WO2024070354A1 - Vertical-position welding device and control method for vertical-position welding device - Google Patents

Vertical-position welding device and control method for vertical-position welding device Download PDF

Info

Publication number
WO2024070354A1
WO2024070354A1 PCT/JP2023/030389 JP2023030389W WO2024070354A1 WO 2024070354 A1 WO2024070354 A1 WO 2024070354A1 JP 2023030389 W JP2023030389 W JP 2023030389W WO 2024070354 A1 WO2024070354 A1 WO 2024070354A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
groove
vertical
guide roller
carriage
Prior art date
Application number
PCT/JP2023/030389
Other languages
French (fr)
Japanese (ja)
Inventor
元章 村上
亮 戸田
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2024070354A1 publication Critical patent/WO2024070354A1/en

Links

Images

Definitions

  • the present invention relates to a self-propelled vertical welding device and a method for controlling the vertical welding device.
  • Vertical welding is performed in a variety of manufacturing industries, including shipbuilding, steel building structures, and energy plants. There is a demand for automation of this vertical welding, and conventionally known welding equipment that achieves this includes rail-type vertical welding equipment and non-rail-type vertical welding equipment (hereinafter also referred to as self-propelled vertical welding equipment).
  • rail-type vertical welding devices have high welding precision but require rails to be installed in advance on the workpiece side, which reduces work efficiency.
  • self-propelled vertical welding devices do not require rails or other equipment to be installed in advance on the workpiece side, so they are more efficient than rail-type vertical welding devices.
  • Self-propelled vertical welding devices include a hanging type that pulls up the welding device, and a magnet wheel type that uses magnetic force to attach it to the workpiece.
  • the patent document 1 discloses that the traveling rollers of the welding carriage are rotated by an electric motor, and that by providing fine grooves on the entire circumference of the roller surface, the welding carriage can be securely held on the side to be welded, and there is no risk of the welding carriage falling, etc., and welding can be performed while correcting misalignment of the groove.
  • the self-propelled vertical welding device described in Patent Document 1 may cause the welding position to shift due to changes in the attitude of the welding carriage caused by working conditions or disturbances.
  • Factors related to the working conditions include, for example, when welding a groove formed at the butt joint of two workpieces, the plate thicknesses of the two workpieces may be different, or the plate thickness at the plate joint may be different.
  • Factors related to disturbances include, for example, misalignment in the plate thickness direction.
  • Self-propelled vertical welding equipment generally has a pair of left and right running rollers arranged to straddle the butt joint, and welding work is performed while self-propelled along the extension direction of the groove, which is the welding progress direction.
  • a difference in the travel distance between the left running rollers and the right running rollers arranged to straddle the opposing welded materials may occur.
  • the present invention was made in consideration of the above situation, and its purpose is to provide a self-propelled vertical welding device that can stably maintain the working position of the welding carriage, and a control method for the self-propelled vertical welding device.
  • a vertical welding device for performing welding in a vertical position on a groove formed by two workpieces, A welding carriage that welds one surface side perpendicular to the plate thickness direction of the welded material while traveling along the groove, and a welding torch mounted on the welding carriage,
  • the welding carriage includes: At least two or more guide rollers are arranged in a line along the welding proceeding direction and proceed along the extension direction of the groove; A detection means for detecting a deviation amount of the welding proceeding direction of the welding carriage relative to the extension direction of the groove, At least one of the guide rollers is a movable guide roller that can be moved in parallel in a direction perpendicular to the welding proceeding direction by a driving means,
  • the vertical welding device is characterized in that the driving means performs drive control to press the movable guide roller against the groove surface so that the movable guide roller moves in a direction that cancels the amount of deviation detected by the detection means.
  • a control method for a vertical welding apparatus for performing welding in a vertical position on a groove formed by two workpieces comprising:
  • the vertical welding apparatus includes a welding carriage that welds one surface side perpendicular to the plate thickness direction of the workpiece while traveling along the groove, and a welding torch mounted on the welding carriage;
  • the welding carriage includes: At least two or more guide rollers are arranged in a line along the welding proceeding direction and proceed along the extension direction of the groove, At least one of the guide rollers is a movable guide roller that is movable in parallel in a direction perpendicular to the welding proceeding direction, a movable guide roller that presses the groove surface in a direction in which the amount of deviation is detected when a deviation of the welding carriage in the welding proceeding direction with respect to an extension direction of the groove is detected.
  • the posture of the welding carriage is stably maintained and deviation of the welding torch tip position is suppressed, thereby ensuring good welding quality.
  • FIG. 2 is a perspective view showing a vertical welding apparatus.
  • FIG. FIG. This is a cross-sectional view taken along line AA in FIG. This is a cross-sectional view taken along line B-B of FIG. This is a cross-sectional view taken along the line CC of FIG.
  • FIG. 4 is a diagram showing the configuration of a drive unit air circuit.
  • Figure 8 (A) is a model diagram showing a reference position and a current position photographed by a visual sensor
  • Figure 8 (B) is a model diagram showing a state in which the visual sensor detects that the amount of deviation is less than a threshold value
  • Figure 8 (C) is a model diagram showing a state in which the visual sensor detects that the amount of deviation is greater than or equal to the threshold value.
  • 9A to 9D are schematic diagrams showing the effect of drive control.
  • FIG. 4 is a flow chart showing a drive control process.
  • the self-propelled vertical welding device and the control method for the vertical welding device according to the present invention will be described with reference to the attached drawings. Note that each figure has been created for the purpose of explaining the present invention, and the embodiment of the present invention is not limited to the contents shown in the drawings.
  • the welding method to which the vertical welding device is applied is not particularly limited, but examples of welding methods include electroslag welding and electrogas welding. In this embodiment, the case of use in electroslag welding will be described as an example.
  • the weld line direction is the X-axis.
  • This X-axis weld line direction is synonymous with the direction along the groove centerline, and is also synonymous with the extension direction of the groove, which will be described later.
  • the direction perpendicular to the weld line on the X-Y plane which is the surface on which the materials to be welded are welded, is the Y-axis.
  • the direction of this Y-axis is synonymous with the groove width direction.
  • the plate thickness direction of the materials to be welded which is the direction perpendicular to the plane of the materials to be welded on which welding is performed, is the Z-axis.
  • the surface on which the welding carriage described below runs is referred to as the "front surface,” and the opposite surface is referred to as the "back surface.”
  • the front surface is the surface in the +Z direction
  • the back surface is the surface in the -Z direction.
  • the +Z direction, which is the front surface direction is referred to as "upward”
  • the -Z direction, which is the back surface direction is referred to as "downward.”
  • forward the direction in which welding proceeds with respect to the vertical welding device as the reference
  • rearward the direction in which it retreats
  • Forward is the +X direction
  • rearward is referred to as the -X direction.
  • the welding device of this embodiment performs upward welding in a vertical position on the workpiece, so welding toward the front is synonymous with welding upward.
  • Figures 1 to 6 show an example of the configuration of a vertical welding apparatus according to an embodiment.
  • Figures 1 to 3 are a perspective view, a front view, and a side view of the vertical welding apparatus.
  • Figure 4 is a cross-sectional view taken along line A-A in Figure 2.
  • Figure 5 is a cross-sectional view taken along line B-B in Figure 2.
  • Figure 6 is a cross-sectional view taken along line C-C in Figure 3.
  • the vertical welding device 1 comprises a welding carriage 2 that travels forward in a vertical position over a pair of steel plates 5, 5 that are the workpieces to be welded, an electric winch 3 that hoists the welding carriage 2 so that it travels upward over the surface of the steel plates 5, and a welding torch 4 mounted on the welding carriage 2.
  • the pair of steel plates 5, 5 are positioned spaced apart from each other in the left-right direction so that a groove 10 that extends in the up-down direction is formed between them.
  • the left workpiece of the pair of steel plates 5, 5 is referred to as steel plate 5A
  • the right workpiece is referred to as steel plate 5B.
  • steel plate 5A and 5B When describing the steel plates 5A and 5B as a set, they are referred to as steel plate 5.
  • the welding carriage 2 includes a main frame 6, running rollers 7 that slide on the surface of the steel plate 5, guide rollers 8 that are placed in the groove 10 during welding work, a front copper plate support part 11 that supports the front copper plate 9 so that it can be pressed against the front side of the groove 10, a back copper plate support part 13 that supports the back copper plate 12 so that it can be pressed against the back side of the groove 10, a visual sensor 14 as a detection means for detecting the welding work position, and a control part (not shown).
  • the welding carriage 2 is configured to be able to perform electroslag welding by traveling forward along the X-axis direction, which is the weld line direction, while welding between the grooves 10 in the vertical direction. Each component will be described in detail below.
  • the electric winch 3 is installed above the steel plate 5 on which welding work is performed and in front of the welding carriage 2, and suspends and supports the welding carriage 2.
  • the electric winch 3 is configured to be able to move the welding carriage 2 forward along the X-axis direction, which is the vertical weld line direction, by lifting the welding carriage 2.
  • the traveling speed of the welding carriage 2 depends on the hoisting speed of the electric winch 3, and the traveling speed during welding work, i.e., the welding speed, can be adjusted by adjusting the hoisting speed of the electric winch 3.
  • the hoisting speed of the electric winch 3 is configured to be controllable by the control unit.
  • the welding carriage 2 By configuring the welding carriage 2 to be hoisted by the electric winch 3, it is not necessary to wire motor power lines and signal lines to a distant location, as compared with a case in which a general winch and a suspended load (welding carriage) are separated, so that the entire vertical welding device can be configured compactly.
  • the traveling rollers 7 of the welding carriage 2 may be powerful magnets that are attached to the steel plate 5, and the traveling rollers 7 attached to the steel plate 5 may be driven by a drive unit (not shown) provided on the welding carriage 2 side, allowing the welding carriage 2 to travel upward in a vertical position.
  • the welding torch 4 is supported on the welding carriage 2 side via a torch support part 16, which will be described later in detail. This allows the welding torch 4 to adjust the welding position in the Y-axis direction, which is the groove width direction and which is the left-right rotation direction of the welding carriage 2, and in the Z-axis direction, which is the plate thickness direction of the steel plate 5.
  • the torch support part 16 also has a posture adjustment mechanism 17 that adjusts the vertical swing position of the welding torch 4, and is configured to allow the welding torch 4 to be directed toward the slag bath at an angle suitable for welding work. The specific configuration of the torch support part 16 will be described later.
  • the welding torch 4 has a contact tip that guides the welding wire so that it is fed toward the groove 10, and is configured to be able to weld the groove 10 formed between a pair of steel plates 5A, 5B by supplying the welding wire with a welding current supplied from a welding power source (not shown).
  • the welding torch 4 feeds the welding wire guided by the contact tip into the groove 10 surrounded by a pair of steel plates 5A, 5B, a front copper plate 9, and a back copper plate 12, thereby feeding the welding wire into the slag bath, which is a molten pool formed in the groove 10, and at the same time, the welding current can be passed from the welding wire through the slag bath to the molten metal.
  • This generates Joule heat due to the welding current passed through the slag bath and the electrical resistance of the slag bath, making it possible to perform electroslag welding, in which welding proceeds while melting the welding wire and steel plates.
  • the main body frame 6 has main body frames 18 which are a pair of left and right plate-like members extending along the traveling direction of the welding cart 2, and a pair of front and rear connecting rods 19, 20 which extend in the left and right direction so as to connect the opposing surfaces of the pair of left and right main body frames 18, 18, and is formed in a frame shape which is open in the X-axis direction which is the front-rear direction and in the Z-axis direction which is the up-down direction.
  • a U-shaped winch support frame 21 which protrudes forward in a plan view is formed so as to span the front end side of the main body frame 6, and an electric winch 3 which hoists the welding cart 2 is attached and fixed via the winch support frame 21.
  • the running rollers 7 have a pair of left and right front wheels 7A, 7A and a pair of left and right rear wheels 7B, 7B provided on the main body frame portion 6 side, and are configured so that the main body frame portion 6 can slide stably on the surface of the steel plate 5.
  • the front wheel support shaft 22, a rod-shaped member extending in the left-right direction, is supported at the center of the front connecting rod 19 so that it can swing up and down.
  • a pair of left and right front wheels 7A, 7A are supported at both left and right ends of the front wheel support shaft 22.
  • the rear wheel support shaft 23, a rod-shaped member extending in the left-right direction, is supported at the center of the rear connecting rod 20 so that it can swing up and down.
  • a pair of left and right rear wheels 7B, 7B are supported at both left and right ends of the rear wheel support shaft 23.
  • the swinging action of the front wheel support shaft 22 and the rear wheel support shaft 23 can absorb positional deviations of the main body frame 6 and the welding torch 4, making welding work by the self-propelled welding cart 2 more stable.
  • the front copper plate support part 11 supports the front copper plate 9 arranged on the rear side of the welding carriage 2 on the surface of the steel plate 5.
  • the front copper plate support part 11 has front copper plate air cylinders 24, 24 as a pair of left and right actuators that press the front copper plate 9 against the surface of the steel plate 5, a front side link mechanism 25 that operates the front copper plate 9 by the pair of front copper plate air cylinders 24, 24, and a torch support part 16 that supports the welding torch 4.
  • the front copper plate 9 is a plate-shaped member with a pressure surface that contacts the surface of the steel plate 5, and is generally equipped with a water-cooled cooling mechanism (not shown).
  • the front copper plate 9 forms part of the slag bath by contacting the surface of the steel plate 5, and in this state the welding carriage 2 moves independently while performing welding work, allowing it to slide over the groove 10 while cooling the slag bath.
  • the front copper plate air cylinder 24 is provided in a pair on the left and right sides of the main body frame 6, with the front end of the head side attached and fixed to the front outer surface of the main body frame 18 via a fixing plate 26, which is a plate-shaped member in the front-rear direction, and the rear end of the operating rod side connected to the front link mechanism 25.
  • the front copper plate air cylinder 24 is attached and fixed to the main body frame 18 side of the main body frame 6 with the operating direction of the operating rod facing diagonally upward and rearward.
  • the front link mechanism 25 has a front drive link member 28 which is a driving link extending in the front-rear direction, a front driven link member 31 which is a driven link extending in the front-rear direction, and a front intermediate link member 32 which is an intermediate link extending in the up-down direction.
  • the front drive link members 28 are a pair of left and right link members that correspond to the front copper plate air cylinders 24, and their front ends are connected to the rear lower side of the main frame 18 via the first connecting joint 27, and their rear ends are connected to the front intermediate link member 32 via the third connecting joint 33.
  • the front side driven link members 31 are a pair of link members provided on the left and right outer sides of the main body frame 6, with their front ends connected to the upper rear side of the main body frame 18 via the second connecting joint 29 and their rear ends connected to the front side intermediate link member 32 via the fourth connecting joint 34.
  • the front intermediate link member 32 extends in the vertical direction, which is the thickness direction of the steel plate 5, and its lower end is connected to the rear end of the front driving link member 28 via a third connecting joint 33, and its vertical midpoint is connected to the rear end of the front driven link member 31 via a fourth connecting joint 34.
  • the third connecting member 33 connects the rear ends of the pair of left and right front drive link members 28, 28 with a rod-shaped member extending in the left-right direction
  • the fourth connecting member 34 connects the rear ends of the pair of left and right front driven link members 31, 31 with a rod-shaped member extending in the left-right direction.
  • the front side driving link member 28 and the front side driven link member 31 are formed to be approximately the same length.
  • the line connecting the first connecting section 27 and the second connecting section 29 is arranged so as to be perpendicular to the traveling direction of the welding cart 2.
  • the distance between the third connecting section 33 and the fourth connecting section 34 on the front side intermediate link member 32 is formed to be approximately the same length as the distance between the first connecting section 27 and the second connecting section 29.
  • the front side link mechanism 25 constitutes a four-section link with a closed loop structure formed in the shape of a parallelogram in a side view.
  • the front drive link member 28 is integrally formed with a front operation arm portion 28a that extends forward and upward from the first connecting joint 27, and the operating rod of the air cylinder 24 for the front copper plate is connected to the front end of the front operation arm portion 28a.
  • the connecting joint between the front operation arm portion 28a and the operating rod is located forward and upward of the second connecting joint 29 in a side view.
  • the front intermediate link member 32 has a front copper plate 9 on its protruding lower end below the third connecting section 33, i.e., on the steel plate 5 side, and is supported so that the pressure surface of the front copper plate 9 can abut against the surface of the steel plate 5.
  • the operating force associated with the extension and contraction of the operating rod of the air cylinder 24 for the front copper plate acts in the order of the operating rod ⁇ front operation arm part 28a ⁇ front drive link member 28 ⁇ front intermediate link member 32 and front copper plate 9 ⁇ front driven link member 31, so that the front intermediate link member 32 and front copper plate 9 perpendicular to the steel plate 5 can be moved up and down while maintaining their posture.
  • the actuator for operating the front link mechanism 25 may be an electric cylinder or a motor instead of the air cylinder 24 for the front copper plate.
  • the torch support 16 has a left-right connecting support part 35 that connects the upper ends of the pair of left and right front intermediate link members 32, a welding position adjustment mechanism 36 that is attached and fixed to the front side of the connecting support part 35 and has an operating part at the lower end that operates to expand and contract in the thickness direction of the steel plate 5, a posture adjustment mechanism 17 that supports the welding torch 4 so that the angle can be adjusted by swinging it up and down, and a support bracket 37 that connects the operating part of the welding position adjustment mechanism 36 and the posture adjustment mechanism 17.
  • the support bracket 37 supports the posture adjustment mechanism 17 so that its position can be adjusted in the X-axis direction, which is the extension direction of the groove.
  • the attitude adjustment mechanism 17 is a fan-shaped plate-like member with an arc-shaped through hole 17a that extends toward the rear side as it moves forward, and is configured so that a torch gripping part 38 that supports the welding torch 4 can be held at any position above the through hole 17a.
  • the torch gripping part 38 may be configured so that the up and down swing position can be controlled by a motor or the like.
  • the back copper plate support part 13 supports the back copper plate 12 arranged on the rear side of the welding carriage 2 on the back side of the steel plate 5.
  • the back copper plate support part 13 has a back link support frame 41 configured to be detachable from the main body frame part 6 side, attraction air cylinders 42, 42 as actuators that attract the back link support frame 41 to the back side of the steel plate 5, a back copper plate air cylinder 43 as an actuator that presses the back copper plate 12 against the back side of the steel plate 5, and a back link mechanism 44 operated by the back copper plate air cylinder 43.
  • the back copper plate 12 is a plate-shaped member with a pressure surface that contacts the back surface of the steel plate 5, and is generally equipped with a water-cooled cooling mechanism.
  • the back copper plate 12 forms part of the slag bath by contacting the back surface of the steel plate 5, and in this state, the welding carriage 2 moves independently while performing welding work, allowing it to slide over the groove 10 while cooling the slag bath, etc.
  • the rear link support frame 41 is a pair of left and right plate-like members that extend in the front-rear direction along the travel direction of the welding cart 2 and are arranged on the rear side of the steel plate 5.
  • a pull frame 45 that extends in a direction perpendicular to the extension direction, i.e., in the thickness direction of the steel plate 5, is attached and fixed to the middle part of the front-rear direction of the rear link support frame 41 so as to be clamped, thereby forming an overall T-shape.
  • rear running rollers 46 consisting of a pair of left and right rear front wheels 46A, 46A and a pair of left and right rear rear wheels 46B, 46B are supported on the front and rear ends of the rear link support frame 41.
  • the attachment frame 45 is a plate-like member that extends from the front side to the back side of the steel plate 5 through the groove 10, which is the gap formed between the pair of steel plates 5A, 5B.
  • One end of the attachment frame 45 is attached to the main frame 6 side in a state in which it can be pushed and pulled along the extension direction via the attachment air cylinders 42, 42.
  • the other end of the attachment frame 45 is detachably pinned to the middle of the longitudinal direction of the back link support frame 41.
  • a pair of pulling air cylinders 42 are provided on the left and right sides at the rear between the pair of left and right body frames 18, 18 inside the body frame 6.
  • the pair of pulling air cylinders 42 are configured so that a pair of operating rods supported facing upward in the vertical direction can be connected to the pulling frame 45 side via a connecting member 47.
  • the pull air cylinder 42 is configured so that the pull frame 45 is pulled up toward the welding carriage 2 placed on the surface of the steel plate 5 by extending the operating rod, thereby pressing the back running roller 46 provided on the back link support frame 41 against the back side of the steel plate 5.
  • the air cylinder 43 for the back copper plate is attached and fixed inside the main body frame 6 with the operating rod facing directly downward in the vertical direction via cylinder support plates 48, 48 arranged to sandwich the head side on the left and right, and a pair of front and rear fixing members 49, 50 that extend in the left-right direction to bridge the pair of cylinder support plates 48, 48.
  • the air cylinder 43 for the back copper plate has an operating rod connected to one end of an L-shaped operating piece 51 that is pivotally supported on a fixed member 50 between a pair of cylinder support plates 48, 48.
  • a back link operating body 52 is provided on the other end of the operating piece 51, and the back link operating body 52 is configured to be able to operate the back link mechanism 44 by being pivoted forward and backward by the expansion and contraction of the air cylinder 43 for the back copper plate.
  • the rear link mechanism 44 has a rear drive link member 61 which is a driving link extending in the vertical direction, a rear driven link member 62 which is a driven link provided on the rear side of the link mechanism, and a rear intermediate link member 63 which is an intermediate link extending in the front-rear direction.
  • the rear drive link member 61 is a link member that extends vertically in front of the main frame 6 and the front wheels 7A.
  • the lower side of the rear drive link member 61 is connected to the front end side of the rear link support frame 41 via the first connecting joint 57, and the further lower side is connected to the front end side of the rear intermediate link member 63 via the third connecting joint 59.
  • the rear driven link member 62 is a link member that is disposed on the rear side of the main frame portion 6 and on the rear side of the steel plate 5.
  • the upper front end side of the rear driven link member 62 is connected to the rear end side of the rear link support frame 41 via the second connecting joint 58, and the lower front end side is connected to the rear end side of the rear intermediate link member via the fourth connecting joint 60.
  • the rear intermediate link member 63 is a link member that extends in the front-rear direction along the rear link support frame 41.
  • the front end of the rear intermediate link member 63 is connected to the lower end of the rear driving link member 61, and the rear end is connected to the lower front end of the rear driven link member 62.
  • the distance between the third connecting section 59 and the fourth connecting section 60 on the rear intermediate link member 63 is formed to be approximately the same length as the distance between the first connecting section 57 and the second connecting section 58.
  • the length between the first connecting section 57 and the second connecting section 58 can also be considered the length of the rear link support frame 41.
  • the rear link mechanism 44 constitutes a four-section link with a closed loop structure formed in the shape of a parallelogram in side view.
  • the rear drive link member 61 is integrally formed with the rear operation arm portion 61a by extending upward from the first connecting section 57, and the upper side of the rear operation arm portion 61a is configured to abut against the rear link operation body 52 operated by the rear copper plate air cylinder 43.
  • the rear driven link member 62 is formed in a plate shape extending in the front-rear direction, and a notch 62a is formed on the upper rear side, and the rear copper plate 12 is supported by the notch 62a.
  • the pressure surface of the rear copper plate 12 is supported parallel to the rear side of the steel plate 5, and the entire pressure surface is configured to abut against the rear side of the steel plate 5.
  • the operating force associated with the expansion and contraction operation of the back copper plate air cylinder 43 acts in the following order on the operating rod ⁇ back side link operating body 52 ⁇ back side operating arm part 61a ⁇ back side driving link member 61 ⁇ back side intermediate link member 63 ⁇ back side driven link member 62 and back copper plate 12, thereby allowing the back copper plate 12 to move up and down relative to the back side of the steel plate 5.
  • the actuator that operates the back side link mechanism 44 may be an electric cylinder or a motor instead of the back copper plate air cylinder 43.
  • the front and back surfaces of the steel plate 5 on which the groove 10 is formed can be firmly clamped between the running rollers 7 on the main frame part 6 side and the back running rollers 46 on the back link support frame 41 side, so that the welding carriage 2 in a vertical position suspended by the electric winch 3 can be held in a self-propelled state on the surface of the steel plate 5.
  • the guide roller 8 is a tracing roller for guiding the welding carriage 2 so that the welding proceeding direction is along the extension direction of the groove 10, i.e., along the weld line, by being positioned in the groove 10 on the front side of the welding torch 4 that performs welding. More specifically, the guide roller 8 is positioned in the groove 10 so as to abut against the groove faces 5a and 5b of a pair of steel plates 5A and 5B that form the groove 10. Note that the left groove face is 5a and the right groove face is 5b with respect to the direction in which the welding proceeds.
  • a plurality of guide rollers 8 are provided along the extension direction of the groove 10. Note that, in the illustrated example, two guide rollers 8 are provided.
  • the guide roller 8 has a fulcrum guide roller 8B and a movable guide roller 8A that is positioned forward of the fulcrum guide roller 8B.
  • the fulcrum guide roller 8B is positioned in a front-to-rear position between the front wheels 7A and the rear wheels 7B, and is supported so that it can move up and down.
  • the movable guide roller 8A is positioned in front of the welding cart 2, and is supported so that it can move left-right and up-down.
  • the positions and number of guide rollers 8 are not limited to these, but it is preferable to position at least one in front of the welding cart 2.
  • the fulcrum guide roller 8B has a fulcrum roller shaft 66 that supports the fulcrum guide roller 8B, a pair of left and right fulcrum roller support plates 67, 67 that are attached and fixed to both ends of the fulcrum roller shaft 66, and a pair of left and right fulcrum gas springs 68 that support the fulcrum roller support plates 67 so that they can be displaced in the vertical direction.
  • the fulcrum gas spring 68 is attached and fixed at its lower end to the fulcrum roller support plate 67, and at its upper end to a connecting rod 69 formed to bridge the pair of left and right main frames 18. This allows the fulcrum guide roller 8B to be elastically displaceable in the vertical direction, and is supported on the main frame 6 side in a configuration in which it is biased toward the inside of the groove 10.
  • the movable guide roller 8A is equipped with a movable roller support section that supports the movable guide roller 8A on the main body frame section 6 side so that the movable guide roller 8A can be displaced in the up and down direction, and a movable roller drive section that supports the movable guide roller 8A so that it can be driven in the left and right direction, and is configured so that the left and right position of the movable guide roller 8A can be controlled by the control section.
  • the movable roller support portion has a movable roller shaft 71 that supports the movable guide roller 8A, a pair of vertical oscillating frames 72, 72 that extend diagonally upward and rearward from the movable roller shaft 71 and are provided on either side of the movable roller shaft 71, and a pair of vertical driving air cylinders 73, 73 whose operating rods face forward.
  • the operating rod of the vertical driving air cylinder 73 is connected to the base end side of the vertical oscillating frame 72 via a vertical linking rod 74, so that it is possible to urge the vertical oscillating frame 72 downward.
  • the movable guide roller 8A is supported on the main body frame 6 side so as to be able to swing up and down, and the force of the vertical drive air cylinder 73 can be used to bias the movable guide roller 8A so as to press it against the groove 10 side.
  • the movable guide roller 8A is configured to be able to slide left and right on the movable roller shaft 71 between a pair of left and right vertical swing frames 72, 72. Details will be explained below.
  • the movable roller drive unit includes a pair of left and right drive air cylinders 75, 75 that are provided on the left and right outer sides of the movable roller shaft 71 at the front end of the vertically oscillating frame 72 and serve as a pair of left and right drive means that enable the movable guide roller 8A to slide on the movable roller shaft 71, and the above-mentioned control unit that controls the drive of the left and right drive air cylinders 75.
  • the movable roller drive unit is configured to be able to control the drive thrust of the left and right drive air cylinders 75 via the left and right drive unit air circuit controlled by the control unit.
  • the actuator that slides the movable guide roller 8A is not limited to the left and right drive air cylinders 75, and an electric cylinder or a motor may also be used.
  • FIG. 7 is a diagram showing the configuration of the drive air circuit.
  • the drive air circuit includes left and right drive air cylinders 75, 75, a meter-in flow control valve 76, a directional control valve (three positions, exhaust center) 77, and an electro-pneumatic regulator 78. Note that the configuration of the drive air circuit is not limited to the above, and it may be configured without the flow control valve 76.
  • the drive air circuit switches the directional control valve 77 and passes air through the electro-pneumatic regulator 78 and flow control valve 76 to fill the head side of the left-side horizontal driving air cylinder 75 and the rod side of the right-side horizontal driving air cylinder 75 with air, and exhausts the air from the rod side of the left-side horizontal driving air cylinder 75 and the head side of the right-side horizontal driving air cylinder 75.
  • the directional control valve 77 switches and passes air through the electro-pneumatic regulator 78 and flow control valve 76 to fill the rod side of the left-side horizontal driving air cylinder 75 and the head side of the right-side horizontal driving air cylinder 75 with air, and exhausts the air from the head side of the left-side horizontal driving air cylinder 75 and the rod side of the right-side horizontal driving air cylinder 75.
  • the drive air circuit can be switched to a state in which air is discharged from both the rod side and head side of the left and right drive air cylinders 75, allowing the movable guide roller 8A to enter a free state in which it can move freely in parallel in the left and right direction on the movable roller shaft 71.
  • control unit When the control unit detects a misalignment between the welding proceeding direction of the welding carriage 2 during welding operation and the extension direction of the groove 10 that is equal to or greater than a preset threshold value using the visual sensor 14, which will be described in detail later, the control unit adjusts the sliding position of the movable guide roller 8A via the left and right driving air cylinders 75 so that the welding carriage 2 rotates in the direction that reduces the detected misalignment.
  • the control unit is configured to be able to execute drive control so that the movable guide roller 8A is in a free state in which it can move freely in parallel in the left and right direction by discharging air from the rod side and head side of the left and right left and right driving air cylinders 75.
  • a specific control method for the drive control will be described later.
  • Figure 8(A) is a model diagram in which a reference position and a current position are photographed by the visual sensor
  • Figure 8(B) is a model diagram showing a state in which the visual sensor detects that the amount of deviation is less than a threshold
  • Figure 8(C) is a model diagram showing a state in which the visual sensor detects that the amount of deviation is equal to or greater than the threshold.
  • a visual sensor 14 that captures an image of the welding area is used as a detection sensor that detects the amount of misalignment of the welding direction of the welding carriage 2 relative to the extension direction of the groove 10 extending in the X-axis direction, i.e., the weld line.
  • the visual sensor 14 is installed along the inside of the groove 10 by being attached to the rear connecting rod 20 that constitutes the main body frame 6.
  • the visual sensor 14 is configured to be able to detect the amount of misalignment between the welding direction of the welding carriage 2 and the extension direction of the groove 10 extending in the X-axis direction, i.e., the weld line, by capturing an image 80 that always includes the slag bath, which is the welding area, in its angle of view while the welding carriage 2 is traveling upward on the surface of the steel plate 5 while performing welding work.
  • the welding cart 2 is fixed to the steel plate 5 side so that it is not tilted left or right with respect to the weld line, i.e., in the yaw angle direction, and the mounting position of the visual sensor 14 is adjusted so that the slag bath is located in the center of the captured image 80.
  • the shape X of the slag bath is analyzed from the image 80 captured by the visual sensor 14, and the center of gravity of the shape X of the slag bath is obtained as the reference position Y.
  • the shape X of the slag bath is approximately the same as the shape of the groove 10.
  • the reference position Y is not limited to the center of gravity of the slag bath and may be set to any position.
  • the visual sensor 14 is installed so that the reference position Y and the center position C of the image 80 overlap.
  • the amount of shift can be detected as the amount of shift in the welding progress direction of the welding carriage 2 relative to the weld line, i.e., the amount of yaw angle displacement.
  • the amount of shift is detected based on the difference between the reference position Y of the slag bath and the center position C of the image representing the current position of the welding carriage 2.
  • a frame T indicating the above-mentioned threshold value used in drive control may be displayed within the image 80 acquired by the visual sensor 14.
  • the amount of deviation exceeds the threshold value, and the worker can intuitively grasp the amount of deviation. Note that the size of the frame T within the image 80 varies depending on the threshold value that is set.
  • the detection sensor for detecting the amount of misalignment is not limited to the visual sensor 14 described above, as long as it is capable of detecting the amount of displacement of the welding progress direction of the welding carriage 2 relative to the extension direction of the groove 10, specifically the amount of yaw angle displacement.
  • the detection sensor may be an optical sensor such as a laser sensor, a magnetic sensor, a gyro sensor, or a combination of these.
  • the control unit is, for example, a part of a processor, and is a control device that controls the reading and writing of the arithmetic unit and the storage device, input and output, etc., and is connected to the visual sensor 14 on the input side, and to the directional control valve 77 and the electro-pneumatic regulator 78 on the output side.
  • FIGS 9(A) to (D) are schematic diagrams showing the effect of the drive control.
  • the control unit starts to detect the amount of deviation between the welding progress direction of the welding carriage 2 and the extension direction of the groove 10 using the visual sensor 14, and if the amount of deviation is less than a threshold value, the movable guide roller 8A is set in a free state and the welding work continues.
  • Figure 9 (B) shows a case where the visual sensor 14 detects that the welding progress direction of the welding carriage 2 is tilted to the left of the extension direction of the groove 10, i.e., in the direction approaching the steel plate 5A, during welding operation, and that the amount of deviation is greater than or equal to a threshold value.
  • the drive of a pair of left and right drive air cylinders 75, 75 is controlled to slide the movable guide roller 8A so as to press against the groove surface 5a to the left where the deviation has occurred.
  • the welding carriage 2 rotates to the right, which is the opposite direction to the sliding direction of the movable guide roller 8A, with the fulcrum guide roller 8B in the groove 10 as the fulcrum, due to a reaction from the left groove surface 5a pressed by the movable guide roller 8A.
  • the welding carriage 2 rotates in a direction in which the welding proceeds along the extension direction of the groove 10. That is, the welding carriage 2 can correct the amount of deviation detected by the visual sensor 14 by returning the traveling direction of the welding carriage 2, which has begun to deviate from the extension direction of the groove 10, to the traveling direction along the extension direction of the groove 10. Note that "correcting the amount of deviation" in this case may also be rephrased as "canceling the amount of deviation.”
  • the left and right drive air cylinders 75, 75 can perform drive control to press the groove surfaces 5a, 5b on one side with the movable guide roller 8A so that the welding carriage 2 moves in a direction that cancels the detected misalignment.
  • FIG. 10 is a flow diagram showing the drive control process.
  • the control unit proceeds to step S1.
  • the visual sensor 14 detects the amount of deviation between the welding progress direction of the welding carriage 2 and the extension direction of the groove 10, and the process proceeds to step S2.
  • step S2 it is confirmed whether the amount of misalignment detected by the visual sensor 14 is equal to or greater than a preset threshold, and if it is determined that the amount of misalignment detected is equal to or greater than the threshold, the process proceeds to step S3.
  • step S3 the control unit calculates the air pressure required to drive the left and right driving air cylinders 75 to correct the amount of misalignment based on the detected amount of misalignment, and drives the pair of left and right driving air cylinders 75, 75 based on the calculated air pressure. This causes the movable guide roller 8A to slide left and right, pressing against the groove surface (either groove surface 5a or groove surface 5b) in the direction in which the amount of misalignment was detected. Then, the process returns.
  • the welding carriage 2 is pushed back in the opposite direction to the sliding direction of the movable guide roller 8A, with the fulcrum guide roller 8B in the groove 10 as the fulcrum, and the welding carriage 2 can be rotated in a direction that reduces the amount of misalignment.
  • the welding progress direction of the welding carriage 2 can be returned to the correct position along the weld line.
  • a database may be created in advance of the relationship between the detected amount of misalignment and the air pressure required to correct the amount of misalignment, and the air pressure to be supplied to the pair of left and right driving air cylinders 75, 75 may be determined based on the database and the value of the detected amount of misalignment. Also, the air pressure and data on the degree of misalignment correction may be recorded and automatically learned, or the air pressure may not be calculated and the left and right driving air cylinders 75 may always be driven with a constant air pressure.
  • step S2 If it is determined in step S2 that the amount of deviation detected by the visual sensor 14 is less than a preset threshold, the process proceeds to step S4.
  • step S4 the horizontal driving air cylinder 75 does not slide the movable guide roller 8A, and the air is discharged from both the head side and rod side of the horizontal driving air cylinder 75, in other words, the movable guide roller 8A switches to a guide roller free state in which it can move freely in parallel in the horizontal direction on the movable roller shaft 71, and then returns.
  • the movable guide roller 8A escapes in the horizontal direction, thereby avoiding a sudden yaw change to the welding cart 2.
  • a vertical welding device for performing welding in a vertical position on a groove formed by two workpieces, A welding carriage that welds one surface side perpendicular to the plate thickness direction of the welded material while traveling along the groove, and a welding torch mounted on the welding carriage,
  • the welding carriage includes: At least two or more guide rollers are arranged in a line along the welding proceeding direction and proceed along the extension direction of the groove; A detection means for detecting a deviation amount of the welding proceeding direction of the welding carriage with respect to an extension direction of the groove; having At least one of the guide rollers is a movable guide roller that can be moved in parallel in a direction perpendicular to the welding proceeding direction by a driving means,
  • the vertical welding device is characterized in that the driving means performs drive control to press the movable guide roller against the groove surface so that the movable guide roller moves in a direction that cancels the amount of deviation detected by the detection means. According to this configuration, in a self-propelled vertical welding device that does
  • the detection means At least one sensor among a visual sensor, an optical sensor, and a magnetic sensor is included;
  • the vertical welding apparatus according to claim 1 or 2 characterized in that the amount of deviation is detected based on a difference between a predetermined reference position acquired by the sensor and a current position of the welding carriage. According to this configuration, the amount of deviation between the traveling direction of the welding carriage and the extension direction of the groove can be detected easily and accurately.
  • a hanging type vertical welding device The vertical welding apparatus according to any one of (1) to (4), further comprising an electric winch for hoisting the welding carriage. According to this configuration, the size and weight of the entire device can be made compact, and the preparation steps before starting work are relatively simple, improving maintainability and work efficiency.
  • a vertical welding device for electroslag welding or electrogas welding The welding carriage includes: A front copper plate is arranged on a front surface side, which is one surface of the material to be welded, and slides along the groove; A back copper plate is arranged on the back side, which is the other side of the welded material, and slides along the groove; a link mechanism that operates the front copper plate and the back copper plate in a direction to clamp the workpiece; The vertical welding apparatus according to any one of (1) to (5), further comprising an actuator for controlling the link mechanism. According to this configuration, the front copper plate and the back copper plate that clamp the material to be welded can be accurately manipulated with a relatively simple structure.
  • the vertical welding apparatus characterized in that the driving means is an air cylinder that moves the movable guide roller in a parallel manner, and the apparatus is configured to calculate an output of the air cylinder based on the amount of deviation detected by the detection means. According to this configuration, it is possible to easily calculate the output of the air cylinder required to correct the amount of deviation.
  • a control method for a vertical welding apparatus for performing welding in a vertical position on a groove formed by two workpieces comprising:
  • the vertical welding apparatus includes a welding carriage that welds one surface side perpendicular to the plate thickness direction of the workpiece while traveling along the groove, and a welding torch mounted on the welding carriage;
  • the welding carriage includes: At least two or more guide rollers are arranged in a line along the welding proceeding direction and proceed along the extension direction of the groove, At least one of the guide rollers is a movable guide roller that is movable in parallel in a direction perpendicular to the welding proceeding direction, a movable guide roller that presses the groove surface in a direction in which the amount of deviation is detected when a deviation of the welding carriage in the welding proceeding direction with respect to an extension direction of the groove is detected.
  • the posture of the welding carriage can be stably maintained and deviation of the welding torch tip position can be suppressed, thereby ensuring good welding quality.

Abstract

Provided is a vertical-position welding device for performing welding in a vertical-position orientation with respect to a groove formed by two welding target members, said vertical-position welding device comprising a welding carriage that travels along the groove on one surface side perpendicular to the plate thickness direction of the welding target members while welding is performed, and a welding torch that is mounted on the welding carriage. The welding carriage has two or more guide rollers that are disposed side-by-side along the welding advancement direction and that advance along the direction in which the groove extends, and a detection means that detects the amount of shifting of the welding carriage in the welding advancement direction with respect to the direction in which the groove extends. At least one of the guide rollers is a movable guide roller which can be moved parallel to a direction orthogonal to the welding advancement direction with use of a driving means. The driving means performs driving control for pressing the movable guide roller against a groove surface so as to cause movement in a direction that cancels the amount of shifting detected by the detection means.

Description

立向溶接装置及び立向溶接装置の制御方法Vertical welding apparatus and method for controlling vertical welding apparatus
 本発明は、自走式の立向溶接装置及び立向溶接装置の制御方法に関する。 The present invention relates to a self-propelled vertical welding device and a method for controlling the vertical welding device.
 造船、建築鉄骨、エネルギープラントなど、様々な業種の製造において立向姿勢の溶接が行われている。この立向姿勢の溶接は自動化が求められており、これを実現する溶接装置として、レール式の立向溶接装置や、非レール式の立向溶接装置(以降、自走式の立向装置とも称する。)等が従来公知である。 Vertical welding is performed in a variety of manufacturing industries, including shipbuilding, steel building structures, and energy plants. There is a demand for automation of this vertical welding, and conventionally known welding equipment that achieves this includes rail-type vertical welding equipment and non-rail-type vertical welding equipment (hereinafter also referred to as self-propelled vertical welding equipment).
 これらの溶接装置のうち、レール式の立向溶接装置は、溶接精度は高いが被溶接材側に予めレールを設置する必要があるため作業効率に問題がある一方で、自走式の立向溶接装置は、レール等の設備を被溶接材側に予め設置する必要がないため、レール式の立向溶接装置に比べて作業効率に優れている。なお、自走式の立向溶接装置としては、溶接装置を引っ張りあげる吊り下げ方式や、磁力によって被溶接材に接着させる磁石車輪式等がある。 Among these welding devices, rail-type vertical welding devices have high welding precision but require rails to be installed in advance on the workpiece side, which reduces work efficiency. On the other hand, self-propelled vertical welding devices do not require rails or other equipment to be installed in advance on the workpiece side, so they are more efficient than rail-type vertical welding devices. Self-propelled vertical welding devices include a hanging type that pulls up the welding device, and a magnet wheel type that uses magnetic force to attach it to the workpiece.
 この自走式の立向溶接装置としては、例えば、特許文献1が挙げられる。特許文献1には、溶接台車の走行ローラを電動機で回転駆動させるとともに、その走行ローラのローラ表面全周に細溝を設けることによって、溶接台車を被溶接時側に確実に保持させることができる構成であり、溶接台車が落下等する危険性がなく、開先の目違いを矯正しながら溶接を行うことができる旨が開示されている。 An example of this self-propelled vertical welding device is the patent document 1. The patent document 1 discloses that the traveling rollers of the welding carriage are rotated by an electric motor, and that by providing fine grooves on the entire circumference of the roller surface, the welding carriage can be securely held on the side to be welded, and there is no risk of the welding carriage falling, etc., and welding can be performed while correcting misalignment of the groove.
日本国実全昭53-155522号公報Japan Patent Publication No. 53-155522
 しかしながら、特許文献1に記載の自走式の立向溶接装置は、施工条件や外乱の要因によって溶接台車の姿勢が変わることにより、溶接位置にズレが生じる場合がある。上記施工条件の要因としては、例えば、2つの被溶接材の突合せ部に形成される開先を溶接するにあたり、2つの被溶接材の板厚が異なる場合や、板継部分での板厚が異なる場合がある。また、上記外乱の要因としては、例えば、板厚方向の目違い等が挙げられる。 However, the self-propelled vertical welding device described in Patent Document 1 may cause the welding position to shift due to changes in the attitude of the welding carriage caused by working conditions or disturbances. Factors related to the working conditions include, for example, when welding a groove formed at the butt joint of two workpieces, the plate thicknesses of the two workpieces may be different, or the plate thickness at the plate joint may be different. Factors related to disturbances include, for example, misalignment in the plate thickness direction.
 自走式の立向溶接装置は、一般的に突合せ部を跨ぐように配置された左右一対の走行ローラを有し、溶接進行方向である開先の延設方向に沿って自走しながら溶接作業が行われる。しかしながら、上記要因によって、向かい合う被溶接材を跨いで配置される左側の走行ローラ間と右側の走行ローラとで走行距離の差が生じてしまうことがある。これにより、従来の自走式の立向溶接装置は、溶接台車の姿勢が開先内に押し当てられるガイドローラを支点として、溶接進行方向に対して左右方向に旋回するため、溶接台車の進行方向後方に設置している溶接トーチの左右位置にもズレが生じ、結果として溶接位置が開先位置から外れて溶接品質の低下を招く場合があり得る。このため、様々な施工条件や外乱に対しても溶接台車の姿勢を安定させることができる自走式の立向溶接装置が求められている。 Self-propelled vertical welding equipment generally has a pair of left and right running rollers arranged to straddle the butt joint, and welding work is performed while self-propelled along the extension direction of the groove, which is the welding progress direction. However, due to the above factors, a difference in the travel distance between the left running rollers and the right running rollers arranged to straddle the opposing welded materials may occur. As a result, in conventional self-propelled vertical welding equipment, the attitude of the welding carriage rotates left and right in the welding progress direction with the guide roller pressed into the groove as a fulcrum, so that the left and right positions of the welding torch installed behind the welding carriage in the traveling direction are also misaligned, and as a result, the welding position may deviate from the groove position, leading to a decrease in welding quality. For this reason, there is a demand for a self-propelled vertical welding equipment that can stabilize the attitude of the welding carriage even under various construction conditions and disturbances.
 本発明は、上記状況に鑑みてなされたものであり、その目的は、溶接台車の作業姿勢を安定的に維持できる自走式の立向溶接装置と、自走式の立向溶接装置の制御方法を提供することにある。 The present invention was made in consideration of the above situation, and its purpose is to provide a self-propelled vertical welding device that can stably maintain the working position of the welding carriage, and a control method for the self-propelled vertical welding device.
 本発明の上記目的は、立向溶接装置に係る下記[1]の構成により達成される。
[1] 2つの被溶接材により形成される開先に対し、立向姿勢による溶接を行うための立向溶接装置であって、
 前記被溶接材の板厚方向に対して垂直となる一方側の表面側を前記開先に沿って走行しながら溶接する溶接台車と、前記溶接台車に搭載された溶接トーチと、を備え、
 前記溶接台車は、
 溶接進行方向に沿って少なくとも2以上並べて配置されて、前記開先の延設方向に沿って進行するガイドローラと、
 前記開先の延設方向に対する前記溶接台車の前記溶接進行方向のズレ量を検出する検出手段と、を有し、
 前記ガイドローラの少なくとも一つは、駆動手段を用いて前記溶接進行方向に対して直交する方向に平行移動可能な可動ガイドローラであり、
 前記駆動手段は、前記検出手段によって検出されたズレ量をキャンセルする方向に動くように、前記可動ガイドローラを開先面に押圧する駆動制御を行う
 ことを特徴とする立向溶接装置。
The above object of the present invention is achieved by the following configuration [1] relating to a vertical welding apparatus.
[1] A vertical welding device for performing welding in a vertical position on a groove formed by two workpieces,
A welding carriage that welds one surface side perpendicular to the plate thickness direction of the welded material while traveling along the groove, and a welding torch mounted on the welding carriage,
The welding carriage includes:
At least two or more guide rollers are arranged in a line along the welding proceeding direction and proceed along the extension direction of the groove;
A detection means for detecting a deviation amount of the welding proceeding direction of the welding carriage relative to the extension direction of the groove,
At least one of the guide rollers is a movable guide roller that can be moved in parallel in a direction perpendicular to the welding proceeding direction by a driving means,
The vertical welding device is characterized in that the driving means performs drive control to press the movable guide roller against the groove surface so that the movable guide roller moves in a direction that cancels the amount of deviation detected by the detection means.
 本発明の上記目的は、立向溶接装置の制御方法に係る下記[2]の構成により達成される。
[2] 2つの被溶接材により形成される開先に対し、立向姿勢による溶接を行うための立向溶接装置の制御方法であって、
 前記立向溶接装置は、前記被溶接材の板厚方向に対して垂直となる一方側の表面側を前記開先に沿って走行しながら溶接する溶接台車と、前記溶接台車に搭載された溶接トーチと、を備え、
 前記溶接台車は、
 溶接進行方向に沿って少なくとも2以上並べて配置されて、前記開先の延設方向に沿って進行するガイドローラを有し、
 前記ガイドローラの少なくとも一つは、前記溶接進行方向に対して直交する方向に平行移動可能な可動ガイドローラであり、
 前記開先の延設方向に対する前記溶接台車の前記溶接進行方向のズレ量を検出した場合に、前記可動ガイドローラによって前記ズレ量が検出された方向の開先面を押圧する
 ことを特徴とする立向溶接装置の制御方法。
The above object of the present invention is achieved by the following configuration [2] relating to a control method for a vertical welding apparatus.
[2] A control method for a vertical welding apparatus for performing welding in a vertical position on a groove formed by two workpieces, comprising:
The vertical welding apparatus includes a welding carriage that welds one surface side perpendicular to the plate thickness direction of the workpiece while traveling along the groove, and a welding torch mounted on the welding carriage;
The welding carriage includes:
At least two or more guide rollers are arranged in a line along the welding proceeding direction and proceed along the extension direction of the groove,
At least one of the guide rollers is a movable guide roller that is movable in parallel in a direction perpendicular to the welding proceeding direction,
a movable guide roller that presses the groove surface in a direction in which the amount of deviation is detected when a deviation of the welding carriage in the welding proceeding direction with respect to an extension direction of the groove is detected.
 本発明によれば、レール設置を必要としない自走式の立向溶接装置及び立向溶接装置の制御方法において、溶接台車の姿勢を安定的に維持して溶接トーチ先端位置のズレを抑制することにより、良好な溶接品質を確保することができる。 According to the present invention, in a self-propelled vertical welding device that does not require rail installation and a control method for the vertical welding device, the posture of the welding carriage is stably maintained and deviation of the welding torch tip position is suppressed, thereby ensuring good welding quality.
立向溶接装置を示した斜視図である。FIG. 2 is a perspective view showing a vertical welding apparatus. 立向溶接装置を示した正面図である。FIG. 立向溶接装置を示した側面図である。FIG. 図2のA-A断面図である。This is a cross-sectional view taken along line AA in FIG. 図2のB-B断面図である。This is a cross-sectional view taken along line B-B of FIG. 図3のC-C断面図である。This is a cross-sectional view taken along the line CC of FIG. 駆動部エア回路の構成を示した図である。FIG. 4 is a diagram showing the configuration of a drive unit air circuit. 図8(A)は、視覚センサにより基準位置及び現在位置を撮影したモデル図であり、図8(B)は、視覚センサによりズレ量が閾値未満であることを検出した状態を示したモデル図であり、図8(C)は、視覚センサによりズレ量が閾値以上であることを検出した状態を示したモデル図である。Figure 8 (A) is a model diagram showing a reference position and a current position photographed by a visual sensor, Figure 8 (B) is a model diagram showing a state in which the visual sensor detects that the amount of deviation is less than a threshold value, and Figure 8 (C) is a model diagram showing a state in which the visual sensor detects that the amount of deviation is greater than or equal to the threshold value. 図9(A)~図9(D)は、駆動制御の効果を示した概要図である。9A to 9D are schematic diagrams showing the effect of drive control. 駆動制御の処理を示したフロー図である。FIG. 4 is a flow chart showing a drive control process.
 以下、添付図面を参照して、本発明に係る自走式の立向溶接装置と、立向溶接装置の制御方法についての実施形態を説明する。なお、各図は、本発明の説明のために作成されたものであり、本発明の実施形態は、図示の内容に限らない。また、立向溶接装置が適用される溶接方法は特に問わないが、例えば、エレクトロスラグ溶接やエレクトロガス溶接といった溶接方法が挙げられる。本実施形態においては、エレクトロスラグ溶接に用いる場合を例として説明する。 Below, an embodiment of the self-propelled vertical welding device and the control method for the vertical welding device according to the present invention will be described with reference to the attached drawings. Note that each figure has been created for the purpose of explaining the present invention, and the embodiment of the present invention is not limited to the contents shown in the drawings. In addition, the welding method to which the vertical welding device is applied is not particularly limited, but examples of welding methods include electroslag welding and electrogas welding. In this embodiment, the case of use in electroslag welding will be described as an example.
 本実施形態においては、溶接線方向をX軸とする。このX軸の溶接線方向は開先中心線に沿った方向と同義とし、後述する開先の延設方向とも同義とする。また、被溶接材の溶接を行う面であるX-Y平面上であって、溶接線と直交する方向をY軸とする。このY軸の方向は開先幅方向と同義とする。さらに、被溶接材の板厚方向であって、溶接が行われる被溶接材の平面と直交する方向をZ軸とする。 In this embodiment, the weld line direction is the X-axis. This X-axis weld line direction is synonymous with the direction along the groove centerline, and is also synonymous with the extension direction of the groove, which will be described later. Furthermore, the direction perpendicular to the weld line on the X-Y plane, which is the surface on which the materials to be welded are welded, is the Y-axis. The direction of this Y-axis is synonymous with the groove width direction. Furthermore, the plate thickness direction of the materials to be welded, which is the direction perpendicular to the plane of the materials to be welded on which welding is performed, is the Z-axis.
 また、被溶接材の溶接が行われる面について、後述する溶接台車が走行する面を「表面」と称し、その反対側の面を「裏面」と称する。表面は+Z方向の面であり、裏面は-Z方向の面である。Z軸の方向について立向溶接装置を基準に表面方向である+Z方向を「上方」、裏面方向である-Z方向を「下方」と称する。 Furthermore, with regard to the surface of the workpiece on which welding is performed, the surface on which the welding carriage described below runs is referred to as the "front surface," and the opposite surface is referred to as the "back surface." The front surface is the surface in the +Z direction, and the back surface is the surface in the -Z direction. With respect to the direction of the Z axis, the +Z direction, which is the front surface direction, is referred to as "upward," and the -Z direction, which is the back surface direction, is referred to as "downward."
 また、立向溶接装置を基準として溶接が進行する方向を「前方」、後退する方向を「後方」と称する。前方は+X方向であり、後方は-X方向と称する。本実施形態の溶接装置は、被溶接材上を立向姿勢で上進溶接するため、前方に向かって溶接するということは、上進で溶接すると同義になる。 Furthermore, the direction in which welding proceeds with respect to the vertical welding device as the reference is referred to as "forward," and the direction in which it retreats is referred to as "rearward." Forward is the +X direction, and rearward is referred to as the -X direction. The welding device of this embodiment performs upward welding in a vertical position on the workpiece, so welding toward the front is synonymous with welding upward.
 -X軸に沿う進行方向に対して旋回する方向を「右方」、「左方」と称する。右方は+Y方向であり、左方は-Y方向である。 The directions of rotation relative to the direction of travel along the -X axis are called "right" and "left." Right is the +Y direction, and left is the -Y direction.
<立向溶接装置>
 図1~6は、実施形態に係る立向溶接装置の構成例を示している。図1~3は、立向溶接装置を示した斜視図、正面図、側面図である。図4は、図2のA-A断面図である。図5は、図2のB-B断面図である。図6は、図3のC-C断面図である。
<Vertical welding equipment>
Figures 1 to 6 show an example of the configuration of a vertical welding apparatus according to an embodiment. Figures 1 to 3 are a perspective view, a front view, and a side view of the vertical welding apparatus. Figure 4 is a cross-sectional view taken along line A-A in Figure 2. Figure 5 is a cross-sectional view taken along line B-B in Figure 2. Figure 6 is a cross-sectional view taken along line C-C in Figure 3.
 立向溶接装置1は、被溶接材である一対の鋼板5,5上を立向姿勢で前進走行する溶接台車2と、溶接台車2が鋼板5の表面を上進走行するように吊り上げる電動ウインチ3と、溶接台車2に搭載された溶接トーチ4と、を備えている。一対の鋼板5,5は、互いの間に上下方向に延びる開先10が形成されるように、左右方向に互いに離間して配置されている。なお、溶接が進行する方向に対して、一対の鋼板5,5のうち左方の被溶接材を鋼板5Aとし、右方の被溶接材を鋼板5Bとする。また、鋼板5A,5Bをセットとして説明する場合は、鋼板5と示す。 The vertical welding device 1 comprises a welding carriage 2 that travels forward in a vertical position over a pair of steel plates 5, 5 that are the workpieces to be welded, an electric winch 3 that hoists the welding carriage 2 so that it travels upward over the surface of the steel plates 5, and a welding torch 4 mounted on the welding carriage 2. The pair of steel plates 5, 5 are positioned spaced apart from each other in the left-right direction so that a groove 10 that extends in the up-down direction is formed between them. Note that, with respect to the direction in which welding progresses, the left workpiece of the pair of steel plates 5, 5 is referred to as steel plate 5A, and the right workpiece is referred to as steel plate 5B. When describing the steel plates 5A and 5B as a set, they are referred to as steel plate 5.
 図1等に示すように、溶接台車2は、本体枠部6と、鋼板5の表面を滑走する走行ローラ7と、溶接作業中に開先10内に配置されるガイドローラ8と、開先10の表側に表銅板9を押し付け可能に支持する表銅板支持部11と、開先10の裏側に裏銅板12を押し付け可能に支持する裏銅板支持部13と、溶接作業位置を検出するための検出手段としての視覚センサ14と、制御部(不図示)と、を備える。溶接台車2は、上下方向の開先10の間を溶接しながら溶接線方向であるX軸方向に沿って前進走行するエレクトロスラグ溶接が実行可能に構成されている。以下、各構成について具体的に説明する。 As shown in FIG. 1 etc., the welding carriage 2 includes a main frame 6, running rollers 7 that slide on the surface of the steel plate 5, guide rollers 8 that are placed in the groove 10 during welding work, a front copper plate support part 11 that supports the front copper plate 9 so that it can be pressed against the front side of the groove 10, a back copper plate support part 13 that supports the back copper plate 12 so that it can be pressed against the back side of the groove 10, a visual sensor 14 as a detection means for detecting the welding work position, and a control part (not shown). The welding carriage 2 is configured to be able to perform electroslag welding by traveling forward along the X-axis direction, which is the weld line direction, while welding between the grooves 10 in the vertical direction. Each component will be described in detail below.
<電動ウインチ>
 電動ウインチ3は、溶接作業を行う鋼板5の上方側且つ溶接台車2の前方側に設置され、溶接台車2を吊り下げ支持する。そして電動ウインチ3は、溶接台車2を引き上げることによって、溶接台車2を上下方向となる溶接線方向であるX軸方向に沿って前進走行させることができるように構成されている。溶接台車2の走行速度は、電動ウインチ3の巻き上げ速度に依存し、電動ウインチ3の巻き上げ速度を調整することにより、溶接作業時の走行速度、すなわち溶接速度を調整することができる。電動ウインチ3の巻き上げ速度は、制御部によって制御可能に構成されている。溶接台車2を電動ウインチ3によって吊り上げる構成とすることにより、一般的なウインチと吊荷(溶接台車)が分離する場合と比較し、モータ動力線や信号線を離れた場所まで配線する必要がなくなるため、立向溶接装置全体をコンパクトに構成することができる。
<Electric winch>
The electric winch 3 is installed above the steel plate 5 on which welding work is performed and in front of the welding carriage 2, and suspends and supports the welding carriage 2. The electric winch 3 is configured to be able to move the welding carriage 2 forward along the X-axis direction, which is the vertical weld line direction, by lifting the welding carriage 2. The traveling speed of the welding carriage 2 depends on the hoisting speed of the electric winch 3, and the traveling speed during welding work, i.e., the welding speed, can be adjusted by adjusting the hoisting speed of the electric winch 3. The hoisting speed of the electric winch 3 is configured to be controllable by the control unit. By configuring the welding carriage 2 to be hoisted by the electric winch 3, it is not necessary to wire motor power lines and signal lines to a distant location, as compared with a case in which a general winch and a suspended load (welding carriage) are separated, so that the entire vertical welding device can be configured compactly.
 なお、溶接台車2が鋼板5上を立向姿勢で上進走行する自走式の立向溶接装置としては、溶接台車2の走行ローラ7を鋼板5に接着する強力な磁石とし、溶接台車2側に設けた駆動部(不図示)によって鋼板5に接着した走行ローラ7を駆動させることにより、溶接台車2を立向姿勢で上進走行可能にする構成としても良い。 In addition, as a self-propelled vertical welding device in which the welding carriage 2 travels upward in a vertical position above the steel plate 5, the traveling rollers 7 of the welding carriage 2 may be powerful magnets that are attached to the steel plate 5, and the traveling rollers 7 attached to the steel plate 5 may be driven by a drive unit (not shown) provided on the welding carriage 2 side, allowing the welding carriage 2 to travel upward in a vertical position.
<溶接トーチ>
 溶接トーチ4は、詳しくは後述するトーチ支持部16を介して溶接台車2側に支持されている。これにより、溶接トーチ4は、溶接台車2の左右旋回方向となる開先幅方向であるY軸方向と、鋼板5の板厚方向であるZ軸方向と、で溶接位置を調整することができるように構成されている。また、トーチ支持部16は、溶接トーチ4の上下揺動位置を調整する姿勢調整機構17を有し、溶接トーチ4を溶接作業に適した角度でスラグ浴に向けることができるように構成されている。トーチ支持部16の具体的な構成については後述する。
<Welding torch>
The welding torch 4 is supported on the welding carriage 2 side via a torch support part 16, which will be described later in detail. This allows the welding torch 4 to adjust the welding position in the Y-axis direction, which is the groove width direction and which is the left-right rotation direction of the welding carriage 2, and in the Z-axis direction, which is the plate thickness direction of the steel plate 5. The torch support part 16 also has a posture adjustment mechanism 17 that adjusts the vertical swing position of the welding torch 4, and is configured to allow the welding torch 4 to be directed toward the slag bath at an angle suitable for welding work. The specific configuration of the torch support part 16 will be described later.
 溶接トーチ4は、コンタクトチップを有しており、コンタクトチップが溶接ワイヤを開先10側に送給するように案内するとともに、溶接電源(不図示)から供給される溶接電流を溶接ワイヤに供給することによって、一対の鋼板5A,5Bの間に形成される開先10を溶接することができるように構成されている。 The welding torch 4 has a contact tip that guides the welding wire so that it is fed toward the groove 10, and is configured to be able to weld the groove 10 formed between a pair of steel plates 5A, 5B by supplying the welding wire with a welding current supplied from a welding power source (not shown).
 具体的に説明すると、溶接トーチ4は、コンタクトチップにより案内される溶接ワイヤを、一対の鋼板5A,5B、表銅板9、及び裏銅板12に囲まれた開先10内に送給することにより、溶接ワイヤを開先10内に形成された溶融池であるスラグ浴内に送り込み、これと同時に、溶接電流を溶接ワイヤからスラグ浴を通して溶融金属へと流すことができる。これにより、スラグ浴に流した溶接電流及びスラグ浴の電気抵抗によりジュール熱が発生するため、溶接ワイヤ及び鋼板を溶融しながら溶接を進行するエレクトロスラグ溶接を実行することができる。 Specifically, the welding torch 4 feeds the welding wire guided by the contact tip into the groove 10 surrounded by a pair of steel plates 5A, 5B, a front copper plate 9, and a back copper plate 12, thereby feeding the welding wire into the slag bath, which is a molten pool formed in the groove 10, and at the same time, the welding current can be passed from the welding wire through the slag bath to the molten metal. This generates Joule heat due to the welding current passed through the slag bath and the electrical resistance of the slag bath, making it possible to perform electroslag welding, in which welding proceeds while melting the welding wire and steel plates.
<本体枠部>
 図1及び図2等に示すように、本体枠部6は、溶接台車2の進行方向に沿って延設された左右一対の板状部材である本体フレーム18と、左右一対の本体フレーム18,18の対向面同士を連結するように左右方向に延設された前後一対の連結杆19,20と、を有し、前後方向であるX軸方向と、上下方向であるZ軸方向とが開放された枠状に形成されている。本体枠部6の前端側には、平面視で前方に突出するU字状のウインチ支持フレーム21が架け渡されるように形成されており、該ウインチ支持フレーム21を介して溶接台車2を吊り上げる電動ウインチ3が取付固定されている。
<Main body frame>
1 and 2, the main body frame 6 has main body frames 18 which are a pair of left and right plate-like members extending along the traveling direction of the welding cart 2, and a pair of front and rear connecting rods 19, 20 which extend in the left and right direction so as to connect the opposing surfaces of the pair of left and right main body frames 18, 18, and is formed in a frame shape which is open in the X-axis direction which is the front-rear direction and in the Z-axis direction which is the up-down direction. A U-shaped winch support frame 21 which protrudes forward in a plan view is formed so as to span the front end side of the main body frame 6, and an electric winch 3 which hoists the welding cart 2 is attached and fixed via the winch support frame 21.
<走行ローラ>
 走行ローラ7は、左右一対の前輪7A,7Aと、左右一対の後輪7B,7Bと、が本体枠部6側に設けられており、本体枠部6が鋼板5の表面を安定して滑走可能となるように構成されている。
<Running roller>
The running rollers 7 have a pair of left and right front wheels 7A, 7A and a pair of left and right rear wheels 7B, 7B provided on the main body frame portion 6 side, and are configured so that the main body frame portion 6 can slide stably on the surface of the steel plate 5.
 図4等に示すように、左右方向に延設された棒状部材である前輪支持軸22は、前側の連結杆19の中央側に上下揺動可能に軸支されている。そして、前輪支持軸22の左右両端側に、左右一対の前輪7A,7Aは軸支されている。同様に、左右方向に延設された棒状部材である後輪支持軸23は、後側の連結杆20の中央側に上下揺動可能に軸支されている。そして、後輪支持軸23の左右両端側に、左右一対の後輪7B,7Bは軸支されている。 As shown in Figure 4 etc., the front wheel support shaft 22, a rod-shaped member extending in the left-right direction, is supported at the center of the front connecting rod 19 so that it can swing up and down. A pair of left and right front wheels 7A, 7A are supported at both left and right ends of the front wheel support shaft 22. Similarly, the rear wheel support shaft 23, a rod-shaped member extending in the left-right direction, is supported at the center of the rear connecting rod 20 so that it can swing up and down. A pair of left and right rear wheels 7B, 7B are supported at both left and right ends of the rear wheel support shaft 23.
 該構成によれば、自走する鋼板5の表面に軽微な凹凸や傾斜があった場合であっても、前輪支持軸22や後輪支持軸23の揺動作動によって本体枠部6や溶接トーチ4の位置ズレを吸収することができるため、自走する溶接台車2による溶接作業がより安定する。 With this configuration, even if the surface of the self-propelled steel plate 5 has slight irregularities or inclinations, the swinging action of the front wheel support shaft 22 and the rear wheel support shaft 23 can absorb positional deviations of the main body frame 6 and the welding torch 4, making welding work by the self-propelled welding cart 2 more stable.
<表銅板支持部>
 表銅板支持部11は、鋼板5の表面の溶接台車2後部側に配置される表銅板9を支持する。表銅板支持部11は、表銅板9を鋼板5の表面に押し付ける左右一対のアクチュエータとしての表銅板用エアシリンダ24,24と、一対の表銅板用エアシリンダ24,24により表銅板9を操作する表側リンク機構25と、溶接トーチ4を支持するトーチ支持部16と、を有している。
<Front copper plate support>
The front copper plate support part 11 supports the front copper plate 9 arranged on the rear side of the welding carriage 2 on the surface of the steel plate 5. The front copper plate support part 11 has front copper plate air cylinders 24, 24 as a pair of left and right actuators that press the front copper plate 9 against the surface of the steel plate 5, a front side link mechanism 25 that operates the front copper plate 9 by the pair of front copper plate air cylinders 24, 24, and a torch support part 16 that supports the welding torch 4.
 表銅板9は、鋼板5の表面に当接する加圧面が形成された板状部材であって、一般的には水冷式からなる冷却機構(不図示)を備えている。また、表銅板9は、鋼板5の表面に当接することによってスラグ浴の一部を形成し、該状態で溶接台車2が溶接作業しながら自走することにより、スラグ浴を冷却しながら開先10上を摺動させることができるように構成されている。 The front copper plate 9 is a plate-shaped member with a pressure surface that contacts the surface of the steel plate 5, and is generally equipped with a water-cooled cooling mechanism (not shown). The front copper plate 9 forms part of the slag bath by contacting the surface of the steel plate 5, and in this state the welding carriage 2 moves independently while performing welding work, allowing it to slide over the groove 10 while cooling the slag bath.
 図1~3等に示すように、表銅板用エアシリンダ24は、本体枠部6を挟むように左右一対設けられており、そのヘッド側の前端が、前後方向の板状部材である固定板26を介して、本体フレーム18の前部外面側に取付固定され、作動ロッド側の後端が、表側リンク機構25側に連結されている。これにより、表銅板用エアシリンダ24は、作動ロッドの作動方向を後方斜め上側に向けた状態で本体枠部6の本体フレーム18側に取付固定されている。 As shown in Figures 1 to 3, the front copper plate air cylinder 24 is provided in a pair on the left and right sides of the main body frame 6, with the front end of the head side attached and fixed to the front outer surface of the main body frame 18 via a fixing plate 26, which is a plate-shaped member in the front-rear direction, and the rear end of the operating rod side connected to the front link mechanism 25. As a result, the front copper plate air cylinder 24 is attached and fixed to the main body frame 18 side of the main body frame 6 with the operating direction of the operating rod facing diagonally upward and rearward.
 図3に示すように、表側リンク機構25は、前後方向の延設された原動節である表側駆動リンク部材28と、前後方向に延設された従動節である表側従動リンク部材31と、上下方向に延設された中間節である表側中間リンク部材32と、を有している。 As shown in FIG. 3, the front link mechanism 25 has a front drive link member 28 which is a driving link extending in the front-rear direction, a front driven link member 31 which is a driven link extending in the front-rear direction, and a front intermediate link member 32 which is an intermediate link extending in the up-down direction.
 表側駆動リンク部材28は、表銅板用エアシリンダ24に対応して左右一対設けられたリンク部材であって、その前端側が第1連結節27を介して本体フレーム18の後部下側に連結され、その後端側が第3連結節33を介して表側中間リンク部材32側に連結されている。 The front drive link members 28 are a pair of left and right link members that correspond to the front copper plate air cylinders 24, and their front ends are connected to the rear lower side of the main frame 18 via the first connecting joint 27, and their rear ends are connected to the front intermediate link member 32 via the third connecting joint 33.
 表側従動リンク部材31は、本体枠部6の左右外側に左右一対設けられたリンク部材であって、その前端側が第2連結節29を介して本体フレーム18の後部上側に連結され、その後端側が第4連結節34を介して表側中間リンク部材32側に連結されている。 The front side driven link members 31 are a pair of link members provided on the left and right outer sides of the main body frame 6, with their front ends connected to the upper rear side of the main body frame 18 via the second connecting joint 29 and their rear ends connected to the front side intermediate link member 32 via the fourth connecting joint 34.
 表側中間リンク部材32は、鋼板5の板厚方向である上下方向に延設され、その下端側が第3連結節33を介して表側駆動リンク部材28の後端側に連結され、その上下方向中途部が第4連結節34を介して表側従動リンク部材31の後端側に連結されている。 The front intermediate link member 32 extends in the vertical direction, which is the thickness direction of the steel plate 5, and its lower end is connected to the rear end of the front driving link member 28 via a third connecting joint 33, and its vertical midpoint is connected to the rear end of the front driven link member 31 via a fourth connecting joint 34.
 図1等に示すように、第3連結節33は、左右方向に延設された棒状部材によって左右一対の表側駆動リンク部材28,28の後端側同士を連結し、第4連結節34は、左右方向に延設された棒状部材によって左右一対の表側従動リンク部材31,31の後端側同士を連結している。 As shown in FIG. 1, the third connecting member 33 connects the rear ends of the pair of left and right front drive link members 28, 28 with a rod-shaped member extending in the left-right direction, and the fourth connecting member 34 connects the rear ends of the pair of left and right front driven link members 31, 31 with a rod-shaped member extending in the left-right direction.
 このとき、表側駆動リンク部材28と表側従動リンク部材31とは、略同じ長さとなるように形成されている。また、第1連結節27と第2連結節29とを結ぶ線は、溶接台車2の進行方向と直交するように配置されている。また、表側中間リンク部材32上の第3連結節33と第4連結節34との間は、第1連結節27と第2連結節29との間と略同じ長さとなるように形成されている。すなわち、表側リンク機構25は、側面視で平行四辺形状に形成されたクローズドループ構造の4節リンクを構成している。 At this time, the front side driving link member 28 and the front side driven link member 31 are formed to be approximately the same length. In addition, the line connecting the first connecting section 27 and the second connecting section 29 is arranged so as to be perpendicular to the traveling direction of the welding cart 2. In addition, the distance between the third connecting section 33 and the fourth connecting section 34 on the front side intermediate link member 32 is formed to be approximately the same length as the distance between the first connecting section 27 and the second connecting section 29. In other words, the front side link mechanism 25 constitutes a four-section link with a closed loop structure formed in the shape of a parallelogram in a side view.
 また、図3等に示すように、表側駆動リンク部材28は、第1連結節27から前方上方に延設された表側操作アーム部28aが一体形成されており、表側操作アーム部28aの前端側に表銅板用エアシリンダ24の作動ロッドが連結されている。表側操作アーム部28aと作動ロッドとの連結節は、側面視で第2連結節29よりも前方上方側に配置されている。 As shown in FIG. 3 etc., the front drive link member 28 is integrally formed with a front operation arm portion 28a that extends forward and upward from the first connecting joint 27, and the operating rod of the air cylinder 24 for the front copper plate is connected to the front end of the front operation arm portion 28a. The connecting joint between the front operation arm portion 28a and the operating rod is located forward and upward of the second connecting joint 29 in a side view.
 また、図3等に示すように、表側中間リンク部材32は、第3連結節33よりも下方に、すなわち鋼板5側に、突出形成された下端側に表銅板9が設けられており、表銅板9の加圧面を鋼板5の表面に当接させることができるように支持されている。 Also, as shown in FIG. 3 etc., the front intermediate link member 32 has a front copper plate 9 on its protruding lower end below the third connecting section 33, i.e., on the steel plate 5 side, and is supported so that the pressure surface of the front copper plate 9 can abut against the surface of the steel plate 5.
 該構成の表側リンク機構25によれば、表銅板用エアシリンダ24の作動ロッドの伸縮作動に伴う作動力を、作動ロッド→表側操作アーム部28a→表側駆動リンク部材28→表側中間リンク部材32及び表銅板9→表側従動リンク部材31の順番に作用させることにより、鋼板5に対して直交する表側中間リンク部材32及び表銅板9を、該姿勢を保ったまま上下動させることができる。すなわち、上述の表銅板支持部11によれば、表銅板9を鋼板5の表面側に押付ける加圧作動と、表銅板9の加圧作動の解除と、を操作することができる。なお、表側リンク機構25を操作するアクチュエータとしては、表銅板用エアシリンダ24に代えて、電動シリンダやモータを用いた構成としても良い。 With the front link mechanism 25 of this configuration, the operating force associated with the extension and contraction of the operating rod of the air cylinder 24 for the front copper plate acts in the order of the operating rod → front operation arm part 28a → front drive link member 28 → front intermediate link member 32 and front copper plate 9 → front driven link member 31, so that the front intermediate link member 32 and front copper plate 9 perpendicular to the steel plate 5 can be moved up and down while maintaining their posture. In other words, with the front copper plate support part 11 described above, it is possible to operate the pressure operation for pressing the front copper plate 9 against the front side of the steel plate 5 and the release of the pressure operation of the front copper plate 9. Note that the actuator for operating the front link mechanism 25 may be an electric cylinder or a motor instead of the air cylinder 24 for the front copper plate.
 トーチ支持部16は、左右一対の表側中間リンク部材32の上端側同士を連結する左右方向の連結支持部35と、連結支持部35の前面側に取付固定されて下端側に鋼板5の板厚方向に伸縮作動する作動部を有する溶接位置調整機構36と、溶接トーチ4を上下揺動することで角度調整可能に支持する姿勢調整機構17と、溶接位置調整機構36の作動部と姿勢調整機構17とを連結する支持ブラケット37と、を有している。なお、該支持ブラケット37は、姿勢調整機構17を開先の延設方向であるX軸方向に位置調整可能に支持する。 The torch support 16 has a left-right connecting support part 35 that connects the upper ends of the pair of left and right front intermediate link members 32, a welding position adjustment mechanism 36 that is attached and fixed to the front side of the connecting support part 35 and has an operating part at the lower end that operates to expand and contract in the thickness direction of the steel plate 5, a posture adjustment mechanism 17 that supports the welding torch 4 so that the angle can be adjusted by swinging it up and down, and a support bracket 37 that connects the operating part of the welding position adjustment mechanism 36 and the posture adjustment mechanism 17. The support bracket 37 supports the posture adjustment mechanism 17 so that its position can be adjusted in the X-axis direction, which is the extension direction of the groove.
 姿勢調整機構17は、前方に向かうにしたがって裏面側に延びる円弧状の融通孔17aが形成された扇型の板状部材であって、溶接トーチ4を支持するトーチ把持部38が融通孔17a上の任意の位置で保持可能に構成されている。該トーチ把持部38は、モータ等によって上下揺動位置を制御可能に構成しても良い。 The attitude adjustment mechanism 17 is a fan-shaped plate-like member with an arc-shaped through hole 17a that extends toward the rear side as it moves forward, and is configured so that a torch gripping part 38 that supports the welding torch 4 can be held at any position above the through hole 17a. The torch gripping part 38 may be configured so that the up and down swing position can be controlled by a motor or the like.
<裏銅板支持部>
 裏銅板支持部13は、鋼板5の裏面の溶接台車2後部側に配置される裏銅板12を支持する。裏銅板支持部13は、本体枠部6側に着脱可能に構成された裏側リンク支持フレーム41と、裏側リンク支持フレーム41を鋼板5の裏面側に引付けるアクチュエータとしての引付エアシリンダ42,42と、裏銅板12を鋼板5の裏面に向けて押し付けるアクチュエータとしての裏銅板用エアシリンダ43と、裏銅板用エアシリンダ43によって作動する裏側リンク機構44と、を有している。
<Back copper plate support part>
The back copper plate support part 13 supports the back copper plate 12 arranged on the rear side of the welding carriage 2 on the back side of the steel plate 5. The back copper plate support part 13 has a back link support frame 41 configured to be detachable from the main body frame part 6 side, attraction air cylinders 42, 42 as actuators that attract the back link support frame 41 to the back side of the steel plate 5, a back copper plate air cylinder 43 as an actuator that presses the back copper plate 12 against the back side of the steel plate 5, and a back link mechanism 44 operated by the back copper plate air cylinder 43.
 裏銅板12は、鋼板5の裏面に当接する加圧面が形成された板状部材であって、一般的には水冷式からなる冷却機構を備えている。また、裏銅板12は、鋼板5の裏面に当接することによってスラグ浴の一部を形成し、該状態で溶接台車2が溶接作業しながら自走することにより、スラグ浴等を冷却しながら開先10上を摺動させることができるように構成されている。 The back copper plate 12 is a plate-shaped member with a pressure surface that contacts the back surface of the steel plate 5, and is generally equipped with a water-cooled cooling mechanism. In addition, the back copper plate 12 forms part of the slag bath by contacting the back surface of the steel plate 5, and in this state, the welding carriage 2 moves independently while performing welding work, allowing it to slide over the groove 10 while cooling the slag bath, etc.
 図3及び図4等に示すように、裏側リンク支持フレーム41は、溶接台車2の進行方向に沿って前後方向に延設されて、鋼板5の裏面側に配置される左右一対の板状部材である。裏側リンク支持フレーム41の前後方向中途部には、延設方向と直交する方向すなわち鋼板5の板厚方向に延設される引付フレーム45が挟持されるようにして取付固定されることにより、全体がT字状に形成されている。また、裏側リンク支持フレーム41の前後端側には、左右一対の裏側前輪46A,46Aと、左右一対の裏側後輪46B,46Bとからなる裏走行ローラ46が軸支されている。 As shown in Figures 3 and 4, the rear link support frame 41 is a pair of left and right plate-like members that extend in the front-rear direction along the travel direction of the welding cart 2 and are arranged on the rear side of the steel plate 5. A pull frame 45 that extends in a direction perpendicular to the extension direction, i.e., in the thickness direction of the steel plate 5, is attached and fixed to the middle part of the front-rear direction of the rear link support frame 41 so as to be clamped, thereby forming an overall T-shape. In addition, rear running rollers 46 consisting of a pair of left and right rear front wheels 46A, 46A and a pair of left and right rear rear wheels 46B, 46B are supported on the front and rear ends of the rear link support frame 41.
 また、引付フレーム45は、一対の鋼板5A,5Bの間に形成される隙間である開先10を介して、鋼板5の表面側から裏面側に延設された板状部材である。引付フレーム45の一端側は、引付エアシリンダ42,42を介して延設方向に沿って押引作動可能な状態で本体枠部6側に取付けられている。引付フレーム45の他端側は、裏側リンク支持フレーム41の長手方向中途部が着脱可能にピン固定されている。 The attachment frame 45 is a plate-like member that extends from the front side to the back side of the steel plate 5 through the groove 10, which is the gap formed between the pair of steel plates 5A, 5B. One end of the attachment frame 45 is attached to the main frame 6 side in a state in which it can be pushed and pulled along the extension direction via the attachment air cylinders 42, 42. The other end of the attachment frame 45 is detachably pinned to the middle of the longitudinal direction of the back link support frame 41.
 図5等に示すように、引付エアシリンダ42は、本体枠部6内の左右一対の本体フレーム18,18の間の後部側に左右一対設けられている。一対の引付エアシリンダ42は、上下方向上向きに支持された一対の作動ロッドが、連結部材47を介して、引付フレーム45側と連結することができるように構成されている。 As shown in FIG. 5 etc., a pair of pulling air cylinders 42 are provided on the left and right sides at the rear between the pair of left and right body frames 18, 18 inside the body frame 6. The pair of pulling air cylinders 42 are configured so that a pair of operating rods supported facing upward in the vertical direction can be connected to the pulling frame 45 side via a connecting member 47.
 すなわち、引付エアシリンダ42は、作動ロッドの伸長作動によって引付フレーム45を鋼板5の表面に配置された溶接台車2側に引き上げることにより、裏側リンク支持フレーム41側に設けた裏走行ローラ46を、鋼板5の裏面側に押付けることができるように構成されている。 In other words, the pull air cylinder 42 is configured so that the pull frame 45 is pulled up toward the welding carriage 2 placed on the surface of the steel plate 5 by extending the operating rod, thereby pressing the back running roller 46 provided on the back link support frame 41 against the back side of the steel plate 5.
 図4等に示すように、裏銅板用エアシリンダ43は、ヘッド側を左右で挟持するように配置されたシリンダ支持板48,48と、一対のシリンダ支持板48,48を架け渡すように左右方向に延設された前後一対の固定部材49,50とを介して、作動ロッドを上下方向真下側に向けた状態で本体枠部6内に取付固定されている。 As shown in Figure 4, the air cylinder 43 for the back copper plate is attached and fixed inside the main body frame 6 with the operating rod facing directly downward in the vertical direction via cylinder support plates 48, 48 arranged to sandwich the head side on the left and right, and a pair of front and rear fixing members 49, 50 that extend in the left-right direction to bridge the pair of cylinder support plates 48, 48.
 図4等に示すように、裏銅板用エアシリンダ43は、作動ロッド側が一対のシリンダ支持板48,48の間で固定部材50を軸に揺動可能に軸支されたL字状の操作片51の一端に連結されている。また、操作片51の他端側には、裏側リンク操作体52が設けられており、該裏側リンク操作体52は、裏銅板用エアシリンダ43の伸縮作動によって前後方向に揺動操作されることにより、裏側リンク機構44を操作することができるように構成されている。 As shown in FIG. 4 etc., the air cylinder 43 for the back copper plate has an operating rod connected to one end of an L-shaped operating piece 51 that is pivotally supported on a fixed member 50 between a pair of cylinder support plates 48, 48. A back link operating body 52 is provided on the other end of the operating piece 51, and the back link operating body 52 is configured to be able to operate the back link mechanism 44 by being pivoted forward and backward by the expansion and contraction of the air cylinder 43 for the back copper plate.
 図3及び図4等に示すように、裏側リンク機構44は、上下方向に延設された原動節である裏側駆動リンク部材61と、リンク機構の後部側に設けられた従動節である裏側従動リンク部材62と、前後方向に延設された中間節である裏側中間リンク部材63と、を有している。 As shown in Figures 3 and 4, the rear link mechanism 44 has a rear drive link member 61 which is a driving link extending in the vertical direction, a rear driven link member 62 which is a driven link provided on the rear side of the link mechanism, and a rear intermediate link member 63 which is an intermediate link extending in the front-rear direction.
 裏側駆動リンク部材61は、本体枠部6や前輪7Aの前側で上下方向に延設されるリンク部材である。裏側駆動リンク部材61は、その下部側が第1連結節57を介して裏側リンク支持フレーム41の前端側に連結され、そのさらに下方側が第3連結節59を介して裏側中間リンク部材63の前端側に連結されている。 The rear drive link member 61 is a link member that extends vertically in front of the main frame 6 and the front wheels 7A. The lower side of the rear drive link member 61 is connected to the front end side of the rear link support frame 41 via the first connecting joint 57, and the further lower side is connected to the front end side of the rear intermediate link member 63 via the third connecting joint 59.
 裏側従動リンク部材62は、本体枠部6の後側で且つ鋼板5の裏面側に配置されるリンク部材である。裏側従動リンク部材62は、その前端上部側が第2連結節58を介して裏側リンク支持フレーム41の後端側に連結され、その前端下部側が第4連結節60を介して裏側中間リンク部材の後端側と連結されている。 The rear driven link member 62 is a link member that is disposed on the rear side of the main frame portion 6 and on the rear side of the steel plate 5. The upper front end side of the rear driven link member 62 is connected to the rear end side of the rear link support frame 41 via the second connecting joint 58, and the lower front end side is connected to the rear end side of the rear intermediate link member via the fourth connecting joint 60.
 裏側中間リンク部材63は、裏側リンク支持フレーム41に沿って前後方向に延設されたリンク部材である。裏側中間リンク部材63は、その前端側が裏側駆動リンク部材61の下端側に連結され、その後端側は、裏側従動リンク部材62の前端下部側に連結されている。 The rear intermediate link member 63 is a link member that extends in the front-rear direction along the rear link support frame 41. The front end of the rear intermediate link member 63 is connected to the lower end of the rear driving link member 61, and the rear end is connected to the lower front end of the rear driven link member 62.
 このとき、裏側中間リンク部材63上の第3連結節59と第4連結節60との間は、第1連結節57と第2連結節58との間と略同じ長さとなるように形成されている。なお、第1連結節57と第2連結節58との間の長さは、裏側リンク支持フレーム41の長さとも言える。このように、裏側リンク機構44は、側面視で平行四辺形状に形成されたクローズドループ構造の4節リンクを構成している。 At this time, the distance between the third connecting section 59 and the fourth connecting section 60 on the rear intermediate link member 63 is formed to be approximately the same length as the distance between the first connecting section 57 and the second connecting section 58. The length between the first connecting section 57 and the second connecting section 58 can also be considered the length of the rear link support frame 41. In this way, the rear link mechanism 44 constitutes a four-section link with a closed loop structure formed in the shape of a parallelogram in side view.
 また、図4等に示すように、裏側駆動リンク部材61は、第1連結節57から上方に延設されることにより裏側操作アーム部61aが一体形成されており、裏側操作アーム部61aの上部側には、裏銅板用エアシリンダ43によって操作される裏側リンク操作体52と当接するように構成されている。 Also, as shown in FIG. 4 etc., the rear drive link member 61 is integrally formed with the rear operation arm portion 61a by extending upward from the first connecting section 57, and the upper side of the rear operation arm portion 61a is configured to abut against the rear link operation body 52 operated by the rear copper plate air cylinder 43.
 また、図3及び図4等に示すように、裏側従動リンク部材62は、前後方向に延設された板状に形成されるとともに、その後部上側に切欠部62aが形成されており、該切欠部62aに裏銅板12が支持されている。これにより、裏銅板12は、加圧面が鋼板5の裏面側と平行に支持されることにより、加圧面の全面が鋼板5の裏面に当接するように構成されている。 Also, as shown in Figures 3 and 4, the rear driven link member 62 is formed in a plate shape extending in the front-rear direction, and a notch 62a is formed on the upper rear side, and the rear copper plate 12 is supported by the notch 62a. As a result, the pressure surface of the rear copper plate 12 is supported parallel to the rear side of the steel plate 5, and the entire pressure surface is configured to abut against the rear side of the steel plate 5.
 該構成の裏側リンク機構44によれば、裏銅板用エアシリンダ43の伸縮作動に伴う作動力を、作動ロッド→裏側リンク操作体52→裏側操作アーム部61a→裏側駆動リンク部材61→裏側中間リンク部材63→裏側従動リンク部材62及び裏銅板12の順番に作用させることにより、裏銅板12を鋼板5の裏面側に対して上下動させることができる。なお、裏側リンク機構44を操作するアクチュエータとしては、裏銅板用エアシリンダ43に代えて、電動シリンダやモータを用いた構成としても良い。 With the back side link mechanism 44 of this configuration, the operating force associated with the expansion and contraction operation of the back copper plate air cylinder 43 acts in the following order on the operating rod → back side link operating body 52 → back side operating arm part 61a → back side driving link member 61 → back side intermediate link member 63 → back side driven link member 62 and back copper plate 12, thereby allowing the back copper plate 12 to move up and down relative to the back side of the steel plate 5. Note that the actuator that operates the back side link mechanism 44 may be an electric cylinder or a motor instead of the back copper plate air cylinder 43.
 すなわち、上述の裏銅板支持部13によれば、開先10が形成された鋼板5の表面と裏面とを、本体枠部6側の走行ローラ7と、裏側リンク支持フレーム41側の裏走行ローラ46とで強力に挟持することができるため、電動ウインチ3で吊り下げられた立向姿勢の溶接台車2を鋼板5の表面で自走可能な状態で保持することができる。また、裏銅板12を鋼板5の裏面側に押付ける加圧作動と、裏銅板12の加圧作動の解除と、を操作することができる。 In other words, with the above-mentioned back copper plate support part 13, the front and back surfaces of the steel plate 5 on which the groove 10 is formed can be firmly clamped between the running rollers 7 on the main frame part 6 side and the back running rollers 46 on the back link support frame 41 side, so that the welding carriage 2 in a vertical position suspended by the electric winch 3 can be held in a self-propelled state on the surface of the steel plate 5. In addition, it is possible to operate the pressure operation for pressing the back copper plate 12 against the back side of the steel plate 5 and the release of the pressure operation of the back copper plate 12.
<ガイドローラ>
 ガイドローラ8は、溶接を行う溶接トーチ4の前方側で開先10内に位置させることで、溶接台車2の溶接進行方向が開先10の延設方向に沿うように、すなわち、溶接線に沿うようにガイドするための倣いローラである。より具体的には、ガイドローラ8は、開先10を形成する一対の鋼板5A,5Bの開先面5a,5bに当接するように、開先10内に位置する。なお、溶接が進行する方向に対して、左方の開先面を5a、右方の開先面を5bとする。ガイドローラ8は、開先10の延設方向に沿って複数設けられている。なお、図示の例では、ガイドローラ8は2つ設けられている。
<Guide roller>
The guide roller 8 is a tracing roller for guiding the welding carriage 2 so that the welding proceeding direction is along the extension direction of the groove 10, i.e., along the weld line, by being positioned in the groove 10 on the front side of the welding torch 4 that performs welding. More specifically, the guide roller 8 is positioned in the groove 10 so as to abut against the groove faces 5a and 5b of a pair of steel plates 5A and 5B that form the groove 10. Note that the left groove face is 5a and the right groove face is 5b with respect to the direction in which the welding proceeds. A plurality of guide rollers 8 are provided along the extension direction of the groove 10. Note that, in the illustrated example, two guide rollers 8 are provided.
 本実施例では、ガイドローラ8は、支点ガイドローラ8Bと、支点ガイドローラ8Bよりも前方側に配置される可動ガイドローラ8Aと、を有する。支点ガイドローラ8Bは、前輪7A及び後輪7Bの間の前後方向位置に配置されて、上下方向に移動可能に支持される。可動ガイドローラ8Aは、溶接台車2の前方に配置されて、左右方向と上下方向に移動可能に支持される。なお、ガイドローラ8の位置や数はこれらに限られないが、少なくとも一つは、溶接台車2の前方に配置することが好ましい。 In this embodiment, the guide roller 8 has a fulcrum guide roller 8B and a movable guide roller 8A that is positioned forward of the fulcrum guide roller 8B. The fulcrum guide roller 8B is positioned in a front-to-rear position between the front wheels 7A and the rear wheels 7B, and is supported so that it can move up and down. The movable guide roller 8A is positioned in front of the welding cart 2, and is supported so that it can move left-right and up-down. The positions and number of guide rollers 8 are not limited to these, but it is preferable to position at least one in front of the welding cart 2.
 図4等に示すように、支点ガイドローラ8Bは、該支点ガイドローラ8Bを軸支する支点ローラ軸66と、支点ローラ軸66の両端側に取付固定される左右一対の支点ローラ支持板67,67と、該支点ローラ支持板67を上下方向に変位可能に支持する左右一対の支点用ガススプリング68と、を有している。 As shown in FIG. 4, etc., the fulcrum guide roller 8B has a fulcrum roller shaft 66 that supports the fulcrum guide roller 8B, a pair of left and right fulcrum roller support plates 67, 67 that are attached and fixed to both ends of the fulcrum roller shaft 66, and a pair of left and right fulcrum gas springs 68 that support the fulcrum roller support plates 67 so that they can be displaced in the vertical direction.
 ここで、支点用ガススプリング68は、その下端側が支点ローラ支持板67に取付固定され、その上端側が左右一対の本体フレーム18を架け渡すように形成された連結杆69側に取付固定されている。これにより、支点ガイドローラ8Bは、上下方向に弾性変位可能とされ、開先10内に向かって付勢される構成で本体枠部6側に支持されている。 The fulcrum gas spring 68 is attached and fixed at its lower end to the fulcrum roller support plate 67, and at its upper end to a connecting rod 69 formed to bridge the pair of left and right main frames 18. This allows the fulcrum guide roller 8B to be elastically displaceable in the vertical direction, and is supported on the main frame 6 side in a configuration in which it is biased toward the inside of the groove 10.
 図4及び図6等に示すように、可動ガイドローラ8Aは、可動ガイドローラ8Aを上下方向に変位可能な構成で本体枠部6側に支持する可動ローラ支持部と、可動ガイドローラ8Aを左右方向に駆動可能に支持する可動ローラ駆動部と、を備え、可動ガイドローラ8Aの左右位置は制御部によって制御することができるように構成されている。 As shown in Figures 4 and 6, the movable guide roller 8A is equipped with a movable roller support section that supports the movable guide roller 8A on the main body frame section 6 side so that the movable guide roller 8A can be displaced in the up and down direction, and a movable roller drive section that supports the movable guide roller 8A so that it can be driven in the left and right direction, and is configured so that the left and right position of the movable guide roller 8A can be controlled by the control section.
 可動ローラ支持部は、可動ガイドローラ8Aを軸支する可動ローラ軸71と、可動ローラ軸71から後方斜め上方に向けて延設されて該可動ローラ軸71を挟むように左右一対設けられた上下揺動フレーム72,72と、作動ロッドが前方に向けられた左右一対の上下駆動エアシリンダ73,73と、を有している。このとき、上下駆動エアシリンダ73の作動ロッドは、上下方向の連携ロッド74を介して、上下揺動フレーム72の基端側と連結されることにより、上下揺動フレーム72を下方に付勢可能に構成されている。 The movable roller support portion has a movable roller shaft 71 that supports the movable guide roller 8A, a pair of vertical oscillating frames 72, 72 that extend diagonally upward and rearward from the movable roller shaft 71 and are provided on either side of the movable roller shaft 71, and a pair of vertical driving air cylinders 73, 73 whose operating rods face forward. At this time, the operating rod of the vertical driving air cylinder 73 is connected to the base end side of the vertical oscillating frame 72 via a vertical linking rod 74, so that it is possible to urge the vertical oscillating frame 72 downward.
 該構成によれば、可動ガイドローラ8Aは、上下方向に揺動可能に本体枠部6側に支持されるとともに、上下駆動エアシリンダ73の付勢力により、可動ガイドローラ8Aを開先10側に押付けるように付勢することができる。また、可動ガイドローラ8Aは、左右一対の上下揺動フレーム72,72の間において可動ローラ軸71上を左右方向にスライド移動可能に構成されている。詳しくは以下で説明する。 With this configuration, the movable guide roller 8A is supported on the main body frame 6 side so as to be able to swing up and down, and the force of the vertical drive air cylinder 73 can be used to bias the movable guide roller 8A so as to press it against the groove 10 side. In addition, the movable guide roller 8A is configured to be able to slide left and right on the movable roller shaft 71 between a pair of left and right vertical swing frames 72, 72. Details will be explained below.
 可動ローラ駆動部は、上下揺動フレーム72前端の可動ローラ軸71の左右外側に設けられて可動ガイドローラ8Aを可動ローラ軸71上でスライド移動可能にする左右一対の駆動手段としての左右駆動エアシリンダ75,75と、左右駆動エアシリンダ75の駆動を制御する上述の制御部と、を備えている。図6等に示すように、本実施例では、可動ローラ駆動部は、制御部によって制御される左右駆動部エア回路を介して、左右駆動エアシリンダ75の駆動推力を制御することができるように構成されている。なお、可動ガイドローラ8Aをスライド移動させるアクチュエータは、左右駆動エアシリンダ75に限られず、電動シリンダや、モータを用いても良い。 The movable roller drive unit includes a pair of left and right drive air cylinders 75, 75 that are provided on the left and right outer sides of the movable roller shaft 71 at the front end of the vertically oscillating frame 72 and serve as a pair of left and right drive means that enable the movable guide roller 8A to slide on the movable roller shaft 71, and the above-mentioned control unit that controls the drive of the left and right drive air cylinders 75. As shown in FIG. 6 etc., in this embodiment, the movable roller drive unit is configured to be able to control the drive thrust of the left and right drive air cylinders 75 via the left and right drive unit air circuit controlled by the control unit. Note that the actuator that slides the movable guide roller 8A is not limited to the left and right drive air cylinders 75, and an electric cylinder or a motor may also be used.
 図7に基づき、駆動部エア回路について説明する。図7は、駆動部エア回路の構成を示した図である。駆動部エア回路は、図示されるように、左右の左右駆動エアシリンダ75,75と、メーターインの流量制御弁76と、方向制御弁(3ポジション、エキゾーストセンタ)77と、電空レギュレータ78と、を含んでいる。なお、駆動部エア回路の構成は上記には限られず、流量制御弁76を省略して構成したものとしても良い。 The drive air circuit will be described with reference to Figure 7. Figure 7 is a diagram showing the configuration of the drive air circuit. As shown in the figure, the drive air circuit includes left and right drive air cylinders 75, 75, a meter-in flow control valve 76, a directional control valve (three positions, exhaust center) 77, and an electro-pneumatic regulator 78. Note that the configuration of the drive air circuit is not limited to the above, and it may be configured without the flow control valve 76.
 具体的に説明すると、駆動部エア回路は、可動ガイドローラ8Aを右方にスライド移動させる場合には、方向制御弁77を切替え、電空レギュレータ78と流量制御弁76を通すことにより、左側の左右駆動エアシリンダ75のヘッド側と右側の左右駆動エアシリンダ75のロッド側にエアを充填し、左側の左右駆動エアシリンダ75のロッド側と右側の左右駆動エアシリンダ75のヘッド側のエアを排出する。同様に、可動ガイドローラ8Aを左方にスライド移動させる場合には、方向制御弁77を切替え、電空レギュレータ78と流量制御弁76を通すことにより、左側の左右駆動エアシリンダ75のロッド側と右側の左右駆動エアシリンダ75のヘッド側にエアを充填し、左側の左右駆動エアシリンダ75のヘッド側と右側の左右駆動エアシリンダ75のロッド側のエアを排出する。 Specifically, when the movable guide roller 8A is slid to the right, the drive air circuit switches the directional control valve 77 and passes air through the electro-pneumatic regulator 78 and flow control valve 76 to fill the head side of the left-side horizontal driving air cylinder 75 and the rod side of the right-side horizontal driving air cylinder 75 with air, and exhausts the air from the rod side of the left-side horizontal driving air cylinder 75 and the head side of the right-side horizontal driving air cylinder 75. Similarly, when the movable guide roller 8A is slid to the left, the directional control valve 77 switches and passes air through the electro-pneumatic regulator 78 and flow control valve 76 to fill the rod side of the left-side horizontal driving air cylinder 75 and the head side of the right-side horizontal driving air cylinder 75 with air, and exhausts the air from the head side of the left-side horizontal driving air cylinder 75 and the rod side of the right-side horizontal driving air cylinder 75.
 また、駆動エア回路は、図7に示されるように、左右の左右駆動エアシリンダ75のロッド側、ヘッド側ともにエアが排出される状態に切替えることにより、可動ガイドローラ8Aが可動ローラ軸71上で左右方向に自由に平行移動可能なフリー状態とすることができる。 In addition, as shown in FIG. 7, the drive air circuit can be switched to a state in which air is discharged from both the rod side and head side of the left and right drive air cylinders 75, allowing the movable guide roller 8A to enter a free state in which it can move freely in parallel in the left and right direction on the movable roller shaft 71.
 制御部は、詳しくは後述する視覚センサ14により、溶接作業中の溶接台車2の溶接進行方向と、開先10の延設方向と、の間に、予め設定した所定の閾値以上のズレ量を検出した場合には、検出されるズレ量が小さくなる方向に溶接台車2が旋回走行するように、左右駆動エアシリンダ75を介して可動ガイドローラ8Aのスライド位置を調整する。一方、検出センサにより検出されたズレ量が所定の閾値未満であった場合には、左右の左右駆動エアシリンダ75のロッド側とヘッド側のエアが排出される状態とすることにより、可動ガイドローラ8Aが左右方向に自由に平行移動可能なフリー状態とする駆動制御が実行可能に構成されている。駆動制御の具体的な制御方法について後述する。 When the control unit detects a misalignment between the welding proceeding direction of the welding carriage 2 during welding operation and the extension direction of the groove 10 that is equal to or greater than a preset threshold value using the visual sensor 14, which will be described in detail later, the control unit adjusts the sliding position of the movable guide roller 8A via the left and right driving air cylinders 75 so that the welding carriage 2 rotates in the direction that reduces the detected misalignment. On the other hand, when the misalignment detected by the detection sensor is less than the preset threshold value, the control unit is configured to be able to execute drive control so that the movable guide roller 8A is in a free state in which it can move freely in parallel in the left and right direction by discharging air from the rod side and head side of the left and right left and right driving air cylinders 75. A specific control method for the drive control will be described later.
<視覚センサ>
 図1~8に基づいて、視覚センサについて具体的に説明する。図8(A)は、視覚センサにより基準位置及び現在位置を撮影したモデル図であり、図8(B)は、視覚センサによりズレ量が閾値未満であることを検出した状態を示したモデル図であり、図8(C)は、視覚センサによりズレ量が閾値以上であることを検出した状態を示したモデル図である。
<Visual sensor>
The visual sensor will be specifically described with reference to Figures 1 to 8. Figure 8(A) is a model diagram in which a reference position and a current position are photographed by the visual sensor, Figure 8(B) is a model diagram showing a state in which the visual sensor detects that the amount of deviation is less than a threshold, and Figure 8(C) is a model diagram showing a state in which the visual sensor detects that the amount of deviation is equal to or greater than the threshold.
 本実施例では、X軸方向に延びる開先10の延設方向すなわち溶接線に対する溶接台車2の溶接進行方向のズレ量を検出する検出センサとして、溶接部位の画像を撮影する視覚センサ14を用いた。図3及び図4等に示すように、視覚センサ14は、本体枠部6を構成する後側の連結杆20に設けられることによって、開先10内に沿って設置されている。このため、視覚センサ14は、溶接台車2が溶接作業をしながら鋼板5の表面を上進走行している最中に、溶接部位であるスラグ浴を常に画角に収めた画像80を撮影することにより、溶接台車2の溶接進行方向と、X軸方向に延びる開先10の延設方向すなわち溶接線と、の間のズレ量を検出することができるように構成されている。 In this embodiment, a visual sensor 14 that captures an image of the welding area is used as a detection sensor that detects the amount of misalignment of the welding direction of the welding carriage 2 relative to the extension direction of the groove 10 extending in the X-axis direction, i.e., the weld line. As shown in Figures 3 and 4, the visual sensor 14 is installed along the inside of the groove 10 by being attached to the rear connecting rod 20 that constitutes the main body frame 6. Therefore, the visual sensor 14 is configured to be able to detect the amount of misalignment between the welding direction of the welding carriage 2 and the extension direction of the groove 10 extending in the X-axis direction, i.e., the weld line, by capturing an image 80 that always includes the slag bath, which is the welding area, in its angle of view while the welding carriage 2 is traveling upward on the surface of the steel plate 5 while performing welding work.
 具体的に説明すると、まず、溶接作業を開始する前に、溶接台車2を溶接線に対して左右方向すなわちヨー角方向に傾きがないように鋼板5側に固定し、撮影される画像80の中央にスラグ浴が位置するように視覚センサ14の取付位置を調整する。次に、図8(A)に示すように、視覚センサ14により撮影された画像80の中からスラグ浴の形状Xを解析して、スラグ浴の形状Xの重心位置を基準位置Yとして取得する。なお、スラグ浴の形状Xは、開先10の形状と略同一である。なお、基準位置Yは、スラグ浴の重心位置に限らず任意の位置に設定してよい。このとき、視覚センサ14は、基準位置Yと、画像80の中心位置Cと、が重なるように設置する。 Specifically, first, before starting the welding operation, the welding cart 2 is fixed to the steel plate 5 side so that it is not tilted left or right with respect to the weld line, i.e., in the yaw angle direction, and the mounting position of the visual sensor 14 is adjusted so that the slag bath is located in the center of the captured image 80. Next, as shown in FIG. 8(A), the shape X of the slag bath is analyzed from the image 80 captured by the visual sensor 14, and the center of gravity of the shape X of the slag bath is obtained as the reference position Y. The shape X of the slag bath is approximately the same as the shape of the groove 10. The reference position Y is not limited to the center of gravity of the slag bath and may be set to any position. At this time, the visual sensor 14 is installed so that the reference position Y and the center position C of the image 80 overlap.
 次に、図8(B)及び(C)に示すように、溶接作業を開始後に、視覚センサ14により撮影される画像80内のスラグ浴の基準位置Yが、溶接台車2の現在位置としての画像80の中心位置Cから左右方向にズレた場合に、そのズレ量を、溶接線に対する溶接台車2の溶接進行方向のズレ量すなわちヨー角変位量として検出することができる。すなわち、上記ズレ量は、スラグ浴の基準位置Yと、溶接台車2の現在位置としての画像の中心位置Cと、の差に基づいて検出される。 Next, as shown in Figures 8(B) and (C), after the start of welding work, if the reference position Y of the slag bath in the image 80 captured by the visual sensor 14 shifts left or right from the center position C of the image 80 representing the current position of the welding carriage 2, the amount of shift can be detected as the amount of shift in the welding progress direction of the welding carriage 2 relative to the weld line, i.e., the amount of yaw angle displacement. In other words, the amount of shift is detected based on the difference between the reference position Y of the slag bath and the center position C of the image representing the current position of the welding carriage 2.
 このとき、視覚センサ14により取得される画像80内には、駆動制御で用いる上述の閾値を示す枠Tが表示される構成としても良い。この場合、図8(C)に示すように溶接作業中に基準位置Yが枠Tの外側に出た場合には、ズレ量が閾値を超えたことになるため、作業者はズレ量を直観的にも把握することができる。なお、画像80内の枠Tの大きさは設定される閾値によって変動する。 At this time, a frame T indicating the above-mentioned threshold value used in drive control may be displayed within the image 80 acquired by the visual sensor 14. In this case, as shown in FIG. 8(C), if the reference position Y goes outside the frame T during welding work, the amount of deviation exceeds the threshold value, and the worker can intuitively grasp the amount of deviation. Note that the size of the frame T within the image 80 varies depending on the threshold value that is set.
 なお、上記ズレ量を検出する検出センサは、開先10の延設方向に対して溶接台車2の溶接進行方向が変位している変位量、具体的にはヨー角変位量、を検出可能な構成であれば上述の視覚センサ14に限られない。検出センサとしては、レーザセンサなどの光学センサや磁気センサの他、ジャイロセンサ等であっても良いし、これらを組み合わせて検出する構成としても良い。 The detection sensor for detecting the amount of misalignment is not limited to the visual sensor 14 described above, as long as it is capable of detecting the amount of displacement of the welding progress direction of the welding carriage 2 relative to the extension direction of the groove 10, specifically the amount of yaw angle displacement. The detection sensor may be an optical sensor such as a laser sensor, a magnetic sensor, a gyro sensor, or a combination of these.
<制御方法>
 次に、図9(A)~(D)及び図10に基づき、制御部による駆動制御の具体的な処理内容について説明する。制御部は、例えばプロセッサの一部で、演算装置や記憶装置の読み書き、入出力等を制御する制御装置であって、入力側には視覚センサ14が接続され、出力側には方向制御弁77、電空レギュレータ78が接続されている。
<Control method>
Next, specific processing contents of the drive control by the control unit will be described with reference to Figures 9(A) to (D) and 10. The control unit is, for example, a part of a processor, and is a control device that controls the reading and writing of the arithmetic unit and the storage device, input and output, etc., and is connected to the visual sensor 14 on the input side, and to the directional control valve 77 and the electro-pneumatic regulator 78 on the output side.
 図9(A)~(D)に基づいて、駆動制御の概要について説明する、図9(A)~(D)は、駆動制御の効果を示した概要図である。制御部は、図9(A)に示すように溶接台車2が鋼板5を上進走行しながら溶接を行う溶接作業が開始されると、視覚センサ14を用いて溶接台車2の溶接進行方向と開先10の延設方向との間のズレ量の検出を開始し、ズレ量が閾値未満の場合には、可動ガイドローラ8Aをフリー状態として溶接作業を続行する。 The drive control will be outlined with reference to Figures 9(A) to (D), which are schematic diagrams showing the effect of the drive control. When the welding work is started in which the welding carriage 2 travels upward on the steel plate 5 while welding, as shown in Figure 9(A), the control unit starts to detect the amount of deviation between the welding progress direction of the welding carriage 2 and the extension direction of the groove 10 using the visual sensor 14, and if the amount of deviation is less than a threshold value, the movable guide roller 8A is set in a free state and the welding work continues.
 図9(B)には、溶接作業時に、視覚センサ14によって、溶接台車2の溶接進行方向が開先10の延設方向に対して左方向、即ち鋼板5A側に接近する方向に傾き、このズレ量が閾値以上となったことが検出された場合が示されている。この場合、図9(C)において矢印で示すように、一対の左右駆動エアシリンダ75,75の駆動を制御することにより、可動ガイドローラ8Aをズレ量が発生した左方向の開先面5aを押圧するようにスライド移動させる。 Figure 9 (B) shows a case where the visual sensor 14 detects that the welding progress direction of the welding carriage 2 is tilted to the left of the extension direction of the groove 10, i.e., in the direction approaching the steel plate 5A, during welding operation, and that the amount of deviation is greater than or equal to a threshold value. In this case, as shown by the arrow in Figure 9 (C), the drive of a pair of left and right drive air cylinders 75, 75 is controlled to slide the movable guide roller 8A so as to press against the groove surface 5a to the left where the deviation has occurred.
 これにより、図9(D)に示すように、溶接台車2は、可動ガイドローラ8Aが押圧した左側の開先面5aから反作用が生じるため、開先10内の支点ガイドローラ8Bを支点として可動ガイドローラ8Aのスライド方向と反対方向である右側に旋回する。言い換えると、溶接台車2は、溶接進行方向が開先10の延設方向に沿う方向へと旋回する。すなわち、溶接台車2は、開先10の延設方向から外れはじめた溶接台車2の進行方向を開先10の延設方向に沿った進行方向に戻すことによって、視覚センサ14により検出されるズレ量を補正することができる。なお、この「ズレ量を補正する」は「ズレ量をキャンセルする」と言い換えても良い。 As a result, as shown in FIG. 9(D), the welding carriage 2 rotates to the right, which is the opposite direction to the sliding direction of the movable guide roller 8A, with the fulcrum guide roller 8B in the groove 10 as the fulcrum, due to a reaction from the left groove surface 5a pressed by the movable guide roller 8A. In other words, the welding carriage 2 rotates in a direction in which the welding proceeds along the extension direction of the groove 10. That is, the welding carriage 2 can correct the amount of deviation detected by the visual sensor 14 by returning the traveling direction of the welding carriage 2, which has begun to deviate from the extension direction of the groove 10, to the traveling direction along the extension direction of the groove 10. Note that "correcting the amount of deviation" in this case may also be rephrased as "canceling the amount of deviation."
 該構成によれば、溶接作業中の溶接台車2が、様々な施工条件や外乱の要因、例えば、開先を形成する鋼板5Aと鋼板5Bの板厚が違ったり、板継部分で板厚が異なったり、傾斜があったり、開先10の左右位置にズレがあったりすることによって、溶接台車2の溶接進行方向と溶接線との間にズレ量が発生し、該ズレ量を前記視覚センサ14が検出した場合には、左右駆動エアシリンダ75,75は、検出されたズレ量をキャンセルする方向に溶接台車2が動くように、可動ガイドローラ8Aで一方側の開先面5a,5bを押圧する駆動制御を行うことができる。 With this configuration, when the welding carriage 2 is undergoing welding work, various working conditions and disturbances, such as differences in the thickness of the steel plates 5A and 5B that form the groove, differences in the thickness at the plate joint, inclination, or a misalignment between the left and right positions of the groove 10, cause a misalignment between the welding progress direction of the welding carriage 2 and the weld line, and when the visual sensor 14 detects this misalignment, the left and right drive air cylinders 75, 75 can perform drive control to press the groove surfaces 5a, 5b on one side with the movable guide roller 8A so that the welding carriage 2 moves in a direction that cancels the detected misalignment.
 次に、図10に基づき、駆動制御の処理フローについて説明する。図10は、駆動制御の処理を示したフロー図である。制御部は、駆動制御の処理が開始されると、ステップS1に進む。ステップS1では、視覚センサ14によって、溶接台車2の溶接進行方向と、開先10の延設方向との間のズレ量を検出し、ステップS2に進む。 Next, the process flow of the drive control will be described with reference to FIG. 10. FIG. 10 is a flow diagram showing the drive control process. When the drive control process is started, the control unit proceeds to step S1. In step S1, the visual sensor 14 detects the amount of deviation between the welding progress direction of the welding carriage 2 and the extension direction of the groove 10, and the process proceeds to step S2.
 ステップS2では、視覚センサ14によって検出されたズレ量が、予め設定された閾値以上であるか否かが確認され、検出されたズレ量が閾値以上であることが検出された場合には、ステップS3に進む。 In step S2, it is confirmed whether the amount of misalignment detected by the visual sensor 14 is equal to or greater than a preset threshold, and if it is determined that the amount of misalignment detected is equal to or greater than the threshold, the process proceeds to step S3.
 ステップS3では、制御部は、検出されたズレ量に基づいて、左右駆動エアシリンダ75を駆動させてズレ量を補正するために必要なエア圧力を算出し、算出されたエア圧力に基づいて、一対の左右駆動エアシリンダ75,75を駆動する。これにより、可動ガイドローラ8Aを左右方向にスライド移動させ、ズレ量が検出された方向の開先面(開先面5aまたは開先面5bのいずれか一方)を押圧する。その後、リターンする。 In step S3, the control unit calculates the air pressure required to drive the left and right driving air cylinders 75 to correct the amount of misalignment based on the detected amount of misalignment, and drives the pair of left and right driving air cylinders 75, 75 based on the calculated air pressure. This causes the movable guide roller 8A to slide left and right, pressing against the groove surface (either groove surface 5a or groove surface 5b) in the direction in which the amount of misalignment was detected. Then, the process returns.
 これにより、溶接台車2は、開先10内の支点ガイドローラ8Bを支点として可動ガイドローラ8Aのスライド方向と反対方向に押し返されることにより、溶接台車2をズレ量が小さくなる方向へと旋回させることができる。これを視覚センサ14により検出されるズレ量が閾値未満になるまで続けることにより、溶接台車2の溶接進行方向を溶接線に沿った正位置に戻すことができる。 As a result, the welding carriage 2 is pushed back in the opposite direction to the sliding direction of the movable guide roller 8A, with the fulcrum guide roller 8B in the groove 10 as the fulcrum, and the welding carriage 2 can be rotated in a direction that reduces the amount of misalignment. By continuing this until the amount of misalignment detected by the visual sensor 14 falls below the threshold value, the welding progress direction of the welding carriage 2 can be returned to the correct position along the weld line.
 左右駆動エアシリンダ75,75を駆動させるエア圧力の算出方法としては、検出されるズレ量と、ズレ量の補正に必要なエア圧力との関係を予めデータベース化しておき、データベースと検出されたズレ量の値とに基づいて、一対の左右駆動エアシリンダ75,75に供給するエア圧力を決定する構成としても良い。また、エア圧力と、ズレ量の補正具合のデータを記録して自動学習する構成としても良いし、エア圧力の算出は行わず、常に一定のエア圧力で左右駆動エアシリンダ75を駆動する構成としても良い。 As a method of calculating the air pressure to drive the left and right driving air cylinders 75, 75, a database may be created in advance of the relationship between the detected amount of misalignment and the air pressure required to correct the amount of misalignment, and the air pressure to be supplied to the pair of left and right driving air cylinders 75, 75 may be determined based on the database and the value of the detected amount of misalignment. Also, the air pressure and data on the degree of misalignment correction may be recorded and automatically learned, or the air pressure may not be calculated and the left and right driving air cylinders 75 may always be driven with a constant air pressure.
 なお、ステップS2において、視覚センサ14により検出されたズレ量が、予め設定された閾値未満であることが検出された場合には、ステップS4に進む。 If it is determined in step S2 that the amount of deviation detected by the visual sensor 14 is less than a preset threshold, the process proceeds to step S4.
 ステップS4では、左右駆動エアシリンダ75による可動ガイドローラ8Aのスライド移動は行わず、左右駆動エアシリンダ75のヘッド側、ロッド側ともにエアが排出される状態、言い換えると、可動ガイドローラ8Aが可動ローラ軸71上を左右方向に自由に平行移動可能なガイドローラフリー状態に切替え、その後、リターンする。これにより上下板継時など、開先の左右位置が急激に変化する箇所に可動ガイドローラ8Aが接触するような外乱を受けた場合であっても、可動ガイドローラ8Aが左右方向に逃げることで、溶接台車2への急峻なヨー変化を回避することができる。 In step S4, the horizontal driving air cylinder 75 does not slide the movable guide roller 8A, and the air is discharged from both the head side and rod side of the horizontal driving air cylinder 75, in other words, the movable guide roller 8A switches to a guide roller free state in which it can move freely in parallel in the horizontal direction on the movable roller shaft 71, and then returns. As a result, even if the movable guide roller 8A is subjected to a disturbance such as contact with a point where the left-right position of the groove changes suddenly, such as when joining upper and lower plates, the movable guide roller 8A escapes in the horizontal direction, thereby avoiding a sudden yaw change to the welding cart 2.
 なお、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。 The present invention is not limited to the above-described embodiment, and it is intended that the various components of the embodiment may be combined with each other, and that those skilled in the art may modify and apply the invention based on the description in the specification and well-known technology, and this is included in the scope of the protection sought.
 以上の通り、本明細書には次の事項が開示されている。
(1) 2つの被溶接材により形成される開先に対し、立向姿勢による溶接を行うための立向溶接装置であって、
 前記被溶接材の板厚方向に対して垂直となる一方側の表面側を前記開先に沿って走行しながら溶接する溶接台車と、前記溶接台車に搭載された溶接トーチと、を備え、
 前記溶接台車は、
 溶接進行方向に沿って少なくとも2以上並べて配置されて、前記開先の延設方向に沿って進行するガイドローラと、
 前記開先の延設方向に対する前記溶接台車の前記溶接進行方向のズレ量を検出する検出手段と、
を有し、
 前記ガイドローラの少なくとも一つは、駆動手段を用いて前記溶接進行方向に対して直交する方向に平行移動可能な可動ガイドローラであり、
 前記駆動手段は、前記検出手段によって検出されたズレ量をキャンセルする方向に動くように、前記可動ガイドローラを開先面に押圧する駆動制御を行う
 ことを特徴とする立向溶接装置。
 本構成によれば、レール設置を必要としない自走式の立向溶接装置において、溶接台車の姿勢を安定に維持して溶接トーチ先端位置のズレを抑制することができるため、良好な溶接品質を確保することができる。
As described above, the present specification discloses the following:
(1) A vertical welding device for performing welding in a vertical position on a groove formed by two workpieces,
A welding carriage that welds one surface side perpendicular to the plate thickness direction of the welded material while traveling along the groove, and a welding torch mounted on the welding carriage,
The welding carriage includes:
At least two or more guide rollers are arranged in a line along the welding proceeding direction and proceed along the extension direction of the groove;
A detection means for detecting a deviation amount of the welding proceeding direction of the welding carriage with respect to an extension direction of the groove;
having
At least one of the guide rollers is a movable guide roller that can be moved in parallel in a direction perpendicular to the welding proceeding direction by a driving means,
The vertical welding device is characterized in that the driving means performs drive control to press the movable guide roller against the groove surface so that the movable guide roller moves in a direction that cancels the amount of deviation detected by the detection means.
According to this configuration, in a self-propelled vertical welding device that does not require the installation of rails, the posture of the welding carriage can be stably maintained to suppress deviation of the welding torch tip position, thereby ensuring good welding quality.
(2) 前記検出手段は、前記ズレ量に対して予め閾値を設定し、前記ズレ量が前記閾値以上であることが検出された場合には、前記駆動制御を行い、前記ズレ量が前記閾値未満であることが検出された場合には、前記可動ガイドローラが前記溶接進行方向に対して直交する方向に自由に平行移動可能な状態にすることを特徴とする(1)に記載の立向溶接装置。
 本構成によれば、ズレ量が閾値以上の場合にのみ可動ガイドローラを駆動制御するため、立向姿勢での溶接作業の作業効率をなるべく落とすことなく、正確性を向上させることができる。
(2) The vertical welding apparatus according to (1), wherein the detection means sets a threshold value in advance for the amount of deviation, and when it is detected that the amount of deviation is equal to or greater than the threshold value, performs the drive control, and when it is detected that the amount of deviation is less than the threshold value, makes the movable guide roller freely movable in parallel in a direction perpendicular to the welding proceeding direction.
According to this configuration, the movable guide roller is driven and controlled only when the amount of deviation is equal to or greater than a threshold value, so that accuracy can be improved without reducing the work efficiency of welding work in a vertical position as much as possible.
(3) 前記検出手段は、
 視覚センサ、光学センサ、磁気センサのうち、少なくとも一つのセンサを含み、
 前記ズレ量は、前記センサにより取得された、所定の基準位置と、前記溶接台車の現在位置との差に基づいて検出する
 ことを特徴とする(1)又は(2)に記載の立向溶接装置。
 本構成によれば、溶接台車の進行方向と、開先の延設方向との間のズレ量を簡易且つ正確に検出することができる。
(3) The detection means
At least one sensor among a visual sensor, an optical sensor, and a magnetic sensor is included;
The vertical welding apparatus according to claim 1 or 2, characterized in that the amount of deviation is detected based on a difference between a predetermined reference position acquired by the sensor and a current position of the welding carriage.
According to this configuration, the amount of deviation between the traveling direction of the welding carriage and the extension direction of the groove can be detected easily and accurately.
(4) 前記ガイドローラのうち前記溶接進行方向に対して最も前方に配置された前記ガイドローラが、前記可動ガイドローラである
 ことを特徴とする(1)~(3)のいずれか1つに記載の立向溶接装置。
 本構成によれば、左右方向に駆動する可動ガイドローラを最も前方に配置したことにより、溶接台車の溶接進行方向のズレの補正作動がスムーズになる。
(4) The vertical welding apparatus according to any one of (1) to (3), characterized in that the guide roller disposed furthest forward in the welding proceeding direction among the guide rollers is the movable guide roller.
According to this configuration, by arranging the movable guide roller that is driven in the left-right direction at the frontmost position, the operation of correcting deviation of the welding carriage in the welding proceeding direction can be smoothly performed.
(5) 吊り下げ式の立向溶接装置であって、
 前記溶接台車を吊り上げる電動ウインチを設けた
 ことを特徴とする(1)~(4)のいずれか1つに記載の立向溶接装置。
 本構成によれば、装置全体の大きさや重量をコンパクトにすることができるとともに、作業開始前の準備工程も比較的簡易なため、メンテナンス性や作業効率が高くなる。
(5) A hanging type vertical welding device,
The vertical welding apparatus according to any one of (1) to (4), further comprising an electric winch for hoisting the welding carriage.
According to this configuration, the size and weight of the entire device can be made compact, and the preparation steps before starting work are relatively simple, improving maintainability and work efficiency.
(6) エレクトロスラグ溶接又はエレクトロガス溶接用の立向溶接装置であって、
 前記溶接台車は、
 前記被溶接材の一方側の面である表面側に配置されて、前記開先に沿って摺動する表銅板と、
 前記被溶接材の他方側の面である裏面側に配置されて、前記開先に沿って摺動する裏銅板と、
 前記表銅板と前記裏銅板とを前記被溶接材を挟持する方向に作動させるリンク機構と、
 前記リンク機構を制御するアクチュエータと、を有する
 ことを特徴とする(1)~(5)のいずれか1つに記載の立向溶接装置。
 本構成によれば、被溶接材を挟持する表銅板と裏銅板とを比較的簡易な構造で正確に操作することができる。
(6) A vertical welding device for electroslag welding or electrogas welding,
The welding carriage includes:
A front copper plate is arranged on a front surface side, which is one surface of the material to be welded, and slides along the groove;
A back copper plate is arranged on the back side, which is the other side of the welded material, and slides along the groove;
a link mechanism that operates the front copper plate and the back copper plate in a direction to clamp the workpiece;
The vertical welding apparatus according to any one of (1) to (5), further comprising an actuator for controlling the link mechanism.
According to this configuration, the front copper plate and the back copper plate that clamp the material to be welded can be accurately manipulated with a relatively simple structure.
(7) 前記駆動手段は、前記可動ガイドローラを平行移動させるエアシリンダであり、前記検出手段により検出された前記ズレ量に基づいて、前記エアシリンダの出力を算出するように構成された
 ことを特徴とする(2)に記載の立向溶接装置。
 本構成によれば、ズレ量を補正するために必要なエアシリンダの出力計算を容易に行うことができる。
(7) The vertical welding apparatus according to (2), characterized in that the driving means is an air cylinder that moves the movable guide roller in a parallel manner, and the apparatus is configured to calculate an output of the air cylinder based on the amount of deviation detected by the detection means.
According to this configuration, it is possible to easily calculate the output of the air cylinder required to correct the amount of deviation.
(8) 2つの被溶接材により形成される開先に対し、立向姿勢による溶接を行うための立向溶接装置の制御方法であって、
 前記立向溶接装置は、前記被溶接材の板厚方向に対して垂直となる一方側の表面側を前記開先に沿って走行しながら溶接する溶接台車と、前記溶接台車に搭載された溶接トーチと、を備え、
 前記溶接台車は、
 溶接進行方向に沿って少なくとも2以上並べて配置されて、前記開先の延設方向に沿って進行するガイドローラを有し、
 前記ガイドローラの少なくとも一つは、前記溶接進行方向に対して直交する方向に平行移動可能な可動ガイドローラであり、
 前記開先の延設方向に対する前記溶接台車の前記溶接進行方向のズレ量を検出した場合に、前記可動ガイドローラによって前記ズレ量が検出された方向の開先面を押圧する
 ことを特徴とする立向溶接装置の制御方法。
 本構成によれば、レール設置を必要としない自走式の立向溶接装置の制御方法において、溶接台車の姿勢を安定に維持して溶接トーチ先端位置のズレを抑制することができるため、良好な溶接品質を確保することができる。
(8) A control method for a vertical welding apparatus for performing welding in a vertical position on a groove formed by two workpieces, comprising:
The vertical welding apparatus includes a welding carriage that welds one surface side perpendicular to the plate thickness direction of the workpiece while traveling along the groove, and a welding torch mounted on the welding carriage;
The welding carriage includes:
At least two or more guide rollers are arranged in a line along the welding proceeding direction and proceed along the extension direction of the groove,
At least one of the guide rollers is a movable guide roller that is movable in parallel in a direction perpendicular to the welding proceeding direction,
a movable guide roller that presses the groove surface in a direction in which the amount of deviation is detected when a deviation of the welding carriage in the welding proceeding direction with respect to an extension direction of the groove is detected.
According to this configuration, in a control method for a self-propelled vertical welding device that does not require the installation of rails, the posture of the welding carriage can be stably maintained and deviation of the welding torch tip position can be suppressed, thereby ensuring good welding quality.
 以上、各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above, it goes without saying that the present invention is not limited to these examples. It is clear that a person skilled in the art can come up with various modified or revised examples within the scope of the claims, and it is understood that these also naturally fall within the technical scope of the present invention. Furthermore, the components in the above embodiments may be combined in any manner as long as it does not deviate from the spirit of the invention.
 なお、本出願は、2022年9月30日出願の日本特許出願(特願2022-158260)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Patent Application No. 2022-158260) filed on September 30, 2022, the contents of which are incorporated by reference into this application.
2 溶接台車
3 電動ウインチ
4 溶接トーチ
8A 可動ガイドローラ(ガイドローラ)
8B 支点ガイドローラ(ガイドローラ)
9 表銅板
12 裏銅板
14 視覚センサ(検出手段)
15 制御部
24 表銅板用エアシリンダ(アクチュエータ)
25 表側リンク機構(リンク機構)
43 裏銅板用エアシリンダ(アクチュエータ、エアシリンダ)
44 裏側リンク機構(リンク機構)
75 左右駆動エアシリンダ(駆動手段、エアシリンダ)
2 Welding cart 3 Electric winch 4 Welding torch 8A Movable guide roller (guide roller)
8B Support guide roller (guide roller)
9 Front copper plate 12 Back copper plate 14 Visual sensor (detection means)
15 Control unit 24 Air cylinder (actuator) for front copper plate
25 Front link mechanism (link mechanism)
43 Air cylinder for back copper plate (actuator, air cylinder)
44 Back side link mechanism (link mechanism)
75 Left and right drive air cylinder (drive means, air cylinder)

Claims (8)

  1.  2つの被溶接材により形成される開先に対し、立向姿勢による溶接を行うための立向溶接装置であって、
     前記被溶接材の板厚方向に対して垂直となる一方側の表面側を前記開先に沿って走行しながら溶接する溶接台車と、前記溶接台車に搭載された溶接トーチと、を備え、
     前記溶接台車は、
     溶接進行方向に沿って少なくとも2以上並べて配置されて、前記開先の延設方向に沿って進行するガイドローラと、
     前記開先の延設方向に対する前記溶接台車の前記溶接進行方向のズレ量を検出する検出手段と、
    を有し、
     前記ガイドローラの少なくとも一つは、駆動手段を用いて前記溶接進行方向に対して直交する方向に平行移動可能な可動ガイドローラであり、
     前記駆動手段は、前記検出手段によって検出されたズレ量をキャンセルする方向に動くように、前記可動ガイドローラを開先面に押圧する駆動制御を行う
     ことを特徴とする立向溶接装置。
    A vertical welding device for performing welding in a vertical position on a groove formed by two workpieces,
    A welding carriage that welds one surface side perpendicular to the plate thickness direction of the welded material while traveling along the groove, and a welding torch mounted on the welding carriage,
    The welding carriage includes:
    At least two or more guide rollers are arranged in a line along the welding proceeding direction and proceed along the extension direction of the groove;
    A detection means for detecting a deviation amount of the welding proceeding direction of the welding carriage with respect to an extension direction of the groove;
    having
    At least one of the guide rollers is a movable guide roller that can be moved in parallel in a direction perpendicular to the welding proceeding direction by a driving means,
    The vertical welding device is characterized in that the driving means performs drive control to press the movable guide roller against the groove surface so that the movable guide roller moves in a direction that cancels the amount of deviation detected by the detection means.
  2.  前記検出手段は、前記ズレ量に対して予め閾値を設定し、前記ズレ量が前記閾値以上であることが検出された場合には、前記駆動制御を行い、前記ズレ量が前記閾値未満であることが検出された場合には、前記可動ガイドローラが前記溶接進行方向に対して直交する方向に自由に平行移動可能な状態にする
     ことを特徴とする請求項1に記載の立向溶接装置。
    2. The vertical welding apparatus according to claim 1, wherein the detection means sets a threshold value for the amount of deviation in advance, and when it is detected that the amount of deviation is equal to or greater than the threshold value, the detection means performs the drive control, and when it is detected that the amount of deviation is less than the threshold value, the detection means makes the movable guide roller freely movable in parallel in a direction perpendicular to the welding progress direction.
  3.  前記検出手段は、
     視覚センサ、光学センサ、磁気センサのうち、少なくとも一つのセンサを含み、
     前記ズレ量は、前記センサにより取得された、所定の基準位置と、前記溶接台車の現在位置との差に基づいて検出する
     ことを特徴とする請求項1又は2に記載の立向溶接装置。
    The detection means includes:
    At least one sensor among a visual sensor, an optical sensor, and a magnetic sensor is included;
    3. The vertical welding apparatus according to claim 1, wherein the amount of deviation is detected based on a difference between a predetermined reference position and a current position of the welding carriage, the difference being acquired by the sensor.
  4.  前記ガイドローラのうち前記溶接進行方向に対して最も前方に配置された前記ガイドローラが、前記可動ガイドローラである
     ことを特徴とする請求項1又は2に記載の立向溶接装置。
    The vertical welding apparatus according to claim 1 or 2, wherein the guide roller disposed furthest forward in the welding proceeding direction among the guide rollers is the movable guide roller.
  5.  吊り下げ式の立向溶接装置であって、
     前記溶接台車を吊り上げる電動ウインチを設けた
     ことを特徴とする請求項1又は2に記載の立向溶接装置。
    A hanging type vertical welding device,
    3. The vertical welding apparatus according to claim 1, further comprising an electric winch for hoisting the welding carriage.
  6.  エレクトロスラグ溶接又はエレクトロガス溶接用の立向溶接装置であって、
     前記溶接台車は、
     前記被溶接材の一方側の面である表面側に配置されて、前記開先に沿って摺動する表銅板と、
     前記被溶接材の他方側の面である裏面側に配置されて、前記開先に沿って摺動する裏銅板と、
     前記表銅板と前記裏銅板とを前記被溶接材を挟持する方向に作動させるリンク機構と、
     前記リンク機構を制御するアクチュエータと、を有する
     ことを特徴とする請求項1又は2に記載の立向溶接装置。
    A vertical welding apparatus for electroslag welding or electrogas welding, comprising:
    The welding carriage includes:
    A front copper plate is arranged on a front surface side, which is one surface of the material to be welded, and slides along the groove;
    A back copper plate is arranged on the back side, which is the other side of the welded material, and slides along the groove;
    a link mechanism that operates the front copper plate and the back copper plate in a direction to clamp the workpiece;
    The vertical welding apparatus according to claim 1 or 2, further comprising: an actuator for controlling the link mechanism.
  7.  前記駆動手段は、前記可動ガイドローラを平行移動させるエアシリンダであり、前記検出手段により検出された前記ズレ量に基づいて、前記エアシリンダの出力を算出するように構成された
     ことを特徴とする請求項2に記載の立向溶接装置。
    3. The vertical welding device according to claim 2, wherein the driving means is an air cylinder that moves the movable guide roller in a parallel manner, and the output of the air cylinder is calculated based on the amount of deviation detected by the detection means.
  8.  2つの被溶接材により形成される開先に対し、立向姿勢による溶接を行うための立向溶接装置の制御方法であって、
     前記立向溶接装置は、前記被溶接材の板厚方向に対して垂直となる一方側の表面側を前記開先に沿って走行しながら溶接する溶接台車と、前記溶接台車に搭載された溶接トーチと、を備え、
     前記溶接台車は、
     溶接進行方向に沿って少なくとも2以上並べて配置されて、前記開先の延設方向に沿って進行するガイドローラを有し、
     前記ガイドローラの少なくとも一つは、前記溶接進行方向に対して直交する方向に平行移動可能な可動ガイドローラであり、
     前記開先の延設方向に対する前記溶接台車の前記溶接進行方向のズレ量を検出した場合に、前記可動ガイドローラによって前記ズレ量が検出された方向の開先面を押圧する
     ことを特徴とする立向溶接装置の制御方法。
    A method for controlling a vertical welding apparatus for performing welding in a vertical position on a groove formed by two workpieces, comprising:
    The vertical welding apparatus includes a welding carriage that welds one surface side perpendicular to the plate thickness direction of the workpiece while traveling along the groove, and a welding torch mounted on the welding carriage;
    The welding carriage includes:
    At least two or more guide rollers are arranged in a line along the welding proceeding direction and proceed along the extension direction of the groove,
    At least one of the guide rollers is a movable guide roller that is movable in parallel in a direction perpendicular to the welding proceeding direction,
    a movable guide roller that presses the groove surface in a direction in which the amount of deviation is detected when a deviation of the welding carriage in the welding proceeding direction with respect to an extension direction of the groove is detected.
PCT/JP2023/030389 2022-09-30 2023-08-23 Vertical-position welding device and control method for vertical-position welding device WO2024070354A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-158260 2022-09-30
JP2022158260A JP2024051883A (en) 2022-09-30 2022-09-30 Vertical welding apparatus and method for controlling vertical welding apparatus

Publications (1)

Publication Number Publication Date
WO2024070354A1 true WO2024070354A1 (en) 2024-04-04

Family

ID=90477317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030389 WO2024070354A1 (en) 2022-09-30 2023-08-23 Vertical-position welding device and control method for vertical-position welding device

Country Status (2)

Country Link
JP (1) JP2024051883A (en)
WO (1) WO2024070354A1 (en)

Also Published As

Publication number Publication date
JP2024051883A (en) 2024-04-11

Similar Documents

Publication Publication Date Title
US5560843A (en) Frame construction and a machining device provided with it
KR20090012122A (en) Welding torch auto-position controller
JP6676648B2 (en) Holding device, processing device and method
CN112873246B (en) Straddle type single-rail track beam welding robot workstation
KR20110101493A (en) Welding carriage guiding apparatus and auto welding apparatus having the same
KR100908277B1 (en) Fully automatic welding robot for submerged arc welding
KR100972164B1 (en) Vertical Welding Apparatus
CN101274386A (en) One side welding device and one side welding method
US20200338759A1 (en) Maintenance apparatus of robot and maintenance method of robot
JPH1024370A (en) Automatic butt welding equipment
WO2024070354A1 (en) Vertical-position welding device and control method for vertical-position welding device
KR20120038248A (en) Welding carriage
JP2008290149A (en) Automatic spot welding apparatus
KR200494535Y1 (en) Assist Device of Manual Welding for Shipbuilding
KR20210122091A (en) Guide rail device, welding device and separating method of guide rail device
KR20090027871A (en) Automatic welding machine
KR102115731B1 (en) Horizontal fillet welding apparatus and horizontal fillet welding method
KR101161548B1 (en) Railless horizontal welding carrige
KR20160037322A (en) Welding servo carriage
KR100924720B1 (en) Welding carriage
JP4725486B2 (en) Welding robot
KR101503304B1 (en) Method for setting position of lug welding robot using laser pointer
KR20110032753A (en) Active automatic horizontal welding method
JP5149526B2 (en) Single-side welding equipment
RU187914U1 (en) LASER-ARC AUTOMATIC MACHINE FOR WELDING HOUSING STRUCTURES IN VARIOUS SPATIAL PROVISIONS