JP2010162727A - Non-combusting chemical liquid for wood material, method of manufacturing non-combusting chemical liquid for wood material, non-cmbusting method of wood material using non-combusting chemical liquid for wood material and non-combustible wood material - Google Patents

Non-combusting chemical liquid for wood material, method of manufacturing non-combusting chemical liquid for wood material, non-cmbusting method of wood material using non-combusting chemical liquid for wood material and non-combustible wood material Download PDF

Info

Publication number
JP2010162727A
JP2010162727A JP2009005578A JP2009005578A JP2010162727A JP 2010162727 A JP2010162727 A JP 2010162727A JP 2009005578 A JP2009005578 A JP 2009005578A JP 2009005578 A JP2009005578 A JP 2009005578A JP 2010162727 A JP2010162727 A JP 2010162727A
Authority
JP
Japan
Prior art keywords
wood material
acid
wood
incombustible
chemical liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009005578A
Other languages
Japanese (ja)
Other versions
JP5751691B2 (en
Inventor
Akira Yokoya
昭 横谷
Jiro Kasuga
二郎 春日
Takafumi Ito
貴文 伊藤
Kozo Kanayama
公三 金山
Tsunehisa Miki
恒久 三木
Hiroyuki Sugimoto
宏行 杉元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOTANI KK
National Institute of Advanced Industrial Science and Technology AIST
Nara Prefecture
Original Assignee
YOKOTANI KK
National Institute of Advanced Industrial Science and Technology AIST
Nara Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOTANI KK, National Institute of Advanced Industrial Science and Technology AIST, Nara Prefecture filed Critical YOKOTANI KK
Priority to JP2009005578A priority Critical patent/JP5751691B2/en
Publication of JP2010162727A publication Critical patent/JP2010162727A/en
Application granted granted Critical
Publication of JP5751691B2 publication Critical patent/JP5751691B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-combusting chemical liquid for wood material in which problems of hygroscopicity and the exudation of a non-combustible chemical liquid or the like, which are a long pending issue for a non-combustible wood material is solved. <P>SOLUTION: The non-combustible chemical liquid for wood material is prepared by adding 90 g succinic acid as carboxylic acid into 1,000 cm<SP>3</SP>water while stirring and further adding 480-600 g chemical liquid comprising guanidine and phosphoric acid in weight ratio of 3:2, wherein the succinic acid, guanidine and phosphoric acid are completely dissolved at the room temperature to obtain a transparent solution that is the non-combustible chemical liquid for wood material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、住宅や店舗、その他建築構造物の内外装に利用される木質材料を不燃化する木質材料用不燃化薬剤と、この木質材料用不燃化薬剤の製造方法と、この木質材料用不燃化薬剤を用いた木質材料の不燃化方法と、この不燃化方法によって不燃化された不燃化木質材料とに関する。   The present invention relates to an incombustible agent for a wood material that incombusts a wood material used for interiors and exteriors of houses, stores, and other building structures, a method for producing the incombustible agent for a wood material, and an incombustible agent for the wood material. The present invention relates to a method for incombusting a wood material using a chemical, and an incombustible wood material that has been incombustible by this incombustibility method.

平成10年度に建築基準法が改正になり、一定の性能を満たせば、木質材料も不燃材料としての認定が受けられるようになった。それ以降、木質材料の不燃化に関する研究開発が盛んになった。
不燃性能の評価方法の一つとして、コーンカロリーメータを用いた発熱性試験が規定されている。不燃の基準を満たすには、同装置による20分間の加熱試験において、以下の3つの条件を充足する必要がある。
(1)総発熱量が8MJ/m2 以下であること。
(2)防火上有害な裏面まで貫通する亀裂および穴がないこと。
(3)最高発熱速度が10秒以上継続して200kw/m2 を超えないこと。
In 1998, the Building Standards Law was amended, and if certain performance was satisfied, wood materials could be certified as non-combustible materials. Since then, research and development on the incombustibility of wooden materials has become active.
As one of the evaluation methods of nonflammability performance, a heat generation test using a corn calorimeter is defined. In order to satisfy the standard of nonflammability, it is necessary to satisfy the following three conditions in a heating test for 20 minutes using the same apparatus.
(1) The total calorific value is 8 MJ / m 2 or less.
(2) There should be no cracks or holes penetrating to the reverse side, which is harmful to fire prevention.
(3) The maximum heat generation rate should not exceed 200 kW / m 2 for 10 seconds or more.

木質材料がかかる3つの条件を充足するためには、木質材料中にかなり大量の木質材料用不燃化薬剤を導入する必要があり、高濃度の木質材料用不燃化薬剤を調製するか、特許第3538194号のように、木質材料用不燃化薬剤の含浸及び乾燥を複数回繰り返すことが必須である。
高濃度の木質材料用不燃化薬剤を得る方法としては、リン酸やリン酸の無機化合物などの溶解度が極めて高い薬剤を使用する方法、あるいは特開2006−219329のように処理溶液を加温する方法、またあるいは、複数の薬剤を用いて溶解性を高める方法を挙げることができる。
In order for the wood material to satisfy these three conditions, it is necessary to introduce a considerably large amount of the flame retardant agent for the wood material into the wood material. As in No. 3538194, it is essential to repeat the impregnation and drying of the incombustible agent for wood material a plurality of times.
As a method for obtaining an incombustible chemical for woody materials having a high concentration, a method using a chemical having extremely high solubility such as phosphoric acid or an inorganic compound of phosphoric acid, or heating a treatment solution as disclosed in JP-A-2006-219329. Examples thereof include a method and a method of increasing solubility using a plurality of drugs.

しかし、上記の方法において、木質材料用不燃化薬剤の含浸及び乾燥を複数回繰り返す方法では、処理期間が極めて長くなり、コストパフォーマンスに欠けるという致命的な欠点がある。   However, in the above method, the method of repeating the impregnation and drying of the wood material incombustible agent a plurality of times has a fatal disadvantage that the treatment period becomes extremely long and the cost performance is lacking.

また、溶解度が高いリン酸やリン酸の無機化合物などは極めて吸湿性が高く、それで処理された木質材料は、空気中の湿気を多量に吸い込み、それによって薬剤が滲み出すという大きな欠点がある。さらに、それを抑制するために行う塗装などの表面コーティング膜にも悪影響を及ぼし、剥離や亀裂が短時間で発生するという問題がある。   In addition, phosphoric acid and inorganic compounds of phosphoric acid having high solubility have extremely high hygroscopicity, and the wood material treated with the phosphor has a great disadvantage that it absorbs a large amount of moisture in the air and thereby the drug exudes. Furthermore, it has an adverse effect on the surface coating film such as painting performed to suppress it, and there is a problem that peeling and cracking occur in a short time.

加温により溶解性を高めることで高濃度の木質材料用不燃化薬剤を得ることは難しいことではないが、含浸等の処理時にも加温が必要で、作業が煩雑になり、装置も複雑なものとなる。特に、木質材料用不燃化薬剤を木質材料に含浸させるのに最も有効な装置と思われる加圧注入缶にあっては、薬液貯蔵タンクと加圧注入缶との間に液送りパイプやポンプが不可欠であるが、そのような部位に残留した木質材料用不燃化薬剤が析出すると、それを除去することは極めて困難となる。そのようなトラブルを避けようとすれば、常に装置全体を加温しておくことが必要となる。従って、加温により溶解性を高めることで高濃度の木質材料用不燃化薬剤を得る方法では、仮に実用化されたとしても、製造コストが極めて高くなると考えられる。   It is not difficult to obtain a high-concentration flame retardant for woody materials by increasing solubility by heating, but heating is also required during treatment such as impregnation, making the work complicated and the equipment complicated. It will be a thing. In particular, in the case of a pressurized infusion canister that seems to be the most effective device for impregnating a wood material with an incombustible chemical for wood material, there is a liquid feed pipe or pump between the chemical storage tank and the pressure infusion canister. Although indispensable, if the incombustible chemical | medical agent for woody materials which remain | survives in such a site | part deposits, it will become very difficult to remove. In order to avoid such troubles, it is necessary to always heat the entire apparatus. Therefore, it is considered that the production cost of the method for obtaining a high-concentration wood material incombustible chemical by increasing the solubility by heating is extremely high even if it is put into practical use.

複数の薬剤を混合して溶解性を高める方法としては、(1)特開2006−082533のように炭酸水素ナトリウムを添加することによりホウ素系化合物の濃度を高める方法、(2)特開2007−090839のように水酸化ナトリウムあるいは水酸化カリウムやモノエタノールアミンでpHを調整してホウ酸を高濃度に溶解させる方法、あるいは(3)特開平03−223205や特開平07−088808のように有機アミンを用いてホウ素化合物を高濃度に溶解している方法、または特開2007−160570のようにリン酸グアニジンの溶解性をリン酸の添加により高めている方法などが知られている。   As a method for increasing the solubility by mixing a plurality of drugs, (1) a method for increasing the concentration of a boron compound by adding sodium hydrogencarbonate as in JP-A-2006-082533, and (2) JP-A-2007- A method of adjusting pH with sodium hydroxide, potassium hydroxide or monoethanolamine as in 090839 and dissolving boric acid at a high concentration, or (3) organic as in JP-A-03-223205 and JP-A-07-088808 A method in which a boron compound is dissolved at a high concentration using an amine, or a method in which the solubility of guanidine phosphate is increased by addition of phosphoric acid as disclosed in JP-A-2007-160570 is known.

しかし、これらの方法で用いられている溶解性を高めるために加えられた薬剤は、いずれも吸湿性が高いため、それで処理された木質材料も著しく吸湿性が高く、自ら吸った湿気で木質材料用不燃化薬剤が滲み出し、ホウ酸系薬剤で処理された木質材料ではホウ酸の結晶により表面が白くなるという現象が生じる。また、リン酸系の木質材料用不燃化薬剤で処理された木質材料では、リン酸独特のべたつきが発生する。   However, since the chemicals added to improve the solubility used in these methods are all highly hygroscopic, the wood materials treated with them are also extremely hygroscopic. For wood materials treated with boric acid chemicals, a phenomenon occurs in which the surface becomes white due to crystals of boric acid. Moreover, in the woody material treated with the flame retardant for phosphorous-based woody material, stickiness unique to phosphoric acid occurs.

このように、従来公知となっている木質材料用不燃化薬剤により処理された木質材料は、いずれも吸湿性が極めて高く、空気中の湿気を吸い込み、それが原因で薬剤の滲み出しや塗装等の表面コーティング膜の剥離や亀裂が発生することから、使用環境が著しく制約される。このため、不燃木質材料の吸湿性を抑制できれば、その用途は飛躍的に拡大すると考えられ、その処理技術の確立が強く望まれていた。   In this way, all of the wood materials treated with the conventionally known incombustible chemicals for wood materials have extremely high hygroscopicity, sucking moisture in the air, which causes exudation and painting of chemicals, etc. Since the surface coating film is peeled off and cracks are generated, the usage environment is significantly restricted. For this reason, if the hygroscopicity of the non-combustible wood material can be suppressed, its use is considered to expand dramatically, and establishment of its treatment technology has been strongly desired.

特許第3538194号Japanese Patent No. 3538194 特開2006−219329JP 2006-219329 A 特開2006−082533JP 2006-082533 A 特開2007−090839JP2007-090839 特開平03−223205JP 03-223205 A 特開平07−088808JP 07-088808 特開2007−160570JP2007-160570

このような状況下にあって、発明者はできる限り簡便な手法により、不燃木質材料の吸湿性を抑制する技術を開発すべく検討を重ねてきた。周知の通り、グアニジンのリン酸塩(リン酸ジグアニジン) やリン酸グアニル尿素は、木質材料の不燃化には有効な薬剤であり、しかも特筆すべきことは、リン酸アンモニウムなどの木質材料用不燃化薬剤とは異なって、吸湿性がほとんどないことである。
しかし、それらの薬剤の溶解度は、リン酸ジグアニジンが15.5g/100ml(20℃)、リン酸グアニル尿素が8.5g/100ml(20℃)である(『化学大辞典 縮小版第11刷』 昭和46年2月5日発行 共立出版)。
木質材料に不燃性を付与するには、木質材料1m3 当たり160〜170kg以上の木質材料用不燃化薬剤を用いる必要がある一方で、木質材料1m3 当たりの木質材料用不燃化薬剤の注入量は、最大1000kg(注入量800リットル、液密度1.25g/cm3 として) であるので、1回の注入作業で不燃木質材料を製造するには、最低でも20g/100mlの溶解度が必要であり、グアニジンのリン酸塩(リン酸ジグアニジン) やリン酸グアニル尿素を主剤として、木質材料用不燃化薬剤を調製するには、何らかの手段でそれらの溶解性を高める工夫が必要である。
Under such circumstances, the inventor has repeatedly studied to develop a technique for suppressing the hygroscopicity of the non-combustible wood material by a method as simple as possible. As is well known, guanidine phosphate (diguanidine phosphate) and guanylurea phosphate are effective chemicals for incombustibility of wood materials, and it should be noted that non-combustibility for wood materials such as ammonium phosphate. Unlike chemicals, it has almost no hygroscopicity.
However, the solubilities of these drugs are 15.5 g / 100 ml (20 ° C.) for diguanidine phosphate and 8.5 g / 100 ml (20 ° C.) for guanylurea phosphate (“Chemical Dictionary Dictionary 11th Edition”). Published on February 5, 1986, Kyoritsu Publishing).
In order to impart incombustibility to wood materials, it is necessary to use an incombustible agent for wood materials of 160 to 170 kg or more per 1 m 3 of wood material. On the other hand, the injection amount of incombustible agent for wood materials per 1 m 3 of wood material Is a maximum of 1000 kg (injection amount of 800 liters, liquid density of 1.25 g / cm 3 ), so that a minimum of 20 g / 100 ml solubility is required to produce non-combustible wood material in a single injection operation. In order to prepare an incombustible agent for a wood material using guanidine phosphate (diguanidine phosphate) or guanylurea phosphate as a main ingredient, it is necessary to devise measures to increase their solubility by some means.

特開2007−160570(特許文献7)では、リン酸を所定量加えることで、グアニジンのリン酸塩の溶解性を木質材料の不燃化に必要な濃度にまで高める技術が開示されている。
この発明から推定するに、無機酸を添加することで、グアニジンやグアニジンの誘導体であるグアニル尿素の溶解性は改善できると思われた。無機酸には、リン酸の他、硫酸、塩酸、硝酸があるが、いずれも強酸であり、木質材料の熱分解を促進して、燃焼時の発熱量を抑制する効果があると期待される一方で、木質材料用不燃化薬剤の調合時に劇薬を使用せねばならないし、調合した木質材料用不燃化薬剤が酸性に著しく傾き、処理する木質材料の材色や強度など、材質が低下する危険性が高い。
上述した無機酸以外の無機酸としては炭酸があるが、周知の通り炭酸は不安定で、炭酸を木質材料用不燃化薬剤に用いると、木質材料用不燃化薬剤中から炭酸ガスとして除かれ、主剤であるグアニジンやグアニル尿素が保管中、あるいは含浸処理時に析出する危険性が極めて高い。
Japanese Patent Application Laid-Open No. 2007-160570 (Patent Document 7) discloses a technique for increasing the solubility of guanidine phosphate to a concentration necessary for incombustibility of woody material by adding a predetermined amount of phosphoric acid.
As estimated from this invention, it was thought that the solubility of guanylurea, which is a derivative of guanidine or guanidine, can be improved by adding an inorganic acid. In addition to phosphoric acid, inorganic acids include sulfuric acid, hydrochloric acid, and nitric acid, all of which are strong acids, and are expected to promote the thermal decomposition of wood materials and suppress the amount of heat generated during combustion. On the other hand, it is necessary to use powerful drugs when formulating incombustible chemicals for wood materials, and the danger that the prepared incombustible chemicals for wood materials will be significantly inclined to acidity and the material quality and quality of wood materials to be processed will deteriorate. High nature.
Carbonic acid is an inorganic acid other than the above-mentioned inorganic acid, but as is well known, carbonic acid is unstable, and when carbonic acid is used as an incombustible agent for wood material, it is removed as carbon dioxide from the incombustible agent for wood material, There is an extremely high risk that guanidine and guanylurea, which are the main ingredients, are deposited during storage or during impregnation.

そこで、特許文献7記載の発明では、中程度の酸であり揮発性がないリン酸を用いてグアニジンの溶解性を高め、木質材料用不燃化薬剤を調製することに成功した。
しかし、リン酸は潮解性のある薬剤であり、前述したとおり、それを用いて製造した不燃化木質材料は極めて吸湿性が高く、湿度が高い条件下に置かれると自らが吸った湿気で、リン酸が木質材料の表面に滲み出した。
Therefore, in the invention described in Patent Document 7, the solubility of guanidine was increased by using phosphoric acid which is a medium acid and has no volatility, and succeeded in preparing an incombustible chemical for woody materials.
However, phosphoric acid is a deliquescent agent, and as described above, the incombustible wood material produced using it is extremely hygroscopic, and it is the moisture that it absorbs when placed under high humidity conditions. Phosphoric acid oozed out onto the surface of the woody material.

グアニジンやグアニル尿素の溶解性を高めるために、残された方法として、有機酸を用いることが考えられた。硫酸や塩酸などの無機強酸に比べると、有機酸は比較的穏やかな酸であり、木質材料用不燃化薬剤調合時など、作業時の安全性が確保される。しかし、木質材料用不燃化薬剤の一部に有機酸を使うことは、木質材料中にさらに有機物を持ち込むことになる。無機酸とは異なり、有機酸は加熱に伴い二酸化炭素と水に熱分解され、その際熱が発生し、結果として処理された木質材料の熱分解に伴う発熱量が増加し、コーンカロリーメータでの発熱性試験において、20分間での総発熱量が、不燃材料の認定基準値である8MJ/m2 以下を達成できないことが懸念された。
しかし、後述するように、その後いくつもの実験を行い、その製造方法を確立し、本発明を完成するに至った。
In order to increase the solubility of guanidine and guanylurea, it was considered to use an organic acid as the remaining method. Compared to strong inorganic acids such as sulfuric acid and hydrochloric acid, organic acids are relatively mild acids, and safety during work such as preparation of incombustible chemicals for wood materials is ensured. However, using an organic acid as a part of the flame retardant for wood materials brings more organic materials into the wood material. Unlike inorganic acids, organic acids are pyrolyzed to carbon dioxide and water with heating, generating heat, resulting in an increase in the amount of heat generated by pyrolysis of the treated wood material, In the exothermic test, there was a concern that the total calorific value in 20 minutes could not achieve 8 MJ / m 2 or less, which is the certified reference value for non-combustible materials.
However, as will be described later, several experiments were conducted thereafter, the manufacturing method was established, and the present invention was completed.

本発明の請求項1記載の木質材料用不燃化薬剤は、カルボン酸あるいはその無水物を用いて、塩基性チッ素化合物のリン酸塩を、その溶解度以上に溶解させることを特徴とするものである。   The flame retardant for woody material according to claim 1 of the present invention is characterized in that a phosphate of a basic nitrogen compound is dissolved at a solubility higher than its solubility using carboxylic acid or its anhydride. is there.

本発明の請求項2記載の木質材料用不燃化薬剤は、請求項1記載の塩基性チッ素化合物が水1000mlに対して200g以上溶解していることを特徴とするものである。   The incombustible chemical for woody material according to claim 2 of the present invention is characterized in that 200 g or more of the basic nitrogen compound according to claim 1 is dissolved in 1000 ml of water.

本発明の請求項3記載の木質材料用不燃化薬剤は、請求項1記載の木質材料用不燃化薬剤における塩基性チッ素化合物をグアニジン、グアニル尿素のいずれか、あるいはそれらの混合物とすることを特徴とするものである。   The flame retardant for wood material according to claim 3 of the present invention is such that the basic nitrogen compound in the flame retardant for wood material according to claim 1 is guanidine, guanylurea, or a mixture thereof. It is a feature.

本発明の請求項4記載の木質材料用不燃化薬剤は、請求項1、2又は3記載の木質材料用不燃化薬剤におけるカルボン酸あるいはその無水物を二価以上の多価カルボン酸とすることを特徴とするものである。   The wood material incombustible agent according to claim 4 of the present invention is such that the carboxylic acid or anhydride thereof in the wood material incombustible agent according to claim 1, 2 or 3 is a divalent or higher polyvalent carboxylic acid. It is characterized by.

本発明の請求項5記載の木質材料用不燃化薬剤は、請求項4記載の木質材料用不燃化薬剤における二価以上の多価カルボン酸を、シュウ酸、マロン酸、コハク酸、グルタル酸、マレイン酸、リンゴ酸、酒石酸、トリカルバリル酸、クエン酸、ブタンテトラカルボン酸のいずれか、あるいはそれらのうち2種類以上の混合物とすることを特徴とするものである。   The flame retardant agent for wood material according to claim 5 of the present invention is a divalent or higher polyvalent carboxylic acid in the flame retardant agent for wood material according to claim 4, wherein oxalic acid, malonic acid, succinic acid, glutaric acid, One of maleic acid, malic acid, tartaric acid, tricarballylic acid, citric acid, and butanetetracarboxylic acid, or a mixture of two or more thereof.

本発明の請求項6記載の木質材料用不燃薬剤の製造方法は、カルボン酸あるいはその無水物を用いて、塩基性チッ素化合物のリン酸塩を、その溶解度以上に溶解させることを特徴とするものである。
木質材料用不燃化薬剤を調製するときに若干の加温をすることで、溶解速度が増し、効率的に水溶液を調製することができる。また、カルボン酸あるいはその無水物を水に溶解させる工程と、塩基性チッ素化合物のリン酸塩を溶解させる工程は、その順番どおりでなくてもよく、両者を混合した後に水に溶解させても支障はない。
The method for producing an incombustible agent for a woody material according to claim 6 of the present invention is characterized in that a phosphate of a basic nitrogen compound is dissolved to a degree higher than its solubility using a carboxylic acid or an anhydride thereof. Is.
By slightly heating when preparing the flame retardant for woody material, the dissolution rate increases and an aqueous solution can be efficiently prepared. The step of dissolving the carboxylic acid or its anhydride in water and the step of dissolving the phosphate of the basic nitrogen compound do not have to be in that order. There is no problem.

本発明の請求項7記載の木質材料の不燃化方法は、請求項1から請求項5に記載された木質材料用不燃化薬剤のいずれかを木質材料に含浸、塗布した後、乾燥させることを特徴とするものである。
なお、含浸の方法は問わないが、木質材料用不燃化薬剤への浸漬法や加圧式注入法などを挙げることができる。また、ここに言う乾燥とは、人工乾燥が望ましいが、天然乾燥でも差し支えない。人工乾燥の際の加温の手段は太陽熱などの自然エネルギーであっても良いし、スチームボイラーによる直接、あるいは間接的な加熱や、高周波等による誘電加熱であってもよい。送風することや減圧に保つことも効果的である。加熱温度は35℃〜90℃がより適当である。
また、ここで言う木質材料とは、木材や竹材を始めとするリグノセルロース系の素材、およびそれらを原料とする製品、たとえば、集成材、繊維板、パーチクルボードなどを言う。
According to a seventh aspect of the present invention, there is provided a method for making a wood material incombustible by impregnating and applying any one of the wood material incombustible agents according to claims 1 to 5 and then drying the wood material. It is a feature.
In addition, although the method of impregnation is not ask | required, the immersion method to the incombustible chemical | medical agent for wood materials, a pressurization type injection method, etc. can be mentioned. In addition, the drying mentioned here is preferably artificial drying, but may be natural drying. The heating means for the artificial drying may be natural energy such as solar heat, direct or indirect heating with a steam boiler, or dielectric heating with high frequency or the like. It is also effective to blow or keep the pressure reduced. The heating temperature is more preferably 35 ° C to 90 ° C.
Further, the woody material referred to here refers to lignocellulosic materials such as wood and bamboo, and products made from these materials, such as laminated wood, fiberboard, and particle board.

本発明の請求項8記載の不燃化木質材料は、請求項1から請求項5に記載された木質材料用不燃化薬剤のいずれかを木質材料に含浸、塗布した後、乾燥させて得られたものである。   The incombustible wood material according to claim 8 of the present invention is obtained by impregnating and applying any one of the incombustible agents for wood material according to claims 1 to 5 and then drying the wood material. Is.

本発明に係る木質材料用不燃化薬剤によると、塩基性チッ素化合物のリン酸塩には吸湿性が低い薬剤があり、それを用いて不燃木質材料を調製することで、不燃化木質材料における長年の懸案であった「吸湿性」、「不燃薬剤の滲み出し」などの問題を解決することができる。しかし、塩基性チッ素化合物のリン酸塩は、リン酸やリン酸アンモニウムなど吸湿性が極めて高い薬剤と比べて、水に対する溶解度が低いので、それらの薬剤のみを溶解させたのでは、木質材料の不燃化は達成できなかった。本発明では、有機酸を用いることで、塩基性チッ素化合物のリン酸塩の溶解性を高め、木質材料の不燃化を1回の注入処理で達成するのに必要な濃度の薬液を調製することができた。これを用いて木質材料を処理することで、吸湿性が低く、薬剤の滲み出しがない不燃化木質材料が創出でき、その用途が飛躍的に拡大することが期待される。   According to the flame-retardant agent for wood material according to the present invention, the phosphate of the basic nitrogen compound has a low hygroscopic agent, and by using it to prepare the flame-retardant wood material, in the flame-retardant wood material Problems such as “Hygroscopicity” and “Bleeding of non-combustible chemicals” that have been a long-standing concern can be solved. However, phosphates of basic nitrogen compounds are less soluble in water than drugs with extremely high hygroscopic properties such as phosphoric acid and ammonium phosphate, so if only those drugs are dissolved, the wood material No incombustibility was achieved. In the present invention, by using an organic acid, the solubility of the phosphate of the basic nitrogen compound is increased, and a chemical solution having a concentration necessary for achieving incombustibility of the wood material by one injection process is prepared. I was able to. By treating the wood material using this, it is expected that a non-combustible wood material having low hygroscopicity and no drug exudation can be created, and its use is expected to expand dramatically.

以下、実施例の一部を紹介するが、ここに記された内容が全てではなく、これらによって当特許の請求範囲が制約されるものではない。   Hereinafter, some examples will be introduced, but the contents described here are not all, and the scope of claims of the present patent is not limited by these.

カルボン酸としてコハク酸90gを水1000ml中に撹拌しながら加え、続いて重量比でグアニジンとリン酸が3:2で構成されている薬剤を480〜600g添加した。このとき、薬剤は全て室温で溶解し、透明な溶液を得た。
後述する比較例1で示すように、コハク酸を添加せずに、グアニジンとリン酸が3:2で構成されている薬剤を1000mlに480g添加したときには、薬剤全てを室温では溶解できなかったことから、カルボン酸としてのコハク酸の添加により、塩基性チッ素化合物であるグアニジンのリン酸塩はその溶解度(15.5g/ml、20℃)を超えて溶解し、木質材料の不燃処理に用いる木質材料用不燃化薬剤が調製できたことは明らかである。
As a carboxylic acid, 90 g of succinic acid was added to 1000 ml of water with stirring, and then 480 to 600 g of a drug composed of guanidine and phosphoric acid at a weight ratio of 3: 2 was added. At this time, all the drugs were dissolved at room temperature to obtain a transparent solution.
As shown in Comparative Example 1 to be described later, when 480 g of guanidine and phosphoric acid consisting of 3: 2 was added to 1000 ml without adding succinic acid, all of the drugs could not be dissolved at room temperature. From the addition of succinic acid as a carboxylic acid, guanidine phosphate, a basic nitrogen compound, dissolves in excess of its solubility (15.5 g / ml, 20 ° C.) and is used for non-combustible treatment of wood materials. It is clear that an incombustible chemical for wood materials has been prepared.

60℃で十分に乾燥させた密度0.36g/cm3 のスギ辺材板目板(厚さ15mm、板幅120mm、繊維方向の長さ120mm)を、実施例1で示したグアニジンとリン酸から成る薬剤がコハク酸90gとともに水1000mlに対して550g溶解している木質材料用不燃化薬剤中に沈め、加圧式注入缶を用いて、約50hPaの減圧を45分、続いて約1.2MPaの加圧を1.5時間という条件で含浸させた。そのとき、同溶液(木質材料用不燃化薬剤)の浸透性は良好であり、理論最大値どおりの注入量を得た。
その後、送風式の乾燥機を用いて、60℃で恒量になるまで乾燥させた。これを23℃で相対湿度50%の恒温恒湿器中で平衡状態になるまで調湿した後、板面の寸法が100mm四方となるように切削加工し、コーンカロリーメータによる発熱性試験に供した。
その結果、20分間での総発熱量は4.70MJ/m2 となり、不燃材料の認定基準値である8MJ/m2 以下の値となった。また、貫通割れや、200kw/m2 を上回る発熱速度も観察されることなく、不燃化木質材料としての規格を満たした。さらに、この不燃化木質材料の30℃、相対湿度90%における平衡含水率は12.6%であり、無処理の木質材料のそれ(19.2%)よりも明らかに低い値となった。
A cedar slab slab plate (thickness 15 mm, plate width 120 mm, fiber direction length 120 mm) with a density of 0.36 g / cm 3 sufficiently dried at 60 ° C. was obtained by using guanidine and phosphoric acid shown in Example 1. Submerged in 550 g of succinic acid and 550 g of succinic acid in 1000 ml of water, in a non-combustible chemical for wood materials, using a pressurized can, reduced pressure of about 50 hPa for 45 minutes, followed by about 1.2 MPa Was impregnated under the condition of 1.5 hours. At that time, the permeability of the same solution (wood material incombustible agent) was good, and an injection amount according to the theoretical maximum value was obtained.
Then, it dried until it became constant weight at 60 degreeC using the ventilation type dryer. This was conditioned at 23 ° C in a constant temperature and humidity chamber with a relative humidity of 50% until equilibrium was reached, then cut so that the plate surface was 100 mm square, and subjected to a heat generation test using a cone calorimeter. did.
As a result, the total calorific value in 20 minutes was 4.70 MJ / m 2 , which was a value of 8 MJ / m 2 or less, which is the certified reference value for non-combustible materials. Moreover, the standard as an incombustible wood material was satisfy | filled, without the through-cracking and the heat release rate exceeding 200 kw / m < 2 > being observed. Furthermore, the equilibrium moisture content at 30 ° C. and 90% relative humidity of this incombustible wood material was 12.6%, which was clearly lower than that of the untreated wood material (19.2%).

比較例1
グアニジンとリン酸が重量比3:2で構成されている薬剤480gを、水1000mlに添加し、室温で十分に撹拌したが、全ての薬剤を溶解することができず、溶解できなかった薬剤が、相当量沈殿した。その量は、添加した薬剤の1/3以上と目された。
これで得られた液の上澄みを取り、実施例1と同様の処理と、発熱性試験を実施したところ、20分間での総発熱量は14.6MJ/m2 となり、不燃材料の認定基準である8MJ/m2 以下を満たすことができなかった。
Comparative Example 1
480 g of a drug composed of guanidine and phosphoric acid in a weight ratio of 3: 2 was added to 1000 ml of water and stirred well at room temperature, but all the drugs could not be dissolved, and the drugs that could not be dissolved A considerable amount precipitated. The amount was expected to be more than 1/3 of the added drug.
The supernatant of the liquid thus obtained was taken, and the same treatment as in Example 1 and the exothermic test were conducted. As a result, the total calorific value in 20 minutes was 14.6 MJ / m 2 , which was based on the incombustible material certification standard. A certain value of 8 MJ / m 2 or less could not be satisfied.

カルボン酸としてコハク酸120gを水1000ml中に撹拌しながら加え、グアニジンとリン酸が重量比3:2で構成されている薬剤330gと、グアニル尿素とリン酸が重量比1:1で構成されている薬剤220gを添加した。このとき、薬剤は全て室温で溶解し、透明な溶液(木質材料用不燃化薬剤)を得た。
後述する比較例2で示すように、コハク酸を添加せずに、グアニジンとリン酸が重量比3:2で構成されている薬剤330gと、グアニル尿素とリン酸が重量比1:1で構成されている薬剤220gを水1000mlに添加したときには、室温ではこれらの薬剤を完全に溶解できなかったことから、コハク酸の添加により、これらの塩基性チッ素化合物のリン酸塩はその溶解度(8.5g/100ml)を超えて溶解し、木質材料の不燃化処理に用いる木質材料用不燃化薬剤が調製できたことは明らかである。
As a carboxylic acid, 120 g of succinic acid was added to 1000 ml of water while stirring, and 330 g of a drug composed of guanidine and phosphoric acid in a weight ratio of 3: 2 and guanylurea and phosphoric acid in a weight ratio of 1: 1 were added. 220 grams of drug was added. At this time, all the chemical | medical agents melt | dissolved at room temperature and obtained the transparent solution (incombustible chemical | medical agent for wooden materials).
As shown in Comparative Example 2, which will be described later, without adding succinic acid, 330 g of a drug in which guanidine and phosphoric acid are configured at a weight ratio of 3: 2, and guanylurea and phosphoric acid are configured at a weight ratio of 1: 1. When 220 g of the added drug was added to 1000 ml of water, these drugs could not be completely dissolved at room temperature. Therefore, by adding succinic acid, the phosphates of these basic nitrogen compounds had their solubility (8 It is clear that an incombustible agent for wood material can be prepared which dissolves in excess of 0.5 g / 100 ml) and is used for the incombustibility treatment of wood material.

実施例2で調製した木質材料用不燃化薬剤を用いて、実施例1と同様にスギ試験片を処理した後、さらに実施例1と同様にコーンカロリーメータによる発熱性試験に供した。
その結果、20分間での総発熱量は4.58MJ/m2 となり、不燃材料の認定基準値である8MJ/m2 以下の値となった。また、貫通割れや、200kw/m2 を上回る発熱速度も観察されることなく、不燃材料としての規格を満たした。さらに、不燃化木質材料の30℃、相対湿度90%における平衡含水率は15.6%であり、無処理の木質材料のそれ(19.2%)よりも明らかに低い値となった。
After the cedar test piece was treated in the same manner as in Example 1 using the wood material incombustible agent prepared in Example 2, it was further subjected to a heat generation test using a corn calorimeter in the same manner as in Example 1.
As a result, the total calorific value in 20 minutes was 4.58 MJ / m 2 , which was a value of 8 MJ / m 2 or less, which is the certified reference value for incombustible materials. Moreover, the standard as a nonflammable material was satisfy | filled, without the through-cracking and the heat generation rate exceeding 200 kw / m < 2 > being observed. Furthermore, the equilibrium moisture content at 30 ° C. and 90% relative humidity of the incombustible wood material was 15.6%, which was clearly lower than that of the untreated wood material (19.2%).

比較例2
グアニジンとリン酸が重量比3:2で構成されている薬剤330gと、グアニル尿素とリン酸が重量比1:1で構成されている薬剤220gを添加した。室温で十分に撹拌したが、全ての薬剤を溶解することができず、溶解できなかった薬剤が、相当量沈殿した。その量は、添加した薬剤の1/3以上と目された。
Comparative Example 2
330 g of a drug composed of guanidine and phosphoric acid in a weight ratio of 3: 2 and 220 g of a drug composed of guanylurea and phosphoric acid in a weight ratio of 1: 1 were added. Although it was sufficiently stirred at room temperature, not all of the drug could be dissolved, and a considerable amount of the drug that could not be dissolved was precipitated. The amount was expected to be more than 1/3 of the added drug.

実施例1で示したコハク酸に代わって、ブタンテトラカルボン酸90gを水1000mlに加えた後、グアニジン350gとリン酸200gで構成される薬剤を添加した。このとき、薬剤は全て室温で溶解し、透明な溶液(木質材料用不燃化薬剤)を得た。
後述する比較例3で示すように、ブタンテトラカルボン酸を添加せずに、グアニジン350gとリン酸200gから成る薬剤を水1000mlに添加したときには、室温では薬剤を完全に溶解できなかったことから、カルボン酸としてのブタンテトラカルボン酸の添加により、グアニジンのリン酸塩はその溶解度(15.5g/100ml)を超えて溶解し、木質材料の不燃処理に用いる木質材料用不燃化薬剤が調製できたことは明らかである。
Instead of the succinic acid shown in Example 1, 90 g of butanetetracarboxylic acid was added to 1000 ml of water, and then a drug composed of 350 g of guanidine and 200 g of phosphoric acid was added. At this time, all the chemical | medical agents melt | dissolved at room temperature and obtained the transparent solution (incombustible chemical | medical agent for wooden materials).
As shown in Comparative Example 3 described later, when a drug consisting of 350 g of guanidine and 200 g of phosphoric acid was added to 1000 ml of water without adding butanetetracarboxylic acid, the drug could not be completely dissolved at room temperature. By the addition of butanetetracarboxylic acid as carboxylic acid, the phosphate of guanidine was dissolved beyond its solubility (15.5 g / 100 ml), and an incombustible agent for wood materials used for incombustibility treatment of wood materials could be prepared. It is clear.

実施例3により得た木質材料用不燃化薬剤を用い、実施例1と同様にスギ試験片を処理した後、さらに実施例1と同様にコーンカロリーメータによる発熱性試験を実施したところ、20分間での総発熱量は4.55MJ/m2 となり、不燃材料の認定基準値である8MJ/m2 以下の値となった。また、貫通割れや、200kw/m2 を上回る発熱速度も観察されることなく、不燃材料としての規格を満たした。さらに、不燃化木質材料の30℃、相対湿度90%における平衡含水率は22.4%であり、無処理木材のそれ(19.2%)よりもやや高い値になったが、比較例4の処理で見られたような薬剤の滲み出しは観察されなかった。 After processing the cedar test piece in the same manner as in Example 1 using the wood material incombustible agent obtained in Example 3, a heat generation test using a corn calorimeter was further carried out in the same manner as in Example 1. The total calorific value was 4.55 MJ / m 2 , which was a value of 8 MJ / m 2 or less, which is the certified reference value for incombustible materials. Moreover, the standard as a nonflammable material was satisfy | filled, without the through-cracking and the heat generation rate exceeding 200 kw / m < 2 > being observed. Furthermore, the equilibrium moisture content at 30 ° C. and 90% relative humidity of the incombustible wood material was 22.4%, which was slightly higher than that of the untreated wood (19.2%). No drug oozing was observed as seen with the treatment.

比較例3
グアニジン350gとリン酸200gから成る薬剤を、水1000mlに添加し、室温で十分に撹拌したが、全ての薬剤を溶解することができず、溶解できなかった薬剤が、相当量沈殿した。その量は、添加した薬剤の1/3以上と目された。
Comparative Example 3
A drug composed of 350 g of guanidine and 200 g of phosphoric acid was added to 1000 ml of water and stirred sufficiently at room temperature. However, all the drugs could not be dissolved, and a considerable amount of the drug that could not be dissolved was precipitated. The amount was expected to be more than 1/3 of the added drug.

比較例4
水1000mlにリン酸120gを溶解させた後、グアニジン330gとリン酸270gが含まれる薬剤を添加した。このとき、薬剤は全て室温で溶解し、透明な溶液を得た。実施例2と同様の処理を行い、さらに実施例2と同様の発熱性試験を実施したところ、20分間での総発熱量は5.12MJ/m2 となるなど、不燃材料としての基準は全て満たした。
しかし、同処理木材の30℃、相対湿度90%における平衡含水率は56%であり、無処理木材のそれ(19.2%)よりもはるかに高い値となり、細胞壁内に取り込まれる結合水のほか、細胞内孔には明らかに自由水が存在して、木材表面からは薬剤の滲み出しによるべたつきが認められ、調湿時に試験片の下に置いておいた濾紙を汚染した。
Comparative Example 4
After 120 g of phosphoric acid was dissolved in 1000 ml of water, a drug containing 330 g of guanidine and 270 g of phosphoric acid was added. At this time, all the drugs were dissolved at room temperature to obtain a transparent solution. When the same treatment as in Example 2 was performed and the same exothermic test as in Example 2 was performed, the total calorific value in 20 minutes was 5.12 MJ / m 2 , etc. Satisfied.
However, the equilibrium moisture content of the treated wood at 30 ° C. and 90% relative humidity is 56%, much higher than that of the untreated wood (19.2%), and the bound water taken into the cell wall. In addition, free water was clearly present in the intracellular pores, and stickiness due to the exudation of the drug was observed from the wood surface, and the filter paper placed under the test piece during humidity conditioning was contaminated.

実施例1で示したコハク酸に代わって、無水コハク酸76gを水1000mlに加えた後、グアニジン350gとリン酸200gで構成される薬剤を添加した。このとき、薬剤は全て室温で溶解し、透明な溶液(木質材料用不燃化薬剤) を得た。   Instead of the succinic acid shown in Example 1, 76 g of succinic anhydride was added to 1000 ml of water, and then a drug composed of 350 g of guanidine and 200 g of phosphoric acid was added. At this time, all the chemical | medical agents melt | dissolved at room temperature, and obtained the transparent solution (incombustible chemical | medical agent for woody materials).

実施例4により得た溶液を用い、実施例1と同様にスギ試験片を処理した後、さらに実施例1と同様にコーンカロリーメータによる発熱性試験を実施したところ、20分間での総発熱量は5.02MJ/m2 となり、不燃材料の認定基準値である8MJ/m2 以下の値となった。また、貫通割れや、200kw/m2 を上回る発熱速度も観察されることなく、不燃材料としての規格を満たした。さらに、同処理木材の30℃、相対湿度90%における平衡含水率は16.4%であり、無処理木材のそれ(19.2%)よりも低い値になった。 After the cedar test piece was treated in the same manner as in Example 1 using the solution obtained in Example 4, a heat generation test using a cone calorimeter was further conducted in the same manner as in Example 1, and the total calorific value in 20 minutes. It became the 5.02MJ / m 2, and the a 8 MJ / m 2 or less of the value is certified reference value of the noncombustible material. Moreover, the standard as a nonflammable material was satisfy | filled, without the through-cracking and the heat generation rate exceeding 200 kw / m < 2 > being observed. Furthermore, the equilibrium moisture content at 30 ° C. and 90% relative humidity of the treated wood was 16.4%, which was lower than that of untreated wood (19.2%).

実施例1で示したコハク酸に代わって、シュウ酸90gを水1000mlに加えた後、グアニジン350gとリン酸200gで構成される薬剤を添加した。このとき、薬剤は全て室温で溶解し、透明な溶液(木質材料用不燃化薬剤) を得た。   Instead of the succinic acid shown in Example 1, 90 g of oxalic acid was added to 1000 ml of water, and then a drug composed of 350 g of guanidine and 200 g of phosphoric acid was added. At this time, all the chemical | medical agents melt | dissolved at room temperature, and obtained the transparent solution (incombustible chemical | medical agent for woody materials).

実施例5により得た溶液を用い、実施例1と同様にスギ試験片を処理した後、さらに実施例1と同様にコーンカロリーメータによる発熱性試験を実施したところ、20分間での総発熱量は6.22MJ/m2 となり、不燃材料の認定基準値である8MJ/m2 以下の値となった。また、貫通割れや、200kw/m2 を上回る発熱速度も観察されることなく、不燃材料としての規格を満たした。さらに、同処理木材の30℃、相対湿度90%における平衡含水率は21.5%であり、無処理木材のそれ(19.2%)よりもやや高い値になったが、比較例4の処理で見られたような薬剤の滲み出しは観察されなかった。 After the cedar test piece was treated in the same manner as in Example 1 using the solution obtained in Example 5, a exothermal test using a cone calorimeter was further conducted in the same manner as in Example 1, and the total calorific value in 20 minutes. Was 6.22 MJ / m 2 , which was a value of 8 MJ / m 2 or less, which is a certified reference value for incombustible materials. Moreover, the standard as a nonflammable material was satisfy | filled, without the through-cracking and the heat generation rate exceeding 200 kw / m < 2 > being observed. Furthermore, the equilibrium moisture content at 30 ° C. and 90% relative humidity of the treated wood was 21.5%, which was slightly higher than that of untreated wood (19.2%). No drug oozing as seen with the treatment was observed.

実施例1で示したコハク酸に代わって、マロン酸90gを水1000mlに加えた後、グアニジン350gとリン酸200gで構成される薬剤を添加した。このとき、薬剤は全て室温で溶解し、透明な溶液(木質材料用不燃化薬剤) を得た。   Instead of succinic acid shown in Example 1, 90 g of malonic acid was added to 1000 ml of water, and then a drug composed of 350 g of guanidine and 200 g of phosphoric acid was added. At this time, all the chemical | medical agents melt | dissolved at room temperature, and obtained the transparent solution (incombustible chemical | medical agent for woody materials).

実施例6により得た溶液を用い、実施例1と同様にスギ試験片を処理した後、さらに実施例1と同様にコーンカロリーメータによる発熱性試験を実施したところ、20分間での総発熱量は6.08MJ/m2 となり、不燃材料の認定基準値である8MJ/m2 以下の値となった。また、貫通割れや、200kw/m2 を上回る発熱速度も観察されることなく、不燃材料としての規格を満たした。さらに、同処理木材の30℃、相対湿度90%における平衡含水率は20.8%であり、無処理木材のそれ(19.2%)よりもやや高い値になったが、比較例4の処理で見られたような薬剤の滲み出しは観察されなかった。 After the cedar test piece was treated in the same manner as in Example 1 using the solution obtained in Example 6, a heat generation test with a cone calorimeter was further conducted in the same manner as in Example 1, and the total calorific value in 20 minutes. It became the 6.08MJ / m 2, and the a 8 MJ / m 2 or less of the value is certified reference value of the noncombustible material. Moreover, the standard as a nonflammable material was satisfy | filled, without the through-cracking and the heat generation rate exceeding 200 kw / m < 2 > being observed. Furthermore, the equilibrium moisture content at 30 ° C. and 90% relative humidity of the treated wood was 20.8%, which was slightly higher than that of untreated wood (19.2%). No drug oozing as seen with the treatment was observed.

実施例1で示したコハク酸に代わって、グルタル酸90gを水1000mlに加えた後、グアニジン350gとリン酸200gで構成される薬剤を添加した。このとき、薬剤は全て室温で溶解し、透明な溶液(木質材料用不燃化薬剤) を得た。   Instead of succinic acid shown in Example 1, 90 g of glutaric acid was added to 1000 ml of water, and then a drug composed of 350 g of guanidine and 200 g of phosphoric acid was added. At this time, all the chemical | medical agents melt | dissolved at room temperature, and obtained the transparent solution (incombustible chemical | medical agent for woody materials).

実施例7により得た溶液を用い、実施例1と同様にスギ試験片を処理した後、さらに実施例1と同様にコーンカロリーメータによる発熱性試験を実施したところ、20分間での総発熱量は5.88MJ/m2 となり、不燃材料の認定基準値である8MJ/m2 以下の値となった。また、貫通割れや、200kw/m2 を上回る発熱速度も観察されることなく、不燃材料としての規格を満たした。さらに、同処理木材の30℃、相対湿度90%における平衡含水率は23.2%であり、無処理木材のそれ(19.2%)よりもやや高い値になったが、比較例4の処理で見られたような薬剤の滲み出しは観察されなかった。 After the cedar test piece was treated in the same manner as in Example 1 using the solution obtained in Example 7, the exothermic test with a cone calorimeter was further conducted in the same manner as in Example 1, and the total calorific value in 20 minutes. Was 5.88 MJ / m 2 , which was a value of 8 MJ / m 2 or less, which is the certified reference value for non-combustible materials. Moreover, the standard as a nonflammable material was satisfy | filled, without the through-cracking and the heat generation rate exceeding 200 kw / m < 2 > being observed. Further, the equilibrium moisture content at 30 ° C. and 90% relative humidity of the treated wood was 23.2%, which was slightly higher than that of untreated wood (19.2%). No drug oozing as seen with the treatment was observed.

実施例1で示したコハク酸に代わって、無水グルタル酸78gを水1000mlに加えた後、グアニジン350gとリン酸200gで構成される薬剤を添加した。このとき、薬剤は全て室温で溶解し、透明な溶液(木質材料用不燃化薬剤) を得た。   Instead of the succinic acid shown in Example 1, 78 g of glutaric anhydride was added to 1000 ml of water, and then a drug composed of 350 g of guanidine and 200 g of phosphoric acid was added. At this time, all the chemical | medical agents melt | dissolved at room temperature, and obtained the transparent solution (incombustible chemical | medical agent for woody materials).

実施例8により得た溶液を用い、実施例1と同様にスギ試験片を処理した後、さらに実施例1と同様にコーンカロリーメータによる発熱性試験を実施したところ、20分間での総発熱量は5.46MJ/m2 となり、不燃材料の認定基準値である8MJ/m2 以下の値となった。また、貫通割れや、200kw/m2 を上回る発熱速度も観察されることなく、不燃材料としての規格を満たした。さらに、同処理木材の30℃、相対湿度90%における平衡含水率は22.3%であり、無処理木材のそれ(19.2%)よりもやや高い値になったが、比較例4の処理で見られたような薬剤の滲み出しは観察されなかった。 After the cedar test piece was treated in the same manner as in Example 1 using the solution obtained in Example 8, a exothermal test with a cone calorimeter was further conducted in the same manner as in Example 1, and the total calorific value in 20 minutes. It became the 5.46MJ / m 2, and the a 8 MJ / m 2 or less of the value is certified reference value of the noncombustible material. Moreover, the standard as a nonflammable material was satisfy | filled, without the through-cracking and the heat generation rate exceeding 200 kw / m < 2 > being observed. Furthermore, the equilibrium moisture content at 30 ° C. and 90% relative humidity of the treated wood was 22.3%, which was slightly higher than that of untreated wood (19.2%). No drug oozing as seen with the treatment was observed.

実施例1で示したコハク酸に代わって、マレイン酸90gを水1000mlに加えた後、グアニジン350gとリン酸200gで構成される薬剤を添加した。このとき、薬剤は全て室温で溶解し、透明な溶液(木質材料用不燃化薬剤) を得た。   Instead of succinic acid shown in Example 1, 90 g of maleic acid was added to 1000 ml of water, and then a drug composed of 350 g of guanidine and 200 g of phosphoric acid was added. At this time, all the chemical | medical agents melt | dissolved at room temperature, and obtained the transparent solution (incombustible chemical | medical agent for woody materials).

実施例9により得た溶液を用い、実施例1と同様にスギ試験片を処理した後、さらに実施例1と同様にコーンカロリーメータによる発熱性試験を実施したところ、20分間での総発熱量は5.33MJ/m2 となり、不燃材料の認定基準値である8MJ/m2 以下の値となった。また、貫通割れや、200kw/m2 を上回る発熱速度も観察されることなく、不燃材料としての規格を満たした。さらに、同処理木材の30℃、相対湿度90%における平衡含水率は19.2%であり、無処理木材のそれ(19.2%)と同じ含水率となった。 After the cedar test piece was treated in the same manner as in Example 1 using the solution obtained in Example 9, a exothermal test with a cone calorimeter was further conducted in the same manner as in Example 1 to find the total calorific value in 20 minutes. It became the 5.33MJ / m 2, and the a 8 MJ / m 2 or less of the value is certified reference value of the noncombustible material. Moreover, the standard as a nonflammable material was satisfy | filled, without the through-cracking and the heat generation rate exceeding 200 kw / m < 2 > being observed. Furthermore, the equilibrium moisture content at 30 ° C. and 90% relative humidity of the treated wood was 19.2%, which was the same moisture content as that of the untreated wood (19.2%).

実施例1で示したコハク酸に代わって、リンゴ酸90gを水1000mlに加えた後、グアニジン350gとリン酸200gで構成される薬剤を添加した。このとき、薬剤は全て室温で溶解し、透明な溶液(木質材料用不燃化薬剤) を得た。   Instead of succinic acid shown in Example 1, 90 g of malic acid was added to 1000 ml of water, and then a drug composed of 350 g of guanidine and 200 g of phosphoric acid was added. At this time, all the chemical | medical agents melt | dissolved at room temperature, and obtained the transparent solution (incombustible chemical | medical agent for woody materials).

実施例10により得た溶液を用い、実施例1と同様にスギ試験片を処理した後、さらに実施例1と同様にコーンカロリーメータによる発熱性試験を実施したところ、20分間での総発熱量は4.47MJ/m2 となり、不燃材料の認定基準値である8MJ/m2 以下の値となった。また、貫通割れや、200kw/m2 を上回る発熱速度も観察されることなく、不燃材料としての規格を満たした。さらに、同処理木材の30℃、相対湿度90%における平衡含水率は22.8%であり、無処理木材のそれ(19.2%)よりもやや高い値になったが、比較例4の処理で見られたような薬剤の滲み出しは観察されなかった。 After the cedar test piece was treated in the same manner as in Example 1 using the solution obtained in Example 10, a exothermal test with a cone calorimeter was further conducted in the same manner as in Example 1 to find the total calorific value in 20 minutes. It became the 4.47MJ / m 2, and the a 8 MJ / m 2 or less of the value is certified reference value of the noncombustible material. Moreover, the standard as a nonflammable material was satisfy | filled, without the through-cracking and the heat generation rate exceeding 200 kw / m < 2 > being observed. Further, the equilibrium moisture content at 30 ° C. and 90% relative humidity of the treated wood was 22.8%, which was slightly higher than that of untreated wood (19.2%). No drug oozing as seen with the treatment was observed.

実施例1で示したコハク酸に代わって、酒石酸90gを水1000mlに加えた後、グアニジン350gとリン酸200gで構成される薬剤を添加した。このとき、薬剤は全て室温で溶解し、透明な溶液(木質材料用不燃化薬剤) を得た。   Instead of succinic acid shown in Example 1, 90 g of tartaric acid was added to 1000 ml of water, and then a drug composed of 350 g of guanidine and 200 g of phosphoric acid was added. At this time, all the chemical | medical agents melt | dissolved at room temperature, and obtained the transparent solution (incombustible chemical | medical agent for woody materials).

実施例11により得た溶液を用い、実施例1と同様にスギ試験片を処理した後、さらに実施例1と同様にコーンカロリーメータによる発熱性試験を実施したところ、20分間での総発熱量は4.98MJ/m2 となり、不燃材料の認定基準値である8MJ/m2 以下の値となった。また、貫通割れや、200kw/m2 を上回る発熱速度も観察されることなく、不燃材料としての規格を満たした。さらに、同処理木材の30℃、相対湿度90%における平衡含水率は22.1%であり、無処理木材のそれ(19.2%)よりもやや高い値になったが、比較例4の処理で見られたような薬剤の滲み出しは観察されなかった。 After the cedar test piece was treated in the same manner as in Example 1 using the solution obtained in Example 11, a heat generation test using a cone calorimeter was further conducted in the same manner as in Example 1, and the total calorific value in 20 minutes. Was 4.98 MJ / m 2 , which was a value of 8 MJ / m 2 or less, which is the certified reference value for non-combustible materials. Moreover, the standard as a nonflammable material was satisfy | filled, without the through-cracking and the heat generation rate exceeding 200 kw / m < 2 > being observed. Further, the equilibrium moisture content at 30 ° C. and 90% relative humidity of the treated wood was 22.1%, which was slightly higher than that of untreated wood (19.2%). No drug oozing as seen with the treatment was observed.

実施例1で示したコハク酸に代わって、トリカルバリル酸90gを水1000mlに加えた後、グアニジン350gとリン酸200gで構成される薬剤を添加した。このとき、薬剤は全て室温で溶解し、透明な溶液(木質材料用不燃化薬剤) を得た。   Instead of succinic acid shown in Example 1, 90 g of tricarballylic acid was added to 1000 ml of water, and then a drug composed of 350 g of guanidine and 200 g of phosphoric acid was added. At this time, all the chemical | medical agents melt | dissolved at room temperature, and obtained the transparent solution (incombustible chemical | medical agent for woody materials).

実施例12により得た溶液を用い、実施例1と同様にスギ試験片を処理した後、さらに実施例1と同様にコーンカロリーメータによる発熱性試験を実施したところ、20分間での総発熱量は5.26MJ/m2 となり、不燃材料の認定基準値である8MJ/m2 以下の値となった。また、貫通割れや、200kw/m2 を上回る発熱速度も観察されることなく、不燃材料としての規格を満たした。さらに、同処理木材の30℃、相対湿度90%における平衡含水率は21.1%であり、無処理木材のそれ(19.2%)よりもやや高い値になったが、比較例4の処理で見られたような薬剤の滲み出しは観察されなかった。 After the cedar test piece was treated in the same manner as in Example 1 using the solution obtained in Example 12, a exothermal test using a cone calorimeter was further conducted in the same manner as in Example 1, and the total calorific value in 20 minutes. It became the 5.26MJ / m 2, and the a 8 MJ / m 2 or less of the value is certified reference value of the noncombustible material. Moreover, the standard as a nonflammable material was satisfy | filled, without the through-cracking and the heat generation rate exceeding 200 kw / m < 2 > being observed. Furthermore, the equilibrium moisture content at 30 ° C. and 90% relative humidity of the treated wood was 21.1%, which was slightly higher than that of untreated wood (19.2%). No drug oozing as seen with the treatment was observed.

実施例1で示したコハク酸に代わって、クエン酸90gを水1000mlに加えた後、グアニジン.350gとリン酸200gで構成される薬剤を添加した。このとき、薬剤は全て室温で溶解し、透明な溶液(木質材料用不燃化薬剤) を得た。   In place of the succinic acid shown in Example 1, 90 g of citric acid was added to 1000 ml of water, and then guanidine. A drug composed of 350 g and phosphoric acid 200 g was added. At this time, all the chemical | medical agents melt | dissolved at room temperature, and obtained the transparent solution (incombustible chemical | medical agent for woody materials).

実施例13により得た溶液を用い、実施例1と同様にスギ試験片を処理した後、さらに実施例1と同様にコーンカロリーメータによる発熱性試験を実施したところ、20分間での総発熱量は5.22MJ/m2 となり、不燃材料の認定基準値である8MJ/m2 以下の値となった。また、貫通割れや、200kw/m2 を上回る発熱速度も観察されることなく、不燃材料としての規格を満たした。さらに、同処理木材の30℃、相対湿度90%における平衡含水率は20.4%であり、無処理木材のそれ(19.2%)よりもやや高い値になったが、比較例4の処理で見られたような薬剤の滲み出しは観察されなかった。 After the cedar test piece was treated in the same manner as in Example 1 using the solution obtained in Example 13, a heat generation test with a cone calorimeter was further carried out in the same manner as in Example 1. As a result, the total calorific value in 20 minutes was obtained. It became the 5.22MJ / m 2, and the a 8 MJ / m 2 or less of the value is certified reference value of the noncombustible material. Moreover, the standard as a nonflammable material was satisfy | filled, without the through-cracking and the heat generation rate exceeding 200 kw / m < 2 > being observed. Furthermore, the equilibrium moisture content at 30 ° C. and 90% relative humidity of the treated wood was 20.4%, which was slightly higher than that of untreated wood (19.2%). No drug oozing as seen with the treatment was observed.

Claims (8)

水にカルボン酸あるいはその無水物が溶解されるとともに、塩基性チッ素化合物のリン酸塩がその溶解度以上溶解されていることを特徴とする木質材料用不燃化薬剤。   A fireproofing agent for woody materials, characterized in that a carboxylic acid or an anhydride thereof is dissolved in water and a phosphate of a basic nitrogen compound is dissolved at a solubility higher than that. 前記塩基性チッ素化合物のリン酸塩が、カルボン酸とともに水1000mlに対して200g以上溶解していることを特徴とする請求項1記載の木質材料用不燃化薬剤。   2. The incombustible agent for woody material according to claim 1, wherein the basic nitrogen compound phosphate is dissolved together with carboxylic acid in an amount of 200 g or more per 1000 ml of water. 前記塩基性チッ素化合物が、グアニジン、グアニル尿素のいずれか、あるいはそれらの混合物であることを特徴とする請求項1又は2記載の木質材料用不燃化薬剤。   The flame retardant agent for woody materials according to claim 1 or 2, wherein the basic nitrogen compound is guanidine, guanylurea, or a mixture thereof. 前記カルボン酸あるいはその無水物が、多価カルボン酸であることを特徴とする請求項1、2又は3記載の木質材料用不燃化薬剤。   The incombustible chemical for woody material according to claim 1, 2 or 3, wherein the carboxylic acid or its anhydride is a polyvalent carboxylic acid. 前記多価カルボン酸が、シュウ酸、マロン酸、コハク酸、グルタル酸、マレイン酸、リンゴ酸、酒石酸、トリカルバリル酸、クエン酸、ブタンテトラカルボン酸のいずれか、またはそれらのうち2種類以上の混合物であることを特徴とする請求項4記載の木質材料用不燃化薬剤。   The polyvalent carboxylic acid is oxalic acid, malonic acid, succinic acid, glutaric acid, maleic acid, malic acid, tartaric acid, tricarballylic acid, citric acid, butanetetracarboxylic acid, or two or more of them The flame retardant agent for woody materials according to claim 4, which is a mixture. カルボン酸またはその無水物と塩基性チッ素化合物のリン酸塩とを水に溶解させことで、塩基性チッ素化合物のリン酸塩を溶解度以上に溶解させることを特徴とする木質材料用不燃化薬剤の製造方法。   Incombustibility for woody materials characterized by dissolving phosphate of basic nitrogen compound more than solubility by dissolving carboxylic acid or its anhydride and phosphate of basic nitrogen compound in water A method for producing a drug. 木質材料に請求項1乃至5記載の木質材料用不燃化薬剤を浸透させる工程と、前記木材を乾燥させる工程とを備えたことを特徴とする木質材料の不燃化方法。   A method for incombustibility of a wood material, comprising: a step of impregnating the wood material with the flame retardant for wood material according to claim 1; and a step of drying the wood. 請求項7記載の木質材料の不燃化方法により不燃化されたことを特徴とする不燃化木質材料。   An incombustible wood material which has been incombustible by the method for incombusting wood material according to claim 7.
JP2009005578A 2009-01-14 2009-01-14 Incombustible agent for wood material, method for producing this incombustible agent for wood material, method for incombustible wood material using this incombustible agent for wood material, and incombustible wood material Active JP5751691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009005578A JP5751691B2 (en) 2009-01-14 2009-01-14 Incombustible agent for wood material, method for producing this incombustible agent for wood material, method for incombustible wood material using this incombustible agent for wood material, and incombustible wood material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009005578A JP5751691B2 (en) 2009-01-14 2009-01-14 Incombustible agent for wood material, method for producing this incombustible agent for wood material, method for incombustible wood material using this incombustible agent for wood material, and incombustible wood material

Publications (2)

Publication Number Publication Date
JP2010162727A true JP2010162727A (en) 2010-07-29
JP5751691B2 JP5751691B2 (en) 2015-07-22

Family

ID=42579320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009005578A Active JP5751691B2 (en) 2009-01-14 2009-01-14 Incombustible agent for wood material, method for producing this incombustible agent for wood material, method for incombustible wood material using this incombustible agent for wood material, and incombustible wood material

Country Status (1)

Country Link
JP (1) JP5751691B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102975250A (en) * 2012-11-22 2013-03-20 北京林业大学 Wood modifier and preparation method thereof
CN102975246A (en) * 2012-11-22 2013-03-20 北京林业大学 Wood treatment agent and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264395A (en) * 1993-03-10 1994-09-20 Sanyo Chem Ind Ltd Flame retardant composition
JP2009019184A (en) * 2006-11-20 2009-01-29 Nankyou Efunika Kk Aqueous flame retarder, flame retarder having deodorizing property, flame retarding sheet, flame retarding polyurethane foam, and method for producing flame retarding polyurethane foam

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264395A (en) * 1993-03-10 1994-09-20 Sanyo Chem Ind Ltd Flame retardant composition
JP2009019184A (en) * 2006-11-20 2009-01-29 Nankyou Efunika Kk Aqueous flame retarder, flame retarder having deodorizing property, flame retarding sheet, flame retarding polyurethane foam, and method for producing flame retarding polyurethane foam

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102975250A (en) * 2012-11-22 2013-03-20 北京林业大学 Wood modifier and preparation method thereof
CN102975246A (en) * 2012-11-22 2013-03-20 北京林业大学 Wood treatment agent and preparation method thereof
CN102975250B (en) * 2012-11-22 2015-06-03 北京林业大学 Wood modifier and preparation method thereof
CN102975246B (en) * 2012-11-22 2015-06-24 北京林业大学 Wood treatment agent and preparation method thereof

Also Published As

Publication number Publication date
JP5751691B2 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
JP5079983B2 (en) Stable boron compound liquid composition, production method thereof and use thereof
US7955711B2 (en) Wood treatment solution and process
JP4445991B2 (en) Incombustible chemical for wood material and method for producing the same
JP5751691B2 (en) Incombustible agent for wood material, method for producing this incombustible agent for wood material, method for incombustible wood material using this incombustible agent for wood material, and incombustible wood material
JP2003211412A (en) Method for manufacturing incombustible lumber
WO2003041925A1 (en) Method of manufacturing noncombustible wood
JP2004050828A (en) Noncombustible treatment solution and fireproofing material using the same
JP4446071B2 (en) Production method of noncombustible wood
JP3845678B2 (en) Flame retardant and wooden member for construction impregnated with the flame retardant
US20110151129A1 (en) Wood treatment solution and process
KR101514899B1 (en) Composition and Manufacturing Method of self-exitinguishing fire-retardant wood by free carbon, metallic salts and micro-fibril by Modifide of Wood
JP7228823B2 (en) Composition for flame retardant treatment of wood material
JP3102473U (en) Wooden timber impregnated with flame retardant
JP7391333B2 (en) Method for manufacturing noncombustible materials and noncombustible materials
JP7080289B2 (en) Flame-retardant chemicals, non-combustible wood using them, and methods for adjusting flame-retardant chemicals
JP6894099B2 (en) Wood-based material treatment agent composition, treatment method of wood-based material and wood-based material treated by it
JPH02307703A (en) Manufacture of modified wood
JPH03201A (en) Manufacture of modified wood
JPH0560763B2 (en)
JPS6351103A (en) Manufacture of improved wood
JPS62144901A (en) Manufacture of improved wood
JP2018168325A (en) Fire retardancy added wood available as fertilizer material and manufacturing method therefor
JPH02116509A (en) Manufacture of modified lumber
JPH0250801A (en) Manufacture of modified wood
JPH04259502A (en) Manufacture of modified wood

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150518

R150 Certificate of patent or registration of utility model

Ref document number: 5751691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250