WO2024070440A1 - Optical laminate - Google Patents

Optical laminate Download PDF

Info

Publication number
WO2024070440A1
WO2024070440A1 PCT/JP2023/031427 JP2023031427W WO2024070440A1 WO 2024070440 A1 WO2024070440 A1 WO 2024070440A1 JP 2023031427 W JP2023031427 W JP 2023031427W WO 2024070440 A1 WO2024070440 A1 WO 2024070440A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
release
release film
layer
adhesive layer
Prior art date
Application number
PCT/JP2023/031427
Other languages
French (fr)
Japanese (ja)
Inventor
哲生 坂口
光敬 佐▲瀬▼
雄亮 仲西
和雅 関
昇祐 李
由紀 西上
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2024070440A1 publication Critical patent/WO2024070440A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/40Adhesives in the form of films or foils characterised by release liners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to an optical laminate.
  • optical films such as polarizing plates are used in displays such as liquid crystal displays and organic EL displays.
  • the optical film is incorporated into the display device by being attached to a display panel or the like of the display device using an adhesive layer.
  • a laminate is prepared in which an adhesive layer and a release film are laminated in this order on one surface of the optical film, and the separator is peeled off from this laminate to expose the adhesive layer, and the optical film is attached to the display panel or the like.
  • the laminate can be obtained, for example, by laminating an optical film and an adhesive layer with a release film in which an adhesive layer is formed on a release film.
  • the adhesive layer with a release film can be obtained by forming an adhesive layer on a release film, and peeling off one release film from an adhesive sheet in which another release film is laminated on the adhesive layer.
  • Patent Document 1 discloses an adhesive sheet with release films on both sides of an adhesive layer used for bonding optical components.
  • the peel force between one release film and the adhesive layer is relatively small, and the peel force between the other release film and the adhesive layer is relatively large. This allows the release films on both sides to be easily peeled off from the adhesive layer in order, and prevents the adhesive layer from breaking when the release film is peeled off.
  • the release film with a release film which has an adhesive layer and a release film with a relatively large release force (hereinafter sometimes referred to as a "heavy release film”) obtained by peeling and removing the release film with a relatively small release force (hereinafter sometimes referred to as a "light release film”) from the adhesive sheet, is laminated on the optical film.
  • the heavy release film When applying a polarizing plate to a display device, the heavy release film may be peeled off from the laminate, with the laminate having an adhesive layer with a release film fixed onto an adsorption plate.
  • the laminate When attempting to peel off the heavy release film using this method, the laminate may lift up from the adsorption plate, making it impossible to peel the heavy release film from the adhesive layer.
  • the present invention aims to provide an optical laminate that allows the release film to be easily peeled off from the adhesive layer.
  • the present invention provides the following optical laminate.
  • An optical laminate comprising an optical film, a pressure-sensitive adhesive layer, and a release film in this order, the release film has a release-treated surface containing a siloxane compound on a side in contact with the pressure-sensitive adhesive layer,
  • the release-treated surface of the release film satisfies the following formula (1): Ys/Xs ⁇ 100 ⁇ 3.5 (1)
  • Xs represents the intensity of the maximum peak Ps in the binding energy range of 96 eV or more and 108 eV or less in the XPS spectrum (Sr) of the release treated surface
  • Ys represents the intensity of the XPS spectrum (Sr) at a binding energy of (Es+2) eV, where Es [eV] is the binding energy at the peak Ps.
  • the optical laminate of the present invention allows the release film to be easily peeled off from the pressure-sensitive adhesive layer.
  • FIG. 1 is a schematic cross-sectional view showing an optical laminate according to one embodiment of the present invention.
  • 1 is a schematic cross-sectional view showing a method for producing an optical laminate according to one embodiment of the present invention.
  • optical laminate 1 is a schematic cross-sectional view showing an optical laminate according to one embodiment of the present invention.
  • the optical laminate 1 has an optical film 11, a first pressure-sensitive adhesive layer 12 (pressure-sensitive adhesive layer), and a first release film 15 (release film) in this order.
  • the first pressure-sensitive adhesive layer 12 is usually in direct contact with the optical film 11 and the first release film 15.
  • the optical film 11 may be a polarizing plate including at least a linear polarizing layer, or may be a polarizing plate including a polarizing plate and a retardation layer.
  • the optical film 11 may include a surface protection film that is provided so as to be peelable from the polarizing plate.
  • the first release film 15 has a release-treated surface containing a siloxane compound on the side in contact with the first pressure-sensitive adhesive layer 12.
  • the release-treated surface of the first release film 15 satisfies the relationship of the following formula (1).
  • Xs represents the intensity of the maximum peak Ps in the binding energy range of 96 eV or more and 108 eV or less in the XPS spectrum (Sr) of the release-treated surface
  • Ys represents the intensity of the XPS spectrum (Sr) at a binding energy of (Es+2) eV, where Es [eV] is the binding energy at peak Ps.
  • the binding energy (Es+2) eV refers to the binding energy at a position 2 eV shifted toward higher energy from the position of the binding energy Es at peak Ps in the XPS spectrum (Sr).
  • the maximum peak Ps in the range of bond energy 96 eV to 108 eV is considered to be mainly derived from structure (I) in which two O atoms are bonded to the Si atom of the siloxane compound contained in the release treatment surface.
  • the intensity Ys of the XPS spectrum (Sr) at the bond energy (Es+2) eV is considered to be mainly derived from structure (II) in which three or more O atoms are bonded to the Si atom of the siloxane compound contained in the release treatment surface.
  • Structure (I) is considered to be a structure derived from the siloxane compound that is the main agent of the release agent composition used to form the release treatment surface (release treatment layer) of the release film.
  • Structure (II) is considered to be a structure derived from the siloxane compound as an additive added to the release agent composition to obtain a release film with a relatively large release force. Therefore, it can be said that the left side (Ys/Xs ⁇ 100) in formula (1) represents the ratio of the content of the siloxane compound that is the additive to the content of the siloxane compound that is the main agent among the siloxane compounds on the release treatment surface of the first release film 15.
  • the optical laminate 1 can be manufactured, for example, by [i] laminating a first adhesive layer 12 formed on a second release film 25 (FIG. 2) onto an optical film 11, then peeling off the second release film 25, and [ii] laminating a first release film 15 having a smaller peel strength than the second release film 25 onto the first adhesive layer 12 exposed by the peeling off of the second release film 25.
  • a small amount of the siloxane compound constituting the release treatment surface (release treatment layer) of the second release film 25 adheres to the first adhesive layer 12, and it is believed that the siloxane compound adhered to the first adhesive layer 12 also adheres to the release treatment surface of the first release film 15.
  • the release treatment surface (release treatment layer) of the first release film 15 does not contain a siloxane compound having structure (II) that provides a relatively large release force to the release film
  • the release treatment surface (release treatment layer) of the second release film 25 is formed from a release agent composition containing a siloxane compound having structure (II)
  • the siloxane compound having structure (II) contained in the release treatment surface of the second release film 25 will adhere to the release treatment surface of the first release film 15 by replacing the second release film 25 with the first release film 15. Therefore, for example, in the optical laminate 1 manufactured with the replacement of the release film as described above, it is considered that the release treatment surface of the first release film 15 satisfies the relationship of the above formula (1).
  • Ys/Xs x 100 in formula (1) may be 3.50 or less, 3.45 or less, or 3.40 or less.
  • Ys/Xs x 100 in formula (1) is usually 0.1 or more, 1.0 or more, 2.0 or more, or 2.6 or more.
  • the strengths Xs and Ys can be measured by the method described in the examples below.
  • the optical laminate 1 is provided with a release film with a small peeling force because the release-treated surface of the first release film 15 satisfies the relationship of formula (1). Therefore, when the first release film 15 is peeled off from the optical laminate 1 with the optical film 11 side of the optical laminate 1 fixed to an adsorption plate, it becomes easier to separate the first release film 15 between the first adhesive layer 12 and the first release film 15.
  • the surface of the first pressure-sensitive adhesive layer 12 on the side of the first release film 15 preferably satisfies the relationship of the following formula (2).
  • Xa represents the intensity of the maximum peak Pa in the binding energy range of 96 eV or more and 108 eV or less in the XPS spectrum (Sa) of the surface of the first pressure-sensitive adhesive layer 12 on the side of the first release film
  • Ya represents the intensity of the XPS spectrum (Sa) at a binding energy of (Ea+2) eV, where Ea [eV] is the binding energy at peak Pa.
  • the bond energy (Ea+2) eV refers to the bond energy at a position 2 eV higher than the bond energy Ea at peak Pa in the XPS spectrum (Sa).
  • the maximum peak Pa in the bond energy range of 96 eV to 108 eV is believed to be mainly due to structure (I) in which two O atoms are bonded to the Si atom of the siloxane compound attached to the surface of the first adhesive layer 12 facing the first release film 15.
  • the intensity of the XPS spectrum (Sa) at a bond energy of (Ea+2) eV is believed to be mainly due to structure (II) in which three or more O atoms are bonded to the Si atom of the siloxane compound attached to the surface of the first adhesive layer 12 facing the first release film 15.
  • the siloxane compounds that result in structure (I) and structure (II) are as described above.
  • the siloxane compound contained in the release treatment surface (release treatment layer) of the release film laminated on the surface during the manufacturing process of the optical laminate 1 adheres to the surface of the first adhesive layer 12 on the first release film 15 side.
  • the siloxane compound constituting the release treatment surface (release treatment layer) of the second release film 25 (FIG. 2) that was laminated before the replacement also adheres to the surface of the first adhesive layer 12 on the first release film 15 side.
  • the release treatment surface of the second release film 25 is formed from a release agent composition containing a siloxane compound having structure (II)
  • a release agent composition containing a siloxane compound having structure (II) even if the second release film 25 is replaced with the first release film 15, it is believed that the siloxane compound having structure (II) contained in the release treatment surface of the second release film 25 remains on the surface of the first adhesive layer 12 on the first release film 15 side. Therefore, for example, in the optical laminate 1 manufactured with the above-described replacement of the release film, it is considered that the surface of the first adhesive layer 12 on the side of the first release film 15 satisfies the relationship of the above formula (2).
  • Ya/Xa ⁇ 100 in formula (2) may be 2.0 or more, 2.5 or more, 3.0 or more, or 3.4 or more. Ya/Xa ⁇ 100 in formula (2) is usually 20 or less, 15 or less, 10 or less, or 6.6 or less.
  • the strengths Xa and Ya can be measured by the method described in the examples below.
  • the optical laminate 1 can be attached to the display element of a display device by peeling off the first release film 15 and using the exposed first adhesive layer 12 to bond the optical film 11.
  • the display device is not particularly limited, but examples include liquid crystal display devices and organic EL display devices.
  • the display device may be a mobile terminal such as a smartphone or tablet, or may be a television, digital photo frame, electronic signboard, measuring device or gauge, office equipment, medical equipment, computing equipment, etc.
  • (Method for producing optical laminate) 2 is a schematic cross-sectional view showing a method for producing an optical laminate according to one embodiment of the present invention.
  • the method for producing an optical laminate according to this embodiment is a method for producing an optical laminate 1 including an optical film 11, a first pressure-sensitive adhesive layer 12, and a first release film 15 in this order.
  • a method for producing the optical laminate 1 described above will be described, but the optical laminate produced by this method is not limited thereto.
  • the method for producing the optical laminate 1 includes the steps of: a step of bonding the first pressure-sensitive adhesive layer 12 side of a pressure-sensitive adhesive layer 21 with a release film, the first pressure-sensitive adhesive layer 12 being provided on a second release-treated surface of a second release film 25, to the optical film 11 to obtain a first laminate 2 ((c) of FIG. 2); a step of peeling off the second release film 25 from the first laminate 2 (FIG. 2(d)); The method includes a step of peeling off the second release film 25 and bonding the first release treated surface of the first release film 15 to the first adhesive layer 12 exposed thereby to obtain a second laminate 3 (FIG. 2 (e)).
  • both the first release treatment surface and the second release treatment surface contain a polysiloxane compound.
  • the peeling force between the first release film 15 and the first adhesive layer 12 is smaller than the peeling force between the second release film 25 and the first adhesive layer 12. This makes it easier to obtain an optical laminate 1 from which the first release film 15 can be easily peeled off while the optical film 11 side of the optical laminate 1 is fixed to the suction plate.
  • the method for producing the optical laminate 1 includes the steps of:
  • the second release treatment surface of the second release film 25 peeled off from the first laminate 2, and the first release treatment surface of the first release film 15 peeled off from the second laminate 3 may satisfy the relationships of the following formulas (3) and (4).
  • Xs2 represents the intensity of the maximum peak Ps2 in the binding energy range of 96 eV or more and 108 eV or less in the XPS spectrum (Sr2) of the second release treatment surface
  • Ys2 represents the intensity of the XPS spectrum (Sr2) at a binding energy (Es2+2) [eV] when the binding energy at peak Ps2 is Es2 [eV]
  • Xs1 represents the intensity of the maximum peak Ps1 in the binding energy range of 96 eV or more and 108 eV or less in the XPS spectrum (Sr1) of the first release treatment surface
  • Ys1 represents the intensity of the XPS spectrum (Sr1) at a binding energy of (Es1+2) [eV] when the binding energy at peak Ps1 is Es1 [eV].
  • the binding energy (Es2+2) eV refers to the binding energy at a position 2 eV shifted toward higher energy from the position of the binding energy Es2 at peak Ps2 in the XPS spectrum (Sr2).
  • the maximum peak Ps2 in the range of bond energies of 96 eV to 108 eV is believed to be mainly derived from structure (I) in which two O atoms are bonded to the Si atom of the siloxane compound attached to the second release treatment surface of the second release film 25.
  • the intensity of the XPS spectrum (Sr2) at the bond energy (Es2+2) eV is believed to be mainly derived from structure (II) in which three or more O atoms are bonded to the Si atom of the siloxane compound attached to the second release treatment surface of the second release film 25.
  • the siloxane compounds that provide structures (I) and (II) are as described above.
  • the second release treatment surface that satisfies the above formula (3) is believed to be formed by a release agent composition that includes, in addition to a siloxane compound having structure (I), a siloxane compound having structure (II) that provides a relatively large release force to the release film.
  • the bond energy (Es1+2), peak Ps1, and intensity Ys2 of the XPS spectrum (Sr1) at the bond energy (Es1+2) eV are as described for the bond energy (Es+2), peak Ps, and intensity Ys in the above formula (1).
  • a small amount of the siloxane compound (having structure (II) and serving as an additive that provides a relatively large peeling force) constituting the second release treated surface of the second release film 25 also adheres to the first release treated surface of the first release film 15. Therefore, the first release treated surface is considered to satisfy the relationship of the above formula (4), and an optical laminate 1 that satisfies the relationship of the above-described formula (1) can be manufactured.
  • the optical laminate 1 is manufactured by replacing the second release film 25, which has a relatively large peeling force, with the first release film 15, which has a relatively small peeling force. Therefore, according to the manufacturing method of the optical laminate 1 described above, it is possible to manufacture an optical laminate 1 in which the first release film 15 can be easily separated and peeled off between the first adhesive layer 12 and the first release film 15 with the optical film 11 side of the optical laminate 1 fixed to the suction plate.
  • the value obtained by multiplying Ys2/Xs2 in formula (3) by 100 may be 3.6 or more, 4.0 or more, or 5.0 or more, or 15.0 or less, 12.5 or less, or 10.0 or less.
  • the strengths Xs2 and Ys2 can be measured by the method described in the examples below.
  • Ys1/Xs1 ⁇ 100 may be 3.50 or less, 3.45 or less, or 3.40 or less, and is usually 0.1 or more, 1.0 or more, 2.0 or more, or 2.6 or more.
  • the strengths Xs1 and Ys1 can be measured by the method described in the examples below.
  • the method for producing the optical laminate 1 includes the steps of:
  • the second exposed surface which is the surface of the first pressure-sensitive adhesive layer 12 exposed by peeling the second release film 25 from the first laminate 2
  • the first exposed surface which is the surface of the first pressure-sensitive adhesive layer 12 exposed by peeling the first release film 15 from the second laminate 3
  • the second exposed surface is the surface of the first pressure-sensitive adhesive layer 12 on the second release film 25 side
  • the first exposed surface is the surface of the first pressure-sensitive adhesive layer 12 on the first release film 15 side.
  • Xa2 represents the intensity of the maximum peak Pa2 in the binding energy range of 96 eV or more and 108 eV or less in the XPS spectrum (Sa2) of the second exposed surface
  • Ya2 represents the intensity of the XPS spectrum (Sa2) at a binding energy of (Ea2+2) eV
  • Ea2 [eV] is the binding energy at peak Pa2.
  • Xa1 represents the intensity of the maximum peak Pa1 in the binding energy range of 96 eV or more and 108 eV or less in the XPS spectrum (Sa1) of the first exposed surface
  • Ya1 represents the intensity of the XPS spectrum (Sa1) at a binding energy of (Ea1+2) eV, where Ea1 [eV] is the binding energy at peak Pa1.
  • the bond energy (Ea2+2) eV refers to the bond energy at a position 2 eV higher than the bond energy Ea2 at peak Pa2 in the XPS spectrum (Sa2).
  • the maximum peak Pa2 in the range of bond energies of 96 eV to 108 eV is believed to be mainly due to structure (I) in which two O atoms are bonded to the Si atom of the siloxane compound attached to the second exposed surface of the first adhesive layer 12.
  • the intensity of the XPS spectrum (Sr2) at a bond energy of (Es2+2) eV is believed to be mainly due to structure (II) in which three or more O atoms are bonded to the Si atom of the siloxane compound attached to the second exposed surface.
  • a small amount of the siloxane compound contained in the second release treatment surface of the second release film is believed to be attached to the second exposed surface.
  • the bond energy (Ea1+2), peak Pa1, and intensity Ya1 of the XPS spectrum (Sa1) at the bond energy (Ea1+2) eV are as described for the bond energy (Ea+2), peak Pa, and intensity Ya in the above formula (2).
  • the manufacturing method of the optical laminate 1 involves replacing the second release film 25 with the first release film 15, the siloxane compound (having structure (II) and serving as an additive that provides a relatively large release force) constituting the second release treatment surface of the second release film 25 remains on the first exposed surface of the first adhesive layer 12. Therefore, it is considered that by replacing the release film, the second exposed surface and the first exposed surface satisfy the relationship of formula (5), and the first exposed surface satisfies the relationship of formula (6).
  • the optical laminate 1 is manufactured by replacing the second release film 25, which has a relatively large peeling force, with the first release film 15, which has a relatively small peeling force. Therefore, according to the manufacturing method of the optical laminate 1 described above, it is possible to manufacture an optical laminate 1 in which the first release film 15 can be easily separated and peeled off between the first adhesive layer 12 and the first release film 15 with the optical film 11 side of the optical laminate 1 fixed to the suction plate.
  • the value obtained by multiplying Ya2/Xa2 in formula (5) by 100 may be, for example, 20 or less, 18 or less, 15 or less, 6.7 or more, 7.0 or more, or 8.0 or more.
  • the strengths Xa2 and Ya2 can be measured by the method described in the examples below.
  • Ya1/Xa1 ⁇ 100 may be 2.0 or more, 2.5 or more, 3.0 or more, 3.4 or more, 20 or less, 15 or less, 10 or less, or 6.6 or less.
  • the strengths Xa1 and Ya1 can be measured by the method described in the examples below.
  • the manufacturing method of the optical laminate 1 described above preferably further includes a step ((a) and (b) in FIG. 2) of obtaining an adhesive layer with a release film 21 by peeling off a third release film 26 from an adhesive sheet 20 in which the release treatment side of the third release film 26 is laminated on the first adhesive layer 12 side of the adhesive layer with a release film.
  • the adhesive sheet 20 has a layer structure of the second release film 25/first adhesive layer 12/third release film 26.
  • the peeling force between the third release film 26 and the first adhesive layer 12 is preferably smaller than the peeling force between the second release film 25 and the first adhesive layer 12.
  • the first adhesive layer 12 may be torn when attempting to peel the release film, and the release film may not be peeled off properly.
  • the peeling force is different between the second release film 25 and the third release film 26 provided on both sides of the first adhesive layer 12, so that the first adhesive layer 12 can be prevented from being torn when the third release film 26 is peeled off from the adhesive sheet 20. This allows the third release film 26 to be peeled off properly from the adhesive sheet 20, and the adhesive layer 21 with the release film can be obtained.
  • the first laminate 2 is obtained by laminating the adhesive layer 21 with a release film to one side of the optical film 11 (FIG. 2(c)).
  • the first laminate 2 has a layer structure of optical film 11/first adhesive layer 12/second release film 25.
  • the second release film 25 is peeled off from the first laminate 2 (FIG. 2(d)), and the first release treatment surface of the first release film 15 is laminated onto the exposed first adhesive layer 12 to obtain the second laminate 3 (FIG. 2(e)).
  • the second laminate 3 has a layer structure of optical film 11/first adhesive layer 12/first release film 15.
  • the second laminate 3 may be the optical laminate 1.
  • the first release film 15 is provided releasably with respect to the first pressure-sensitive adhesive layer 12 of the optical laminate 1, and covers and protects the first pressure-sensitive adhesive layer 12.
  • the first release film 15 can have a base layer and a release treatment layer constituting a release treatment surface.
  • the base layer may be a resin film.
  • the resin film can be a film using a resin material described as a thermoplastic resin used to form a protective film as a protective layer described later.
  • the release treatment layer of the first release film 15 can be formed by a release agent composition containing a siloxane compound.
  • the release agent composition preferably contains a siloxane compound (main agent) having a structure (I) in which two O atoms are bonded to a Si atom, and does not contain a siloxane compound (additive) having a structure (II) in which three or more O atoms are bonded to a Si atom. This allows the first release film 15 to be peeled off from the first adhesive layer 12 of the optical laminate 1 with a relatively small peeling force.
  • the siloxane compound having structure (I) may be, for example, a siloxane compound having dimethylpolysiloxane as a basic skeleton.
  • the siloxane compound having structure (II) may be, for example, a silicone resin.
  • the silicone resin may be, for example, an MQ resin including an M unit which is a monofunctional siloxane unit [R 3 SiO 1/2 ] and a Q unit which is a tetrafunctional siloxane unit [SiO 4/2 ].
  • Each of the three R in the M unit independently represents a hydrogen atom, a hydroxyl group, or an organic group, and at least one of the three R is preferably a hydroxyl group or a vinyl group, more preferably a vinyl group.
  • the release agent composition for forming the release treatment layer of the first release film 15 can contain, in addition to the siloxane compound having structure (I), a solvent such as an organic solvent, a crosslinking agent, a catalyst, various additives, etc.
  • a solvent such as an organic solvent, a crosslinking agent, a catalyst, various additives, etc.
  • the first release film 15 can be obtained by applying a release agent composition onto the substrate layer and drying it.
  • Methods for applying the release agent composition include, for example, bar coating, knife coating, roll coating, blade coating, die coating, and gravure coating.
  • the first pressure-sensitive adhesive layer 12 can be formed using a pressure-sensitive adhesive composition.
  • the pressure-sensitive adhesive composition exhibits adhesive properties when attached to an adherend, and is a so-called pressure-sensitive adhesive.
  • the thickness of the first adhesive layer 12 is preferably 5 ⁇ m or more, may be 10 ⁇ m or more, may be 15 ⁇ m or more, or may be 20 ⁇ m or more, and is preferably 100 ⁇ m or less, may be 80 ⁇ m or less, may be 75 ⁇ m or less, or may be 70 ⁇ m or less.
  • the first adhesive layer 12 can be formed, for example, by applying the adhesive composition itself or a diluted solution of the adhesive composition in an organic solvent onto the release-treated surface of a release film (e.g., the second release film 25) and drying it.
  • Methods for applying the adhesive composition or its diluted solution in an organic solvent include, for example, bar coating, knife coating, roll coating, blade coating, die coating, gravure coating, etc.
  • the adhesive composition may be a publicly known adhesive composition having excellent optical transparency.
  • a publicly known adhesive composition for example, an adhesive composition containing a base polymer such as a (meth)acrylic polymer, a urethane polymer, a silicone polymer, or a polyvinyl ether may be used.
  • the adhesive composition may be an active energy ray curable adhesive or a heat curable adhesive.
  • an adhesive composition having an acrylic resin as a base polymer which is excellent in transparency, adhesive strength, removability (reworkability), weather resistance, heat resistance, etc., is preferable.
  • the first adhesive layer is preferably composed of an adhesive composition containing a (meth)acrylic polymer, a crosslinking agent, and a silane coupling agent, and may contain other components.
  • (Meth)acrylic refers to at least one of acrylic and methacrylic. The same applies to other terms with "(meth)”.
  • the (meth)acrylic polymer preferably contains a structural unit derived from an alkyl (meth)acrylate ester (monomer) having an alkyl group with 1 to 24 carbon atoms.
  • the alkyl group may be linear or branched.
  • alkyl (meth)acrylate ester having the above alkyl group examples include butyl (meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, methyl (meth)acrylate, ethyl (meth)acrylate, hexyl (meth)acrylate, octyl (meth)acrylate, isooctyl (meth)acrylate, lauryl (meth)acrylate, isononyl (meth)acrylate, isodecyl (meth)acrylate, tridecyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, stearyl (meth)acrylate, and docosyl (meth)acrylate.
  • the above alkyl (meth)acrylate esters may be used alone or in combination of two or more.
  • the content of the constituent units derived from the (meth)acrylic acid alkyl ester having the above alkyl group relative to the total constituent units of the (meth)acrylic polymer is preferably 30% by mass or more, may be 40% by mass or more, may be 50% by mass or more, and may be 99% by mass or less, may be 97% by mass or less, or may be 90% by mass or less.
  • the (meth)acrylic polymer may contain a structural unit derived from a monomer having a polar functional group.
  • the polar functional group include a hydroxyl group, a carboxyl group, an amino group, an epoxy group, and an amide group.
  • Examples of monomers having a polar functional group include: (meth)acrylates having a hydroxyl group, such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 2-(2-hydroxyethoxy)ethyl (meth)acrylate, 2- or 3-chloro-2-hydroxypropyl (meth)acrylate, and diethylene glycol mono(meth)acrylate; Ethylenically unsaturated carboxylic acids such as (meth)acrylic acid, crotonic acid, maleic acid, itaconic acid, citraconic acid, and ⁇ -carboxyethyl (meth)acrylate; (meth)acrylates having an amino group, such as aminoethyl (meth)acrylate, n-butylaminoethyl (me
  • the content of structural units derived from monomers having polar functional groups relative to the total structural units of the (meth)acrylic polymer is preferably 5% by mass or less, may be 2% by mass or less, or may be 1% by mass or less.
  • the (meth)acrylic polymer can be obtained by mixing the above-mentioned monomers, adding a polymerization initiator, etc., and polymerizing the monomers.
  • the polymerization initiator can be selected depending on the polymerization method, and examples include cationic polymerization initiators and radical polymerization initiators.
  • a photopolymerization initiator can be used.
  • One or more types of photopolymerization initiators can be used.
  • crosslinking agents examples include isocyanate-based crosslinking agents, epoxy-based crosslinking agents, amine-based crosslinking agents, melamine-based crosslinking agents, aziridine-based crosslinking agents, hydrazine-based crosslinking agents, aldehyde-based crosslinking agents, oxazoline-based crosslinking agents, metal alkoxide-based crosslinking agents, metal chelate-based crosslinking agents, metal salt-based crosslinking agents, and ammonium salt-based crosslinking agents.
  • silane coupling agent examples include an organosilicon compound having at least one alkoxysilyl group in the molecule.
  • the silane coupling agent examples include Silicon compounds containing a polymerizable unsaturated group, such as vinyltrimethoxysilane, vinyltriethoxysilane, and methacryloxypropyltrimethoxysilane; Silicon compounds having an epoxy structure, such as 3-glycidoxypropyltrimethoxysilane and 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane; Mercapto group-containing silicon compounds such as 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, and 3-mercaptopropyldimethoxymethylsilane; Amino group-containing silicon compounds such as 3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropyl
  • the second release film 25 covers and protects the first pressure-sensitive adhesive layer 12 included in the first laminate 2 prepared when producing the optical laminate 1.
  • the second release film 25 is included in the pressure-sensitive adhesive sheet 20, and may be a film to which a pressure-sensitive adhesive composition for forming the first pressure-sensitive adhesive layer 12 is applied when the first pressure-sensitive adhesive layer 12 is obtained.
  • the second release film 25 can have a base layer and a release treatment layer that forms the release treatment surface.
  • the base layer may be a resin film.
  • the resin film can be, for example, a film made of a resin material described as a thermoplastic resin used to form a protective film as a protective layer, which will be described later.
  • the release treatment layer of the second release film 25 can be formed by a release agent composition containing a siloxane compound.
  • the release agent composition preferably contains a siloxane compound having structure (I) and a siloxane compound having structure (II). Examples of these siloxane compounds include the siloxane compounds described for the first release film.
  • the release agent composition for forming the release treatment layer of the second release film 25 can contain, in addition to the siloxane compound described above, a solvent such as an organic solvent, a crosslinking agent, a catalyst, various additives, etc.
  • the second release film 25 can be obtained by applying the release agent composition onto the substrate layer and drying it. Methods for applying the release agent composition include the methods described for the first release film 15.
  • the third release film 26 may be a film that is included in the pressure-sensitive adhesive sheet 20 and is laminated to the first pressure-sensitive adhesive layer 12 formed on the second release film 25 when obtaining the pressure-sensitive adhesive sheet 20.
  • Examples of the third release film 26 include the release films described for the first release film 15.
  • the adhesive sheet 20 can have a layer structure of second release film 25/first adhesive layer 12/third release film 26.
  • second release film 25 and third release film 26 By including the above-mentioned second release film 25 and third release film 26 in the adhesive sheet 20, the peel force between the third release film 26 and the first adhesive layer 12 can be made smaller than the peel force between the second release film 25 and the first adhesive layer 12.
  • the adhesive sheet 20 can be obtained, for example, by the following procedure. First, the adhesive composition itself or an organic solvent dilution of the adhesive composition for forming the first adhesive layer 12 is applied to the release treatment surface of one of the second release film 25 and the third release film 26, and a coating layer is formed by drying, etc., as necessary. Next, the other release film of the second release film 25 and the third release film 26 is laminated on this coating layer so that the release treatment surface side is the coating layer side, and an adhesive sheet is obtained by drying, etc., as necessary.
  • the adhesive composition or its organic solvent dilution is preferably applied to the second release film 25.
  • the coating layer formed on one release film may be the first adhesive layer 12, or the first adhesive layer 12 may be formed from the coating layer by drying treatment, etc., before or after laminating the other release film.
  • Methods for applying the adhesive composition or its organic solvent dilution include, for example, bar coating, knife coating, roll coating, blade coating, die coating, gravure coating, etc.
  • optical film examples include a linear polarizing layer, a linear polarizing plate having a protective layer on one or both sides of the linear polarizing layer, a circular polarizing plate including a linear polarizing layer or a linear polarizing plate and one or more retardation layers, a polarizing plate having a surface protective film on one side of a polarizing plate such as a linear polarizing plate and a circular polarizing plate, a retardation layer, a retardation plate having a protective layer on one or both sides of the retardation layer, a reflective film, a semi-transmissive reflective film, a brightness improving film, and a film with an anti-glare function, and one or more of these may be used in combination.
  • the optical film preferably includes at least a linear polarizing layer, and more preferably includes a linear polarizing plate or a circular polarizing plate. At least one of the retardation layers included in the circular polarizing plate is usually a ⁇ /4 retardation layer.
  • the thickness of the optical film 11 is preferably 150 ⁇ m or less, may be 140 ⁇ m or less, may be 130 ⁇ m or less, may be 120 ⁇ m or less, and is usually 10 ⁇ m or more, and may be 20 ⁇ m or more.
  • the thickness of the optical film 11 is small as described above, when an attempt is made to peel the release film from the optical laminate with the optical film side fixed to the suction plate, the optical laminate may lift up from the suction plate, and separation may not be possible between the adhesive layer and the release film. According to the optical laminate of this embodiment, even when the thickness of the optical film 11 is small, the first release film 15 can be satisfactorily separated and peeled from the first adhesive layer 12 from the optical laminate.
  • the linearly polarizing layer has a property of transmitting linearly polarized light having a vibration plane perpendicular to the absorption axis when non-polarized light is incident.
  • the linearly polarizing layer may be a polyvinyl alcohol-based resin film (hereinafter, sometimes referred to as a "PVA-based film”) in which iodine is adsorbed and oriented, or may be a film including a liquid crystal polarizing layer formed by applying a composition including a compound having absorption anisotropy and liquid crystallinity to a substrate film.
  • the compound having absorption anisotropy and liquid crystallinity may be a mixture of a dye having absorption anisotropy and a compound having liquid crystallinity, or may be a dye having absorption anisotropy and liquid crystallinity.
  • the linear polarizing layer which is a PVA-based film
  • a PVA-based film such as a polyvinyl alcohol film, a partially formalized polyvinyl alcohol film, or an ethylene-vinyl acetate copolymer partially saponified film, which has been dyed with iodine and stretched.
  • the PVA-based film to which iodine has been adsorbed and oriented by the dyeing process may be treated with an aqueous boric acid solution, followed by a washing process in which the aqueous boric acid solution is washed off.
  • a known method may be used for each step.
  • Polyvinyl alcohol resins can be produced by saponifying polyvinyl acetate resins.
  • Polyvinyl acetate resins can be polyvinyl acetate, which is a homopolymer of vinyl acetate, or they can be copolymers of vinyl acetate and other monomers that can be copolymerized with vinyl acetate. Examples of other monomers that can be copolymerized with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides with ammonium groups.
  • the degree of saponification of PVA-based resins is usually about 85 to 100 mol%, and preferably 98 mol% or more.
  • the PVA-based resin may be modified; for example, polyvinyl formal or polyvinyl acetal modified with aldehydes may be used.
  • the average degree of polymerization of PVA-based resins is usually about 1,000 to 10,000, and preferably about 1,500 to 5,000.
  • the degree of saponification and average degree of polymerization of PVA-based resins can be determined in accordance with JIS K 6726 (1994). If the average degree of polymerization is less than 1,000, it is difficult to obtain favorable polarizing performance, and if it exceeds 10,000, film processability may be poor.
  • the manufacturing method of the linear polarizing layer which is a PVA-based film, may include the steps of preparing a base film, applying a solution of a resin such as a PVA-based resin onto the base film, and performing drying or the like to remove the solvent to form a resin layer on the base film.
  • a primer layer may be formed in advance on the surface of the base film on which the resin layer is to be formed.
  • the base film a film using a resin material described below as a thermoplastic resin used to form a protective film as a protective layer can be used.
  • a resin obtained by crosslinking a hydrophilic resin used in the linear polarizing layer can be mentioned.
  • the amount of solvent such as water in the resin layer is adjusted as necessary, after which the base film and resin layer are uniaxially stretched, and then the resin layer is dyed with iodine to adsorb and align the iodine in the resin layer.
  • the resin layer with iodine adsorbed and oriented is treated with an aqueous boric acid solution, followed by a washing step in which the aqueous boric acid solution is washed off.
  • Publicly known methods can be used for each step.
  • the amount of boric acid in the boric acid-containing aqueous solution used to treat the PVA-based film or resin layer with iodine adsorbed and oriented is usually about 2 to 15 parts by mass, preferably 5 to 12 parts by mass, per 100 parts by mass of water.
  • This boric acid-containing aqueous solution preferably contains potassium iodide.
  • the amount of potassium iodide in the boric acid-containing aqueous solution is usually about 0.1 to 15 parts by mass, preferably about 5 to 12 parts by mass, per 100 parts by mass of water.
  • the immersion time in the boric acid-containing aqueous solution is usually about 60 to 1,200 seconds, preferably about 150 to 600 seconds, and more preferably about 200 to 400 seconds.
  • the temperature of the boric acid-containing aqueous solution is usually 50°C or higher, preferably 50 to 85°C, and more preferably 60 to 80°C.
  • the uniaxial stretching of the PVA-based film, the substrate film, and the resin layer may be performed before dyeing, during dyeing, or during the boric acid treatment after dyeing. Uniaxial stretching may be performed at each of these multiple stages.
  • the PVA-based film, the substrate film, and the resin layer may be uniaxially stretched in the MD direction (film transport direction). In this case, they may be uniaxially stretched between rolls with different peripheral speeds, or may be uniaxially stretched using a heated roll.
  • the PVA-based film, the substrate film, and the resin layer may be uniaxially stretched in the TD direction (direction perpendicular to the film transport direction). In this case, the so-called tenter method can be used.
  • the above stretching may be dry stretching in which stretching is performed in the air, or wet stretching in which stretching is performed in a state in which the PVA-based film or the resin layer is swollen with a solvent.
  • the stretching ratio is 4 times or more, preferably 5 times or more, and particularly preferably 5.5 times or more. There is no particular upper limit to the stretch ratio, but it is preferably 8 times or less to prevent breakage, etc.
  • the linearly polarizing layer produced by the manufacturing method using a substrate film can be obtained by laminating a protective layer and then peeling off the substrate film. This method makes it possible to further reduce the thickness of the linearly polarizing layer.
  • the thickness of the linearly polarizing layer which is a PVA-based film, is preferably 1 ⁇ m or more, may be 2 ⁇ m or more, or may be 5 ⁇ m or more, and is preferably 30 ⁇ m or less, more preferably 15 ⁇ m or less, may be 10 ⁇ m or less, or may be 8 ⁇ m or less.
  • the film containing a liquid crystal linear polarizing layer may be a linear polarizing layer obtained by applying a composition containing a dye having liquid crystallinity and absorption anisotropy, or a composition containing a dye having absorption anisotropy and a polymerizable liquid crystal, to a substrate film.
  • the liquid crystal linear polarizing layer may be a cured product of a polymerizable liquid crystal compound, and may contain an alignment layer.
  • the alignment layer may be an alignment layer contained in a retardation layer described later.
  • the film containing a liquid crystal linear polarizing layer may be a liquid crystal linear polarizing layer, or may have a laminated structure of a liquid crystal linear polarizing layer and a substrate film.
  • the substrate film may be, for example, a film using a resin material described as a thermoplastic resin used to form a protective film as a protective layer described later.
  • the film containing a liquid crystal linear polarizing layer may be, for example, a polarizing layer described in JP-A-2013-33249.
  • the total thickness of the substrate film and linear polarizing layer formed as described above is preferably small, but if it is too small, the strength decreases and processability tends to be poor, so it is usually 20 ⁇ m or less, preferably 5 ⁇ m or less, and more preferably 0.5 to 3 ⁇ m.
  • the protective layer examples include a protective film formed from a thermoplastic resin having excellent transparency, mechanical strength, thermal stability, moisture blocking properties, isotropy, stretchability, etc., and an overcoat layer formed from a composition having excellent solvent resistance, transparency, mechanical strength, thermal stability, shielding properties, isotropy, etc.
  • the protective film is preferably laminated on the linearly polarizing layer via an attachment layer, and the overcoat layer is preferably laminated so as to be in direct contact with the linearly polarizing layer.
  • thermoplastic resins for forming the protective film include cellulose resins such as triacetyl cellulose; polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polyethersulfone resins; polysulfone resins; polycarbonate resins; polyamide resins such as nylon and aromatic polyamide; polyimide resins; polyolefin resins such as polyethylene, polypropylene, and ethylene-propylene copolymers; cyclic polyolefin resins having cyclo- and norbornene structures (also called norbornene resins); (meth)acrylic resins; polyarylate resins; polystyrene resins; polyvinyl alcohol resins, and mixtures thereof.
  • the thickness of the protective film is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less.
  • the overcoat layer can be formed from a composition that is excellent in solvent resistance, transparency, mechanical strength, thermal stability, shielding properties, isotropy, etc.
  • the overcoat layer can be formed, for example, by applying the above-mentioned composition onto the linearly polarizing layer.
  • Materials constituting the overcoat layer include, for example, photocurable resins and water-soluble polymers, and (meth)acrylic resins, polyvinyl alcohol resins, polyamide epoxy resins, etc. can be used.
  • the thickness of the overcoat layer can be, for example, 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the protective layer may have anti-reflection properties, anti-glare properties, hard coat properties, etc. (Hereinafter, a protective film having such properties may be referred to as a "functional protective layer").
  • a surface functional layer such as an anti-reflection layer, anti-glare layer, hard coat layer, etc. may be provided on one side of the linear polarizing plate.
  • the surface functional layer is preferably provided so as to be in direct contact with the protective layer.
  • the surface functional layer is preferably provided on the side opposite the linear polarizing layer side of the protective layer.
  • a protective layer is provided on a linear polarizing layer, but the protective layer may also be provided on a retardation layer.
  • the retardation layer may be a stretched film, or may include a layer of a cured product of a polymerizable liquid crystal compound.
  • the stretched film may be a conventionally known film, and may be a resin film that has been uniaxially or biaxially stretched to give it a retardation.
  • resin films include, but are not limited to, cellulose films such as triacetyl cellulose and diacetyl cellulose, polyester films such as polyethylene terephthalate, polyethylene isophthalate, and polybutylene terephthalate, acrylic resin films such as polymethyl (meth)acrylate and polyethyl (meth)acrylate, polycarbonate films, polyethersulfone films, polysulfone films, polyimide films, polyolefin films, and polynorbornene films.
  • the polymerizable liquid crystal compound is a compound that has at least one polymerizable group and has liquid crystal properties.
  • the polymerizable group of the polymerizable liquid crystal compound means a group that participates in a polymerization reaction, and is preferably a photopolymerizable group.
  • the photopolymerizable group means a group that can participate in a polymerization reaction by an active radical or an acid generated from a photopolymerization initiator.
  • Examples of the polymerizable group include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, a (meth)acryloyloxy group, an oxiranyl group, an oxetanyl group, a styryl group, and an allyl group.
  • the liquid crystal property of the polymerizable liquid crystal compound may be a thermotropic liquid crystal or a lyotropic liquid crystal, and when a thermotropic liquid crystal is classified by the degree of order, it may be a nematic liquid crystal or a smectic liquid crystal.
  • a thermotropic liquid crystal is classified by the degree of order, it may be a nematic liquid crystal or a smectic liquid crystal.
  • the retardation layer may include an alignment layer.
  • the alignment layer has an alignment regulating force for aligning the polymerizable liquid crystal compound in a desired direction.
  • the alignment layer may be a vertical alignment layer in which the molecular axis of the polymerizable liquid crystal compound is aligned vertically to the planar direction of the laminate, a horizontal alignment layer in which the molecular axis of the polymerizable liquid crystal compound is aligned horizontally to the planar direction of the laminate, or an inclined alignment layer in which the molecular axis of the polymerizable liquid crystal compound is aligned at an angle to the planar direction of the laminate.
  • the above-mentioned cured layer can be formed by applying a composition for forming a retardation layer, which contains a polymerizable liquid crystal compound, a solvent, and various additives as necessary, onto the alignment layer to form a coating film, and solidifying (curing) the coating film.
  • the above-mentioned composition may be applied onto a substrate film to form a coating film, and the coating film may be stretched together with the substrate film to form a cured layer.
  • the above-mentioned composition may contain a polymerization initiator, a reactive additive, a leveling agent, a polymerization inhibitor, etc.
  • polymerizable liquid crystal compound solvent, polymerization initiator, reactive additive, leveling agent, polymerization inhibitor, etc., known ones can be appropriately used.
  • substrate film a film using the resin material described as the thermoplastic resin used to form the protective film as the above-mentioned protective layer can be used.
  • the surface protective film is provided releasably with respect to the polarizing plate.
  • the surface protective film may have a single-layer structure or a multi-layer structure.
  • the surface protective film may include a base layer and a second pressure-sensitive adhesive layer, or may be a self-adhesive base layer.
  • a film using the resin material described as the thermoplastic resin used to form the protective film as the protective layer above can be used as the base layer constituting the surface protective film.
  • a known adhesive composition can be used as the adhesive composition for forming the second adhesive layer. Examples of known adhesive compositions include those described above as the adhesive composition.
  • the surface protection film including the substrate layer and the second adhesive layer can be formed by applying the adhesive composition itself or an organic solvent dilution of the adhesive composition onto the substrate layer and drying it.
  • Methods for applying the adhesive composition or its organic solvent dilution include, for example, bar coating, knife coating, roll coating, blade coating, die coating, gravure coating, etc.
  • thermoplastic resin that constitutes the self-adhesive base layer examples include polypropylene-based resins and polyethylene-based resins.
  • a surface protection film is used for a polarizing plate, but the surface protection film may also be laminated to a member exemplified as an optical film other than a polarizing plate.
  • the layers may be bonded together by a bonding layer.
  • the bonding layer is a pressure-sensitive adhesive layer or an adhesive layer.
  • the bonding layer is a pressure-sensitive adhesive layer, it can be formed using a known pressure-sensitive adhesive composition. Examples of known pressure-sensitive adhesive compositions include those described above in the pressure-sensitive adhesive composition.
  • the adhesive layer can be formed by curing a curable component in the adhesive composition.
  • the adhesive composition for forming the adhesive layer is an adhesive other than a pressure-sensitive adhesive (adhesive), such as a water-based adhesive or an active energy ray-curable adhesive.
  • a water-based adhesive is an adhesive in which polyvinyl alcohol resin is dissolved or dispersed in water.
  • a drying method using a hot air dryer or infrared dryer can be used.
  • active energy ray-curable adhesives examples include solvent-free active energy ray-curable adhesives that contain a curable compound that cures when exposed to active energy rays such as ultraviolet light, visible light, electron beams, and X-rays. By using a solvent-free active energy ray-curable adhesive, it is possible to improve the adhesion between layers.
  • a transparent polyethylene terephthalate (PET) film (manufactured by Mitsubishi Chemical Corporation, trade name: Diafoil T190E38, thickness 38 ⁇ m) was prepared.
  • the release agent composition a obtained above was applied to one side of the PET film with a bar coater so that the thickness after drying was 100 nm, and the film was dried at a temperature of 120 ° C. for 3 minutes to form a release treatment layer on the PET film.
  • the film with the release treatment layer formed was stored for 5 days or more under an environment of a temperature of 23 ° C. and a relative humidity of 55%, and a release film (1) with a release treatment layer formed on the PET film was obtained.
  • a release film (2) was obtained in the same manner as in the production of the release film (1), except that the release agent composition b was used instead of the release agent composition a.
  • a release film (3) was obtained in the same manner as in the preparation of the release film (1), except that the release agent composition c was used instead of the release agent composition a.
  • the resulting acrylic resin had a weight average molecular weight Mw of 1.3 million and a molecular weight distribution Mw/Mn of 4.2.
  • Mw and Mn were measured in terms of standard polystyrene using two "TSKgel GMHHR-H(S)" columns manufactured by Tosoh Corporation connected in series as columns in a GPC apparatus, tetrahydrofuran as an eluent, a sample concentration of 2 mg/mL, a sample introduction amount of 100 ⁇ L, a temperature of 40° C., and a flow rate of 1 mL/min.
  • Adhesive Sheet (1) The adhesive composition (1) obtained above was applied onto the release treatment layer (release treatment surface) of the release film (2) obtained above using an applicator, and then dried at a temperature of 100° C. for 1 minute to obtain an adhesive layer (1) having a thickness of 20 ⁇ m.
  • the release treatment layer (release treatment surface) of the release film (1) obtained above was laminated on the side of the adhesive layer (1) obtained opposite to the release film (2) side.
  • the obtained laminate was left to stand for 7 days or more in an environment of a temperature of 23° C. and a relative humidity of 60%, to obtain an adhesive sheet (1).
  • Adhesive Sheet (2) The adhesive composition (2) obtained above was applied onto the release treatment layer (release treatment surface) of the release film (2) obtained above using an applicator, and then dried at a temperature of 100° C. for 1 minute to obtain an adhesive layer (2) having a thickness of 20 ⁇ m.
  • the release treatment layer (release treatment surface) of the release film (1) obtained above was laminated on the side of the adhesive layer (2) opposite to the release film (2) side obtained.
  • the obtained laminate was left to stand for 7 days or more in an environment of a temperature of 23° C. and a relative humidity of 60%, to obtain an adhesive sheet (2).
  • Adhesive Sheet (3) The adhesive composition (3) obtained above was applied onto the release treatment layer (release treatment surface) of the release film (2) obtained above using an applicator, and then dried at a temperature of 100° C. for 1 minute to obtain an adhesive layer (3) having a thickness of 20 ⁇ m.
  • the release treatment layer (release treatment surface) of the release film (1) obtained above was laminated on the side of the adhesive layer (3) opposite to the release film (2) side.
  • the obtained laminate was left to stand for 7 days or more in an environment of a temperature of 23° C. and a relative humidity of 60%, to obtain an adhesive sheet (3).
  • Adhesive Sheet (4) The adhesive composition (3) obtained above was applied onto the release treatment layer (release treatment surface) of the release film (3) obtained above using an applicator, and then dried at a temperature of 100° C. for 1 minute to obtain an adhesive layer (4) having a thickness of 20 ⁇ m.
  • the release treatment layer (release treatment surface) of the release film (1) obtained above was laminated on the side of the adhesive layer (4) opposite to the release film (3) side.
  • the obtained laminate was left to stand for 7 days or more in an environment at a temperature of 23° C. and a relative humidity of 60%, to obtain an adhesive sheet (4).
  • Comparative Example 1 (Preparation of Polarizing Plate) A 25 ⁇ m-thick first protective film (triacetyl cellulose film) was attached to one side of a 12 ⁇ m-thick linear polarizing layer (a polarizing film in which iodine was adsorbed and oriented on a uniaxially stretched polyvinyl alcohol film), and a 20 ⁇ m-thick second protective film (triacetyl cellulose film) was attached to the other side via an adhesive to obtain a polarizing plate. Furthermore, a surface protective film was laminated on the first protective film side to obtain a polarizing plate with a surface protective film. The surface protective film has a structure in which a 15 ⁇ m-thick adhesive layer is laminated on a 38 ⁇ m-thick PET film. The thickness of the polarizing plate with the surface protective film was 110 ⁇ m.
  • optical laminate (c1) The surface of the second protective film side of the polarizing plate with the surface protective film obtained above was subjected to a corona treatment, and the pressure-sensitive adhesive layer (1) exposed by peeling off the release film (1) of the pressure-sensitive adhesive sheet (1) obtained above was attached to this corona-treated surface to obtain an optical laminate (c1).
  • the layer structure of the optical laminate (c1) was a polarizing plate with a surface protective film (surface protective film/first protective film/linear polarizing layer/second protective film)/pressure-sensitive adhesive layer (1)/release film (2).
  • Comparative Example 2 Except for using the pressure-sensitive adhesive sheet (2) instead of the pressure-sensitive adhesive sheet (1), an optical laminate (c2) was obtained in the same manner as in Comparative Example 1.
  • the layer structure of the optical laminate (c2) was a polarizing plate with a surface protective film (surface protective film/first protective film/linear polarizing layer/second protective film)/pressure-sensitive adhesive layer (2)/release film (2).
  • Comparative Example 3 Except for using the pressure-sensitive adhesive sheet (3) instead of the pressure-sensitive adhesive sheet (1), an optical laminate (c3) was obtained in the same manner as in Comparative Example 1.
  • the layer structure of the optical laminate (c3) was a polarizing plate with a surface protective film (surface protective film/first protective film/linear polarizing layer/second protective film)/pressure-sensitive adhesive layer (3)/release film (2).
  • Comparative Example 4 Except for using the pressure-sensitive adhesive sheet (4) instead of the pressure-sensitive adhesive sheet (1), an optical laminate (c4) was obtained in the same manner as in Comparative Example 1.
  • the layer structure of the optical laminate (c4) was a polarizing plate with a surface protective film (surface protective film/first protective film/linear polarizing layer/second protective film)/pressure-sensitive adhesive layer (4)/release film (3).
  • Example 1 (Preparation of optical laminate (1)) An optical laminate (c1) was obtained by the procedure described in Comparative Example 1. The release film (2) was peeled off from the optical laminate (c1), and the release treatment layer side of the release film (1) obtained above was laminated on the exposed pressure-sensitive adhesive layer (1) to obtain an optical laminate (1).
  • the layer structure of the optical laminate (1) was a polarizing plate with a surface protective film (surface protective film/first protective film/linear polarizing layer/second protective film)/pressure-sensitive adhesive layer (1)/release film (1).
  • Example 2 (Preparation of optical laminate (2)) An optical laminate (c2) was obtained by the procedure described in Comparative Example 2. The release film (2) was peeled off from the optical laminate (c2), and the release treatment layer side of the release film (1) obtained above was laminated on the exposed pressure-sensitive adhesive layer (2) to obtain an optical laminate (2).
  • the layer structure of the optical laminate (2) was a polarizing plate with a surface protective film (surface protective film/first protective film/linear polarizing layer/second protective film)/pressure-sensitive adhesive layer (2)/release film (1).
  • Example 3 (Preparation of optical laminate (3)) An optical laminate (c3) was obtained by the procedure described in Comparative Example 3. The release film (2) was peeled off from the optical laminate (c3), and the release treatment layer side of the release film (1) obtained above was laminated on the exposed pressure-sensitive adhesive layer (3) to obtain an optical laminate (3).
  • the layer structure of the optical laminate (3) was a polarizing plate with a surface protective film (surface protective film/first protective film/linear polarizing layer/second protective film)/pressure-sensitive adhesive layer (3)/release film (1).
  • Example 4 (Preparation of optical laminate (4)) An optical laminate (c4) was obtained by the procedure described in Comparative Example 4. The release film (3) was peeled off from the optical laminate (c4), and the release treatment layer side of the release film (1) obtained above was laminated on the exposed pressure-sensitive adhesive layer (4) to obtain an optical laminate (4).
  • the layer structure of the optical laminate (4) was a polarizing plate with a surface protective film (surface protective film/first protective film/linear polarizing layer/second protective film)/pressure-sensitive adhesive layer (4)/release film (1).
  • the release film was peeled off from the optical laminate obtained in each of the Examples and Comparative Examples, and the surface of the peeled release film on the release treatment layer side (release treatment surface) and the surface of the exposed pressure-sensitive adhesive layer on the release film side were subjected to XPS measurement under the following conditions using an XPS device (K-Alpha+, manufactured by Thermofisher Scientific).
  • the sample size was 10 mm x 10 mm.
  • the value (Ys2/Xs2 ⁇ 100) obtained by multiplying the left side of the above formula (3) of the release-treated surface of the release film (2) or (3) peeled off from the optical laminates (c1) to (c4) by 100 can be regarded as the value of the left side (Ys/Xs ⁇ 100) of the above formula (1) determined in Comparative Examples 1 to 4.
  • the value obtained by multiplying the right side of the above formula (3) of the release-treated surface of the release film (1) peeled off from the optical laminates (1) to (4) in Examples 1 to 4 by 100 and the value of the left side (Ys1/Xs1 ⁇ 100) of the above formula (4) can be regarded as the value of the left side (Ys/Xs ⁇ 100) of the above formula (1) determined in Examples 1 to 4.
  • the value obtained by multiplying the left side of the above formula (5) by 100 (Ya2/Xa2 x 100) can be regarded as the value of the left side of the above formula (2) (Ya/Xa x 100) determined in Comparative Examples 1 to 4.
  • the adhesive side of the mending tape of the laminate of the mending tape and the double-sided tape was attached to the center of the surface protection film side of the test sample, and after peeling off the release paper of the double-sided tape, the adhesive side of the double-sided tape was attached to a glass plate to fix the test sample to the glass plate.
  • a Kapton tape manufactured by Nitto Denko, product name: No. 360UL (width 13 mm)
  • cut to 30 mm x 13 mm was attached to one corner of the release film side surface of the test sample fixed to the glass plate so that it protruded 20 mm from the corner.
  • the Kapton tape attached to the test sample was held by hand and the state when peeled off was judged according to the following criteria. The results are shown in Tables 1 and 2. a: Only the release film was completely peeled off from the optical laminate. b: The release film was not completely peeled off from the optical laminate, and the optical laminate was peeled off from the mending tape.
  • the peeling force of the release film (1) could be reduced, and only the release film was completely peeled off in the peelability test, so it is considered that the release film (1) can be easily peeled off from the optical laminates (1) to (4).
  • the release film still had a large peeling force, and the release film was not completely peeled off in the peelability test, so it is considered that the release film is difficult to peel off from the optical laminates (c1) to (c4).
  • optical laminate 1 optical laminate, 2 first laminate, 3 second laminate, 11 optical film, 12 first adhesive layer (adhesive layer), 15 first release film (release film), 20 adhesive sheet, 21 adhesive layer with release film, 25 second release film, 26 third release film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

(Abstract) (Problem) To provide an optical laminate in which a release film can be satisfactorily released from an adhesive layer. (Solution) This optical laminate includes an optical film, an adhesive layer, and a release film in the stated order. The release film has a release treatment surface containing a siloxane compound on a side where the release film makes contact with the adhesive layer. The release treatment surface of the release film satisfies the relationship indicated by formula (1). (1): Ys/Xs × 100 ≤ 3.5 [In formula (1), Xs represents the intensity of the maximum peak Ps in a binding energy range of 96-108 eV of an XPS spectrum (Sr) of the release treatment surface, and Ys represents the intensity of the XPS spectrum (Sr) at a binding energy of (Es + 2) eV, when the binding energy at the peak PS is Es [eV].] (Selected figure) FIG. 1

Description

光学積層体Optical laminate
 本発明は、光学積層体に関する。 The present invention relates to an optical laminate.
 液晶表示装置及び有機EL表示装置等の表示装置には、偏光板等の光学フィルムを用いることが知られている。光学フィルムは、表示装置の表示パネル等に粘着剤層を用いて貼合されることにより、表示装置に組み入れられる。そのため、表示装置を製造する際には、光学フィルムの一方の表面に粘着剤層及び剥離フィルムがこの順に積層された積層体を用意し、この積層体からセパレータを剥離して露出した粘着剤層によって光学フィルムを表示パネル等に貼合することが知られている。 It is known that optical films such as polarizing plates are used in displays such as liquid crystal displays and organic EL displays. The optical film is incorporated into the display device by being attached to a display panel or the like of the display device using an adhesive layer. For this reason, it is known that when manufacturing a display device, a laminate is prepared in which an adhesive layer and a release film are laminated in this order on one surface of the optical film, and the separator is peeled off from this laminate to expose the adhesive layer, and the optical film is attached to the display panel or the like.
 積層体は例えば、光学フィルムと、剥離フィルム上に粘着剤層が形成された剥離フィルム付き粘着剤層とを積層することによって得ることができる。剥離フィルム付き粘着剤層は、剥離フィルム上に粘着剤層を形成し、この粘着剤層上に、もう一つの剥離フィルムを積層した粘着シートから、一方の剥離フィルムを剥離することによって得ることができる。特許文献1には、光学部材の貼り合わせのために使用される粘着剤層の両面に剥離フィルムを備えた粘着シートが開示されている。 The laminate can be obtained, for example, by laminating an optical film and an adhesive layer with a release film in which an adhesive layer is formed on a release film. The adhesive layer with a release film can be obtained by forming an adhesive layer on a release film, and peeling off one release film from an adhesive sheet in which another release film is laminated on the adhesive layer. Patent Document 1 discloses an adhesive sheet with release films on both sides of an adhesive layer used for bonding optical components.
特開2015-52073号公報JP 2015-52073 A
 粘着シートでは、一方の剥離フィルムと粘着剤層との間の剥離力を相対的に小さくし、他方の剥離フィルムと粘着剤層との間の剥離力を相対的に大きくしている。これにより、両面の剥離フィルムを順に粘着剤層から良好に剥離できるようにし、剥離フィルムの剥離時に粘着剤層が破断することを抑制している。そのため、粘着シートに含まれる粘着剤層と剥離フィルムとを光学フィルムに積層して積層体を得る場合、粘着シートから剥離力が相対的に小さい剥離フィルム(以下、「軽剥離フィルム」ということがある。)を剥離除去して得られる、粘着剤層及び剥離力が相対的に大きい剥離フィルム(以下、「重剥離フィルム」ということがある。)を有する剥離フィルム付き粘着剤層を、光学フィルムに積層することになる。 In the adhesive sheet, the peel force between one release film and the adhesive layer is relatively small, and the peel force between the other release film and the adhesive layer is relatively large. This allows the release films on both sides to be easily peeled off from the adhesive layer in order, and prevents the adhesive layer from breaking when the release film is peeled off. Therefore, when the adhesive layer and release film contained in the adhesive sheet are laminated on an optical film to obtain a laminate, the release film with a release film, which has an adhesive layer and a release film with a relatively large release force (hereinafter sometimes referred to as a "heavy release film") obtained by peeling and removing the release film with a relatively small release force (hereinafter sometimes referred to as a "light release film") from the adhesive sheet, is laminated on the optical film.
 表示装置に偏光板を適用する際には、剥離フィルム付き粘着剤層を備えた積層体を吸着板上に固定した状態で、積層体から重剥離フィルムを剥離することがある。この方法で重剥離フィルムを剥離しようとすると、吸着板から積層体が持ち上がり、粘着剤層から重剥離フィルムを剥離することができないことがあった。 When applying a polarizing plate to a display device, the heavy release film may be peeled off from the laminate, with the laminate having an adhesive layer with a release film fixed onto an adsorption plate. When attempting to peel off the heavy release film using this method, the laminate may lift up from the adsorption plate, making it impossible to peel the heavy release film from the adhesive layer.
 本発明は、粘着剤層から剥離フィルムを良好に剥離することができる光学積層体の提供を目的とする。 The present invention aims to provide an optical laminate that allows the release film to be easily peeled off from the adhesive layer.
 本発明は、以下の光学積層体を提供する。
 〔1〕 光学フィルム、粘着剤層、及び、剥離フィルムをこの順に含む光学積層体であって、
 前記剥離フィルムは、前記粘着剤層に接する側に、シロキサン化合物を含む剥離処理面を有し、
 前記剥離フィルムの前記剥離処理面は、下記式(1)の関係を満たす、光学積層体。
  Ys/Xs×100≦3.5  (1)
[式(1)中、
 Xsは、前記剥離処理面のXPSスペクトル(Sr)において、結合エネルギーが96eV以上108eV以下の範囲での最大のピークPsの強度を表し、
 Ysは、前記ピークPsにおける結合エネルギーをEs[eV]とするとき、結合エネルギー(Es+2)eVにおける前記XPSスペクトル(Sr)の強度を表す。]
 〔2〕 前記粘着剤層の前記剥離フィルム側の表面は、下記式(2)の関係を満たす、〔1〕に記載の光学積層体。
  Ya/Xa×100≧2.0  (2)
[式(2)中、
 Xaは、前記粘着剤層の前記剥離フィルム側の表面のXPSスペクトル(Sa)において、結合エネルギーが96eV以上108eV以下の範囲での最大のピークPaの強度を表し、
 Yaは、前記ピークPaにおける結合エネルギーをEa[eV]とするとき、結合エネルギー(Ea+2)eVにおける前記XPSスペクトル(Sa)の強度を表す。]
 〔3〕 前記光学フィルムの厚みは、120μm以下である、〔1〕又は〔2〕に記載の光学積層体。
 〔4〕 前記光学フィルムは、少なくとも直線偏光層を含む偏光板である、〔1〕~〔3〕のいずれかに記載の光学積層体。
 〔5〕 前記偏光板は、さらに位相差層を含む、〔4〕に記載の光学積層体。
 〔6〕 前記光学フィルムは、前記偏光板に対して剥離可能に設けられた表面保護フィルムを含む、〔4〕又は〔5〕に記載の光学積層体。
The present invention provides the following optical laminate.
[1] An optical laminate comprising an optical film, a pressure-sensitive adhesive layer, and a release film in this order,
the release film has a release-treated surface containing a siloxane compound on a side in contact with the pressure-sensitive adhesive layer,
The release-treated surface of the release film satisfies the following formula (1):
Ys/Xs×100≦3.5 (1)
[In formula (1),
Xs represents the intensity of the maximum peak Ps in the binding energy range of 96 eV or more and 108 eV or less in the XPS spectrum (Sr) of the release treated surface,
Ys represents the intensity of the XPS spectrum (Sr) at a binding energy of (Es+2) eV, where Es [eV] is the binding energy at the peak Ps.
[2] The optical laminate according to [1], wherein the surface of the pressure-sensitive adhesive layer on the release film side satisfies the relationship of the following formula (2):
Ya / Xa × 100 ≧ 2.0 (2)
[In formula (2),
Xa represents the intensity of the maximum peak Pa in the binding energy range of 96 eV or more and 108 eV or less in the XPS spectrum (Sa) of the surface of the pressure-sensitive adhesive layer on the release film side,
Ya represents the intensity of the XPS spectrum (Sa) at a binding energy of (Ea+2) eV, where Ea [eV] is the binding energy at the peak Pa.
[3] The optical laminate according to [1] or [2], wherein the optical film has a thickness of 120 μm or less.
[4] The optical laminate according to any one of [1] to [3], wherein the optical film is a polarizing plate including at least a linear polarizing layer.
[5] The optical laminate according to [4], wherein the polarizing plate further includes a retardation layer.
[6] The optical laminate according to [4] or [5], wherein the optical film includes a surface protection film provided releasably on the polarizing plate.
 本発明の光学積層体によれば、粘着剤層から剥離フィルムを良好に剥離することができる。 The optical laminate of the present invention allows the release film to be easily peeled off from the pressure-sensitive adhesive layer.
本発明の一実施形態に係る光学積層体を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an optical laminate according to one embodiment of the present invention. 本発明の一実施形態に係る光学積層体の製造方法を示す概略断面図である。1 is a schematic cross-sectional view showing a method for producing an optical laminate according to one embodiment of the present invention.
 以下、図面を参照しつつ本発明の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。  Below, an embodiment of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiment.
 (光学積層体)
 図1は、本発明の一実施形態に係る光学積層体を示す概略断面図である。光学積層体1は、光学フィルム11、第1粘着剤層12(粘着剤層)、及び第1剥離フィルム15(剥離フィルム)をこの順に有する。第1粘着剤層12は通常、光学フィルム11及び第1剥離フィルム15に直接接している。
(Optical laminate)
1 is a schematic cross-sectional view showing an optical laminate according to one embodiment of the present invention. The optical laminate 1 has an optical film 11, a first pressure-sensitive adhesive layer 12 (pressure-sensitive adhesive layer), and a first release film 15 (release film) in this order. The first pressure-sensitive adhesive layer 12 is usually in direct contact with the optical film 11 and the first release film 15.
 光学フィルム11は、少なくとも直線偏光層を含む偏光板であってもよく、偏光板と位相差層とを含む偏光板であってもよい。光学フィルム11は、偏光板に対して剥離可能に設けられた表面保護フィルムを含んでいてもよい。 The optical film 11 may be a polarizing plate including at least a linear polarizing layer, or may be a polarizing plate including a polarizing plate and a retardation layer. The optical film 11 may include a surface protection film that is provided so as to be peelable from the polarizing plate.
 第1剥離フィルム15は、第1粘着剤層12に接する側に、シロキサン化合物を含む剥離処理面を有する。第1剥離フィルム15の剥離処理面は、下記式(1)の関係を満たす。
  Ys/Xs×100≦3.5  (1)
[式(1)中、
 Xsは、剥離処理面のXPSスペクトル(Sr)において、結合エネルギーが96eV以上108eV以下の範囲での最大のピークPsの強度を表し、
 Ysは、ピークPsにおける結合エネルギーをEs[eV]とするとき、結合エネルギー(Es+2)eVにおけるXPSスペクトル(Sr)の強度を表す。]
The first release film 15 has a release-treated surface containing a siloxane compound on the side in contact with the first pressure-sensitive adhesive layer 12. The release-treated surface of the first release film 15 satisfies the relationship of the following formula (1).
Ys/Xs×100≦3.5 (1)
[In formula (1),
Xs represents the intensity of the maximum peak Ps in the binding energy range of 96 eV or more and 108 eV or less in the XPS spectrum (Sr) of the release-treated surface,
Ys represents the intensity of the XPS spectrum (Sr) at a binding energy of (Es+2) eV, where Es [eV] is the binding energy at peak Ps.
 結合エネルギー(Es+2)eVは、XPSスペクトル(Sr)において、ピークPsにおける結合エネルギーEsの位置から、高エネルギー側に2eV移動した位置の結合エネルギーを意味する。 The binding energy (Es+2) eV refers to the binding energy at a position 2 eV shifted toward higher energy from the position of the binding energy Es at peak Ps in the XPS spectrum (Sr).
 結合エネルギーが96eV以上108eV以下の範囲での最大のピークPsは、主として、剥離処理面に含まれるシロキサン化合物のSi原子に2つのO原子が結合している構造(I)に由来すると考えられる。結合エネルギー(Es+2)eVにおけるXPSスペクトル(Sr)の強度Ysは、主として、剥離処理面に含まれるシロキサン化合物のSi原子に3つ以上のO原子が結合している構造(II)に由来すると考えられる。構造(I)は、剥離フィルムの剥離処理面(剥離処理層)を形成するために用いる剥離剤組成物の主剤であるシロキサン化合物に由来する構造と考えられる。構造(II)は、相対的に大きい剥離力を有する剥離フィルムを得るために、剥離剤組成物に添加される添加剤としてのシロキサン化合物に由来する構造と考えられる。したがって、式(1)における左辺(Ys/Xs×100)は、第1剥離フィルム15の剥離処理面におけるシロキサン化合物うちの、上記主剤であるシロキサン化合物の含量に対する上記添加剤であるシロキサン化合物の含量の割合を表すということができる。 The maximum peak Ps in the range of bond energy 96 eV to 108 eV is considered to be mainly derived from structure (I) in which two O atoms are bonded to the Si atom of the siloxane compound contained in the release treatment surface. The intensity Ys of the XPS spectrum (Sr) at the bond energy (Es+2) eV is considered to be mainly derived from structure (II) in which three or more O atoms are bonded to the Si atom of the siloxane compound contained in the release treatment surface. Structure (I) is considered to be a structure derived from the siloxane compound that is the main agent of the release agent composition used to form the release treatment surface (release treatment layer) of the release film. Structure (II) is considered to be a structure derived from the siloxane compound as an additive added to the release agent composition to obtain a release film with a relatively large release force. Therefore, it can be said that the left side (Ys/Xs×100) in formula (1) represents the ratio of the content of the siloxane compound that is the additive to the content of the siloxane compound that is the main agent among the siloxane compounds on the release treatment surface of the first release film 15.
 後述するように、光学積層体1は、例えば[i]光学フィルム11に、第2剥離フィルム25(図2)上に形成された第1粘着剤層12を積層した後、第2剥離フィルム25を剥離し、[ii]第2剥離フィルム25の剥離により露出した第1粘着剤層12上に、第2剥離フィルム25よりも剥離力が小さい第1剥離フィルム15を積層することにより、製造することができる。このような工程を経て得られた光学積層体1では、剥離フィルムの貼り替えに伴い、第1粘着剤層12に第2剥離フィルム25の剥離処理面(剥離処理層)を構成するシロキサン化合物が僅かに付着し、第1粘着剤層12に付着した当該シロキサン化合物が第1剥離フィルム15の剥離処理面にも付着すると考えられる。そのため、例えば、第1剥離フィルム15の剥離処理面(剥離処理層)が、剥離フィルムに相対的に大きい剥離力をもたらす構造(II)を有するシロキサン化合物を含んでいなくても、第2剥離フィルム25の剥離処理面(剥離処理層)が構造(II)を有するシロキサン化合物を含む剥離剤組成物によって形成されていると、第2剥離フィルム25から第1剥離フィルム15への貼り替えにより、第1剥離フィルム15の剥離処理面に、第2剥離フィルム25の剥離処理面に含まれる構造(II)を有するシロキサン化合物が付着すると考えられる。したがって、例えば上記したような剥離フィルムの貼り替えを伴って製造された光学積層体1では、第1剥離フィルム15の剥離処理面が上記式(1)の関係を満たすと考えられる。 As described below, the optical laminate 1 can be manufactured, for example, by [i] laminating a first adhesive layer 12 formed on a second release film 25 (FIG. 2) onto an optical film 11, then peeling off the second release film 25, and [ii] laminating a first release film 15 having a smaller peel strength than the second release film 25 onto the first adhesive layer 12 exposed by the peeling off of the second release film 25. In the optical laminate 1 obtained through such a process, when the release film is replaced, a small amount of the siloxane compound constituting the release treatment surface (release treatment layer) of the second release film 25 adheres to the first adhesive layer 12, and it is believed that the siloxane compound adhered to the first adhesive layer 12 also adheres to the release treatment surface of the first release film 15. Therefore, for example, even if the release treatment surface (release treatment layer) of the first release film 15 does not contain a siloxane compound having structure (II) that provides a relatively large release force to the release film, if the release treatment surface (release treatment layer) of the second release film 25 is formed from a release agent composition containing a siloxane compound having structure (II), it is considered that the siloxane compound having structure (II) contained in the release treatment surface of the second release film 25 will adhere to the release treatment surface of the first release film 15 by replacing the second release film 25 with the first release film 15. Therefore, for example, in the optical laminate 1 manufactured with the replacement of the release film as described above, it is considered that the release treatment surface of the first release film 15 satisfies the relationship of the above formula (1).
 式(1)中のYs/Xs×100は、3.50以下であってもよく、3.45以下であってもよく、3.40以下であってもよい。式(1)中のYs/Xs×100は通常、0.1以上であり、1.0以上であってもよく、2.0以上であってもよく、2.6以上であってもよい。強度Xs及び強度Ysは、後述する実施例に記載の方法によって測定することができる。 Ys/Xs x 100 in formula (1) may be 3.50 or less, 3.45 or less, or 3.40 or less. Ys/Xs x 100 in formula (1) is usually 0.1 or more, 1.0 or more, 2.0 or more, or 2.6 or more. The strengths Xs and Ys can be measured by the method described in the examples below.
 第1剥離フィルム15の剥離処理面が式(1)の関係を満たすことにより、光学積層体1は剥離力の小さい剥離フィルムを備えていると考えられる。そのため、吸着板に光学積層体1の光学フィルム11側を固定した状態で、光学積層体1から第1剥離フィルム15を剥離する際に、第1粘着剤層12と第1剥離フィルム15との間で第1剥離フィルム15を分離させやすくなる。 It is believed that the optical laminate 1 is provided with a release film with a small peeling force because the release-treated surface of the first release film 15 satisfies the relationship of formula (1). Therefore, when the first release film 15 is peeled off from the optical laminate 1 with the optical film 11 side of the optical laminate 1 fixed to an adsorption plate, it becomes easier to separate the first release film 15 between the first adhesive layer 12 and the first release film 15.
 光学積層体1において、第1粘着剤層12の第1剥離フィルム15側の表面は、下記式(2)の関係を満たすことが好ましい。
  Ya/Xa×100≧2.0  (2)
[式(2)中、
 Xaは、第1粘着剤層12の第1剥離フィルム15側の表面のXPSスペクトル(Sa)において、結合エネルギーが96eV以上108eV以下の範囲での最大のピークPaの強度を表し、
 Yaは、ピークPaにおける結合エネルギーをEa[eV]とするとき、結合エネルギー(Ea+2)eVにおける前記XPSスペクトル(Sa)の強度を表す。]
In the optical laminate 1, the surface of the first pressure-sensitive adhesive layer 12 on the side of the first release film 15 preferably satisfies the relationship of the following formula (2).
Ya / Xa × 100 ≧ 2.0 (2)
[In formula (2),
Xa represents the intensity of the maximum peak Pa in the binding energy range of 96 eV or more and 108 eV or less in the XPS spectrum (Sa) of the surface of the first pressure-sensitive adhesive layer 12 on the side of the first release film 15,
Ya represents the intensity of the XPS spectrum (Sa) at a binding energy of (Ea+2) eV, where Ea [eV] is the binding energy at peak Pa.
 結合エネルギー(Ea+2)eVは、XPSスペクトル(Sa)において、ピークPaにおける結合エネルギーEaの位置から、高エネルギー側に2eV移動した位置の結合エネルギーを意味する。 The bond energy (Ea+2) eV refers to the bond energy at a position 2 eV higher than the bond energy Ea at peak Pa in the XPS spectrum (Sa).
 結合エネルギーが96eV以上108eV以下の範囲での最大のピークPaは、主として、第1粘着剤層12の第1剥離フィルム15側の表面に付着しているシロキサン化合物のSi原子に2つのO原子が結合している構造(I)に由来すると考えられる。結合エネルギー(Ea+2)eVにおけるXPSスペクトル(Sa)の強度は、主として、第1粘着剤層12の第1剥離フィルム15側の表面に付着しているシロキサン化合物のSi原子に3つ以上のO原子が結合している構造(II)に由来すると考えられる。構造(I)及び構造(II)をもたらすシロキサン化合物については、上記したとおりである。 The maximum peak Pa in the bond energy range of 96 eV to 108 eV is believed to be mainly due to structure (I) in which two O atoms are bonded to the Si atom of the siloxane compound attached to the surface of the first adhesive layer 12 facing the first release film 15. The intensity of the XPS spectrum (Sa) at a bond energy of (Ea+2) eV is believed to be mainly due to structure (II) in which three or more O atoms are bonded to the Si atom of the siloxane compound attached to the surface of the first adhesive layer 12 facing the first release film 15. The siloxane compounds that result in structure (I) and structure (II) are as described above.
 第1粘着剤層12の第1剥離フィルム15側の表面には、光学積層体1の製造工程において当該表面に積層された剥離フィルムの剥離処理面(剥離処理層)に含まれるシロキサン化合物が僅かに付着していると考えられる。上記したように、光学積層体1が剥離フィルムの貼り替えを伴って製造される場合、第1粘着剤層12の第1剥離フィルム15側の表面には、貼り替え前に積層されていた第2剥離フィルム25(図2)の剥離処理面(剥離処理層)を構成するシロキサン化合物も付着していると考えられる。そのため、第2剥離フィルム25の剥離処理面が、構造(II)を有するシロキサン化合物を含む剥離剤組成物によって形成されている場合、第2剥離フィルム25から第1剥離フィルム15への貼り替えを行っても、第1粘着剤層12の第1剥離フィルム15側の表面には、第2剥離フィルム25の剥離処理面に含まれる構造(II)を有するシロキサン化合物が残存していると考えられる。したがって、例えば、上記したような剥離フィルムの貼り替えを伴って製造された光学積層体1では、第1粘着剤層12の第1剥離フィルム15側の表面が上記式(2)の関係を満たすと考えられる。 It is believed that a small amount of the siloxane compound contained in the release treatment surface (release treatment layer) of the release film laminated on the surface during the manufacturing process of the optical laminate 1 adheres to the surface of the first adhesive layer 12 on the first release film 15 side. As described above, when the optical laminate 1 is manufactured with the replacement of the release film, it is believed that the siloxane compound constituting the release treatment surface (release treatment layer) of the second release film 25 (FIG. 2) that was laminated before the replacement also adheres to the surface of the first adhesive layer 12 on the first release film 15 side. Therefore, when the release treatment surface of the second release film 25 is formed from a release agent composition containing a siloxane compound having structure (II), even if the second release film 25 is replaced with the first release film 15, it is believed that the siloxane compound having structure (II) contained in the release treatment surface of the second release film 25 remains on the surface of the first adhesive layer 12 on the first release film 15 side. Therefore, for example, in the optical laminate 1 manufactured with the above-described replacement of the release film, it is considered that the surface of the first adhesive layer 12 on the side of the first release film 15 satisfies the relationship of the above formula (2).
 式(2)中のYa/Xa×100は、2.0以上であってもよく、2.5以上であってもよく、3.0以上であってもよく、3.4以上であってもよい。式(2)中のYa/Xa×100は通常、20以下であり、15以下であってもよく、10以下であってもよく、6.6以下であってもよい。強度Xa及び強度Yaは、後述する実施例に記載の方法によって測定することができる。 Ya/Xa×100 in formula (2) may be 2.0 or more, 2.5 or more, 3.0 or more, or 3.4 or more. Ya/Xa×100 in formula (2) is usually 20 or less, 15 or less, 10 or less, or 6.6 or less. The strengths Xa and Ya can be measured by the method described in the examples below.
 第1粘着剤層12の第1剥離フィルム15側の表面が式(2)の関係を満たすことにより、上記したように剥離フィルムの貼り替えを伴って光学積層体1が製造されたと考えることができる。そのため、吸着板に光学積層体1の光学フィルム11側を固定した状態で、光学積層体1から第1剥離フィルム15を剥離する際に、第1粘着剤層12と第1剥離フィルム15との間で第1剥離フィルム15を分離させやすくなる。 When the surface of the first adhesive layer 12 on the side of the first release film 15 satisfies the relationship of formula (2), it can be considered that the optical laminate 1 is manufactured by replacing the release film as described above. Therefore, when the first release film 15 is peeled off from the optical laminate 1 with the optical film 11 side of the optical laminate 1 fixed to the suction plate, it becomes easier to separate the first release film 15 between the first adhesive layer 12 and the first release film 15.
 光学積層体1は、第1剥離フィルム15を剥離し、露出した第1粘着剤層12によって、光学フィルム11を表示装置の表示素子に貼合することができる。表示装置は、特に限定されないが、液晶表示装置及び有機EL表示装置が挙げられる。表示装置は、スマートフォンやタブレット等の携帯端末であってもよく、テレビ、デジタルフォトフレーム、電子看板、測定器や計器類、事務用機器、医療機器、電算機器等であってもよい。 The optical laminate 1 can be attached to the display element of a display device by peeling off the first release film 15 and using the exposed first adhesive layer 12 to bond the optical film 11. The display device is not particularly limited, but examples include liquid crystal display devices and organic EL display devices. The display device may be a mobile terminal such as a smartphone or tablet, or may be a television, digital photo frame, electronic signboard, measuring device or gauge, office equipment, medical equipment, computing equipment, etc.
 (光学積層体の製造方法)
 図2は、本発明の一実施形態に係る光学積層体の製造方法を示す概略断面図である。本実施形態の光学積層体の製造方法は、光学フィルム11、第1粘着剤層12、及び、第1剥離フィルム15をこの順に含む光学積層体1の製造方法である。以下では、上記した光学積層体1を製造する製造方法について説明するが、当該製造方法によって製造される光学積層体はこれに限定されない。
(Method for producing optical laminate)
2 is a schematic cross-sectional view showing a method for producing an optical laminate according to one embodiment of the present invention. The method for producing an optical laminate according to this embodiment is a method for producing an optical laminate 1 including an optical film 11, a first pressure-sensitive adhesive layer 12, and a first release film 15 in this order. Hereinafter, a method for producing the optical laminate 1 described above will be described, but the optical laminate produced by this method is not limited thereto.
 光学積層体1の製造方法は、
 光学フィルム11に、第2剥離フィルム25の第2剥離処理面上に第1粘着剤層12を有する剥離フィルム付き粘着剤層21の第1粘着剤層12側を貼合して第1積層体2を得る工程と(図2の(c))、
 第1積層体2から第2剥離フィルム25を剥離する工程と(図2の(d))、
 第2剥離フィルム25を剥離して露出した第1粘着剤層12上に、第1剥離フィルム15の第1剥離処理面側を貼合して第2積層体3を得る工程と(図2の(e))、を含む。
The method for producing the optical laminate 1 includes the steps of:
a step of bonding the first pressure-sensitive adhesive layer 12 side of a pressure-sensitive adhesive layer 21 with a release film, the first pressure-sensitive adhesive layer 12 being provided on a second release-treated surface of a second release film 25, to the optical film 11 to obtain a first laminate 2 ((c) of FIG. 2);
a step of peeling off the second release film 25 from the first laminate 2 (FIG. 2(d));
The method includes a step of peeling off the second release film 25 and bonding the first release treated surface of the first release film 15 to the first adhesive layer 12 exposed thereby to obtain a second laminate 3 (FIG. 2 (e)).
 上記光学積層体1の製造方法において、第1剥離処理面及び第2剥離処理面はいずれも、ポリシロキサン化合物を含む。 In the manufacturing method of the optical laminate 1, both the first release treatment surface and the second release treatment surface contain a polysiloxane compound.
 上記の光学積層体1の製造方法において、第1剥離フィルム15と第1粘着剤層12との間の剥離力は、第2剥離フィルム25と第1粘着剤層12との間の剥離力よりも小さいことが好ましい。これにより、吸着板に光学積層体1の光学フィルム11側を固定した状態で、第1剥離フィルム15を剥離しやすい光学積層体1が得られやすくなる。 In the above-mentioned method for producing the optical laminate 1, it is preferable that the peeling force between the first release film 15 and the first adhesive layer 12 is smaller than the peeling force between the second release film 25 and the first adhesive layer 12. This makes it easier to obtain an optical laminate 1 from which the first release film 15 can be easily peeled off while the optical film 11 side of the optical laminate 1 is fixed to the suction plate.
 上記光学積層体1の製造方法は、
 第1積層体2から剥離した第2剥離フィルム25の第2剥離処理面、及び、第2積層体3から剥離した第1剥離フィルム15の第1剥離処理面は、下記式(3)及び式(4)の関係を満たすものであってもよい。
  Ys2/Xs2>Ys1/Xs1  (3)
  Ys1/Xs1×100≦3.5  (4)
[式(3)及び式(4)中、
 Xs2は、第2剥離処理面のXPSスペクトル(Sr2)において、結合エネルギーが96eV以上108eV以下の範囲での最大のピークPs2の強度を表し、
 Ys2は、ピークPs2における結合エネルギーをEs2[eV]とするとき、結合エネルギー(Es2+2)[eV]におけるXPSスペクトル(Sr2)の強度を表し、
 Xs1は、第1剥離処理面のXPSスペクトル(Sr1)において、結合エネルギーが96eV以上108eV以下の範囲での最大のピークPs1の強度を表し、
 Ys1は、ピークPs1における結合エネルギーをEs1[eV]とするとき、結合エネルギー(Es1+2)[eV]におけるXPSスペクトル(Sr1)の強度を表す。]
The method for producing the optical laminate 1 includes the steps of:
The second release treatment surface of the second release film 25 peeled off from the first laminate 2, and the first release treatment surface of the first release film 15 peeled off from the second laminate 3 may satisfy the relationships of the following formulas (3) and (4).
Ys2/Xs2>Ys1/Xs1 (3)
Ys1/Xs1×100≦3.5 (4)
[In formula (3) and formula (4),
Xs2 represents the intensity of the maximum peak Ps2 in the binding energy range of 96 eV or more and 108 eV or less in the XPS spectrum (Sr2) of the second release treatment surface,
Ys2 represents the intensity of the XPS spectrum (Sr2) at a binding energy (Es2+2) [eV] when the binding energy at peak Ps2 is Es2 [eV],
Xs1 represents the intensity of the maximum peak Ps1 in the binding energy range of 96 eV or more and 108 eV or less in the XPS spectrum (Sr1) of the first release treatment surface,
Ys1 represents the intensity of the XPS spectrum (Sr1) at a binding energy of (Es1+2) [eV] when the binding energy at peak Ps1 is Es1 [eV].
 結合エネルギー(Es2+2)eVは、XPSスペクトル(Sr2)において、ピークPs2における結合エネルギーEs2の位置から、高エネルギー側に2eV移動した位置の結合エネルギーを意味する。 The binding energy (Es2+2) eV refers to the binding energy at a position 2 eV shifted toward higher energy from the position of the binding energy Es2 at peak Ps2 in the XPS spectrum (Sr2).
 上記式(3)において、結合エネルギーが96eV以上108eV以下の範囲での最大のピークPs2は、主として、第2剥離フィルム25の第2剥離処理面に付着しているシロキサン化合物のSi原子に2つのO原子が結合している構造(I)に由来すると考えられる。結合エネルギー(Es2+2)eVにおけるXPSスペクトル(Sr2)の強度は、主として、第2剥離フィルム25の第2剥離処理面に付着しているシロキサン化合物のSi原子に3つ以上のO原子が結合している構造(II)に由来すると考えられる。構造(I)及び構造(II)をもたらすシロキサン化合物については、上記したとおりである。上記式(3)を満たす第2剥離処理面は、構造(I)を有するシロキサン化合物に加えて、構造(II)を有し、剥離フィルムに相対的に大きい剥離力をもたらすシロキサン化合物を含む剥離剤組成物によって形成されていると考えられる。 In the above formula (3), the maximum peak Ps2 in the range of bond energies of 96 eV to 108 eV is believed to be mainly derived from structure (I) in which two O atoms are bonded to the Si atom of the siloxane compound attached to the second release treatment surface of the second release film 25. The intensity of the XPS spectrum (Sr2) at the bond energy (Es2+2) eV is believed to be mainly derived from structure (II) in which three or more O atoms are bonded to the Si atom of the siloxane compound attached to the second release treatment surface of the second release film 25. The siloxane compounds that provide structures (I) and (II) are as described above. The second release treatment surface that satisfies the above formula (3) is believed to be formed by a release agent composition that includes, in addition to a siloxane compound having structure (I), a siloxane compound having structure (II) that provides a relatively large release force to the release film.
 上記式(3)及び式(4)において、結合エネルギー(Es1+2)、ピークPs1、及び、結合エネルギー(Es1+2)eVにおけるXPSスペクトル(Sr1)の強度Ys2については、それぞれ上記式(1)の結合エネルギー(Es+2)、ピークPs、及び、強度Ysで説明したとおりである。第1剥離フィルム15の第1剥離処理面には、第2剥離フィルム25から第1剥離フィルム15への貼り替えに伴い、第2剥離フィルム25の第2剥離処理面を構成するシロキサン化合物(構造(II)を有し、相対的に大きい剥離力をもたらす添加剤としてのシロキサン化合物)も僅かに付着している。そのため、第1剥離処理面は、上記式(4)の関係を満たすと考えられ、上記で説明した式(1)の関係を満たす光学積層体1を製造することができる。 In the above formulas (3) and (4), the bond energy (Es1+2), peak Ps1, and intensity Ys2 of the XPS spectrum (Sr1) at the bond energy (Es1+2) eV are as described for the bond energy (Es+2), peak Ps, and intensity Ys in the above formula (1). When the second release film 25 is replaced with the first release film 15, a small amount of the siloxane compound (having structure (II) and serving as an additive that provides a relatively large peeling force) constituting the second release treated surface of the second release film 25 also adheres to the first release treated surface of the first release film 15. Therefore, the first release treated surface is considered to satisfy the relationship of the above formula (4), and an optical laminate 1 that satisfies the relationship of the above-described formula (1) can be manufactured.
 光学積層体1の製造方法において上記式(3)及び式(4)の関係を満たすことにより、剥離力が相対的に大きい第2剥離フィルム25から剥離力が相対的に小さい第1剥離フィルム15への貼り替えを伴って光学積層体1が製造されたと考えることができる。そのため、上記の光学積層体1の製造方法によれば、吸着板に光学積層体1の光学フィルム11側を固定した状態で、第1粘着剤層12と第1剥離フィルム15との間で第1剥離フィルム15を分離して剥離させやすい光学積層体1を製造することができる。 By satisfying the relationship between formula (3) and formula (4) in the manufacturing method of the optical laminate 1, it can be considered that the optical laminate 1 is manufactured by replacing the second release film 25, which has a relatively large peeling force, with the first release film 15, which has a relatively small peeling force. Therefore, according to the manufacturing method of the optical laminate 1 described above, it is possible to manufacture an optical laminate 1 in which the first release film 15 can be easily separated and peeled off between the first adhesive layer 12 and the first release film 15 with the optical film 11 side of the optical laminate 1 fixed to the suction plate.
 式(3)中のYs2/Xs2に100を乗じた値(Ys2/Xs2×100)は、3.6以上であってもよく、4.0以上であってもよく、5.0以上であってもよく、また、15.0以下であってもよく、12.5以下であってもよく、10.0以下であってもよい。強度Xs2及び強度Ys2は、後述する実施例に記載の方法によって測定することができる。 The value obtained by multiplying Ys2/Xs2 in formula (3) by 100 (Ys2/Xs2 x 100) may be 3.6 or more, 4.0 or more, or 5.0 or more, or 15.0 or less, 12.5 or less, or 10.0 or less. The strengths Xs2 and Ys2 can be measured by the method described in the examples below.
 式(4)中のYs1/Xs1×100は、3.50以下であってもよく、3.45以下であってもよく、3.40以下であってもよく、また、通常0.1以上であり、1.0以上であってもよく、2.0以上であってもよく、2.6以上であってもよい。強度Xs1及び強度Ys1は、後述する実施例に記載の方法によって測定することができる。 In formula (4), Ys1/Xs1×100 may be 3.50 or less, 3.45 or less, or 3.40 or less, and is usually 0.1 or more, 1.0 or more, 2.0 or more, or 2.6 or more. The strengths Xs1 and Ys1 can be measured by the method described in the examples below.
 上記光学積層体1の製造方法は、
 第1積層体2から第2剥離フィルム25を剥離して露出した第1粘着剤層12の表面である第2露出表面、及び、第2積層体3から第1剥離フィルム15を剥離して露出した第1粘着剤層12の表面である第1露出表面は、下記式(5)及び式(6)の関係を満たすものであってもよい。第2露出表面は、上記第1粘着剤層12の第2剥離フィルム25側の表面であり、第1露出表面は、第1粘着剤層12の第1剥離フィルム15側の表面である。
  Ya2/Xa2>Ya1/Xa1  (5)
  Ya1/Xa1×100≧2.0  (6)
[式(5)及び式(6)中、
 Xa2は、第2露出表面のXPSスペクトル(Sa2)において、結合エネルギーが96eV以上108eV以下の範囲での最大のピークPa2の強度を表し、
 Ya2は、ピークPa2における結合エネルギーをEa2[eV]とするとき、結合エネルギー(Ea2+2)eVにおける前記XPSスペクトル(Sa2)の強度を表す。
 Xa1は、第1露出表面のXPSスペクトル(Sa1)において、結合エネルギーが96eV以上108eV以下の範囲での最大のピークPa1の強度を表し、
 Ya1は、ピークPa1における結合エネルギーをEa1[eV]とするとき、結合エネルギー(Ea1+2)eVにおける前記XPSスペクトル(Sa1)の強度を表す。]
The method for producing the optical laminate 1 includes the steps of:
The second exposed surface, which is the surface of the first pressure-sensitive adhesive layer 12 exposed by peeling the second release film 25 from the first laminate 2, and the first exposed surface, which is the surface of the first pressure-sensitive adhesive layer 12 exposed by peeling the first release film 15 from the second laminate 3, may satisfy the relationships of the following formulas (5) and (6). The second exposed surface is the surface of the first pressure-sensitive adhesive layer 12 on the second release film 25 side, and the first exposed surface is the surface of the first pressure-sensitive adhesive layer 12 on the first release film 15 side.
Ya2/Xa2>Ya1/Xa1 (5)
Ya1 / Xa1 × 100 ≧ 2.0 (6)
[In formula (5) and formula (6),
Xa2 represents the intensity of the maximum peak Pa2 in the binding energy range of 96 eV or more and 108 eV or less in the XPS spectrum (Sa2) of the second exposed surface,
Ya2 represents the intensity of the XPS spectrum (Sa2) at a binding energy of (Ea2+2) eV, where Ea2 [eV] is the binding energy at peak Pa2.
Xa1 represents the intensity of the maximum peak Pa1 in the binding energy range of 96 eV or more and 108 eV or less in the XPS spectrum (Sa1) of the first exposed surface,
Ya1 represents the intensity of the XPS spectrum (Sa1) at a binding energy of (Ea1+2) eV, where Ea1 [eV] is the binding energy at peak Pa1.
 結合エネルギー(Ea2+2)eVは、XPSスペクトル(Sa2)において、ピークPa2における結合エネルギーEa2の位置から、高エネルギー側に2eV移動した位置の結合エネルギーを意味する。 The bond energy (Ea2+2) eV refers to the bond energy at a position 2 eV higher than the bond energy Ea2 at peak Pa2 in the XPS spectrum (Sa2).
 上記式(5)において、結合エネルギーが96eV以上108eV以下の範囲での最大のピークPa2は、主として、第1粘着剤層12の第2露出表面に付着しているシロキサン化合物のSi原子に2つのO原子が結合している構造(I)に由来すると考えられる。結合エネルギー(Es2+2)eVにおけるXPSスペクトル(Sr2)の強度は、主として、第2露出表面に付着しているシロキサン化合物のSi原子に3つ以上のO原子が結合している構造(II)に由来すると考えられる。第2露出表面には、第2剥離フィルムの第2剥離処理面に含まれるシロキサン化合物が僅かに付着していると考えられる。 In the above formula (5), the maximum peak Pa2 in the range of bond energies of 96 eV to 108 eV is believed to be mainly due to structure (I) in which two O atoms are bonded to the Si atom of the siloxane compound attached to the second exposed surface of the first adhesive layer 12. The intensity of the XPS spectrum (Sr2) at a bond energy of (Es2+2) eV is believed to be mainly due to structure (II) in which three or more O atoms are bonded to the Si atom of the siloxane compound attached to the second exposed surface. A small amount of the siloxane compound contained in the second release treatment surface of the second release film is believed to be attached to the second exposed surface.
 上記式(5)及び式(6)において、結合エネルギー(Ea1+2)、ピークPa1、及び、結合エネルギー(Ea1+2)eVにおけるXPSスペクトル(Sa1)の強度Ya1については、それぞれ上記式(2)の結合エネルギー(Ea+2)、ピークPa、及び、強度Yaで説明したとおりである。光学積層体1の製造方法では第2剥離フィルム25から第1剥離フィルム15への貼り替えを伴うものの、第1粘着剤層12の第1露出表面には、第2剥離フィルム25の第2剥離処理面を構成するシロキサン化合物(構造(II)を有し、相対的に大きい剥離力をもたらす添加剤としてのシロキサン化合物)が残存している。そのため、上記の剥離フィルムの貼り替えにより、第2露出表面と第1露出表面とは式(5)の関係を満たし、第1露出表面は式(6)の関係を満たすと考えられる。 In the above formulas (5) and (6), the bond energy (Ea1+2), peak Pa1, and intensity Ya1 of the XPS spectrum (Sa1) at the bond energy (Ea1+2) eV are as described for the bond energy (Ea+2), peak Pa, and intensity Ya in the above formula (2). Although the manufacturing method of the optical laminate 1 involves replacing the second release film 25 with the first release film 15, the siloxane compound (having structure (II) and serving as an additive that provides a relatively large release force) constituting the second release treatment surface of the second release film 25 remains on the first exposed surface of the first adhesive layer 12. Therefore, it is considered that by replacing the release film, the second exposed surface and the first exposed surface satisfy the relationship of formula (5), and the first exposed surface satisfies the relationship of formula (6).
 光学積層体1の製造方法において上記式(5)及び式(6)の関係を満たすことにより、剥離力が相対的に大きい第2剥離フィルム25から剥離力が相対的に小さい第1剥離フィルム15への貼り替えを伴って光学積層体1が製造されたと考えることができる。そのため、上記の光学積層体1の製造方法によれば、吸着板に光学積層体1の光学フィルム11側を固定した状態で、第1粘着剤層12と第1剥離フィルム15との間で第1剥離フィルム15を分離して剥離させやすい光学積層体1を製造することができる。 By satisfying the relationship between formula (5) and formula (6) in the manufacturing method of the optical laminate 1, it can be considered that the optical laminate 1 is manufactured by replacing the second release film 25, which has a relatively large peeling force, with the first release film 15, which has a relatively small peeling force. Therefore, according to the manufacturing method of the optical laminate 1 described above, it is possible to manufacture an optical laminate 1 in which the first release film 15 can be easily separated and peeled off between the first adhesive layer 12 and the first release film 15 with the optical film 11 side of the optical laminate 1 fixed to the suction plate.
 式(5)中のYa2/Xa2に100を乗じた値(Ya2/Xa2×100)は、例えば、20以下であってもよく、18以下であってもよく、15以下であってもよく、また、6.7以上であってもよく、7.0以上であってもよく、8.0以上であってもよい。強度Xa2及び強度Ya2は、後述する実施例に記載の方法によって測定することができる。 The value obtained by multiplying Ya2/Xa2 in formula (5) by 100 (Ya2/Xa2 x 100) may be, for example, 20 or less, 18 or less, 15 or less, 6.7 or more, 7.0 or more, or 8.0 or more. The strengths Xa2 and Ya2 can be measured by the method described in the examples below.
 式(6)中のYa1/Xa1×100は、2.0以上であってもよく、2.5以上であってもよく、3.0以上であってもよく、3.4以上であってもよく、また、20以下であってもよく、15以下であってもよく、10以下であってもよく、6.6以下であってもよい。強度Xa1及び強度Ya1は、後述する実施例に記載の方法によって測定することができる。 In formula (6), Ya1/Xa1×100 may be 2.0 or more, 2.5 or more, 3.0 or more, 3.4 or more, 20 or less, 15 or less, 10 or less, or 6.6 or less. The strengths Xa1 and Ya1 can be measured by the method described in the examples below.
 上記の光学積層体1の製造方法は、さらに、剥離フィルム付き粘着剤層の第1粘着剤層12側に、第3剥離フィルム26の剥離処理面側が積層されている粘着シート20から、第3剥離フィルム26を剥離することにより、剥離フィルム付き粘着剤層21を得る工程(図2の(a)及び(b))を含むことが好ましい。粘着シート20は、第2剥離フィルム25/第1粘着剤層12/第3剥離フィルム26の層構造を有する。 The manufacturing method of the optical laminate 1 described above preferably further includes a step ((a) and (b) in FIG. 2) of obtaining an adhesive layer with a release film 21 by peeling off a third release film 26 from an adhesive sheet 20 in which the release treatment side of the third release film 26 is laminated on the first adhesive layer 12 side of the adhesive layer with a release film. The adhesive sheet 20 has a layer structure of the second release film 25/first adhesive layer 12/third release film 26.
 上記で用いる粘着シート20において、第3剥離フィルム26と第1粘着剤層12との間の剥離力は、第2剥離フィルム25と第1粘着剤層12との間の剥離力よりも小さいことが好ましい。粘着シート20において、第1粘着剤層12の両面に設けられる剥離フィルムの剥離力が同じである場合、剥離フィルムを剥離しようとすると、第1粘着剤層12が引裂かれて剥離フィルムを良好に剥離できないことがある。上記のように第1粘着剤層12の両面に設けられる第2剥離フィルム25と第3剥離フィルム26との間で、剥離力が異なっていることにより、粘着シート20から第3剥離フィルム26を剥離する際に第1粘着剤層12が引裂かれることを抑制することができる。これにより、粘着シート20から第3剥離フィルム26を良好に剥離して、剥離フィルム付き粘着剤層21を得ることができる。 In the adhesive sheet 20 used above, the peeling force between the third release film 26 and the first adhesive layer 12 is preferably smaller than the peeling force between the second release film 25 and the first adhesive layer 12. In the adhesive sheet 20, if the release films provided on both sides of the first adhesive layer 12 have the same peeling force, the first adhesive layer 12 may be torn when attempting to peel the release film, and the release film may not be peeled off properly. As described above, the peeling force is different between the second release film 25 and the third release film 26 provided on both sides of the first adhesive layer 12, so that the first adhesive layer 12 can be prevented from being torn when the third release film 26 is peeled off from the adhesive sheet 20. This allows the third release film 26 to be peeled off properly from the adhesive sheet 20, and the adhesive layer 21 with the release film can be obtained.
 剥離フィルム付き粘着剤層21が光学フィルム11の片面に貼合されることにより、第1積層体2が得られる(図2の(c))。第1積層体2は、光学フィルム11/第1粘着剤層12/第2剥離フィルム25の層構造を有する。第1積層体2から第2剥離フィルム25を剥離して(図2の(d))、露出した第1粘着剤層12上に、第1剥離フィルム15の第1剥離処理面側を貼合することにより、第2積層体3が得られる(図2の(e))。第2積層体3は、光学フィルム11/第1粘着剤層12/第1剥離フィルム15の層構造を有する。第2積層体3は、光学積層体1であってもよい。 The first laminate 2 is obtained by laminating the adhesive layer 21 with a release film to one side of the optical film 11 (FIG. 2(c)). The first laminate 2 has a layer structure of optical film 11/first adhesive layer 12/second release film 25. The second release film 25 is peeled off from the first laminate 2 (FIG. 2(d)), and the first release treatment surface of the first release film 15 is laminated onto the exposed first adhesive layer 12 to obtain the second laminate 3 (FIG. 2(e)). The second laminate 3 has a layer structure of optical film 11/first adhesive layer 12/first release film 15. The second laminate 3 may be the optical laminate 1.
 以下、光学積層体を構成する各層の詳細について説明する。
 (第1剥離フィルム(剥離フィルム))
 第1剥離フィルム15は、光学積層体1が有する第1粘着剤層12に対して剥離可能に設けられ、第1粘着剤層12を被覆保護する。第1剥離フィルム15は、基材層と、剥離処理面を構成する剥離処理層とを有することができる。基材層は樹脂フィルムであってもよい。樹脂フィルムは、例えば後述する保護層としての保護フィルムを形成するために用いる熱可塑性樹脂として説明する樹脂材料を用いたフィルムを使用できる。
Hereinafter, each layer constituting the optical laminate will be described in detail.
(First Release Film (Release Film))
The first release film 15 is provided releasably with respect to the first pressure-sensitive adhesive layer 12 of the optical laminate 1, and covers and protects the first pressure-sensitive adhesive layer 12. The first release film 15 can have a base layer and a release treatment layer constituting a release treatment surface. The base layer may be a resin film. For example, the resin film can be a film using a resin material described as a thermoplastic resin used to form a protective film as a protective layer described later.
 第1剥離フィルム15が有する剥離処理層は、シロキサン化合物を含む剥離剤組成物によって形成することができる。当該剥離剤組成物は、Si原子に2つのO原子が結合している構造(I)を有するシロキサン化合物(主剤)を含み、Si原子に3つ以上のO原子が結合している構造(II)を有するシロキサン化合物(添加剤)を含まないことが好ましい。これにより、光学積層体1の第1粘着剤層12から、比較的小さい剥離力によって第1剥離フィルム15を剥離することができる。 The release treatment layer of the first release film 15 can be formed by a release agent composition containing a siloxane compound. The release agent composition preferably contains a siloxane compound (main agent) having a structure (I) in which two O atoms are bonded to a Si atom, and does not contain a siloxane compound (additive) having a structure (II) in which three or more O atoms are bonded to a Si atom. This allows the first release film 15 to be peeled off from the first adhesive layer 12 of the optical laminate 1 with a relatively small peeling force.
 構造(I)を有するシロキサン化合物としては、例えば、ジメチルポリシロキサンを基本骨格として有するシロキサン化合物が挙げられる。構造(II)を有するシロキサン化合物としては、シリコーンレジンが挙げられる。シリコーンレジンとしては、例えば、一官能シロキサン単位[RSiO1/2]であるM単位と、四官能シロキサン単位[SiO4/2]であるQ単位とを含むMQレジンが挙げられる。M単位中の3つのRは、それぞれ独立して、水素原子、水酸基、又は有機基を表し、この3つのRの1つ以上は、水酸基又はビニル基であることが好ましく、ビニル基であることがより好ましい。 The siloxane compound having structure (I) may be, for example, a siloxane compound having dimethylpolysiloxane as a basic skeleton. The siloxane compound having structure (II) may be, for example, a silicone resin. The silicone resin may be, for example, an MQ resin including an M unit which is a monofunctional siloxane unit [R 3 SiO 1/2 ] and a Q unit which is a tetrafunctional siloxane unit [SiO 4/2 ]. Each of the three R in the M unit independently represents a hydrogen atom, a hydroxyl group, or an organic group, and at least one of the three R is preferably a hydroxyl group or a vinyl group, more preferably a vinyl group.
 第1剥離フィルム15が有する剥離処理層を形成するための剥離剤組成物は、構造(I)を有するシロキサン化合物に加えて、有機溶媒等の溶媒、架橋剤、触媒、各種添加剤等を含むことができる。 The release agent composition for forming the release treatment layer of the first release film 15 can contain, in addition to the siloxane compound having structure (I), a solvent such as an organic solvent, a crosslinking agent, a catalyst, various additives, etc.
 第1剥離フィルム15は、基材層上に剥離剤組成物を塗布し、乾燥させることによって得ることができる。剥離剤組成物を塗布する方法としては、例えばバーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等が挙げられる。 The first release film 15 can be obtained by applying a release agent composition onto the substrate layer and drying it. Methods for applying the release agent composition include, for example, bar coating, knife coating, roll coating, blade coating, die coating, and gravure coating.
 (第1粘着剤層(粘着剤層))
 第1粘着剤層12は、粘着剤組成物を用いて形成することができる。粘着剤組成物は、それ自体を被着体に貼り付けることで接着性を発現するものであり、いわゆる感圧型接着剤と称されるものである。
(First Pressure-Sensitive Adhesive Layer (Pressure-Sensitive Adhesive Layer))
The first pressure-sensitive adhesive layer 12 can be formed using a pressure-sensitive adhesive composition. The pressure-sensitive adhesive composition exhibits adhesive properties when attached to an adherend, and is a so-called pressure-sensitive adhesive.
 第1粘着剤層12の厚みは、5μm以上であることが好ましく、10μm以上であってもよく、15μm以上であってもよく、20μm以上であってもよく、また、100μm以下であることが好ましく、80μm以下であってもよく、75μm以下であってもよく、70μm以下であってもよい。 The thickness of the first adhesive layer 12 is preferably 5 μm or more, may be 10 μm or more, may be 15 μm or more, or may be 20 μm or more, and is preferably 100 μm or less, may be 80 μm or less, may be 75 μm or less, or may be 70 μm or less.
 第1粘着剤層12は、例えば、粘着剤組成物それ自体又は粘着剤組成物の有機溶剤希釈液を剥離フィルム(例えば、第2剥離フィルム25)の剥離処理面上に塗布し、乾燥させることにより形成することができる。粘着剤組成物又はその有機溶剤希釈液を塗布する方法としては、例えばバーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等が挙げられる。 The first adhesive layer 12 can be formed, for example, by applying the adhesive composition itself or a diluted solution of the adhesive composition in an organic solvent onto the release-treated surface of a release film (e.g., the second release film 25) and drying it. Methods for applying the adhesive composition or its diluted solution in an organic solvent include, for example, bar coating, knife coating, roll coating, blade coating, die coating, gravure coating, etc.
 粘着剤組成物は、公知の光学的な透明性に優れる粘着剤組成物を用いることができる。公知の粘着剤組成物としては、例えば、(メタ)アクリルポリマー、ウレタンポリマー、シリコーンポリマー、ポリビニルエーテル等のベースポリマーを含有する粘着剤組成物を用いることができる。また、粘着剤組成物は、活性エネルギー線硬化型粘着剤、又は、熱硬化型粘着剤等であってもよい。これらの中でも、透明性、粘着力、再剥離性(リワーク性)、耐候性、耐熱性等に優れるアクリル樹脂をベースポリマーとした粘着剤組成物が好適である。第1粘着剤層は、(メタ)アクリルポリマー、架橋剤、シランカップリング剤を含む粘着剤組成物から構成されることが好ましく、その他の成分を含んでいてもよい。「(メタ)アクリル」とは、アクリル及びメタクリルのうちの少なくとも一方を表す。その他の「(メタ)」を付した用語においても同様である。 The adhesive composition may be a publicly known adhesive composition having excellent optical transparency. As the publicly known adhesive composition, for example, an adhesive composition containing a base polymer such as a (meth)acrylic polymer, a urethane polymer, a silicone polymer, or a polyvinyl ether may be used. The adhesive composition may be an active energy ray curable adhesive or a heat curable adhesive. Among these, an adhesive composition having an acrylic resin as a base polymer, which is excellent in transparency, adhesive strength, removability (reworkability), weather resistance, heat resistance, etc., is preferable. The first adhesive layer is preferably composed of an adhesive composition containing a (meth)acrylic polymer, a crosslinking agent, and a silane coupling agent, and may contain other components. "(Meth)acrylic" refers to at least one of acrylic and methacrylic. The same applies to other terms with "(meth)".
 (メタ)アクリルポリマーは、炭素数が1以上24以下のアルキル基を有する(メタ)アクリル酸アルキルエステル(モノマー)に由来する構成単位を含むことが好ましい。アルキル基は、直鎖状であってもよく、分岐鎖状であってもよい。上記アルキル基を有する(メタ)アクリル酸アルキルエステルとしては、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸ドコシル等が挙げられる。上記(メタ)アクリル酸アルキルエステルは、1種のみを単独で用いてもよく、2種以上を併用してもよい。 The (meth)acrylic polymer preferably contains a structural unit derived from an alkyl (meth)acrylate ester (monomer) having an alkyl group with 1 to 24 carbon atoms. The alkyl group may be linear or branched. Examples of the alkyl (meth)acrylate ester having the above alkyl group include butyl (meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, methyl (meth)acrylate, ethyl (meth)acrylate, hexyl (meth)acrylate, octyl (meth)acrylate, isooctyl (meth)acrylate, lauryl (meth)acrylate, isononyl (meth)acrylate, isodecyl (meth)acrylate, tridecyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, stearyl (meth)acrylate, and docosyl (meth)acrylate. The above alkyl (meth)acrylate esters may be used alone or in combination of two or more.
 (メタ)アクリルポリマーの全構成単位に対する上記アルキル基を有する(メタ)アクリル酸アルキルエステルに由来する構成単位の含有量は、30質量%以上であることが好ましく、40質量%以上あってもよく、50質量%以上であってもよく、また、99質量%以下であってもよく、97質量%以下であってもよく、90質量%以下であってもよい。 The content of the constituent units derived from the (meth)acrylic acid alkyl ester having the above alkyl group relative to the total constituent units of the (meth)acrylic polymer is preferably 30% by mass or more, may be 40% by mass or more, may be 50% by mass or more, and may be 99% by mass or less, may be 97% by mass or less, or may be 90% by mass or less.
 (メタ)アクリルポリマーは、極性官能基を有するモノマーに由来する構成単位を含んでいてもよい。極性官能基としては、例えば水酸基、カルボキシル基、アミノ基、エポキシ基、及びアミド基等が挙げられる。 The (meth)acrylic polymer may contain a structural unit derived from a monomer having a polar functional group. Examples of the polar functional group include a hydroxyl group, a carboxyl group, an amino group, an epoxy group, and an amide group.
 極性官能基を有するモノマーとしては、
 (メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸2-(2-ヒドロキシエトキシ)エチル、(メタ)アクリル酸2-又は3-クロロ-2-ヒドロキシプロピル、ジエチレングリコールモノ(メタ)アクリレート等の水酸基を有する(メタ)アクリレート;
 (メタ)アクリル酸、クロトン酸、マレイン酸、イタコン酸、シトラコン酸、β-カルボキシエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸;
 (メタ)アクリル酸アミノエチル、(メタ)アクリル酸n-ブチルアミノエチル、(メタ)アクリル酸ジメチルアミノプロピル、(メタ)アクリル酸N,N-ジメチルアミノエチル等のアミノ基を有する(メタ)アクリレート;
 (メタ)アクリル酸(3,4-エポキシシクロヘキシル)メチル、(メタ)アクリル酸グリシジル等のエポキシ基を有する(メタ)アクリレート;
 (メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド等のアミド基を有する(メタ)アクリレート;
 (メタ)アクリロイルモルホリン、ビニルカプロラクタム、N-ビニル-2-ピロリドン、ビニルピリジン、テトラヒドロフルフリル(メタ)アクリレート等の複素環基を有するモノマー;
等が挙げられる。極性官能基を有するモノマーは、1種のみを単独で用いてもよく、2種以上を併用してもよい。
Examples of monomers having a polar functional group include:
(meth)acrylates having a hydroxyl group, such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 2-(2-hydroxyethoxy)ethyl (meth)acrylate, 2- or 3-chloro-2-hydroxypropyl (meth)acrylate, and diethylene glycol mono(meth)acrylate;
Ethylenically unsaturated carboxylic acids such as (meth)acrylic acid, crotonic acid, maleic acid, itaconic acid, citraconic acid, and β-carboxyethyl (meth)acrylate;
(meth)acrylates having an amino group, such as aminoethyl (meth)acrylate, n-butylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, and N,N-dimethylaminoethyl (meth)acrylate;
(meth)acrylates having an epoxy group, such as (3,4-epoxycyclohexyl)methyl (meth)acrylate and glycidyl (meth)acrylate;
(meth)acrylates having an amide group, such as (meth)acrylamide, N,N-dimethyl(meth)acrylamide, and N-methylol(meth)acrylamide;
Monomers having a heterocyclic group, such as (meth)acryloylmorpholine, vinylcaprolactam, N-vinyl-2-pyrrolidone, vinylpyridine, and tetrahydrofurfuryl (meth)acrylate;
The monomer having a polar functional group may be used alone or in combination of two or more kinds.
 (メタ)アクリルポリマーの全構成単位に対する極性官能基を有するモノマーに由来する構成単位の含有量は、5質量%以下であることが好ましく、2質量%以下であってもよく、1質量%以下であってもよい。 The content of structural units derived from monomers having polar functional groups relative to the total structural units of the (meth)acrylic polymer is preferably 5% by mass or less, may be 2% by mass or less, or may be 1% by mass or less.
 (メタ)アクリルポリマーは、上記したモノマーを混合し、重合開始剤等を添加して、モノマーを重合することによって得られる。重合開始剤は、重合方法によって選択すればよく、例えばカチオン重合開始剤又はラジカル重合開始剤が挙げられる。重合方法が光重合である場合には、光重合開始剤を用いることができる。光重合開始剤は、1種又は2種以上を用いることができる。 The (meth)acrylic polymer can be obtained by mixing the above-mentioned monomers, adding a polymerization initiator, etc., and polymerizing the monomers. The polymerization initiator can be selected depending on the polymerization method, and examples include cationic polymerization initiators and radical polymerization initiators. When the polymerization method is photopolymerization, a photopolymerization initiator can be used. One or more types of photopolymerization initiators can be used.
 粘着剤組成物が含んでいてもよい架橋剤としては、例えばイソシアネート系架橋剤、エポキシ系架橋剤、アミン系架橋剤、メラミン系架橋剤、アジリジン系架橋剤、ヒドラジン系架橋剤、アルデヒド系架橋剤、オキサゾリン系架橋剤、金属アルコキシド系架橋剤、金属キレート系架橋剤、金属塩系架橋剤、アンモニウム塩系架橋剤等が挙げられる。 Examples of crosslinking agents that may be included in the adhesive composition include isocyanate-based crosslinking agents, epoxy-based crosslinking agents, amine-based crosslinking agents, melamine-based crosslinking agents, aziridine-based crosslinking agents, hydrazine-based crosslinking agents, aldehyde-based crosslinking agents, oxazoline-based crosslinking agents, metal alkoxide-based crosslinking agents, metal chelate-based crosslinking agents, metal salt-based crosslinking agents, and ammonium salt-based crosslinking agents.
 粘着剤が含んでいてもよいシランカップリング剤としては、分子内にアルコキシシリル基を少なくとも1個有する有機ケイ素化合物が挙げられる。シランカップリング剤は、例えば、
 ビニルトリメトキシシラン、ビニルトリエトキシシラン、メタクリロキシプロピルトリメトキシシラン等の重合性不飽和基含有ケイ素化合物;
 3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ構造を有するケイ素化合物;
 3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルジメトキシメチルシラン等のメルカプト基含有ケイ素化合物;
 3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン等のアミノ基含有ケイ素化合物;
 3-クロロプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、あるいはこれらの少なくとも1つと、メチルトリエトキシシラン、エチルトリエトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン等のアルキル基含有ケイ素化合物との縮合物
等が挙げられる。
Examples of the silane coupling agent that may be contained in the pressure-sensitive adhesive include an organosilicon compound having at least one alkoxysilyl group in the molecule. Examples of the silane coupling agent include
Silicon compounds containing a polymerizable unsaturated group, such as vinyltrimethoxysilane, vinyltriethoxysilane, and methacryloxypropyltrimethoxysilane;
Silicon compounds having an epoxy structure, such as 3-glycidoxypropyltrimethoxysilane and 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane;
Mercapto group-containing silicon compounds such as 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, and 3-mercaptopropyldimethoxymethylsilane;
Amino group-containing silicon compounds such as 3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, and N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane;
Examples of the silane include 3-chloropropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, and condensates of at least one of these with alkyl group-containing silicon compounds such as methyltriethoxysilane, ethyltriethoxysilane, methyltrimethoxysilane, and ethyltrimethoxysilane.
 (第2剥離フィルム)
 第2剥離フィルム25は、光学積層体1を製造する際に作製する第1積層体2に含まれる第1粘着剤層12を被覆保護する。第2剥離フィルム25は、粘着シート20に含まれ、第1粘着剤層12を得る際に、第1粘着剤層12を形成するための粘着剤組成物が塗布されるフィルムであってもよい。
(Second Release Film)
The second release film 25 covers and protects the first pressure-sensitive adhesive layer 12 included in the first laminate 2 prepared when producing the optical laminate 1. The second release film 25 is included in the pressure-sensitive adhesive sheet 20, and may be a film to which a pressure-sensitive adhesive composition for forming the first pressure-sensitive adhesive layer 12 is applied when the first pressure-sensitive adhesive layer 12 is obtained.
 第2剥離フィルム25は、基材層と、剥離処理面を構成する剥離処理層とを有することができる。基材層は樹脂フィルムであってもよい。樹脂フィルムは、例えば後述する保護層としての保護フィルムを形成するために用いる熱可塑性樹脂として説明する樹脂材料を用いたフィルムを使用できる。 The second release film 25 can have a base layer and a release treatment layer that forms the release treatment surface. The base layer may be a resin film. The resin film can be, for example, a film made of a resin material described as a thermoplastic resin used to form a protective film as a protective layer, which will be described later.
 第2剥離フィルム25が有する剥離処理層は、シロキサン化合物を含む剥離剤組成物によって形成することができる。当該剥離剤組成物は、構造(I)を有するシロキサン化合物及び構造(II)を有するシロキサン化合物を含むことが好ましい。これらのシロキサン化合物としては、第1剥離フィルムで説明したシロキサン化合物が挙げられる。第2剥離フィルム25の離型処理層が上記剥離剤組成物によって形成されることにより、第2剥離フィルム25と第1粘着剤層12との間の剥離力を大きくすることができる。これにより、粘着シート20において、第1粘着剤層12と第2剥離フィルム25との間の剥離力を、第1粘着剤層12と第3剥離フィルム26との間の剥離力よりも大きくし、粘着シート20から第3剥離フィルム26を剥離しやすくすることができる。 The release treatment layer of the second release film 25 can be formed by a release agent composition containing a siloxane compound. The release agent composition preferably contains a siloxane compound having structure (I) and a siloxane compound having structure (II). Examples of these siloxane compounds include the siloxane compounds described for the first release film. By forming the release treatment layer of the second release film 25 from the release agent composition, the peel force between the second release film 25 and the first adhesive layer 12 can be increased. This makes it possible to make the peel force between the first adhesive layer 12 and the second release film 25 in the adhesive sheet 20 greater than the peel force between the first adhesive layer 12 and the third release film 26, making it easier to peel the third release film 26 from the adhesive sheet 20.
 第2剥離フィルム25が有する剥離処理層を形成するための剥離剤組成物は、上記したシロキサン化合物に加えて、有機溶媒等の溶媒、架橋剤、触媒、各種添加剤等を含むことができる。第2剥離フィルム25は、基材層上に剥離剤組成物を塗布し、乾燥させることによって得ることができる。剥離剤組成物を塗布する方法は、第1剥離フィルム15で説明した方法が挙げられる。 The release agent composition for forming the release treatment layer of the second release film 25 can contain, in addition to the siloxane compound described above, a solvent such as an organic solvent, a crosslinking agent, a catalyst, various additives, etc. The second release film 25 can be obtained by applying the release agent composition onto the substrate layer and drying it. Methods for applying the release agent composition include the methods described for the first release film 15.
 (第3剥離フィルム)
 第3剥離フィルム26は、粘着シート20に含まれ、粘着シート20を得る際に、第2剥離フィルム25上に形成された第1粘着剤層12に積層されるフィルムであってもよい。第3剥離フィルム26としては、第1剥離フィルム15で説明した剥離フィルムが挙げられる。
(Third Release Film)
The third release film 26 may be a film that is included in the pressure-sensitive adhesive sheet 20 and is laminated to the first pressure-sensitive adhesive layer 12 formed on the second release film 25 when obtaining the pressure-sensitive adhesive sheet 20. Examples of the third release film 26 include the release films described for the first release film 15.
 (粘着シート)
 粘着シート20は、第2剥離フィルム25/第1粘着剤層12/第3剥離フィルム26の層構造を有することができる。粘着シート20が上記した第2剥離フィルム25及び第3剥離フィルム26を含むことにより、第3剥離フィルム26と第1粘着剤層12との間の剥離力を、第2剥離フィルム25と第1粘着剤層12との間の剥離力よりも小さくすることができる。
(Adhesive sheet)
The adhesive sheet 20 can have a layer structure of second release film 25/first adhesive layer 12/third release film 26. By including the above-mentioned second release film 25 and third release film 26 in the adhesive sheet 20, the peel force between the third release film 26 and the first adhesive layer 12 can be made smaller than the peel force between the second release film 25 and the first adhesive layer 12.
 粘着シート20は、例えば次の手順で得ることができる。まず、第2剥離フィルム25及び第3剥離フィルム26のうちの一方の剥離フィルムの剥離処理面上に、第1粘着剤層12を形成するための粘着剤組成物それ自体又は粘着剤組成物の有機溶剤希釈液を塗布し、必要に応じて乾燥等することによって塗布層を形成する。次に、この塗布層上に、第2剥離フィルム25及び第3剥離フィルム26のうちの他方の剥離フィルムを、剥離処理面側が塗布層側となるように積層し、必要に応じて乾燥等することにより粘着シートを得る。粘着剤組成物又はその有機溶剤希釈液は、第2剥離フィルム25に塗布されることが好ましい。一方の剥離フィルム上に形成された塗布層が第1粘着剤層12であってもよいし、他方の剥離フィルムを積層する前又は後の乾燥処理等によって、塗布層から第1粘着剤層12が形成されてもよい。 The adhesive sheet 20 can be obtained, for example, by the following procedure. First, the adhesive composition itself or an organic solvent dilution of the adhesive composition for forming the first adhesive layer 12 is applied to the release treatment surface of one of the second release film 25 and the third release film 26, and a coating layer is formed by drying, etc., as necessary. Next, the other release film of the second release film 25 and the third release film 26 is laminated on this coating layer so that the release treatment surface side is the coating layer side, and an adhesive sheet is obtained by drying, etc., as necessary. The adhesive composition or its organic solvent dilution is preferably applied to the second release film 25. The coating layer formed on one release film may be the first adhesive layer 12, or the first adhesive layer 12 may be formed from the coating layer by drying treatment, etc., before or after laminating the other release film.
 粘着剤組成物又はその有機溶剤希釈液を塗布する方法としては、例えばバーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等が挙げられる。 Methods for applying the adhesive composition or its organic solvent dilution include, for example, bar coating, knife coating, roll coating, blade coating, die coating, gravure coating, etc.
 (光学フィルム)
 直線偏光層;直線偏光層の片面又は両面に保護層が設けられた直線偏光板;直線偏光層又は直線偏光板と1以上の位相差層とを含む円偏光板;直線偏光板及び円偏光板等の偏光板の片面に表面保護フィルムが設けられた表面保護フィルム付き偏光板;位相差層;位相差層の片面又は両面に保護層が設けられた位相差板;反射フィルム;半透過型反射フィルム;輝度向上フィルム;防眩機能付きフィルム等が挙げられ、これらのうち1種又は2種以上を組み合わせて用いてもよい。光学フィルムは、少なくとも直線偏光層を含むことが好ましく、直線偏光板又は円偏光板を含むことがより好ましい。円偏光板に含まれる位相差層のうちの少なくとも1つは、通常λ/4位相差層である。
(Optical film)
Examples of the optical film include a linear polarizing layer, a linear polarizing plate having a protective layer on one or both sides of the linear polarizing layer, a circular polarizing plate including a linear polarizing layer or a linear polarizing plate and one or more retardation layers, a polarizing plate having a surface protective film on one side of a polarizing plate such as a linear polarizing plate and a circular polarizing plate, a retardation layer, a retardation plate having a protective layer on one or both sides of the retardation layer, a reflective film, a semi-transmissive reflective film, a brightness improving film, and a film with an anti-glare function, and one or more of these may be used in combination. The optical film preferably includes at least a linear polarizing layer, and more preferably includes a linear polarizing plate or a circular polarizing plate. At least one of the retardation layers included in the circular polarizing plate is usually a λ/4 retardation layer.
 光学フィルム11の厚みは、150μm以下であることが好ましく、140μm以下であってもよく、130μm以下であってもよく、120μm以下であってもよく、通常10μm以上であり、20μm以上であってもよい。光学フィルム11の厚みが上記のように小さい場合、吸着板に光学フィルム側を固定した状態で、光学積層体から剥離フィルムを剥離しようとすると、吸着板から光学積層体が持ち上がり、粘着剤層と剥離フィルムとの間で分離できないことがある。本実施形態の光学積層体によれば、光学フィルム11の厚みが小さい場合であっても、光学積層体から第1剥離フィルム15を第1粘着剤層12から良好に分離して剥離することができる。 The thickness of the optical film 11 is preferably 150 μm or less, may be 140 μm or less, may be 130 μm or less, may be 120 μm or less, and is usually 10 μm or more, and may be 20 μm or more. When the thickness of the optical film 11 is small as described above, when an attempt is made to peel the release film from the optical laminate with the optical film side fixed to the suction plate, the optical laminate may lift up from the suction plate, and separation may not be possible between the adhesive layer and the release film. According to the optical laminate of this embodiment, even when the thickness of the optical film 11 is small, the first release film 15 can be satisfactorily separated and peeled from the first adhesive layer 12 from the optical laminate.
 (直線偏光層)
 直線偏光層は、無偏光の光を入射させたとき、吸収軸に直交する振動面をもつ直線偏光を透過させる性質を有する。直線偏光層は、ヨウ素が吸着配向しているポリビニルアルコール系樹脂フィルム(以下、「PVA系フィルム」ということがある。)であってもよく、吸収異方性及び液晶性を有する化合物を含む組成物を基材フィルムに塗布して形成した液晶性の偏光層を含むフィルムであってもよい。吸収異方性及び液晶性を有する化合物は、吸収異方性を有する色素と液晶性を有する化合物との混合物であってもよく、吸収異方性及び液晶性を有する色素であってもよい。
(Linear Polarizing Layer)
The linearly polarizing layer has a property of transmitting linearly polarized light having a vibration plane perpendicular to the absorption axis when non-polarized light is incident. The linearly polarizing layer may be a polyvinyl alcohol-based resin film (hereinafter, sometimes referred to as a "PVA-based film") in which iodine is adsorbed and oriented, or may be a film including a liquid crystal polarizing layer formed by applying a composition including a compound having absorption anisotropy and liquid crystallinity to a substrate film. The compound having absorption anisotropy and liquid crystallinity may be a mixture of a dye having absorption anisotropy and a compound having liquid crystallinity, or may be a dye having absorption anisotropy and liquid crystallinity.
 PVA系フィルムである直線偏光層は、例えば、ポリビニルアルコールフィルム、部分ホルマール化ポリビニルアルコールフィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等のPVA系フィルムに、ヨウ素による染色処理、及び延伸処理が施されたもの等が挙げられる。必要に応じて、染色処理によりヨウ素が吸着配向したPVA系フィルムをホウ酸水溶液で処理し、その後に、ホウ酸水溶液を洗い落とす洗浄工程を行ってもよい。各工程には公知の方法を採用できる。 The linear polarizing layer, which is a PVA-based film, may be, for example, a PVA-based film such as a polyvinyl alcohol film, a partially formalized polyvinyl alcohol film, or an ethylene-vinyl acetate copolymer partially saponified film, which has been dyed with iodine and stretched. If necessary, the PVA-based film to which iodine has been adsorbed and oriented by the dyeing process may be treated with an aqueous boric acid solution, followed by a washing process in which the aqueous boric acid solution is washed off. A known method may be used for each step.
 ポリビニルアルコール系樹脂(以下、「PVA系樹脂」ということがある。)は、ポリ酢酸ビニル系樹脂をケン化することにより製造できる。ポリ酢酸ビニル系樹脂は、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルと酢酸ビニルに共重合可能な他の単量体との共重合体であることもできる。酢酸ビニルに共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有するアクリルアミド類等が挙げられる。 Polyvinyl alcohol resins (hereinafter sometimes referred to as "PVA resins") can be produced by saponifying polyvinyl acetate resins. Polyvinyl acetate resins can be polyvinyl acetate, which is a homopolymer of vinyl acetate, or they can be copolymers of vinyl acetate and other monomers that can be copolymerized with vinyl acetate. Examples of other monomers that can be copolymerized with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides with ammonium groups.
 PVA系樹脂のケン化度は、通常85~100モル%程度であり、好ましくは98モル%以上である。PVA系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマールやポリビニルアセタール等も使用可能である。PVA系樹脂の平均重合度は、通常1,000~10,000程度であり、好ましくは1,500~5,000程度である。PVA系樹脂のケン化度及び平均重合度は、JIS K 6726(1994)に準拠して求めることができる。平均重合度が1000未満では好ましい偏光性能を得ることが困難であり、10000超ではフィルム加工性に劣ることがある。 The degree of saponification of PVA-based resins is usually about 85 to 100 mol%, and preferably 98 mol% or more. The PVA-based resin may be modified; for example, polyvinyl formal or polyvinyl acetal modified with aldehydes may be used. The average degree of polymerization of PVA-based resins is usually about 1,000 to 10,000, and preferably about 1,500 to 5,000. The degree of saponification and average degree of polymerization of PVA-based resins can be determined in accordance with JIS K 6726 (1994). If the average degree of polymerization is less than 1,000, it is difficult to obtain favorable polarizing performance, and if it exceeds 10,000, film processability may be poor.
 PVA系フィルムである直線偏光層の製造方法は、基材フィルムを用意し、基材フィルム上にPVA系樹脂等の樹脂の溶液を塗布し、溶媒を除去する乾燥等を行って基材フィルム上に樹脂層を形成する工程を含むものであってもよい。なお、基材フィルムの樹脂層が形成される面には、予めプライマー層を形成することができる。基材フィルムとしては、後述する保護層としての保護フィルムを形成するために用いる熱可塑性樹脂として説明する樹脂材料を用いたフィルムを使用できる。プライマー層の材料としては、直線偏光層に用いられる親水性樹脂を架橋した樹脂等を挙げることができる。 The manufacturing method of the linear polarizing layer, which is a PVA-based film, may include the steps of preparing a base film, applying a solution of a resin such as a PVA-based resin onto the base film, and performing drying or the like to remove the solvent to form a resin layer on the base film. A primer layer may be formed in advance on the surface of the base film on which the resin layer is to be formed. As the base film, a film using a resin material described below as a thermoplastic resin used to form a protective film as a protective layer can be used. As a material for the primer layer, a resin obtained by crosslinking a hydrophilic resin used in the linear polarizing layer can be mentioned.
 次いで、必要に応じて樹脂層の水分等の溶媒量を調整し、その後、基材フィルム及び樹脂層を一軸延伸し、続いて、樹脂層をヨウ素で染色してヨウ素を樹脂層に吸着配向させる。次に、必要に応じてヨウ素が吸着配向した樹脂層をホウ酸水溶液で処理し、その後に、ホウ酸水溶液を洗い落とす洗浄工程を行う。これにより、ヨウ素が吸着配向された樹脂層、すなわち、直線偏光層となるPVA系フィルムが製造される。各工程には公知の方法を採用できる。 Then, the amount of solvent such as water in the resin layer is adjusted as necessary, after which the base film and resin layer are uniaxially stretched, and then the resin layer is dyed with iodine to adsorb and align the iodine in the resin layer. Next, if necessary, the resin layer with iodine adsorbed and oriented is treated with an aqueous boric acid solution, followed by a washing step in which the aqueous boric acid solution is washed off. This produces a resin layer with iodine adsorbed and oriented, i.e., a PVA-based film that serves as a linear polarizing layer. Publicly known methods can be used for each step.
 ヨウ素が吸着配向したPVA系フィルム又は樹脂層を処理するホウ酸含有水溶液におけるホウ酸の量は、通常、水100質量部あたり、2~15質量部程度であり、5~12質量部が好ましい。このホウ酸含有水溶液はヨウ化カリウムを含有することが好ましい。ホウ酸含有水溶液におけるヨウ化カリウムの量は、通常、水100質量部あたり、0.1~15質量部程度であり、5~12質量部程度が好ましい。ホウ酸含有水溶液への浸漬時間は、通常、60~1,200秒程度であり、150~600秒程度が好ましく、200~400秒程度がより好ましい。ホウ酸含有水溶液の温度は、通常、50℃以上であり、50~85℃が好ましく、60~80℃がより好ましい。 The amount of boric acid in the boric acid-containing aqueous solution used to treat the PVA-based film or resin layer with iodine adsorbed and oriented is usually about 2 to 15 parts by mass, preferably 5 to 12 parts by mass, per 100 parts by mass of water. This boric acid-containing aqueous solution preferably contains potassium iodide. The amount of potassium iodide in the boric acid-containing aqueous solution is usually about 0.1 to 15 parts by mass, preferably about 5 to 12 parts by mass, per 100 parts by mass of water. The immersion time in the boric acid-containing aqueous solution is usually about 60 to 1,200 seconds, preferably about 150 to 600 seconds, and more preferably about 200 to 400 seconds. The temperature of the boric acid-containing aqueous solution is usually 50°C or higher, preferably 50 to 85°C, and more preferably 60 to 80°C.
 PVA系フィルム、並びに、基材フィルム及び樹脂層の一軸延伸は、染色の前に行ってもよいし、染色中に行ってもよいし、染色後のホウ酸処理中に行ってもよく、これら複数の段階においてそれぞれ一軸延伸を行ってもよい。PVA系フィルム、並びに、基材フィルム及び樹脂層は、MD方向(フィルム搬送方向)に一軸延伸してもよく、この場合、周速の異なるロール間で一軸に延伸してもよいし、熱ロールを用いて一軸に延伸してもよい。また、PVA系フィルム、並びに、基材フィルム及び樹脂層は、TD方向(フィルム搬送方向に垂直な方向)に一軸延伸してもよく、この場合、いわゆるテンター法を使用することができる。また、上記延伸は、大気中で延伸を行う乾式延伸であってもよいし、溶剤にてPVA系フィルム又は樹脂層を膨潤させた状態で延伸を行う湿式延伸であってもよい。直線偏光層の性能を発現するためには延伸倍率は4倍以上であり、5倍以上であることが好ましく、特に5.5倍以上が好ましい。延伸倍率の上限は特にないが、破断等を抑制する観点から8倍以下が好ましい。 The uniaxial stretching of the PVA-based film, the substrate film, and the resin layer may be performed before dyeing, during dyeing, or during the boric acid treatment after dyeing. Uniaxial stretching may be performed at each of these multiple stages. The PVA-based film, the substrate film, and the resin layer may be uniaxially stretched in the MD direction (film transport direction). In this case, they may be uniaxially stretched between rolls with different peripheral speeds, or may be uniaxially stretched using a heated roll. The PVA-based film, the substrate film, and the resin layer may be uniaxially stretched in the TD direction (direction perpendicular to the film transport direction). In this case, the so-called tenter method can be used. The above stretching may be dry stretching in which stretching is performed in the air, or wet stretching in which stretching is performed in a state in which the PVA-based film or the resin layer is swollen with a solvent. In order to express the performance of the linearly polarizing layer, the stretching ratio is 4 times or more, preferably 5 times or more, and particularly preferably 5.5 times or more. There is no particular upper limit to the stretch ratio, but it is preferably 8 times or less to prevent breakage, etc.
 基材フィルムを用いる製造方法で作製した直線偏光層は、保護層を積層した後に基材フィルムを剥離することで得ることができる。この方法によれば、直線偏光層のさらなる薄膜化が可能となる。 The linearly polarizing layer produced by the manufacturing method using a substrate film can be obtained by laminating a protective layer and then peeling off the substrate film. This method makes it possible to further reduce the thickness of the linearly polarizing layer.
 PVA系フィルムである直線偏光層の厚みは、1μm以上であることが好ましく、2μm以上であってもよく、5μm以上であってもよく、また、30μm以下であることが好ましく、15μm以下であることがより好ましく、10μm以下であってもよく、8μm以下であってもよい。 The thickness of the linearly polarizing layer, which is a PVA-based film, is preferably 1 μm or more, may be 2 μm or more, or may be 5 μm or more, and is preferably 30 μm or less, more preferably 15 μm or less, may be 10 μm or less, or may be 8 μm or less.
 液晶性の直線偏光層を含むフィルムは、液晶性及び吸収異方性を有する色素を含む組成物、又は、吸収異方性を有する色素と重合性液晶とを含む組成物を基材フィルムに塗布して得られる直線偏光層が挙げられる。液晶性の直線偏光層は、重合性液晶化合物の硬化物であることができ、配向層を含んでいてもよい。配向層としては、後述する位相差層に含まれる配向層が挙げられる。液晶性の直線偏光層を含むフィルムは、液晶性の直線偏光層であってもよく、液晶性の直線偏光層と基材フィルムとの積層構造を有していてもよい。基材フィルムとしては、例えば後述する保護層としての保護フィルムを形成するために用いる熱可塑性樹脂として説明する樹脂材料を用いたフィルムが挙げられる。液晶性の直線偏光層を含むフィルムとしては、例えば特開2013-33249号公報等に記載の偏光層が挙げられる。 The film containing a liquid crystal linear polarizing layer may be a linear polarizing layer obtained by applying a composition containing a dye having liquid crystallinity and absorption anisotropy, or a composition containing a dye having absorption anisotropy and a polymerizable liquid crystal, to a substrate film. The liquid crystal linear polarizing layer may be a cured product of a polymerizable liquid crystal compound, and may contain an alignment layer. The alignment layer may be an alignment layer contained in a retardation layer described later. The film containing a liquid crystal linear polarizing layer may be a liquid crystal linear polarizing layer, or may have a laminated structure of a liquid crystal linear polarizing layer and a substrate film. The substrate film may be, for example, a film using a resin material described as a thermoplastic resin used to form a protective film as a protective layer described later. The film containing a liquid crystal linear polarizing layer may be, for example, a polarizing layer described in JP-A-2013-33249.
 上記のようにして形成した基材フィルムと直線偏光層との合計厚みは小さい方が好ましいが、小さすぎると強度が低下し、加工性に劣る傾向があるため、通常20μm以下であり、好ましくは5μm以下であり、より好ましくは0.5~3μmである。 The total thickness of the substrate film and linear polarizing layer formed as described above is preferably small, but if it is too small, the strength decreases and processability tends to be poor, so it is usually 20 μm or less, preferably 5 μm or less, and more preferably 0.5 to 3 μm.
 (保護層)
 保護層としては、例えば、透明性、機械的強度、熱安定性、水分遮断性、等方性、延伸性等に優れる熱可塑性樹脂から形成されたフィルムである保護フィルム;耐溶剤性、透明性、機械的強度、熱安定性、遮蔽性、及び等方性等に優れる組成物から形成されたオーバーコート層等が挙げられる。保護フィルムは、貼合層を介して直線偏光層に積層されることが好ましく、オーバーコート層は、直線偏光層に直接接するように積層されることが好ましい。
(Protective Layer)
Examples of the protective layer include a protective film formed from a thermoplastic resin having excellent transparency, mechanical strength, thermal stability, moisture blocking properties, isotropy, stretchability, etc., and an overcoat layer formed from a composition having excellent solvent resistance, transparency, mechanical strength, thermal stability, shielding properties, isotropy, etc. The protective film is preferably laminated on the linearly polarizing layer via an attachment layer, and the overcoat layer is preferably laminated so as to be in direct contact with the linearly polarizing layer.
 保護フィルムを形成するための熱可塑性樹脂の具体例としては、トリアセチルセルロース等のセルロース樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル樹脂;ポリエーテルスルホン樹脂;ポリスルホン樹脂;ポリカーボネート樹脂;ナイロンや芳香族ポリアミド等のポリアミド樹脂;ポリイミド樹脂;ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体等のポリオレフィン樹脂;シクロ系及びノルボルネン構造を有する環状ポリオレフィン樹脂(ノルボルネン系樹脂ともいう);(メタ)アクリル樹脂;ポリアリレート樹脂;ポリスチレン樹脂;ポリビニルアルコール樹脂、並びにこれらの混合物を挙げることができる。保護フィルムの厚みは、3μm以上であることが好ましく、5μm以上であることがより好ましく、また、50μm以下であることが好ましく、30μm以下であることがより好ましい。 Specific examples of thermoplastic resins for forming the protective film include cellulose resins such as triacetyl cellulose; polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polyethersulfone resins; polysulfone resins; polycarbonate resins; polyamide resins such as nylon and aromatic polyamide; polyimide resins; polyolefin resins such as polyethylene, polypropylene, and ethylene-propylene copolymers; cyclic polyolefin resins having cyclo- and norbornene structures (also called norbornene resins); (meth)acrylic resins; polyarylate resins; polystyrene resins; polyvinyl alcohol resins, and mixtures thereof. The thickness of the protective film is preferably 3 μm or more, more preferably 5 μm or more, and is preferably 50 μm or less, more preferably 30 μm or less.
 オーバーコート層は、溶剤性、透明性、機械的強度、熱安定性、遮蔽性、及び等方性等に優れる組成物から形成することができる。オーバーコート層は、例えば、直線偏光層上に上記組成物を塗布することによって形成することができる。オーバーコート層を構成する材料としては、例えば、光硬化性樹脂や水溶性ポリマー等が挙げられ、(メタ)アクリル系樹脂、ポリビニルアルコール系樹脂、ポリアミドエポキシ樹脂等を用いることができる。オーバーコート層の厚みは、例えば0.1μm以上10μm以下であることができる。 The overcoat layer can be formed from a composition that is excellent in solvent resistance, transparency, mechanical strength, thermal stability, shielding properties, isotropy, etc. The overcoat layer can be formed, for example, by applying the above-mentioned composition onto the linearly polarizing layer. Materials constituting the overcoat layer include, for example, photocurable resins and water-soluble polymers, and (meth)acrylic resins, polyvinyl alcohol resins, polyamide epoxy resins, etc. can be used. The thickness of the overcoat layer can be, for example, 0.1 μm or more and 10 μm or less.
 保護層は、反射防止特性、防眩特性、ハードコート特性等を有するものであってもよい(以下、当該特性を有する保護フィルムを「機能性保護層」ということがある。)。保護層が機能性保護層ではない場合、直線偏光板の片面には、反射防止層、防眩層、ハードコート層等の表面機能層が設けられていてもよい。表面機能層は、保護層に直接接するように設けられることが好ましい。表面機能層は、保護層の直線偏光層側とは反対側に設けられることが好ましい。 The protective layer may have anti-reflection properties, anti-glare properties, hard coat properties, etc. (Hereinafter, a protective film having such properties may be referred to as a "functional protective layer"). When the protective layer is not a functional protective layer, a surface functional layer such as an anti-reflection layer, anti-glare layer, hard coat layer, etc. may be provided on one side of the linear polarizing plate. The surface functional layer is preferably provided so as to be in direct contact with the protective layer. The surface functional layer is preferably provided on the side opposite the linear polarizing layer side of the protective layer.
 上記では、保護層を直線偏光層を設ける場合について説明したが、上記の保護層は、位相差層に設けてもよい。  In the above, a protective layer is provided on a linear polarizing layer, but the protective layer may also be provided on a retardation layer.
 (位相差層)
 位相差層は、延伸フィルムであってもよく、重合性液晶化合物の硬化物層を含むものであってもよい。
(Retardation Layer)
The retardation layer may be a stretched film, or may include a layer of a cured product of a polymerizable liquid crystal compound.
 位相差層が延伸フィルムである場合、延伸フィルムは従来公知のものを用いることができ、樹脂フィルムを一軸延伸又は二軸延伸することによって位相差を付与したものを用いることができる。樹脂フィルムとしては、トリアセチルセルロース及びジアセチルセルロース等のセルロースフィルム、ポリエチレンテレフタレート、ポリエチレンイソフタレート及びポリブチレンテレフタレート等のポリエステルフィルム、ポリメチル(メタ)アクリレート及びポリエチル(メタ)アクリレート等のアクリル樹脂フィルム、ポリカーボネートフィルム、ポリエーテルスルホンフィルム、ポリスルホンフィルム、ポリイミドフィルム、ポリオレフィンフィルム、ポリノルボルネンフィルム等を用いることができるが、これらに限定されるものではない。 When the retardation layer is a stretched film, the stretched film may be a conventionally known film, and may be a resin film that has been uniaxially or biaxially stretched to give it a retardation. Examples of resin films that may be used include, but are not limited to, cellulose films such as triacetyl cellulose and diacetyl cellulose, polyester films such as polyethylene terephthalate, polyethylene isophthalate, and polybutylene terephthalate, acrylic resin films such as polymethyl (meth)acrylate and polyethyl (meth)acrylate, polycarbonate films, polyethersulfone films, polysulfone films, polyimide films, polyolefin films, and polynorbornene films.
 位相差層が上記硬化物層を含むものである場合、重合性液晶化合物としては、公知の重合性液晶化合物を用いることができる。重合性液晶化合物は、少なくとも1つの重合性基を有し、かつ、液晶性を有する化合物である。 When the retardation layer includes the above-mentioned cured material layer, a known polymerizable liquid crystal compound can be used as the polymerizable liquid crystal compound. The polymerizable liquid crystal compound is a compound that has at least one polymerizable group and has liquid crystal properties.
 重合性液晶化合物が有する重合性基とは、重合反応に関与する基を意味し、光重合性基であることが好ましい。光重合性基とは、光重合開始剤から発生した活性ラジカルや酸等によって重合反応に関与し得る基のことをいう。重合性基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、(メタ)アクリロイルオキシ基、オキシラニル基、オキセタニル基、スチリル基、アリル基等が挙げられる。中でも、(メタ)アクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。重合性液晶化合物が有する液晶性はサーモトロピック性液晶でもリオトロピック液晶でもよく、サーモトロピック液晶を秩序度で分類すると、ネマチック液晶でもスメクチック液晶でもよい。重合性液晶化合物の硬化物層を形成するために重合性液晶化合物を2種類以上を併用する場合、少なくとも1種類が分子内に2以上の重合性基を有することが好ましい。 The polymerizable group of the polymerizable liquid crystal compound means a group that participates in a polymerization reaction, and is preferably a photopolymerizable group. The photopolymerizable group means a group that can participate in a polymerization reaction by an active radical or an acid generated from a photopolymerization initiator. Examples of the polymerizable group include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, a (meth)acryloyloxy group, an oxiranyl group, an oxetanyl group, a styryl group, and an allyl group. Among them, a (meth)acryloyloxy group, a vinyloxy group, an oxiranyl group, and an oxetanyl group are preferable, and an acryloyloxy group is more preferable. The liquid crystal property of the polymerizable liquid crystal compound may be a thermotropic liquid crystal or a lyotropic liquid crystal, and when a thermotropic liquid crystal is classified by the degree of order, it may be a nematic liquid crystal or a smectic liquid crystal. When two or more types of polymerizable liquid crystal compounds are used in combination to form a cured layer of the polymerizable liquid crystal compound, it is preferable that at least one type has two or more polymerizable groups in the molecule.
 位相差層が上記硬化物層を含むものである場合、位相差層は配向層を含んでいてもよい。配向層は、重合性液晶化合物を所望の方向に配向させる配向規制力を有する。配向層は、重合性液晶化合物の分子軸を積層体の平面方向に対して垂直配向した垂直配向層であってもよく、重合性液晶化合物の分子軸を積層体の平面方向に対して水平配向した水平配向層であってもよく、重合性液晶化合物の分子軸を積層体の平面方向に対して傾斜配向させる傾斜配向層であってもよい。 When the retardation layer includes the above-mentioned cured material layer, the retardation layer may include an alignment layer. The alignment layer has an alignment regulating force for aligning the polymerizable liquid crystal compound in a desired direction. The alignment layer may be a vertical alignment layer in which the molecular axis of the polymerizable liquid crystal compound is aligned vertically to the planar direction of the laminate, a horizontal alignment layer in which the molecular axis of the polymerizable liquid crystal compound is aligned horizontally to the planar direction of the laminate, or an inclined alignment layer in which the molecular axis of the polymerizable liquid crystal compound is aligned at an angle to the planar direction of the laminate.
 上記硬化物層は、重合性液晶化合物と溶剤、必要に応じて各種添加剤を含む位相差層形成用の組成物を、配向層上に塗布して塗膜を形成し、この塗膜を固化(硬化)させることによって、重合性液晶化合物の硬化物層を形成することができる。あるいは、基材フィルム上に上記組成物を塗布して塗膜を形成し、この塗膜を基材フィルムとともに延伸することによって硬化物層を形成してもよい。上記組成物は、上記した重合性液晶化合物及び溶剤の他に、重合開始剤、反応性添加剤、レベリング剤、重合禁止剤等を含んでいてもよい。重合性液晶化合物、溶剤、重合開始剤、反応性添加剤、レベリング剤、重合禁止剤等は、公知のものを適宜用いることができる。基材フィルムとしては、上記保護層としての保護フィルムを形成するために用いる熱可塑性樹脂として説明した樹脂材料を用いたフィルムを使用できる。 The above-mentioned cured layer can be formed by applying a composition for forming a retardation layer, which contains a polymerizable liquid crystal compound, a solvent, and various additives as necessary, onto the alignment layer to form a coating film, and solidifying (curing) the coating film. Alternatively, the above-mentioned composition may be applied onto a substrate film to form a coating film, and the coating film may be stretched together with the substrate film to form a cured layer. In addition to the above-mentioned polymerizable liquid crystal compound and solvent, the above-mentioned composition may contain a polymerization initiator, a reactive additive, a leveling agent, a polymerization inhibitor, etc. As the polymerizable liquid crystal compound, solvent, polymerization initiator, reactive additive, leveling agent, polymerization inhibitor, etc., known ones can be appropriately used. As the substrate film, a film using the resin material described as the thermoplastic resin used to form the protective film as the above-mentioned protective layer can be used.
 (表面保護フィルム)
 表面保護フィルムは、偏光板に対して剥離可能に設けられる。表面保護フィルムは、単層構造を有していてもよく、多層構造を有していてもよい。表面保護フィルムは、基材層と第2粘着剤層とを含んでいてもよく、自己粘着性の基材層であってもよい。
(Surface protection film)
The surface protective film is provided releasably with respect to the polarizing plate. The surface protective film may have a single-layer structure or a multi-layer structure. The surface protective film may include a base layer and a second pressure-sensitive adhesive layer, or may be a self-adhesive base layer.
 表面保護フィルムを構成する基材層としては、上記保護層としての保護フィルムを形成するために用いる熱可塑性樹脂として説明した樹脂材料を用いたフィルムを使用できる。第2粘着剤層を形成するための粘着剤組成物としては、公知の粘着剤組成物を用いて形成することができる。公知の粘着剤組成物としては、上記した粘着剤組成物で説明したものが挙げられる。 As the base layer constituting the surface protective film, a film using the resin material described as the thermoplastic resin used to form the protective film as the protective layer above can be used. As the adhesive composition for forming the second adhesive layer, a known adhesive composition can be used. Examples of known adhesive compositions include those described above as the adhesive composition.
 基材層と第2粘着剤層とを含む表面保護フィルムは、粘着剤組成物それ自体又は粘着剤組成物の有機溶剤希釈液を基材層上に塗布し、乾燥することによって形成することができる。粘着剤組成物又はその有機溶剤希釈液を塗布する方法としては、例えばバーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等が挙げられる。 The surface protection film including the substrate layer and the second adhesive layer can be formed by applying the adhesive composition itself or an organic solvent dilution of the adhesive composition onto the substrate layer and drying it. Methods for applying the adhesive composition or its organic solvent dilution include, for example, bar coating, knife coating, roll coating, blade coating, die coating, gravure coating, etc.
 表面保護フィルムが自己粘着性を有する場合、自己粘着性の基材層を構成する熱可塑性樹脂としては、例えばポリプロピレン系樹脂及びポリエチレン系樹脂等が挙げられる。 If the surface protection film has self-adhesive properties, examples of the thermoplastic resin that constitutes the self-adhesive base layer include polypropylene-based resins and polyethylene-based resins.
 上記では、偏光板に対して表面保護フィルムを用いる場合について説明したが、偏光板以外の光学フィルムとして例示した部材に上記の表面保護フィルムを積層してもよい。  In the above, a case where a surface protection film is used for a polarizing plate is described, but the surface protection film may also be laminated to a member exemplified as an optical film other than a polarizing plate.
 (貼合層)
 光学フィルムが多層構造を有する場合、層間は貼合層によって貼合されていてもよい。貼合層は、粘着剤層又は接着剤層である。貼合層が粘着剤層である場合、公知の粘着剤組成物を用いて形成することができる。公知の粘着剤組成物としては、上記した粘着剤組成物で説明したものが挙げられる。
(Laminating layer)
When the optical film has a multi-layer structure, the layers may be bonded together by a bonding layer. The bonding layer is a pressure-sensitive adhesive layer or an adhesive layer. When the bonding layer is a pressure-sensitive adhesive layer, it can be formed using a known pressure-sensitive adhesive composition. Examples of known pressure-sensitive adhesive compositions include those described above in the pressure-sensitive adhesive composition.
 貼合層が接着剤層である場合、接着剤層は、接着剤組成物中の硬化性成分を硬化させることによって形成することができる。接着剤層を形成するための接着剤組成物としては、感圧型接着剤(粘着剤)以外の接着剤であって、例えば、水系接着剤、活性エネルギー線硬化型接着剤が挙げられる。 When the lamination layer is an adhesive layer, the adhesive layer can be formed by curing a curable component in the adhesive composition. The adhesive composition for forming the adhesive layer is an adhesive other than a pressure-sensitive adhesive (adhesive), such as a water-based adhesive or an active energy ray-curable adhesive.
 水系接着剤としては、例えば、ポリビニルアルコール樹脂を水に溶解、又は分散させた接着剤が挙げられる。水系接着剤を用いた場合の乾燥方法については特に限定されるものではないが、例えば、熱風乾燥機や赤外線乾燥機を用いて乾燥する方法が採用できる。 An example of a water-based adhesive is an adhesive in which polyvinyl alcohol resin is dissolved or dispersed in water. There are no particular limitations on the drying method when using a water-based adhesive, but for example, a drying method using a hot air dryer or infrared dryer can be used.
 活性エネルギー線硬化型接着剤としては、例えば、紫外線、可視光、電子線、X線のような活性エネルギー線の照射によって硬化する硬化性化合物を含む無溶剤型の活性エネルギー線硬化型接着剤が挙げられる。無溶剤型の活性エネルギー線硬化型接着剤を用いることにより、層間の密着性を向上させることができる。 Examples of active energy ray-curable adhesives include solvent-free active energy ray-curable adhesives that contain a curable compound that cures when exposed to active energy rays such as ultraviolet light, visible light, electron beams, and X-rays. By using a solvent-free active energy ray-curable adhesive, it is possible to improve the adhesion between layers.
 以下、実施例及び比較例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。実施例、比較例中の「%」及び「部」は、特記しない限り、質量%及び質量部である。 The present invention will be explained in more detail below with reference to examples and comparative examples, but the present invention is not limited to these examples. "%" and "parts" in the examples and comparative examples are by mass % and parts by mass unless otherwise specified.
 [剥離フィルム(1)の作製]
 (剥離剤組成物aの調整)
 シリコーン樹脂のトルエン溶液(ダウ・東レ株式会社製、商品名:「LTC759」(固形分濃度30%))100部に対して、触媒として1,3-ジエテニル-1,1,3,3-テトラメチルジシロキサン白金錯体(ダウ・東レ株式会社から入手した、商品名:「SRX212」)1部を混合した。得られた混合物に、トルエンとメチルエチルケトンとの混合溶媒(質量比で1:1)を混合して固形分濃度が1.5%となるように調製し、剥離剤組成物aを得た。
[Preparation of Release Film (1)]
(Preparation of Stripping Agent Composition a)
One part of a 1,3-diethenyl-1,1,3,3-tetramethyldisiloxane platinum complex (obtained from Dow Toray Industries, Inc., product name: "LTC759" (solid content concentration 30%)) was mixed as a catalyst with 100 parts of a toluene solution (manufactured by Dow Toray Industries, Inc., product name: "SRX212") The resulting mixture was mixed with a mixed solvent of toluene and methyl ethyl ketone (mass ratio 1:1) to adjust the solid content concentration to 1.5%, thereby obtaining a release agent composition a.
 (剥離フィルム(1)の作製)
 透明ポリエチレンテレフタレート(PET)フィルム(三菱ケミカル社製、商品名:ダイヤホイルT190E38、厚み38μm)を用意した。次に、PETフィルムの一方の面に、上記で得た剥離剤組成物aを、乾燥後の厚みが100nmとなるようにバーコーターにて塗布し、温度120℃で3分間乾燥してPETフィルム上に剥離処理層を形成した。剥離処理層を形成したフィルムを温度23℃、相対湿度55%の環境下で5日間以上保管し、PETフィルム上に剥離処理層が形成された剥離フィルム(1)を得た。
(Preparation of Release Film (1))
A transparent polyethylene terephthalate (PET) film (manufactured by Mitsubishi Chemical Corporation, trade name: Diafoil T190E38, thickness 38 μm) was prepared. Next, the release agent composition a obtained above was applied to one side of the PET film with a bar coater so that the thickness after drying was 100 nm, and the film was dried at a temperature of 120 ° C. for 3 minutes to form a release treatment layer on the PET film. The film with the release treatment layer formed was stored for 5 days or more under an environment of a temperature of 23 ° C. and a relative humidity of 55%, and a release film (1) with a release treatment layer formed on the PET film was obtained.
 [剥離フィルム(2)の作製]
 (剥離剤組成物bの調整)
 シリコーン樹脂のトルエン溶液(ダウ・東レ株式会社製、商品名:「LTC759」(固形分濃度30%))100部に対して、触媒として1,3-ジエテニル-1,1,3,3-テトラメチルジシロキサン白金錯体(ダウ・東レ株式会社から入手した、商品名:「SRX212」)1部を混合した。次いで、ビニル変性シリコーンレジンのキシレン及びエチルベンゼン溶液(ダウ・東レ株式会社社製、商品名:「SD7292」(固形分濃度65%、固形分中にビニル基は3質量%含まれる)を10部さらに加えた。得られた混合物に、トルエンとメチルエチルケトンとの混合溶媒(質量比で1:1)を混合して固形分濃度が1.5%となるように調製し、剥離剤組成物bを得た。
[Preparation of Release Film (2)]
(Preparation of Stripping Agent Composition b)
100 parts of a toluene solution of a silicone resin (manufactured by Dow Toray Industries, Inc., product name: "LTC759" (solid content concentration 30%)) was mixed with 1 part of a 1,3-diethenyl-1,1,3,3-tetramethyldisiloxane platinum complex (obtained from Dow Toray Industries, Inc., product name: "SRX212") as a catalyst. Next, 10 parts of a xylene and ethylbenzene solution of a vinyl-modified silicone resin (manufactured by Dow Toray Industries, Inc., product name: "SD7292" (solid content concentration 65%, vinyl group content in the solid content is 3% by mass) was further added. A mixed solvent of toluene and methyl ethyl ketone (mass ratio 1:1) was mixed with the obtained mixture to adjust the solid content concentration to 1.5%, and a release agent composition b was obtained.
 (剥離フィルム(2)の作製)
 剥離剤組成物aに代えて剥離剤組成物bを用いたこと以外は、剥離フィルム(1)の作製と同様にして、剥離フィルム(2)を得た。
(Preparation of Release Film (2))
A release film (2) was obtained in the same manner as in the production of the release film (1), except that the release agent composition b was used instead of the release agent composition a.
 [剥離フィルム(3)の作製]
 (剥離剤組成物cの調製)
 シリコーン樹脂のトルエン溶液(ダウ・東レ株式会社製、商品名:「LTC759」(固形分濃度30%))100部に対して、触媒として1,3-ジエテニル-1,1,3,3-テトラメチルジシロキサン白金錯体(ダウ・東レ株式会社から入手した、商品名:「SRX212」)1部を混合した。次いで、ビニル変性シリコーンレジンのキシレン及びエチルベンゼン溶液(ダウ・東レ株式会社社製、商品名:「SD7292」(固形分濃度65%、固形分中にビニル基は3質量%含まれる)を5部さらに加えた。得られた混合物に、トルエンとメチルエチルケトンとの混合溶媒(質量比で1:1)を混合して固形分濃度が1.5%となるように調製し、剥離剤組成物cを得た。
[Preparation of Release Film (3)]
(Preparation of Stripping Agent Composition c)
100 parts of a toluene solution of a silicone resin (manufactured by Dow Toray Industries, Inc., trade name: "LTC759" (solid content concentration 30%)) was mixed with 1 part of a 1,3-diethenyl-1,1,3,3-tetramethyldisiloxane platinum complex (obtained from Dow Toray Industries, Inc., trade name: "SRX212") as a catalyst. Next, 5 parts of a xylene and ethylbenzene solution of a vinyl-modified silicone resin (manufactured by Dow Toray Industries, Inc., trade name: "SD7292" (solid content concentration 65%, vinyl group content in the solid content is 3% by mass) were further added. A mixed solvent of toluene and methyl ethyl ketone (mass ratio 1:1) was mixed with the obtained mixture to adjust the solid content concentration to 1.5%, and a release agent composition c was obtained.
 (剥離フィルム(3)の作製)
 剥離剤組成物aに代えて剥離剤組成物cを用いたこと以外は、剥離フィルム(1)の作製と同様にして、剥離フィルム(3)を得た。
(Preparation of Release Film (3))
A release film (3) was obtained in the same manner as in the preparation of the release film (1), except that the release agent composition c was used instead of the release agent composition a.
 [粘着剤組成物(1)~(3)の調製]
 (アクリル樹脂溶液(1)の調製)
 冷却管、窒素導入管、温度計及び撹拌機を備えた反応容器に、酢酸エチル45部、アクリル酸ブチル34部、アクリル酸メチル10部、アクリル酸2-ヒドロキシエチル0.5部、及びアクリル酸0.5部の混合溶液を仕込み、窒素ガスで装置内の空気を置換して酸素不含としながら内温を55℃に上げた。その後、重合開始剤としてアゾビスイソブチロニトリル0.14部を酢酸エチル9.86部に溶かした溶液を全量添加した。重合開始剤の添加後1時間をこの温度で保持し、次に内温を54~56℃に保ちながら、添加速度17.3部/hrで酢酸エチルを反応容器内へ連続的に加えてアクリル樹脂の濃度が35%となった時点で酢酸エチルの添加を止め、さらに酢酸エチルの添加開始から12時間経過するまでこの温度で保温した。最後に酢酸エチルを加え、アクリル樹脂の濃度が20%となるように調節し、アクリル樹脂溶液(1)を調製した。得られたアクリル樹脂は、重量平均分子量Mwが130万、分子量分布Mw/Mnが4.2であった。Mw及びMnは、GPC装置にカラムとして、東ソー(株)製の「TSKgel GMHHR-H(S)」を2本直列につないで配置し、溶出液としてテトラヒドロフランを用い、試料濃度2mg/mL、試料導入量100μL、温度40℃、流速1mL/分の条件で、標準ポリスチレン換算により測定した。
[Preparation of Pressure-Sensitive Adhesive Compositions (1) to (3)]
(Preparation of acrylic resin solution (1))
A reaction vessel equipped with a cooling tube, a nitrogen inlet tube, a thermometer and a stirrer was charged with a mixed solution of 45 parts of ethyl acetate, 34 parts of butyl acrylate, 10 parts of methyl acrylate, 0.5 parts of 2-hydroxyethyl acrylate and 0.5 parts of acrylic acid, and the air in the vessel was replaced with nitrogen gas to make it oxygen-free, while the internal temperature was raised to 55°C. Thereafter, a solution of 0.14 parts of azobisisobutyronitrile dissolved in 9.86 parts of ethyl acetate as a polymerization initiator was added in its entirety. After the addition of the polymerization initiator, the temperature was maintained for 1 hour, and then, while maintaining the internal temperature at 54-56°C, ethyl acetate was continuously added to the reaction vessel at an addition rate of 17.3 parts/hr, and the addition of ethyl acetate was stopped when the concentration of the acrylic resin reached 35%, and the temperature was maintained until 12 hours had elapsed from the start of the addition of ethyl acetate. Finally, ethyl acetate was added, and the concentration of the acrylic resin was adjusted to 20%, to prepare an acrylic resin solution (1). The resulting acrylic resin had a weight average molecular weight Mw of 1.3 million and a molecular weight distribution Mw/Mn of 4.2. Mw and Mn were measured in terms of standard polystyrene using two "TSKgel GMHHR-H(S)" columns manufactured by Tosoh Corporation connected in series as columns in a GPC apparatus, tetrahydrofuran as an eluent, a sample concentration of 2 mg/mL, a sample introduction amount of 100 μL, a temperature of 40° C., and a flow rate of 1 mL/min.
 (粘着剤組成物(1)の調製)
 上記で得たアクリル樹脂溶液(1)の固形分100部に対して、架橋剤(東ソー株式会社製:商品名「コロネートL」(トリレンジイソシアネートのトリメチロールプロパンアダクト体の酢酸エチル溶液(固形分濃度75質量%))を有効成分ベースで0.5部添加し、さらに固形分濃度が16%となるように酢酸エチルを添加して粘着剤組成物(1)を得た。
(Preparation of Pressure-Sensitive Adhesive Composition (1))
To 100 parts of the solid content of the acrylic resin solution (1) obtained above, 0.5 parts on an active ingredient basis of a crosslinking agent (manufactured by Tosoh Corporation: product name "Coronate L" (a solution of a trimethylolpropane adduct of tolylene diisocyanate in ethyl acetate (solid content concentration 75% by mass)) was added, and ethyl acetate was further added so that the solid content concentration became 16%, thereby obtaining a pressure-sensitive adhesive composition (1).
 (粘着剤組成物(2)の調製)
 上記で得たアクリル樹脂溶液(1)の固形分100部に対して、架橋剤(三井化学製:商品名「D-103」(トリレンジイソシアネートのトリメチロールプロパンアダクト体の酢酸エチル溶液(固形分濃度75質量%))を有効成分ベースで0.5部添加し、シラン化合物(信越化学工業(株)製:商品名「KBM-403」(3-グリシドキシプロピルトリメトキシシラン)を有効成分ベースで0.1部添加し、さらに固形分濃度が16%となるように酢酸エチルを添加して粘着剤組成物(2)を得た。
(Preparation of Pressure-Sensitive Adhesive Composition (2))
To 100 parts of the solid content of the acrylic resin solution (1) obtained above, 0.5 parts on an active ingredient basis of a crosslinking agent (manufactured by Mitsui Chemicals: trade name "D-103" (a solution of an ethyl acetate adduct of tolylene diisocyanate (solid content concentration 75% by mass)) was added, and 0.1 parts on an active ingredient basis of a silane compound (manufactured by Shin-Etsu Chemical Co., Ltd.: trade name "KBM-403" (3-glycidoxypropyltrimethoxysilane) was added, and ethyl acetate was further added so that the solid content concentration became 16%, thereby obtaining a pressure-sensitive adhesive composition (2).
 (粘着剤組成物(3)の調製)
 上記で得たアクリル樹脂溶液(1)の固形分100部に対して、架橋剤(三井化学製:商品名「D-103」(トリレンジイソシアネートのトリメチロールプロパンアダクト体の酢酸エチル溶液(固形分濃度75質量%))を有効成分ベースで0.5部添加し、シラン化合物(信越化学工業(株)製:商品名「KR-519」(メルカプト基含有シリコーンオリゴマー)を有効成分ベースで0.1部添加し、さらに固形分濃度が16%となるように酢酸エチルを添加して粘着剤組成物(3)を得た。
(Preparation of Pressure-Sensitive Adhesive Composition (3))
To 100 parts of the solid content of the acrylic resin solution (1) obtained above, 0.5 parts on an active ingredient basis of a crosslinking agent (manufactured by Mitsui Chemicals: product name "D-103" (ethyl acetate solution of trimethylolpropane adduct of tolylene diisocyanate (solid content concentration 75 mass%)) was added, and 0.1 parts on an active ingredient basis of a silane compound (manufactured by Shin-Etsu Chemical Co., Ltd.: product name "KR-519" (mercapto group-containing silicone oligomer) was added, and ethyl acetate was further added so that the solid content concentration became 16%, thereby obtaining a pressure-sensitive adhesive composition (3).
 [粘着シート(1)の作製]
 上記で得た剥離フィルム(2)の剥離処理層(剥離処理面)上に、上記で得た粘着剤組成物(1)をアプリケーターを用いて塗布した後、温度100℃で1分間乾燥して、厚み20μmの粘着剤層(1)を得た。得られた粘着剤層(1)の剥離フィルム(2)側とは反対側に、上記で得た剥離フィルム(1)の剥離処理層(剥離処理面)側を積層した。得られた積層体を温度23℃、相対湿度60%環境下に7日間以上静置し、粘着シート(1)を得た。
[Preparation of Adhesive Sheet (1)]
The adhesive composition (1) obtained above was applied onto the release treatment layer (release treatment surface) of the release film (2) obtained above using an applicator, and then dried at a temperature of 100° C. for 1 minute to obtain an adhesive layer (1) having a thickness of 20 μm. The release treatment layer (release treatment surface) of the release film (1) obtained above was laminated on the side of the adhesive layer (1) obtained opposite to the release film (2) side. The obtained laminate was left to stand for 7 days or more in an environment of a temperature of 23° C. and a relative humidity of 60%, to obtain an adhesive sheet (1).
 [粘着シート(2)の作製]
 上記で得た剥離フィルム(2)の剥離処理層(剥離処理面)上に、上記で得た粘着剤組成物(2)をアプリケーターを用いて塗布した後、温度100℃で1分間乾燥して、厚み20μmの粘着剤層(2)を得た。得られた粘着剤層(2)の剥離フィルム(2)側とは反対側に、上記で得た剥離フィルム(1)の剥離処理層(剥離処理面)側を積層した。得られた積層体を温度23℃、相対湿度60%環境下に7日間以上静置し、粘着シート(2)を得た。
[Preparation of Adhesive Sheet (2)]
The adhesive composition (2) obtained above was applied onto the release treatment layer (release treatment surface) of the release film (2) obtained above using an applicator, and then dried at a temperature of 100° C. for 1 minute to obtain an adhesive layer (2) having a thickness of 20 μm. The release treatment layer (release treatment surface) of the release film (1) obtained above was laminated on the side of the adhesive layer (2) opposite to the release film (2) side obtained. The obtained laminate was left to stand for 7 days or more in an environment of a temperature of 23° C. and a relative humidity of 60%, to obtain an adhesive sheet (2).
 [粘着シート(3)の作製]
 上記で得た剥離フィルム(2)の剥離処理層(剥離処理面)上に、上記で得た粘着剤組成物(3)をアプリケーターを用いて塗布した後、温度100℃で1分間乾燥して、厚み20μmの粘着剤層(3)を得た。得られた粘着剤層(3)の剥離フィルム(2)側とは反対側に、上記で得た剥離フィルム(1)の剥離処理層(剥離処理面)側を積層した。得られた積層体を温度23℃、相対湿度60%環境下に7日間以上静置し、粘着シート(3)を得た。
[Preparation of Adhesive Sheet (3)]
The adhesive composition (3) obtained above was applied onto the release treatment layer (release treatment surface) of the release film (2) obtained above using an applicator, and then dried at a temperature of 100° C. for 1 minute to obtain an adhesive layer (3) having a thickness of 20 μm. The release treatment layer (release treatment surface) of the release film (1) obtained above was laminated on the side of the adhesive layer (3) opposite to the release film (2) side. The obtained laminate was left to stand for 7 days or more in an environment of a temperature of 23° C. and a relative humidity of 60%, to obtain an adhesive sheet (3).
 [粘着シート(4)の作製]
 上記で得た剥離フィルム(3)の剥離処理層(剥離処理面)上に、上記で得た粘着剤組成物(3)をアプリケーターを用いて塗布した後、温度100℃で1分間乾燥して、厚み20μmの粘着剤層(4)を得た。得られた粘着剤層(4)の剥離フィルム(3)側とは反対側に、上記で得た剥離フィルム(1)の剥離処理層(剥離処理面)側を積層した。得られた積層体を温度23℃、相対湿度60%環境下に7日間以上静置し、粘着シート(4)を得た。
[Preparation of Adhesive Sheet (4)]
The adhesive composition (3) obtained above was applied onto the release treatment layer (release treatment surface) of the release film (3) obtained above using an applicator, and then dried at a temperature of 100° C. for 1 minute to obtain an adhesive layer (4) having a thickness of 20 μm. The release treatment layer (release treatment surface) of the release film (1) obtained above was laminated on the side of the adhesive layer (4) opposite to the release film (3) side. The obtained laminate was left to stand for 7 days or more in an environment at a temperature of 23° C. and a relative humidity of 60%, to obtain an adhesive sheet (4).
 (粘着シートの剥離性の評価)
 温度23℃、相対湿度60%の条件下において、上記で得た粘着シート(1)~(4)から、剥離フィルム(2)又は(3)よりも相対的に剥離力が小さい剥離フィルム(1)を手で剥離したところ、粘着剤層が引裂かれることなく剥離フィルム(1)を剥離することができた。また、剥離した剥離フィルム(1)の剥離処理層側の表面を観察し、次の基準で評価した。結果を表1に示す。
 a:剥離処理面に粘着剤層の転着(糊残り)が見られなかった又は僅かであった。
 b:剥離処理面に粘着剤層の転着(糊残り)が見られた。
(Evaluation of peelability of pressure-sensitive adhesive sheet)
When the release film (1), which has a relatively weaker peeling strength than the release films (2) and (3), was peeled by hand from the pressure-sensitive adhesive sheets (1) to (4) obtained above under conditions of a temperature of 23° C. and a relative humidity of 60%, the release film (1) could be peeled off without the pressure-sensitive adhesive layer being torn. In addition, the surface of the release treatment layer side of the peeled release film (1) was observed and evaluated according to the following criteria. The results are shown in Table 1.
a: No or only slight transfer of the adhesive layer (adhesive residue) was observed on the release treated surface.
b: Transfer of the adhesive layer (adhesive residue) was observed on the release treated surface.
 〔比較例1〕
 (偏光板の作製)
 厚み12μmの直線偏光層(一軸延伸したポリビニルアルコールフィルムにヨウ素が吸着配向された偏光フィルム)の一方の面に、厚み25μmの第1保護フィルム(トリアセチルセルロースフィルム)を、他方の面に、厚み20μmの第2保護フィルム(トリアセチルセルロースフィルム)を、それぞれ接着剤を介して貼合して偏光板を得た。さらに、第1保護フィルム側に表面保護フィルムを積層し、表面保護フィルム付き偏光板を得た。表面保護フィルムは、厚み38μmのPETフィルムに15μmの粘着剤層を積層した構造を有する。表面保護フィルム付き偏光板の厚みは、110μmであった。
Comparative Example 1
(Preparation of Polarizing Plate)
A 25 μm-thick first protective film (triacetyl cellulose film) was attached to one side of a 12 μm-thick linear polarizing layer (a polarizing film in which iodine was adsorbed and oriented on a uniaxially stretched polyvinyl alcohol film), and a 20 μm-thick second protective film (triacetyl cellulose film) was attached to the other side via an adhesive to obtain a polarizing plate. Furthermore, a surface protective film was laminated on the first protective film side to obtain a polarizing plate with a surface protective film. The surface protective film has a structure in which a 15 μm-thick adhesive layer is laminated on a 38 μm-thick PET film. The thickness of the polarizing plate with the surface protective film was 110 μm.
 (光学積層体(c1)の作製)
 上記で得た表面保護フィルム付き偏光板の第2保護フィルム側の表面にコロナ処理を施し、このコロナ処理面に、上記で得た粘着シート(1)の剥離フィルム(1)を剥離して露出した粘着剤層(1)を貼合して光学積層体(c1)を得た。光学積層体(c1)の層構造は、表面保護フィルム付き偏光板(表面保護フィルム/第1保護フィルム/直線偏光層/第2保護フィルム)/粘着剤層(1)/剥離フィルム(2)であった。
(Preparation of optical laminate (c1))
The surface of the second protective film side of the polarizing plate with the surface protective film obtained above was subjected to a corona treatment, and the pressure-sensitive adhesive layer (1) exposed by peeling off the release film (1) of the pressure-sensitive adhesive sheet (1) obtained above was attached to this corona-treated surface to obtain an optical laminate (c1). The layer structure of the optical laminate (c1) was a polarizing plate with a surface protective film (surface protective film/first protective film/linear polarizing layer/second protective film)/pressure-sensitive adhesive layer (1)/release film (2).
 〔比較例2〕
 粘着シート(1)に代えて粘着シート(2)を用いたこと以外は比較例1と同様の方法で光学積層体(c2)を得た。光学積層体(c2)の層構造は、表面保護フィルム付き偏光板(表面保護フィルム/第1保護フィルム/直線偏光層/第2保護フィルム)/粘着剤層(2)/剥離フィルム(2)であった。
Comparative Example 2
Except for using the pressure-sensitive adhesive sheet (2) instead of the pressure-sensitive adhesive sheet (1), an optical laminate (c2) was obtained in the same manner as in Comparative Example 1. The layer structure of the optical laminate (c2) was a polarizing plate with a surface protective film (surface protective film/first protective film/linear polarizing layer/second protective film)/pressure-sensitive adhesive layer (2)/release film (2).
 〔比較例3〕
 粘着シート(1)に代えて粘着シート(3)を用いたこと以外は比較例1と同様の方法で光学積層体(c3)を得た。光学積層体(c3)の層構造は、表面保護フィルム付き偏光板(表面保護フィルム/第1保護フィルム/直線偏光層/第2保護フィルム)/粘着剤層(3)/剥離フィルム(2)であった。
Comparative Example 3
Except for using the pressure-sensitive adhesive sheet (3) instead of the pressure-sensitive adhesive sheet (1), an optical laminate (c3) was obtained in the same manner as in Comparative Example 1. The layer structure of the optical laminate (c3) was a polarizing plate with a surface protective film (surface protective film/first protective film/linear polarizing layer/second protective film)/pressure-sensitive adhesive layer (3)/release film (2).
 〔比較例4〕
 粘着シート(1)に代えて粘着シート(4)を用いたこと以外は比較例1と同様の方法で光学積層体(c4)を得た。光学積層体(c4)の層構造は、表面保護フィルム付き偏光板(表面保護フィルム/第1保護フィルム/直線偏光層/第2保護フィルム)/粘着剤層(4)/剥離フィルム(3)であった。
Comparative Example 4
Except for using the pressure-sensitive adhesive sheet (4) instead of the pressure-sensitive adhesive sheet (1), an optical laminate (c4) was obtained in the same manner as in Comparative Example 1. The layer structure of the optical laminate (c4) was a polarizing plate with a surface protective film (surface protective film/first protective film/linear polarizing layer/second protective film)/pressure-sensitive adhesive layer (4)/release film (3).
 〔実施例1〕
 (光学積層体(1)の作製)
 比較例1で説明した手順で光学積層体(c1)を得た。光学積層体(c1)から剥離フィルム(2)を剥離し、露出した粘着剤層(1)に、上記で得た剥離フィルム(1)の剥離処理層側を積層して、光学積層体(1)を得た。光学積層体(1)の層構造は、表面保護フィルム付き偏光板(表面保護フィルム/第1保護フィルム/直線偏光層/第2保護フィルム)/粘着剤層(1)/剥離フィルム(1)であった。
Example 1
(Preparation of optical laminate (1))
An optical laminate (c1) was obtained by the procedure described in Comparative Example 1. The release film (2) was peeled off from the optical laminate (c1), and the release treatment layer side of the release film (1) obtained above was laminated on the exposed pressure-sensitive adhesive layer (1) to obtain an optical laminate (1). The layer structure of the optical laminate (1) was a polarizing plate with a surface protective film (surface protective film/first protective film/linear polarizing layer/second protective film)/pressure-sensitive adhesive layer (1)/release film (1).
 〔実施例2〕
 (光学積層体(2)の作製)
 比較例2で説明した手順で光学積層体(c2)を得た。光学積層体(c2)から剥離フィルム(2)を剥離し、露出した粘着剤層(2)に、上記で得た剥離フィルム(1)の剥離処理層側を積層して、光学積層体(2)を得た。光学積層体(2)の層構造は、表面保護フィルム付き偏光板(表面保護フィルム/第1保護フィルム/直線偏光層/第2保護フィルム)/粘着剤層(2)/剥離フィルム(1)であった。
Example 2
(Preparation of optical laminate (2))
An optical laminate (c2) was obtained by the procedure described in Comparative Example 2. The release film (2) was peeled off from the optical laminate (c2), and the release treatment layer side of the release film (1) obtained above was laminated on the exposed pressure-sensitive adhesive layer (2) to obtain an optical laminate (2). The layer structure of the optical laminate (2) was a polarizing plate with a surface protective film (surface protective film/first protective film/linear polarizing layer/second protective film)/pressure-sensitive adhesive layer (2)/release film (1).
 〔実施例3〕
 (光学積層体(3)の作製)
 比較例3で説明した手順で光学積層体(c3)を得た。光学積層体(c3)から剥離フィルム(2)を剥離し、露出した粘着剤層(3)に、上記で得た剥離フィルム(1)の剥離処理層側を積層して、光学積層体(3)を得た。光学積層体(3)の層構造は、表面保護フィルム付き偏光板(表面保護フィルム/第1保護フィルム/直線偏光層/第2保護フィルム)/粘着剤層(3)/剥離フィルム(1)であった。
Example 3
(Preparation of optical laminate (3))
An optical laminate (c3) was obtained by the procedure described in Comparative Example 3. The release film (2) was peeled off from the optical laminate (c3), and the release treatment layer side of the release film (1) obtained above was laminated on the exposed pressure-sensitive adhesive layer (3) to obtain an optical laminate (3). The layer structure of the optical laminate (3) was a polarizing plate with a surface protective film (surface protective film/first protective film/linear polarizing layer/second protective film)/pressure-sensitive adhesive layer (3)/release film (1).
 〔実施例4〕
 (光学積層体(4)の作製)
 比較例4で説明した手順で光学積層体(c4)を得た。光学積層体(c4)から剥離フィルム(3)を剥離し、露出した粘着剤層(4)に、上記で得た剥離フィルム(1)の剥離処理層側を積層して、光学積層体(4)を得た。光学積層体(4)の層構造は、表面保護フィルム付き偏光板(表面保護フィルム/第1保護フィルム/直線偏光層/第2保護フィルム)/粘着剤層(4)/剥離フィルム(1)であった。
Example 4
(Preparation of optical laminate (4))
An optical laminate (c4) was obtained by the procedure described in Comparative Example 4. The release film (3) was peeled off from the optical laminate (c4), and the release treatment layer side of the release film (1) obtained above was laminated on the exposed pressure-sensitive adhesive layer (4) to obtain an optical laminate (4). The layer structure of the optical laminate (4) was a polarizing plate with a surface protective film (surface protective film/first protective film/linear polarizing layer/second protective film)/pressure-sensitive adhesive layer (4)/release film (1).
 [XPS測定]
 実施例及び比較例で得た光学積層体から剥離フィルムを剥離し、剥離した剥離フィルムの剥離処理層側の表面(剥離処理面)、及び、露出した粘着剤層の剥離フィルム側の表面について、XPS装置(K-Alpha+、Thermofisher Scientific社製))を用いて次の条件でXPS測定を行った。サンプルサイズは10mm×10mmとした。
 (XPS測定条件)
 照射X線:単色化Al Kα(12kV/6mA)、400μm
 Dwell Time:50ms
 Pass Energy:50eV
 着目軌道:C1s,O1s,Si2p
[XPS Measurement]
The release film was peeled off from the optical laminate obtained in each of the Examples and Comparative Examples, and the surface of the peeled release film on the release treatment layer side (release treatment surface) and the surface of the exposed pressure-sensitive adhesive layer on the release film side were subjected to XPS measurement under the following conditions using an XPS device (K-Alpha+, manufactured by Thermofisher Scientific). The sample size was 10 mm x 10 mm.
(XPS measurement conditions)
Irradiation X-ray: Monochromatic Al Kα (12 kV/6 mA), 400 μm
Dwell Time: 50 ms
Pass Energy: 50 eV
Orbitals of interest: C1s, O1s, Si2p
 XPS測定により得られた剥離処理面のXPSスペクトル(Sr)、及び、粘着剤層の剥離フィルム側の表面のXPSスペクトル(Sa)のそれぞれにおいて、結合エネルギーが96eV以上108eV以下の範囲での、最大のピークPsの強度Xs及び最大のピークPaの強度Xaを決定した。また、各XPSスペクトル(Sr)及び(Sa)のそれぞれにおいて、ピークPsにおける結合エネルギーEsよりも高エネルギー側に2eVの位置(結合エネルギー(Es+2))におけるXPSスペクトル(Sr)の強度Ys、及び、ピークPaにおける結合エネルギーEaより高エネルギー側に2eVの位置(結合エネルギー(Ea+2))におけるXPSスペクトル(Sa)の強度Yaを決定した。決定した強度から、上記式(1)の左辺(Ys/Xs×100)の値、及び、上記式(2)の左辺(Ya/Xa×100)の値を決定した。結果を表1及び表2に示す。 In each of the XPS spectrum (Sr) of the release treatment surface obtained by XPS measurement and the XPS spectrum (Sa) of the surface of the release film side of the pressure-sensitive adhesive layer, the intensity Xs of the maximum peak Ps and the intensity Xa of the maximum peak Pa in the range of binding energy from 96 eV to 108 eV were determined. In addition, in each of the XPS spectra (Sr) and (Sa), the intensity Ys of the XPS spectrum (Sr) at a position (binding energy (Es+2)) 2 eV higher than the binding energy Es of the peak Ps, and the intensity Ya of the XPS spectrum (Sa) at a position (binding energy (Ea+2)) 2 eV higher than the binding energy Ea of the peak Pa were determined. From the determined intensities, the value of the left side of the above formula (1) (Ys/Xs×100) and the value of the left side of the above formula (2) (Ya/Xa×100) were determined. The results are shown in Tables 1 and 2.
 なお、実施例1~4において、光学積層体(c1)~(c4)から剥離した剥離フィルム(2)又は(3)の剥離処理面の上記した式(3)の左辺に100を乗じた値(Ys2/Xs2×100)の値は、それぞれ比較例1~4で決定した上記式(1)の左辺(Ys/Xs×100)の値とみなすことができる。実施例1~4の光学積層体(1)~(4)から剥離した剥離フィルム(1)の剥離処理面の上記した式(3)の右辺に100を乗じた値、及び、上記した式(4)の左辺(Ys1/Xs1×100)の値は、それぞれ実施例1~4で決定した上記式(1)の左辺(Ys/Xs×100)の値とみなすことができる。実施例1~4において、上記した式(5)の左辺に100を乗じた値(Ya2/Xa2×100)の値は、それぞれ比較例1~4で決定した上記式(2)の左辺(Ya/Xa×100)の値とみなすことができる。実施例1~4において、上記した式(5)の右辺に100を乗じた値、及び、上記した式(6)の左辺(Ya1/Xa1×100)の値は、それぞれ実施例1~4で決定した上記式(2)の左辺(Ya/Xa×100)の値とみなすことができる。 In addition, in Examples 1 to 4, the value (Ys2/Xs2×100) obtained by multiplying the left side of the above formula (3) of the release-treated surface of the release film (2) or (3) peeled off from the optical laminates (c1) to (c4) by 100 can be regarded as the value of the left side (Ys/Xs×100) of the above formula (1) determined in Comparative Examples 1 to 4. The value obtained by multiplying the right side of the above formula (3) of the release-treated surface of the release film (1) peeled off from the optical laminates (1) to (4) in Examples 1 to 4 by 100 and the value of the left side (Ys1/Xs1×100) of the above formula (4) can be regarded as the value of the left side (Ys/Xs×100) of the above formula (1) determined in Examples 1 to 4. In Examples 1 to 4, the value obtained by multiplying the left side of the above formula (5) by 100 (Ya2/Xa2 x 100) can be regarded as the value of the left side of the above formula (2) (Ya/Xa x 100) determined in Comparative Examples 1 to 4. In Examples 1 to 4, the value obtained by multiplying the right side of the above formula (5) by 100 and the value of the left side of the above formula (6) (Ya1/Xa1 x 100) can be regarded as the value of the left side of the above formula (2) (Ya/Xa x 100) determined in Examples 1 to 4.
 [剥離フィルムの剥離力測定]
 実施例及び比較例で得た光学積層体を、幅50mm×長さ190mmの大きさにカットして試験サンプルを得た。オートグラフ(AGS-X 50N、(株)島津製作所社製)を用い、試験サンプルの剥離フィルムをチャッキングし、300mm/minの速度で180°方向に剥離した際の剥離力を測定した。結果を表1及び表2に示す。
[Measurement of peel strength of release film]
The optical laminates obtained in the examples and comparative examples were cut to a size of 50 mm wide x 190 mm long to obtain test samples. The release film of the test sample was chucked using an autograph (AGS-X 50N, manufactured by Shimadzu Corporation), and the peel force was measured when peeled in a 180° direction at a speed of 300 mm/min. The results are shown in Tables 1 and 2.
 [光学積層体の剥離フィルムの剥離性試験]
 実施例及び比較例で得た光学積層体を、幅50mm×長さ50mmの大きさにカットして試験サンプルを得た。さらに、メンディングテープ(3M製、商品名:Scotchメンディングテープ(幅24mm))の基材面に両面テープ(ニチバン株式会社製、商品名:ナイスタック一般タイプ(幅25mm)の粘着剤面を積層し、10mm×10mmの大きさにカットした。メンディングテープと両面テープの積層体の、メンディングテープの粘着剤面を試験サンプルの表面保護フィルム側の中央に貼り付け、両面テープの剥離紙を剥離した後、両面テープの粘着剤面をガラス板に貼り付け、ガラス板に試験サンプルを固定した。ガラス板に固定された試験サンプルの剥離フィルム側表面の一角に30mm×13mmにカットしたカプトンテープ(日東電工製、商品名:No.360UL(幅13mm))を角から20mmはみ出すように貼り付けた。試験サンプルに貼り付けたカプトンテープを手で持ち、剥離した際の状態から次の基準で判断した。結果を表1及び表2に示す。
 a:剥離フィルムのみが光学積層体から完全に剥離された。
 b:剥離フィルムが光学積層体から完全には剥離されず、光学積層体がメンディングテープから剥離された。
[Release property test of release film of optical laminate]
The optical laminates obtained in the examples and comparative examples were cut into a size of 50 mm width x 50 mm length to obtain test samples. Furthermore, the adhesive side of a double-sided tape (manufactured by Nichiban Co., Ltd., product name: Nicetack general type (width 25 mm)) was laminated on the base surface of a mending tape (manufactured by 3M, product name: Scotch mending tape (width 24 mm)) and cut into a size of 10 mm x 10 mm. The adhesive side of the mending tape of the laminate of the mending tape and the double-sided tape was attached to the center of the surface protection film side of the test sample, and after peeling off the release paper of the double-sided tape, the adhesive side of the double-sided tape was attached to a glass plate to fix the test sample to the glass plate. A Kapton tape (manufactured by Nitto Denko, product name: No. 360UL (width 13 mm)) cut to 30 mm x 13 mm was attached to one corner of the release film side surface of the test sample fixed to the glass plate so that it protruded 20 mm from the corner. The Kapton tape attached to the test sample was held by hand and the state when peeled off was judged according to the following criteria. The results are shown in Tables 1 and 2.
a: Only the release film was completely peeled off from the optical laminate.
b: The release film was not completely peeled off from the optical laminate, and the optical laminate was peeled off from the mending tape.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例で得た、剥離フィルム(2)又は(3)から剥離フィルム(1)に貼り替えた光学積層体(1)~(4)では、剥離フィルム(1)の剥離力を小さくすることができ、剥離性試験においても剥離フィルムのみが完全に剥離されたため、光学積層体(1)~(4)から剥離フィルム(1)を良好に剥離できると考えられる。比較例で得た剥離フィルム(剥離フィルム(2)又は(3))を有する光学積層体(c1)~(c4)は、剥離フィルムの剥離力が大きい状態のままであり、剥離性試験においても剥離フィルムが完全には剥離されなかったため、光学積層体(c1)~(c4)から剥離フィルムを剥離しにくいと考えられる。 In the optical laminates (1) to (4) obtained in the examples in which the release film (2) or (3) was replaced with the release film (1), the peeling force of the release film (1) could be reduced, and only the release film was completely peeled off in the peelability test, so it is considered that the release film (1) can be easily peeled off from the optical laminates (1) to (4). In the optical laminates (c1) to (c4) having the release film (release film (2) or (3)) obtained in the comparative examples, the release film still had a large peeling force, and the release film was not completely peeled off in the peelability test, so it is considered that the release film is difficult to peel off from the optical laminates (c1) to (c4).
 1 光学積層体、2 第1積層体、3 第2積層体、11 光学フィルム、12 第1粘着剤層(粘着剤層)、15 第1剥離フィルム(剥離フィルム)、20 粘着シート、21 剥離フィルム付き粘着剤層、25 第2剥離フィルム、26 第3剥離フィルム。 1 optical laminate, 2 first laminate, 3 second laminate, 11 optical film, 12 first adhesive layer (adhesive layer), 15 first release film (release film), 20 adhesive sheet, 21 adhesive layer with release film, 25 second release film, 26 third release film.

Claims (6)

  1.  光学フィルム、粘着剤層、及び、剥離フィルムをこの順に含む光学積層体であって、
     前記剥離フィルムは、前記粘着剤層に接する側に、シロキサン化合物を含む剥離処理面を有し、
     前記剥離フィルムの前記剥離処理面は、下記式(1)の関係を満たす、光学積層体。
      Ys/Xs×100≦3.5  (1)
    [式(1)中、
     Xsは、前記剥離処理面のXPSスペクトル(Sr)において、結合エネルギーが96eV以上108eV以下の範囲での最大のピークPsの強度を表し、
     Ysは、前記ピークPsにおける結合エネルギーをEs[eV]とするとき、結合エネルギー(Es+2)eVにおける前記XPSスペクトル(Sr)の強度を表す。]
    An optical laminate comprising an optical film, a pressure-sensitive adhesive layer, and a release film in this order,
    the release film has a release-treated surface containing a siloxane compound on a side in contact with the pressure-sensitive adhesive layer,
    The release-treated surface of the release film satisfies the following formula (1):
    Ys/Xs×100≦3.5 (1)
    [In formula (1),
    Xs represents the intensity of the maximum peak Ps in the binding energy range of 96 eV or more and 108 eV or less in the XPS spectrum (Sr) of the release treated surface,
    Ys represents the intensity of the XPS spectrum (Sr) at a binding energy of (Es+2) eV, where Es [eV] is the binding energy at the peak Ps.
  2.  前記粘着剤層の前記剥離フィルム側の表面は、下記式(2)の関係を満たす、請求項1に記載の光学積層体。
      Ya/Xa×100≧2.0  (2)
    [式(2)中、
     Xaは、前記粘着剤層の前記剥離フィルム側の表面のXPSスペクトル(Sa)において、結合エネルギーが96eV以上108eV以下の範囲での最大のピークPaの強度を表し、
     Yaは、前記ピークPaにおける結合エネルギーをEa[eV]とするとき、結合エネルギー(Ea+2)eVにおける前記XPSスペクトル(Sa)の強度を表す。]
    The optical laminate according to claim 1 , wherein the surface of the pressure-sensitive adhesive layer on the release film side satisfies the following formula (2):
    Ya / Xa × 100 ≧ 2.0 (2)
    [In formula (2),
    Xa represents the intensity of the maximum peak Pa in the binding energy range of 96 eV or more and 108 eV or less in the XPS spectrum (Sa) of the surface of the pressure-sensitive adhesive layer on the release film side,
    Ya represents the intensity of the XPS spectrum (Sa) at a binding energy of (Ea+2) eV, where Ea [eV] is the binding energy at the peak Pa.
  3.  前記光学フィルムの厚みは、120μm以下である、請求項1に記載の光学積層体。 The optical laminate of claim 1, wherein the optical film has a thickness of 120 μm or less.
  4.  前記光学フィルムは、少なくとも直線偏光層を含む偏光板である、請求項1~3のいずれか1項に記載の光学積層体。 The optical laminate according to any one of claims 1 to 3, wherein the optical film is a polarizing plate including at least a linearly polarizing layer.
  5.  前記偏光板は、さらに位相差層を含む、請求項4に記載の光学積層体。 The optical laminate of claim 4, wherein the polarizing plate further includes a retardation layer.
  6.  前記光学フィルムは、前記偏光板に対して剥離可能に設けられた表面保護フィルムを含む、請求項4に記載の光学積層体。 The optical laminate according to claim 4, wherein the optical film includes a surface protection film that is peelably provided on the polarizing plate.
PCT/JP2023/031427 2022-09-29 2023-08-30 Optical laminate WO2024070440A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-156858 2022-09-29
JP2022156858A JP2024050177A (en) 2022-09-29 2022-09-29 Optical laminate

Publications (1)

Publication Number Publication Date
WO2024070440A1 true WO2024070440A1 (en) 2024-04-04

Family

ID=90477202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031427 WO2024070440A1 (en) 2022-09-29 2023-08-30 Optical laminate

Country Status (2)

Country Link
JP (1) JP2024050177A (en)
WO (1) WO2024070440A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012179888A (en) * 2011-02-09 2012-09-20 Mitsubishi Plastics Inc Polyester film for substrate-less double-sided adhesive sheet
CN104085139A (en) * 2014-07-08 2014-10-08 佛山凯仁精密材料有限公司 Easily released film with smooth silicone oil surface and production process thereof
WO2017018135A1 (en) * 2015-07-24 2017-02-02 富士フイルム株式会社 Release film and adhesive laminate
JP2019056101A (en) * 2017-06-13 2019-04-11 マクセルホールディングス株式会社 Double faced adhesive tape, and stacking body of thin film component and supporting component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012179888A (en) * 2011-02-09 2012-09-20 Mitsubishi Plastics Inc Polyester film for substrate-less double-sided adhesive sheet
CN104085139A (en) * 2014-07-08 2014-10-08 佛山凯仁精密材料有限公司 Easily released film with smooth silicone oil surface and production process thereof
WO2017018135A1 (en) * 2015-07-24 2017-02-02 富士フイルム株式会社 Release film and adhesive laminate
JP2019056101A (en) * 2017-06-13 2019-04-11 マクセルホールディングス株式会社 Double faced adhesive tape, and stacking body of thin film component and supporting component

Also Published As

Publication number Publication date
JP2024050177A (en) 2024-04-10

Similar Documents

Publication Publication Date Title
TWI727494B (en) Double-sided adhesive-attached optical film, method of manufacturing image display device using the same, and double-sided adhesive-attached optical film curl suppression method
JP6071224B2 (en) Adhesive sheet
JP6792657B2 (en) Laminates, adhesive compositions and adhesive sheets
WO2020175097A1 (en) Laminate
WO2020175098A1 (en) Laminate and display device
WO2020175089A1 (en) Flexible laminate
CN113631363A (en) Laminate and display device
WO2020175093A1 (en) Flexible laminate
JP7039508B2 (en) Flexible laminate
JP2021179615A (en) Laminate and display device
WO2024070440A1 (en) Optical laminate
WO2020175091A1 (en) Laminate
WO2020175092A1 (en) Laminate
CN116004134A (en) Laminate and display device
WO2021100490A1 (en) Adhesive-equipped optical film and method for producing same
JP2023070310A (en) Laminate and display device
WO2022255132A1 (en) Layered body and display device
JP2023070311A (en) Laminate and display device
WO2022239508A1 (en) Optical laminate
WO2022255131A1 (en) Multilayer body and display device
WO2021024639A1 (en) Laminate
KR20230164110A (en) Manufacturing method of inorganic double-sided adhesive sheet
JP2023109431A (en) Polarizing film with covered retardation layer
TW202246054A (en) Base material-less double-sided pressure-sensitive adhesive sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871680

Country of ref document: EP

Kind code of ref document: A1