borax are difficult to use as fire retardants because they have a low fire-protection effect and low solubility when used alone. However, it is pointed out that the use of a mixture of both eliminates the disadvantages.
  • Patent Document 1 discloses that boric acid and borax are contained in an amount exceeding the solubility of a single compound at 40 to 100 ° C., and x part of boric acid and y part of borax (provided that (x ⁇ 35, y ⁇ 40) is disclosed as a stable boron compound liquid composition containing 8.3 mol / kg or more in terms of boron.
  • Patent Document 2 discloses a wood-based noncombustible chemical in which a phosphoric acid-based noncombustible chemical, which is an organic phosphate containing nitrogen, is dissolved in an aqueous solution of an ammonium chemical that is gasified by heating to a solubility equal to or higher than a single solubility. It has been disclosed.
  • Non-Patent Document 1 As pointed out in Non-Patent Document 1 described above, boric acid alone has a weak fire-protection effect and a low solubility, so that it is difficult to use it as a fire-retardant, and boric acid is added to promote the dissolution of boric acid. It was a general recognition in the art that an object (such as borax) should be added. However, since borax or the like has deliquescence (hygroscopicity), there is a problem that this causes whitening of the material to be treated and water dripping due to the appearance of water droplets. In addition, as described in Patent Document 2, when an ammonia-based chemical is used, there is a problem that an ammonia odor is generated. When an attempt is made to remove the ammonia odor, a drying process is performed for a longer time than usual to promote thermal decomposition. Therefore, another problem such as an increase in manufacturing cost occurs.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to ensure the non-combustibility of a non-combustible material using boric acid alone without adding an additive for promoting dissolution of boric acid. It is.
  • a first invention provides a method for producing a noncombustible material having a charging step, a high concentration step, and a precipitation step.
  • a boric acid aqueous solution in which boric acid is dissolved and an object to be treated as a main material of a non-combustible material are charged into the impregnation tank without adding an additive for promoting dissolution of boric acid.
  • the boric acid aqueous solution to be impregnated inside the object to be treated is dissolved in the atmospheric pressure environment by further dissolving the boric acid introduced into the impregnation tank while raising the temperature of the boric acid aqueous solution under a pressurized environment.
  • the concentration becomes higher than the solubility below.
  • the boric acid impregnated inside the object to be treated is lowered by lowering the temperature of the aqueous solution of boric acid with a high concentration, on condition that the pressurized state is maintained at least until the temperature drops to the boiling point under the atmospheric pressure environment. Precipitate.
  • the temperature of the boric acid aqueous solution is preferably set to 120 ° C. or higher, and a more preferable range is 140 to 160 ° C.
  • the concentration increasing step is to increase the concentration of the boric acid aqueous solution by dissolving boric acid as a solid substance that has not completely dissolved and is precipitated in the immersion tank, with the temperature rise of the boric acid aqueous solution. Is also good.
  • an impregnation tank into which the processing target is charged is placed under a vacuum environment to further provide an air removing step for removing air contained in the processing target. Is also good.
  • the boric acid aqueous solution may be cooled by heat exchange with a cooling liquid.
  • the second invention provides a non-combustible material containing boric acid, containing no additive for promoting the dissolution of boric acid in water, and having a boric acid content of 180 kg / m 3 or more.
  • the third invention contains boric acid, does not contain an additive for promoting the dissolution of boric acid in water, and has a total calorific value of 8 MJ when heated for 20 minutes in a heat generation test using a corn calorimeter. / M 2 or less.
  • the temperature of the boric acid aqueous solution is increased in a pressurized environment. Since the solubility of boric acid increases as the temperature increases, it has a high temperature dependency, so if the temperature of a boric acid aqueous solution is raised under a pressurized environment, the addition of boric acid to promote the dissolution of boric acid in water will occur. A large amount of boric acid can be dissolved in water without adding a substance. This increases the amount of boric acid deposited inside the object to be treated, so that a noncombustible material having excellent noncombustibility can be obtained.
  • nonflammability in conformity with legal standards can be ensured, and an additive having a deliquescent (hygroscopicity) such as borax is not included. Water dripping due to whitening and the appearance of water droplets can be prevented.
  • a deliquescent such as borax
  • the non-combustible material according to the present embodiment is used for architectural purposes, and the goal is to obtain performance certification in accordance with the Building Standards Act of Japan (exothermic test).
  • the feature of this incombustible material is that boric acid alone as a fire retardant ensures sufficient fire protection performance without using an additive such as borax added to promote dissolution of boric acid.
  • a method for manufacturing a noncombustible material will be described with reference to FIGS. 1 to 5.
  • the boric acid aqueous solution and the object to be treated 2 are charged into the impregnation tank 1.
  • the boric acid aqueous solution is a mixture of water and boric acid without adding an additive for promoting the dissolution of boric acid in water.
  • the amount of boric acid charged into the impregnation tank 1 is 67 g / 100 ml or more, and the solid remaining without being dissolved in water is precipitated at the bottom of the impregnation tank 1.
  • additives for promoting the dissolution of boric acid in water include, but are not limited to, borax, phosphoric acid, and ammonium salts.
  • the boric acid solid remains to dissolve more boric acid in the subsequent process.
  • the processing object 2 is a main material of non-combustible material, and is typically a general wood (solid material), a compressed material, a laminated material, a plywood, an oriented strand board (OSB), a particle board. , Laminated Veneer Lumber (LVL), Parallel Strand Lumber (PSL), Oriented Strand Lumber (OSL), Medium Density Fiberboard (MDF), etc. In addition, bamboo, grass, paper, cardboard and the like may be used.
  • a weight 3 is placed on the upper part of the processing object 2 so as not to float from the liquid.
  • the impregnation tank 1 into which the object to be treated 2 is charged is placed under a vacuum pressure environment, that is, a space state in which the pressure is lower than the atmospheric pressure. Specifically, first, the impregnation tank 1 is accommodated in the closed tank 4. Next, the pressure in the closed vessel 4 is reduced to a predetermined pressure, and this state is maintained for a predetermined time (for example, about 60 minutes). Thereby, the air contained in the processing target object 2 is discharged to the outside.
  • a vacuum pressure environment that is, a space state in which the pressure is lower than the atmospheric pressure.
  • the reason for providing this step is to remove fine air present in the fibers of the processing target object 2 in the fibers of the processing object 2 and thereby impregnate the boric acid aqueous solution, thereby promoting the impregnation of the boric acid aqueous solution in the subsequent step. is there. In addition, even if this step is not performed, this step may be omitted as long as a sufficient impregnation amount of the boric acid aqueous solution can be secured.
  • the boric acid aqueous solution is heated to about 100 ° C. .
  • boric acid shown by hatching
  • the concentration of the boric acid aqueous solution increases as the temperature increases.
  • the reason for providing this step is to shorten the processing time in the next step under a pressurized environment by increasing the concentration of the boric acid aqueous solution to a certain level.
  • the impregnation tank 1 is heated in a pressurized environment with high-temperature steam, and the temperature of the boric acid aqueous solution is raised to a predetermined temperature, for example, a temperature higher than 100 ° C.
  • a predetermined temperature for example, a temperature higher than 100 ° C.
  • the solubility of boric acid in water increases as the water temperature rises to 70 ° C. or higher.
  • the maximum solubility of the boric acid aqueous solution is a solubility at a boiling point of 100 ° C., for example, a concentration obtained by dissolving 40.25 g of boric acid in 100 g of water.
  • a high-temperature high-pressure vessel is used as the high-pressure tank 5.
  • the high-temperature and high-pressure container is a device that raises and heats the internal temperature with high-temperature steam of 100 ° C. or more, and the temperature is adjusted by pressurizing saturated steam.
  • the pressure in the high-pressure tank is 0.196 MPa at 120 ° C., 0.36 Mpa at 140 ° C., and 0.618 Mpa at 160 ° C.
  • the impregnation tank 1 is accommodated in the high-pressure tank 5.
  • the inside of the high-pressure tank 5 is pressurized by high-temperature steam to about 0.4 to 0.6 MPa (4 to 6 atm).
  • the pressure is increased to 0.4 MPa
  • the temperature is 160 ° C.
  • the pressure is increased to 0.6 MPa
  • the temperature of the impregnation tank 1 in the high-pressure tank 5 is also increased to the same extent.
  • This state is maintained for a predetermined time (for example, 3 to 6 hours).
  • the solid of boric acid precipitated in the impregnation tank 1 is further dissolved, and the solubility of the boric acid aqueous solution is also increased under the atmospheric pressure environment.
  • the temperature of the boric acid aqueous solution is set to 120 ° C. or higher, more preferably 140 to 160 ° C. It should be noted that the pressurization in this step can promote the impregnation of the treatment object 2 with the concentrated boric acid aqueous solution (impregnation promoting effect).
  • the water temperature of the boric acid aqueous solution is maintained at the set temperature by pressurizing with high-temperature steam. Since the temperature of the water vapor around the impregnation tank 1 is maintained at this temperature, if the temperature of the impregnation tank 1 reaches, for example, 140 ° C., the temperature changes to 140 ° C. as it is.
  • the water temperature can be measured, for example, by placing a temperature sensor in the high-pressure tank 5 and immersing it in an aqueous boric acid solution.
  • the temperature of the high-pressure tank 5 is lowered, and the concentration of the boric acid solution is lowered, whereby boric acid impregnated inside the processing object 2 is precipitated.
  • the pressurized state is maintained at least until the temperature falls to the boiling point under the atmospheric pressure environment.
  • the reason for maintaining the pressurized state is as follows. First, it is to prevent evaporation of water in the boric acid aqueous solution. When the pressure in the high-pressure tank 5 is returned to normal pressure in order to take out the impregnating tank 1 at a high temperature, the boric acid aqueous solution exceeds 100 ° C.
  • the reduction of the boric acid content contained in the processing target object 2 is minimized.
  • the pressure is rapidly decreased, the boric acid aqueous solution boils, and a large amount of boric acid that has penetrated into the processing target object 2 is released to the outside.
  • it is to prevent the water surface of the boric acid aqueous solution from lowering and to prevent the processing target 2 from being exposed.
  • the pressurization in the high-pressure tank 5 is stopped. Then, when the internal pressure becomes 0.6 MPa or less and the internal temperature becomes about 70 ° C. after a predetermined time elapses, or when the internal temperature becomes room temperature, the pressure in the high-pressure tank 5 is gradually reduced. Thereafter, when the internal pressure becomes 0.2MP or less, the valve 5a is opened to return the internal pressure to the atmospheric pressure, and then the impregnation tank 1 is taken out of the high-pressure tank 5. At this time, the temperature of the boric acid aqueous solution is about 90 ° C. or room temperature.
  • the temperature of the concentrated boric acid aqueous solution is gradually lowered under the atmospheric pressure environment.
  • the impregnation tank 1 taken out of the high-pressure tank 5 is immersed in a cooling liquid tank 6 storing a cooling liquid (for example, water).
  • a cooling liquid for example, water
  • the boric acid aqueous solution is cooled by heat exchange with the cooling liquid.
  • it is cooled to room temperature while maintaining the pressurized state.
  • boric acid impregnated inside the processing object 2 gradually precipitates as a solid.
  • the non-combustible material produced through the above series of treatments has, as its characteristics, first, boric acid and no additives for promoting dissolution of boric acid in water. .
  • the boric acid in the non-combustible material exists almost uniformly throughout the inside as compared with a method of spraying boric acid from the outside.
  • FIG. 6 is a characteristic table for each test piece in a heat generation test (when heated for 20 minutes) using a corn calorimeter.
  • the exothermic test using a corn calorimeter is based on ISO5660 used in Japan for the fire performance test of the new Building Standard Law enforced from June 2001 in Japan. In order to receive national accreditation, it must clear the standards of this test.
  • the test results shown in the table show the characteristics of twelve test pieces.
  • cedar wood which is one of the processing objects 2
  • the weight percentage of water and boric acid (the weight percentage of boric acid including boric acid and insoluble boric acid with respect to the total weight of boric acid and water) charged into the impregnation tank 1 is 40% or 50%.
  • the heating temperature in a pressurized environment is 150 ° C. (sample numbers 1-2) and 160 ° C. (sample numbers 3-12).
  • the content of boric acid in the noncombustible material is measured as follows.
  • a plurality of samples of the same size are extracted from a cedar material (base material), a sample having a median weight is prepared as an untreated sample, and the other samples are used for impregnation.
  • the dimensions of the sample are 100 mm * 100 mm * 50 mm.
  • both the impregnated sample and the untreated sample are subjected to a drying treatment, and then the absolute dry weight is measured.
  • the value obtained by subtracting the absolute dry weight of the untreated sample from the absolute dry weight of each impregnated sample is defined as the boric acid content.
  • the “absolute dry weight” refers to the weight at the time when the weight is completely changed (for example, 24 hours) in the dryer and the weight no longer changes.
  • the amount of boric acid impregnated into wood exceeds about 200 kg / m 3
  • the total calorific value in the exothermic test is less than 8 MJ / m 2 . It is said that.
  • the boric acid content is 180 kg / m 3 or more, and / or an exothermic test using a corn calorimeter. And a total calorific value during heating for 20 minutes of 8 MJ / m 2 or less can be realized. As shown in the table, all of the specimens Nos.
  • the impregnation tank 1, the closed tank 4 and the high-pressure tank 5 are separately used, but it is not indispensable to divide these three tanks, and one or two tanks may have the same function. .
  • the temperature of the boric acid aqueous solution is raised to a temperature higher than 100 ° C. in a pressurized environment. Since the solubility of boric acid has a high temperature dependency, which increases as the temperature increases, a large amount of boric acid can be dissolved in water by raising the temperature of a boric acid aqueous solution under a pressurized environment. Conventionally, boric acid alone has a weak fire-protection effect and has a low solubility, so it is difficult to use it as a fire-retardant.In order to promote the dissolution of boric acid, borax, phosphoric acid, and additives such as ammonium salts are used.
  • the dissolution of boric acid is promoted by heating under a pressurized environment.
  • the concentration of the boric acid aqueous solution under a pressurized environment By increasing the concentration of the boric acid aqueous solution under a pressurized environment, the amount of boric acid deposited inside the object to be treated 2 can be increased, so that the incombustibility of the noncombustible material conforming to the Building Standards Law (exothermic test) Can be secured.
  • boric acid exceeding the maximum solubility of boric acid at the standard atmospheric pressure (1 atm) is charged into the impregnation tank 1 in the charging step in advance (at this time, a part of boric acid is dissolved. However, it is precipitated as a solid without being dissolved), and is further dissolved in the concentration increasing step.
  • the present invention is not limited to such a procedure, and the timing at which boric acid is introduced into the impregnation tank 1 may be performed in parallel with the temperature increase in the concentration increasing step, or May be performed alternately with the temperature rise.
  • boric acid itself is a substance used to wash eyes in the past, and does not harm the human body unless taken in large quantities. Therefore, it can be said that the noncombustible material of boric acid alone has high safety for the human body.
  • Deliquescence refers to a phenomenon in which a substance takes in water (water vapor) in the air and spontaneously turns into an aqueous solution. Liquefaction occurs when there is a small volume of saturated aqueous solution on the crystal surface and its saturated vapor pressure is less than atmospheric water vapor pressure. Water vapor in the atmosphere is taken into the surface of the saturated aqueous solution, and the saturated aqueous solution is diluted.
  • the amount of substance of the crystal is sufficiently large, and even if some water dissolves the crystal, the crystal is not completely dissolved.
  • the volume of the saturated aqueous solution continues to increase, eventually dissolving all the crystals, and then diminishing until the water vapor pressure of the aqueous solution equals the water vapor pressure in the atmosphere. Then, further absorption of water stops. Due to this deliquescence, the noncombustible material absorbs water, and a phenomenon in which they drip (misunderstanding as dew condensation) or water in which boric acid in the processing object 2 is dissolved appears on the surface, and becomes white when the water dries. It causes the whitening phenomenon.
  • boric acid secondary ammonium phosphate, borax (sodium tetraborate decahydrate), and ammonium hydrogen carbonate are known.
  • phosphoric acid is one that may increase the solubility of boric acid
  • tinboa diisodium octaborate tetrahydrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)

Abstract

[Problem] To ensure the noncombustibility of a noncombustible material by boric acid alone without adding an additive to promote the dissolution of boric acid. [Solution] First, an object 2 to be treated, which serves as the main material of a noncombustible material, is placed in an impregnation tank 1 in which is stored a boric acid aqueous solution. The boric acid aqueous solution is a solution of boric acid dissolved in water without adding an additive to promote the dissolution of boric acid in water. Next, the boric acid introduced into the impregnation tank 1 is furthermore dissolved while raising the temperature of the boric acid aqueous solution under a pressurized environment, whereby the concentration of the boric acid aqueous solution with which the object 2 to be treated is to be impregnated is made higher than the maximum solubility under an atmospheric-pressure environment. Then, the temperature of boric acid aqueous solution, the concentration of which has been raised, is reduced under conditions that maintain a pressurized state at least until the temperature drops to the boiling point under an atmospheric-pressure environment, thereby precipitating the boric acid with which the object 2 to be treated is impregnated.

Description

不燃材の製造方法および不燃材Method for producing noncombustible material and noncombustible material
 本発明は、不燃材の製造方法および不燃材に係り、特に、ホウ酸を用いた不燃化に関する。 The present invention relates to a method for producing a non-combustible material and a non-combustible material, and more particularly to non-combustible material using boric acid.
 従来、建築用途などに供される不燃木材に添加される防火剤の一つとして、ホウ酸、ホウ砂、リン酸、強酸アンモニウム塩、ケイ酸ソーダといった水溶性無機塩類が知られている。この無機塩類に関して、非特許文献1には、一般に無機塩類を用いて防火処理を行う場合、単一の薬剤では充分な防火作用が得難く、2種以上の薬剤を混合して使用することが多い点が指摘されている。また、ホウ酸およびホウ砂は、単独では防火効果が弱く溶解度も小さいため、防火剤としては使用し難いが、両者の混合物を用いると欠点が解消される点も指摘されている。 Conventionally, water-soluble inorganic salts such as boric acid, borax, phosphoric acid, ammonium salt of strong acid, and sodium silicate have been known as one of fire retardants added to incombustible wood used for building applications. Regarding this inorganic salt, Non-Patent Document 1 generally states that when performing a fire protection treatment using an inorganic salt, it is difficult to obtain a sufficient fire protection effect with a single agent, and two or more types of agents may be mixed and used. Many points are pointed out. Also, it has been pointed out that boric acid and borax are difficult to use as fire retardants because they have a low fire-protection effect and low solubility when used alone. However, it is pointed out that the use of a mixture of both eliminates the disadvantages.
 特許文献1には、ホウ酸とホウ砂とが40~100℃における単独化合物の溶解度を超える量で含有され、水100部に対して、ホウ酸のx部とホウ砂のy部(但し、x≧35、y≧40)とをホウ素換算で8.3mol/kg以上含む安定なホウ素化合物の液状組成物が開示されている。また、特許文献2には、加熱によりガス化するアンモニウム系薬剤の水溶液に、窒素を含む有機リン酸塩であるリン酸系不燃薬剤が単独の溶解度以上に溶解された木質材料用不燃化薬剤が開示されている。 Patent Document 1 discloses that boric acid and borax are contained in an amount exceeding the solubility of a single compound at 40 to 100 ° C., and x part of boric acid and y part of borax (provided that (x ≧ 35, y ≧ 40) is disclosed as a stable boron compound liquid composition containing 8.3 mol / kg or more in terms of boron. Patent Document 2 discloses a wood-based noncombustible chemical in which a phosphoric acid-based noncombustible chemical, which is an organic phosphate containing nitrogen, is dissolved in an aqueous solution of an ammonium chemical that is gasified by heating to a solubility equal to or higher than a single solubility. It has been disclosed.
特許第5079983号公報Japanese Patent No. 50799983 特許第4445991号公報Japanese Patent No. 4444991
 上述した非特許文献1でも指摘されているように、ホウ酸は、それ単独では防火効果が弱く溶解度が小さいため、防火薬剤としての使用に難があり、ホウ酸の溶解を促進するための添加物(ホウ砂など)を添加すべきというのが、本技術分野における一般的な認識であった。しかしながら、ホウ砂などは潮解性(吸湿性)があるため、これに起因して、処理対象物となる素材の白化や水滴の表出による水の滴りを招くといった問題がある。また、特許文献2のように、アンモニア系薬剤を使用する場合、アンモニア臭が発生するといった問題があり、アンモニア臭を除去しようとすると、乾燥工程を通常よりも長時間行って熱分解を促進しなければならず、製造コストの上昇を招くなどといった別の問題が生じる。 As pointed out in Non-Patent Document 1 described above, boric acid alone has a weak fire-protection effect and a low solubility, so that it is difficult to use it as a fire-retardant, and boric acid is added to promote the dissolution of boric acid. It was a general recognition in the art that an object (such as borax) should be added. However, since borax or the like has deliquescence (hygroscopicity), there is a problem that this causes whitening of the material to be treated and water dripping due to the appearance of water droplets. In addition, as described in Patent Document 2, when an ammonia-based chemical is used, there is a problem that an ammonia odor is generated. When an attempt is made to remove the ammonia odor, a drying process is performed for a longer time than usual to promote thermal decomposition. Therefore, another problem such as an increase in manufacturing cost occurs.
 本発明は、かかる事情に鑑みてなされたものであり、その目的は、ホウ酸の溶解を促進するための添加物を添加することなく、ホウ酸単独で不燃材としての不燃性を確保することである。 The present invention has been made in view of such circumstances, and an object of the present invention is to ensure the non-combustibility of a non-combustible material using boric acid alone without adding an additive for promoting dissolution of boric acid. It is.
 かかる課題を解決すべく、第1の発明は、投入ステップと、高濃度化ステップと、析出ステップとを有する不燃材の製造方法を提供する。投入ステップでは、ホウ酸の溶解を促進するための添加物を添加することなく、ホウ酸を溶解したホウ酸水溶液と、不燃材の主材となる処理対象物とを含浸槽内に投入する。高濃度化ステップでは、ホウ酸水溶液を加圧環境下で昇温しつつ、含浸槽に導入されたホウ酸をさらに溶解することによって、処理対象物の内部に含浸させるホウ酸水溶液を大気圧環境下の溶解度よりも高濃度化する。析出ステップでは、少なくとも大気圧環境下における沸点に降温するまで加圧状態を維持することを条件に、高濃度化したホウ酸水溶液を降温することによって、処理対象物の内部に含浸したホウ酸を析出させる。 べ く In order to solve such a problem, a first invention provides a method for producing a noncombustible material having a charging step, a high concentration step, and a precipitation step. In the charging step, a boric acid aqueous solution in which boric acid is dissolved and an object to be treated as a main material of a non-combustible material are charged into the impregnation tank without adding an additive for promoting dissolution of boric acid. In the concentration step, the boric acid aqueous solution to be impregnated inside the object to be treated is dissolved in the atmospheric pressure environment by further dissolving the boric acid introduced into the impregnation tank while raising the temperature of the boric acid aqueous solution under a pressurized environment. The concentration becomes higher than the solubility below. In the precipitation step, the boric acid impregnated inside the object to be treated is lowered by lowering the temperature of the aqueous solution of boric acid with a high concentration, on condition that the pressurized state is maintained at least until the temperature drops to the boiling point under the atmospheric pressure environment. Precipitate.
 ここで、第1の発明において、上記高濃度化ステップは、ホウ酸水溶液の温度を120℃以上に設定することが好ましく、より好ましい範囲は140~160℃である。また、上記高濃度化ステップは、溶解しきれずに浸槽内に沈殿している固体物としてのホウ酸を、ホウ酸水溶液の昇温に伴い溶解させることによって、ホウ酸水溶液を高濃度化してもよい。また、上記高濃度化ステップに先立ち、処理対象物が投入された含浸槽を真空圧環境下に置くことによって、処理対象物の内部に含まれている空気を除去する空気除去ステップをさらに設けてもよい。また、上記析出ステップは、冷却液との熱交換によってホウ酸水溶液を冷却してもよい。 Here, in the first invention, in the concentration increasing step, the temperature of the boric acid aqueous solution is preferably set to 120 ° C. or higher, and a more preferable range is 140 to 160 ° C. Further, the concentration increasing step is to increase the concentration of the boric acid aqueous solution by dissolving boric acid as a solid substance that has not completely dissolved and is precipitated in the immersion tank, with the temperature rise of the boric acid aqueous solution. Is also good. In addition, prior to the concentration increasing step, an impregnation tank into which the processing target is charged is placed under a vacuum environment to further provide an air removing step for removing air contained in the processing target. Is also good. Further, in the precipitation step, the boric acid aqueous solution may be cooled by heat exchange with a cooling liquid.
 第2の発明は、ホウ酸を含み、ホウ酸の水への溶解を促進するための添加物を含まず、かつ、ホウ酸の含有量が180kg/m3以上である不燃材を提供する。 The second invention provides a non-combustible material containing boric acid, containing no additive for promoting the dissolution of boric acid in water, and having a boric acid content of 180 kg / m 3 or more.
 第3の発明は、ホウ酸を含み、ホウ酸の水への溶解を促進するための添加物を含まず、かつ、コーンカロリーメーターによる発熱性試験で20分加熱したときの総発熱量が8MJ/m2以下である不燃材を提供する。 The third invention contains boric acid, does not contain an additive for promoting the dissolution of boric acid in water, and has a total calorific value of 8 MJ when heated for 20 minutes in a heat generation test using a corn calorimeter. / M 2 or less.
 第1の発明によれば、ホウ酸水溶液を加圧環境下で昇温する。ホウ酸の溶解度は、温度が上がる程上昇するという、高い温度依存性を有することから、ホウ酸水溶液を加圧環境下で昇温すれば、ホウ酸の水への溶解を促進するための添加物を添加しなくても、多量のホウ酸を水に溶解できる。これにより、処理対象物の内部におけるホウ酸の析出量が増大するため、不燃性に優れた不燃材を得ることができる。また、第2および第3の発明によれば、法定基準に準拠した不燃性を確保できると共に、ホウ砂などのような潮解性(吸湿性)を有する添加物を含まないため、これに起因した白化や水滴の表出による水の滴りを防止できる。 According to the first aspect, the temperature of the boric acid aqueous solution is increased in a pressurized environment. Since the solubility of boric acid increases as the temperature increases, it has a high temperature dependency, so if the temperature of a boric acid aqueous solution is raised under a pressurized environment, the addition of boric acid to promote the dissolution of boric acid in water will occur. A large amount of boric acid can be dissolved in water without adding a substance. This increases the amount of boric acid deposited inside the object to be treated, so that a noncombustible material having excellent noncombustibility can be obtained. Further, according to the second and third inventions, nonflammability in conformity with legal standards can be ensured, and an additive having a deliquescent (hygroscopicity) such as borax is not included. Water dripping due to whitening and the appearance of water droplets can be prevented.
処理対象物の投入工程の説明図Explanatory drawing of the input process of the processing object 処理対象物からの空気除去工程の説明図Explanatory drawing of the air removal process from the processing object 大気圧環境下における加熱工程の説明図Illustration of the heating process under atmospheric pressure environment 加圧環境下におけるホウ酸水溶液の高濃度化工程の説明図Illustration of the process for increasing the concentration of a boric acid aqueous solution under a pressurized environment ホウ酸の析出工程の説明図Illustration of boric acid precipitation process コーンカロリーメーターによる発熱性試験による試験体毎の特性表Characteristics table for each test piece by exothermic test with corn calorimeter
 本実施形態に係る不燃材は、建築用途に供され、日本国の建築基準法(発熱性試験)に準拠した性能認定を取得することを目標とする。この不燃材の特徴は、ホウ酸の溶解を促進するために添加されるホウ砂などの添加物を用いることなく、防火薬剤としてのホウ酸単独で十分な防火性能を確保している点である。以下、図1から図5を参照しつつ、不燃材の製造方法について説明する。 不 The non-combustible material according to the present embodiment is used for architectural purposes, and the goal is to obtain performance certification in accordance with the Building Standards Act of Japan (exothermic test). The feature of this incombustible material is that boric acid alone as a fire retardant ensures sufficient fire protection performance without using an additive such as borax added to promote dissolution of boric acid. . Hereinafter, a method for manufacturing a noncombustible material will be described with reference to FIGS. 1 to 5.
 まず、図1に示すように、ホウ酸水溶液と、処理対象物2とが含浸槽1内に投入される。ホウ酸水溶液は、ホウ酸の水への溶解を促進するための添加物を添加することなく、水とホウ酸とを混合したものである。含浸槽1に投入されるホウ酸は、67g/100ml以上であり、水に溶解せずに残った固体が含浸槽1の底部に沈殿している。一般に、ホウ酸の水への溶解を促進するための添加物としては、ホウ砂、リン酸、アンモニウム塩が挙げられるが、これに限られない。ホウ酸の固体を残存させる理由は、後工程で更に多くのホウ酸を溶解するためである。また、処理対象物2は、不燃材の主材となる素材であって、典型的には、一般木材(無垢材)、圧縮材、集成材、合板、配向性ストランドボード(OSB)、パーティクルボード、ラミネイティッド・ベニア・ランバー(LVL)、パラレル・ストランド・ランバー(PSL)、オリエンテッド・ストランド・ランバー(OSL)、ミディアム・デンシティ・ファイバーボード(MDF)などの木質素材が想定されるが、その他に、竹、草類、紙、段ボールなどであってもよい。処理対象物2は、液中から浮き上がらないように、その上部にはおもり3が載せられている。 {Circle over (1)} First, as shown in FIG. 1, the boric acid aqueous solution and the object to be treated 2 are charged into the impregnation tank 1. The boric acid aqueous solution is a mixture of water and boric acid without adding an additive for promoting the dissolution of boric acid in water. The amount of boric acid charged into the impregnation tank 1 is 67 g / 100 ml or more, and the solid remaining without being dissolved in water is precipitated at the bottom of the impregnation tank 1. Generally, additives for promoting the dissolution of boric acid in water include, but are not limited to, borax, phosphoric acid, and ammonium salts. The boric acid solid remains to dissolve more boric acid in the subsequent process. The processing object 2 is a main material of non-combustible material, and is typically a general wood (solid material), a compressed material, a laminated material, a plywood, an oriented strand board (OSB), a particle board. , Laminated Veneer Lumber (LVL), Parallel Strand Lumber (PSL), Oriented Strand Lumber (OSL), Medium Density Fiberboard (MDF), etc. In addition, bamboo, grass, paper, cardboard and the like may be used. A weight 3 is placed on the upper part of the processing object 2 so as not to float from the liquid.
 つぎに、図2に示すように、処理対象物2が投入された含浸槽1を真空圧環境下、すなわち、圧力が大気圧よりも低い空間状態に置かれる。具体的には、まず、密閉槽4内に含浸槽1が収容される。つぎに、密閉槽4内が所定の圧力まで減圧され、この状態が所定時間(例えば60分程度)維持される。これにより、処理対象物2の内部に含まれている空気が外部に放出される。本工程を設ける理由は、処理対象物2の繊維中に存在する微細な空気はホウ酸水溶液の浸透を阻害するので、これを除去して、後工程におけるホウ酸水溶液の含浸を促進するためである。なお、本工程を行わなくても、ホウ酸水溶液の十分な含浸量を確保できるのであれば、本工程は省略しても構わない。 (2) Next, as shown in FIG. 2, the impregnation tank 1 into which the object to be treated 2 is charged is placed under a vacuum pressure environment, that is, a space state in which the pressure is lower than the atmospheric pressure. Specifically, first, the impregnation tank 1 is accommodated in the closed tank 4. Next, the pressure in the closed vessel 4 is reduced to a predetermined pressure, and this state is maintained for a predetermined time (for example, about 60 minutes). Thereby, the air contained in the processing target object 2 is discharged to the outside. The reason for providing this step is to remove fine air present in the fibers of the processing target object 2 in the fibers of the processing object 2 and thereby impregnate the boric acid aqueous solution, thereby promoting the impregnation of the boric acid aqueous solution in the subsequent step. is there. In addition, even if this step is not performed, this step may be omitted as long as a sufficient impregnation amount of the boric acid aqueous solution can be secured.
 つぎに、図3に示すように、密閉槽4より含浸槽1を取り出した上で、大気圧環境下において含浸槽1の底部を加熱することによって、ホウ酸水溶液が100℃近くまで加熱される。これにより、先の投入工程で含浸槽1内に導入された沈殿物としてのホウ酸(ハッチングで図示)が溶解し、温度の上昇に伴い、ホウ酸水溶液の濃度も上昇する。本工程を設ける理由は、ホウ酸水溶液をある程度まで高濃度化することによって、次の工程における加圧環境下での処理時間の短縮を図るためである。 Next, as shown in FIG. 3, after taking out the impregnating tank 1 from the closed tank 4, by heating the bottom of the impregnating tank 1 under the atmospheric pressure environment, the boric acid aqueous solution is heated to about 100 ° C. . As a result, boric acid (shown by hatching) as a precipitate introduced into the impregnation tank 1 in the previous charging step dissolves, and the concentration of the boric acid aqueous solution increases as the temperature increases. The reason for providing this step is to shorten the processing time in the next step under a pressurized environment by increasing the concentration of the boric acid aqueous solution to a certain level.
 つぎに、図4に示すように、高温水蒸気による加圧環境下において含浸槽1が加熱され、ホウ酸水溶液を所定の温度、例えば100℃よりも高い温度まで昇温させる。ホウ酸は、その溶解特性として、水温が70℃以上になると水への溶解度が上がっていく。加圧環境下での加熱によって、先の投入工程で含浸槽1内に導入された沈殿物としてのホウ酸をさらに溶解して、処理対象物2の内部に含浸させるホウ酸水溶液を大気圧環境下の最大溶解度よりも高濃度化する。大気圧が標準大気圧(1気圧)の場合、ホウ酸水溶液の最大溶解度は沸点100℃の溶解度、例えば、水100gに対して40.25gのホウ酸を溶かした濃度となる。 Next, as shown in FIG. 4, the impregnation tank 1 is heated in a pressurized environment with high-temperature steam, and the temperature of the boric acid aqueous solution is raised to a predetermined temperature, for example, a temperature higher than 100 ° C. The solubility of boric acid in water increases as the water temperature rises to 70 ° C. or higher. By heating in a pressurized environment, boric acid as a precipitate introduced into the impregnation tank 1 in the previous charging step is further dissolved, and the boric acid aqueous solution to be impregnated inside the object 2 is treated under atmospheric pressure. The concentration is higher than the lower maximum solubility. When the atmospheric pressure is the standard atmospheric pressure (1 atm), the maximum solubility of the boric acid aqueous solution is a solubility at a boiling point of 100 ° C., for example, a concentration obtained by dissolving 40.25 g of boric acid in 100 g of water.
 本工程で使用する装置としては、高温高圧容器を高圧槽5として用いる。高温高圧容器は、100℃以上の高温の水蒸気により内部の温度を上げ加熱する装置で、飽和水蒸気を加圧することにより温度の調整が行われる。例えば高圧槽内の温度120℃のとき0.196MPa、140℃のとき0.36Mpa、160℃のとき0.618Mpaとなる。本工程の具体的な処理内容としては、まず、高圧槽5内に含浸槽1が収容される。つぎに、高圧槽5内が高温水蒸気によって、0.4~0.6MP(4~6気圧)程度まで加圧される。例えば、水蒸気の温度が140℃のときは0.4MPa、160℃のときは0.6MPaといった如く高められ、高圧槽5内の含浸槽1の温度も同程度に高められる。そして、この状態が所定時間(例えば3~6時間)維持される。これにより、含浸槽1内に沈殿していたホウ酸の固体が更に溶解され、ホウ酸水溶液の溶解度は、大気圧環境下の最大溶解度も高くなる。本実施形態では、ホウ酸水溶液の温度を120℃以上、より好ましくは140~160℃に設定される。なお、本工程の加圧によって、高濃度化したホウ酸水溶液が処理対象物2に含浸することを促進させることができる(含浸促進効果)。 高温 As a device used in this step, a high-temperature high-pressure vessel is used as the high-pressure tank 5. The high-temperature and high-pressure container is a device that raises and heats the internal temperature with high-temperature steam of 100 ° C. or more, and the temperature is adjusted by pressurizing saturated steam. For example, the pressure in the high-pressure tank is 0.196 MPa at 120 ° C., 0.36 Mpa at 140 ° C., and 0.618 Mpa at 160 ° C. As a specific processing content of this step, first, the impregnation tank 1 is accommodated in the high-pressure tank 5. Next, the inside of the high-pressure tank 5 is pressurized by high-temperature steam to about 0.4 to 0.6 MPa (4 to 6 atm). For example, when the temperature of the steam is 140 ° C., the pressure is increased to 0.4 MPa, when the temperature is 160 ° C., the pressure is increased to 0.6 MPa, and the temperature of the impregnation tank 1 in the high-pressure tank 5 is also increased to the same extent. This state is maintained for a predetermined time (for example, 3 to 6 hours). As a result, the solid of boric acid precipitated in the impregnation tank 1 is further dissolved, and the solubility of the boric acid aqueous solution is also increased under the atmospheric pressure environment. In the present embodiment, the temperature of the boric acid aqueous solution is set to 120 ° C. or higher, more preferably 140 to 160 ° C. It should be noted that the pressurization in this step can promote the impregnation of the treatment object 2 with the concentrated boric acid aqueous solution (impregnation promoting effect).
 なお、ホウ酸水溶液の水温は、高温水蒸気によって加圧して設定温度に保っている。含浸槽1の周辺の水蒸気温度がこの温度で保たれているので、含浸槽1の温度が例えば140℃に達すれば、そのまま140℃で推移することになる。水温の測定は、例えば、高圧槽5内に温度センサを入れ、ホウ酸水溶液に浸すことによって行うことができる。 水 The water temperature of the boric acid aqueous solution is maintained at the set temperature by pressurizing with high-temperature steam. Since the temperature of the water vapor around the impregnation tank 1 is maintained at this temperature, if the temperature of the impregnation tank 1 reaches, for example, 140 ° C., the temperature changes to 140 ° C. as it is. The water temperature can be measured, for example, by placing a temperature sensor in the high-pressure tank 5 and immersing it in an aqueous boric acid solution.
 そして、所定時間が経過した後、高圧槽5の温度を低下させ、高濃度化したホウ酸溶液を降温させることによって、処理対象物2の内部に含浸したホウ酸を析出させる。この降温過程において、少なくとも大気圧環境下における沸点に降温するまでは、加圧状態が維持される。加圧状態を維持する理由は、次のとおりである。第1に、ホウ酸水溶液中の水分の蒸発を防止するためである。高温状態で、含浸槽1を取り出すために高圧槽5の圧力を常圧に戻すと、その時点ではホウ酸水溶液が100℃を超えているので、一気に沸騰して蒸発してしまう。第2に、処理対象物2に含まれるホウ酸含有量の減少を極力が抑制するためである。圧力を急激に低下させると、ホウ酸水溶液が沸騰して、処理対象物2内に浸透したホウ酸が大量に外部に放出されてしまう。第3に、ホウ酸水溶液の水面が下がるのを避け、処理対象物2の露出を避けるためである。 {Circle around (2)} After a predetermined time has elapsed, the temperature of the high-pressure tank 5 is lowered, and the concentration of the boric acid solution is lowered, whereby boric acid impregnated inside the processing object 2 is precipitated. In this temperature decreasing process, the pressurized state is maintained at least until the temperature falls to the boiling point under the atmospheric pressure environment. The reason for maintaining the pressurized state is as follows. First, it is to prevent evaporation of water in the boric acid aqueous solution. When the pressure in the high-pressure tank 5 is returned to normal pressure in order to take out the impregnating tank 1 at a high temperature, the boric acid aqueous solution exceeds 100 ° C. at that point, so that it boils at a stretch and evaporates. Second, the reduction of the boric acid content contained in the processing target object 2 is minimized. When the pressure is rapidly decreased, the boric acid aqueous solution boils, and a large amount of boric acid that has penetrated into the processing target object 2 is released to the outside. Third, it is to prevent the water surface of the boric acid aqueous solution from lowering and to prevent the processing target 2 from being exposed.
 その後、1.5時間程度が経過して内部温度が90℃前後になった時点で、あるいは、常温になった時点で、高圧槽5内の加圧を停止する。そして、所定時間が経過して内部圧力が0.6MP以下、かつ、内部温度が70℃前後になった時点で、あるいは、常温になった時点で、高圧槽5内を徐々に減圧する。その後、内部圧力が0.2MP以下になった時点でバルブ5aを開いて、内部圧力を大気圧に戻した上で、高圧槽5内から含浸槽1が取り出される。この時点におけるホウ酸水溶液の温度は90℃程度、あるいは、常温である。 (5) After that, when the internal temperature has reached about 90 ° C. after about 1.5 hours, or when the internal temperature has reached room temperature, the pressurization in the high-pressure tank 5 is stopped. Then, when the internal pressure becomes 0.6 MPa or less and the internal temperature becomes about 70 ° C. after a predetermined time elapses, or when the internal temperature becomes room temperature, the pressure in the high-pressure tank 5 is gradually reduced. Thereafter, when the internal pressure becomes 0.2MP or less, the valve 5a is opened to return the internal pressure to the atmospheric pressure, and then the impregnation tank 1 is taken out of the high-pressure tank 5. At this time, the temperature of the boric acid aqueous solution is about 90 ° C. or room temperature.
 最後に、図5に示すように、大気圧環境下において、高濃度化したホウ酸水溶液を徐々に降温する。具体的には、高圧槽5より取り出された含浸槽1が、冷却液(例えば水)を貯留した冷却液槽6に漬けられる。これにより、冷却液との熱交換によってホウ酸水溶液が冷却される。あるいは、加圧状態を保ったまま、常温まで冷却する。これにより、冷却が徐々に進むにつれて、処理対象物2の内部に含浸しているホウ酸が固体として徐々に析出していく。 (5) Finally, as shown in FIG. 5, the temperature of the concentrated boric acid aqueous solution is gradually lowered under the atmospheric pressure environment. Specifically, the impregnation tank 1 taken out of the high-pressure tank 5 is immersed in a cooling liquid tank 6 storing a cooling liquid (for example, water). Thereby, the boric acid aqueous solution is cooled by heat exchange with the cooling liquid. Alternatively, it is cooled to room temperature while maintaining the pressurized state. As a result, as the cooling gradually progresses, boric acid impregnated inside the processing object 2 gradually precipitates as a solid.
 その後、常温になった後に、含浸槽1から処理対象物2が取り出され、乾燥工程などを経て不燃材が完成する。以上のような一連の処理を経て生成された不燃材は、その特性として、第1に、ホウ酸を含み、ホウ酸の水への溶解を促進するための添加物を含まないことが挙げられる。そして、第2に、不燃材内のホウ酸は、ホウ酸を外部から吹き付ける手法などと比較して、内部に渡ってほぼ均一に存在することが挙げられる。 Thereafter, after the temperature is brought to room temperature, the processing object 2 is taken out of the impregnation tank 1, and the non-combustible material is completed through a drying step and the like. The non-combustible material produced through the above series of treatments has, as its characteristics, first, boric acid and no additives for promoting dissolution of boric acid in water. . Second, the boric acid in the non-combustible material exists almost uniformly throughout the inside as compared with a method of spraying boric acid from the outside.
 図6は、コーンカロリーメーターによる発熱性試験(20分加熱時)による試験体毎の特性表である。コーンカロリーメーターによる発熱性試験は、日本国内において、2001年6月から施行された新たな建築基準法の防火性能試験に用いられるISO5660に準拠したものであり、建築物で利用可能な不燃木材の国内認定を受けるためには、本試験の基準をクリアしなければならない。 FIG. 6 is a characteristic table for each test piece in a heat generation test (when heated for 20 minutes) using a corn calorimeter. The exothermic test using a corn calorimeter is based on ISO5660 used in Japan for the fire performance test of the new Building Standard Law enforced from June 2001 in Japan. In order to receive national accreditation, it must clear the standards of this test.
 同表に示した試験結果は、12個の試験体に関する特性を示している。試験体としては、処理対象物2の一つである杉材が用いられる。試験条件としては、当初、含浸槽1に投入する水とホウ酸の重量パーセント(ホウ酸と水の全重量に対する溶解しないホウ酸を含めたホウ酸の重量パーセント)は40%または50%であり、加圧環境下における加熱温度は150℃(試験体番号1~2)および160℃(試験体番号3~12)の二種類とする。また、不燃材中のホウ酸の含有量は、以下のようにして測定する。まず、杉材(母材)から同一サイズのサンプルを複数抜き出し、その中央値の重量のものを無処理のサンプルとして用意し、それ以外のサンプルを含浸処理に用いる。サンプルの寸法は、100mm*100mm*50mmである。つぎに、含浸処理されたサンプルと無処理のサンプルをともに、乾燥処理を行った上で絶乾重量を計測する。そして、各含浸サンプルの絶乾重量から、無処理サンプルの絶乾重量を引いた値をホウ酸の含有量とする。ここで、「絶乾重量」とは、乾燥機内で十分に(例えば24時間)乾燥し、重量の変化がなくなった時点での重量をいう。 試 験 The test results shown in the table show the characteristics of twelve test pieces. As a test body, cedar wood, which is one of the processing objects 2, is used. As the test conditions, initially, the weight percentage of water and boric acid (the weight percentage of boric acid including boric acid and insoluble boric acid with respect to the total weight of boric acid and water) charged into the impregnation tank 1 is 40% or 50%. The heating temperature in a pressurized environment is 150 ° C. (sample numbers 1-2) and 160 ° C. (sample numbers 3-12). The content of boric acid in the noncombustible material is measured as follows. First, a plurality of samples of the same size are extracted from a cedar material (base material), a sample having a median weight is prepared as an untreated sample, and the other samples are used for impregnation. The dimensions of the sample are 100 mm * 100 mm * 50 mm. Next, both the impregnated sample and the untreated sample are subjected to a drying treatment, and then the absolute dry weight is measured. Then, the value obtained by subtracting the absolute dry weight of the untreated sample from the absolute dry weight of each impregnated sample is defined as the boric acid content. Here, the “absolute dry weight” refers to the weight at the time when the weight is completely changed (for example, 24 hours) in the dryer and the weight no longer changes.
 一般に、ホウ酸は、添加物を含む場合も含めて、木材への含浸量が200kg/m3程度を超えれば、発熱性試験(20分加熱時)における総発熱量が8MJ/m2を下回るといわれている。本実施形態によれば、ホウ酸の水への溶解を促進するための添加物を用いなくても、ホウ酸の含有量が180kg/m3以上、および/または、コーンカロリーメーターによる発熱性試験で20分加熱時の総発熱量が8MJ/m2以下を実現できる。同表に示すように、番号1~12の試験体はいずれも、ホウ酸の含有量が188kg/m3以上となっており、総発熱量も8MJ/m2以下となっており、建築基準法(発熱性試験)に準拠した不燃材料の認定基準を有効にクリアしている。 Generally, when the amount of boric acid impregnated into wood, including the case where an additive is contained, exceeds about 200 kg / m 3, the total calorific value in the exothermic test (when heated for 20 minutes) is less than 8 MJ / m 2 . It is said that. According to the present embodiment, even without using an additive for accelerating the dissolution of boric acid in water, the boric acid content is 180 kg / m 3 or more, and / or an exothermic test using a corn calorimeter. And a total calorific value during heating for 20 minutes of 8 MJ / m 2 or less can be realized. As shown in the table, all of the specimens Nos. 1 to 12 had a boric acid content of 188 kg / m 3 or more and a total calorific value of 8 MJ / m 2 or less. Effectively satisfies the certification criteria for non-combustible materials based on the law (exothermic test).
 なお、上記実験結果は、杉材をサンプルとしたものであるが、ヒノキについても所望の不燃性能が得られることが期待できる。また、ファルカタ、桐、バルサ、杉に近いホワイトウッド、ホワイトパイン、ヒバ、エゾマツといった、杉よりも比重の小さい木材についても、有効な不燃性能が得られるものと考えられる。 In addition, although the above experimental results are obtained by using cedar wood as a sample, it is expected that the desired non-combustibility of cypress is also obtained. Also, it is considered that effective non-combustible performance can be obtained for wood having a lower specific gravity than cedar, such as falkata, paulownia, balsa, white wood close to cedar, white pine, hiba, and spruce.
 本実施形態では、含浸槽1、密閉槽4および高圧槽5をそれぞれ使い分けているが、これら3つの槽に分けることは不可欠ではなく、1つまたは2つの槽において同様の機能をもたせてもよい。 In the present embodiment, the impregnation tank 1, the closed tank 4 and the high-pressure tank 5 are separately used, but it is not indispensable to divide these three tanks, and one or two tanks may have the same function. .
 このように、本実施形態によれば、ホウ酸水溶液を加圧環境下で100℃よりも高い温度に昇温する。ホウ酸の溶解度は、温度が上がる程上昇するという、高い温度依存性を有することから、ホウ酸水溶液を加圧環境下で昇温すれば、多量のホウ酸を水に溶解できる。従来、ホウ酸は、それ単独では防火効果が弱く溶解度が小さいため防火薬剤としての使用に難があり、ホウ酸の溶解を促進するために、ホウ砂、リン酸、アンモニウム塩といった添加物を用いるのが一般的な認識であったが、本実施形態は、かかる一般認識を覆し、加圧環境下での加熱によって、ホウ酸の溶解を促進するものである。加圧環境下におけるホウ酸水溶液の高濃度化により、処理対象物2の内部におけるホウ酸の析出量を増大させることができるため、建築基準法(発熱性試験)に準拠した不燃材の不燃性を確保できる。 As described above, according to this embodiment, the temperature of the boric acid aqueous solution is raised to a temperature higher than 100 ° C. in a pressurized environment. Since the solubility of boric acid has a high temperature dependency, which increases as the temperature increases, a large amount of boric acid can be dissolved in water by raising the temperature of a boric acid aqueous solution under a pressurized environment. Conventionally, boric acid alone has a weak fire-protection effect and has a low solubility, so it is difficult to use it as a fire-retardant.In order to promote the dissolution of boric acid, borax, phosphoric acid, and additives such as ammonium salts are used. However, in the present embodiment, the dissolution of boric acid is promoted by heating under a pressurized environment. By increasing the concentration of the boric acid aqueous solution under a pressurized environment, the amount of boric acid deposited inside the object to be treated 2 can be increased, so that the incombustibility of the noncombustible material conforming to the Building Standards Law (exothermic test) Can be secured.
 なお、本実施形態では、標準大気圧(1気圧)におけるホウ酸の最大溶解度を超えるホウ酸を、予め投入工程において含浸槽1へ投入しておき(このとき、ホウ酸の一部は溶解しきれずに固体物として沈殿している)、高濃度化工程においてさらに溶解させている。しかしながら、本発明は、このような手順に限られることはなく、ホウ酸が含浸槽1に導入されるタイミングとしては、高濃度化工程において昇温と平行して行われてもよいし、あるいは、昇温と交互に行われてもよい。 In the present embodiment, boric acid exceeding the maximum solubility of boric acid at the standard atmospheric pressure (1 atm) is charged into the impregnation tank 1 in the charging step in advance (at this time, a part of boric acid is dissolved. However, it is precipitated as a solid without being dissolved), and is further dissolved in the concentration increasing step. However, the present invention is not limited to such a procedure, and the timing at which boric acid is introduced into the impregnation tank 1 may be performed in parallel with the temperature increase in the concentration increasing step, or May be performed alternately with the temperature rise.
 また、本実施形態によれば、基本的に、安価なホウ酸のみで処理対象物2への含浸が可能であり、高価な不燃化薬剤を合成する必要がないので、不燃材を比較的安価に製造することができる。また、ホウ酸は、それ自体、昔は目を洗う際にも使用されていた物質で、大量に摂取しなければ人体に害を及ぼすことはない。よって、ホウ酸単独の不燃材は、人体にとっても安全性が高いといえる。 Further, according to the present embodiment, basically, it is possible to impregnate the treatment object 2 only with inexpensive boric acid, and it is not necessary to synthesize an expensive non-combustible chemical. Can be manufactured. In addition, boric acid itself is a substance used to wash eyes in the past, and does not harm the human body unless taken in large quantities. Therefore, it can be said that the noncombustible material of boric acid alone has high safety for the human body.
 また、本実施形態によれば、ホウ砂などの潮解性(吸湿性)を有する添加物を含まないため、これに起因した不燃材の白化や水滴の表出による水の滴りを防止できる。潮解とは、物質が空気中の水(水蒸気)を取り込んで自発的に水溶液となる現象をいう。潮解は、結晶表面に微小体積の飽和水溶液があり、その飽和蒸気圧が大気中の水蒸気圧より小さいときに起こる。大気中の水蒸気が飽和水溶液表面に取り込まれ、飽和水溶液が薄まる。しかし、結晶の物質量は十分に大きく、多少の水が結晶を溶かしても結晶が溶け尽くすことはない。したがって、飽和水溶液の量は増え続け、やがてすべての結晶を溶かし、さらにその水溶液の水蒸気圧が大気中の水蒸気圧と等しくなるまで薄まっていく。そうなると、それ以上の水の吸収は停止する。この潮解性によって不燃材は、水分を吸収し、それらが滴り落ちてくる現象(結露と誤解)や処理対象物2中のホウ酸が溶解した水分が表面に現れ、水分が乾燥した時に白くなる白化現象などの原因になっている。 このことは、不燃材の利用を妨げる大きな足かせになっており、接着剤の強度が発現せずに集成材化ができないといった問題を招く。不燃材として潮解性を有する物質を含まないことは、不燃材の利用を促進する上で、また、集成材における接着強度を確保する上で、極めて有効である。 According to the present embodiment, since there is no deliquescent (hygroscopic) additive such as borax, it is possible to prevent whitening of the incombustible material and water dripping due to the appearance of water droplets due to this. Deliquescence refers to a phenomenon in which a substance takes in water (water vapor) in the air and spontaneously turns into an aqueous solution. Liquefaction occurs when there is a small volume of saturated aqueous solution on the crystal surface and its saturated vapor pressure is less than atmospheric water vapor pressure. Water vapor in the atmosphere is taken into the surface of the saturated aqueous solution, and the saturated aqueous solution is diluted. However, the amount of substance of the crystal is sufficiently large, and even if some water dissolves the crystal, the crystal is not completely dissolved. Thus, the volume of the saturated aqueous solution continues to increase, eventually dissolving all the crystals, and then diminishing until the water vapor pressure of the aqueous solution equals the water vapor pressure in the atmosphere. Then, further absorption of water stops. Due to this deliquescence, the noncombustible material absorbs water, and a phenomenon in which they drip (misunderstanding as dew condensation) or water in which boric acid in the processing object 2 is dissolved appears on the surface, and becomes white when the water dries. It causes the whitening phenomenon. This is a major hindrance to the use of non-combustible materials, and causes the problem that glue cannot be formed because the strength of the adhesive does not appear. Not including a deliquescent substance as a noncombustible material is extremely effective in promoting the use of the noncombustible material and in ensuring the adhesive strength of the laminated wood.
 なお、潮解性を有する物質のうち、ホウ酸の溶解度を高めるものとしては、リン酸第2アンモニウム、硼砂(四ホウ酸ナトリウム十水和物)、炭酸水素アンモニウムが知られている。また、それ以外にも、ホウ酸の溶解度を高める可能性があるものとしてはリン酸が、ホウ酸を主材としたものとしてはティンボア(八ホウ酸二ナトリウム四水和物)が挙げられる。 物質 Among substances having a deliquescent property, as a substance that increases the solubility of boric acid, secondary ammonium phosphate, borax (sodium tetraborate decahydrate), and ammonium hydrogen carbonate are known. In addition, phosphoric acid is one that may increase the solubility of boric acid, and tinboa (disodium octaborate tetrahydrate) is one that mainly contains boric acid.
 1 含浸槽
 2 処理対象物
 3 おもり
 4 密閉槽
 5 高圧槽
 6 冷却液槽
DESCRIPTION OF SYMBOLS 1 Impregnation tank 2 Processing object 3 Weight 4 Sealed tank 5 High pressure tank 6 Coolant tank

Claims (8)

  1.  不燃材の製造方法において、
     ホウ酸の溶解を促進するための添加物を添加することなく、ホウ酸を溶解したホウ酸水溶液と、不燃材の主材となる処理対象物とを含浸槽内に投入する投入ステップと、
     ホウ酸水溶液を加圧環境下で昇温しつつ、含浸槽に導入されたホウ酸をさらに溶解することによって、処理対象物の内部に含浸させるホウ酸水溶液を大気圧環境下の最大溶解度よりも高濃度化する高濃度化ステップと、
     少なくとも大気圧環境下における沸点に降温するまで加圧状態を維持することを条件に、高濃度化したホウ酸水溶液を降温することによって、処理対象物の内部に含浸したホウ酸を析出させる析出ステップと
    を有することを特徴とする不燃材の製造方法。
    In the method of manufacturing a noncombustible material,
    Without adding an additive for promoting the dissolution of boric acid, a boric acid aqueous solution in which boric acid is dissolved, and a charging step of charging a treatment target serving as a main material of a non-combustible material into an impregnation tank,
    By raising the temperature of the boric acid aqueous solution under a pressurized environment and further dissolving the boric acid introduced into the impregnation tank, the boric acid aqueous solution to be impregnated inside the object to be treated is higher than the maximum solubility under the atmospheric pressure environment. A high concentration step of increasing the concentration,
    Precipitation step of precipitating boric acid impregnated inside the object to be treated by lowering the temperature of the concentrated boric acid aqueous solution, provided that the pressurized state is maintained at least until the temperature drops to the boiling point under the atmospheric pressure environment. And a method for producing a non-combustible material.
  2.  前記高濃度化ステップは、ホウ酸水溶液の温度を120℃以上に設定することを特徴とする請求項1に記載された不燃材の製造方法。 The method for producing a noncombustible material according to claim 1, wherein in the concentration increasing step, the temperature of the boric acid aqueous solution is set to 120 ° C or higher.
  3.  前記高濃度化ステップは、ホウ酸水溶液の温度を140~160℃に設定することを特徴とする請求項2に記載された不燃材の製造方法。 The method for producing a noncombustible material according to claim 2, wherein in the concentration increasing step, the temperature of the boric acid aqueous solution is set to 140 to 160 ° C.
  4.  前記高濃度化ステップは、溶解しきれずに含浸槽内に沈殿している固体物としてのホウ酸を、ホウ酸水溶液の昇温に伴い溶解させることによって、ホウ酸水溶液を高濃度化することを特徴とする請求項1から3のいずれかに記載された不燃材の製造方法。 The concentration increasing step is to increase the concentration of the boric acid aqueous solution by dissolving boric acid as a solid substance that has not completely dissolved and is precipitated in the impregnation tank along with the temperature increase of the boric acid aqueous solution. The method for producing a noncombustible material according to any one of claims 1 to 3, wherein:
  5.  前記高濃度化ステップに先立ち、処理対象物が投入された含浸槽を真空圧環境下に置くことによって、処理対象物の内部に含まれている空気を除去する空気除去ステップをさらに有することを特徴とする請求項1から3のいずれかに記載された不燃材の製造方法。 Prior to the step of increasing the concentration, the method further comprises an air removing step of removing air contained in the processing object by placing the impregnation tank into which the processing object is charged under a vacuum pressure environment. The method for producing a non-combustible material according to any one of claims 1 to 3.
  6.  前記析出ステップは、冷却液との熱交換によってホウ酸水溶液を冷却することを特徴とする請求項1から5のいずれかに記載された不燃材の製造方法。 The method for producing a noncombustible material according to any one of claims 1 to 5, wherein the precipitation step cools the boric acid aqueous solution by heat exchange with a cooling liquid.
  7.  不燃材において、
     ホウ酸を含み、ホウ酸の水への溶解を促進するための添加物を含まず、かつ、ホウ酸の含有量が180kg/m3以上であることを特徴とする不燃材。
    In noncombustible materials,
    A non-combustible material comprising boric acid, containing no additive for promoting the dissolution of boric acid in water, and having a boric acid content of 180 kg / m 3 or more.
  8.  不燃材において、
     ホウ酸を含み、ホウ酸の水への溶解を促進するための添加物を含まず、かつ、コーンカロリーメーターによる発熱性試験で20分加熱時の総発熱量が8MJ/m2以下であることを特徴とする不燃材。
    In noncombustible materials,
    Contains boric acid, does not contain additives to promote the dissolution of boric acid in water, and has a total calorific value of 8 MJ / m 2 or less when heated for 20 minutes in a heat generation test using a corn calorimeter. Non-combustible material characterized by the following.
PCT/JP2019/036071 2018-09-14 2019-09-13 Method for producing noncombustible material, and noncombustible material WO2020054838A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020546216A JP7391333B2 (en) 2018-09-14 2019-09-13 Method for manufacturing noncombustible materials and noncombustible materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018172790 2018-09-14
JP2018-172790 2018-09-14

Publications (1)

Publication Number Publication Date
WO2020054838A1 true WO2020054838A1 (en) 2020-03-19

Family

ID=69777650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036071 WO2020054838A1 (en) 2018-09-14 2019-09-13 Method for producing noncombustible material, and noncombustible material

Country Status (2)

Country Link
JP (1) JP7391333B2 (en)
WO (1) WO2020054838A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916922B1 (en) * 1970-04-07 1974-04-25
JPS59199585A (en) * 1983-04-25 1984-11-12 三井東圧化学株式会社 Incombustible gypsum board
US4801404A (en) * 1986-10-01 1989-01-31 Rutgerswerke Ag Boric acid compositions
WO1991000327A1 (en) * 1989-06-28 1991-01-10 Oberley William J Fire retardants and products produced therewith
JP2007001120A (en) * 2005-06-23 2007-01-11 Sekisui Jushi Co Ltd Method for producing flame-retardant wood flour and flame-retardant synthetic wood
JP2007090839A (en) * 2005-09-30 2007-04-12 Takeji Motai Fireproof wooden material or fireproof building material, manufacturing process thereof and fireproofing agent
JP2008074670A (en) * 2006-09-21 2008-04-03 Okura Ind Co Ltd Aqueous solution of boric acid compound with high boron concentration and preparation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916922B1 (en) * 1970-04-07 1974-04-25
JPS59199585A (en) * 1983-04-25 1984-11-12 三井東圧化学株式会社 Incombustible gypsum board
US4801404A (en) * 1986-10-01 1989-01-31 Rutgerswerke Ag Boric acid compositions
WO1991000327A1 (en) * 1989-06-28 1991-01-10 Oberley William J Fire retardants and products produced therewith
JP2007001120A (en) * 2005-06-23 2007-01-11 Sekisui Jushi Co Ltd Method for producing flame-retardant wood flour and flame-retardant synthetic wood
JP2007090839A (en) * 2005-09-30 2007-04-12 Takeji Motai Fireproof wooden material or fireproof building material, manufacturing process thereof and fireproofing agent
JP2008074670A (en) * 2006-09-21 2008-04-03 Okura Ind Co Ltd Aqueous solution of boric acid compound with high boron concentration and preparation method thereof

Also Published As

Publication number Publication date
JP7391333B2 (en) 2023-12-05
JPWO2020054838A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
US7955711B2 (en) Wood treatment solution and process
ES2715184T3 (en) Impregnation of chemical products in wood
Karlsson et al. Influence of heat transferring media on durability of thermally modified wood
SE459241B (en) FLAMMIFICATING COMPOSITION, PROCEDURES FOR ITS PREPARATION AND USE THEREOF FOR TREATMENT OF CELLULOUS MATERIALS
US11628590B2 (en) Enhanced performance of wood and engineered wood products using combined durability and flame retardancy
CN107553645A (en) A kind of method that reel material vacuum impregnation is modified
EP3934869B1 (en) A process of wood mineralization using acetoacetate solutions to improve the essential properties of wood
WO2020054838A1 (en) Method for producing noncombustible material, and noncombustible material
US20020178608A1 (en) Method and apparatus for the production of lumber identical to natural Bog oak
JP7080289B2 (en) Flame-retardant chemicals, non-combustible wood using them, and methods for adjusting flame-retardant chemicals
JP7228823B2 (en) Composition for flame retardant treatment of wood material
JPS63237902A (en) Manufacture of improved wood
JP6894099B2 (en) Wood-based material treatment agent composition, treatment method of wood-based material and wood-based material treated by it
JP2010162727A (en) Non-combusting chemical liquid for wood material, method of manufacturing non-combusting chemical liquid for wood material, non-cmbusting method of wood material using non-combusting chemical liquid for wood material and non-combustible wood material
JPH042403B2 (en)
JP2024027793A (en) Decay resistance material and production method thereof
JPS62249707A (en) Improved wood
JPH026101A (en) Manufacture of modified wood
JPS62144902A (en) Manufacture of improved wood
JPS63267502A (en) Manufacture of improved wood
NZ743873A (en) Enhanced performance of wood and engineered wood products using combined durability and flame retardancy
JPH01271203A (en) Manufacture of modified wood
JPH01166903A (en) Manufacture of improved wood
JPH01297203A (en) Manufacture of modified wood
JPH0635123B2 (en) Modified wood manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020546216

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19860954

Country of ref document: EP

Kind code of ref document: A1