WO2024070337A1 - Multilayer ceramic capacitor - Google Patents

Multilayer ceramic capacitor Download PDF

Info

Publication number
WO2024070337A1
WO2024070337A1 PCT/JP2023/030103 JP2023030103W WO2024070337A1 WO 2024070337 A1 WO2024070337 A1 WO 2024070337A1 JP 2023030103 W JP2023030103 W JP 2023030103W WO 2024070337 A1 WO2024070337 A1 WO 2024070337A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
internal electrode
electrode
electrode layer
laminate
Prior art date
Application number
PCT/JP2023/030103
Other languages
French (fr)
Japanese (ja)
Inventor
幸祐 浦谷
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2024070337A1 publication Critical patent/WO2024070337A1/en

Links

Images

Definitions

  • the present invention relates to a multilayer ceramic capacitor.
  • Patent Document 1 describes a technology for preventing this dielectric breakdown by forming at least a portion of the area near the edge of the internal electrode of the dielectric layer from a dielectric ceramic that has a higher withstand voltage than other areas.
  • the thickness of the dielectric layers in multilayer ceramic capacitors is becoming thinner.
  • the insulation resistance value decreases.
  • the internal electrodes are structurally prone to bending. This causes the thickness of the dielectric layers to decrease locally, making insulation breakdown more likely to occur. Therefore, the objective of the present invention is to provide a multilayer ceramic capacitor in which the occurrence of insulation breakdown is further suppressed.
  • the multilayer ceramic capacitor of the present invention comprises a laminate including a plurality of laminated dielectric layers and a plurality of internal electrode layers, the laminate including a first main surface and a second main surface facing each other in the lamination direction, a first side surface and a second side surface facing each other in a width direction perpendicular to the lamination direction, and a first end surface and a second end surface facing each other in a length direction perpendicular to the lamination direction and the width direction, and an external electrode provided on the first end surface and the second end surface
  • the internal electrode layer includes a first internal electrode layer and a second internal electrode layer, the first internal electrode layer is drawn out to the first end surface, the second internal electrode layer is drawn out to the second end surface, the external electrode includes a first external electrode connected to the first internal electrode layer and a second external electrode connected to the second internal electrode layer, and the first end surface side is a region where the first internal electrode layers do not overlap with each other in the lamination direction, and the second end surface side is a region where the
  • the present invention provides a multilayer ceramic capacitor in which the occurrence of dielectric breakdown is further suppressed.
  • FIG. 1 is a perspective view of a multilayer ceramic capacitor according to an embodiment of the present invention
  • 2 is a cross-sectional view taken along line II in FIG. 1.
  • 2 is a cross-sectional view taken along line II-II of FIG. 1.
  • 2 is a diagram showing a portion of an LT cross section of the multilayer ceramic capacitor of the present embodiment.
  • FIG. 2 is a diagram showing a portion of a WT cross section of the multilayer ceramic capacitor of the present embodiment.
  • FIG. 11 is a diagram showing a portion of a WT cross section of another configuration of the multilayer ceramic capacitor according to the present embodiment.
  • FIG. FIG. 2 is a plan view of a ceramic green sheet according to the embodiment.
  • FIG. 11 is a plan view of a ceramic green sheet having another configuration in the present embodiment.
  • 4A and 4B are diagrams showing LT cross sections of laminated ceramic green sheets.
  • FIG. 13 is a diagram showing the results of a high-temperature load reliability test.
  • Fig. 1 is a perspective view showing the multilayer ceramic capacitor 1 of the present embodiment.
  • the multilayer ceramic capacitor 1 includes a laminate 2 and external electrodes 20.
  • the L direction is the length direction L of the multilayer ceramic capacitor 1.
  • the W direction is the width direction W of the multilayer ceramic capacitor 1.
  • the T direction is the stacking direction T of the multilayer ceramic capacitor 1.
  • the cross section shown in FIG. 2 is called an LT cross section, and the cross section shown in FIG. 3 is called a WT cross section.
  • the length direction L, the width direction W, and the stacking direction T do not necessarily have to be perpendicular to each other.
  • the length direction L, the width direction W, and the stacking direction T may intersect each other.
  • the laminate 2 has a substantially rectangular parallelepiped shape.
  • the laminate 2 has two main surfaces 61, two end surfaces 62, and two side surfaces 63.
  • the main surface 61 is a surface facing the stacking direction T.
  • the end surface 62 is a surface facing the length direction L.
  • the side surface 63 is a surface facing the width direction W.
  • One of the two main surfaces 61 is a first main surface 61a, and the other is a second main surface 61b.
  • One of the two end surfaces 62 is a first end surface 62a, and the other is a second end surface 62b.
  • One of the two side surfaces 63 is a first side surface 63a, and the other is a second side surface 63b.
  • the second main surface 61b and the first side surface 63a are shown in FIG. 1.
  • the ridges and corners of the laminate 2 are preferably rounded.
  • a ridge is a portion where two surfaces of the laminate 2 intersect.
  • a corner is a portion where three surfaces of the laminate 2 intersect.
  • the size of the laminate 2 is not particularly limited.
  • the laminate 2 includes a plurality of dielectric layers 4 and a plurality of internal electrode layers 10. The structure of the laminate 2 will be described below with reference to a cross-sectional view of the laminate 2.
  • Fig. 2 is a cross-sectional view of the laminated ceramic capacitor 1 shown in Fig. 1 taken along line II.
  • Fig. 2 shows an LT cross-section of the laminated ceramic capacitor 1.
  • the laminate 2 includes a plurality of dielectric layers 4 and a plurality of internal electrode layers 10. The plurality of dielectric layers 4 and the plurality of internal electrode layers 10 are stacked on top of each other in a stacking direction T.
  • the laminate 2 is divided into an inner layer portion 53 and two outer layer portions 54 in the stacking direction T.
  • the outer layer portion 54 includes a first outer layer portion 54a and a second outer layer portion 54b.
  • the first outer layer portion 54a and the second outer layer portion 54b are located at positions sandwiching the inner layer portion 53 in the stacking direction T.
  • the inner layer portion 53 a plurality of dielectric layers 4 and a plurality of internal electrode layers 10 are arranged.
  • the plurality of internal electrode layers 10 face each other via the dielectric layer 4. Therefore, a capacitance is formed in the inner layer portion 53. Therefore, the inner layer portion 53 is the portion of the laminate 2 that essentially functions as a capacitor. For this reason, the inner layer portion 53 is also called the effective portion.
  • the first outer layer portion 54a is a portion of the outer layer portion 54 located on the side of the first main surface 61a of the laminate 2.
  • the second outer layer portion 54b is a portion of the outer layer portion 54 located on the side of the second main surface 61b of the laminate 2.
  • the first outer layer portion 54a is a portion between the internal electrode layer 10 closest to the first main surface 61a among the multiple internal electrode layers 10 and the first main surface 61a.
  • the second outer layer portion 54b is a portion between the internal electrode layer 10 closest to the second main surface 61b among the multiple internal electrode layers 10 and the second main surface 61b.
  • No internal electrode layer 10 is arranged in the first outer layer portion 54a and the second outer layer portion 54b.
  • the first outer layer 54a and the second outer layer 54b function as protective layers for the inner layer 53.
  • the dielectric layers 4 can be classified into a dielectric layer 4 arranged in the inner layer portion 53 and a dielectric layer 4 arranged in the outer layer portion 54.
  • the dielectric layer 4 arranged in the inner layer portion 53 is referred to as an inner dielectric layer 4a.
  • the dielectric layer 4 arranged in the outer layer portion 54 is referred to as an outer dielectric layer 4b.
  • the number of dielectric layers 4 stacked on the laminate 2 may be, for example, 5 to 2000.
  • the material of the dielectric layer 4 may be, for example, a dielectric ceramic composed of a main component such as BaTiO3 , CaTiO3 , SrTiO3 , or CaZrO3 .
  • a material in which a subcomponent such as a Mn compound, an Fe compound, a Cr compound, a Co compound, or a Ni compound is added to these main components may also be used.
  • the thickness of the dielectric layer 4 can be, for example, not less than 0.3 ⁇ m and not more than 0.6 ⁇ m.
  • the internal electrode layers 10 can be classified into a first internal electrode layer 10a and a second internal electrode layer 10b.
  • the first internal electrode layer 10a is an internal electrode layer 10 connected to a first external electrode 20a.
  • the second internal electrode layer 10b is an internal electrode layer 10 connected to a second external electrode 20b.
  • the first internal electrode layer 10a extends from a first end face 62a toward a second end face 62b.
  • the second internal electrode layer 10b extends from the second end face 62b toward the first end face 62a.
  • the first internal electrode layer 10 a and the second internal electrode layer 10 b each have a counter electrode portion 11 and an extraction electrode portion 12 .
  • the opposing electrode portion 11 is a portion of the internal electrode layer 10 where the first internal electrode layer 10a and the second internal electrode layer 10b face each other in the stacking direction T.
  • the extraction electrode portion 12 is a portion of the internal electrode layer 10 that is extracted from the opposing electrode portion 11 to the first end face 62a or the second end face 62b of the laminate 2.
  • the opposing electrode portion 11 of the first internal electrode layer 10a is referred to as the first opposing electrode portion 11a.
  • the extraction electrode portion 12 of the first internal electrode layer 10a is referred to as the first extraction electrode portion 12a.
  • the first extraction electrode portion 12a is a portion that is extracted from the first opposing electrode portion 11a to the first end surface 62a of the laminate 2.
  • the opposing electrode portion 11 of the second internal electrode layer 10b is referred to as the second opposing electrode portion 11b.
  • the extraction electrode portion 12 of the second internal electrode layer 10b is referred to as the second extraction electrode portion 12b.
  • the second extraction electrode portion 12b is a portion that is extracted from the second opposing electrode portion 11b to the second end surface 62b of the laminate 2.
  • the number of the internal electrode layers 10 may be, for example, from 10 to 2000.
  • the number of the internal electrode layers 10 includes the number of the first internal electrode layers 10a and the number of the second internal electrode layers 10b.
  • the thickness of the internal electrode layer 10 can be, for example, 0.1 ⁇ m to 5.0 ⁇ m, preferably 0.2 ⁇ m to 2.0 ⁇ m. When the thickness of the internal electrode layer 10 is 0.5 ⁇ m or more, a plating film is likely to grow when the metal layer of the external electrode 20 is formed by plating.
  • the material of the internal electrode layer 10 can be, for example, a metal such as Ni, Cu, Ag, Pd, or Au, an alloy of Ni and Cu, an alloy of Ag and Pd, etc.
  • the material of the internal electrode layer 10 may contain dielectric particles having the same composition as the ceramic contained in the dielectric layer 4.
  • the division of the laminate 2 in the longitudinal direction L will be described.
  • the laminate 2 can be divided into an electrode opposing portion 50 and an L gap (L gap region) 51 in the longitudinal direction L.
  • the electrode opposing portion 50 in the division in the longitudinal direction L is referred to as an L opposing portion 50a.
  • the L gap 51 includes a first L gap 51a and a second L gap 51b.
  • the L-opposing portion 50a corresponds to the portion where the first internal electrode layer 10a and the second internal electrode layer 10b oppose each other in the stacking direction T. A capacitance is formed in the L-opposing portion 50a. For this reason, the L-opposing portion 50a is also called the effective portion.
  • the L gap 51 is a portion in the longitudinal direction L of the laminate 2 where the first internal electrode layer 10a and the second internal electrode layer 10b do not face each other in the stacking direction T.
  • the first L gap 51a is between the L opposing portion 50a and the first end face 62a.
  • the second L gap 51b is between the L opposing portion 50a and the second end face 62b.
  • the first internal electrode layer 10a is arranged in the stacking direction T, but the second internal electrode layer 10b is not arranged.
  • the second internal electrode layer 10b is arranged in the stacking direction T, but the first internal electrode layer 10a is not arranged.
  • the first L gap 51a functions as an extension to the first end surface 62a of the first opposing electrode portion 11a.
  • the second L gap 51b functions as an extension to the second end surface 62b of the second opposing electrode portion 11b.
  • the length of the L gap 51 in the longitudinal direction L can be, for example, 10% to 30% of the length of the laminate 2 in the longitudinal direction L.
  • the length of the L gap 51 in the longitudinal direction L can be, for example, 5 ⁇ m to 30 ⁇ m.
  • the external electrodes 20 include a first external electrode 20a and a second external electrode 20b.
  • the first external electrode 20a is an external electrode 20 disposed on the first end surface 62a of the laminate 2.
  • the first external electrode 20a is electrically connected to the first internal electrode layer 10a.
  • the second external electrode 20b is an external electrode 20 disposed on the second end surface 62b of the laminate 2.
  • the second external electrode 20b is electrically connected to the second internal electrode layer 10b.
  • the external electrode 20 extends from one end face 62 to parts of the two main faces 61 and to parts of the two side faces 63 .
  • the layer structure of the external electrode 20 will be described with reference to FIG. 2.
  • the external electrode 20 includes a base electrode layer 21 and a plating layer 23.
  • the plating layer 23 includes an inner plating layer 24 and a surface plating layer 25. These layers are arranged in the order of the base electrode layer 21, the inner plating layer 24, and the surface plating layer 25 from the end surface 62 of the laminate 2.
  • the first external electrode 20a includes a first base electrode layer 21a and a first plating layer 23a.
  • the first plating layer 23a further includes a first inner plating layer 24a and a first surface plating layer 25a.
  • the second external electrode 20b includes a second base electrode layer 21b and a second plating layer 23b.
  • the second plating layer 23b further includes a second inner plating layer 24b and a second surface plating layer 25b.
  • the first base electrode layer 21a is disposed on and covers the first end face 62a of the laminate 2.
  • the first base electrode layer 21a extends from the first end face 62a to a part of the first main surface 61a, a part of the second main surface 61b, a part of the first side surface 63a, and a part of the second side surface 63b.
  • the second base electrode layer 21b is disposed on the second end face 62b of the laminate 2 and covers the second end face 62b.
  • the second base electrode layer 21b extends from the second end face 62b to a portion of the first main surface 61a, a portion of the second main surface 61b, a portion of the first side surface 63a, and a portion of the second side surface 63b.
  • the first base electrode layer 21a and the second base electrode layer 21b are configured as a baking layer.
  • the baking layer includes a glass component and a metal.
  • the glass component includes at least one selected from B, Si, Ba, Mg, Al, Li, etc.
  • the metal includes at least one selected from Cu, Ni, Ag, Pd, Ag-Pd alloy, Au, etc.
  • the baking layer may be a multi-layered layer.
  • the plating layer 23 on the base electrode layer 21 will be described.
  • the plating layer 23 includes the inner plating layer 24 and the surface plating layer 25.
  • the plating layers are a Ni plating layer and a Sn plating layer from the bottom. That is, the inner plating layer 24 is a Ni plating layer, and the surface plating layer 25 is a Sn plating layer.
  • the Ni plating layer can prevent the base electrode layer 21 from being eroded by solder when mounting the multilayer ceramic capacitor 1.
  • the Sn plating layer can improve the wettability of the solder when mounting the multilayer ceramic capacitor 1, making mounting easier. Therefore, by making the top plating layer 25 a Sn plating layer, the wettability of the solder to the external electrode 20 can be improved.
  • the thickness of each plating layer is preferably 3 ⁇ m or more and 9 ⁇ m or less.
  • Fig. 3 is a cross-sectional view of the laminate ceramic capacitor 1 shown in Fig. 1 taken along line II-II.
  • the laminate 2 is divided into an electrode opposing portion 50 and a W gap 52 in the width direction W.
  • the electrode opposing portion 50 in the section in the width direction W is referred to as a W opposing portion 50b.
  • the W gap 52 includes a first W gap 52a and a second W gap 52b.
  • the W opposing portion 50b is a portion where the internal electrode layers 10 face each other in the stacking direction T.
  • the W gap 52 is a portion in the width direction W where neither the first internal electrode layer 10a nor the second internal electrode layer 10b is arranged in the stacking direction T.
  • the first W gap 52a is between the W opposing portion 50b and the first side surface 63a in the width direction W of the laminate 2.
  • the second W gap 52b is between the W opposing portion 50b and the second side surface 63b.
  • the first W gap 52a and the second W gap 52b are arranged to sandwich the W opposing portion 50b.
  • the first W gap 52a and the second W gap 52b function as protective layers for the internal electrode layer 10.
  • the length of the width direction W of the W gap 52 can be, for example, 20% to 30% of the length of the width direction W of the laminate 2. In addition, the length of the width direction W of the W gap 52 can be, for example, 5 ⁇ m to 50 ⁇ m.
  • the size of the multilayer ceramic capacitor 1 is not particularly limited.
  • the size of the multilayer ceramic capacitor 1 can be, for example, as follows.
  • the dimension in the length direction L of the multilayer ceramic capacitor 1 including the laminate 2 and the external electrodes 20 is defined as the L dimension.
  • the L dimension is preferably 0.25 mm or more and 1.0 mm or less.
  • the dimension in the stacking direction T of the multilayer ceramic capacitor 1 including the laminate 2 and the external electrodes 20 is defined as the T dimension.
  • the T dimension is preferably 0.125 mm or more and 0.5 mm or less.
  • the dimension in the width direction W of the multilayer ceramic capacitor 1 including the laminate 2 and the external electrodes 20 is defined as the W dimension.
  • the W dimension is preferably 0.125 mm or more and 0.5 mm or less.
  • the lengths of each part of the laminate 2 and the external electrodes 20 can be measured with a micrometer or an optical microscope.
  • the multilayer ceramic capacitor 1 has been described as a two-terminal multilayer ceramic capacitor as an example.
  • the multilayer ceramic capacitor 1 is not limited to being a two-terminal multilayer ceramic capacitor, and may be a multi-terminal multilayer ceramic capacitor having three or more terminals.
  • the multilayer ceramic capacitor 1 of this embodiment includes a Si segregation layer 14 in the L gap 51.
  • the Si segregation layer 14 refers to a Si layer formed on the surface of the internal electrode layer 10 or the like.
  • FIG. 4 is a diagram showing a portion of the LT cross section of the multilayer ceramic capacitor 1 of this embodiment.
  • FIG. 4 corresponds to an enlarged view of the region R1 indicated by the dashed line in FIG. 2.
  • FIG. 4 shows the first L gap 51a and its vicinity.
  • a Si segregation layer 14 is formed on the surface of the internal electrode layer 10 in and near the first L gap 51a.
  • a Si segregation layer 14 is formed on the entire surface of the first lead electrode portion 12a and at least a part of the surface of the first opposing electrode portion 11a. The at least a part of the first opposing electrode portion 11a corresponds to a part of the first opposing electrode portion 11a close to the first L gap 51a.
  • a Si segregation layer 14 is formed on at least a portion of the surface of the second opposing electrode portion 11b.
  • the at least a portion of the second opposing electrode portion 11b corresponds to a portion of the second opposing electrode portion 11b that is close to the first L gap 51a.
  • the portion close to the first L gap 51a refers to the portion, for example, about 50 ⁇ m from the boundary between the first L gap 51a and the L opposing portion 50a in the direction of the L opposing portion 50a.
  • the end of the internal electrode layer 10 is referred to as the electrode end 10e.
  • the end of the internal electrode layer 10 means the end surface parallel to the stacking direction T of the internal electrode layer 10.
  • FIG. 4 shows the electrode end 10e of the second internal electrode layer 10b. In the configuration shown in FIG. 4, a Si segregation layer 14 is formed over the entire electrode end 10e in the direction parallel to the stacking direction T.
  • the Si segregation layer 14 is formed not only on the surface parallel to the length direction L of the internal electrode layer 10, but also on the surface parallel to the stacking direction T at the electrode end 10e. In this way, the Si segregation layer 14 is formed on the surface of the internal electrode layer 10 in the first L gap 51a and its vicinity.
  • Floating island electrode 4
  • a floating island electrode 13 having a floating island shape is formed in the first L gap 51a.
  • a Si segregation layer 14 is also formed on the surface of this floating island electrode 13.
  • the floating island electrode 13 can be formed intentionally when forming the internal electrode layer 10. Alternatively, it may be formed unintentionally when forming the internal electrode layer 10.
  • the Si segregation layer 14 has been described above using the first L gap 51a as an example.
  • the second L gap 51b has a similar configuration. That is, the second lead electrode portion 12b and the first opposing electrode portion 11a in the second L gap 51b also have the same Si segregation layer 14 as the first lead electrode portion 12a and the second opposing electrode portion 11b in the first L gap 51a.
  • Fig. 5 is a diagram showing a part of the WT cross section of the multilayer ceramic capacitor 1 according to the embodiment of the present invention. Note that Fig. 5 is a schematic diagram. Therefore, the number of patterns, etc. may not be consistent with other drawings.
  • the Si segregation layer 14 is also formed at the electrode end 10e in the width direction W. More specifically, the Si segregation layer 14 is also formed at the electrode end 10e in the width direction W over the entire direction parallel to the stacking direction T. The Si segregation layer 14 is also formed on the surface parallel to the width direction W of the internal electrode layer 10. However, the Si segregation layer 14 is not formed to cover the entire surface parallel to the width direction W. The Si segregation layer 14 is formed on a surface parallel to the width direction W a predetermined distance from the electrode end 10e. This predetermined distance is indicated as distance d1 in FIG. 5. Distance d1 can be, for example, 1 ⁇ m or more and 50 ⁇ m or less.
  • (Other configurations of the Si segregation layer) 6 is a diagram showing another configuration of the region R2 in FIG. 5.
  • the configuration shown in FIG. 5 and the configuration shown in FIG. 6 differ in the position where the Si segregation layer 14 is formed on the surface of the internal electrode layer 10.
  • the Si segregation layer 14 is formed over the entire stacking direction T at the electrode end 10e of the internal electrode layer 10.
  • the Si segregation layer 14 is not formed over the entire stacking direction T of the electrode end 10e.
  • the Si segregation layer 14 is formed at both ends of the electrode end 10e in the stacking direction T.
  • the Si segregation layer 14 is not formed in the central portion of the electrode end 10e in the stacking direction T. Therefore, the internal electrode layer 10 is exposed from the central portion of the electrode end 10e in the stacking direction T.
  • the Si segregation layer 14 may be formed over the entire stacking direction T at the electrode end 10e in the width direction W of the internal electrode layer 10, or may be formed over a portion of the stacking direction T.
  • the thickness of the Si segregation layer 14 can be, for example, 0.01 ⁇ m or more and 0.30 ⁇ m or less.
  • the thickness of the Si segregation layer 14 can be obtained by exposing a cross section of the laminate 2, distinguishing between dielectric particles and the Si segregation layer using a scanning electron microscope (SEM), and further performing elemental analysis of the surface using energy dispersive X-ray analysis (EDX).
  • a method for manufacturing the multilayer ceramic capacitor 1 will be described with reference to FIG. (Preparation of laminated blocks)
  • a ceramic green sheet 30, an electrode paste 31 for the internal electrode layer 10, and a step paste 32 for the step layer 5 are prepared.
  • Step layer 5 First, the step layer 5 will be described. It is preferable that the difference in length in the stacking direction T of the laminate 2 is small between the electrode facing portion 50 and the L gap 51. However, in the inner layer portion 53, the length in the stacking direction T tends to differ between the electrode facing portion 50 and the L gap 51.
  • the dielectric layer 4 and the internal electrode layer 10 are stacked in the electrode facing portion 50. In contrast, the dielectric layer 4 and only the internal electrode layer 10 connected to one external electrode 20 among the internal electrode layers 10 are stacked in the L gap 51. Therefore, the length in the stacking direction T tends to differ between the electrode facing portion 50 and the L gap 51.
  • an additional dielectric layer 4 is disposed in the L gap 51.
  • This additional dielectric layer 4 is referred to as the step layer 5. It is preferable that the step layer 5 has the same components as the dielectric layer 4. However, the components of the dielectric layer 4 are not limited to this.
  • the step layer 5 is shown in Figure 4. As shown in Figure 4, the step layer 5 is disposed in the first L gap 51a between two first opposing electrode portions 11a that face each other in the stacking direction T. The step layer 5 compensates for the thickness of the second internal electrode layer 10b, thereby making it possible to reduce the difference in length in the stacking direction T between the first L gap 51a and the L opposing portion 50a.
  • a Si component is blended into the step paste 32. This Si component will later form the Si segregation layer 14. Note that adding a Si component to the step paste 32 is one example of a method for forming the Si segregation layer 14.
  • the above-mentioned electrode paste 31 and step paste 32 are applied to the ceramic green sheet 30 in a desired pattern.
  • the application of each paste to the ceramic green sheet 30 can be performed by a method such as screen printing or gravure printing.
  • the electrode paste 31 and step paste 32 are printed in a predetermined pattern on the ceramic green sheet 30 by any printing method. In this way, the ceramic green sheet 30 for the inner layer portion 53 on which the paste is printed is obtained.
  • a predetermined number of ceramic green sheets 30 on which the pattern of the internal electrode layer 10 is not printed are laminated. This creates a portion corresponding to the outer layer portion 54.
  • ceramic green sheets 30 for the inner layer portion 53 on which paste has been applied are sequentially laminated. This creates a portion corresponding to the inner layer portion 53.
  • a predetermined number of ceramic green sheets 30 for the other outer layer portion 54 are laminated. This creates a laminated sheet. The laminated sheet is pressed in the lamination direction by means of a hydrostatic press or the like to create a laminated block.
  • FIG. 7 is a plan view of the ceramic green sheet 30 on which the electrode paste 31 and the step paste 32 are applied.
  • FIG. 7 is a view of the ceramic green sheet 30 as viewed from the lamination direction T. 701 and 702 in FIG. 7 each indicate one ceramic green sheet 30. By laminating these ceramic green sheets 30, a laminated sheet can be obtained.
  • ten electrode patterns are formed on the ceramic green sheet 30 using the electrode paste 31.
  • the electrode patterns are arranged in two columns in the length direction L and five rows in the width direction W.
  • the step paste 32 is applied between two electrode patterns arranged in the length direction L.
  • An electrode paste 31 and a step paste 32 are applied in the same pattern to two ceramic green sheets 30 indicated by 701 and 702 in FIG.
  • the laminated block is cut to a predetermined size to cut out laminated chips. At this time, corners and edges of the laminated chips may be rounded by barrel polishing or the like.
  • the laminated chip is fired to produce the laminate 2.
  • the firing temperature depends on the materials of the ceramic layers 4 and the internal electrode layers 10, but is preferably 900° C. or higher and 1400° C. or lower.
  • the external electrodes 20 are formed.
  • (Base electrode layer) A conductive paste that will become the base electrode layer 21 is applied to the two end faces 62 of the laminate 2 to form the base electrode layer 21.
  • a conductive paste containing a glass component and a metal is applied by a method such as dipping.
  • a baking process is performed to form the base electrode layer 21.
  • the temperature of the baking process is preferably 500° C. or higher and 900° C. or lower.
  • the time of the baking process is preferably 30 minutes or higher and 2 hours or lower.
  • the atmosphere of the baking process is preferably a reducing atmosphere containing, for example, H 2 O or H 2 .
  • a plating layer 23 is formed on the surface of the base electrode layer 21.
  • a Ni plating layer is formed on the baked layer. This Ni plating layer becomes the inner plating layer 24.
  • a Sn plating layer is formed on the Ni plating layer. This Sn plating layer becomes the surface plating layer 25.
  • the Ni plating layer and the Sn plating layer are formed in sequence, for example, by barrel plating. In this manner, the multilayer ceramic capacitor 1 is obtained.
  • FIG. 8 is a plan view of a ceramic green sheet 30 on which an electrode paste 31 and a step paste 32 are applied.
  • the shapes of the patterns of the electrode paste 31 and the step paste 32 applied to the ceramic green sheet 30 are different between FIG. 7 and FIG. 8.
  • the electrode patterns are arranged in two columns in the length direction L and five rows in the width direction W.
  • the step paste 32 is applied between two electrode patterns arranged in the length direction L.
  • the electrode patterns are arranged in four columns in the length direction L and five rows in the width direction W.
  • the step paste 32 is applied between the first electrode pattern and the second electrode pattern, and between the third electrode pattern and the fourth electrode pattern, in the four electrode patterns arranged in the length direction L.
  • the electrode paste 31 and the step paste 32 can be applied to the ceramic green sheet 30 in a variety of patterns depending on the type of multilayer ceramic capacitor 1 to be manufactured.
  • the ceramic green sheet 30 indicated by 801 in Fig. 8 is the first ceramic green sheet 30a.
  • the ceramic green sheet 30 indicated by 802 in Fig. 8 is the second ceramic green sheet 30b.
  • the first ceramic green sheet 30a and the second ceramic green sheet 30b are stacked with a shift in the same manner as in the configuration shown in Fig. 7. Specifically, they are stacked with a shift of a distance d2 in the longitudinal direction L.
  • FIGS. 9(a) and 9(b) are diagrams showing the LT cross section of the laminated ceramic green sheets 30.
  • FIGS. 9(a) and 9(b) in order to simplify the configuration, only two ceramic green sheets 30 are illustrated as an example. In the following description, the two ceramic green sheets 30 are referred to as a laminate 40.
  • Lines L1 and L2 shown in FIG. 9(a) indicate cutting lines. These lines L1 and L2 correspond to the lines L1 and L2 shown in FIG. 8.
  • FIG. 9(a) shows the laminate 40 before cutting.
  • FIG. 9(b) shows the laminate 40 after cutting along the lines L1 and L2.
  • a central portion 32b in the longitudinal direction L of the pattern of the step paste 32 in the second ceramic green sheet 30b is aligned with an end portion 31a in the longitudinal direction L of the pattern of the electrode paste 31 in the first ceramic green sheet 30a in the longitudinal direction L. That is, the central portion 32b of the pattern of the step paste 32 and the end portion 31a of the pattern of the electrode paste 31 are both located on the line L2.
  • (After disconnection) 9B shows the laminate 40 after cutting.
  • the laminate 40 cut along the lines L1 and L2 has a step layer 5 formed in the L gap 51. This is because the ceramic green sheets 30 are stacked with a shift so that the pattern applied to the first ceramic green sheet 30a and the pattern applied to the second ceramic green sheet 30b have the positional relationship described above.
  • the cut surface generated by cutting along line L1 is defined as a first cut surface 41.
  • the cut surface generated by cutting along line L2 is defined as a second cut surface 42.
  • the first cut surface 41 corresponds to a first end surface 62a of the laminate 2.
  • the second cut surface 42 corresponds to a second end surface 62b of the laminate 2.
  • "corresponding" means a portion of the laminate 2 that corresponds when the laminate 40 is fired to become the laminate 2.
  • the first green sheet 30a corresponding to the inner dielectric layer 4a, the step paste 32 corresponding to the step layer 5, the second green sheet 30b corresponding to the inner dielectric layer 4a, and the electrode paste 31 corresponding to the first internal electrode layer 10a are exposed.
  • the second cut surface 42 of the laminate 40, in the stacking direction T the first green sheet 30a corresponding to the inner dielectric layer 4a, the electrode paste 31 corresponding to the second internal electrode layer 10b, the second green sheet 30b corresponding to the inner dielectric layer 4a, and the step paste 32 corresponding to the step layer 5 are exposed.
  • the portions where the step paste 32 is arranged become the first L gap 51a and the second L gap 51b, respectively.
  • the step paste 32 contains a Si component for forming the Si segregation layer 14.
  • This Si component migrates through the step paste 32 and adheres to the internal electrode layer 10.
  • the Si component is a liquid phase component. Therefore, the Si component can move across the dielectric material and approach the internal electrode layer. Specifically, the Si component adheres to the surface of the extraction electrode portion 12 and at least a part of the end and surface of the counter electrode portion 11. The Si component adhered to each internal electrode layer 10 forms the Si segregation layer 14.
  • the method for forming the Si segregation layer 14 is not limited to the above-mentioned method of blending the Si component into the step paste 32.
  • Another method for forming the Si segregation layer 14 is to apply the Si component to the L gap 51. In this method, the Si component is applied by printing or the like to an application pattern of the electrode paste 31 corresponding to the portion where the Si segregation layer 14 is to be formed.
  • Another method for forming the Si segregation layer 14 is to impregnate the WT end face of the laminated chip before firing, i.e., the face corresponding to the end face 62 of the laminated body 2, with the Si component.
  • the multilayer ceramic capacitor 1 of this embodiment is provided with the Si segregation layer 14 in the L gap 51. This can improve the reliability of the multilayer ceramic capacitor 1. This is because the Si segregation layer 14 has a high IR (insulation resistance).
  • Fig. 10 is a diagram showing the results of the high temperature load reliability test for the comparative example and the example.
  • the method of the high temperature load reliability test is as follows. For each of the comparative example and the examples 1 to 8, 100 samples were prepared. The samples were mounted on a glass epoxy board using eutectic solder. The thickness of the dielectric layer in the sample was set to 0.5 ⁇ m. First, the initial insulation resistance value of each sample was measured. Next, the glass epoxy board was placed in a high temperature chamber, and a voltage of 6.3 V was applied to each sample in an environment of 150° C.
  • the insulation resistance value was measured after 200 hours and after 500 hours.
  • the initial insulation resistance value was compared with the insulation resistance value after aging, and a sample with an insulation resistance value that decreased by one digit or more was determined to be defective. As shown in FIG. 10, no defects occurred in the sample having the Si segregation layer after 200 hours. Furthermore, the number of defects was suppressed to 5 or less even after 500 hours.
  • FIG. 11 is a diagram showing the evaluation results of the dielectric constant and the mean time to failure for the comparative example and the example.
  • the thickness of the dielectric layer in the sample was set to four types ranging from 0.3 ⁇ m to 0.6 ⁇ m. By varying the thickness of the dielectric layer, samples with different element thicknesses were produced. In addition, the thickness of the Si segregation layer was set to 0.07 ⁇ m and 0.08 ⁇ m.
  • Si has a low dielectric constant. Therefore, a decrease in dielectric constant was observed in samples with a Si segregation layer. Also, an improvement in MTTF (Mean Time To Failure) was observed in samples with a Si segregation layer.
  • the dielectric layer includes a plurality of dielectric layers and a plurality of internal electrode layers that are stacked together, a laminate including a first main surface and a second main surface opposed to each other in a stacking direction, a first side surface and a second side surface opposed to each other in a width direction perpendicular to the stacking direction, and a first end surface and a second end surface opposed to each other in a length direction perpendicular to the stacking direction and the width direction; external electrodes provided on the first end surface and the second end surface; Equipped with the internal electrode layer includes a first internal electrode layer and a second internal electrode layer, the first internal electrode layer is extended to the first end face, the second internal electrode layer is extended to the second end face, the external electrodes include a first external electrode connected to the first internal electrode layer and a second external electrode connected to the second internal electrode layer; an L-gap region is an area disposed on the first end face side, in which the first internal electrode layers do not overlap with each other in the stacking direction,
  • the thickness of the Si segregation layer is 0.03 ⁇ m or more and 0.15 ⁇ m or less.
  • the Si segregation layer is present at an end portion in the width direction of the first internal electrode layer and an end portion in the width direction of the second internal electrode;
  • the thickness of the dielectric layer is 0.4 ⁇ m or more and 0.5 ⁇ m or less.

Abstract

The present invention provides a multilayer ceramic capacitor (1) in which the occurrence of dielectric breakdown is further suppressed. The multilayer ceramic capacitor (1) comprises: a laminate (2) including a plurality of dielectric layers (4) and a plurality of internal electrode layers (10) stacked on one another; and external electrodes (20) provided on a first end surface (62a) and a second end surface (62b). The internal electrode layers (10) comprise first internal electrode layers (10a) and second internal electrode layers (10b), the first internal electrode layers (10a) being led to the first end surface (62a), and the second internal electrode layers (10b) being led to the second end surface (62b). The external electrodes (20) include a first external electrode (20a) connected to the first internal electrode layers (10a) and a second external electrode (20b) connected to the second internal electrode layers (10b). A region that is disposed on the first end surface (62a) side and in which the first internal electrode layers (10a) do not overlap each other in the stacking direction (T), and a region that is disposed on the second end surface (62b) side and in which the second internal electrode layers (10b) do not overlap each other in the stacking direction (T) are defined as L gap regions (51). The L gap regions (51) comprise Si segregation layers (14).

Description

積層セラミックコンデンサMultilayer Ceramic Capacitors
 本発明は、積層セラミックコンデンサに関する。 The present invention relates to a multilayer ceramic capacitor.
 積層セラミックコンデンサが小型化し、かつ大容量化すると、積層セラミックコンデンサに絶縁破壊が生じ易くなる。特許文献1には、この絶縁破壊を抑制することを目的として、誘電体層の内部電極のエッジ部近傍の領域の少なくとも一部を他の領域よりも耐電圧の高い誘電体磁器で形成する技術が記載されている。 As multilayer ceramic capacitors become smaller and their capacitance increases, they become more susceptible to dielectric breakdown. Patent Document 1 describes a technology for preventing this dielectric breakdown by forming at least a portion of the area near the edge of the internal electrode of the dielectric layer from a dielectric ceramic that has a higher withstand voltage than other areas.
特開平11-317321号公報Japanese Patent Application Laid-Open No. 11-317321
 さらなる小型大容量化を目的に、積層セラミックコンデンサの誘電体層の厚みは、さらに薄くなってきている。誘電体層の厚みが薄くなることで、絶縁抵抗値が低下する。特に積層体の端面側で同じ外部電極に接続する内部電極同士が重なる領域では、構造的に内部電極が湾曲しやすい。そのため、誘電体層の厚みが局所的に低下し、絶縁破壊がより生じやすくなっている。そこで、本発明は、絶縁破壊の発生がより抑制された積層セラミックコンデンサを提供することを課題とする。 In order to further miniaturize and increase capacitance, the thickness of the dielectric layers in multilayer ceramic capacitors is becoming thinner. As the thickness of the dielectric layers becomes thinner, the insulation resistance value decreases. In particular, in the region where internal electrodes connected to the same external electrode overlap on the end face side of the laminate, the internal electrodes are structurally prone to bending. This causes the thickness of the dielectric layers to decrease locally, making insulation breakdown more likely to occur. Therefore, the objective of the present invention is to provide a multilayer ceramic capacitor in which the occurrence of insulation breakdown is further suppressed.
 本発明の積層セラミックコンデンサは、積層された複数の誘電体層と複数の内部電極層とを含み、積層方向に相対する第1の主面及び第2の主面と、積層方向に直交する幅方向に相対する第1の側面及び第2の側面と、積層方向及び幅方向に直交する長さ方向に相対する第1の端面及び第2の端面とを備える積層体と、前記第1の端面及び第2の端面に設けられた外部電極と、を備え、前記内部電極層は第1の内部電極層と第2の内部電極層とを備え、前記第1の内部電極層は、前記第1の端面へ引き出され、前記第2の内部電極層は、前記第2の端面へ引き出され、前記外部電極は、前記第1の内部電極層に接続された第1の外部電極、及び、前記第2の内部電極層に接続された第2の外部電極を含み、前記第1の端面側に配置され、前記第1の内部電極層同士が前記積層方向において重なり合わない領域、及び、前記第2の端面側に配置され、前記第2の内部電極層同士が前記積層方向において重なり合わない領域をLギャップ領域とし、前記Lギャップ領域は、Si偏析層を備える。 The multilayer ceramic capacitor of the present invention comprises a laminate including a plurality of laminated dielectric layers and a plurality of internal electrode layers, the laminate including a first main surface and a second main surface facing each other in the lamination direction, a first side surface and a second side surface facing each other in a width direction perpendicular to the lamination direction, and a first end surface and a second end surface facing each other in a length direction perpendicular to the lamination direction and the width direction, and an external electrode provided on the first end surface and the second end surface, the internal electrode layer includes a first internal electrode layer and a second internal electrode layer, the first internal electrode layer is drawn out to the first end surface, the second internal electrode layer is drawn out to the second end surface, the external electrode includes a first external electrode connected to the first internal electrode layer and a second external electrode connected to the second internal electrode layer, and the first end surface side is a region where the first internal electrode layers do not overlap with each other in the lamination direction, and the second end surface side is a region where the second internal electrode layers do not overlap with each other in the lamination direction, and the L gap region includes a Si segregation layer.
 本発明によれば、絶縁破壊の発生がより抑制された積層セラミックコンデンサを提供することができる。 The present invention provides a multilayer ceramic capacitor in which the occurrence of dielectric breakdown is further suppressed.
本実施形態の積層セラミックコンデンサの斜視図である。1 is a perspective view of a multilayer ceramic capacitor according to an embodiment of the present invention; 図1のI-I線断面図である。2 is a cross-sectional view taken along line II in FIG. 1. 図1のII-II線断面図である。2 is a cross-sectional view taken along line II-II of FIG. 1. 本実施形態の積層セラミックコンデンサのLT断面の一部を示す図である。2 is a diagram showing a portion of an LT cross section of the multilayer ceramic capacitor of the present embodiment. FIG. 本実施形態の積層セラミックコンデンサのWT断面の一部を示す図である。2 is a diagram showing a portion of a WT cross section of the multilayer ceramic capacitor of the present embodiment. FIG. 本実施形態の積層セラミックコンデンサの他の構成のWT断面の一部を示す図である。11 is a diagram showing a portion of a WT cross section of another configuration of the multilayer ceramic capacitor according to the present embodiment. FIG. 本実施形態におけるセラミックグリーンシートの平面図である。FIG. 2 is a plan view of a ceramic green sheet according to the embodiment. 本実施形態における他の構成のセラミックグリーンシートの平面図である。FIG. 11 is a plan view of a ceramic green sheet having another configuration in the present embodiment. (a)及び(b)は、積層されたセラミックグリーンシートのLT断面を示す図である。4A and 4B are diagrams showing LT cross sections of laminated ceramic green sheets. 高温負荷信頼性試験の結果を示す図である。FIG. 13 is a diagram showing the results of a high-temperature load reliability test. 誘電率及び平均故障時間の結果を示す図である。FIG. 13 shows the results of dielectric constant and mean time to failure.
 以下、添付の図面を参照しながら本発明の積層セラミックコンデンサ1の実施形態の一例について説明する。 Below, an example of an embodiment of the multilayer ceramic capacitor 1 of the present invention will be described with reference to the attached drawings.
(積層セラミックコンデンサの外形)
 図1に基づいて、積層セラミックコンデンサ1の外観の概要を説明する。図1は、本実施形態の積層セラミックコンデンサ1を示す斜視図である。積層セラミックコンデンサ1は、積層体2及び外部電極20を備える。
(External view of multilayer ceramic capacitor)
The outline of the appearance of the multilayer ceramic capacitor 1 will be described with reference to Fig. 1. Fig. 1 is a perspective view showing the multilayer ceramic capacitor 1 of the present embodiment. The multilayer ceramic capacitor 1 includes a laminate 2 and external electrodes 20.
(方向の定義)
 図面には、適宜、L方向、W方向及びT方向が示されている。L方向は、積層セラミックコンデンサ1の長さ方向Lである。W方向は、積層セラミックコンデンサ1の幅方向Wである。T方向は、積層セラミックコンデンサ1の積層方向Tである。これにより、図2に示す断面はLT断面といわれ、図3に示す断面はWT断面といわれる。長さ方向L、幅方向W及び積層方向Tは、必ずしも互いに直交する関係でなくてもよい。長さ方向L、幅方向W及び積層方向Tは、互いに交差する関係であってもよい。
(Direction definition)
In the drawings, an L direction, a W direction, and a T direction are appropriately shown. The L direction is the length direction L of the multilayer ceramic capacitor 1. The W direction is the width direction W of the multilayer ceramic capacitor 1. The T direction is the stacking direction T of the multilayer ceramic capacitor 1. As a result, the cross section shown in FIG. 2 is called an LT cross section, and the cross section shown in FIG. 3 is called a WT cross section. The length direction L, the width direction W, and the stacking direction T do not necessarily have to be perpendicular to each other. The length direction L, the width direction W, and the stacking direction T may intersect each other.
(積層体の外形)
 積層体2は、略直方体型の形状を有する。積層体2は、2つの主面61、2つの端面62及び2つの側面63を有する。主面61は、積層方向Tに対向する面である。端面62は、長さ方向Lに対向する面である。側面63は、幅方向Wに対向する面である。2つの主面61のうちの一方を第1の主面61aとし、他方を第2の主面61bとする。2つの端面62のうちの一方を第1の端面62aとし、他方を第2の端面62bとする。2つの側面63のうち一方を第1の側面63aとし、他方を第2の側面63bとする。図1には第2の主面61b及び第1の側面63aが示されている。
(Outer shape of laminate)
The laminate 2 has a substantially rectangular parallelepiped shape. The laminate 2 has two main surfaces 61, two end surfaces 62, and two side surfaces 63. The main surface 61 is a surface facing the stacking direction T. The end surface 62 is a surface facing the length direction L. The side surface 63 is a surface facing the width direction W. One of the two main surfaces 61 is a first main surface 61a, and the other is a second main surface 61b. One of the two end surfaces 62 is a first end surface 62a, and the other is a second end surface 62b. One of the two side surfaces 63 is a first side surface 63a, and the other is a second side surface 63b. The second main surface 61b and the first side surface 63a are shown in FIG. 1.
 積層体2の稜線及び角部には、丸みがつけられていることが好ましい。稜線とは、積層体2の2面が交わる部分である。角部とは、積層体2の3面が交る部分である。なお、積層体2の大きさは特には限定されない。 The ridges and corners of the laminate 2 are preferably rounded. A ridge is a portion where two surfaces of the laminate 2 intersect. A corner is a portion where three surfaces of the laminate 2 intersect. The size of the laminate 2 is not particularly limited.
(積層体の構造)
 積層体2は、複数の誘電体層4及び複数の内部電極層10を含む。以下、積層体2の断面図を参照しながら、積層体2の構造を説明する。
(Structure of Laminate)
The laminate 2 includes a plurality of dielectric layers 4 and a plurality of internal electrode layers 10. The structure of the laminate 2 will be described below with reference to a cross-sectional view of the laminate 2.
(積層体の内部構造(LT断面))
 図2に基づいて、積層体2の内部構造について説明する。図2は、図1に示す積層セラミックコンデンサ1のI-I線断面図である。図2は、積層セラミックコンデンサ1のLT断面を示す。積層体2は、複数の誘電体層4及び複数の内部電極層10を含む。複数の誘電体層4及び複数の内部電極層10は、互いに積層方向Tに積層されている。
(Internal structure of laminate (LT cross section))
The internal structure of the laminate 2 will be described with reference to Fig. 2. Fig. 2 is a cross-sectional view of the laminated ceramic capacitor 1 shown in Fig. 1 taken along line II. Fig. 2 shows an LT cross-section of the laminated ceramic capacitor 1. The laminate 2 includes a plurality of dielectric layers 4 and a plurality of internal electrode layers 10. The plurality of dielectric layers 4 and the plurality of internal electrode layers 10 are stacked on top of each other in a stacking direction T.
(内層部と外層部)
 積層体2は、積層方向Tにおいて、内層部53及び2つの外層部54に区分される。外層部54は、第1の外層部54a及び第2の外層部54bを含む。第1の外層部54a及び第2の外層部54bは、内層部53を積層方向Tにおいて挟む位置に位置している。
(Inner and outer layers)
The laminate 2 is divided into an inner layer portion 53 and two outer layer portions 54 in the stacking direction T. The outer layer portion 54 includes a first outer layer portion 54a and a second outer layer portion 54b. The first outer layer portion 54a and the second outer layer portion 54b are located at positions sandwiching the inner layer portion 53 in the stacking direction T.
 内層部53には、複数の誘電体層4及び複数の内部電極層10が配置されている。内層部53では、複数の内部電極層10が誘電体層4を介して対向している。そのため、内層部53には、静電容量が形成される。そのため、内層部53は、積層体2のなかで実質的にコンデンサとして機能する部分である。これより、内層部53は、有効部ともいわれる。 In the inner layer portion 53, a plurality of dielectric layers 4 and a plurality of internal electrode layers 10 are arranged. In the inner layer portion 53, the plurality of internal electrode layers 10 face each other via the dielectric layer 4. Therefore, a capacitance is formed in the inner layer portion 53. Therefore, the inner layer portion 53 is the portion of the laminate 2 that essentially functions as a capacitor. For this reason, the inner layer portion 53 is also called the effective portion.
 第1の外層部54aは、外層部54のうちで、積層体2の第1の主面61aの側に位置する部分である。第2の外層部54bは、外層部54のうちで、積層体2の第2の主面61bの側に位置する部分である。具体的には、第1の外層部54aは、複数の内部電極層10のうち第1の主面61aに最も近い内部電極層10と第1の主面61aとの間の部分である。第2の外層部54bは、複数の内部電極層10のうち第2の主面61bに最も近い内部電極層10と第2の主面61bとの間の部分である。第1の外層部54a及び第2の外層部54bには、内部電極層10は配置されていない。第1の外層部54a及び第2の外層部54bには、複数の誘電体層4のうち、内層部53のための誘電体層4を除く残りの誘電体層4が配置されている。第1の外層部54a及び第2の外層部54bは、内層部53の保護層として機能する。 The first outer layer portion 54a is a portion of the outer layer portion 54 located on the side of the first main surface 61a of the laminate 2. The second outer layer portion 54b is a portion of the outer layer portion 54 located on the side of the second main surface 61b of the laminate 2. Specifically, the first outer layer portion 54a is a portion between the internal electrode layer 10 closest to the first main surface 61a among the multiple internal electrode layers 10 and the first main surface 61a. The second outer layer portion 54b is a portion between the internal electrode layer 10 closest to the second main surface 61b among the multiple internal electrode layers 10 and the second main surface 61b. No internal electrode layer 10 is arranged in the first outer layer portion 54a and the second outer layer portion 54b. The remaining dielectric layers 4 of the multiple dielectric layers 4, excluding the dielectric layer 4 for the internal layer portion 53, are arranged in the first outer layer portion 54a and the second outer layer portion 54b. The first outer layer 54a and the second outer layer 54b function as protective layers for the inner layer 53.
(誘電体層)
 誘電体層4は、内層部53に配置された誘電体層4と、外層部54に配置された誘電体層4とに分類することができる。内層部53に配置された誘電体層4を、内層誘電体層4aとする。外層部54に配置された誘電体層4を、外層誘電体層4bとする。
(Dielectric Layer)
The dielectric layers 4 can be classified into a dielectric layer 4 arranged in the inner layer portion 53 and a dielectric layer 4 arranged in the outer layer portion 54. The dielectric layer 4 arranged in the inner layer portion 53 is referred to as an inner dielectric layer 4a. The dielectric layer 4 arranged in the outer layer portion 54 is referred to as an outer dielectric layer 4b.
(誘電体層の層数)
 積層体2に積層される誘電体層4は、例えば、5層以上2000層以下とすることができる。
(Number of dielectric layers)
The number of dielectric layers 4 stacked on the laminate 2 may be, for example, 5 to 2000.
(誘電体層の材料)
 誘電体層4の材料としては、例えば、BaTiO、CaTiO、SrTiO、CaZrOなどの主成分からなる誘電体セラミックを用いることができる。また、これらの主成分にMn化合物、Fe化合物、Cr化合物、Co化合物、Ni化合物などの副成分を添加したものを用いてもよい。
(Dielectric Layer Material)
The material of the dielectric layer 4 may be, for example, a dielectric ceramic composed of a main component such as BaTiO3 , CaTiO3 , SrTiO3 , or CaZrO3 . In addition, a material in which a subcomponent such as a Mn compound, an Fe compound, a Cr compound, a Co compound, or a Ni compound is added to these main components may also be used.
(誘電体層の厚み)
 誘電体層4の厚みは、例えば、0.3μm以上0.6μm以下とすることができる。
(Thickness of dielectric layer)
The thickness of the dielectric layer 4 can be, for example, not less than 0.3 μm and not more than 0.6 μm.
(内部電極層)
 内部電極層10は、第1の内部電極層10a及び第2の内部電極層10bに分類することができる。第1の内部電極層10aは、第1の外部電極20aに接続された内部電極層10である。第2の内部電極層10bは、第2の外部電極20bに接続された内部電極層10である。第1の内部電極層10aは、第1の端面62aから、第2の端面62bに向かって延在する。第2の内部電極層10bは、第2の端面62bから、第1の端面62aに向かって延在する。
(internal electrode layer)
The internal electrode layers 10 can be classified into a first internal electrode layer 10a and a second internal electrode layer 10b. The first internal electrode layer 10a is an internal electrode layer 10 connected to a first external electrode 20a. The second internal electrode layer 10b is an internal electrode layer 10 connected to a second external electrode 20b. The first internal electrode layer 10a extends from a first end face 62a toward a second end face 62b. The second internal electrode layer 10b extends from the second end face 62b toward the first end face 62a.
(対向部と引き出し部)
 第1の内部電極層10a及び第2の内部電極層10bは、それぞれ、対向電極部11及び引き出し電極部12を有する。
 対向電極部11は、内部電極層10において、第1の内部電極層10aと第2の内部電極層10bとが積層方向Tにおいて対向する部分である。引き出し電極部12は、内部電極層10において、対向電極部11から、積層体2の第1の端面62a又は第2の端面62bまで引き出された部分である。
(Facing part and pull-out part)
The first internal electrode layer 10 a and the second internal electrode layer 10 b each have a counter electrode portion 11 and an extraction electrode portion 12 .
The opposing electrode portion 11 is a portion of the internal electrode layer 10 where the first internal electrode layer 10a and the second internal electrode layer 10b face each other in the stacking direction T. The extraction electrode portion 12 is a portion of the internal electrode layer 10 that is extracted from the opposing electrode portion 11 to the first end face 62a or the second end face 62b of the laminate 2.
 第1の内部電極層10aの対向電極部11を第1の対向電極部11aとする。第1の内部電極層10aの引き出し電極部12を第1の引き出し電極部12aとする。第1の引き出し電極部12aは、第1の対向電極部11aから、積層体2の第1の端面62aまで引き出された部分である。 The opposing electrode portion 11 of the first internal electrode layer 10a is referred to as the first opposing electrode portion 11a. The extraction electrode portion 12 of the first internal electrode layer 10a is referred to as the first extraction electrode portion 12a. The first extraction electrode portion 12a is a portion that is extracted from the first opposing electrode portion 11a to the first end surface 62a of the laminate 2.
 同様に、第2の内部電極層10bの対向電極部11を第2の対向電極部11bとする。第2の内部電極層10bの引き出し電極部12を第2の引き出し電極部12bとする。第2の引き出し電極部12bは、第2の対向電極部11bから、積層体2の第2の端面62bまで引き出された部分である。 Similarly, the opposing electrode portion 11 of the second internal electrode layer 10b is referred to as the second opposing electrode portion 11b. The extraction electrode portion 12 of the second internal electrode layer 10b is referred to as the second extraction electrode portion 12b. The second extraction electrode portion 12b is a portion that is extracted from the second opposing electrode portion 11b to the second end surface 62b of the laminate 2.
(内部電極層の層数)
 内部電極層10は、例えば、10層以上2000層以下とすることができる。この内部電極層10の層数は、第1の内部電極層10aの層数及び第2の内部電極層10bの層数を含む層数である。
(Number of internal electrode layers)
The number of the internal electrode layers 10 may be, for example, from 10 to 2000. The number of the internal electrode layers 10 includes the number of the first internal electrode layers 10a and the number of the second internal electrode layers 10b.
(内部電極層の厚み)
 内部電極層10の厚みは、例えば、0.1μm以上5.0μm以下、好ましくは、0.2μm以上2.0μm以下とすることができる。内部電極層10の厚みが0.5μm以上である場合には、外部電極20の金属層をめっきにより形成する際に、めっき膜が成長しやすくなる。
(Thickness of internal electrode layer)
The thickness of the internal electrode layer 10 can be, for example, 0.1 μm to 5.0 μm, preferably 0.2 μm to 2.0 μm. When the thickness of the internal electrode layer 10 is 0.5 μm or more, a plating film is likely to grow when the metal layer of the external electrode 20 is formed by plating.
(内部電極層の材料)
 内部電極層10の材料は、例えば、Ni、Cu、Ag、Pd、及びAuなどの金属や、NiとCuとの合金やAgとPdとの合金などとすることができる。内部電極層10の材料は、それに加えて、誘電体層4に含まれるセラミックと同一組成系の誘電体粒子を含んでいてもよい。
(Material of the internal electrode layer)
The material of the internal electrode layer 10 can be, for example, a metal such as Ni, Cu, Ag, Pd, or Au, an alloy of Ni and Cu, an alloy of Ag and Pd, etc. In addition, the material of the internal electrode layer 10 may contain dielectric particles having the same composition as the ceramic contained in the dielectric layer 4.
(電極対向部)
 積層体2の長さ方向Lの区分について説明する。積層体2は、長さ方向Lにおいて、電極対向部50及びLギャップ(Lギャップ領域)51に区分することができる。長さ方向Lの区分における電極対向部50を、L対向部50aとする。また、Lギャップ51は、第1のLギャップ51a及び第2のLギャップ51bを含む。
(Electrode opposing portion)
The division of the laminate 2 in the longitudinal direction L will be described. The laminate 2 can be divided into an electrode opposing portion 50 and an L gap (L gap region) 51 in the longitudinal direction L. The electrode opposing portion 50 in the division in the longitudinal direction L is referred to as an L opposing portion 50a. The L gap 51 includes a first L gap 51a and a second L gap 51b.
 L対向部50aは、第1の内部電極層10aと第2の内部電極層10bとが積層方向Tにおいて対向する部分に対応する。L対向部50aには容量が形成される。これより、L対向部50aは、有効部ともいわれる。 The L-opposing portion 50a corresponds to the portion where the first internal electrode layer 10a and the second internal electrode layer 10b oppose each other in the stacking direction T. A capacitance is formed in the L-opposing portion 50a. For this reason, the L-opposing portion 50a is also called the effective portion.
(Lギャップ)
 Lギャップ51は、積層体2の長さ方向Lにおいて、第1の内部電極層10aと第2の内部電極層10bとが積層方向Tに対向しない部分である。Lギャップ51のうち、第1のLギャップ51aは、L対向部50aと第1の端面62aとの間である。第2のLギャップ51bは、L対向部50aと第2の端面62bとの間である。
(L Gap)
The L gap 51 is a portion in the longitudinal direction L of the laminate 2 where the first internal electrode layer 10a and the second internal electrode layer 10b do not face each other in the stacking direction T. Of the L gaps 51, the first L gap 51a is between the L opposing portion 50a and the first end face 62a. The second L gap 51b is between the L opposing portion 50a and the second end face 62b.
 第1のLギャップ51aでは、積層方向Tにおいて、第1の内部電極層10aは配置されているが、第2の内部電極層10bは配置されていない。第2のLギャップ51bでは、積層方向Tにおいて、第2の内部電極層10bは配置されているが、第1の内部電極層10aは配置されていない。 In the first L gap 51a, the first internal electrode layer 10a is arranged in the stacking direction T, but the second internal electrode layer 10b is not arranged. In the second L gap 51b, the second internal electrode layer 10b is arranged in the stacking direction T, but the first internal electrode layer 10a is not arranged.
 第1のLギャップ51aは、第1の対向電極部11aの第1の端面62aへの引出部として機能する。第2のLギャップ51bは、第2の対向電極部11bの第2の端面62bへの引出部として機能する。 The first L gap 51a functions as an extension to the first end surface 62a of the first opposing electrode portion 11a. The second L gap 51b functions as an extension to the second end surface 62b of the second opposing electrode portion 11b.
 Lギャップ51の長さ方向Lの長さは、例えば、積層体2の長さ方向Lの長さの10%以上30%以下とすることができる。また、Lギャップ51の長さ方向Lの長さは、例えば、5μm以上30μm以下とすることができる。 The length of the L gap 51 in the longitudinal direction L can be, for example, 10% to 30% of the length of the laminate 2 in the longitudinal direction L. The length of the L gap 51 in the longitudinal direction L can be, for example, 5 μm to 30 μm.
(外部電極)
 外部電極20は、第1の外部電極20a及び第2の外部電極20bを含む。
(第1の外部電極)
 第1の外部電極20aは、積層体2の第1の端面62aに配置された外部電極20である。第1の外部電極20aは、第1の内部電極層10aと電気的に接続されている。
(第2の外部電極)
 第2の外部電極20bは、積層体2の第2の端面62bに配置された外部電極20である。第2の外部電極20bは、第2の内部電極層10bと電気的に接続されている。
(External electrode)
The external electrodes 20 include a first external electrode 20a and a second external electrode 20b.
(First External Electrode)
The first external electrode 20a is an external electrode 20 disposed on the first end surface 62a of the laminate 2. The first external electrode 20a is electrically connected to the first internal electrode layer 10a.
(Second External Electrode)
The second external electrode 20b is an external electrode 20 disposed on the second end surface 62b of the laminate 2. The second external electrode 20b is electrically connected to the second internal electrode layer 10b.
(各面の外部電極)
 外部電極20は、一方の端面62から、2つの主面61の一部まで及び2つの側面63の一部まで延在する。
(External electrodes on each side)
The external electrode 20 extends from one end face 62 to parts of the two main faces 61 and to parts of the two side faces 63 .
(外部電極の層構成)
 外部電極20の層構成を、図2に基づいてについて説明する。外部電極20は、下地電極層21及びめっき層23を含む。めっき層23は、内めっき層24及び表めっき層25を含む。これらの層は、積層体2の端面62から、下地電極層21、内めっき層24、表めっき層25の順に配置されている。詳しくは、第1の外部電極20aは、第1の下地電極層21a及び第1のめっき層23aを含む。さらに第1のめっき層23aは、第1の内めっき層24a及び第1の表めっき層25aを含む。同様に、第2の外部電極20bは、第2の下地電極層21b及び第2のめっき層23bを含む。さらに第2のめっき層23bは、第2の内めっき層24b及び第2の表めっき層25bを含む。
(Layer configuration of external electrodes)
The layer structure of the external electrode 20 will be described with reference to FIG. 2. The external electrode 20 includes a base electrode layer 21 and a plating layer 23. The plating layer 23 includes an inner plating layer 24 and a surface plating layer 25. These layers are arranged in the order of the base electrode layer 21, the inner plating layer 24, and the surface plating layer 25 from the end surface 62 of the laminate 2. In detail, the first external electrode 20a includes a first base electrode layer 21a and a first plating layer 23a. The first plating layer 23a further includes a first inner plating layer 24a and a first surface plating layer 25a. Similarly, the second external electrode 20b includes a second base electrode layer 21b and a second plating layer 23b. The second plating layer 23b further includes a second inner plating layer 24b and a second surface plating layer 25b.
(下地電極層)
 第1の下地電極層21aは、積層体2の第1の端面62aの上に配置されており、第1の端面62aを覆う。第1の下地電極層21aは、第1の端面62aから、第1の主面61aの一部、第2の主面61bの一部、第1の側面63aの一部及び第2の側面63bの一部にまで延在している。
(Base electrode layer)
The first base electrode layer 21a is disposed on and covers the first end face 62a of the laminate 2. The first base electrode layer 21a extends from the first end face 62a to a part of the first main surface 61a, a part of the second main surface 61b, a part of the first side surface 63a, and a part of the second side surface 63b.
 同様に、第2の下地電極層21bは、積層体2の第2の端面62bの上に配置されており、第2の端面62bを覆う。第2の下地電極層21bは、第2の端面62bから、第1の主面61aの一部、第2の主面61bの一部、第1の側面63aの一部及び第2の側面63bの一部にまで延在している。 Similarly, the second base electrode layer 21b is disposed on the second end face 62b of the laminate 2 and covers the second end face 62b. The second base electrode layer 21b extends from the second end face 62b to a portion of the first main surface 61a, a portion of the second main surface 61b, a portion of the first side surface 63a, and a portion of the second side surface 63b.
(焼き付け層)
 第1の下地電極層21a及び第2の下地電極層21bは、焼き付け層として構成されている。焼き付け層は、ガラス成分及び金属を含む。ガラス成分としては、B、Si、Ba、Mg、Al、Liなどから選ばれる少なくとも1つを含む。金属としては、例えば、Cu、Ni、Ag、Pd、Ag-Pd合金、Auなどから選ばれる少なくとも1つを含む。焼き付け層は、複数層であってもよい。
(Baked layer)
The first base electrode layer 21a and the second base electrode layer 21b are configured as a baking layer. The baking layer includes a glass component and a metal. The glass component includes at least one selected from B, Si, Ba, Mg, Al, Li, etc. The metal includes at least one selected from Cu, Ni, Ag, Pd, Ag-Pd alloy, Au, etc. The baking layer may be a multi-layered layer.
(めっき層)
 下地電極層21の上のめっき層23について説明する。前述のように、本実施形態では、めっき層23は、内めっき層24及び表めっき層25を含む。めっき層23を二層にする場合には、下層から、Niめっき層及びSnめっき層の順とすることが好ましい。すなわち、内めっき層24がNiめっき層になり、表めっき層25がSnめっき層になる。
(Plating layer)
The plating layer 23 on the base electrode layer 21 will be described. As described above, in this embodiment, the plating layer 23 includes the inner plating layer 24 and the surface plating layer 25. When the plating layer 23 is made of two layers, it is preferable that the plating layers are a Ni plating layer and a Sn plating layer from the bottom. That is, the inner plating layer 24 is a Ni plating layer, and the surface plating layer 25 is a Sn plating layer.
 Niめっき層は、下地電極層21が積層セラミックコンデンサ1を実装する際のはんだによって侵食されることを防止することができる。Snめっき層は、積層セラミックコンデンサ1を実装する際のはんだの濡れ性を向上させ、実装を容易にすることができる。そのため、表めっき層25をSnめっき層とすることで、外部電極20に対するはんだの濡れ性を向上させることができる。めっき層一層あたりの厚みは、3μm以上9μm以下であることが好ましい。 The Ni plating layer can prevent the base electrode layer 21 from being eroded by solder when mounting the multilayer ceramic capacitor 1. The Sn plating layer can improve the wettability of the solder when mounting the multilayer ceramic capacitor 1, making mounting easier. Therefore, by making the top plating layer 25 a Sn plating layer, the wettability of the solder to the external electrode 20 can be improved. The thickness of each plating layer is preferably 3 μm or more and 9 μm or less.
(積層体の内部構造(WT断面))
 図3に基づいて、積層体2の内部構造を説明する。図3は、図1に示す積層セラミックコンデンサ1のII-II線断面図である。積層体2は、幅方向Wにおいて、電極対向部50及びWギャップ52に区分される。幅方向Wの区分における電極対向部50を、W対向部50bとする。また、Wギャップ52は、第1のWギャップ52a及び第2のWギャップ52bを含む。
(Internal structure of laminate (WT cross section))
The internal structure of the laminate 2 will be described with reference to Fig. 3. Fig. 3 is a cross-sectional view of the laminate ceramic capacitor 1 shown in Fig. 1 taken along line II-II. The laminate 2 is divided into an electrode opposing portion 50 and a W gap 52 in the width direction W. The electrode opposing portion 50 in the section in the width direction W is referred to as a W opposing portion 50b. The W gap 52 includes a first W gap 52a and a second W gap 52b.
 W対向部50bは、内部電極層10が積層方向Tにおいて対向する部分である。Wギャップ52は、幅方向Wにおいて、前記第1の内部電極層10a及び前記第2の内部電極層10bのいずれもが積層方向Tに配置されていない部分である。 The W opposing portion 50b is a portion where the internal electrode layers 10 face each other in the stacking direction T. The W gap 52 is a portion in the width direction W where neither the first internal electrode layer 10a nor the second internal electrode layer 10b is arranged in the stacking direction T.
 Wギャップ52のうち、第1のWギャップ52aは、積層体2の幅方向Wおける、W対向部50bと第1の側面63aとの間である。第2のWギャップ52bは、W対向部50bと第2の側面63bとの間である。 Of the W gaps 52, the first W gap 52a is between the W opposing portion 50b and the first side surface 63a in the width direction W of the laminate 2. The second W gap 52b is between the W opposing portion 50b and the second side surface 63b.
 第1のWギャップ52a及び第2のWギャップ52bは、W対向部50bを挟み込むように配置されている。第1のWギャップ52a及び第2のWギャップ52bは、内部電極層10の保護層として機能する。 The first W gap 52a and the second W gap 52b are arranged to sandwich the W opposing portion 50b. The first W gap 52a and the second W gap 52b function as protective layers for the internal electrode layer 10.
 Wギャップ52の幅方向Wの長さは、例えば、積層体2の幅方向Wの長さの20%以上30%以下とすることができる。また、Wギャップ52の幅方向Wの長さは、例えば、5μm以上50μm以下とすることができる。 The length of the width direction W of the W gap 52 can be, for example, 20% to 30% of the length of the width direction W of the laminate 2. In addition, the length of the width direction W of the W gap 52 can be, for example, 5 μm to 50 μm.
(積層セラミックコンデンサの大きさ)
 積層セラミックコンデンサ1の大きさ特には限定されない。積層セラミックコンデンサ1の大きさは、例えば下記のようにすることができる。積層体2及び外部電極20を含む積層セラミックコンデンサ1の長さ方向Lの寸法をL寸法とする。L寸法は、0.25mm以上1.0mm以下であることが好ましい。積層体2及び外部電極20を含む積層セラミックコンデンサ1の積層方向Tの寸法をT寸法とする。T寸法は、0.125mm以上0.5mm以下であることが好ましい。積層体2及び外部電極20を含む積層セラミックコンデンサ1の幅方向Wの寸法をW寸法とする。W寸法は、0.125mm以上0.5mm以下であることが好ましい。なお、積層体2及び外部電極20の各部の長さは、マイクロメータ又は光学顕微鏡で測定することができる。
(Size of multilayer ceramic capacitor)
The size of the multilayer ceramic capacitor 1 is not particularly limited. The size of the multilayer ceramic capacitor 1 can be, for example, as follows. The dimension in the length direction L of the multilayer ceramic capacitor 1 including the laminate 2 and the external electrodes 20 is defined as the L dimension. The L dimension is preferably 0.25 mm or more and 1.0 mm or less. The dimension in the stacking direction T of the multilayer ceramic capacitor 1 including the laminate 2 and the external electrodes 20 is defined as the T dimension. The T dimension is preferably 0.125 mm or more and 0.5 mm or less. The dimension in the width direction W of the multilayer ceramic capacitor 1 including the laminate 2 and the external electrodes 20 is defined as the W dimension. The W dimension is preferably 0.125 mm or more and 0.5 mm or less. The lengths of each part of the laminate 2 and the external electrodes 20 can be measured with a micrometer or an optical microscope.
(端子の構成)
 本実施形態では、積層セラミックコンデンサ1は、2端子の積層セラミックコンデンサであることを例として説明した。ただし、積層セラミックコンデンサ1は、2端子の積層セラミックコンデンサであることに限定されず、3端子以上の多端子の積層セラミックコンデンサとすることもできる。
(Terminal configuration)
In the present embodiment, the multilayer ceramic capacitor 1 has been described as a two-terminal multilayer ceramic capacitor as an example. However, the multilayer ceramic capacitor 1 is not limited to being a two-terminal multilayer ceramic capacitor, and may be a multi-terminal multilayer ceramic capacitor having three or more terminals.
(Si偏析層)
 本実施形態の積層セラミックコンデンサ1は、Lギャップ51にSi偏析層14を備えている。Si偏析層14とは、内部電極層10などの表面に形成されるSi層のことをいう。
(Si segregation layer)
The multilayer ceramic capacitor 1 of this embodiment includes a Si segregation layer 14 in the L gap 51. The Si segregation layer 14 refers to a Si layer formed on the surface of the internal electrode layer 10 or the like.
 図4に基づいてSi偏析層14について説明する。図4は、本実施形態の積層セラミックコンデンサ1のLT断面の一部を示す図である。図4は、図2に破線で示す領域R1を拡大した図に相当する。図4は、第1のLギャップ51a及びその近傍を示している。 The Si segregation layer 14 will be described with reference to FIG. 4. FIG. 4 is a diagram showing a portion of the LT cross section of the multilayer ceramic capacitor 1 of this embodiment. FIG. 4 corresponds to an enlarged view of the region R1 indicated by the dashed line in FIG. 2. FIG. 4 shows the first L gap 51a and its vicinity.
 第1のLギャップ51a及びその近傍において、内部電極層10の表面には、Si偏析層14が形成されている。
(第1の内部電極層)
 第1の内部電極層10aについては、第1の引き出し電極部12aの全体、及び、第1の対向電極部11aの少なくとも一部の表面に、Si偏析層14が形成されている。第1の対向電極部11aの少なくとも一部とは、第1の対向電極部11aの、第1のLギャップ51aに近い部分に対応する。
A Si segregation layer 14 is formed on the surface of the internal electrode layer 10 in and near the first L gap 51a.
(First internal electrode layer)
For the first internal electrode layer 10a, a Si segregation layer 14 is formed on the entire surface of the first lead electrode portion 12a and at least a part of the surface of the first opposing electrode portion 11a. The at least a part of the first opposing electrode portion 11a corresponds to a part of the first opposing electrode portion 11a close to the first L gap 51a.
(第2の内部電極層)
 第2の内部電極層10bについては、第2の対向電極部11bの少なくとも一部の表面に、Si偏析層14が形成されている。第2の対向電極部11bの少なくとも一部とは、第2の対向電極部11bの、第1のLギャップ51aに近い部分に対応する。
(Second Internal Electrode Layer)
For the second internal electrode layer 10b, a Si segregation layer 14 is formed on at least a portion of the surface of the second opposing electrode portion 11b. The at least a portion of the second opposing electrode portion 11b corresponds to a portion of the second opposing electrode portion 11b that is close to the first L gap 51a.
 第1の内部電極層10a及び第2の内部電極層10bについて、第1のLギャップ51aに近い部分とは、第1のLギャップ51aとL対向部50aとの境界から、L対向部50aの方向に、例えば、50μm程度の部分をいう。 With respect to the first internal electrode layer 10a and the second internal electrode layer 10b, the portion close to the first L gap 51a refers to the portion, for example, about 50 μm from the boundary between the first L gap 51a and the L opposing portion 50a in the direction of the L opposing portion 50a.
 内部電極層10の端部を電極端部10eとする。内部電極層10の端部とは、内部電極層10の積層方向Tに並行な端面を意味する。図4には、第2の内部電極層10bの電極端部10eが示されている。図4に示す構成では、この電極端部10eには、積層方向Tに並行な方向の全体にわたってSi偏析層14が形成されている。 The end of the internal electrode layer 10 is referred to as the electrode end 10e. The end of the internal electrode layer 10 means the end surface parallel to the stacking direction T of the internal electrode layer 10. FIG. 4 shows the electrode end 10e of the second internal electrode layer 10b. In the configuration shown in FIG. 4, a Si segregation layer 14 is formed over the entire electrode end 10e in the direction parallel to the stacking direction T.
 以上のように、Si偏析層14は、内部電極層10の長さ方向Lと並行な面のみならず、電極端部10eにおける積層方向Tと並行な面にも形成されている。このように、第1のLギャップ51a及びその近傍部分において、内部電極層10の表面には、Si偏析層14が形成されている。 As described above, the Si segregation layer 14 is formed not only on the surface parallel to the length direction L of the internal electrode layer 10, but also on the surface parallel to the stacking direction T at the electrode end 10e. In this way, the Si segregation layer 14 is formed on the surface of the internal electrode layer 10 in the first L gap 51a and its vicinity.
(浮島電極)
 図4に示す例では、第1のLギャップ51aに、浮島形状の浮島電極13が形成されている。この浮島電極13の表面にも、Si偏析層14が形成されている。なお、浮島電極13は、内部電極層10を形成する際に意図的に形成することができる。または、内部電極層10を形成する際に、意図せずに形成される場合もある。
(Floating island electrode)
4, a floating island electrode 13 having a floating island shape is formed in the first L gap 51a. A Si segregation layer 14 is also formed on the surface of this floating island electrode 13. The floating island electrode 13 can be formed intentionally when forming the internal electrode layer 10. Alternatively, it may be formed unintentionally when forming the internal electrode layer 10.
(第2のLギャップ)
 以上、第1のLギャップ51aを例にSi偏析層14について説明した。ただし、第2のLギャップ51bも同様の構成を有している。すなわち、第2のLギャップ51bにおける第2の引き出し電極部12b及び第1の対向電極部11aなどにも、第1のLギャップ51aにおける第1の引き出し電極部12a及び第2の対向電極部11bなどと同様のSi偏析層14が形成されている。
(Second L Gap)
The Si segregation layer 14 has been described above using the first L gap 51a as an example. However, the second L gap 51b has a similar configuration. That is, the second lead electrode portion 12b and the first opposing electrode portion 11a in the second L gap 51b also have the same Si segregation layer 14 as the first lead electrode portion 12a and the second opposing electrode portion 11b in the first L gap 51a.
(幅方向の電極端部)
 図5に基づいて、内部電極層10の幅方向Wにおける電極端部10eについて説明する。図5は、本発明の実施形態の積層セラミックコンデンサ1のWT断面の一部を示す図である。なお、図5は模式図である。そのため、パターンの数などは、他の図面などと整合しない場合がある。
(Electrode end in width direction)
The electrode end portion 10e in the width direction W of the internal electrode layer 10 will be described with reference to Fig. 5. Fig. 5 is a diagram showing a part of the WT cross section of the multilayer ceramic capacitor 1 according to the embodiment of the present invention. Note that Fig. 5 is a schematic diagram. Therefore, the number of patterns, etc. may not be consistent with other drawings.
 図5に示すように、幅方向Wの電極端部10eにもSi偏析層14は形成されている。詳しくは、Si偏析層14は、幅方向Wの電極端部10eにおいても、積層方向Tに並行な方向の全体にわたって形成されている。また、Si偏析層14は、内部電極層10の幅方向Wと並行な表面にも形成されている。ただし、Si偏析層14は、幅方向Wと並行な表面においては、その全体を覆うようには形成されていない。Si偏析層14は、電極端部10eから所定の距離だけ、幅方向Wと並行な面に形成されている。図5にこの所定の距離を距離d1で示す。距離d1は、例えば、1μm以上50μm以下とすることができる。 As shown in FIG. 5, the Si segregation layer 14 is also formed at the electrode end 10e in the width direction W. More specifically, the Si segregation layer 14 is also formed at the electrode end 10e in the width direction W over the entire direction parallel to the stacking direction T. The Si segregation layer 14 is also formed on the surface parallel to the width direction W of the internal electrode layer 10. However, the Si segregation layer 14 is not formed to cover the entire surface parallel to the width direction W. The Si segregation layer 14 is formed on a surface parallel to the width direction W a predetermined distance from the electrode end 10e. This predetermined distance is indicated as distance d1 in FIG. 5. Distance d1 can be, for example, 1 μm or more and 50 μm or less.
(Si偏析層の他の構成)
 図6は、図5の領域R2について、他の構成を示す図である。図5に示した構成と、図6に示す構成とでは、内部電極層10の表面において、Si偏析層14が形成されている位置が異なる。図5に示した構成では、領域R2に示すように、内部電極層10の電極端部10eには、積層方向Tの全体にわたってSi偏析層14が形成されていた。これに対して、図6に示す構成例では、Si偏析層14は、電極端部10eの積層方向Tの全体にわたっては形成されていない。電極端部10eの積層方向Tにおける両端部には、Si偏析層14が形成されている。一方、電極端部10eの積層方向Tにおける中央部分には、Si偏析層14は形成されていない。そのため、電極端部10eの積層方向Tにおける中央部からは、内部電極層10が露出している。
(Other configurations of the Si segregation layer)
6 is a diagram showing another configuration of the region R2 in FIG. 5. The configuration shown in FIG. 5 and the configuration shown in FIG. 6 differ in the position where the Si segregation layer 14 is formed on the surface of the internal electrode layer 10. In the configuration shown in FIG. 5, as shown in the region R2, the Si segregation layer 14 is formed over the entire stacking direction T at the electrode end 10e of the internal electrode layer 10. In contrast, in the configuration example shown in FIG. 6, the Si segregation layer 14 is not formed over the entire stacking direction T of the electrode end 10e. The Si segregation layer 14 is formed at both ends of the electrode end 10e in the stacking direction T. On the other hand, the Si segregation layer 14 is not formed in the central portion of the electrode end 10e in the stacking direction T. Therefore, the internal electrode layer 10 is exposed from the central portion of the electrode end 10e in the stacking direction T.
 図5及び図6に示すように、Si偏析層14は、内部電極層10の幅方向Wの電極端部10eにおいて、その積層方向Tの全体に形成されていてもよく、また、積層方向Tの一部に形成されていてもよい。 As shown in Figures 5 and 6, the Si segregation layer 14 may be formed over the entire stacking direction T at the electrode end 10e in the width direction W of the internal electrode layer 10, or may be formed over a portion of the stacking direction T.
(Si偏析層の厚み)
 Si偏析層14の厚みは、例えば、0.01μm以上0.30μm以下とすることができる。なお、Si偏析層14の厚みは、積層体2の断面を露出させ、走査型電子顕微鏡(SEM)を用いて誘電体粒子とSi偏析層を判別し、さらにエネルギー分散型X線分析(EDX)を用いてその表面の元素解析を行うことで求めることができる。
(Thickness of Si segregation layer)
The thickness of the Si segregation layer 14 can be, for example, 0.01 μm or more and 0.30 μm or less. The thickness of the Si segregation layer 14 can be obtained by exposing a cross section of the laminate 2, distinguishing between dielectric particles and the Si segregation layer using a scanning electron microscope (SEM), and further performing elemental analysis of the surface using energy dispersive X-ray analysis (EDX).
(積層セラミックコンデンサの製造方法)
 積層セラミックコンデンサ1の製造方法を図7などに基づいて説明する。
(積層ブロックの作製)
 セラミックグリーンシート30、内部電極層10用の電極ペースト31、及び段差層5用の段差ペースト32を用意する。
(Manufacturing method of multilayer ceramic capacitors)
A method for manufacturing the multilayer ceramic capacitor 1 will be described with reference to FIG.
(Preparation of laminated blocks)
A ceramic green sheet 30, an electrode paste 31 for the internal electrode layer 10, and a step paste 32 for the step layer 5 are prepared.
(段差層)
 まず、段差層5について説明する。積層体2の積層方向Tの長さは、電極対向部50とLギャップ51とにおいて差が小さいことが好ましい。しかしながら、内層部53では、電極対向部50とLギャップ51とで、積層方向Tの長さが相違しやすくなる。電極対向部50には誘電体層4及び内部電極層10が積層される。これに対して、Lギャップ51には誘電体層4、及び、内部電極層10のうちで一方の外部電極20に接続されている内部電極層10のみ、が積層される。そのため、電極対向部50とLギャップ51とで、積層方向Tの長さが相違しやすくなる。
(Step layer)
First, the step layer 5 will be described. It is preferable that the difference in length in the stacking direction T of the laminate 2 is small between the electrode facing portion 50 and the L gap 51. However, in the inner layer portion 53, the length in the stacking direction T tends to differ between the electrode facing portion 50 and the L gap 51. The dielectric layer 4 and the internal electrode layer 10 are stacked in the electrode facing portion 50. In contrast, the dielectric layer 4 and only the internal electrode layer 10 connected to one external electrode 20 among the internal electrode layers 10 are stacked in the L gap 51. Therefore, the length in the stacking direction T tends to differ between the electrode facing portion 50 and the L gap 51.
 そこで、Lギャップ51と電極対向部50との積層方向Tの長さの差を小さくするために、Lギャップ51に追加の誘電体層4を配置する。この追加の誘電体層4を段差層5とする。段差層5は、誘電体層4と同様の成分を有することが好ましい。ただし、誘電体層4の成分は、これに限定されるものではない。 Therefore, in order to reduce the difference in length in the stacking direction T between the L gap 51 and the electrode opposing portion 50, an additional dielectric layer 4 is disposed in the L gap 51. This additional dielectric layer 4 is referred to as the step layer 5. It is preferable that the step layer 5 has the same components as the dielectric layer 4. However, the components of the dielectric layer 4 are not limited to this.
 図4に段差層5を示す。図4に示すように、段差層5は、第1のLギャップ51aにおいて、積層方向Tに対向する2つの第1の対向電極部11aの間に配置されている。段差層5が第2の内部電極層10bの厚さを補うことによって、第1のLギャップ51aとL対向部50aとの積層方向Tの長さの差を小さくすることができる。 The step layer 5 is shown in Figure 4. As shown in Figure 4, the step layer 5 is disposed in the first L gap 51a between two first opposing electrode portions 11a that face each other in the stacking direction T. The step layer 5 compensates for the thickness of the second internal electrode layer 10b, thereby making it possible to reduce the difference in length in the stacking direction T between the first L gap 51a and the L opposing portion 50a.
 また本実施形態では、段差ペースト32に、Si成分を配合しておく。このSi成分は、後にSi偏析層14を形成する。なお、段差ペースト32にSi成分を添加しておくことは、Si偏析層14を形成する方法の一例である。 In addition, in this embodiment, a Si component is blended into the step paste 32. This Si component will later form the Si segregation layer 14. Note that adding a Si component to the step paste 32 is one example of a method for forming the Si segregation layer 14.
(ペーストの塗布)
 段差層5を形成する場合のセラミックグリーンシート30の積層の概要について説明する。なお、電極ペースト31及び段差ペースト32のパターンの形状については、後に説明する。まず、セラミックグリーンシート30に、前述の電極ペースト31及び段差ペースト32を所望のパターンで塗布する。セラミックグリーンシート30への各ペーストの塗布は、例えば、スクリーン印刷やグラビア印刷などの方法により行うことができる。任意の印刷方法で、セラミックグリーンシート30に所定のパターンで電極ペースト31及び段差ペースト32を印刷する。これにより、ペーストが印刷された内層部53用のセラミックグリーンシート30を得る。
(Paste application)
An outline of lamination of the ceramic green sheets 30 when forming the step layer 5 will be described. The pattern shapes of the electrode paste 31 and the step paste 32 will be described later. First, the above-mentioned electrode paste 31 and step paste 32 are applied to the ceramic green sheet 30 in a desired pattern. The application of each paste to the ceramic green sheet 30 can be performed by a method such as screen printing or gravure printing. The electrode paste 31 and step paste 32 are printed in a predetermined pattern on the ceramic green sheet 30 by any printing method. In this way, the ceramic green sheet 30 for the inner layer portion 53 on which the paste is printed is obtained.
(積層)
 内部電極層10のパターンが印刷されていないセラミックグリーンシート30を所定枚数積層する。これにより、外層部54に対応する部分を作製する。この上に、ペーストが塗布された内層部53用のセラミックグリーンシート30を順次積層する。これにより、内層部53に対応する部分が積層される。さらにその上に、もう一方の外層部54用のセラミックグリーンシート30を所定枚数積層する。これにより、積層シートを作製する。積層シートを静水圧プレスなどの手段により積層方向にプレスし、積層ブロックを作製する。
(Lamination)
A predetermined number of ceramic green sheets 30 on which the pattern of the internal electrode layer 10 is not printed are laminated. This creates a portion corresponding to the outer layer portion 54. On top of this, ceramic green sheets 30 for the inner layer portion 53 on which paste has been applied are sequentially laminated. This creates a portion corresponding to the inner layer portion 53. Furthermore, on top of that, a predetermined number of ceramic green sheets 30 for the other outer layer portion 54 are laminated. This creates a laminated sheet. The laminated sheet is pressed in the lamination direction by means of a hydrostatic press or the like to create a laminated block.
(パターン)
 図7は、電極ペースト31及び段差ペースト32が塗布されたセラミックグリーンシート30の平面図である。図7は、セラミックグリーンシート30を積層方向Tから見た図である。図7の701及び702は、それぞれ、1枚のセラミックグリーンシート30を示している。これらのセラミックグリーンシート30を積層することで、積層シートを得ることができる。図7に示す例では、セラミックグリーンシート30に10個の電極用のパターンが電極ペースト31により形成されている。電極用のパターンは、長さ方向Lに2列、幅方向Wに5行、配置されている。また、長さ方向Lに並ぶ2つの電極用のパターンの間には、段差ペースト32が塗布されている。
 図7の701及び702に示す2枚のセラミックグリーンシート30には、電極ペースト31及び段差ペースト32が同様のパターンで塗布されている。
(pattern)
7 is a plan view of the ceramic green sheet 30 on which the electrode paste 31 and the step paste 32 are applied. FIG. 7 is a view of the ceramic green sheet 30 as viewed from the lamination direction T. 701 and 702 in FIG. 7 each indicate one ceramic green sheet 30. By laminating these ceramic green sheets 30, a laminated sheet can be obtained. In the example shown in FIG. 7, ten electrode patterns are formed on the ceramic green sheet 30 using the electrode paste 31. The electrode patterns are arranged in two columns in the length direction L and five rows in the width direction W. In addition, the step paste 32 is applied between two electrode patterns arranged in the length direction L.
An electrode paste 31 and a step paste 32 are applied in the same pattern to two ceramic green sheets 30 indicated by 701 and 702 in FIG.
(積層)
 図7の701及び702に示す2枚のセラミックグリーンシート30を積層する際、長さ方向Lにずらして積層する。図7にずらす距離を距離d2で示す。2枚のセラミックグリーンシート30をずらして積層することで、第1のLギャップ51a及び第2のLギャップ51bのいずれにもSi偏析層14が形成された積層セラミックコンデンサ1を容易に作製することができる。これについては、後に説明する。
(Lamination)
When two ceramic green sheets 30 shown in 701 and 702 in Fig. 7 are laminated, they are laminated with a shift in the length direction L. The shift distance is indicated as a distance d2 in Fig. 7. By laminating two ceramic green sheets 30 with a shift, it is possible to easily manufacture a multilayer ceramic capacitor 1 in which a Si segregation layer 14 is formed in both the first L gap 51a and the second L gap 51b. This will be described later.
(積層チップの作製)
 積層ブロックを所定のサイズにカットし、積層チップを切り出す。このとき、バレル研磨などにより積層チップの角部及び稜線部に丸みをつけてもよい。
(Fabrication of stacked chips)
The laminated block is cut to a predetermined size to cut out laminated chips. At this time, corners and edges of the laminated chips may be rounded by barrel polishing or the like.
(焼成)
 次に、積層チップを焼成し積層体2を作製する。焼成温度は、セラミック層4や内部電極層10の材料にもよるが、900℃以上1400℃以下であることが好ましい。
(Firing)
Next, the laminated chip is fired to produce the laminate 2. The firing temperature depends on the materials of the ceramic layers 4 and the internal electrode layers 10, but is preferably 900° C. or higher and 1400° C. or lower.
(外部電極)
 次に、外部電極20を形成する。
(下地電極層)
 積層体2の2つの端面62に下地電極層21となる導電性ペーストを塗布し、下地電極層21を形成する。焼き付け層を形成するために、ガラス成分と金属とを含む導電性ペーストをディッピングなどの方法により塗布する。その後、焼き付け処理を行い、下地電極層21を形成する。焼き付け処理の温度は、500℃以上900℃以下が好ましい。また、焼き付け処理の時間は、30分以上2時間以下が好ましい。また、焼き付け処理の雰囲気は、例えば、HOやHを入れた還元雰囲気であることが好ましい。
(External electrode)
Next, the external electrodes 20 are formed.
(Base electrode layer)
A conductive paste that will become the base electrode layer 21 is applied to the two end faces 62 of the laminate 2 to form the base electrode layer 21. To form a baked layer, a conductive paste containing a glass component and a metal is applied by a method such as dipping. Then, a baking process is performed to form the base electrode layer 21. The temperature of the baking process is preferably 500° C. or higher and 900° C. or lower. The time of the baking process is preferably 30 minutes or higher and 2 hours or lower. The atmosphere of the baking process is preferably a reducing atmosphere containing, for example, H 2 O or H 2 .
 次に、下地電極層21の表面にめっき層23を形成する。本実施形態では焼き付け層上にNiめっき層を形成する。このNiめっき層が内めっき層24となる。次に、Niめっき層上にSnめっき層を形成する。このSnめっき層が表めっき層25となる。Niめっき層及びSnめっき層は、たとえばバレルめっき法により、順次形成される。このようにして、積層セラミックコンデンサ1が得られる。 Next, a plating layer 23 is formed on the surface of the base electrode layer 21. In this embodiment, a Ni plating layer is formed on the baked layer. This Ni plating layer becomes the inner plating layer 24. Next, a Sn plating layer is formed on the Ni plating layer. This Sn plating layer becomes the surface plating layer 25. The Ni plating layer and the Sn plating layer are formed in sequence, for example, by barrel plating. In this manner, the multilayer ceramic capacitor 1 is obtained.
(積層と切断)
 図8及び図9に基づいて、本実施形態の積層セラミックコンデンサ1に製造方法における積層と切断について、より詳しく説明する。図8は、電極ペースト31及び段差ペースト32が塗布されたセラミックグリーンシート30の平面図である。図7と図8とでは、セラミックグリーンシート30に塗布された電極ペースト31及び段差ペースト32のパターンの形状が異なる。図7に示した構成では、電極用のパターンは、長さ方向Lに2列、幅方向Wに5行、配置されていた。また、段差ペースト32は、長さ方向Lに並ぶ2つの電極用のパターンの間に塗布されていた。これに対し、図8に示す構成では、電極用のパターンは、長さ方向Lに4列、幅方向Wに5行、配置されている。また、段差ペースト32は、長さ方向Lに並ぶ4つの電極用のパターンにおいて、1つ目の電極用のパターンと2つ目の電極用のパターンとの間、及び、3つ目の電極用のパターンと4つ目の電極用のパターンとの間に塗布されている。このように、セラミックグリーンシート30には、製造する積層セラミックコンデンサ1の種類に応じて、多様なパターンで、電極ペースト31及び段差ペースト32を塗布することができる。
(Lamination and cutting)
8 and 9, the lamination and cutting in the manufacturing method of the multilayer ceramic capacitor 1 of this embodiment will be described in more detail. FIG. 8 is a plan view of a ceramic green sheet 30 on which an electrode paste 31 and a step paste 32 are applied. The shapes of the patterns of the electrode paste 31 and the step paste 32 applied to the ceramic green sheet 30 are different between FIG. 7 and FIG. 8. In the configuration shown in FIG. 7, the electrode patterns are arranged in two columns in the length direction L and five rows in the width direction W. The step paste 32 is applied between two electrode patterns arranged in the length direction L. In contrast, in the configuration shown in FIG. 8, the electrode patterns are arranged in four columns in the length direction L and five rows in the width direction W. The step paste 32 is applied between the first electrode pattern and the second electrode pattern, and between the third electrode pattern and the fourth electrode pattern, in the four electrode patterns arranged in the length direction L. In this manner, the electrode paste 31 and the step paste 32 can be applied to the ceramic green sheet 30 in a variety of patterns depending on the type of multilayer ceramic capacitor 1 to be manufactured.
(積層)
 図8に801で示すセラミックグリーンシート30を第1のセラミックグリーンシート30aとする。図8に802で示すセラミックグリーンシート30を第2のセラミックグリーンシート30bとする。第1のセラミックグリーンシート30aと第2のセラミックグリーンシート30bとは、図7に示した構成と同様に、ずらして積層される。具体的には、長さ方向Lに距離d2ずらして積層される。
(Lamination)
The ceramic green sheet 30 indicated by 801 in Fig. 8 is the first ceramic green sheet 30a. The ceramic green sheet 30 indicated by 802 in Fig. 8 is the second ceramic green sheet 30b. The first ceramic green sheet 30a and the second ceramic green sheet 30b are stacked with a shift in the same manner as in the configuration shown in Fig. 7. Specifically, they are stacked with a shift of a distance d2 in the longitudinal direction L.
(切断)
 図9に基づいて、積層されたセラミックグリーンシート30の切断について説明する。図9(a)及び図9(b)は、積層されたセラミックグリーンシート30のLT断面を示す図である。図9(a)及び図9(b)では、構成を単純にするために、セラミックグリーンシート30が2枚のみ積層された状態を例示している。このセラミックグリーンシート30が2枚積層されたものを、以下の説明において積層物40という。図9(a)に示す線L1及び線L2は、切断線を示す。この線L1及び線L2は、図8に示した線L1及び線L2に対応している。図9(a)は、切断前の積層物40を示す。図9(b)は、線L1及び線L2で切断した後の積層物40を示す。
(Disconnect)
The cutting of the laminated ceramic green sheets 30 will be described with reference to FIG. 9. FIGS. 9(a) and 9(b) are diagrams showing the LT cross section of the laminated ceramic green sheets 30. In FIGS. 9(a) and 9(b), in order to simplify the configuration, only two ceramic green sheets 30 are illustrated as an example. In the following description, the two ceramic green sheets 30 are referred to as a laminate 40. Lines L1 and L2 shown in FIG. 9(a) indicate cutting lines. These lines L1 and L2 correspond to the lines L1 and L2 shown in FIG. 8. FIG. 9(a) shows the laminate 40 before cutting. FIG. 9(b) shows the laminate 40 after cutting along the lines L1 and L2.
(線L1)
 図9(a)に示すように、積層物40における第1のセラミックグリーンシート30aと第2のセラミックグリーンシート30bとは、長さ方向Lにずらして積層されている。そのため、第2のセラミックグリーンシート30bにおける電極ペースト31のパターンの長手方向Lの端部31bは、第1のセラミックグリーンシート30aにおける段差ペースト32のパターンの長手方向Lの中央部32aと、長手方向Lの位置において揃っている。すなわち、電極ペースト31のパターンの端部31b、及び、段差ペースト32のパターンの中央部32aは、いずれも線L1上に位置している。
(Line L1)
9(a), the first ceramic green sheet 30a and the second ceramic green sheet 30b in the laminate 40 are stacked with a shift in the length direction L. Therefore, the end 31b in the longitudinal direction L of the pattern of the electrode paste 31 in the second ceramic green sheet 30b is aligned in the longitudinal direction L with the center 32a in the longitudinal direction L of the pattern of the step paste 32 in the first ceramic green sheet 30a. In other words, the end 31b of the pattern of the electrode paste 31 and the center 32a of the pattern of the step paste 32 are both located on the line L1.
(線L2)
 同様に、第2のセラミックグリーンシート30bにおける段差ペースト32のパターンの長手方向Lの中央部32bは、第1のセラミックグリーンシート30aにおける電極ペースト31のパターンの長手方向Lの端部31aと、長手方向Lの位置において揃っている。すなわち、段差ペースト32のパターンの中央部32b、及び、電極ペースト31のパターンの端部31aは、いずれも線L2上に位置している。
(Line L2)
Similarly, a central portion 32b in the longitudinal direction L of the pattern of the step paste 32 in the second ceramic green sheet 30b is aligned with an end portion 31a in the longitudinal direction L of the pattern of the electrode paste 31 in the first ceramic green sheet 30a in the longitudinal direction L. That is, the central portion 32b of the pattern of the step paste 32 and the end portion 31a of the pattern of the electrode paste 31 are both located on the line L2.
(切断後)
 切断後の積層物40を図9(b)に示す。線L1及び線L2で切断された積層物40は、Lギャップ51に段差層5が形成された形態となっている。これは、第1のセラミックグリーンシート30aに塗布されたパターンと、第2のセラミックグリーンシート30bに塗布されたパターンとが前述のような位置関係になるようにセラミックグリーンシート30がずらして積層されているためである。
(After disconnection)
9B shows the laminate 40 after cutting. The laminate 40 cut along the lines L1 and L2 has a step layer 5 formed in the L gap 51. This is because the ceramic green sheets 30 are stacked with a shift so that the pattern applied to the first ceramic green sheet 30a and the pattern applied to the second ceramic green sheet 30b have the positional relationship described above.
(切断面)
 線L1で切断したことによって生じた切断面を第1の切断面41とする。また、線L2で切断したことによって生じた切断面を第2の切断面42とする。第1の切断面41は積層体2における第1の端面62aに対応する。また、第2の切断面42は積層体2における第2の端面62bに対応する。ここで、対応するとは、積層物40が焼成されて積層体2になった場合に対応する積層体2の部位、との意味である。
(Cut surface)
The cut surface generated by cutting along line L1 is defined as a first cut surface 41. Moreover, the cut surface generated by cutting along line L2 is defined as a second cut surface 42. The first cut surface 41 corresponds to a first end surface 62a of the laminate 2. Moreover, the second cut surface 42 corresponds to a second end surface 62b of the laminate 2. Here, "corresponding" means a portion of the laminate 2 that corresponds when the laminate 40 is fired to become the laminate 2.
 積層物40の第1の切断面41からは、積層方向Tにおいて順に、内層誘電体層4aに対応する第1のグリーンシート30a、段差層5に対応する段差ペースト32、内層誘電体層4aに対応する第2のグリーンシート30b、及び、第1の内部電極層10aに対応する電極ペースト31が露出している。同様に、積層物40の第2の切断面42からは、積層方向Tにおいて順に、内層誘電体層4aに対応する第1のグリーンシート30a、第2の内部電極層10bに対応する電極ペースト31、内層誘電体層4aに対応する第2のグリーンシート30b、及び、段差層5に対応する段差ペースト32、が露出している。そして、長さ方向Lにおいて、段差ペースト32が配置されている部分が、それぞれ、第1のLギャップ51a及び第2のLギャップ51bとなる。 From the first cut surface 41 of the laminate 40, in the stacking direction T, the first green sheet 30a corresponding to the inner dielectric layer 4a, the step paste 32 corresponding to the step layer 5, the second green sheet 30b corresponding to the inner dielectric layer 4a, and the electrode paste 31 corresponding to the first internal electrode layer 10a are exposed. Similarly, from the second cut surface 42 of the laminate 40, in the stacking direction T, the first green sheet 30a corresponding to the inner dielectric layer 4a, the electrode paste 31 corresponding to the second internal electrode layer 10b, the second green sheet 30b corresponding to the inner dielectric layer 4a, and the step paste 32 corresponding to the step layer 5 are exposed. In the length direction L, the portions where the step paste 32 is arranged become the first L gap 51a and the second L gap 51b, respectively.
(Si偏析層の形成)
 前述のように、段差ペースト32には、Si偏析層14を形成するためのSi成分が配合されている。このSi成分は段差ペースト32内を移行し、内部電極層10に付着する。Si成分は液相成分である。そのため、Si成分は、誘電体材料をこえて内部電極層に寄っていくことが可能だからである。具体的には、Si成分は、引き出し電極部12の表面、及び対向電極部11の端部及び表面の少なくとも一部に付着する。この各内部電極層10に付着したSi成分がSi偏析層14を形成する。
(Formation of Si Segregation Layer)
As described above, the step paste 32 contains a Si component for forming the Si segregation layer 14. This Si component migrates through the step paste 32 and adheres to the internal electrode layer 10. The Si component is a liquid phase component. Therefore, the Si component can move across the dielectric material and approach the internal electrode layer. Specifically, the Si component adheres to the surface of the extraction electrode portion 12 and at least a part of the end and surface of the counter electrode portion 11. The Si component adhered to each internal electrode layer 10 forms the Si segregation layer 14.
(他のSi偏析層の形成方法)
 なお、Si偏析層14の形成方法は、前述した段差ペースト32にSi成分を配合する方法に限定されない。他のSi偏析層14の形成方法としては、Lギャップ51にSi成分を塗布する方法がある。この方法では、Si偏析層14を形成したい部分に対応する電極ペースト31の塗布パターンに、Si成分を印刷などによって塗布する。その他のSi偏析層14の形成方法としては、焼成前の積層チップのWT端面、すなわち積層体2の端面62に対応する面から、Si成分を含侵させる方法などがある。
(Other methods for forming a Si segregation layer)
The method for forming the Si segregation layer 14 is not limited to the above-mentioned method of blending the Si component into the step paste 32. Another method for forming the Si segregation layer 14 is to apply the Si component to the L gap 51. In this method, the Si component is applied by printing or the like to an application pattern of the electrode paste 31 corresponding to the portion where the Si segregation layer 14 is to be formed. Another method for forming the Si segregation layer 14 is to impregnate the WT end face of the laminated chip before firing, i.e., the face corresponding to the end face 62 of the laminated body 2, with the Si component.
(Si偏析層の効果)
 本実施形態の積層セラミックコンデンサ1は、Lギャップ51にSi偏析層14が備えられている。そのため、積層セラミックコンデンサ1の信頼性を向上させることができる。Si偏析層14は、IR(Insulation Resistance、絶縁抵抗)が高いためである。
(Effect of Si Segregation Layer)
The multilayer ceramic capacitor 1 of this embodiment is provided with the Si segregation layer 14 in the L gap 51. This can improve the reliability of the multilayer ceramic capacitor 1. This is because the Si segregation layer 14 has a high IR (insulation resistance).
 以下、積層セラミックコンデンサ1の特性の評価結果を示す。
(高温負荷信頼性試験)
 図10に基づいて、高温負荷信頼性試験の結果を説明する。図10は、比較例及び実施例について、高温負荷信頼性試験の結果を示す図である。
 高温負荷信頼性試験の方法は次の通りである。比較例及び実施例1から8について、それぞれ試料を100ずつ用意した。その試料を、共晶半田を用いて、ガラスエポキシ基板に実装した。試料における誘電体層の厚みは、0.5μmとした。まず、各試料の初期の絶縁抵抗値を測定した。次に、ガラスエポキシ基板を高温槽内に入れ、150℃の環境下において、各試料に対して6.3Vの電圧を印加した。その後、200時間経過時と、500時間経過時とに、絶縁抵抗値を測定した。初期の絶縁抵抗値と、経時後の絶縁抵抗値とを比較して、絶縁抵抗値が1桁以上低下したものを不良とした。図10に示すように、Si偏析層を備える試料では、200時間において不良は発生しなかった。また、500時間においても、不良の数を5以下に抑えることができた。
The evaluation results of the characteristics of the multilayer ceramic capacitor 1 are shown below.
(High temperature load reliability test)
The results of the high temperature load reliability test will be described with reference to Fig. 10. Fig. 10 is a diagram showing the results of the high temperature load reliability test for the comparative example and the example.
The method of the high temperature load reliability test is as follows. For each of the comparative example and the examples 1 to 8, 100 samples were prepared. The samples were mounted on a glass epoxy board using eutectic solder. The thickness of the dielectric layer in the sample was set to 0.5 μm. First, the initial insulation resistance value of each sample was measured. Next, the glass epoxy board was placed in a high temperature chamber, and a voltage of 6.3 V was applied to each sample in an environment of 150° C. Then, the insulation resistance value was measured after 200 hours and after 500 hours. The initial insulation resistance value was compared with the insulation resistance value after aging, and a sample with an insulation resistance value that decreased by one digit or more was determined to be defective. As shown in FIG. 10, no defects occurred in the sample having the Si segregation layer after 200 hours. Furthermore, the number of defects was suppressed to 5 or less even after 500 hours.
 特に、Si偏析層の厚みが0.03μm以上0.15μm以下である実施例2から実施例6では、200時間経過後に加えて、500時間経過後においても、不良は発生しなかった。 In particular, in Examples 2 to 6, in which the thickness of the Si segregation layer was 0.03 μm or more and 0.15 μm or less, no defects occurred even after 500 hours, in addition to after 200 hours.
(誘電率及び平均故障時間)
 図11に基づいて、誘電率及び平均故障時間の評価結果を説明する。図11は、比較例及び実施例について、誘電率及び平均故障時間の評価結果を示す図である。試料における誘電体層の厚みは、0.3μmから0.6μmまでの4種類とした。誘電体層の厚みを異ならせることで、素子の厚みが異なる試料を作製した。また、Si偏析層の厚みは、0.07μm及び0.08μmとした。
(Dielectric constant and mean time to failure)
The evaluation results of the dielectric constant and the mean time to failure will be described with reference to FIG. 11. FIG. 11 is a diagram showing the evaluation results of the dielectric constant and the mean time to failure for the comparative example and the example. The thickness of the dielectric layer in the sample was set to four types ranging from 0.3 μm to 0.6 μm. By varying the thickness of the dielectric layer, samples with different element thicknesses were produced. In addition, the thickness of the Si segregation layer was set to 0.07 μm and 0.08 μm.
 Siは誘電率が低い。そのため、Si偏析層が形成された試料では、誘電率の低下がみられた。また、Si偏析層が形成された試料では、MTTF(Mean Time To Failure、平均故障時間)の改善が見られた。 Si has a low dielectric constant. Therefore, a decrease in dielectric constant was observed in samples with a Si segregation layer. Also, an improvement in MTTF (Mean Time To Failure) was observed in samples with a Si segregation layer.
 特に、誘電体層の厚みが0.4μm以上0.5μm以下である実施例B及び実施例Cでは、MTTFに大きな改善が見られた。 In particular, in Examples B and C, where the thickness of the dielectric layer is 0.4 μm or more and 0.5 μm or less, a significant improvement in MTTF was observed.
 以上本発明の実施形態について説明したが、本発明は前述した実施形態に限定されることなく、種々の変更及び変形が可能である。 The above describes an embodiment of the present invention, but the present invention is not limited to the above embodiment and various modifications and variations are possible.
<1>
 積層された複数の誘電体層と複数の内部電極層とを含み、
 積層方向に相対する第1の主面及び第2の主面と、積層方向に直交する幅方向に相対する第1の側面及び第2の側面と、積層方向及び幅方向に直交する長さ方向に相対する第1の端面及び第2の端面とを備える積層体と、
 前記第1の端面及び第2の端面に設けられた外部電極と、
 を備え、
 前記内部電極層は第1の内部電極層と第2の内部電極層とを備え、
 前記第1の内部電極層は、前記第1の端面へ引き出され、
 前記第2の内部電極層は、前記第2の端面へ引き出され、
 前記外部電極は、前記第1の内部電極層に接続された第1の外部電極、及び、前記第2の内部電極層に接続された第2の外部電極を含み、
 前記第1の端面側に配置され、前記第1の内部電極層同士が前記積層方向において重なり合わない領域、及び、前記第2の端面側に配置され、前記第2の内部電極層同士が前記積層方向において重なり合わない領域をLギャップ領域とし、
 前記Lギャップ領域は、Si偏析層を備えることを特徴とする、
 積層セラミックコンデンサ。
<1>
The dielectric layer includes a plurality of dielectric layers and a plurality of internal electrode layers that are stacked together,
a laminate including a first main surface and a second main surface opposed to each other in a stacking direction, a first side surface and a second side surface opposed to each other in a width direction perpendicular to the stacking direction, and a first end surface and a second end surface opposed to each other in a length direction perpendicular to the stacking direction and the width direction;
external electrodes provided on the first end surface and the second end surface;
Equipped with
the internal electrode layer includes a first internal electrode layer and a second internal electrode layer,
the first internal electrode layer is extended to the first end face,
the second internal electrode layer is extended to the second end face,
the external electrodes include a first external electrode connected to the first internal electrode layer and a second external electrode connected to the second internal electrode layer;
an L-gap region is an area disposed on the first end face side, in which the first internal electrode layers do not overlap with each other in the stacking direction, and an area disposed on the second end face side, in which the second internal electrode layers do not overlap with each other in the stacking direction;
The L gap region is characterized by comprising a Si segregation layer.
Multilayer ceramic capacitor.
<2>
 前記Si偏析層の厚みは、0.03μm以上0.15μm以下である、
 <1>に記載の積層セラミックコンデンサ。
<2>
The thickness of the Si segregation layer is 0.03 μm or more and 0.15 μm or less.
The multilayer ceramic capacitor according to <1>.
<3>
 前記第1の内部電極層の前記幅方向の端部、及び、前記第2の内部電極の前記幅方向の端部には、前記Si偏析層が存在する、
 <1>又は<2>に記載の積層セラミックコンデンサ。
<3>
the Si segregation layer is present at an end portion in the width direction of the first internal electrode layer and an end portion in the width direction of the second internal electrode;
The multilayer ceramic capacitor according to <1> or <2>.
<4>
 前記誘電体層の厚みは、0.4μm以上0.5μm以下である、
 <1>から<3>のいずれか1つに記載の積層セラミックコンデンサ。
<4>
The thickness of the dielectric layer is 0.4 μm or more and 0.5 μm or less.
<1> The multilayer ceramic capacitor according to any one of <1> to <3>.
 1   積層セラミックコンデンサ
 2   積層体
 4   誘電体層
 5   段差層
 10  内部電極層
 11  対向電極部
 12  引き出し電極部
 13  浮島電極
 14  Si偏析層
 20  外部電極
 21  下地電極層
 23  めっき層
 24  内めっき層
 25  表めっき層
 30  セラミックグリーンシート
 31  電極ペースト
 32  段差ペースト
 40  積層物
 41  第1の切断面
 42  第2の切断面
 50  電極対向部
 51  Lギャップ(Lギャップ領域)
 52  Wギャップ
 53  内層部
 54  外層部
 61  主面
 62  端面
 63  側面
 R1  領域
 R2  領域
 T   積層方向
 L   長さ方向
 W   幅方向
REFERENCE SIGNS LIST 1 Multilayer ceramic capacitor 2 Laminate 4 Dielectric layer 5 Step layer 10 Internal electrode layer 11 Counter electrode portion 12 Lead electrode portion 13 Floating island electrode 14 Si segregation layer 20 External electrode 21 Base electrode layer 23 Plating layer 24 Inner plating layer 25 Surface plating layer 30 Ceramic green sheet 31 Electrode paste 32 Step paste 40 Laminate 41 First cut surface 42 Second cut surface 50 Electrode opposing portion 51 L gap (L gap region)
52 W gap 53 inner layer portion 54 outer layer portion 61 main surface 62 end surface 63 side surface R1 region R2 region T stacking direction L length direction W width direction

Claims (4)

  1.  積層された複数の誘電体層と複数の内部電極層とを含み、
     積層方向に相対する第1の主面及び第2の主面と、積層方向に直交する幅方向に相対する第1の側面及び第2の側面と、積層方向及び幅方向に直交する長さ方向に相対する第1の端面及び第2の端面とを備える積層体と、
     前記第1の端面及び第2の端面に設けられた外部電極と、
     を備え、
     前記内部電極層は第1の内部電極層と第2の内部電極層とを備え、
     前記第1の内部電極層は、前記第1の端面へ引き出され、
     前記第2の内部電極層は、前記第2の端面へ引き出され、
     前記外部電極は、前記第1の内部電極層に接続された第1の外部電極、及び、前記第2の内部電極層に接続された第2の外部電極を含み、
     前記第1の端面側に配置され、前記第1の内部電極層同士が前記積層方向において重なり合わない領域、及び、前記第2の端面側に配置され、前記第2の内部電極層同士が前記積層方向において重なり合わない領域をLギャップ領域とし、
     前記Lギャップ領域は、Si偏析層を備えることを特徴とする、
     積層セラミックコンデンサ。
    The dielectric layer includes a plurality of dielectric layers and a plurality of internal electrode layers that are stacked together,
    a laminate including a first main surface and a second main surface opposed to each other in a stacking direction, a first side surface and a second side surface opposed to each other in a width direction perpendicular to the stacking direction, and a first end surface and a second end surface opposed to each other in a length direction perpendicular to the stacking direction and the width direction;
    external electrodes provided on the first end surface and the second end surface;
    Equipped with
    the internal electrode layer includes a first internal electrode layer and a second internal electrode layer,
    the first internal electrode layer is extended to the first end face,
    the second internal electrode layer is extended to the second end face,
    the external electrodes include a first external electrode connected to the first internal electrode layer and a second external electrode connected to the second internal electrode layer;
    an L-gap region is an area disposed on the first end face side, in which the first internal electrode layers do not overlap with each other in the stacking direction, and an area disposed on the second end face side, in which the second internal electrode layers do not overlap with each other in the stacking direction;
    The L gap region is characterized by comprising a Si segregation layer.
    Multilayer ceramic capacitor.
  2.  前記Si偏析層の厚みは、0.03μm以上0.15μm以下である、
     請求項1に記載の積層セラミックコンデンサ。
    The thickness of the Si segregation layer is 0.03 μm or more and 0.15 μm or less.
    The multilayer ceramic capacitor according to claim 1 .
  3.  前記第1の内部電極層の前記幅方向の端部、及び、前記第2の内部電極層の前記幅方向の端部には、前記Si偏析層が存在する、
     請求項1又は2に記載の積層セラミックコンデンサ。
    the Si segregation layer is present at an end portion in the width direction of the first internal electrode layer and an end portion in the width direction of the second internal electrode layer;
    3. The multilayer ceramic capacitor according to claim 1 or 2.
  4.  前記誘電体層の厚みは、0.4μm以上0.5μm以下である、
     請求項1から3のいずれか1項に記載の積層セラミックコンデンサ。
    The thickness of the dielectric layer is 0.4 μm or more and 0.5 μm or less.
    The multilayer ceramic capacitor according to claim 1 .
PCT/JP2023/030103 2022-09-27 2023-08-22 Multilayer ceramic capacitor WO2024070337A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-153369 2022-09-27
JP2022153369 2022-09-27

Publications (1)

Publication Number Publication Date
WO2024070337A1 true WO2024070337A1 (en) 2024-04-04

Family

ID=90477034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030103 WO2024070337A1 (en) 2022-09-27 2023-08-22 Multilayer ceramic capacitor

Country Status (1)

Country Link
WO (1) WO2024070337A1 (en)

Similar Documents

Publication Publication Date Title
US11557433B2 (en) Multilayer ceramic capacitor having certain thickness ratio of external electrode to cover layer
KR101514512B1 (en) A multilayer ceramic capacitor and a method for manufactuaring the same
KR101565640B1 (en) A multilayer ceramic capacitor and a method for manufactuaring the same
KR20190011219A (en) Multilayer ceramic capacitor
JP7081543B2 (en) Multilayer ceramic capacitors
US10957487B2 (en) Multilayer ceramic capacitor
KR102412702B1 (en) Multilayer ceramic capacitor and method of manufacturing multilayer ceramic capacitor
JP7363654B2 (en) Multilayer ceramic electronic components
US10170243B2 (en) Multilayer ceramic capacitor
JP2020053577A (en) Electronic component
KR20230040972A (en) Multi-layered ceramic capacitor and method of manufacturing the same
KR101872529B1 (en) Multi-layered chip electronic component
KR20170094487A (en) Multilayer ceramic capacitor
US9281121B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
KR101565725B1 (en) A multilayer ceramic capacitor and a method for manufactuaring the same
WO2024070337A1 (en) Multilayer ceramic capacitor
KR102403430B1 (en) Multilayer ceramic capacitor
WO2023218955A1 (en) Laminated ceramic capacitor
US20230101380A1 (en) Multilayer ceramic capacitor
JP7459858B2 (en) Multilayer ceramic capacitor and mounting structure of multilayer ceramic capacitor
WO2024075402A1 (en) Multilayer ceramic electronic component
CN216773068U (en) Multilayer ceramic capacitor
CN218351295U (en) Multilayer ceramic capacitor
WO2024062684A1 (en) Multilayer ceramic capacitor
KR101973452B1 (en) Multilayer ceramic capacitor