WO2024070281A1 - Display device and display device manufacturing method, and connecting film and connecting film manufacturing method - Google Patents

Display device and display device manufacturing method, and connecting film and connecting film manufacturing method Download PDF

Info

Publication number
WO2024070281A1
WO2024070281A1 PCT/JP2023/029363 JP2023029363W WO2024070281A1 WO 2024070281 A1 WO2024070281 A1 WO 2024070281A1 JP 2023029363 W JP2023029363 W JP 2023029363W WO 2024070281 A1 WO2024070281 A1 WO 2024070281A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
less
light
display device
mean square
Prior art date
Application number
PCT/JP2023/029363
Other languages
French (fr)
Japanese (ja)
Inventor
俊紀 白岩
怜司 塚尾
大樹 野田
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2024070281A1 publication Critical patent/WO2024070281A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • This technology relates to a display device in which light-emitting elements are connected and arranged via a connecting film such as an anisotropic conductive film (ACF) or an adhesive film (NCF: Non-Conductive Film), and a method for manufacturing the display device.
  • a connecting film such as an anisotropic conductive film (ACF) or an adhesive film (NCF: Non-Conductive Film)
  • NCF Non-Conductive Film
  • this technology relates to a display device in which LED elements such as mini-LEDs (Light Emitting Diodes) and micro-LEDs are connected and arranged, and a method for manufacturing the display device.
  • Mini-LED and micro-LED displays are constructed by arranging tiny light-emitting elements on a substrate, which means that the backlight required for LCD displays can be omitted, allowing displays to be made thinner, while also enabling wider color gamuts, higher definition, and lower power consumption.
  • Patent Document 1 discloses a method of joining LEDs with ACF.
  • ACF is attached to the entire surface of the element mounting surface of the substrate, so excellent light transmittance and visibility cannot always be obtained.
  • This technology has been proposed in light of the current situation, and provides a display device and a method for manufacturing a display device that can provide excellent light transmittance and visibility, as well as a connection film and a method for manufacturing a connection film.
  • a display device includes a plurality of light-emitting elements, a wiring board, and a cured film of a connection film that connects the plurality of light-emitting elements and the wiring board, the cured film having a first surface having a root-mean-square height of 3.0 ⁇ 10-1 or less, and the plurality of light-emitting elements are mounted on the first surface.
  • a manufacturing method for a display device includes a placement step of placing a connection film having a first surface with a root-mean-square height of 3.0 ⁇ 10-1 or less at a predetermined position on a wiring board, and a mounting step of mounting a plurality of light-emitting elements on the first surface and mounting the plurality of light-emitting elements on the wiring board.
  • the connecting film according to the present technology has a first surface having a root mean square height of 3.0 ⁇ 10 ⁇ 1 ⁇ m or less.
  • the method for producing a connecting film according to the present technology includes forming a connecting film on a base film having a root mean square height of 3.0 ⁇ 10 ⁇ 1 ⁇ m or less, and providing a first surface on the base film side having a root mean square height of 3.0 ⁇ 10 ⁇ 1 ⁇ m or less.
  • This technology makes it possible to suppress light scattering and achieve excellent light transmittance and visibility.
  • FIG. 1 is a diagram for explaining an example of a manufacturing method for a connection film (conductive film, anisotropic conductive film) in this embodiment, in which FIG. 1(A) shows a preparation process for preparing a base film, FIG. 1(B) shows a formation process for forming a connection film (conductive film, anisotropic conductive film) on the base film, and FIG. 1(C) shows an attachment process for attaching a cover film onto the connection film (conductive film, anisotropic conductive film).
  • FIG. 2 is a cross-sectional view showing a schematic example of a display device according to the present embodiment.
  • 3A and 3B are diagrams for explaining an example of a manufacturing method for a display device in this embodiment, in which FIG. 3A shows a placement process for placing a connecting film (conductive film, anisotropic conductive film) at a predetermined position on a wiring board, and FIG. 3B shows a mounting process for mounting a light-emitting element on the wiring board.
  • connection film (conductive film, anisotropic conductive film) according to the present embodiment has a first surface having a root mean square height equal to or less than a predetermined value.
  • a light emitting element is mounted using a connection film having such a first surface, a display device having excellent light transmittance and visibility can be obtained.
  • the root mean square height (Sq: Root Mean Square Height (surface roughness: ISO 25178)) is the root mean square deviation of the roughness profile (Rq: Root Mean Square Deviation of the Roughness Profile (Line Roughness: JIS B 0601)) extended to a surface.
  • the root mean square roughness Rq is the root mean square of the roughness curve Z(x) at the reference length l as shown in formula (1)
  • the root mean square height Sq corresponds to the standard deviation of the distance from the mean surface and corresponds to the standard deviation of the height as shown in formula (2).
  • the root mean square height Sq can be measured using a three-dimensional non-contact surface roughness measuring device.
  • the root mean square height of the first surface of the connecting film is preferably 3.0 ⁇ 10 ⁇ m or less, more preferably 2.0 ⁇ 10 ⁇ m or less, and even more preferably 1.0 ⁇ 10 ⁇ m or less. If the root mean square height is large, a lot of light scattering occurs, making it difficult to obtain excellent light transmittance and visibility.
  • the haze of the connection film is preferably less than 50%, more preferably less than 45%, and even more preferably less than 40%. Haze can be measured using a HAZEMETER in accordance with a method in accordance with JIS K7136.
  • the visible light transmittance of the connection film is preferably 30% or more, more preferably 40% or more, and even more preferably 45% or more.
  • the transmittance in the visible light region (380 nm to 780 nm) can be measured, for example, using a UV-Vis spectrophotometer.
  • the connection film may be provided with a base film having a root mean square height of a predetermined value or less on the first surface side.
  • the root mean square height of the base film is preferably 3.0 ⁇ 10 ⁇ 1 ⁇ m or less, more preferably 1.5 ⁇ 10 ⁇ 1 ⁇ m or less, and even more preferably 0.05 ⁇ 10 ⁇ 1 ⁇ m or less. If the root mean square height of the base film is large, it becomes difficult to obtain a connection film having a small root mean square height.
  • the connection film may be provided with a cover film on the second surface.
  • the storage modulus of the connection film at 30°C measured in a tensile mode in accordance with JIS K7244 after curing, is preferably 100 MPa or more, and more preferably 2000 MPa or more. If the storage modulus at 30°C is too low, good conductivity cannot be obtained and connection reliability tends to decrease.
  • the storage modulus at 30°C can be measured in a tensile mode using a viscoelasticity tester (Vibron) in accordance with JIS K7244 under measurement conditions of, for example, a frequency of 11 Hz and a heating rate of 3°C/min.
  • Vibron viscoelasticity tester
  • the binder of the connecting film is not particularly limited as long as it is hardened by energy such as heat or light, and can be appropriately selected from, for example, a thermosetting binder, a light-curing binder, or a binder that is hardened by both heat and light.
  • Thermosetting binders include, for example, a thermal anionic polymerization type resin composition containing an epoxy compound and a thermal anionic polymerization initiator, a thermal cationic polymerization type resin composition containing an epoxy compound and a thermal cationic polymerization initiator, and a thermal radical polymerization type resin composition containing a (meth)acrylate compound and a thermal radical polymerization initiator.
  • Thermosetting binders include, for example, a photocationic polymerization type resin composition containing an epoxy compound and a photocationic polymerization initiator, and a photoradical polymerization type resin composition containing a (meth)acrylate compound and a photoradical polymerization initiator.
  • Thermosetting and photosetting binders include a mixture of a thermosetting binder and a photosetting binder.
  • the (meth)acrylate compound includes both acrylic monomers (oligomers) and methacrylic monomers (oligomers).
  • thermosetting binder a thermal cationic polymerization type resin composition containing a film-forming resin, an epoxy compound, and a thermal cationic polymerization initiator will be described.
  • the film-forming resin corresponds to a high molecular weight resin having an average molecular weight of, for example, 10,000 or more, and from the viewpoint of film formability, the average molecular weight is preferably about 10,000 to 80,000.
  • the film-forming resin include various resins such as polyvinyl acetal resin, phenoxy resin, butyral resin, polyester resin, polyurethane resin, polyester urethane resin, acrylic resin, and polyimide resin, which may be used alone or in combination of two or more types. Among these, it is preferable to use polyvinyl acetal resin from the viewpoint of film formation state, connection reliability, etc.
  • the content of the film-forming resin is preferably 20 to 70 parts by mass, more preferably 30 to 60 parts by mass or less, and even more preferably 45 to 55 parts by mass, relative to 100 parts by mass of the thermosetting binder.
  • the epoxy compound is not particularly limited as long as it is an epoxy compound having one or more epoxy groups in the molecule, and may be, for example, a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, or a urethane-modified epoxy resin.
  • hydrogenated bisphenol A glycidyl ether can be preferably used.
  • a specific example of hydrogenated bisphenol A glycidyl ether is the product name "YX8000" manufactured by Mitsubishi Chemical Corporation.
  • the content of the epoxy compound is preferably 30 to 60 parts by mass, more preferably 35 to 55 parts by mass or less, and even more preferably 35 to 45 parts by mass, per 100 parts by mass of the thermosetting binder.
  • thermal cationic polymerization initiator a known initiator for thermal cationic polymerization of epoxy compounds can be used.
  • known iodonium salts, sulfonium salts, phosphonium salts, ferrocenes, etc. can be used, which generate an acid capable of cationic polymerization of a cationic polymerization compound by heat.
  • aromatic sulfonium salts that show good latency against temperature can be preferably used.
  • a specific example of an aromatic sulfonium salt-based polymerization initiator is "SI-60L" manufactured by Sanshin Chemical Industry Co., Ltd.
  • the content of the thermal cationic polymerization initiator is preferably 1 to 20 parts by mass, more preferably 5 to 15 parts by mass or less, and even more preferably 8 to 12 parts by mass, per 100 parts by mass of the thermosetting binder.
  • thermosetting binder examples include rubber components, inorganic fillers, silane coupling agents, diluting monomers, bulking agents, softeners, colorants, flame retardants, and thixotropic agents.
  • the rubber component is not particularly limited as long as it is an elastomer with high cushioning properties (shock absorption properties), and specific examples include acrylic rubber, silicone rubber, butadiene rubber, and polyurethane resin (polyurethane-based elastomer).
  • inorganic fillers silica, talc, titanium oxide, calcium carbonate, magnesium oxide, and the like can be used.
  • the inorganic fillers may be used alone or in combination of two or more types.
  • thermosetting binder with this composition can suppress the hardening reaction when forming individual pieces with laser light, and can quickly harden with heat during thermocompression bonding.
  • connection film may be a conductive film further containing conductive particles.
  • the conductive film include an isotropic conductive film and an anisotropic conductive film.
  • anisotropic conductive film will be described as one form of the conductive film.
  • the conductive particles may be appropriately selected from those used in known anisotropic conductive films.
  • the conductive particles include metal particles such as nickel (melting point 1455°C), copper (melting point 1085°C), silver (melting point 961.8°C), gold (melting point 1064°C), palladium (melting point 1555°C), tin (melting point 231.9°C), nickel boride (melting point 1230°C), ruthenium (melting point 2334°C), and solder, which is a tin alloy.
  • the conductive particles include metal-coated metal particles in which the surface of the metal particles is coated with a metal such as nickel, copper, silver, gold, palladium, tin, nickel boride, and ruthenium.
  • the conductive particles include metal-coated resin particles in which the surface of resin particles, such as polymers containing at least one monomer selected from polyamide, polybenzoguanamine, styrene, and divinylbenzene as monomer units, is coated with a metal such as nickel, copper, silver, gold, palladium, tin, nickel boride, and ruthenium.
  • resin particles such as polymers containing at least one monomer selected from polyamide, polybenzoguanamine, styrene, and divinylbenzene as monomer units
  • metal-coated inorganic particles in which the surfaces of inorganic particles such as silica, alumina, barium titanate, zirconia, carbon black, silicate glass, borosilicate glass, lead glass, soda-lime glass, and alumina silicate glass are coated with metals such as nickel, copper, silver, gold, palladium, tin, nickel boride, and ruthenium.
  • the coated metal layer of the metal-coated resin particles and metal-coated inorganic particles may be a single layer or a multilayer of different metals.
  • the conductive particles may be coated with insulating particles such as a resin layer, resin particles, or inorganic particles to provide an insulating coating.
  • the particle diameter of the conductive particles does not include the portion that is subjected to the insulating coating.
  • the particle diameter of the conductive particles may be appropriately changed depending on the optical element to be mounted, the electrodes of the wiring board, the area of the bumps, etc., but is preferably 1 to 30 ⁇ m, more preferably 1 to 10 ⁇ m, and particularly preferably 1 to 3 ⁇ m.
  • the particle diameter of the conductive particles is preferably 1 to 3 ⁇ m, more preferably 1 to 2.5 ⁇ m, and particularly preferably 1 to 2.2 ⁇ m.
  • the particle diameter can be determined by measuring 200 or more particles under a microscope (optical microscope, metallurgical microscope, electron microscope, etc.) and taking the average value.
  • the thickness of the metal coating is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, and preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, and even more preferably 0.3 ⁇ m or less.
  • this coating thickness is the thickness of the entire metal coating.
  • the metal coating thickness is equal to or greater than the above lower limit and equal to or less than the above upper limit, sufficient conductivity is easily obtained, and the conductive particles do not become too hard, making it easy to utilize the properties of the aforementioned resin particles or inorganic particles.
  • the metal coating thickness can be measured, for example, by observing the cross section of the conductive particle using a transmission electron microscope (TEM). It is preferable to calculate the coating thickness as the average of five arbitrary coating thicknesses as the coating thickness of one conductive particle, and it is more preferable to calculate the average thickness of the entire coating portion as the coating thickness of one conductive particle.
  • the coating thickness is preferably determined by calculating the average coating thickness of each of 10 arbitrary conductive particles.
  • the conductive particles may have a spherical, ellipsoidal, spike-like, or irregular shape. Among these, spherical conductive particles are preferred because they are easy to control the particle size and particle size distribution.
  • the conductive particles may have protrusions on their surfaces to improve connectivity.
  • the conductive particles are preferably aligned in the planar direction (regularly arranged in a planar view).
  • the state in which the conductive particles are aligned in the planar direction can be, for example, a planar lattice pattern having one or more arrangement axes in which the conductive particles are arranged in a specific direction at a specific pitch, such as an oblique lattice, a hexagonal lattice, a square lattice, a rectangular lattice, and a parallelepiped lattice.
  • the arrangement of the conductive particles in the planar direction can also be random, or the film can have multiple regions with different planar lattice patterns.
  • the particle surface density of the anisotropic conductive film can be appropriately designed according to the size of the electrode to be connected, and the lower limit of the particle surface density is not particularly limited as long as the performance is not impaired, and can be 30 pieces/ mm2 or more, 500 pieces/ mm2 or more, 20000 pieces/mm2 or more, 40000 pieces/ mm2 or more, or 50000 pieces/ mm2 or more, and the upper limit of the particle surface density can be 1500000 pieces/ mm2 or less, 1000000 pieces/ mm2 or less, 500000 pieces/ mm2 or less, or 100000 pieces/ mm2 or less. This makes it possible to obtain excellent conductivity and insulation even when the electrode size to be connected is small.
  • the anisotropic conductive film has an average particle size of the conductive particles of 3.0 ⁇ m or less, and the conductive particles are aligned at a particle surface density of 50000 pieces/mm2 or more .
  • the particle surface density of the anisotropic conductive film is that of the conductive particles arranged in the film during production.
  • the particle surface density can be calculated from the area obtained by excluding the spaces between the pieces from the area including the pieces and the spaces, and the number of particles.
  • the thickness of the anisotropic conductive film before connection is preferably 1 ⁇ m to 10 ⁇ m, more preferably 1 ⁇ m to 6 ⁇ m, and even more preferably 2 ⁇ m to 4 ⁇ m.
  • the thickness of the anisotropic conductive film before connection is preferably the average particle size of the conductive particles plus 1 to 4 ⁇ m, and particularly preferably 1 to 2 ⁇ m, since this tends to make the distance between the film and the electrode side surface of the micro LED approximately the same. It can be measured using a known micrometer or digital thickness gauge. The film thickness can be calculated, for example, by measuring at 10 or more points and averaging them.
  • connection film is not limited to the anisotropic conductive film described above, but may be a laminate of a conductive particle-containing layer that contains conductive particles, an adhesive layer that does not contain conductive particles, a pressure-sensitive adhesive layer, etc., and the number of layers and lamination surfaces can be appropriately selected according to the target and purpose.
  • connection film conductive film, anisotropic conductive film
  • the manufacturing method of the connection film (conductive film, anisotropic conductive film) according to the present embodiment is to form the connection film on a base film having a root mean square height equal to or less than a predetermined value, and obtain a connection film having a first surface on the base film side. This allows the surface condition of the base film to be reflected on the first surface of the connection film, and a first surface having a small root mean square height can be obtained.
  • FIG. 1 is a diagram for explaining an example of a method for manufacturing an anisotropic conductive film in this embodiment, where FIG. 1(A) shows a preparation process for preparing a base film, FIG. 1(B) shows a formation process for forming an anisotropic conductive film on the base film, and FIG. 1(C) shows an attachment process for attaching a cover film onto the anisotropic conductive film.
  • a base film 11 is prepared having a first surface 11a whose root mean square height is equal to or less than a predetermined value.
  • the root mean square height of the base film 11 is preferably equal to or less than 3.0 ⁇ 10 ⁇ 1 ⁇ m, more preferably equal to or less than 1.5 ⁇ 10 ⁇ 1 ⁇ m, and even more preferably equal to or less than 0.05 ⁇ 10 ⁇ 1 ⁇ m. If the root mean square height of the base film 11 is large, it becomes difficult to obtain an anisotropic conductive film with a small root mean square height.
  • the base film 11 is not particularly limited as long as it can support the anisotropic conductive film 12 and can be peeled off from the anisotropic conductive film 12 at the desired timing.
  • Materials for the base film 11 may include, for example, polyesters such as polyethylene terephthalate (PET), polyolefins such as polypropylene (PP), plastic materials such as poly-4-methylpen-1 (PMP) and polytetrafluoroethylene (PTFE), and glass substrates such as quartz glass.
  • PET polyethylene terephthalate
  • PP polyolefins
  • PMP poly-4-methylpen-1
  • PTFE polytetrafluoroethylene
  • glass substrates such as quartz glass.
  • the base film 11 may also have a release layer on the surface on the side that is bonded to the anisotropic conductive film 12, and the release layer may contain a release agent such as silicone resin or polyolefin resin.
  • the thickness of the base film 11 is not particularly limited, but from the viewpoint of efficiently forming a long film roll, it is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, even more preferably 60 ⁇ m or less, and even more preferably 50 ⁇ m or less.
  • the lower limit of the thickness of the base film 11 is not particularly limited, but from the viewpoint of handleability during the production of the connection film, during slitting, and during winding onto the core, it is preferably 8 ⁇ m or more.
  • an anisotropic conductive film 12 is formed on the first surface 11a of the base film 11.
  • methods for forming the anisotropic conductive film 12 include a method of applying a solution of a conductive adhesive onto the base film 11 and drying it, and a method of forming an adhesive layer that does not contain conductive particles on the base film 11 and fixing conductive particles to the obtained adhesive layer.
  • the conductive particles may be regularly arranged or randomly arranged when viewed from above.
  • the regularly arranged particles may be arranged by any known method as long as it does not impair the effects of the invention.
  • a binder is applied onto the base film 11, dried to form a resin film, the resin film is attached to an array sheet on which conductive particles are aligned in a predetermined array at a predetermined particle density, and the conductive particles are pressed into the resin film to transfer it, thereby forming the anisotropic conductive film 12.
  • the first surface of the anisotropic conductive film 12 reflects the surface condition of the first surface 11a of the base film 11, and a root-mean-square height of 3.0 ⁇ 10 ⁇ 1 or less can be obtained.
  • a cover film 13 is attached onto the second surface of the anisotropic conductive film 12 to prepare a film laminate.
  • the cover film 13 is not particularly limited as long as it can be peeled off from the second surface of the anisotropic conductive film 12 at a predetermined timing.
  • the material of the cover film 13 may be the same as that of the base film 11.
  • the cover film 13 may also have a peeling layer on the surface on the side that is bonded to the anisotropic conductive film 12.
  • the thickness of the cover film 13 is not particularly limited, but is preferably smaller than that of the base film 11.
  • the surface condition of the base film is reflected on the first surface of the connecting film, and a root mean square height of 3.0 ⁇ 10 ⁇ 1 or less can be obtained.
  • the anisotropic conductive film may be a piece of a predetermined unit, such as one pixel unit (one pixel unit) of one set of RGB, for example, when used in a micro LED.
  • the shape of the piece is not particularly limited and can be appropriately set according to the dimensions of the electronic component to be connected.
  • the shape of the piece is preferably at least one selected from a polygon having obtuse angles, a polygon having rounded corners, an ellipse, an oval, and a circle in order to suppress the occurrence of curling or chipping.
  • the dimensions of the pieces are set appropriately according to the dimensions of the electronic component or electrode to be connected, and the ratio of the area of the pieces to the area of the electronic component or electrode is preferably 2 or more, more preferably 4 or more, and even more preferably 5 or more. Even in the case of individual pieces, if the anisotropic conductive film is exposed from the outer shape of the micro-LED, it is considered that this aspect of the present invention is necessary to suppress the influence of optical characteristics.
  • the thickness of the individual pieces is the average particle size of the conductive particles plus preferably 1 to 4 ⁇ m, particularly preferably 1 to 2 ⁇ m, like the thickness of the anisotropic conductive film, and is preferably 1 ⁇ m to 10 ⁇ m, more preferably 1 ⁇ m to 6 ⁇ m, and even more preferably 2 ⁇ m to 4 ⁇ m.
  • the distance between the pieces on the base film is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and even more preferably 10 ⁇ m or more.
  • the upper limit of the distance between the pieces is preferably 3000 ⁇ m or less, more preferably 1000 ⁇ m or less, and even more preferably 500 ⁇ m or less. If the distance between the pieces is too small, it becomes difficult to transfer the pieces by LLO, and if the distance between the pieces is large, a method of attaching the pieces is preferable.
  • the distance between the pieces can be measured using a microscope (optical microscope, metallographic microscope, electron microscope, etc.).
  • the pieces may be formed by slitting or half-cutting, or may be formed using a laser lift-off device.
  • the substrate film may be any material that is transparent to laser light, and is preferably quartz glass, which has high light transmittance across all wavelengths.
  • an anisotropic conductive film provided on a base film is irradiated with laser light from the base film side, and the irradiated areas of the anisotropic conductive film are removed, thereby forming individual pieces of a predetermined shape made of anisotropic conductive film on the base film.
  • a mask with a rectangular opening window is used to remove unnecessary portions of the anisotropic conductive film from the base film, allowing individual pieces of a predetermined shape to be formed from the remaining portions of the anisotropic conductive film.
  • a mask with a predetermined shaped light-shielding portion formed in the opening window is used to remove unnecessary portions of the anisotropic conductive film around the individual pieces from the base film, allowing individual pieces of a predetermined shape to be formed from the remaining portions of the anisotropic conductive film.
  • the reaction rate of the pieces is 25% or less, preferably 20% or less, and more preferably 15% or less. This allows for excellent transferability.
  • the reaction rate of the curable resin film before laser irradiation and the pieces obtained after laser irradiation can be measured by, for example, the reduction rate of the reactive group using FT-IR.
  • the sample is irradiated with infrared rays to measure the IR spectrum, and the peak heights of the methyl group (near 2930 cm ⁇ 1 ) and the epoxy group (near 914 cm ⁇ 1 ) in the IR spectrum are measured, and the ratio of the peak height of the epoxy group to the peak height of the methyl group before and after the reaction (for example, before and after laser irradiation) can be calculated as shown in the following formula.
  • Reaction rate (%) ⁇ 1 - (a/b)/(A/B) ⁇ x 100
  • A is the peak height of the epoxy group before the reaction
  • B is the peak height of the methyl group before the reaction
  • a is the peak height of the epoxy group after the reaction
  • b is the peak height of the methyl group after the reaction. If the epoxy group peak overlaps with another peak, the peak height of the completely cured sample (reaction rate 100%) may be set to 0%.
  • the display device includes a plurality of light-emitting elements, a wiring board, and a cured film of a connection film that connects the plurality of light-emitting elements and the wiring board, and the cured film has a root mean square height of
  • the light-emitting element has a first surface having a refractive index of 3.0 ⁇ 10 ⁇ 1 or less, and a plurality of light-emitting elements are mounted on the first surface.
  • an adhesive layer that does not contain conductive particles can be used as the connection film.
  • an anisotropic conductive film can be used as the connection film.
  • FIG. 2 is a cross-sectional view showing a schematic example of a display device according to the present embodiment.
  • the display device includes a plurality of light-emitting elements 30, a wiring board 20 on which the plurality of light-emitting elements 30 are arranged, and a cured film 40 of an anisotropic conductive film that connects the plurality of light-emitting elements 30 to the wiring board 20.
  • the display device includes a plurality of light-emitting elements 30, a wiring board 20 on which the plurality of light-emitting elements 30 are arranged, and a cured film 40 of an anisotropic conductive film that connects the plurality of light-emitting elements 30 to the wiring board 20.
  • the display device includes a plurality of light-emitting elements 30, a wiring board 20 on which the plurality of light-emitting elements 30 are arranged, and a cured film 40 of an anisotropic conductive film that connects the plurality of light-emitting elements 30 to the wiring board 20
  • the wiring board 20 has a circuit pattern for a first conductivity type and a circuit pattern for a second conductivity type on a base material, and has a first electrode and a second electrode at positions corresponding to the first conductivity type electrode on the p side and the second conductivity type electrode on the n side, respectively, so that the light-emitting elements 30 are arranged in units of subpixels that make up one pixel.
  • the wiring board 20 also forms circuit patterns such as data lines and address lines of the matrix wiring, and enables the light-emitting elements corresponding to each subpixel that makes up one pixel to be turned on and off.
  • One pixel may be composed of, for example, three subpixels of R (red), G (green), and B (blue), four subpixels of RGBW (white) and RGBY (yellow), or two subpixels of RG and GB.
  • the wiring substrate 20 is preferably a light-transmitting substrate, and the base material is preferably glass, PET (Polyethylene Terephthalate), or the like.
  • the first electrode 22 and the second electrode 23 are preferably transparent conductive films such as ITO (Indium-Tin-Oxide), IZO (Indium-Zinc-Oxide), ZnO (Zinc-Oxide), and IGZO (Indium-Gallium-Zinc-Oxide).
  • the light-emitting element 30 includes a body, a first-conductivity-type electrode, and a second-conductivity-type electrode, and has a horizontal structure in which the first-conductivity-type electrode and the second-conductivity-type electrode are arranged on the same surface side.
  • the body includes a first-conductivity-type clad layer made of, for example, n-GaN, an active layer made of, for example, an In x Al y Ga 1-x-y N layer, and a second-conductivity-type clad layer made of, for example, p-GaN, and has a so-called double heterostructure.
  • the first-conductivity-type electrode is formed on a part of the first-conductivity-type clad layer by a passivation layer, and the second-conductivity-type electrode is formed on a part of the second-conductivity-type clad layer.
  • a voltage is applied between the first-conductivity-type electrode and the second-conductivity-type electrode, carriers are concentrated in the active layer and recombined to generate light emission.
  • the cured film 40 is the cured anisotropic conductive film 12 described above.
  • the cured film 40 may be formed, for example, over the entire display area of the wiring board 20, or may be formed in individual pieces of a predetermined unit in a part of the display area, such as one pixel unit (one picture element unit) of one set of RGB.
  • the root mean square height of the first surface of the cured film 40 on which the light emitting element 30 is mounted is preferably 3.0 ⁇ 10 ⁇ 1 ⁇ m or less, more preferably 2.0 ⁇ 10 ⁇ 1 ⁇ m or less, and even more preferably 1.0 ⁇ 10 ⁇ 1 ⁇ m or less. If the root mean square height is large, a lot of light scattering occurs, making it difficult to obtain excellent light transmittance and visibility.
  • the haze of the cured film 40 is preferably less than 50%, more preferably less than 45%, and even more preferably less than 40%. Haze can be measured using a HAZEMETER in accordance with a method in accordance with JIS K7136.
  • the visible light transmittance of the cured film 40 is preferably 30% or more, more preferably 40% or more, and even more preferably 45% or more.
  • the transmittance in the visible light region (380 nm to 780 nm) can be measured, for example, using a UV-Vis spectrophotometer.
  • the cured film 40 is preferably arranged with conductive particles in the surface direction, similar to the anisotropic conductive film described above.
  • the particle surface density of the cured film can be appropriately designed according to the electrode size of the light-emitting element 30, and the lower limit of the particle surface density is not particularly limited as long as it does not impair performance, and can be 30 pieces/mm 2 or more, 500 pieces/mm 2 or more, 20000 pieces/mm 2 or more, 40000 pieces/mm 2 or more, or 50000 pieces/mm 2 or more, and the upper limit of the particle surface density can be 1500000 pieces/mm 2 or less, 1000000 pieces/mm 2 or less, 500000 pieces/mm 2 or less, or 100000 pieces/mm 2 or less. This allows excellent conductivity and insulation to be obtained even when the electrode size of the light-emitting element 30 is small.
  • the particle surface density of the cured film 40 is that of the conductive particles when formed into a film during production. This is the same whether the measurement is for a randomly arranged portion or an arranged portion.
  • the particle surface density can be calculated from the area including the individual pieces and spaces, excluding the spaces between the pieces, and the number of particles. There are cases where it is inappropriate to express the individual pieces in terms of number density, and there are cases where it is appropriate to express them in terms of the particle area ratio in one piece, particle diameter, inter-particle center distance, and number.
  • the thickness of the cured film 40 is preferably 1 to 4 ⁇ m, and particularly preferably 1 to 2 ⁇ m, added to the average particle size of the conductive particles. This makes it possible to reduce the difference between the height Ha of the first surface of the cured film 40 between the light-emitting elements 30 and the height Hb of the bottom surface of the body of the light-emitting element 30.
  • the height Hb of the bottom surface of the body of the light-emitting element 30 is the height from the bottom surface excluding the electrodes, and if there is a step on the bottom surface, it can be taken as the average value of the bottom surface with the step.
  • the difference between the height Ha of the first surface of the cured film 40 between the light-emitting elements 30 and the height Hb of the bottom surface of the body of the light-emitting element 30 is preferably 1 ⁇ m or less, more preferably 0.8 ⁇ m or less, and even more preferably 0.6 ⁇ m or less.
  • the first surface of the cured film 40 on which the light-emitting element 30 is mounted is optically flat, suppressing light scattering and providing excellent light transmittance and visibility that could not be achieved with conventional connections using ACP, ACF, NCF, etc.
  • connection structure in which a first electronic component and a second electronic component are connected. That is, the connection structure includes a first electronic component, a second electronic component, and a cured film that connects the first electronic component and the second electronic component, the cured film has a first surface having a root-mean-square height of 3.0 ⁇ 10 ⁇ 1 or less, and the first electronic component is mounted on the first surface.
  • Examples of the first electronic component and the second electronic component include light-emitting elements, ICs (Integrated Circuits), flexible printed circuits (FPCs), LCD (Liquid Crystal Display) panels, transparent substrates for flat panel display (FPD) applications such as organic electroluminescence (OLED), touch panel applications, and printed wiring boards (PWBs).
  • the material of the printed wiring board is not particularly limited, and may be, for example, glass epoxy such as FR-4 base material, or plastics such as thermoplastic resins and ceramics.
  • the transparent substrate is not particularly limited as long as it is highly transparent, and examples include glass substrates and plastic substrates.
  • the second electronic component may be provided with, for example, a silicone rubber layer.
  • the manufacturing method of the display device includes a placement step of placing a connection film having a first surface with a root mean square height of a predetermined value or less at a predetermined position on a wiring board, and a mounting step of mounting a plurality of light emitting elements on the first surface and mounting the plurality of light emitting elements on the wiring board.
  • a placement step of placing a connection film having a first surface with a root mean square height of a predetermined value or less at a predetermined position on a wiring board and a mounting step of mounting a plurality of light emitting elements on the first surface and mounting the plurality of light emitting elements on the wiring board.
  • an adhesive layer that does not contain conductive particles can be used as the connection film.
  • an anisotropic conductive film can be used as the connection film.
  • FIG. 3 is a diagram for explaining an example of a manufacturing method for a display device in this embodiment, where FIG. 3(A) shows a placement process for placing an anisotropic conductive film at a predetermined position on a wiring board, and FIG. 3(B) shows a mounting process for mounting a light-emitting element on the wiring board.
  • the anisotropic conductive film 12, wiring board 20, and light-emitting element 30 are the same as those described above for the connection film and display device, so they are given the same reference numerals and their description is omitted.
  • the anisotropic conductive film 12 formed on the base film 11 is placed at a predetermined position on the wiring board 20.
  • the cover film 13 is peeled off from the anisotropic conductive film 12
  • the second surface of the anisotropic conductive film 12 is placed in contact with the wiring board 20
  • the base film 11 is peeled off from the anisotropic conductive film 12
  • the first surface of the anisotropic conductive film 12 is used as the mounting surface.
  • the anisotropic conductive film 12 may be disposed, for example, over the entire display area of the wiring board 20, or may be disposed in individual pieces of a predetermined unit in part of the display area, such as one pixel unit (one picture element unit) of one set of RGB.
  • the method of arranging the anisotropic conductive film 12 on the wiring board 20 is not particularly limited.
  • a lamination method can be used.
  • a method of directly transferring and arranging the individual pieces from the base film 11 to the wiring board 20 using an LLO device, or a method of using a transfer material (stamp material) to which the individual pieces have been previously adhered, and transferring and arranging the individual pieces from the transfer material to the wiring board 20 can be used.
  • the light emitting element 30 is mounted on the first surface of the anisotropic conductive film 12 arranged at a predetermined position on the wiring board 20.
  • the method of arranging the light emitting element in the mounting process is not particularly limited. For example, there is a method of arranging the light emitting element on the wiring board using an LLO device, a method of using a transfer material (stamp material) to which the light emitting element has been previously adhered, and a method of arranging the light emitting element from the transfer material to the wiring board.
  • the light-emitting element 30 can be connected to the wiring board 20 by any suitable method, such as thermocompression bonding, photocompression bonding, or thermo-photocompression bonding, which are all used in known anisotropic conductive films. If the conductive particles are solder particles, they may be connected by reflow. Connection conditions include, for example, a temperature of 150°C to 260°C, a pressure of 1 MPa to 60 MPa, and a time of 5 seconds to 300 seconds. As the anisotropic conductive film hardens, a hardened film is formed, allowing the light-emitting element 30 to be anisotropically connected to the wiring board 20.
  • the manufacturing method of the display device as a display is given as an example, but the present technology is not limited thereto, and can be applied to, for example, a manufacturing method of a light-emitting device as a light source. Also, the present technology can be applied to a manufacturing method of a connection structure that connects a first electronic component and a second electronic component.
  • the manufacturing method of the connection structure includes a placement step of placing a connection film having a first surface whose root mean square height is a predetermined value or less at a predetermined position of the first electronic component, and a mounting step of mounting a plurality of second electronic components on the first surface and mounting the plurality of second electronic components on the first electronic component.
  • the first electronic component and the second electronic component include those similar to the connection structure described above.
  • the haze of the sample was measured using a HAZEMETER (HM-150, manufactured by Murakami Color Research Laboratory) according to a method in accordance with JIS K7136.
  • the haze was evaluated according to the haze (%) on both the plain glass side and the anisotropic conductive film side of the sample, according to the following criteria.
  • the haze is preferably evaluated as B or higher. A: Less than 40% B: Between 40% and 50% C: 50% or more
  • a binder was prepared by mixing 50 wt % of polyvinyl acetal resin (product name: KS-10, manufactured by Sekisui Chemical Co., Ltd.), 40 wt % of high-purity hydrogenated epoxy resin (product name: YX8000, manufactured by Mitsubishi Chemical Corporation), and 10 wt % of a cationic polymerization initiator (product name: SI-60L, manufactured by Sanshin Chemical Industry Co., Ltd.).
  • the binder was applied to a PET (Poly Ethylene Terephthalate) film (product name: SP3040ASCR, manufactured by Toyo Cross Co., Ltd.) having a root mean square height (Sq) of 1.2 ⁇ 10 ⁇ 3 and a thickness of 50 ⁇ m as a base film, and dried to form a resin film.
  • a PET Poly Ethylene Terephthalate
  • SP3040ASCR root mean square height
  • a PET (Poly Ethylene Terephthalate) film (product name: RSP3030FA2S, manufactured by Toyo Cross Co., Ltd.) having a thickness of 25 ⁇ m was attached to the transfer surface of the conductive particles as a cover film, and an anisotropic conductive film in which conductive particles were aligned to a thickness of 4 ⁇ m was produced.
  • the cover film was peeled off from the anisotropic conductive film measuring 30 mm x 40 mm and 4 ⁇ m thick, and the conductive particle transfer surface was attached to plain glass measuring 40 mm x 70 mm and 0.4 mm thick, after which the base film was peeled off to produce a sample with the first surface of the anisotropic conductive film on its surface.
  • the bonding conditions were a temperature of 50°C, a vacuuming time of 10 seconds, a pressure time of 10 seconds, and a pressure of 0.1 MPa.
  • Example 1 As shown in Table 1, the sample of Example 1 had an Sq of 6.0 ⁇ 10 ⁇ 2 ⁇ m, a haze rating of A, and a visible light transmittance rating of A.
  • Example 2 An anisotropic conductive film was produced using a PET film with a root mean square height (Sq) of 1.1 ⁇ 10 ⁇ 1 ⁇ m and a thickness of 50 ⁇ m as the base film, and a sample was produced in the same manner as in Example 1, except that the film was cured at a temperature of 200° C. for 10 minutes.
  • Sq root mean square height
  • Example 2 As shown in Table 1, the sample of Example 2 had an Sq of 8.0 ⁇ 10 ⁇ 2 ⁇ m, a haze rating of A, and a visible light transmittance rating of A.
  • Example 3 A sample was prepared in the same manner as in Example 1, except that a PET film having a root mean square height (Sq) of 1.1 ⁇ 10 ⁇ 1 ⁇ m and a thickness of 50 ⁇ m was used as the substrate film.
  • Sq root mean square height
  • Example 3 As shown in Table 1, the sample of Example 3 had an Sq of 9.0 ⁇ 10 ⁇ 2 ⁇ m, a haze rating of A, and a visible light transmittance rating of B.
  • Example 4 A sample was prepared in the same manner as in Example 1, except that a PET film having a root-mean-square height (Sq) of 2.8 ⁇ 10 ⁇ 1 ⁇ m and a thickness of 50 ⁇ m was used as the substrate film.
  • Sq root-mean-square height
  • Example 4 had an Sq of 2.6 ⁇ 10 ⁇ 1 ⁇ m, a haze rating of B, and a visible light transmittance rating of B.
  • Example 1 A sample was prepared in the same manner as in Example 1, except that a PET film having a root mean square height (Sq) of 5.0 ⁇ 10 ⁇ 1 ⁇ m or more and a thickness of 50 ⁇ m was used as the base film.
  • Sq root mean square height
  • the sample of Comparative Example 1 had an Sq of 5.0 ⁇ 10 ⁇ 1 ⁇ m or more, a haze rating of C, and a visible light transmittance rating of C.
  • Example 2 A sample was prepared in the same manner as in Example 1, except that a PET film having a root mean square height (Sq) of 7.0 ⁇ 10 ⁇ 1 ⁇ m or more and a thickness of 50 ⁇ m was used as the base film.
  • Sq root mean square height
  • the sample of Comparative Example 2 had an Sq of 7.0 ⁇ 10 ⁇ 1 ⁇ m or more, a haze rating of C, and a visible light transmittance rating of C.
  • the root mean square height of the first surface of the anisotropic conductive film was 3.0 ⁇ 10 ⁇ 1 ⁇ m or less, so good haze evaluations and visible light transmittance evaluations could be obtained, and it was found that it was possible to improve the light transmittance and visibility of the display device.
  • the root mean square height of the first surface of the anisotropic conductive film was 1.0 ⁇ 10 ⁇ 1 ⁇ m or less, so the haze could be made less than 40%. Also, as a result of comparing Example 2 with Example 3, it was found that the visible light transmittance was improved by curing the anisotropic conductive film.

Abstract

Provided are: a display device and a display device manufacturing method with which it is possible to obtain excellent light transmission and visibility; and a connecting film, and a connecting film manufacturing method. This display device comprises a plurality of light emitting elements (30), a wiring substrate (20), and a cured film (40) of a connecting film that connects the plurality of light emitting elements (30) and the wiring substrate (20), wherein the cured film (40) has a first surface (40a) for which the root mean square height is 3.0×10-1 μm or lower, and the plurality of light emitting elements (30) are mounted on the first surface 40a. This makes it possible to suppress light scattering and to obtain excellent light transmission and visibility.

Description

表示装置及び表示装置の製造方法、並びに接続フィルム及び接続フィルムの製造方法Display device and method for manufacturing the same, connection film and method for manufacturing the same
 本技術は、異方性導電フィルム(ACF:Anisotropic Conductive Film)、接着剤フィルム(NCF:Non Conductive Film)等の接続フィルムを介して発光素子を接続させ、配列させた表示装置及び表示装置の製造方法に関する。特にミニLED(Light Emitting Diode)、マイクロLED等のLED素子を接続させ、配列させた表示装置及び表示装置の製造方法に関する。本出願は、日本国において2022年9月28日に出願された日本特許出願番号特願2022-155321を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。 This technology relates to a display device in which light-emitting elements are connected and arranged via a connecting film such as an anisotropic conductive film (ACF) or an adhesive film (NCF: Non-Conductive Film), and a method for manufacturing the display device. In particular, this technology relates to a display device in which LED elements such as mini-LEDs (Light Emitting Diodes) and micro-LEDs are connected and arranged, and a method for manufacturing the display device. This application claims priority based on Japanese Patent Application No. 2022-155321, filed in Japan on September 28, 2022, which application is incorporated herein by reference.
 次世代ディスプレイとして、ミニLEDやマイクロLEDディスプレイの開発が注目を集めている。ミニLEDやマイクロLEDディスプレイは、微小な発光素子を基板上に配列して構成されているため、液晶ディスプレイに必要とされるバックライトを省略可能であり、ディスプレイの薄膜化を図ることができ、また、さらなる広色域化、高精細化、省電力化を図ることができる。 The development of mini-LED and micro-LED displays is attracting attention as the next generation of displays. Mini-LED and micro-LED displays are constructed by arranging tiny light-emitting elements on a substrate, which means that the backlight required for LCD displays can be omitted, allowing displays to be made thinner, while also enabling wider color gamuts, higher definition, and lower power consumption.
 特許文献1には、LEDをACFで接合する工法が開示されている。特許文献1に記載の工法では、ACFを基板の素子搭載面の全面に貼り付けるため、優れた光透過性及び視認性が得られないことがあった。 Patent Document 1 discloses a method of joining LEDs with ACF. In the method described in Patent Document 1, ACF is attached to the entire surface of the element mounting surface of the substrate, so excellent light transmittance and visibility cannot always be obtained.
特開2017-157724号公報JP 2017-157724 A
 本技術は、このような従来の実情に鑑みて提案されたものであり、優れた光透過性及び視認性を得ることができる表示装置及び表示装置の製造方法、並びに接続フィルム及び接続フィルムの製造方法を提供する。 This technology has been proposed in light of the current situation, and provides a display device and a method for manufacturing a display device that can provide excellent light transmittance and visibility, as well as a connection film and a method for manufacturing a connection film.
 本技術に係る表示装置は、複数の発光素子と、配線基板と、前記複数の発光素子と配線基板とを接続した接続フィルムの硬化膜とを備え、前記硬化膜が、二乗平均平方根高さが3.0×10-1以下である第1面を有し、前記複数の発光素子が、前記第1面上に実装されてなる。 A display device according to the present technology includes a plurality of light-emitting elements, a wiring board, and a cured film of a connection film that connects the plurality of light-emitting elements and the wiring board, the cured film having a first surface having a root-mean-square height of 3.0× 10-1 or less, and the plurality of light-emitting elements are mounted on the first surface.
 本技術に係る表示装置の製造方法は、配線基板の所定位置に、二乗平均平方根高さが3.0×10-1以下である第1面を有する接続フィルムを配置する配置工程と、前記第1面に複数の発光素子を搭載し、前記複数の発光素子を配線基板に実装させる実装工程とを有する。 A manufacturing method for a display device according to the present technology includes a placement step of placing a connection film having a first surface with a root-mean-square height of 3.0 × 10-1 or less at a predetermined position on a wiring board, and a mounting step of mounting a plurality of light-emitting elements on the first surface and mounting the plurality of light-emitting elements on the wiring board.
 本技術に係る接続フィルムは、二乗平均平方根高さが3.0×10-1μm以下である第1面を有する。 The connecting film according to the present technology has a first surface having a root mean square height of 3.0×10 −1 μm or less.
 本技術に係る接続フィルムの製造方法は、二乗平均平方根高さが3.0×10-1μm以下である基材フィルム上に接続フィルムを形成し、前記基材フィルム側に二乗平均平方根高さが3.0×10-1μm以下である第1面を有する。 The method for producing a connecting film according to the present technology includes forming a connecting film on a base film having a root mean square height of 3.0×10 −1 μm or less, and providing a first surface on the base film side having a root mean square height of 3.0×10 −1 μm or less.
 本技術によれば、光散乱を抑制し、優れた光透過性及び視認性を得ることができる。 This technology makes it possible to suppress light scattering and achieve excellent light transmittance and visibility.
図1は、本実施の形態における接続フィルム(導電フィルム、異方性導電フィルム)の製造方法の一例を説明するための図であり、図1(A)は、基材フィルムを準備する準備工程を示し、図1(B)は、基材フィルム上に接続フィルム(導電フィルム、異方性導電フィルム)を形成する形成工程を示し、図1(C)は、接続フィルム(導電フィルム、異方性導電フィルム)上にカバーフィルムを貼り付ける貼付工程を示す。FIG. 1 is a diagram for explaining an example of a manufacturing method for a connection film (conductive film, anisotropic conductive film) in this embodiment, in which FIG. 1(A) shows a preparation process for preparing a base film, FIG. 1(B) shows a formation process for forming a connection film (conductive film, anisotropic conductive film) on the base film, and FIG. 1(C) shows an attachment process for attaching a cover film onto the connection film (conductive film, anisotropic conductive film). 図2は、本実施の形態における表示装置の一例を模式的に示す断面図である。FIG. 2 is a cross-sectional view showing a schematic example of a display device according to the present embodiment. 図3は、本実施の形態における表示装置の製造方法の一例を説明するための図であり、図3(A)は、配線基板の所定位置に接続フィルム(導電フィルム、異方性導電フィルム)を配置する配置工程を示し、図3(B)は、発光素子を配線基板に実装させる実装工程を示す。3A and 3B are diagrams for explaining an example of a manufacturing method for a display device in this embodiment, in which FIG. 3A shows a placement process for placing a connecting film (conductive film, anisotropic conductive film) at a predetermined position on a wiring board, and FIG. 3B shows a mounting process for mounting a light-emitting element on the wiring board.
 以下、本技術の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1.接続フィルム
2.接続フィルムの製造方法
3.表示装置
4.表示装置の製造方法
5.実施例
Hereinafter, embodiments of the present technology will be described in detail with reference to the drawings in the following order.
1. Connecting film 2. Manufacturing method of connecting film 3. Display device 4. Manufacturing method of display device 5. Examples
 <1.接続フィルム>
 本実施の形態に係る接続フィルム(導電フィルム、異方性導電フィルム)は、二乗平均平方根高さが所定値以下である第1面を有するものである。このような第1面を有する接続フィルムを用いて発光素子を実装した場合、優れた光透過性及び視認性を有する表示装置を得ることができる。
<1. Connection film>
The connection film (conductive film, anisotropic conductive film) according to the present embodiment has a first surface having a root mean square height equal to or less than a predetermined value. When a light emitting element is mounted using a connection film having such a first surface, a display device having excellent light transmittance and visibility can be obtained.
 ここで、二乗平均平方根高さ(Sq:Root Mean Square Height(面粗さ:ISO 25178))は、二乗平均平方根粗さ(Rq:Root Mean Square deviation of the roughness profile(線粗さ:JIS B 0601))を面に拡張したものである。二乗平均平方根粗さRqは、式(1)に示すように、基準長さlにおける粗さ曲線Z(x)の二乗平均平方根であり、二乗平均平方根高さSqは、式(2)に示すように、平均面からの距離の標準偏差に相当し、高さの標準偏差に相当する。二乗平均平方根高さSqは、3次元非接触表面粗度測定計にて測定することができる。 Here, the root mean square height (Sq: Root Mean Square Height (surface roughness: ISO 25178)) is the root mean square deviation of the roughness profile (Rq: Root Mean Square Deviation of the Roughness Profile (Line Roughness: JIS B 0601)) extended to a surface. The root mean square roughness Rq is the root mean square of the roughness curve Z(x) at the reference length l as shown in formula (1), and the root mean square height Sq corresponds to the standard deviation of the distance from the mean surface and corresponds to the standard deviation of the height as shown in formula (2). The root mean square height Sq can be measured using a three-dimensional non-contact surface roughness measuring device.
 接続フィルムにおける第1面の二乗平均平方根高さは、好ましくは3.0×10-1μm以下、より好ましくは2.0×10-1μm以下、さらに好ましくは1.0×10-1μm以下である。二乗平均平方根高さが大きくなると、光散乱が多く発生し、優れた光透過性及び視認性を得ることが困難となる。 The root mean square height of the first surface of the connecting film is preferably 3.0× 10 μm or less, more preferably 2.0× 10 μm or less, and even more preferably 1.0× 10 μm or less. If the root mean square height is large, a lot of light scattering occurs, making it difficult to obtain excellent light transmittance and visibility.
 接続フィルムのヘイズは、好ましくは50%未満、より好ましくは45%未満、さらに好ましくは40%未満である。ヘイズは、HAZEMETERを用いて、JIS K7136に準拠した方法で測定するこができる。 The haze of the connection film is preferably less than 50%, more preferably less than 45%, and even more preferably less than 40%. Haze can be measured using a HAZEMETER in accordance with a method in accordance with JIS K7136.
 接続フィルムの可視光透過率は、好ましくは30%以上、より好ましくは40%以上、さらに好ましくは45%以上である。可視光領域(380nm~780nm)の透過率は、例えば紫外可視分光光度計を用いて測定することができる。 The visible light transmittance of the connection film is preferably 30% or more, more preferably 40% or more, and even more preferably 45% or more. The transmittance in the visible light region (380 nm to 780 nm) can be measured, for example, using a UV-Vis spectrophotometer.
 接続フィルムは、第1面側に二乗平均平方根高さが所定値以下である基材フィルムを備えたものであってもよい。基材フィルムの二乗平均平方根高さは、好ましくは3.0×10-1μm以下、より好ましくは1.5×10-1μm以下、さらに好ましくは0.05×10-1μm以下である。基材フィルムの二乗平均平方根高さが大きくなると、二乗平均平方根高さが小さい接続フィルムを得ることが困難となる。また、接続フィルムは、取り扱い性の観点からは、第2面にカバーフィルムを設けたものであってもよい。 The connection film may be provided with a base film having a root mean square height of a predetermined value or less on the first surface side. The root mean square height of the base film is preferably 3.0×10 −1 μm or less, more preferably 1.5×10 −1 μm or less, and even more preferably 0.05×10 −1 μm or less. If the root mean square height of the base film is large, it becomes difficult to obtain a connection film having a small root mean square height. In addition, from the viewpoint of handling, the connection film may be provided with a cover film on the second surface.
 接続フィルムは、硬化後のJIS K7244に準拠した引張モードで測定された温度30℃における貯蔵弾性率が、100MPa以上であることが好ましく、2000MPa以上であることがさらに好ましい。温度30℃における貯蔵弾性率が低すぎる場合、良好な導通性が得られず、接続信頼性も低下する傾向にある。温度30℃における貯蔵弾性率は、JIS K7244に準拠し、粘弾性試験機(バイブロン)を用いた引張モードで、例えば、周波数11Hz、昇温速度3℃/minの測定条件で測定することができる。 The storage modulus of the connection film at 30°C, measured in a tensile mode in accordance with JIS K7244 after curing, is preferably 100 MPa or more, and more preferably 2000 MPa or more. If the storage modulus at 30°C is too low, good conductivity cannot be obtained and connection reliability tends to decrease. The storage modulus at 30°C can be measured in a tensile mode using a viscoelasticity tester (Vibron) in accordance with JIS K7244 under measurement conditions of, for example, a frequency of 11 Hz and a heating rate of 3°C/min.
 接続フィルムのバインダーは、熱、光などのエネルギーにより硬化するものであれば、特に限定されるものではなく、例えば、熱硬化型バインダー、光硬化型バインダー、熱・光併用硬化型バインダーなどから適宜選択することができる。 The binder of the connecting film is not particularly limited as long as it is hardened by energy such as heat or light, and can be appropriately selected from, for example, a thermosetting binder, a light-curing binder, or a binder that is hardened by both heat and light.
 熱硬化型バインダーとしては、例えば、エポキシ化合物と熱アニオン重合開始剤とを含む熱アニオン重合型樹脂組成物、エポキシ化合物と熱カチオン重合開始剤とを含む熱カチオン重合型樹脂組成物、(メタ)アクリレート化合物と熱ラジカル重合開始剤とを含む熱ラジカル重合型樹脂組成物などが挙げられる。光硬化型バインダーとしては、例えば、エポキシ化合物と光カチオン重合開始剤とを含む光カチオン重合型樹脂組成物、(メタ)アクリレート化合物と光ラジカル重合開始剤とを含む光ラジカル重合型樹脂組成物などが挙げられる。熱・光併用硬化型バインダーとしては、熱硬化型バインダーと光硬化型バインダーとの混合物などが挙げられる。なお、(メタ)アクリレート化合物とは、アクリルモノマー(オリゴマー)、及びメタクリルモノマー(オリゴマー)のいずれも含む意味である。 Thermosetting binders include, for example, a thermal anionic polymerization type resin composition containing an epoxy compound and a thermal anionic polymerization initiator, a thermal cationic polymerization type resin composition containing an epoxy compound and a thermal cationic polymerization initiator, and a thermal radical polymerization type resin composition containing a (meth)acrylate compound and a thermal radical polymerization initiator. Thermosetting binders include, for example, a photocationic polymerization type resin composition containing an epoxy compound and a photocationic polymerization initiator, and a photoradical polymerization type resin composition containing a (meth)acrylate compound and a photoradical polymerization initiator. Thermosetting and photosetting binders include a mixture of a thermosetting binder and a photosetting binder. The (meth)acrylate compound includes both acrylic monomers (oligomers) and methacrylic monomers (oligomers).
 (熱カチオン重合型樹脂組成物)
 以下では、熱硬化型バインダーの具体例として、膜形成樹脂と、エポキシ化合物と、熱カチオン重合開始剤とを含む熱カチオン重合型樹脂組成物を例に挙げて説明する。
(Thermal Cationic Polymerization Resin Composition)
In the following, as a specific example of the thermosetting binder, a thermal cationic polymerization type resin composition containing a film-forming resin, an epoxy compound, and a thermal cationic polymerization initiator will be described.
 膜形成樹脂としては、例えば平均分子量が10000以上の高分子量樹脂に相当し、フィルム形成性の観点から、10000~80000程度の平均分子量であることが好ましい。膜形成樹脂としては、ポリビニルアセタール樹脂、フェノキシ樹脂、ブチラール樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリエステルウレタン樹脂、アクリル樹脂、ポリイミド樹脂等の種々の樹脂が挙げられ、これらは単独で用いてもよく、2種類以上を組み合わせて用いてもよい。これらの中でも、膜形成状態、接続信頼性等の観点からポリビニルアセタール樹脂を用いることが好ましい。膜形成樹脂の含有量は、熱硬化型バインダー100質量部に対し、好ましくは20~70質量部、より好ましくは30~60質量部以下、さらに好ましくは45~55質量部である。 The film-forming resin corresponds to a high molecular weight resin having an average molecular weight of, for example, 10,000 or more, and from the viewpoint of film formability, the average molecular weight is preferably about 10,000 to 80,000. Examples of the film-forming resin include various resins such as polyvinyl acetal resin, phenoxy resin, butyral resin, polyester resin, polyurethane resin, polyester urethane resin, acrylic resin, and polyimide resin, which may be used alone or in combination of two or more types. Among these, it is preferable to use polyvinyl acetal resin from the viewpoint of film formation state, connection reliability, etc. The content of the film-forming resin is preferably 20 to 70 parts by mass, more preferably 30 to 60 parts by mass or less, and even more preferably 45 to 55 parts by mass, relative to 100 parts by mass of the thermosetting binder.
 エポキシ化合物は、分子内に1つ以上のエポキシ基を有するエポキシ化合物であれば、特に限定されるものではなく、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等であってもよく、ウレタン変性のエポキシ樹脂であっても構わない。これらの中でも、水素添加ビスフェノールAグリシジルエーテルを好ましく用いることができる。水素添加ビスフェノールAグリシジルエーテルの具体例としては、例えば三菱ケミカル社製の製品名「YX8000」を挙げることができる。エポキシ化合物の含有量は、熱硬化型バインダー100質量部に対し、好ましくは30~60質量部、より好ましくは35~55質量部以下、さらに好ましくは35~45質量部である。 The epoxy compound is not particularly limited as long as it is an epoxy compound having one or more epoxy groups in the molecule, and may be, for example, a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, or a urethane-modified epoxy resin. Among these, hydrogenated bisphenol A glycidyl ether can be preferably used. A specific example of hydrogenated bisphenol A glycidyl ether is the product name "YX8000" manufactured by Mitsubishi Chemical Corporation. The content of the epoxy compound is preferably 30 to 60 parts by mass, more preferably 35 to 55 parts by mass or less, and even more preferably 35 to 45 parts by mass, per 100 parts by mass of the thermosetting binder.
 熱カチオン重合開始剤としては、エポキシ化合物の熱カチオン重合開始剤として公知のものを採用することができ、例えば、熱により、カチオン重合型化合物をカチオン重合させ得る酸を発生するものであり、公知のヨードニウム塩、スルホニウム塩、ホスホニウム塩、フェロセン類等を用いることができる。これらの中でも、温度に対して良好な潜在性を示す芳香族スルホニウム塩を好ましく使用することができる。芳香族スルホニウム塩系の重合開始剤の具体例としては、例えば三新化学工業株式会社製の製品名「SI-60L」を挙げることができる。熱カチオン重合開始剤の含有量は、熱硬化型バインダー100質量部に対し、好ましくは1~20質量部、より好ましくは5~15質量部以下、さらに好ましくは8~12質量部である。 As the thermal cationic polymerization initiator, a known initiator for thermal cationic polymerization of epoxy compounds can be used. For example, known iodonium salts, sulfonium salts, phosphonium salts, ferrocenes, etc. can be used, which generate an acid capable of cationic polymerization of a cationic polymerization compound by heat. Among these, aromatic sulfonium salts that show good latency against temperature can be preferably used. A specific example of an aromatic sulfonium salt-based polymerization initiator is "SI-60L" manufactured by Sanshin Chemical Industry Co., Ltd. The content of the thermal cationic polymerization initiator is preferably 1 to 20 parts by mass, more preferably 5 to 15 parts by mass or less, and even more preferably 8 to 12 parts by mass, per 100 parts by mass of the thermosetting binder.
 なお、熱硬化型バインダーに配合する他の添加物として、必要に応じて、ゴム成分、無機フィラー、シランカップリング剤、希釈用モノマー、充填剤、軟化剤、着色剤、難燃化剤、チキソトロピック剤などを配合してもよい。 Other additives that may be added to the thermosetting binder, as necessary, include rubber components, inorganic fillers, silane coupling agents, diluting monomers, bulking agents, softeners, colorants, flame retardants, and thixotropic agents.
 ゴム成分は、クッション性(衝撃吸収性)の高いエラストマーであれば特に限定されるものではなく、具体例として、例えば、アクリルゴム、シリコーンゴム、ブタジエンゴム、ポリウレタン樹脂(ポリウレタン系エラストマー)などを挙げることができる。無機フィラーとしては、シリカ、タルク、酸化チタン、炭酸カルシウム、酸化マグネシウム等を用いることができる。無機フィラーは、単独でも2種類以上を併用してもよい。 The rubber component is not particularly limited as long as it is an elastomer with high cushioning properties (shock absorption properties), and specific examples include acrylic rubber, silicone rubber, butadiene rubber, and polyurethane resin (polyurethane-based elastomer). As inorganic fillers, silica, talc, titanium oxide, calcium carbonate, magnesium oxide, and the like can be used. The inorganic fillers may be used alone or in combination of two or more types.
 このような構成からなる熱硬化型バインダーにより、レーザー光により個片を形成する際の硬化反応を抑制することができ、熱圧着の際には熱により速硬化させることができる。 A thermosetting binder with this composition can suppress the hardening reaction when forming individual pieces with laser light, and can quickly harden with heat during thermocompression bonding.
 (接続フィルム)
 接続フィルムは、導電粒子をさらに含有する導電フィルムであってもよい。導電フィルムとしては、例えば等方性導電フィルム、異方性導電フィルムなどが挙げられる。以下、導電フィルムの一形態として、異方性導電フィルムについて説明する。
(Connection film)
The connection film may be a conductive film further containing conductive particles. Examples of the conductive film include an isotropic conductive film and an anisotropic conductive film. Hereinafter, an anisotropic conductive film will be described as one form of the conductive film.
 導電粒子としては、公知の異方性導電フィルムにおいて使用されているものを適宜選択して使用することができる。例えば、ニッケル(融点 1455℃)、銅(融点 1085℃)、銀(融点 961.8℃)、金(融点 1064℃)、パラジウム(融点 1555℃)、錫(融点 231.9℃)、ホウ化ニッケル(融点 1230℃)、ルテニウム(融点 2334℃)、錫合金であるはんだ等の金属粒子が挙げられる。また、例えば、金属粒子の表面をニッケル、銅、銀、金、パラジウム、錫、ホウ化ニッケル、ルテニウムなどの金属で被覆された金属被覆金属粒子などが挙げられる。また、例えば、ポリアミド、ポリベンゾグアナミン、スチレン及びジビニルベンゼンから選ばれる少なくとも1種のモノマーをモノマー単位として含むポリマー等の樹脂粒子の表面をニッケル、銅、銀、金、パラジウム、錫、ホウ化ニッケル、ルテニウムなどの金属で被覆した金属被覆樹脂粒子が挙げられる。また、例えば、シリカ、アルミナ、チタン酸バリウム、ジルコニア、カーボンブラック、ケイ酸ガラス、ホウケイ酸ガラス、鉛ガラス、ソーダ石灰ガラス及びアルミナシリケートガラス等の無機粒子の表面をニッケル、銅、銀、金、パラジウム、錫、ホウ化ニッケル、ルテニウムなどの金属で被覆した金属被覆無機粒子などが挙げられる。また、金属被覆樹脂粒子及び金属被覆無機粒子の被覆金属層は、単層でもよいし異種金属の複層であってもよい。 The conductive particles may be appropriately selected from those used in known anisotropic conductive films. Examples of the conductive particles include metal particles such as nickel (melting point 1455°C), copper (melting point 1085°C), silver (melting point 961.8°C), gold (melting point 1064°C), palladium (melting point 1555°C), tin (melting point 231.9°C), nickel boride (melting point 1230°C), ruthenium (melting point 2334°C), and solder, which is a tin alloy. Examples of the conductive particles include metal-coated metal particles in which the surface of the metal particles is coated with a metal such as nickel, copper, silver, gold, palladium, tin, nickel boride, and ruthenium. Examples of the conductive particles include metal-coated resin particles in which the surface of resin particles, such as polymers containing at least one monomer selected from polyamide, polybenzoguanamine, styrene, and divinylbenzene as monomer units, is coated with a metal such as nickel, copper, silver, gold, palladium, tin, nickel boride, and ruthenium. Other examples include metal-coated inorganic particles in which the surfaces of inorganic particles such as silica, alumina, barium titanate, zirconia, carbon black, silicate glass, borosilicate glass, lead glass, soda-lime glass, and alumina silicate glass are coated with metals such as nickel, copper, silver, gold, palladium, tin, nickel boride, and ruthenium. The coated metal layer of the metal-coated resin particles and metal-coated inorganic particles may be a single layer or a multilayer of different metals.
 また、これらの導電粒子を、例えば、樹脂層や、樹脂粒子、無機粒子等の絶縁性粒子にて被覆することにより絶縁被覆処理を施してもよい。ここで、導電粒子の粒子径は、絶縁被覆処理の部分を含まない。導電粒子の粒子径は、実装される光学素子、配線基板の電極、バンプの面積などにより適宜変更されるが、1~30μmであることが好ましく、1~10μmであることがより好ましく、1~3μmであることが特に好ましい。例えば、マイクロLED素子の実装に使用される場合、電極やバンプの面積が小さいため、導電粒子の粒子径は、1~3μmであることが好ましく、1~2.5μmであることがより好ましく、1~2.2μmであることが特に好ましい。粒子径は、顕微鏡観察(光学顕微鏡、金属顕微鏡、電子顕微鏡など)で200個以上を計測し、その平均値とすることができる。 The conductive particles may be coated with insulating particles such as a resin layer, resin particles, or inorganic particles to provide an insulating coating. Here, the particle diameter of the conductive particles does not include the portion that is subjected to the insulating coating. The particle diameter of the conductive particles may be appropriately changed depending on the optical element to be mounted, the electrodes of the wiring board, the area of the bumps, etc., but is preferably 1 to 30 μm, more preferably 1 to 10 μm, and particularly preferably 1 to 3 μm. For example, when used to mount micro LED elements, since the areas of the electrodes and bumps are small, the particle diameter of the conductive particles is preferably 1 to 3 μm, more preferably 1 to 2.5 μm, and particularly preferably 1 to 2.2 μm. The particle diameter can be determined by measuring 200 or more particles under a microscope (optical microscope, metallurgical microscope, electron microscope, etc.) and taking the average value.
 また、導電粒子が前述した樹脂粒子又は無機粒子に金属を被覆した金属被覆樹脂粒子又は金属被覆無機粒子である場合、金属の被覆厚みは、好ましくは0.005μm以上、より好ましくは0.01μm以上であり、好ましくは10μm以下、より好ましくは1μm以下、さらに好ましくは0.3μm以下である。この被覆厚みは、金属被覆が複層である場合、金属被覆全体の厚みである。金属の被覆厚みが、上記下限以上及び上記上限以下であると、十分な導電性が得られやすく、また導電粒子が硬くなりすぎずに、前述した樹脂粒子や無機粒子の特性を活かしやすい。 In addition, when the conductive particles are metal-coated resin particles or metal-coated inorganic particles in which the aforementioned resin particles or inorganic particles are coated with a metal, the thickness of the metal coating is preferably 0.005 μm or more, more preferably 0.01 μm or more, and preferably 10 μm or less, more preferably 1 μm or less, and even more preferably 0.3 μm or less. When the metal coating is a multi-layer coating, this coating thickness is the thickness of the entire metal coating. When the metal coating thickness is equal to or greater than the above lower limit and equal to or less than the above upper limit, sufficient conductivity is easily obtained, and the conductive particles do not become too hard, making it easy to utilize the properties of the aforementioned resin particles or inorganic particles.
 金属の被覆厚みは、例えば、透過型電子顕微鏡(TEM)を用いて、導電粒子の断面を観察することにより測定できる。上記被覆厚みについては、任意の被覆厚み5箇所の平均値を1個の導電粒子の被覆厚みとして算出することが好ましく、被覆部全体の厚みの平均値を1個の導電粒子の被覆厚みとして算出することがより好ましい。上記被覆厚みは、任意の導電粒子10個について、各導電粒子の被覆厚みの平均値を算出することにより求めることが好ましい。 The metal coating thickness can be measured, for example, by observing the cross section of the conductive particle using a transmission electron microscope (TEM). It is preferable to calculate the coating thickness as the average of five arbitrary coating thicknesses as the coating thickness of one conductive particle, and it is more preferable to calculate the average thickness of the entire coating portion as the coating thickness of one conductive particle. The coating thickness is preferably determined by calculating the average coating thickness of each of 10 arbitrary conductive particles.
 また、導電粒子の形状としては、球状、楕円体状、スパイク状、不定形状等の形状が挙げられる。これらの中でも、粒子径や粒度分布の制御が容易であることから球状の形状である導電粒子が好ましい。また、導電粒子は、接続性を向上させるために、表面に突起を有していてもよい。 The conductive particles may have a spherical, ellipsoidal, spike-like, or irregular shape. Among these, spherical conductive particles are preferred because they are easy to control the particle size and particle size distribution. The conductive particles may have protrusions on their surfaces to improve connectivity.
 異方性導電フィルムは、導電粒子を面方向に整列されている(平面視で規則配列されている)ことが好ましい。導電粒子が面方向に整列されていることにより、粒子面密度が均一となり、導通性及び絶縁性を向上させることができる。導電粒子が面方向に配列されている状態とは、例えば、導電粒子が所定ピッチで所定方向に配置されている配列軸を1以上有する平面格子パターンが挙げられ、斜方格子、六方格子、正方格子、矩形格子、平行体格子などが挙げられる。また、導電粒子の面方向の配列は、ランダムであってもよく、平面格子パターンが異なる複数の領域を有していてもよい。 In the anisotropic conductive film, the conductive particles are preferably aligned in the planar direction (regularly arranged in a planar view). By aligning the conductive particles in the planar direction, the particle surface density becomes uniform, and the conductivity and insulation properties can be improved. The state in which the conductive particles are aligned in the planar direction can be, for example, a planar lattice pattern having one or more arrangement axes in which the conductive particles are arranged in a specific direction at a specific pitch, such as an oblique lattice, a hexagonal lattice, a square lattice, a rectangular lattice, and a parallelepiped lattice. The arrangement of the conductive particles in the planar direction can also be random, or the film can have multiple regions with different planar lattice patterns.
 異方性導電フィルムの粒子面密度は、接続対象の電極サイズに応じて適宜設計でき、粒子面密度の下限は、性能に支障がなければ特に制限はなく、30個/mm以上、500個/mm以上、20000個/mm以上、40000個/mm以上、50000個/mm以上とすることができ、粒子面密度の上限は、1500000個/mm以下、1000000個/mm以下、500000個/mm以下、100000個/mm以下とすることができる。これにより、接続対象の電極サイズが小さい場合でも、優れた導通性及び絶縁性を得ることができる。これらの中でも、異方性導電フィルムは、導電粒子の平均粒径が3.0μm以下であり、導電粒子が50000個/mm以上の粒子面密度で整列していることが好ましい。異方性導電フィルムの粒子面密度は、製造時にフィルム化した際の導電粒子の配列部分のものである。複数の個片から粒子個数密度を求める場合は、個片とスペースを含めた面積から個片間のスペースを除いた面積と粒子数とから粒子面密度を求めることができる。 The particle surface density of the anisotropic conductive film can be appropriately designed according to the size of the electrode to be connected, and the lower limit of the particle surface density is not particularly limited as long as the performance is not impaired, and can be 30 pieces/ mm2 or more, 500 pieces/ mm2 or more, 20000 pieces/mm2 or more, 40000 pieces/ mm2 or more, or 50000 pieces/ mm2 or more, and the upper limit of the particle surface density can be 1500000 pieces/ mm2 or less, 1000000 pieces/ mm2 or less, 500000 pieces/ mm2 or less, or 100000 pieces/ mm2 or less. This makes it possible to obtain excellent conductivity and insulation even when the electrode size to be connected is small. Among these, it is preferable that the anisotropic conductive film has an average particle size of the conductive particles of 3.0 μm or less, and the conductive particles are aligned at a particle surface density of 50000 pieces/mm2 or more . The particle surface density of the anisotropic conductive film is that of the conductive particles arranged in the film during production. When determining the particle number density from a plurality of pieces, the particle surface density can be calculated from the area obtained by excluding the spaces between the pieces from the area including the pieces and the spaces, and the number of particles.
 異方性導電フィルムの接続前の厚みは、好ましくは1μm以上10μm以下、より好ましくは1μm以上6μm以下、さらに好ましくは2μm以上4μm以下である。異方性導電フィルムの接続前の厚みは、導電粒子の平均粒径に好ましくは1~4μm、特に好ましくは1~2μmを加算したものであることが、フィルムとマイクロLEDの電極側の面との距離が略同一になり易いことから望ましい。公知のマイクロメータやデジタルシックネスゲージを用いて測定することができる。膜厚は、例えば10箇所以上を測定し、平均して求めることができる。 The thickness of the anisotropic conductive film before connection is preferably 1 μm to 10 μm, more preferably 1 μm to 6 μm, and even more preferably 2 μm to 4 μm. The thickness of the anisotropic conductive film before connection is preferably the average particle size of the conductive particles plus 1 to 4 μm, and particularly preferably 1 to 2 μm, since this tends to make the distance between the film and the electrode side surface of the micro LED approximately the same. It can be measured using a known micrometer or digital thickness gauge. The film thickness can be calculated, for example, by measuring at 10 or more points and averaging them.
 なお、接続フィルムは、前述した異方性導電フィルムに限られるものではなく、導電粒子を含有する導電粒子含有層、導電粒子を含有していない接着剤層、粘着剤層などを積層したものであってもよく、その層数や積層面は、対象や目的に合わせて適宜選択することができる。 The connection film is not limited to the anisotropic conductive film described above, but may be a laminate of a conductive particle-containing layer that contains conductive particles, an adhesive layer that does not contain conductive particles, a pressure-sensitive adhesive layer, etc., and the number of layers and lamination surfaces can be appropriately selected according to the target and purpose.
 <2.接続フィルムの製造方法>
 本実施の形態に係る接続フィルム(導電フィルム、異方性導電フィルム)の製造方法は、二乗平均平方根高さが所定値以下である基材フィルム上に接続フィルムを形成し、基材フィルム側に第1面を有する接続フィルムを得るものである。これにより、基材フィルムの表面状態が接続フィルムの第1面に反映され、二乗平均平方根高さが小さい第1面を得ることができる。
2. Method for manufacturing connecting film
The manufacturing method of the connection film (conductive film, anisotropic conductive film) according to the present embodiment is to form the connection film on a base film having a root mean square height equal to or less than a predetermined value, and obtain a connection film having a first surface on the base film side. This allows the surface condition of the base film to be reflected on the first surface of the connection film, and a first surface having a small root mean square height can be obtained.
 以下、接続フィルムの製造方法の一形態として、異方性導電フィルムの製造方法について説明する。 Below, we will explain a method for manufacturing anisotropic conductive film as one form of a method for manufacturing a connection film.
 図1は、本実施の形態における異方性導電フィルムの製造方法の一例を説明するための図であり、図1(A)は、基材フィルムを準備する準備工程を示し、図1(B)は、基材フィルム上に異方性導電フィルムを形成する形成工程を示し、図1(C)は、異方性導電フィルム上にカバーフィルムを貼り付ける貼付工程を示す。 FIG. 1 is a diagram for explaining an example of a method for manufacturing an anisotropic conductive film in this embodiment, where FIG. 1(A) shows a preparation process for preparing a base film, FIG. 1(B) shows a formation process for forming an anisotropic conductive film on the base film, and FIG. 1(C) shows an attachment process for attaching a cover film onto the anisotropic conductive film.
 (準備工程)
 先ず、図1(A)に示すように、二乗平均平方根高さが所定値以下である第1面11aを有する基材フィルム11を準備する。基材フィルム11の二乗平均平方根高さは、好ましくは3.0×10-1μm以下、より好ましくは1.5×10-1μm以下、さらに好ましくは0.05×10-1μm以下である。基材フィルム11の二乗平均平方根高さが大きくなると、二乗平均平方根高さが小さい異方性導電フィルムを得ることが困難となる。
(Preparation process)
1A, a base film 11 is prepared having a first surface 11a whose root mean square height is equal to or less than a predetermined value. The root mean square height of the base film 11 is preferably equal to or less than 3.0×10 −1 μm, more preferably equal to or less than 1.5×10 −1 μm, and even more preferably equal to or less than 0.05×10 −1 μm. If the root mean square height of the base film 11 is large, it becomes difficult to obtain an anisotropic conductive film with a small root mean square height.
 基材フィルム11は、異方性導電フィルム12を支持することができ、所期のタイミングにて異方性導電フィルム12から剥離することができる限り特に限定されない。基材フィルム11の材料としては、例えば、ポリエチレンテレフタレート(PET)等のポリエステル、ポリプロピレン(PP)等のポリオレフィン、ポリ-4-メチルペン-1(PMP)、ポリテトラフルオロエチレン(PTFE)等のプラスチック材料、石英ガラスなどのガラス基板を用いてよい。また、基材フィルム11は、異方性導電フィルム12と接合する側の表面に剥離層を有してもよく、剥離層は、例えば、シリコーン樹脂やポリオレフィン樹脂等の剥離剤を含んでよい。 The base film 11 is not particularly limited as long as it can support the anisotropic conductive film 12 and can be peeled off from the anisotropic conductive film 12 at the desired timing. Materials for the base film 11 may include, for example, polyesters such as polyethylene terephthalate (PET), polyolefins such as polypropylene (PP), plastic materials such as poly-4-methylpen-1 (PMP) and polytetrafluoroethylene (PTFE), and glass substrates such as quartz glass. The base film 11 may also have a release layer on the surface on the side that is bonded to the anisotropic conductive film 12, and the release layer may contain a release agent such as silicone resin or polyolefin resin.
 基材フィルム11の厚みは、特に限定されないが、長尺巻きのフィルム巻装体を効率よく形成し得る観点から、好ましくは100μm以下、より好ましくは80μm以下、更に好ましくは60μm以下、更により好ましくは50μm以下である。基材フィルム11の厚さの下限は、特に限定されないが、接続フィルムの製造時、スリット加工時、巻き芯への巻き取り時の取り扱い性の観点から、好ましくは8μm以上である。 The thickness of the base film 11 is not particularly limited, but from the viewpoint of efficiently forming a long film roll, it is preferably 100 μm or less, more preferably 80 μm or less, even more preferably 60 μm or less, and even more preferably 50 μm or less. The lower limit of the thickness of the base film 11 is not particularly limited, but from the viewpoint of handleability during the production of the connection film, during slitting, and during winding onto the core, it is preferably 8 μm or more.
 (形成工程)
 次に、図1(B)に示すように、基材フィルム11の第1面11a上に異方性導電フィルム12を形成する。異方性導電フィルム12を形成する方法としては、例えば、基材フィルム11上に導電接着剤の溶液を塗布、乾燥する方法や、基材フィルム11上に導電粒子を含まない接着層を形成し、得られた接着層に導電粒子を固定する方法などが挙げられる。導電粒子はフィルム平面視で規則配列させてもよく、ランダムでもよい。規則配列は、発明の効果を損なわない限り公知の手法を取ることができる。
(Forming process)
Next, as shown in Fig. 1 (B), an anisotropic conductive film 12 is formed on the first surface 11a of the base film 11. Examples of methods for forming the anisotropic conductive film 12 include a method of applying a solution of a conductive adhesive onto the base film 11 and drying it, and a method of forming an adhesive layer that does not contain conductive particles on the base film 11 and fixing conductive particles to the obtained adhesive layer. The conductive particles may be regularly arranged or randomly arranged when viewed from above. The regularly arranged particles may be arranged by any known method as long as it does not impair the effects of the invention.
 例えば、バインダーを基材フィルム11上に塗布、乾燥させ、樹脂フィルムを形成し、樹脂フィルムを、導電粒子が所定の粒子密度で所定の配列で整列された配列シートに貼り合わせ、導電粒子を樹脂フィルムに押し込んで転写することにより、異方性導電フィルム12を形成することができる。これにより、異方性導電フィルム12の第1面は、基材フィルム11の第1面11aの表面状態が反映され、3.0×10-1以下の二乗平均平方根高さを得ることができる。 For example, a binder is applied onto the base film 11, dried to form a resin film, the resin film is attached to an array sheet on which conductive particles are aligned in a predetermined array at a predetermined particle density, and the conductive particles are pressed into the resin film to transfer it, thereby forming the anisotropic conductive film 12. As a result, the first surface of the anisotropic conductive film 12 reflects the surface condition of the first surface 11a of the base film 11, and a root-mean-square height of 3.0×10 −1 or less can be obtained.
 (貼付工程)
 次に、図1(C)に示すように、異方性導電フィルム12の第2面上にカバーフィルム13を貼り付け、フィルム積層体を作製する。カバーフィルム13は、所定のタイミングにて異方性導電フィルム12の第2面から剥離することができる限り特に限定されない。カバーフィルム13の材料としては、基材フィルム11と同様のものを用いることができる。また、カバーフィルム13も、基材フィルム11と同様、異方性導電フィルム12と接合する側の表面に剥離層を有してもよい。また、カバーフィルム13の厚みは、特に限定されないが、基材フィルム11よりも小さいことが好ましい。
(Attachment process)
Next, as shown in FIG. 1C, a cover film 13 is attached onto the second surface of the anisotropic conductive film 12 to prepare a film laminate. The cover film 13 is not particularly limited as long as it can be peeled off from the second surface of the anisotropic conductive film 12 at a predetermined timing. The material of the cover film 13 may be the same as that of the base film 11. Similarly to the base film 11, the cover film 13 may also have a peeling layer on the surface on the side that is bonded to the anisotropic conductive film 12. The thickness of the cover film 13 is not particularly limited, but is preferably smaller than that of the base film 11.
 このような接続フィルムの製造方法によれば、基材フィルムの表面状態が接続フィルムの第1面に反映され、3.0×10-1以下である二乗平均平方根高さを得ることができる。 According to such a method for producing a connecting film, the surface condition of the base film is reflected on the first surface of the connecting film, and a root mean square height of 3.0×10 −1 or less can be obtained.
 [変形例]
 異方性導電フィルムは、例えばマイクロLEDに用いる場合などはRGB1組の1ピクセル単位(1画素単位)など、所定単位の個片であってもよい。個片の形状は、特に限定されるものではなく、接続対象である電子部品の寸法に応じて適宜設定することができる。個片をレーザーリフトオフ(LLO:Laser Lift Off)装置を用いて形成する場合は、捲れや欠けの発生を抑制するため、個片の形状は、鈍角からなる多角形、角が丸い多角形、楕円、長円、及び円から選択される少なくとも1種であることが好ましい。
[Modification]
The anisotropic conductive film may be a piece of a predetermined unit, such as one pixel unit (one pixel unit) of one set of RGB, for example, when used in a micro LED. The shape of the piece is not particularly limited and can be appropriately set according to the dimensions of the electronic component to be connected. When forming the piece using a laser lift-off (LLO) device, the shape of the piece is preferably at least one selected from a polygon having obtuse angles, a polygon having rounded corners, an ellipse, an oval, and a circle in order to suppress the occurrence of curling or chipping.
 個片の寸法(縦×横)は、接続対象である電子部品もしくは電極の寸法に応じて適宜設定され、電子部品もしくは電極の面積に対する個片の面積の比は、好ましくは2以上より好ましくは4以上、さらに好ましくは5以上である。個片の場合であっても、マイクロLEDの外形から異方性導電フィルムが露出していれば、光学特性の影響を抑えるためにも本発明の態様は必要になると考える。また、個片の厚みは、異方性導電フィルムの厚みと同様、導電粒子の平均粒径に好ましくは1~4μm、特に好ましくは1~2μmを加算したものであり、好ましくは1μm以上10μm以下、より好ましくは1μm以上6μm以下、さらに好ましくは2μm以上4μm以下である。 The dimensions of the pieces (length x width) are set appropriately according to the dimensions of the electronic component or electrode to be connected, and the ratio of the area of the pieces to the area of the electronic component or electrode is preferably 2 or more, more preferably 4 or more, and even more preferably 5 or more. Even in the case of individual pieces, if the anisotropic conductive film is exposed from the outer shape of the micro-LED, it is considered that this aspect of the present invention is necessary to suppress the influence of optical characteristics. In addition, the thickness of the individual pieces is the average particle size of the conductive particles plus preferably 1 to 4 μm, particularly preferably 1 to 2 μm, like the thickness of the anisotropic conductive film, and is preferably 1 μm to 10 μm, more preferably 1 μm to 6 μm, and even more preferably 2 μm to 4 μm.
 また、基材フィルム上の個片間の距離は、好ましくは3μm以上、より好ましくは5μm以上、さらに好ましくは10μm以上である。また、個片間の距離の上限は、好ましくは3000μm以下、より好ましくは1000μm以下、さらに好ましくは500μm以下である。個片間の距離が小さ過ぎる場合、個片のLLOによる転写が困難となり、個片間の距離が大きい場合、個片を貼り付ける方法が好ましくなる。個片間の距離は、顕微鏡観察(光学顕微鏡、金属顕微鏡、電子顕微鏡など)を用いて計測することができる。 The distance between the pieces on the base film is preferably 3 μm or more, more preferably 5 μm or more, and even more preferably 10 μm or more. The upper limit of the distance between the pieces is preferably 3000 μm or less, more preferably 1000 μm or less, and even more preferably 500 μm or less. If the distance between the pieces is too small, it becomes difficult to transfer the pieces by LLO, and if the distance between the pieces is large, a method of attaching the pieces is preferable. The distance between the pieces can be measured using a microscope (optical microscope, metallographic microscope, electron microscope, etc.).
 個片は、スリットやハーフカットにより形成してもよく、レーザーリフトオフ装置を用いて形成してもよい。LLO装置を用いて個片を形成する場合、基材フィルムは、レーザー光に対して透過性を有するものであればよく、中でも全波長に亘って高い光透過率を有する石英ガラスであることが好ましい。 The pieces may be formed by slitting or half-cutting, or may be formed using a laser lift-off device. When forming the pieces using an LLO device, the substrate film may be any material that is transparent to laser light, and is preferably quartz glass, which has high light transmittance across all wavelengths.
 LLO装置を用いて個片を形成する場合、基材フィルム上に設けられた異方性導電フィルムに対して基材フィルム側からレーザー光を照射し、照射部分の異方性導電フィルムを除去することにより、基材フィルム上に異方性導電フィルムからなる所定形状の個片を形成することができる。 When forming individual pieces using an LLO device, an anisotropic conductive film provided on a base film is irradiated with laser light from the base film side, and the irradiated areas of the anisotropic conductive film are removed, thereby forming individual pieces of a predetermined shape made of anisotropic conductive film on the base film.
 例えば、開口の窓部が四角形状であるマスクを用い、基材フィルムから異方性導電フィルムの不要部分を除去することにより、異方性導電フィルムの残存部分で所定形状の個片を構成することができる。また、例えば、開口の窓部内に所定形状の遮光部が形成されたマスクを用い、基材フィルムから個片周囲の異方性導電フィルムの不要部分を除去することにより、異方性導電フィルムの残存部分で所定形状の個片を構成することができる。 For example, a mask with a rectangular opening window is used to remove unnecessary portions of the anisotropic conductive film from the base film, allowing individual pieces of a predetermined shape to be formed from the remaining portions of the anisotropic conductive film. Also, for example, a mask with a predetermined shaped light-shielding portion formed in the opening window is used to remove unnecessary portions of the anisotropic conductive film around the individual pieces from the base film, allowing individual pieces of a predetermined shape to be formed from the remaining portions of the anisotropic conductive film.
 また、レーザーリフトオフ装置を用いて個片を作製した場合、個片の反応率は、25%以下、好ましくは20%以下、さらに好ましくは15%以下である。これにより、優れた転写性を得ることができる。なお、レーザー照射前の硬化性樹脂膜やレーザー照射後に得られた個片の反応率の測定は、例えばFT-IRを用いて反応基の減少率により求めることができる。例えば、エポキシ化合物の反応を利用した硬化性樹脂膜の場合、試料に赤外線を照射させてIRスペクトルを測定し、IRスペクトルのメチル基(2930cm-1付近)及びエポキシ基(914cm-1付近)のピーク高さを測定し、下記式のように、メチル基のピーク高さに対するエポキシ基のピーク高さの反応前後(例えばレーザー照射前後)の比率で算出することができる。 In addition, when the pieces are produced using a laser lift-off device, the reaction rate of the pieces is 25% or less, preferably 20% or less, and more preferably 15% or less. This allows for excellent transferability. The reaction rate of the curable resin film before laser irradiation and the pieces obtained after laser irradiation can be measured by, for example, the reduction rate of the reactive group using FT-IR. For example, in the case of a curable resin film utilizing the reaction of an epoxy compound, the sample is irradiated with infrared rays to measure the IR spectrum, and the peak heights of the methyl group (near 2930 cm −1 ) and the epoxy group (near 914 cm −1 ) in the IR spectrum are measured, and the ratio of the peak height of the epoxy group to the peak height of the methyl group before and after the reaction (for example, before and after laser irradiation) can be calculated as shown in the following formula.
 反応率(%)={1-(a/b)/(A/B)}×100
 上記式において、Aは反応前のエポキシ基のピーク高さ、Bは反応前のメチル基のピーク高さ、aは反応後のエポキシ基のピーク高さ、bは反応後のメチル基のピーク高さである。なお、エポキシ基のピークに他のピークが重なる場合は、完全硬化(反応率100%)させたサンプルのピーク高さを0%とすればよい。
Reaction rate (%) = {1 - (a/b)/(A/B)} x 100
In the above formula, A is the peak height of the epoxy group before the reaction, B is the peak height of the methyl group before the reaction, a is the peak height of the epoxy group after the reaction, and b is the peak height of the methyl group after the reaction. If the epoxy group peak overlaps with another peak, the peak height of the completely cured sample (reaction rate 100%) may be set to 0%.
 <3.表示装置>
 本実施の形態に係る表示装置は、複数の発光素子と、配線基板と、複数の発光素子と配線基板とを接続した接続フィルムの硬化膜とを備え、硬化膜が、二乗平均平方根高さが3.0×10-1以下である第1面を有し、複数の発光素子が、第1面上に実装されてなるものである。ここで、例えば発光素子の電極が円錐形状の突起を有する場合、接続フィルムとして導電粒子を含有していない接着剤層を用いることできる。また、例えば発光素子の電極が平面の底面を有する場合、接続フィルムとして異方性導電フィルムを用いることができる。
<3. Display device>
The display device according to the present embodiment includes a plurality of light-emitting elements, a wiring board, and a cured film of a connection film that connects the plurality of light-emitting elements and the wiring board, and the cured film has a root mean square height of The light-emitting element has a first surface having a refractive index of 3.0×10 −1 or less, and a plurality of light-emitting elements are mounted on the first surface. In the case where the electrode of the light-emitting element has a flat bottom surface, an adhesive layer that does not contain conductive particles can be used as the connection film. Also, for example, in the case where the electrode of the light-emitting element has a flat bottom surface, an anisotropic conductive film can be used as the connection film.
 図2は、本実施の形態における表示装置の一例を模式的に示す断面図である。図2に示すように、表示装置は、複数の発光素子30と、複数の発光素子30を配列する配線基板20と、複数の発光素子30と配線基板20とを接続させた異方性導電フィルムの硬化膜40とを備える。なお、図2では、配線基板20側から光が透過しているが、硬化膜40側からも光が透過し、視認性がある。即ち、図2の光の方向が逆向きでもよい。 FIG. 2 is a cross-sectional view showing a schematic example of a display device according to the present embodiment. As shown in FIG. 2, the display device includes a plurality of light-emitting elements 30, a wiring board 20 on which the plurality of light-emitting elements 30 are arranged, and a cured film 40 of an anisotropic conductive film that connects the plurality of light-emitting elements 30 to the wiring board 20. Note that, although light is transmitted from the wiring board 20 side in FIG. 2, light is also transmitted from the cured film 40 side, providing visibility. In other words, the direction of light in FIG. 2 may be reversed.
 配線基板20は、基材上に第1導電型用回路パターンと、第2導電型用回路パターンとを備え、発光素子30が1画素を構成するサブピクセル(副画素)単位で配置されるように、例えばp側の第1導電型電極及びn側の第2導電型電極に対応する位置にそれぞれ第1電極及び第2電極を有する。また、配線基板20は、例えばマトリクス配線のデータ線、アドレス線などの回路パターンを形成し、1画素を構成する各サブピクセルに対応する発光素子をオンオフ可能とする。1画素は、例えば、R(赤)G(緑)B(青)の3個のサブピクセルで構成しても、RGBW(白)、RGBY(黄)の4個のサブピクセルで構成しても、RG、GBの2個のサブピクセルで構成してもよい。 The wiring board 20 has a circuit pattern for a first conductivity type and a circuit pattern for a second conductivity type on a base material, and has a first electrode and a second electrode at positions corresponding to the first conductivity type electrode on the p side and the second conductivity type electrode on the n side, respectively, so that the light-emitting elements 30 are arranged in units of subpixels that make up one pixel. The wiring board 20 also forms circuit patterns such as data lines and address lines of the matrix wiring, and enables the light-emitting elements corresponding to each subpixel that makes up one pixel to be turned on and off. One pixel may be composed of, for example, three subpixels of R (red), G (green), and B (blue), four subpixels of RGBW (white) and RGBY (yellow), or two subpixels of RG and GB.
 また、表示装置を透明ディスプレイとする場合、配線基板20は、透光基板であることが好ましく、基材は、ガラス、PET(Polyethylene Terephthalate)などであることが好ましい。第1電極22及び第2電極23は、ITO(Indium-Tin-Oxide)、IZO(Indium-Zinc-Oxide)、ZnO(Zinc-Oxide)、IGZO(Indium-Gallium-Zinc-Oxide)などの透明導電膜であることが好ましい。 When the display device is a transparent display, the wiring substrate 20 is preferably a light-transmitting substrate, and the base material is preferably glass, PET (Polyethylene Terephthalate), or the like. The first electrode 22 and the second electrode 23 are preferably transparent conductive films such as ITO (Indium-Tin-Oxide), IZO (Indium-Zinc-Oxide), ZnO (Zinc-Oxide), and IGZO (Indium-Gallium-Zinc-Oxide).
 発光素子30は、本体と、第1導電型電極と、第2導電型電極とを備え、第1導電型電極と第2導電型電極とが、同一面側に配置された水平構造を有する。本体は、例えばn-GaNからなる第1導電型クラッド層と、例えばInAlGa1-x-yN層からなる活性層と、例えばp-GaNからなる第2導電型クラッド層とを備え、いわゆるダブルヘテロ構造を有する。第1導電型電極は、パッシベーション層により第1導電型クラッド層の一部に形成され、第2導電型電極は、第2導電型クラッド層の一部に形成される。第1導電型電極と第2導電型電極との間に電圧が印加されると、活性層にキャリアが集中し、再結合することにより発光が生じる。 The light-emitting element 30 includes a body, a first-conductivity-type electrode, and a second-conductivity-type electrode, and has a horizontal structure in which the first-conductivity-type electrode and the second-conductivity-type electrode are arranged on the same surface side. The body includes a first-conductivity-type clad layer made of, for example, n-GaN, an active layer made of, for example, an In x Al y Ga 1-x-y N layer, and a second-conductivity-type clad layer made of, for example, p-GaN, and has a so-called double heterostructure. The first-conductivity-type electrode is formed on a part of the first-conductivity-type clad layer by a passivation layer, and the second-conductivity-type electrode is formed on a part of the second-conductivity-type clad layer. When a voltage is applied between the first-conductivity-type electrode and the second-conductivity-type electrode, carriers are concentrated in the active layer and recombined to generate light emission.
 硬化膜40は、前述した異方性導電フィルム12が硬化したものである。硬化膜40は、例えば配線基板20の表示部の全面に形成されていてもよく、また、例えばRGB1組の1ピクセル単位(1画素単位)など表示部の一部に所定単位の個片で形成されていてもよい。 The cured film 40 is the cured anisotropic conductive film 12 described above. The cured film 40 may be formed, for example, over the entire display area of the wiring board 20, or may be formed in individual pieces of a predetermined unit in a part of the display area, such as one pixel unit (one picture element unit) of one set of RGB.
 発光素子30が実装される硬化膜40の第1面の二乗平均平方根高さは、好ましくは3.0×10-1μm以下、より好ましくは2.0×10-1μm以下、さらに好ましくは1.0×10-1μm以下である。二乗平均平方根高さが大きくなると、光散乱が多く発生し、優れた光透過性及び視認性を得ることが困難となる。 The root mean square height of the first surface of the cured film 40 on which the light emitting element 30 is mounted is preferably 3.0×10 −1 μm or less, more preferably 2.0×10 −1 μm or less, and even more preferably 1.0×10 −1 μm or less. If the root mean square height is large, a lot of light scattering occurs, making it difficult to obtain excellent light transmittance and visibility.
 硬化膜40のヘイズは、好ましくは50%未満、より好ましくは45%未満、さらに好ましくは40%未満である。ヘイズは、HAZEMETERを用いて、JIS K7136に準拠した方法で測定するこができる。 The haze of the cured film 40 is preferably less than 50%, more preferably less than 45%, and even more preferably less than 40%. Haze can be measured using a HAZEMETER in accordance with a method in accordance with JIS K7136.
 硬化膜40の可視光透過率は、好ましくは30%以上、より好ましくは40%以上、さらに好ましくは45%以上である。可視光領域(380nm~780nm)の透過率は、例えば紫外可視分光光度計を用いて測定することができる。 The visible light transmittance of the cured film 40 is preferably 30% or more, more preferably 40% or more, and even more preferably 45% or more. The transmittance in the visible light region (380 nm to 780 nm) can be measured, for example, using a UV-Vis spectrophotometer.
 硬化膜40は、前述した異方性導電フィルムと同様、導電粒子が面方向に整列されていることが好ましい。また、硬化膜の粒子面密度は、発光素子30の電極サイズに応じて適宜設計でき、粒子面密度の下限は、性能に支障がなければ特に制限はなく、30個/mm以上、500個/mm以上、20000個/mm以上、40000個/mm以上、50000個/mm以上とすることができ、粒子面密度の上限は、1500000個/mm以下、1000000個/mm以下、500000個/mm以下、100000個/mm以下とすることができる。これにより、発光素子30の電極サイズが小さい場合でも、優れた導通性及び絶縁性を得ることができる。 The cured film 40 is preferably arranged with conductive particles in the surface direction, similar to the anisotropic conductive film described above. The particle surface density of the cured film can be appropriately designed according to the electrode size of the light-emitting element 30, and the lower limit of the particle surface density is not particularly limited as long as it does not impair performance, and can be 30 pieces/mm 2 or more, 500 pieces/mm 2 or more, 20000 pieces/mm 2 or more, 40000 pieces/mm 2 or more, or 50000 pieces/mm 2 or more, and the upper limit of the particle surface density can be 1500000 pieces/mm 2 or less, 1000000 pieces/mm 2 or less, 500000 pieces/mm 2 or less, or 100000 pieces/mm 2 or less. This allows excellent conductivity and insulation to be obtained even when the electrode size of the light-emitting element 30 is small.
 なお、硬化膜40の粒子面密度は、製造時にフィルム化した際の導電粒子のものである。これはランダムに配置された部分でも、配列部分のものを測定したものであっても同様となる。所定単位で形成された硬化膜40の個片の粒子個数密度を求める場合は、個片とスペースを含めた面積から個片間のスペースを除いた面積と粒子数とから粒子面密度を求めることができる。個片は、個数密度で表すことが不適切な場合もあり、1つの個片における粒子の占有面積率や、粒子径と粒子間中心距離及び個数で表すことが適当な場合もある。 The particle surface density of the cured film 40 is that of the conductive particles when formed into a film during production. This is the same whether the measurement is for a randomly arranged portion or an arranged portion. When determining the particle number density of an individual piece of the cured film 40 formed in a specified unit, the particle surface density can be calculated from the area including the individual pieces and spaces, excluding the spaces between the pieces, and the number of particles. There are cases where it is inappropriate to express the individual pieces in terms of number density, and there are cases where it is appropriate to express them in terms of the particle area ratio in one piece, particle diameter, inter-particle center distance, and number.
 硬化膜40の厚みは、バインダーに導電粒子を含有する場合、導電粒子の平均粒径に好ましくは1~4μm、特に好ましくは1~2μmを加算したものであることが好ましい。これにより、発光素子30間の硬化膜40の第1面の高さHaと発光素子30の本体の底面の高さHbとの差を小さくすることができる。発光素子30の本体の底面の高さHbは、底面から電極を除いた高さであり、底面に段差がある場合、段差がある底面の平均値とすることができる。 When the binder contains conductive particles, the thickness of the cured film 40 is preferably 1 to 4 μm, and particularly preferably 1 to 2 μm, added to the average particle size of the conductive particles. This makes it possible to reduce the difference between the height Ha of the first surface of the cured film 40 between the light-emitting elements 30 and the height Hb of the bottom surface of the body of the light-emitting element 30. The height Hb of the bottom surface of the body of the light-emitting element 30 is the height from the bottom surface excluding the electrodes, and if there is a step on the bottom surface, it can be taken as the average value of the bottom surface with the step.
 発光素子30間の硬化膜40の第1面の高さHaと発光素子30の本体の底面の高さHbとの差は、好ましくは1μm以下、より好ましくは0.8μm以下、さらに好ましくは0.6μm以下である。硬化膜40の第1面の高さHaと発光素子30の本体の底面の高さHbとの差を小さくすることにより、硬化膜40の第1面にしわが発生するのを抑制し、光散乱を抑制することができる。 The difference between the height Ha of the first surface of the cured film 40 between the light-emitting elements 30 and the height Hb of the bottom surface of the body of the light-emitting element 30 is preferably 1 μm or less, more preferably 0.8 μm or less, and even more preferably 0.6 μm or less. By reducing the difference between the height Ha of the first surface of the cured film 40 and the height Hb of the bottom surface of the body of the light-emitting element 30, it is possible to suppress the occurrence of wrinkles on the first surface of the cured film 40 and to suppress light scattering.
 このような表示装置によれば、発光素子30が実装される硬化膜40の第1面が光学レベルで平坦となるため、光散乱を抑制することができ、従来のACP、ACF、NCFなどを貼り付けた接続では達成できなかった優れた光透過性及び視認性を得ることができる。 In such a display device, the first surface of the cured film 40 on which the light-emitting element 30 is mounted is optically flat, suppressing light scattering and providing excellent light transmittance and visibility that could not be achieved with conventional connections using ACP, ACF, NCF, etc.
 [接続構造体]
 前述の実施の形態では、発光素子30を配列したディスプレイとしての表示装置を例に挙げたが、本技術は、第1の電子部品と第2の電子部品とを接続した接続構造体にも適用することができる。すなわち、接続構造体は、第1の電子部品と、第2の電子部品と、第1の電子部品と第2の電子部品とを接続させた硬化膜とを備え、硬化膜が、二乗平均平方根高さが3.0×10-1以下である第1面を有し、第1の電子部品が第1面上に実装されてなるものである。
[Connection structure]
In the above-described embodiment, a display device as a display in which light-emitting elements 30 are arranged has been given as an example, but the present technology can also be applied to a connection structure in which a first electronic component and a second electronic component are connected. That is, the connection structure includes a first electronic component, a second electronic component, and a cured film that connects the first electronic component and the second electronic component, the cured film has a first surface having a root-mean-square height of 3.0×10 −1 or less, and the first electronic component is mounted on the first surface.
 第1の電子部品及び第2の電子部品としては、例えば、発光素子、IC(Integrated Circuit)、フレキシブル基板(FPC:Flexible Printed Circuits)、LCD(Liquid Crystal Display)パネル、有機EL(OLED)などのフラットパネルディスプレイ(FPD)用途、タッチパネル用途などの透明基板、プリント配線板(PWB)などが挙げられる。プリント配線板の材質は、特に限定されず、例えば、FR-4基材などのガラエポでもよく、熱可塑性樹脂などのプラスチック、セラミックなども用いることができる。また、透明基板は、透明性の高いものであれば特に限定はなく、ガラス基板、プラスチック基板などが挙げられる。また、第2の電子部品には、例えば、シリコーンゴム層が設けられていてもよい。 Examples of the first electronic component and the second electronic component include light-emitting elements, ICs (Integrated Circuits), flexible printed circuits (FPCs), LCD (Liquid Crystal Display) panels, transparent substrates for flat panel display (FPD) applications such as organic electroluminescence (OLED), touch panel applications, and printed wiring boards (PWBs). The material of the printed wiring board is not particularly limited, and may be, for example, glass epoxy such as FR-4 base material, or plastics such as thermoplastic resins and ceramics. The transparent substrate is not particularly limited as long as it is highly transparent, and examples include glass substrates and plastic substrates. The second electronic component may be provided with, for example, a silicone rubber layer.
 <4.表示装置の製造方法>
 本実施の形態に係る表示装置の製造方法は、配線基板の所定位置に、二乗平均平方根高さが所定値以下である第1面を有する接続フィルムを配置する配置工程と、第1面に複数の発光素子を搭載し、複数の発光素子を配線基板に実装させる実装工程とを有するものである。ここで、例えば発光素子の電極が円錐形状の突起を有する場合、接続フィルムとして導電粒子を含有していない接着剤層を用いることでがきる。また、例えば発光素子の電極が平面の底面を有する場合、接続フィルムとして異方性導電フィルムを用いることができる。
<4. Manufacturing method of display device>
The manufacturing method of the display device according to the present embodiment includes a placement step of placing a connection film having a first surface with a root mean square height of a predetermined value or less at a predetermined position on a wiring board, and a mounting step of mounting a plurality of light emitting elements on the first surface and mounting the plurality of light emitting elements on the wiring board. Here, for example, when the electrode of the light emitting element has a cone-shaped protrusion, an adhesive layer that does not contain conductive particles can be used as the connection film. Also, for example, when the electrode of the light emitting element has a flat bottom surface, an anisotropic conductive film can be used as the connection film.
 図3は、本実施の形態における表示装置の製造方法の一例を説明するための図であり、図3(A)は、配線基板の所定位置に異方性導電フィルムを配置する配置工程を示し、図3(B)は、発光素子を配線基板に実装させる実装工程を示す。ここで、異方性導電フィルム12、配線基板20及び発光素子30は、前述した接続フィルム及び表示装置の説明と同様のため、同一符号を付し、説明を省略する。 FIG. 3 is a diagram for explaining an example of a manufacturing method for a display device in this embodiment, where FIG. 3(A) shows a placement process for placing an anisotropic conductive film at a predetermined position on a wiring board, and FIG. 3(B) shows a mounting process for mounting a light-emitting element on the wiring board. Here, the anisotropic conductive film 12, wiring board 20, and light-emitting element 30 are the same as those described above for the connection film and display device, so they are given the same reference numerals and their description is omitted.
 (配置工程)
 図3(A)に示すように、配置工程では、基材フィルム11上に形成された異方性導電フィルム12を、配線基板20の所定位置に配置する。具体的には、図1(C)に示すフィルム積層体において、異方性導電フィルム12からカバーフィルム13を剥がし、異方性導電フィルム12の第2面を配線基板20に接触させて配置し、異方性導電フィルム12から基材フィルム11を剥がし、異方性導電フィルム12の第1面を実装面とする。
(Placement process)
3(A), in the placement step, the anisotropic conductive film 12 formed on the base film 11 is placed at a predetermined position on the wiring board 20. Specifically, in the film laminate shown in FIG. 1(C), the cover film 13 is peeled off from the anisotropic conductive film 12, the second surface of the anisotropic conductive film 12 is placed in contact with the wiring board 20, the base film 11 is peeled off from the anisotropic conductive film 12, and the first surface of the anisotropic conductive film 12 is used as the mounting surface.
 異方性導電フィルム12は、例えば配線基板20の表示部の全面に配置してもよく、また、例えばRGB1組の1ピクセル単位(1画素単位)など表示部の一部に所定単位の個片で配置してもよい。 The anisotropic conductive film 12 may be disposed, for example, over the entire display area of the wiring board 20, or may be disposed in individual pieces of a predetermined unit in part of the display area, such as one pixel unit (one picture element unit) of one set of RGB.
 異方性導電フィルム12の配線基板20への配置方法としては、特に限定されるものではない。例えば異方性導電フィルム12を表示部の全面に配置する場合、ラミネートする方法などが挙げられる。また、例えば異方性導電フィルム12の個片を表示部の一部に配置する場合、LLO装置を用いて個片を基材フィルム11から配線基板20に直接転写、配置する方法、個片を予め密着させた転写材(スタンプ材)を用いて転写材から配線基板20に転写、配置する方法などが挙げられる。 The method of arranging the anisotropic conductive film 12 on the wiring board 20 is not particularly limited. For example, when arranging the anisotropic conductive film 12 over the entire surface of the display section, a lamination method can be used. Also, when arranging individual pieces of the anisotropic conductive film 12 on a portion of the display section, a method of directly transferring and arranging the individual pieces from the base film 11 to the wiring board 20 using an LLO device, or a method of using a transfer material (stamp material) to which the individual pieces have been previously adhered, and transferring and arranging the individual pieces from the transfer material to the wiring board 20 can be used.
 (実装工程)
 図3(B)に示すように、実装工程では、配線基板20の所定位置に配置された異方性導電フィルム12の第1面に発光素子30を実装させる。実装工程における発光素子の配置方法は、特に限定されるものではない。例えばLLO装置を用いて発光素子を配線基板に配置する方法、発光素子を予め密着させた転写材(スタンプ材)を用いて転写材から配線基板に配置する方法などが挙げられる。
(Mounting process)
3B, in the mounting process, the light emitting element 30 is mounted on the first surface of the anisotropic conductive film 12 arranged at a predetermined position on the wiring board 20. The method of arranging the light emitting element in the mounting process is not particularly limited. For example, there is a method of arranging the light emitting element on the wiring board using an LLO device, a method of using a transfer material (stamp material) to which the light emitting element has been previously adhered, and a method of arranging the light emitting element from the transfer material to the wiring board.
 発光素子30を配線基板20に接続させる方法としては、公知の異方性導電フィルムにおいて用いられている熱圧着、光圧着、熱光併用圧着などの接続方法を適宜選択して使用することができる。また、導電粒子が半田粒子の場合には、リフローにより接続してもよい。接続条件としては、例えば、温度150℃~260℃、圧力1MPa~60MPa、時間5秒~300秒である。異方性導電フィルムが硬化することにより、硬化膜が形成され、配線基板20上に発光素子30を異方性接続させることができる。 The light-emitting element 30 can be connected to the wiring board 20 by any suitable method, such as thermocompression bonding, photocompression bonding, or thermo-photocompression bonding, which are all used in known anisotropic conductive films. If the conductive particles are solder particles, they may be connected by reflow. Connection conditions include, for example, a temperature of 150°C to 260°C, a pressure of 1 MPa to 60 MPa, and a time of 5 seconds to 300 seconds. As the anisotropic conductive film hardens, a hardened film is formed, allowing the light-emitting element 30 to be anisotropically connected to the wiring board 20.
 [接続構造体の製造方法]
 また、前述した実施の形態では、ディスプレイとしての表示装置の製造方法を例に挙げたが、本技術は、これに限られるものではなく、例えば、光源としての発光装置の製造方法にも適用することができる。また、第1の電子部品と第2の電子部品とを接続する接続構造体の製造方法にも適用することができる。すなわち、接続構造体の製造方法は、第1の電子部品の所定位置に、二乗平均平方根高さが所定値以下である第1面を有する接続フィルムを配置する配置工程と、第1面に複数の第2の電子部品を搭載し、複数の第2の電子部品を第1の電子部品に実装させる実装工程とを有する。第1の電子部品及び第2の電子部品としては、前述した接続構造体と同様のものが挙げられる。
[Method of manufacturing the connection structure]
In addition, in the above-described embodiment, the manufacturing method of the display device as a display is given as an example, but the present technology is not limited thereto, and can be applied to, for example, a manufacturing method of a light-emitting device as a light source. Also, the present technology can be applied to a manufacturing method of a connection structure that connects a first electronic component and a second electronic component. That is, the manufacturing method of the connection structure includes a placement step of placing a connection film having a first surface whose root mean square height is a predetermined value or less at a predetermined position of the first electronic component, and a mounting step of mounting a plurality of second electronic components on the first surface and mounting the plurality of second electronic components on the first electronic component. Examples of the first electronic component and the second electronic component include those similar to the connection structure described above.
 <5.実施例>
 本実施例では、異方性導電フィルムを作製し、Sq(二乗平均平方根高さ)、ヘイズ、及び可視光透過率について評価した。なお、本技術は、これらの実施例に限定されるものではない。
5. Examples
In this example, an anisotropic conductive film was produced and evaluated for Sq (root mean square height), haze, and visible light transmittance. Note that the present technology is not limited to these examples.
 [Sq(二乗平均平方根高さ)測定]
 基材フィルムのSq、及びサンプルの基材フィルム側の面のSqをZygo社製3次元非接触表面粗度測定計にて測定した。
[Sq (root mean square height) measurement]
The Sq of the base film and the Sq of the surface of the sample facing the base film were measured using a three-dimensional non-contact surface roughness measuring device manufactured by Zygo.
 [ヘイズ測定]
 サンプルのヘイズを、HAZEMETER(村上色彩技術研究所製、HM-150)を用いて、JIS K7136に準拠した方法で測定した。ヘイズの評価は、サンプルの素ガラス側及び異方性導電フィルム側の両面のヘイズ(%)に応じて下記基準で行った。ヘイズの評価は、B以上であることが好ましい。
A:40%未満
B:40%以上50%未満
C:50%以上
[Haze measurement]
The haze of the sample was measured using a HAZEMETER (HM-150, manufactured by Murakami Color Research Laboratory) according to a method in accordance with JIS K7136. The haze was evaluated according to the haze (%) on both the plain glass side and the anisotropic conductive film side of the sample, according to the following criteria. The haze is preferably evaluated as B or higher.
A: Less than 40% B: Between 40% and 50% C: 50% or more
 [可視光透過率測定]
 サンプルの可視光領域(380nm~780nm)の透過率を、紫外可視分光光度計(日本分光(株)製V-560)を用いて測定した。可視光透過率の評価は、サンプルの素ガラス側及び異方性導電フィルム側の両面の可視光透過率(%)に応じて下記基準で行った。可視光透過率の評価は、B以上であることが好ましい。
A:45%以上
B:30%以上45%未満
C:30%未満
 [実施例1]
[Visible light transmittance measurement]
The transmittance of the sample in the visible light region (380 nm to 780 nm) was measured using an ultraviolet-visible spectrophotometer (V-560 manufactured by JASCO Corporation). The visible light transmittance was evaluated according to the following criteria according to the visible light transmittance (%) of both the plain glass side and the anisotropic conductive film side of the sample. The visible light transmittance is preferably evaluated as B or higher.
A: 45% or more B: 30% or more but less than 45% C: less than 30% [Example 1]
 (異方性導電フィルムの作製)
 ポリビニルアセタール樹脂(製品名:KS-10、積水化学工業(株)製)50wt%、高純度水添エポキシ樹脂(製品名:YX8000、三菱ケミカル(株)製)40wt%、及びカチオン重合開始剤(製品名:SI-60L、三新化学工業(株)製)10wt%を混合し、バインダーを作製した。
(Preparation of anisotropic conductive film)
A binder was prepared by mixing 50 wt % of polyvinyl acetal resin (product name: KS-10, manufactured by Sekisui Chemical Co., Ltd.), 40 wt % of high-purity hydrogenated epoxy resin (product name: YX8000, manufactured by Mitsubishi Chemical Corporation), and 10 wt % of a cationic polymerization initiator (product name: SI-60L, manufactured by Sanshin Chemical Industry Co., Ltd.).
 バインダーを、基材フィルムとして二乗平均平方根高さ(Sq)1.2×10-3、厚み50μmのPET(Poly Ethylene Terephthalate)フィルム(製品名:SP3040ASCR、東洋クロス(株)製)上に塗布、乾燥させ、樹脂フィルムを形成した。次に、粒子密度58000pcs/mmで導電粒子(平均粒径2.2μm、樹脂コア金属被覆微粒子、Niメッキ0.1μm厚、積水化学工業株式会社製)が六方格子状に配列された配列シートを樹脂フィルムに貼り合わせ、導電粒子を樹脂フィルムに押し込んで転写した。次に、カバーフィルムとして厚み25μmのPET(Poly Ethylene Terephthalate)フィルム(製品名:RSP3030FA2S、東洋クロス(株)製)を導電粒子の転写面に貼り合わせ、厚み4μmの導電粒子が整列された異方性導電フィルムを作製した。 The binder was applied to a PET (Poly Ethylene Terephthalate) film (product name: SP3040ASCR, manufactured by Toyo Cross Co., Ltd.) having a root mean square height (Sq) of 1.2×10 −3 and a thickness of 50 μm as a base film, and dried to form a resin film. Next, an arrangement sheet in which conductive particles (average particle size 2.2 μm, resin core metal-coated fine particles, Ni plating 0.1 μm thick, manufactured by Sekisui Chemical Co., Ltd.) with a particle density of 58000 pcs/mm 2 were arranged in a hexagonal lattice shape was attached to the resin film, and the conductive particles were pressed into the resin film to be transferred. Next, a PET (Poly Ethylene Terephthalate) film (product name: RSP3030FA2S, manufactured by Toyo Cross Co., Ltd.) having a thickness of 25 μm was attached to the transfer surface of the conductive particles as a cover film, and an anisotropic conductive film in which conductive particles were aligned to a thickness of 4 μm was produced.
 そして、サイズ30mm×40mm、厚み4μmの異方性導電フィルムについて、カバーフィルムを剥がし、導電粒子の転写面をサイズ40mm×70mm、厚み0.4mmの素ガラスに貼り合わせた後、基材フィルムを剥がし、表面に異方性導電フィルムの第1面を有するサンプルを作製した。貼合条件は、温度50℃、真空引きの時間10秒、加圧時間10秒、加圧力0.1MPaとした。 Then, the cover film was peeled off from the anisotropic conductive film measuring 30 mm x 40 mm and 4 μm thick, and the conductive particle transfer surface was attached to plain glass measuring 40 mm x 70 mm and 0.4 mm thick, after which the base film was peeled off to produce a sample with the first surface of the anisotropic conductive film on its surface. The bonding conditions were a temperature of 50°C, a vacuuming time of 10 seconds, a pressure time of 10 seconds, and a pressure of 0.1 MPa.
 表1に示すように、実施例1のサンプルのSqは6.0×10-2μm、ヘイズの評価はA、可視光透過率の評価はAであった。 As shown in Table 1, the sample of Example 1 had an Sq of 6.0×10 −2 μm, a haze rating of A, and a visible light transmittance rating of A.
 [実施例2]
 基材フィルムとして二乗平均平方根高さ(Sq)1.1×10-1μm、厚み50μmのPETフィルムを用いて異方性導電フィルムを作製し、温度200℃、時間10minの条件で硬化させた以外は、実施例1と同様にサンプルを作製した。
[Example 2]
An anisotropic conductive film was produced using a PET film with a root mean square height (Sq) of 1.1×10 −1 μm and a thickness of 50 μm as the base film, and a sample was produced in the same manner as in Example 1, except that the film was cured at a temperature of 200° C. for 10 minutes.
 表1に示すように、実施例2のサンプルのSqは8.0×10-2μm、ヘイズの評価はA、可視光透過率の評価はAであった。 As shown in Table 1, the sample of Example 2 had an Sq of 8.0×10 −2 μm, a haze rating of A, and a visible light transmittance rating of A.
 [実施例3]
 基材フィルムとして二乗平均平方根高さ(Sq)1.1×10-1μm、厚み50μmのPETフィルムを用いた以外は、実施例1と同様にサンプルを作製した。
[Example 3]
A sample was prepared in the same manner as in Example 1, except that a PET film having a root mean square height (Sq) of 1.1×10 −1 μm and a thickness of 50 μm was used as the substrate film.
 表1に示すように、実施例3のサンプルのSqは9.0×10-2μm、ヘイズの評価はA、可視光透過率の評価はBであった。 As shown in Table 1, the sample of Example 3 had an Sq of 9.0×10 −2 μm, a haze rating of A, and a visible light transmittance rating of B.
 [実施例4]
 基材フィルムとして二乗平均平方根高さ(Sq)2.8×10-1μm、厚み50μmのPETフィルムを用いた以外は、実施例1と同様にサンプルを作製した。
[Example 4]
A sample was prepared in the same manner as in Example 1, except that a PET film having a root-mean-square height (Sq) of 2.8×10 −1 μm and a thickness of 50 μm was used as the substrate film.
 表1に示すように、実施例4のサンプルのSqは2.6×10-1μm、ヘイズの評価はB、可視光透過率の評価はBであった。 As shown in Table 1, the sample of Example 4 had an Sq of 2.6×10 −1 μm, a haze rating of B, and a visible light transmittance rating of B.
 [比較例1]
 基材フィルムとして二乗平均平方根高さ(Sq)5.0×10-1μm以上、厚み50μmのPETフィルムを用いた以外は、実施例1と同様にサンプルを作製した。
[Comparative Example 1]
A sample was prepared in the same manner as in Example 1, except that a PET film having a root mean square height (Sq) of 5.0×10 −1 μm or more and a thickness of 50 μm was used as the base film.
 表1に示すように、比較例1のサンプルのSqは5.0×10-1μm以上、ヘイズの評価はC、可視光透過率の評価はCであった。 As shown in Table 1, the sample of Comparative Example 1 had an Sq of 5.0×10 −1 μm or more, a haze rating of C, and a visible light transmittance rating of C.
 [比較例2]
 基材フィルムとして二乗平均平方根高さ(Sq)7.0×10-1μm以上、厚み50μmのPETフィルムを用いた以外は、実施例1と同様にサンプルを作製した。
[Comparative Example 2]
A sample was prepared in the same manner as in Example 1, except that a PET film having a root mean square height (Sq) of 7.0×10 −1 μm or more and a thickness of 50 μm was used as the base film.
 表1に示すように、比較例2のサンプルのSqは7.0×10-1μm以上、ヘイズの評価はC、可視光透過率の評価はCであった。 As shown in Table 1, the sample of Comparative Example 2 had an Sq of 7.0×10 −1 μm or more, a haze rating of C, and a visible light transmittance rating of C.
 表1に示すように、比較例1及び比較例2は、異方性導電フィルムの第1面の二乗平均平方根高さが3.0×10-1μmを超えているため、良好なヘイズ評価及び可視光透過率評価を得ることができなかった。 As shown in Table 1, in Comparative Example 1 and Comparative Example 2, the root mean square height of the first surface of the anisotropic conductive film exceeded 3.0×10 −1 μm, and therefore good haze evaluation and visible light transmittance evaluation could not be obtained.
 一方、実施例1~4は、異方性導電フィルムの第1面の二乗平均平方根高さが3.0×10-1μm以下であるため、良好なヘイズ評価及び可視光透過率評価を得ることができ、表示装置の光透過性及び視認性を向上させるこが可能であることが分かった。また、実施例1~3は、異方性導電フィルムの第1面の二乗平均平方根高さが1.0×10-1μm以下であるため、ヘイズを40%未満とすることができた。また、実施例2と実施例3とを比較した結果、異方性導電フィルムの硬化によって可視光透過率が向上することが分かった。 On the other hand, in Examples 1 to 4, the root mean square height of the first surface of the anisotropic conductive film was 3.0×10 −1 μm or less, so good haze evaluations and visible light transmittance evaluations could be obtained, and it was found that it was possible to improve the light transmittance and visibility of the display device. Also, in Examples 1 to 3, the root mean square height of the first surface of the anisotropic conductive film was 1.0×10 −1 μm or less, so the haze could be made less than 40%. Also, as a result of comparing Example 2 with Example 3, it was found that the visible light transmittance was improved by curing the anisotropic conductive film.
 11 基材フィルム、11a 第1面、12 接続フィルム、12a 第1面、13 カバーフィルム、20 配線基板、30 発光素子、40 硬化膜、40a 第1面
 
REFERENCE SIGNS LIST 11 Base film, 11a First surface, 12 Connection film, 12a First surface, 13 Cover film, 20 Wiring board, 30 Light emitting element, 40 Hardened film, 40a First surface

Claims (12)

  1.  複数の発光素子と、配線基板と、前記複数の発光素子と前記配線基板とを接続した接続フィルムの硬化膜とを備え、
     前記硬化膜が、二乗平均平方根高さが3.0×10-1μm以下である第1面を有し、
     前記複数の発光素子が、前記第1面上に実装されてなる表示装置。
    A light-emitting element comprising: a plurality of light-emitting elements; a wiring board; and a cured film of a connection film that connects the plurality of light-emitting elements and the wiring board;
    the cured film has a first surface having a root mean square height of 3.0×10 −1 μm or less;
    A display device in which the plurality of light-emitting elements are mounted on the first surface.
  2.  前記発光素子間の硬化膜のヘイズが50%未満であり、前記発光素子間の硬化膜の可視光透過率が30%以上である請求項1記載の表示装置。 The display device according to claim 1, wherein the haze of the cured film between the light-emitting elements is less than 50%, and the visible light transmittance of the cured film between the light-emitting elements is 30% or more.
  3.  前記硬化膜が、導電粒子を有し、前記硬化膜の厚みが、前記導電粒子の平均粒径に1~2μmを加算したものである請求項1記載の表示装置。 The display device according to claim 1, wherein the cured film contains conductive particles, and the thickness of the cured film is the average particle size of the conductive particles plus 1 to 2 μm.
  4.  前記導電粒子の平均粒径が、3.0μm以下であり、
     前記導電粒子が、50000個/mm以上の粒子面密度で整列している請求項3記載の表示装置。
    The conductive particles have an average particle size of 3.0 μm or less,
    4. The display device according to claim 3, wherein the conductive particles are aligned at a particle surface density of 50,000 particles/ mm2 or more.
  5.  前記発光素子間の前記硬化膜の第1面の高さと前記発光素子の本体の底面の高さとの差が、1μm以下である請求項4記載の表示装置。 The display device according to claim 4, wherein the difference in height between the first surface of the cured film between the light-emitting elements and the bottom surface of the body of the light-emitting element is 1 μm or less.
  6.  配線基板の所定位置に、二乗平均平方根高さが3.0×10-1μm以下である第1面を有する接続フィルムを配置する配置工程と、
     前記第1面に複数の発光素子を搭載し、前記複数の発光素子を配線基板に実装させる実装工程と
     を有する表示装置の製造方法。
    a placement step of placing a connection film having a first surface with a root mean square height of 3.0×10 −1 μm or less at a predetermined position on a wiring board;
    a mounting step of mounting a plurality of light-emitting elements on the first surface and mounting the plurality of light-emitting elements on a wiring board.
  7.  二乗平均平方根高さが3.0×10-1μm以下である第1面を有する接続フィルム。 A connecting film having a first surface with a root mean square height of 3.0×10 −1 μm or less.
  8.  ヘイズが50%未満であり、可視光透過率が30%以上である請求項7記載の接続フィルム。 The connection film according to claim 7, which has a haze of less than 50% and a visible light transmittance of 30% or more.
  9.  導電粒子を有し、厚みが、前記導電粒子の平均粒径に1~2μmを加算したものである請求項7記載の接続フィルム。 The connection film according to claim 7, which contains conductive particles and has a thickness that is the average particle size of the conductive particles plus 1 to 2 μm.
  10.  前記導電粒子の平均粒径が、3.0μm以下であり、
     前記導電粒子が、50000個/mm以上の粒子面密度で整列している請求項9記載の接続フィルム。
    The conductive particles have an average particle size of 3.0 μm or less,
    The connecting film according to claim 9 , wherein the conductive particles are aligned at a particle surface density of 50,000 particles/mm 2 or more.
  11.  前記第1面側に二乗平均平方根高さが3.0×10-1μm以下である基材フィルムを備える請求項7記載の接続フィルム。 8. The connection film according to claim 7, further comprising a base film having a root mean square height of 3.0×10 −1 μm or less on the first surface side.
  12.  二乗平均平方根高さが3.0×10-1μm以下である基材フィルム上に接続フィルムを形成し、
     前記基材フィルム側に二乗平均平方根高さが3.0×10-1μm以下である第1面を有する接続フィルムの製造方法。
     
    forming a connection film on a base film having a root mean square height of 3.0×10 −1 μm or less;
    A method for producing a connecting film, the connecting film having a first surface on the base film side, the first surface having a root mean square height of 3.0×10 −1 μm or less.
PCT/JP2023/029363 2022-09-28 2023-08-10 Display device and display device manufacturing method, and connecting film and connecting film manufacturing method WO2024070281A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022155321A JP2024049076A (en) 2022-09-28 2022-09-28 Display device and method for manufacturing the same, connection film and method for manufacturing the same
JP2022-155321 2022-09-28

Publications (1)

Publication Number Publication Date
WO2024070281A1 true WO2024070281A1 (en) 2024-04-04

Family

ID=90477220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029363 WO2024070281A1 (en) 2022-09-28 2023-08-10 Display device and display device manufacturing method, and connecting film and connecting film manufacturing method

Country Status (2)

Country Link
JP (1) JP2024049076A (en)
WO (1) WO2024070281A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018542A (en) * 2009-07-08 2011-01-27 Sumitomo Metal Mining Co Ltd Transparent conductive base material and manufacturing method thereof
JP2017157724A (en) * 2016-03-02 2017-09-07 デクセリアルズ株式会社 Display apparatus and manufacturing method of the same, light emitting apparatus, and manufacturing method of the same
CN111816752A (en) * 2020-06-23 2020-10-23 安徽精卓光显技术有限责任公司 Mini LED preparation method and Mini LED
JP2021004988A (en) * 2019-06-26 2021-01-14 株式会社ジャパンディスプレイ Anisotropic conductive film and display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018542A (en) * 2009-07-08 2011-01-27 Sumitomo Metal Mining Co Ltd Transparent conductive base material and manufacturing method thereof
JP2017157724A (en) * 2016-03-02 2017-09-07 デクセリアルズ株式会社 Display apparatus and manufacturing method of the same, light emitting apparatus, and manufacturing method of the same
JP2021004988A (en) * 2019-06-26 2021-01-14 株式会社ジャパンディスプレイ Anisotropic conductive film and display
CN111816752A (en) * 2020-06-23 2020-10-23 安徽精卓光显技术有限责任公司 Mini LED preparation method and Mini LED

Also Published As

Publication number Publication date
JP2024049076A (en) 2024-04-09

Similar Documents

Publication Publication Date Title
TWI485592B (en) Electrode staking body of transparent touch panel
KR101966634B1 (en) Film Touch Sensor
TW201634624A (en) Anisotropic conductive film (ACF) including a reflective layer
TW202111053A (en) Adhesive sheet and optical laminate which are excellent in uniformity of light diffusion and step compliance
CN107315267A (en) A kind of intelligent flexible liquid crystal module and corresponding display device
KR102205622B1 (en) Optical laminate and surface light source device
TW201328443A (en) PCB structure
WO2018207590A1 (en) Display device
JP2011070821A (en) Transparent anisotropic conductive film
JP2019016631A (en) Method of manufacturing led module
US20160154524A1 (en) Touch-sensing electrode and touch screen panel comprising same
WO2024070281A1 (en) Display device and display device manufacturing method, and connecting film and connecting film manufacturing method
JP2017195186A (en) Anisotropic conductive film, method for producing anisotropic conductive film, method for producing connection body, and connection method
TW201633513A (en) Led-mounted module and led display device
KR102047225B1 (en) non-conductive type adhesive means and display device using the same
JP6918452B2 (en) Substrate and module for light emitting element
KR102004026B1 (en) Transparent conductor and display apparatus comprising the same
KR20170009822A (en) Anisotropic conductive film
WO2024057755A1 (en) Method for producing individualized film, individualized film, method for producing display device, and display device
WO2022202945A1 (en) Method for manufacturing display device
JP6136232B2 (en) EL element, illumination device, display device, and liquid crystal display device
WO2024024192A1 (en) Manufacturing method for light emitting device, and black transfer film
WO2023157709A1 (en) Method for manufacturing connection structure, and transfer method for singulated adhesive film
TW202317381A (en) Film containing filler
WO2022202988A1 (en) Film with arranged filler