WO2024070280A1 - Method for manufacturing vane, vane, compressor equipped with vane, and refrigeration cycle device - Google Patents

Method for manufacturing vane, vane, compressor equipped with vane, and refrigeration cycle device Download PDF

Info

Publication number
WO2024070280A1
WO2024070280A1 PCT/JP2023/029337 JP2023029337W WO2024070280A1 WO 2024070280 A1 WO2024070280 A1 WO 2024070280A1 JP 2023029337 W JP2023029337 W JP 2023029337W WO 2024070280 A1 WO2024070280 A1 WO 2024070280A1
Authority
WO
WIPO (PCT)
Prior art keywords
vane
cylinder
coating layer
hardness coating
manufacturing
Prior art date
Application number
PCT/JP2023/029337
Other languages
French (fr)
Japanese (ja)
Inventor
崇洋 佐々木
泰幸 泉
基信 古川
Original Assignee
株式会社富士通ゼネラル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社富士通ゼネラル filed Critical 株式会社富士通ゼネラル
Publication of WO2024070280A1 publication Critical patent/WO2024070280A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00

Definitions

  • the present invention relates to a method for manufacturing vanes, vanes, and compressors and refrigeration cycle devices equipped with vanes.
  • the compression section of a rotary compressor includes a cylinder, a piston that revolves along the inner periphery of the cylinder, and end plates that close both ends of the cylinder.
  • Some rotary compressors have vanes in the vane grooves of the cylinder that divide the cylinder chamber, which is formed between the inner periphery of the cylinder and the outer periphery of the piston, into a suction chamber and a compression chamber.
  • the outer peripheral surface of this type of vane has a tip surface that slides against the outer peripheral surface of the piston, a side surface that slides against the inner surface of the vane groove, and an end surface that slides against the end plate. Therefore, the vane is required to have wear resistance so that it does not wear out even when it slides repeatedly, and seizure resistance so that it does not deteriorate even if it is overheated by frictional heat caused by sliding.
  • the tip surface of the vane is required to have high hardness (wear resistance) so that it can withstand the large surface pressure when it slides against the piston.
  • JP 2013-155749 A Japanese Patent Application Laid-Open No. 60-26195 Japanese Patent Application Laid-Open No. 11-280648
  • a vane formed from high-speed steel as a base material is nitrided to form a nitrided diffusion layer over the entire surface of the vane, and then a DLC (diamond-like carbon) layer is formed as a high-hardness coating layer over the entire nitrided diffusion layer.
  • High-speed steel itself is a steel material with a low Cr content (for example, a Cr content of about 3.8 [wt%] to 4.5 [wt%]), and nitriding the vane alone does not provide sufficient wear resistance and seizure resistance. Therefore, a high-hardness coating layer is further formed over the entire surface of the vane to ensure wear resistance and seizure resistance.
  • Patent Document 2 discloses a vane made of a steel material with a high Cr content as a base material.
  • Patent Document 2 a vane made of a steel material with a high Cr content as a base material is nitrided to form a nitride diffusion layer on the surface of the vane, ensuring wear resistance and seizure resistance.
  • the vane described in Patent Document 2 has sufficient wear resistance and seizure resistance on the side and end faces, the hardness of the tip face that receives a large surface pressure from the piston is insufficient, and there is a risk of wear on the tip face progressing.
  • Patent Document 3 describes a technique for improving adhesion between a vane having a nitride compound layer formed on its surface by nitriding and a high-hardness coating layer.
  • Patent Document 3 after nitriding the vane, ions of the constituent molecules of the high-hardness coating layer are irradiated onto the vane before the high-hardness coating layer is formed. This forms a mixed layer on the surface of the vane in which the constituent molecules of the high-hardness coating layer and the constituent molecules of the vane's base material are bonded. Then, by forming a high-hardness coating layer on the mixed layer, it is possible to improve adhesion between the vane having the nitride compound layer formed and the high-hardness coating layer.
  • adding a special process for forming a mixed layer as in Patent Document 3 poses the problem of increased manufacturing costs for the vane.
  • the disclosed technology has been developed in consideration of the above, and aims to provide a vane manufacturing method that ensures the necessary wear resistance and seizure resistance for the tip, side, and end faces of the vane, while reducing the manufacturing costs of the vane, as well as a vane, and a compressor and refrigeration cycle device that include the vane.
  • One aspect of the method for manufacturing a vane disclosed in this application is a method for manufacturing a vane that is used in a compressor having a cylinder, a piston that revolves along the inner circumferential surface of the cylinder, and end plates that close both ends of the cylinder, and is provided in a vane groove of the cylinder so as to divide the cylinder chamber formed between the cylinder and the piston into a suction chamber and a compression chamber, in which a vane having a tip surface that slides against the outer circumferential surface of the piston is formed from a base material with a Cr content exceeding 4.5 wt %, a high-hardness coating layer is formed on at least the tip surface of the vane, and the vane is subjected to a nitriding treatment after the high-hardness coating layer is formed.
  • the vane manufacturing method disclosed in this application it is possible to ensure the necessary wear resistance and seizure resistance for the tip surface, side surface, and end surface of the vane, while reducing the manufacturing costs of the vane.
  • FIG. 1 is a vertical cross-sectional view showing a compressor equipped with a vane of an embodiment.
  • FIG. 2 is an exploded perspective view showing a compression section of the compressor of the embodiment.
  • FIG. 3 is a perspective view showing a vane according to the embodiment.
  • FIG. 4 is a cross-sectional view showing a high-hardness coating layer and a nitride diffusion layer of a vane according to an embodiment of the present invention.
  • FIG. 5 is an enlarged cross-sectional view showing the tip of the vane of the embodiment.
  • FIG. 6 is a schematic diagram for explaining a manufacturing method of the vane of the embodiment.
  • FIG. 7 is a flow chart for explaining a manufacturing method of the vane of the embodiment.
  • FIG. 1 is a vertical cross-sectional view showing a compressor equipped with a vane of an embodiment.
  • FIG. 2 is an exploded perspective view showing a compression section of the compressor of the embodiment.
  • FIG. 3 is a perspective view showing a vane
  • FIG. 8 is a schematic diagram for explaining an example of a process for forming a high-hardness coating layer in the embodiment.
  • FIG. 9 is a schematic diagram for explaining another example of the process for forming a high-hardness coating layer in the embodiment.
  • FIG. 10 is a schematic diagram showing a refrigeration cycle device including the compressor of the embodiment.
  • Fig. 1 is a vertical cross-sectional view showing a compressor equipped with a vane of the embodiment.
  • the compressor 1 is a rotary compressor that accommodates a compression section 12 that draws in a refrigerant from an accumulator 25 and compresses the refrigerant and discharges it into the main container 10, and a motor 11 that drives the compression section 12, inside a main container 10, and discharges the high-pressure refrigerant compressed by the compression section 12 into the main container 10 and further into a refrigeration cycle through a discharge pipe 107.
  • the compressor 1 also includes a rotating shaft 15 that transmits the driving force of the motor 11 to the compression section 12, and an accumulator 25 fixed to the outer circumferential surface of the main container 10.
  • the main container 10 is provided with an upper compression section suction pipe 102T and a lower compression section suction pipe 102S that penetrate the main container 10 to draw low-pressure refrigerant from the refrigeration cycle into the compression section 12.
  • the upper guide pipe 101T is fixed to the main container 10, for example, by brazing, and the upper compression section suction pipe 102T passes through the inside of the upper guide pipe 101T and is fixed to the upper guide pipe 101T, for example, by brazing.
  • the lower guide pipe 101S is fixed to the main container 10, for example, by brazing, and the lower compression section suction pipe 102S passes through the inside of the lower guide pipe 101S and is fixed to the lower guide pipe 101S, for example, by brazing.
  • a discharge pipe 107 for discharging the high-pressure refrigerant compressed in the compression section 12 from inside the main container 10 to the refrigeration cycle is provided through the upper part of the main container 10.
  • a base member 310 that supports the entire compressor 1 is fixed to the lower part of the main container 10 by welding.
  • the accumulator 25 includes an accumulator suction pipe 27 that draws refrigerant from the refrigeration cycle into the accumulator 25, and an upper gas-liquid separation pipe 31T and a lower gas-liquid separation pipe 31S for sending the gaseous refrigerant to the compression section 12.
  • the accumulator suction pipe 27 is connected to the upper part of the accumulator 25.
  • the upper gas-liquid separation pipe 31T is connected to the upper compression section suction pipe 102T via the upper connecting pipe 104T.
  • the lower gas-liquid separation pipe 31S is connected to the lower compression section suction pipe 102S via the lower connecting pipe 104S.
  • the compression section 12 has an upper cylinder 121T, a lower cylinder 121S, an intermediate partition plate 140, an upper end plate 160T, and a lower end plate 160S, and is stacked in the order of the upper end plate 160T, the upper cylinder 121T, the intermediate partition plate 140, the lower cylinder 121S, and the lower end plate 160S, and is fixed by a plurality of bolts 175.
  • the upper end plate 160T is provided with a main bearing portion 161T.
  • the lower end plate 160S is provided with a sub-bearing portion 161S.
  • the rotating shaft 15 is provided with a main shaft portion 153, an upper eccentric portion 152T, a lower eccentric portion 152S, and a sub-shaft portion 151.
  • the rotating shaft 15 has a main shaft portion 153 and a sub-shaft portion 151 supported by the compression section 12.
  • the main shaft portion 153 of the rotating shaft 15 is fitted into the main bearing portion 161T of the upper end plate 160T, and the sub-shaft portion 151 of the rotating shaft 15 is fitted into the sub-bearing portion 161S of the lower end plate 160S, so that the rotating shaft 15 is rotatably supported by the main bearing portion 161T and the sub-bearing portion 161S.
  • the motor 11 has a stator 111 arranged on the outside and a rotor 112 arranged on the inside.
  • the stator 111 is fixed to the inner circumferential surface 10a of the main container 10 by, for example, shrink fitting or welding.
  • the rotor 112 is fixed to the rotating shaft 15 by shrink fitting.
  • the inside of the main container 10 is filled with lubricating oil 18, enough to almost completely immerse the compression section 12, to lubricate the sliding members of the compression section 12 and to seal between the high-pressure and low-pressure sections in the cylinder chamber.
  • the upper cylinder 121T has a cylindrical upper hollow section 130T formed therein, and an upper piston 125T is disposed in the upper hollow section 130T.
  • the upper piston 125T is fitted into the upper eccentric section 152T of the rotating shaft 15.
  • the lower cylinder 121S has a cylindrical lower hollow section 130S formed therein, and a lower piston 125S is disposed in the lower hollow section 130S.
  • the lower piston 125S is fitted into the lower eccentric section 152S of the rotating shaft 15.
  • the upper cylinder 121T is provided with an upper vane groove 128T extending from the upper hollow portion 130T to the outer periphery, and an upper vane 127T is disposed in the upper vane groove 128T.
  • the upper cylinder 121T is provided with an upper spring hole 124T that leads from the outer periphery to the upper vane groove 128T, and an upper spring 126T is disposed in the upper spring hole 124T.
  • the lower cylinder 121S is provided with a lower vane groove 128S that extends from the lower hollow portion 130S to the outer periphery, and a lower vane 127S is disposed in the lower vane groove 128S.
  • the lower cylinder 121S is provided with a lower spring hole 124S that leads from the outer periphery to the lower vane groove 128S, and a lower spring 126S is disposed in the lower spring hole 124S.
  • the space outside the upper piston 125T in the upper hollow portion 130T of the upper cylinder 121T is divided into an upper suction chamber 131T and an upper compression chamber 133T, which are upper cylinder chambers.
  • the upper cylinder 121T has an upper suction hole 135T that communicates with the upper suction chamber 131T from the outer periphery.
  • the upper suction hole 135T is connected to the upper compression section suction pipe 102T.
  • the space outside the lower piston 125S in the lower hollow portion 130S of the lower cylinder 121S is divided into a lower suction chamber 131S and a lower compression chamber 133S, which are lower cylinder chambers.
  • the lower cylinder 121S has a lower suction hole 135S that communicates with the lower suction chamber 131S from the outer periphery.
  • the lower compression section suction pipe 102S is connected to the lower suction hole 135S.
  • the upper end plate 160T is provided with an upper discharge hole 190T that penetrates the upper end plate 160T and communicates with the upper compression chamber 133T.
  • An upper discharge valve 200T which is a reed valve that opens and closes the upper discharge hole 190T, and an upper discharge valve retainer 201T that regulates the warping of the upper discharge valve 200T are fixed to the upper end plate 160T by an upper rivet 202T.
  • An upper end plate cover 170T that covers the upper discharge hole 190T is disposed on the upper side of the upper end plate 160T, and an upper end plate cover chamber 180T that is closed by the upper end plate 160T and the upper end plate cover 170T is formed.
  • the upper end plate cover 170T is fixed to the upper end plate 160T by a plurality of bolts 175 that fix the upper end plate 160T to the upper cylinder 121T.
  • the upper end plate cover 170T is provided with an upper end plate cover discharge hole 172 that communicates between the upper end plate cover chamber 180T and the inside of the main container 10.
  • the inner peripheral surface 10a of the main container 10 is shrink-fitted to the outer peripheral surface 182a of the upper end plate 160T and is joined to the main container 10 by a plurality of welds V (FIG. 4).
  • the structure of the upper end plate 160T in this embodiment will be described in detail later.
  • the lower end plate 160S is provided with a lower discharge hole 190S that penetrates the lower end plate 160S and communicates with the lower compression chamber 133S.
  • a lower discharge valve 200S which is a reed valve that opens and closes the lower discharge hole 190S, and a lower discharge valve holder 201S that regulates the warping of the lower discharge valve 200S are fixed to the lower end plate 160S by a lower rivet 202S.
  • a lower end plate cover 170S that covers the lower discharge hole 190S is arranged below the lower end plate 160S, forming a lower end plate cover chamber 180S that is closed by the lower end plate 160S and the lower end plate cover 170S (see Figure 1).
  • the lower end plate cover 170S is fixed to the lower end plate 160S by a plurality of bolts 175 that fix the lower end plate 160S and the lower cylinder 121S.
  • the compression section 12 also has a refrigerant passage hole 136 (see FIG. 2) that penetrates the lower end plate 160S, the lower cylinder 121S, the intermediate partition plate 140, the upper end plate 160T, and the upper cylinder 121T and connects the lower end plate cover chamber 180S and the upper end plate cover chamber 180T.
  • the gaseous refrigerant drawn into the upper gas-liquid separation pipe 31T is drawn into the upper suction chamber 131T through the upper connecting pipe 104T and the upper compression section suction pipe 102T.
  • the gas refrigerant drawn into the lower gas-liquid separation pipe 31S passes through the lower connecting pipe 104S and the lower compression section suction pipe 102S and is drawn into the lower suction chamber 131S.
  • the upper piston 125T fitted to the upper eccentric portion 152T of the rotating shaft 15 revolves, compressing the refrigerant while reducing the volume of the upper compression chamber 133T.
  • the upper discharge valve 200T opens and discharges the refrigerant from the upper compression chamber 133T to the upper end plate cover chamber 180T.
  • the refrigerant discharged into the upper end plate cover chamber 180T is discharged into the main container 10 from the upper end plate cover discharge hole 172 provided in the upper end plate cover 170T.
  • the lower piston 125S fitted into the lower eccentric portion 152S of the rotating shaft 15 revolves, compressing the refrigerant while reducing the volume of the lower compression chamber 133S.
  • the lower discharge valve 200S opens and discharges the refrigerant from the lower compression chamber 133S to the lower end plate cover chamber 180S.
  • the refrigerant discharged into the lower end plate cover chamber 180S passes through the refrigerant passage hole 136 and the upper end plate cover chamber 180T and is discharged into the main body container 10 from the upper end plate cover discharge hole 172T provided in the upper end plate cover 170T.
  • the refrigerant discharged into the main container 10 is guided above the motor 11 through a notch (not shown) on the outer periphery of the stator 111 that connects the top and bottom, or through a gap in the winding part of the stator 111 (not shown), or through the gap 115 between the stator 111 and the rotor 112 (see Figure 1), and is discharged from the discharge pipe 107 located at the top of the main container 10.
  • the lubricating oil 18 sealed in the lower part of the main container 10 is supplied to the compression section 12 through the inside of the rotating shaft 15 (not shown) by the centrifugal force of the rotating shaft 15.
  • the lubricating oil 18 supplied to the compression section 12 is mixed with the refrigerant and is discharged into the inside of the main container 10 together with the refrigerant in a mist form.
  • the mist of the lubricating oil 18 discharged into the inside of the main container 10 is separated from the refrigerant by the centrifugal force of the rotational force of the motor 11, and returns to the bottom of the main container 10 as oil droplets.
  • the lubricating oil 18 is not separated and is discharged into the refrigerant together with the refrigerant into the refrigeration cycle.
  • the lubricating oil 18 discharged into the refrigeration cycle circulates through the refrigeration cycle and returns to the accumulator 25, where it is separated inside the accumulator 25 and accumulates in the lower part of the accumulator 25.
  • the lubricating oil 18 accumulated in the lower part of the accumulator 25 is sucked into the upper suction chamber 131T and the lower suction chamber 131S together with the suctioned refrigerant.
  • the characteristics of the embodiment include a high-hardness coating layer 211 and a nitride diffusion layer 212 formed on the surfaces of the upper vane 127T and the lower vane 127S (hereinafter also referred to as vane 127). Since the upper vane 127T and the lower vane 127S have the same structure, the upper vane 127T will be described below, and a description of the lower vane 127S will be omitted.
  • Figure 3 is a perspective view showing the vane of the embodiment.
  • the upper vane 127T has a tip surface 129a that slides against the outer circumferential surface of the upper piston 125T, and a first side surface 129b and a second side surface 129c that slide against the inner surface of the upper vane groove 128T.
  • the upper vane 127T also has a first end surface 129d that slides against the end surface of the upper end plate 160T, a second end surface 129e that slides against the end surface of the intermediate partition plate 140 as an end plate, and a back surface 129f that is pressed by the upper spring 126T.
  • the lower vane 127S has a first end surface 129d that slides against the end surface of the intermediate partition plate 140 as an end plate, and a second end surface 129e that slides against the end surface of the lower end plate 160S.
  • the upper vane 127T is formed from a base material that is an iron-based metal material, and the first side surface 129b, the second side surface 129c, the first end surface 129d, and the second end surface 129e are each formed in a flat plate shape.
  • the upper vane 127T is formed from a base material with a Cr (chromium) content of more than 4.5 [wt%].
  • Examples of base materials that can be used include SUS440C (a type of stainless steel) with a Cr content of about 16 [wt%] to 18 [wt%], SKD61 (a type of die steel) with a Cr content of about 4.8 [wt%] to 5.5 [wt%], and SKD11 (a type of die steel) with a Cr content of about 11.0 [wt%] to 13.0 [wt%].
  • the upper vane 127T is formed from a base material with a Cr content exceeding 4.5 wt% to ensure adequate wear resistance and seizure resistance. Furthermore, when the upper vane 127T is formed from stainless steel with a Cr content exceeding 10 wt%, the wear resistance and seizure resistance of the first side surface 129b and the second side surface 129c, which have a particularly large sliding area, can be sufficiently ensured.
  • the tip surface 129a of the upper vane 127T is formed in an arc shape when viewed from a direction perpendicular to the first end surface 129d and the second end surface 129e.
  • the back surface 129f of the upper vane 127T has an engagement portion 138 with which the end of the upper spring 126T engages, which is formed by cutting out a part of the flat back surface 129f.
  • FIG. 4 is a cross-sectional view showing the high-hardness coating layer and nitride diffusion layer of the vane 127 of the embodiment.
  • FIG. 4 is a cross-sectional view perpendicular to the first end face 129d and the second end face 129e of the vane 127.
  • FIG. 5 is a cross-sectional view showing an enlarged tip portion of the vane 127 of the embodiment.
  • FIG. 5 is a cross-sectional view perpendicular to the first side face 129b and the second side face 129c of the vane 127.
  • a high-hardness coating layer 211 is formed on the tip surface 129a of the upper vane 127T.
  • a nitride diffusion layer 212 is formed on the outer peripheral surface of the upper vane 127T by nitriding treatment on the entire first side surface 129b and the second side surface 129c, the entire first end surface 129d and the entire second end surface 129e, the entire back surface 129f, and the entire surface 138a of the engagement portion 138, except for the outer peripheral edge portion of the tip surface 129a (for example, the portion of the tip surface 129a adjacent to each of the first side surface 129b, the second side surface 129c, the first end surface 129d, and the second end surface 129e).
  • the nitride compound layer 213 may be cut to a predetermined thickness or less in order to ensure the dimensional accuracy and surface accuracy of the nitrided upper vane 127T.
  • the nitride compound layer 213 may be completely removed from above the nitride diffusion layer 212, exposing the nitride diffusion layer 212 on the outer surface of the upper vane 127T, thereby preventing wear of the porous nitride compound layer 213.
  • a high-hardness coating layer 211 is formed over the entire tip surface 129a of the upper vane 127T.
  • the high-hardness coating layer 211 is, for example, DLC (diamond-like carbon), CrN (chromium nitride), Cr2N (dichromium nitride), etc.
  • the hardness of the high-hardness coating layer 211 is 1500 [HV] or more, and the wear resistance of the tip surface 129a of the upper vane 127T is appropriately ensured.
  • the hardness of the nitride diffusion layer 212 or the nitride compound layer 213 formed on the first side surface 129b, the second side surface 129c, the first end surface 129d, and the second end surface 129e of the upper vane 127T is desirably 900 [HV] or more.
  • the upper vane 127T has a nitride diffusion layer 212 formed after the formation of the high-hardness coating layer 211. Therefore, the tip surface 129a of the upper vane 127T has an area A where the nitride diffusion layer 212 is not formed, as shown in Figures 4 and 5.
  • FIG. 6 is a schematic diagram for explaining the method for manufacturing the vane 127 of the embodiment.
  • Fig. 7 is a flow chart for explaining the method for manufacturing the vane 127 of the embodiment.
  • the vane 127 is formed from a base material with a Cr (chromium) content exceeding 4.5 wt% (step S1). This ensures that the vane 127 has adequate wear resistance and seizure resistance.
  • the vane 127 is formed from stainless steel with a Cr content of approximately 16 wt% to 18 wt%. By forming the vane 127 from stainless steel with a Cr content exceeding 10 wt%, it is possible to adequately ensure wear resistance and seizure resistance, particularly for the first side surface 129b and the second side surface 129c, which have a large sliding area.
  • step S2 after the vane 127 is formed, the vane 127 is hardened (step S2) to increase the wear resistance and mechanical strength of the base material.
  • step S3 After the vane 127 is hardened, the vane 127 is tempered (step S3) to increase the toughness of the base material.
  • a high-hardness coating layer 211 is formed on the tip surface 129a of the vane 127 (step S4).
  • the high-hardness coating layer 211 is formed by any of a variety of coatings, such as DLC (diamond-like carbon), CrN (chromium nitride), Cr2N (dichromium nitride), etc. This increases the wear resistance of the tip surface 129a of the vane 127.
  • the high-hardness coating layer 211 is formed by, for example, vacuum deposition or sputtering.
  • the high-hardness coating layer 211 is formed only on the tip surface 129a of the vane 127, so that the side surfaces 129b, 129c and end surfaces 129d, 129e on which the high-hardness coating layer 211 is not formed are brought into contact with each other, and multiple vanes 127 can be arranged and coated. This allows the number of vanes 127 that can be coated at one time to be increased, thereby reducing the manufacturing costs of the vanes 127.
  • the manufacturing method of the embodiment is not limited to having a process of forming the high-hardness coating layer 211 only on the tip surface 129a of the vane 127. If necessary, in addition to the tip surface 129a of the vane 127, for example, when multiple vanes 127 are coated at once as shown in Figures 8 and 9 described later, the high-hardness coating layer 211 may be formed on any one or more of the four surfaces of the first side surface 129b, the second side surface 129c, the first end surface 129d, and the second end surface 129e.
  • the high-hardness coating layer 211 may be formed on the parts of the first side surface 129b, the second side surface 129c, the first end surface 129d, and the second end surface 129e adjacent to the tip surface 129a.
  • the vane 127 is subjected to a nitriding treatment.
  • nitriding treatment include gas nitriding, gas soft nitriding, and ion nitriding.
  • nitrogen atoms penetrate and diffuse from the surface of the base material to the inside, forming a nitride diffusion layer 212 and a nitride compound layer 213 near the outer surface of the base material.
  • the nitriding treatment of the vane 127 forms a nitride diffusion layer 212 on the first side surface 129b and second side surface 129c, the first end surface 129d and second end surface 129e, the back surface 129f, and the surface 138a of the engagement portion 138 of the vane 127, and also forms a nitride compound layer 213 on the outer surface side of the nitride diffusion layer 212.
  • the high-hardness coating layer 211 is formed on the tip surface 129a of the vane 127. Therefore, the high-hardness coating layer 211 is not formed on the nitride compound layer 213 (on the outer surface side) formed on the vane 127, so that the adhesion between the high-hardness coating layer 211 and the tip surface 129a is ensured, and the wear resistance and seizure resistance of the tip surface 129a are improved by the high-hardness coating layer 211. Therefore, there is no need to add a special process such as forming a mixed layer to improve the adhesion of the high-hardness coating layer 211, and the manufacturing cost of the vane 127 can be reduced.
  • the wear resistance and seizure resistance of the first side surface 129b and the second side surface 129c, the first end surface 129d and the second end surface 129e of the vane 127 are ensured.
  • the nitride layer 213 of the vane 127 is removed (step S6).
  • the nitride layer 213 is removed so that the thickness of the nitride layer 213 is a predetermined thickness (e.g., 1 ⁇ m) or less.
  • the nitride layer 213 formed on the first side surface 129b and the second side surface 129c, and the first end surface 129d and the second end surface 129e of the vane 127 are removed.
  • the nitride layer 213 may be scraped until it is completely removed, thereby exposing the nitride diffusion layer 212 to the outside of the vane 127. This makes it possible to prevent the nitride layer 213, which is hard but porous and therefore brittle, from being worn down when sliding under high surface pressure.
  • the nitride compound layer 213 on the first side surface 129b and the second side surface 129c, the first end surface 129d and the second end surface 129e, the back surface 129f, and the surface 138a of the engagement portion 138 of the vane 127 is removed to expose the nitride diffusion layer 212, but for example, the nitride compound layer 213 on the first side surface 129b and the second side surface 129c, which have a large sliding area, may be completely removed to expose the nitride diffusion layer 212, and the nitride compound layer 213 on the first end surface 129d and the second end surface 129e, the back surface 129f, and the surface 138a of the engagement portion 138 may not be completely removed and may cover the nitride diffusion layer 212.
  • the manufacturing method of this embodiment is not limited to having a step of removing the nitride compound layer 213, and the nitride compound layer 213 may be left on the nitride diffusion layer 212. In this case, since there is no need to remove the nitride compound layer 213, the number of steps can be reduced and the manufacturing of the vane 127 can be facilitated.
  • FIG. 8 is a schematic diagram for explaining an example of the process for forming the high-hardness coating layer 211 in the embodiment.
  • FIG. 9 is a schematic diagram for explaining another example of the process for forming the high-hardness coating layer 211 in the embodiment.
  • the vanes 127 are arranged so that the opposing surfaces of adjacent vanes 127 are in contact with each other, and the high-hardness coating layer 211 is formed on each tip surface 129a of the vanes 127 at once.
  • the opposing surfaces of adjacent vanes 127 include the first side surface 129b and the second side surface 129c, the first end surface 129d and the second end surface 129e.
  • the side surfaces 129b, 129c of adjacent vanes 127 i.e., the opposing first side surface 129b and second side surface 129c, are arranged so that they are in contact with each other, thereby forming a high-hardness coating layer 211 on each tip surface 129a of the multiple vanes 127.
  • the side surfaces 129b, 129c of adjacent vanes 127 i.e., the opposing first side surface 129b and second side surface 129c
  • adjacent vanes 127 may be arranged so that their respective side faces 129b, 129c, i.e., the opposing first side face 129b and second side face 129c, are in contact with each other, and adjacent vanes 127 may be arranged so that their respective end faces 129d, 129e, i.e., the opposing first end face 129d and second end face 129e, are in contact with each other.
  • This further increases the number of vanes 127 that can form a high-hardness coating layer 211 in a single formation process, and further reduces the manufacturing cost of the vanes 127.
  • FIG. 10 is a schematic diagram showing a refrigeration cycle device 2 including the compressor 1 of the embodiment.
  • the refrigeration cycle device 2 of the embodiment includes a compressor 1 having a main container 10 and an accumulator 26, a condenser (either the first heat exchanger 4 or the second heat exchanger 6) that condenses the refrigerant compressed by the compressor 1, an expansion valve 5 as a pressure reducer that reduces the pressure of the refrigerant condensed by the condenser, an evaporator (the other of the first heat exchanger 4 or the second heat exchanger 6) that evaporates the refrigerant reduced in pressure by the expansion valve 5, and a pipe 7 through which the refrigerant discharged from the compressor 1 circulates.
  • a condenser either the first heat exchanger 4 or the second heat exchanger 6
  • an expansion valve 5 as a pressure reducer that reduces the pressure of the refrigerant condensed by the condenser
  • an evaporator the other of the first heat exchanger 4 or the second heat exchanger 6) that evaporates the refrigerant reduced in pressure by the expansion valve 5, and a pipe 7 through which
  • a four-way valve 8 for switching the flow of the refrigerant is provided in the flow path of the pipe 7 through which the refrigerant discharged from the compressor 1 flows.
  • the refrigerant circulates as shown by the solid arrows in FIG. 10, the first heat exchanger 4, which is the indoor heat exchanger, corresponds to the condenser, and the second heat exchanger 6, which is the outdoor heat exchanger, corresponds to the evaporator.
  • the refrigerant circulates as shown by the dotted arrows in FIG. 10
  • the second heat exchanger 6, which is the outdoor heat exchanger corresponds to the condenser
  • the first heat exchanger 4 which is the indoor heat exchanger
  • the upper vane 127T (lower vane 127S) having a tip surface 129a that slides against the outer peripheral surface of the upper piston 125T (lower piston 125S) is formed from a base material having a Cr content exceeding 4.5 [wt %]
  • a high-hardness coating layer 211 is formed on at least the tip surface 129a of the upper vane 127T (lower vane 127S)
  • the upper vane 127T (lower vane 127S) is subjected to a nitriding treatment.
  • the high-hardness coating layer 211 on the tip surface 129a of the upper vane 127T (lower vane 127S) before subjecting the upper vane 127T (lower vane 127S) to nitriding treatment, it is possible to prevent the high-hardness coating layer 211 from being formed on the nitride compound layer 213, thereby ensuring adhesion between the high-hardness coating layer 211 and the tip surface 129a, and the wear resistance and seizure resistance of the tip surface 129a are improved by the high-hardness coating layer 211.
  • the wear resistance and seizure resistance required for the tip surface 129a, the first side surface 129b and the second side surface 129c, and the first end surface 129d and the second end surface 129e of the vane 127 are ensured, and the manufacturing cost of the vane 127 is reduced.
  • the high-hardness coating layer 211 only on the tip surface 129a of the vane 127, it becomes possible to arrange multiple vanes 127 and coat them by bringing the side surfaces 129b, 129c and the end surfaces 129d, 129e, on which the high-hardness coating layer 211 is not formed, into contact with each other. This allows the number of vanes 127 that can be coated at one time to be increased, thereby reducing the manufacturing cost of the vane 127.
  • the manufacturing method of the vane 127 of the embodiment cuts the nitride compound layer 213 on the nitride diffusion layer 212 formed on the first side 129b and second side 129c, first end face 129d and second end face 129e of the vane 127.
  • the manufacturing method of the vane 127 of the embodiment exposes the nitride diffusion layer 212 by scraping the nitride layer 213. This removes the nitride layer 213, thereby preventing the nitride layer 213 from peeling off from the vane 127.
  • the vane 217 is quenched and then tempered before forming the high-hardness coating layer 211 on the vane 127. This further increases the wear resistance (hardness) of the base material of the vane 127.
  • the vane 127 of the embodiment when forming the high-hardness coating layer 211 on the vane 127, multiple vanes 127 are arranged so that the opposing surfaces of adjacent vanes 127 are in contact with each other, and the high-hardness coating layer 211 is formed on each tip surface 129a of the multiple vanes 127 at once.
  • This increases the number of vanes 127 on which the high-hardness coating layer 211 can be formed in one formation process, thereby reducing the manufacturing cost of the vane 127.
  • the masking process for the surfaces of the vane 127 that are not to be coated can also be reduced.
  • the manufacturing method of the vane 127 of the embodiment forms the high-hardness coating layer 211 using either DLC, CrN, or Cr2N. This ensures that the hardness of the high-hardness coating layer 211 is 1500 [HV] or more, so that the wear resistance of the tip surface 129a of the vane 127 can be appropriately ensured.
  • the manufacturing method of the vane 127 in the embodiment uses stainless steel as the base material to form the vane 127.
  • the vane 127 is formed from stainless steel with a Cr content exceeding 10 wt %, so that the wear resistance and seizure resistance of the first side surface 129b and the second side surface 129c, which have a particularly large sliding area, can be sufficiently ensured.
  • a two-cylinder rotary compressor having two cylinders 121, an upper cylinder 121T and a lower cylinder 121S is exemplified as the compressor 1, but a one-cylinder rotary compressor having only one cylinder 121 may also be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

The present invention provides a method for manufacturing a vane to be used in a compressor comprising a cylinder, a piston orbiting along the inner circumference of the cylinder, and end plates sealing both ends of the cylinder, the vane being provided in a vane groove of the cylinder so that a cylinder chamber formed between the cylinder and the piston is divided into an intake chamber and a compression chamber, the method comprising: forming, from a base material with a Cr content exceeding 4.5 wt%, a vane (127) having a tip surface (129a) to slide against the outer circumference of the piston; forming a high hardness coating layer (211) on at least the tip surface (129a) of the vane (127); and nitriding the vane (127) after the formation of the high hardness coating layer (211).

Description

ベーンの製造方法、ベーン、及びベーンを備える圧縮機、及び冷凍サイクル装置Method for manufacturing vane, vane, compressor including vane, and refrigeration cycle device
 本発明は、ベーンの製造方法、ベーン、及びベーンを備える圧縮機、冷凍サイクル装置に関する。 The present invention relates to a method for manufacturing vanes, vanes, and compressors and refrigeration cycle devices equipped with vanes.
 ロータリ圧縮機の圧縮部としては、シリンダと、シリンダの内周面に沿って公転するピストンと、シリンダの両端をそれぞれ塞ぐ端板と、を備えており、シリンダの内周面とピストンの外周面との間に形成されるシリンダ室を吸入室と圧縮室とに区画するように、ベーンがシリンダのベーン溝に設けられているものがある。 The compression section of a rotary compressor includes a cylinder, a piston that revolves along the inner periphery of the cylinder, and end plates that close both ends of the cylinder. Some rotary compressors have vanes in the vane grooves of the cylinder that divide the cylinder chamber, which is formed between the inner periphery of the cylinder and the outer periphery of the piston, into a suction chamber and a compression chamber.
 この種のベーンの外周面は、ピストンの外周面に対して摺動する先端面と、ベーン溝の内面に対して摺動する側面と、端板に対して摺動する端面と、を有している。したがって、ベーンには、繰り返し摺動しても摩耗しにくい耐摩耗性と、摺動による摩擦熱で過熱しても変質しにくい耐焼き付き性が求められる。特にベーンの先端面は、ピストンとの摺動時の大きな面圧に耐えられる高い硬度(耐摩耗性)が求められる。 The outer peripheral surface of this type of vane has a tip surface that slides against the outer peripheral surface of the piston, a side surface that slides against the inner surface of the vane groove, and an end surface that slides against the end plate. Therefore, the vane is required to have wear resistance so that it does not wear out even when it slides repeatedly, and seizure resistance so that it does not deteriorate even if it is overheated by frictional heat caused by sliding. In particular, the tip surface of the vane is required to have high hardness (wear resistance) so that it can withstand the large surface pressure when it slides against the piston.
特開2013-155749号公報JP 2013-155749 A 特開昭60-26195号公報Japanese Patent Application Laid-Open No. 60-26195 特開平11-280648号公報Japanese Patent Application Laid-Open No. 11-280648
 特許文献1では、高速度鋼を母材として形成されたベーンを窒化処理することでベーンの表面全体に窒化拡散層を形成し、その後、窒化拡散層の全体に高硬度コーティング層としてDLC(ダイヤモンドライクカーボン)層を形成している。高速度鋼自体はCr含有量が少ない鋼材(例えば、Cr含有量が3.8[wt%]~4.5[wt%]程度)であり、ベーンを窒化処理するだけでは耐摩耗性、耐焼き付き性を十分に得られない。そこで、ベーンの表面全体にさらに高硬度コーティング層を形成して、耐摩耗性、耐焼き付き性を確保している。しかし、特許文献1のようにベーンの表面全体に高硬度コーティング層を形成する場合、高硬度コーティング層を形成する粒子をベーンの表面に適切に付着させるために、処理する複数のベーン同士の距離を離して処理炉内に配置することになる。このため、一度にコーティング処理できるベーンの個数が少なくなり、ベーンの製造コストが増大する問題がある。 In Patent Document 1, a vane formed from high-speed steel as a base material is nitrided to form a nitrided diffusion layer over the entire surface of the vane, and then a DLC (diamond-like carbon) layer is formed as a high-hardness coating layer over the entire nitrided diffusion layer. High-speed steel itself is a steel material with a low Cr content (for example, a Cr content of about 3.8 [wt%] to 4.5 [wt%]), and nitriding the vane alone does not provide sufficient wear resistance and seizure resistance. Therefore, a high-hardness coating layer is further formed over the entire surface of the vane to ensure wear resistance and seizure resistance. However, when a high-hardness coating layer is formed over the entire surface of the vane as in Patent Document 1, the multiple vanes to be treated are placed in the treatment furnace at a distance from each other in order to properly attach the particles that form the high-hardness coating layer to the vane surface. This reduces the number of vanes that can be coated at one time, which increases the manufacturing cost of the vanes.
 一方、Cr含有量が多い鋼材を母材としたベーンが開示された先行技術も知られている(特許文献2)。特許文献2では、Cr含有量が多い鋼材を母材として形成されたベーンを窒化処理してベーンの表面に窒化拡散層を形成するだけで、耐摩耗性、耐焼き付き性を確保している。しかし、特許文献2に記載されるようなベーンは、側面及び端面の耐摩耗性、耐焼き付き性が十分に得られるが、ピストンによって大きな面圧を受ける先端面の硬度が不足し、先端面の摩耗が進行するおそれがある。また、このようなベーンは、Cr含有量が多い鋼材を窒化処理することで、ベーンの表面に形成された窒化拡散層の上に、硬く脆い窒化化合物層、いわゆる白層が厚く形成されてしまう。このため、仮にベーンの硬度をさらに高めるために高硬度コーティング層を形成しようとしても、窒化化合物層と共に高硬度コーティング層が剥離するおそれがあり、高硬度コーティング層の密着性が乏しい問題がある。 On the other hand, a prior art is also known that discloses a vane made of a steel material with a high Cr content as a base material (Patent Document 2). In Patent Document 2, a vane made of a steel material with a high Cr content as a base material is nitrided to form a nitride diffusion layer on the surface of the vane, ensuring wear resistance and seizure resistance. However, while the vane described in Patent Document 2 has sufficient wear resistance and seizure resistance on the side and end faces, the hardness of the tip face that receives a large surface pressure from the piston is insufficient, and there is a risk of wear on the tip face progressing. In addition, in such a vane, by nitriding the steel material with a high Cr content, a hard and brittle nitride compound layer, a so-called white layer, is formed thickly on the nitride diffusion layer formed on the surface of the vane. For this reason, even if a high-hardness coating layer is formed to further increase the hardness of the vane, there is a risk that the high-hardness coating layer will peel off along with the nitride compound layer, and there is a problem of poor adhesion of the high-hardness coating layer.
 特許文献3には、窒化処理によって表面に窒化化合物層が形成されたベーンと高硬度コーティング層との密着性を高める技術が記載されている。特許文献3では、ベーンを窒化処理した後、高硬度コーティング層を形成する前に、高硬度コーティング層の構成分子のイオンをベーンに照射している。これにより、ベーンの表面に、高硬度コーティング層の構成分子とベーンの母材の構成分子とが結合した混合層が形成される。そして、混合層の上に高硬度コーティング層を形成することで、窒化化合物層が形成されたベーンと高硬度コーティング層との密着性を高められる。しかし、特許文献3のように混合層を形成する特殊な工程を追加すると、ベーンの製造コストが増大する問題がある。 Patent Document 3 describes a technique for improving adhesion between a vane having a nitride compound layer formed on its surface by nitriding and a high-hardness coating layer. In Patent Document 3, after nitriding the vane, ions of the constituent molecules of the high-hardness coating layer are irradiated onto the vane before the high-hardness coating layer is formed. This forms a mixed layer on the surface of the vane in which the constituent molecules of the high-hardness coating layer and the constituent molecules of the vane's base material are bonded. Then, by forming a high-hardness coating layer on the mixed layer, it is possible to improve adhesion between the vane having the nitride compound layer formed and the high-hardness coating layer. However, adding a special process for forming a mixed layer as in Patent Document 3 poses the problem of increased manufacturing costs for the vane.
 開示の技術は、上記に鑑みてなされたものであって、ベーンの先端面と側面と端面とに必要な耐摩耗性、耐焼き付き性を確保すると共に、ベーンの製造コストを低減できるベーンの製造方法、ベーン、及びベーンを備える圧縮機、冷凍サイクル装置を提供することを目的とする。 The disclosed technology has been developed in consideration of the above, and aims to provide a vane manufacturing method that ensures the necessary wear resistance and seizure resistance for the tip, side, and end faces of the vane, while reducing the manufacturing costs of the vane, as well as a vane, and a compressor and refrigeration cycle device that include the vane.
 本願の開示するベーンの製造方法の一態様は、シリンダと、シリンダの内周面に沿って公転するピストンと、シリンダの両端を塞ぐ端板と、を備える圧縮機に用いられ、シリンダとピストンとの間に形成されるシリンダ室を吸入室と圧縮室とに区画するようにシリンダのベーン溝に設けられるベーンの製造方法であって、ピストンの外周面に対して摺動する先端面を有するベーンを、Cr含有量が4.5[wt%]を超える母材によって形成し、ベーンの少なくとも先端面に高硬度コーティング層を形成し、高硬度コーティング層の形成後に前記ベーンを窒化処理する。 One aspect of the method for manufacturing a vane disclosed in this application is a method for manufacturing a vane that is used in a compressor having a cylinder, a piston that revolves along the inner circumferential surface of the cylinder, and end plates that close both ends of the cylinder, and is provided in a vane groove of the cylinder so as to divide the cylinder chamber formed between the cylinder and the piston into a suction chamber and a compression chamber, in which a vane having a tip surface that slides against the outer circumferential surface of the piston is formed from a base material with a Cr content exceeding 4.5 wt %, a high-hardness coating layer is formed on at least the tip surface of the vane, and the vane is subjected to a nitriding treatment after the high-hardness coating layer is formed.
 本願の開示するベーンの製造方法の一態様によれば、ベーンの先端面と側面と端面とに必要な耐摩耗性、耐焼き付き性を確保すると共に、ベーンの製造コストを低減できる。 According to one aspect of the vane manufacturing method disclosed in this application, it is possible to ensure the necessary wear resistance and seizure resistance for the tip surface, side surface, and end surface of the vane, while reducing the manufacturing costs of the vane.
図1は、実施例のベーンを備える圧縮機を示す縦断面図である。FIG. 1 is a vertical cross-sectional view showing a compressor equipped with a vane of an embodiment. 図2は、実施例の圧縮機の圧縮部を示す分解斜視図である。FIG. 2 is an exploded perspective view showing a compression section of the compressor of the embodiment. 図3は、実施例のベーンを示す斜視図である。FIG. 3 is a perspective view showing a vane according to the embodiment. 図4は、実施例のベーンの高硬度コーティング層及び窒化拡散層を示す断面図である。FIG. 4 is a cross-sectional view showing a high-hardness coating layer and a nitride diffusion layer of a vane according to an embodiment of the present invention. 図5は、実施例のベーンの先端部を拡大して示す断面図である。FIG. 5 is an enlarged cross-sectional view showing the tip of the vane of the embodiment. 図6は、実施例のベーンの製造方法を説明するための模式図である。FIG. 6 is a schematic diagram for explaining a manufacturing method of the vane of the embodiment. 図7は、実施例のベーンの製造方法を説明するためのフローチャートである。FIG. 7 is a flow chart for explaining a manufacturing method of the vane of the embodiment. 図8は、実施例における高硬度コーティング層の形成工程の一例を説明するための模式図である。FIG. 8 is a schematic diagram for explaining an example of a process for forming a high-hardness coating layer in the embodiment. 図9は、実施例における高硬度コーティング層の形成工程の他の例を説明するための模式図である。FIG. 9 is a schematic diagram for explaining another example of the process for forming a high-hardness coating layer in the embodiment. 図10は、実施例の圧縮機を備える冷凍サイクル装置を示す模式図である。FIG. 10 is a schematic diagram showing a refrigeration cycle device including the compressor of the embodiment.
 以下に、本願の開示するベーンの製造方法及びベーンの実施例を図面に基づいて詳細に説明する。なお、以下の実施例によって、本願の開示するベーンの製造方法及びベーンが限定されるものではない。 Below, the manufacturing method of the vane and examples of the vane disclosed in the present application are explained in detail with reference to the drawings. Note that the manufacturing method of the vane and the vane disclosed in the present application are not limited to the following examples.
(圧縮機の構成)
 図1は、実施例のベーンを備える圧縮機を示す縦断面図である。図1に示すように、圧縮機1は、本体容器10の内部に、冷媒をアキュムレータ25から吸入して圧縮した冷媒を本体容器10の内部に吐出する圧縮部12と、圧縮部12を駆動するモータ11と、が収容され、圧縮部12で圧縮された高圧冷媒を本体容器10の内部に吐出し、さらに吐出管107を通して冷凍サイクルに吐出するロータリ圧縮機である。また、圧縮機1は、モータ11の駆動力を圧縮部12に伝える回転軸15と、本体容器10の外周面に固定されたアキュムレータ25を備える。
(Compressor configuration)
Fig. 1 is a vertical cross-sectional view showing a compressor equipped with a vane of the embodiment. As shown in Fig. 1, the compressor 1 is a rotary compressor that accommodates a compression section 12 that draws in a refrigerant from an accumulator 25 and compresses the refrigerant and discharges it into the main container 10, and a motor 11 that drives the compression section 12, inside a main container 10, and discharges the high-pressure refrigerant compressed by the compression section 12 into the main container 10 and further into a refrigeration cycle through a discharge pipe 107. The compressor 1 also includes a rotating shaft 15 that transmits the driving force of the motor 11 to the compression section 12, and an accumulator 25 fixed to the outer circumferential surface of the main container 10.
 本体容器10には、冷凍サイクルの低圧冷媒を圧縮部12に吸入するための上圧縮部吸入管102T及び下圧縮部吸入管102Sが本体容器10を貫通して設けられている。詳しくは、本体容器10に上ガイド管101Tが例えばろう付けによって固定され、上圧縮部吸入管102Tは上ガイド管101Tの内側を通って上ガイド管101Tに例えばろう付けによって固定されている。同様に、本体容器10に下ガイド管101Sが例えばろう付けによって固定され、下圧縮部吸入管102Sは下ガイド管101Sの内側を通って下ガイド管101Sに例えばろう付けによって固定されている。 The main container 10 is provided with an upper compression section suction pipe 102T and a lower compression section suction pipe 102S that penetrate the main container 10 to draw low-pressure refrigerant from the refrigeration cycle into the compression section 12. In more detail, the upper guide pipe 101T is fixed to the main container 10, for example, by brazing, and the upper compression section suction pipe 102T passes through the inside of the upper guide pipe 101T and is fixed to the upper guide pipe 101T, for example, by brazing. Similarly, the lower guide pipe 101S is fixed to the main container 10, for example, by brazing, and the lower compression section suction pipe 102S passes through the inside of the lower guide pipe 101S and is fixed to the lower guide pipe 101S, for example, by brazing.
 圧縮部12で圧縮された高圧冷媒を本体容器10の内部から冷凍サイクルに吐出するための吐出管107が本体容器10における上部を貫通して設けられている。本体容器10における下部には、圧縮機1全体を支持するベース部材310が溶接によって固定されている。 A discharge pipe 107 for discharging the high-pressure refrigerant compressed in the compression section 12 from inside the main container 10 to the refrigeration cycle is provided through the upper part of the main container 10. A base member 310 that supports the entire compressor 1 is fixed to the lower part of the main container 10 by welding.
 アキュムレータ25は、アキュムレータ25の内部に冷凍サイクルから冷媒を吸入するアキュムレータ吸入管27と、気体冷媒を圧縮部12に送るための上気液分離管31T及び下気液分離管31Sと、を備える。アキュムレータ吸入管27は、アキュムレータ25における上部に接続されている。上気液分離管31Tは、上連絡管104Tを介して上圧縮部吸入管102Tと接続されている。下気液分離管31Sは、下連絡管104Sを介して下圧縮部吸入管102Sと接続されている。 The accumulator 25 includes an accumulator suction pipe 27 that draws refrigerant from the refrigeration cycle into the accumulator 25, and an upper gas-liquid separation pipe 31T and a lower gas-liquid separation pipe 31S for sending the gaseous refrigerant to the compression section 12. The accumulator suction pipe 27 is connected to the upper part of the accumulator 25. The upper gas-liquid separation pipe 31T is connected to the upper compression section suction pipe 102T via the upper connecting pipe 104T. The lower gas-liquid separation pipe 31S is connected to the lower compression section suction pipe 102S via the lower connecting pipe 104S.
 図2は、実施例の圧縮機1の圧縮部12を示す分解斜視図である。図1及び図2に示すように、圧縮部12は、上シリンダ121Tと、下シリンダ121Sと、中間仕切板140と、上端板160Tと、下端板160Sと、を有しており、上端板160T、上シリンダ121T、中間仕切板140、下シリンダ121S、下端板160Sの順に積層され、複数のボルト175により固定されている。上端板160Tには主軸受部161Tが設けられている。下端板160Sには副軸受部161Sが設けられている。回転軸15には主軸部153と、上偏心部152Tと、下偏心部152Sと、副軸部151と、が設けられている。回転軸15は、圧縮部12に支持される主軸部153及び副軸部151を有する。回転軸15の主軸部153が上端板160Tの主軸受部161Tに嵌め込まれ、回転軸15の副軸部151が下端板160Sの副軸受部161Sに嵌め込まれることにより、回転軸15は主軸受部161T及び副軸受部161Sに回転自在に支持される。 2 is an exploded perspective view showing the compression section 12 of the compressor 1 of the embodiment. As shown in FIGS. 1 and 2, the compression section 12 has an upper cylinder 121T, a lower cylinder 121S, an intermediate partition plate 140, an upper end plate 160T, and a lower end plate 160S, and is stacked in the order of the upper end plate 160T, the upper cylinder 121T, the intermediate partition plate 140, the lower cylinder 121S, and the lower end plate 160S, and is fixed by a plurality of bolts 175. The upper end plate 160T is provided with a main bearing portion 161T. The lower end plate 160S is provided with a sub-bearing portion 161S. The rotating shaft 15 is provided with a main shaft portion 153, an upper eccentric portion 152T, a lower eccentric portion 152S, and a sub-shaft portion 151. The rotating shaft 15 has a main shaft portion 153 and a sub-shaft portion 151 supported by the compression section 12. The main shaft portion 153 of the rotating shaft 15 is fitted into the main bearing portion 161T of the upper end plate 160T, and the sub-shaft portion 151 of the rotating shaft 15 is fitted into the sub-bearing portion 161S of the lower end plate 160S, so that the rotating shaft 15 is rotatably supported by the main bearing portion 161T and the sub-bearing portion 161S.
 モータ11は、外側に配置されたステータ111と、内側に配置されたロータ112と、を有している。ステータ111は、本体容器10の内周面10aに例えば焼嵌めや溶接によって固定されている。ロータ112は、回転軸15に焼嵌めによって固定されている。 The motor 11 has a stator 111 arranged on the outside and a rotor 112 arranged on the inside. The stator 111 is fixed to the inner circumferential surface 10a of the main container 10 by, for example, shrink fitting or welding. The rotor 112 is fixed to the rotating shaft 15 by shrink fitting.
 本体容器10の内部には、圧縮部12の摺動部材の潤滑、及びシリンダ室内の高圧部と低圧部とのシールのために、圧縮部12がほぼ浸漬する量の潤滑油18が封入されている。 The inside of the main container 10 is filled with lubricating oil 18, enough to almost completely immerse the compression section 12, to lubricate the sliding members of the compression section 12 and to seal between the high-pressure and low-pressure sections in the cylinder chamber.
 次に、図2を用いて圧縮部12を詳しく説明する。上シリンダ121Tには内部に円筒状の上中空部130Tが設けられ、上中空部130Tには上ピストン125Tが配置されている。上ピストン125Tは回転軸15の上偏心部152Tに嵌め込まれている。下シリンダ121Sには内部に円筒状の下中空部130Sが設けられ、下中空部130Sには下ピストン125Sが配置されている。下ピストン125Sは回転軸15の下偏心部152Sに嵌め込まれている。 Next, the compression section 12 will be described in detail with reference to Figure 2. The upper cylinder 121T has a cylindrical upper hollow section 130T formed therein, and an upper piston 125T is disposed in the upper hollow section 130T. The upper piston 125T is fitted into the upper eccentric section 152T of the rotating shaft 15. The lower cylinder 121S has a cylindrical lower hollow section 130S formed therein, and a lower piston 125S is disposed in the lower hollow section 130S. The lower piston 125S is fitted into the lower eccentric section 152S of the rotating shaft 15.
 上シリンダ121Tには上中空部130Tから外周側へ延びる上ベーン溝128Tが設けられており、上ベーン溝128Tに上ベーン127Tが配置されている。上シリンダ121Tには外周から上ベーン溝128Tに通じる上スプリング穴124Tが設けられており、上スプリング穴124Tに上スプリング126Tが配置されている。下シリンダ121Sには下中空部130Sから外周側へ延びる下ベーン溝128Sが設けられており、下ベーン溝128Sに下ベーン127Sが配置されている。下シリンダ121Sには外周から下ベーン溝128Sに通じる下スプリング穴124Sが設けられており、下スプリング穴124Sに下スプリング126Sが配置されている。 The upper cylinder 121T is provided with an upper vane groove 128T extending from the upper hollow portion 130T to the outer periphery, and an upper vane 127T is disposed in the upper vane groove 128T. The upper cylinder 121T is provided with an upper spring hole 124T that leads from the outer periphery to the upper vane groove 128T, and an upper spring 126T is disposed in the upper spring hole 124T. The lower cylinder 121S is provided with a lower vane groove 128S that extends from the lower hollow portion 130S to the outer periphery, and a lower vane 127S is disposed in the lower vane groove 128S. The lower cylinder 121S is provided with a lower spring hole 124S that leads from the outer periphery to the lower vane groove 128S, and a lower spring 126S is disposed in the lower spring hole 124S.
 上ベーン127Tの一端が上スプリング126Tによって上ピストン125Tに押し当てられることにより、上シリンダ121Tの上中空部130Tにおいて上ピストン125Tの外側の空間が、上シリンダ室である上吸入室131Tと上圧縮室133Tに区画される。上シリンダ121Tには、外周から上吸入室131Tに連通する上吸入穴135Tが設けられている。上吸入穴135Tには上圧縮部吸入管102Tが接続されている。下ベーン127Sの一端が下スプリング126Sによって下ピストン125Sに押し当てられることにより、下シリンダ121Sの下中空部130Sにおいて下ピストン125Sの外側の空間が、下シリンダ室である下吸入室131Sと下圧縮室133Sに区画される。下シリンダ121Sには、外周から下吸入室131Sに連通する下吸入穴135Sが設けられている。下吸入穴135Sには下圧縮部吸入管102Sが接続されている。 When one end of the upper vane 127T is pressed against the upper piston 125T by the upper spring 126T, the space outside the upper piston 125T in the upper hollow portion 130T of the upper cylinder 121T is divided into an upper suction chamber 131T and an upper compression chamber 133T, which are upper cylinder chambers. The upper cylinder 121T has an upper suction hole 135T that communicates with the upper suction chamber 131T from the outer periphery. The upper suction hole 135T is connected to the upper compression section suction pipe 102T. When one end of the lower vane 127S is pressed against the lower piston 125S by the lower spring 126S, the space outside the lower piston 125S in the lower hollow portion 130S of the lower cylinder 121S is divided into a lower suction chamber 131S and a lower compression chamber 133S, which are lower cylinder chambers. The lower cylinder 121S has a lower suction hole 135S that communicates with the lower suction chamber 131S from the outer periphery. The lower compression section suction pipe 102S is connected to the lower suction hole 135S.
 上端板160Tには、上端板160Tを貫通して上圧縮室133Tに連通する上吐出穴190Tが設けられている。上端板160Tには、上吐出穴190Tを開閉するリード弁である上吐出弁200Tと、上吐出弁200Tの反りを規制する上吐出弁押さえ201Tと、が上リベット202Tによって固定されている。上端板160Tの上側には、上吐出穴190Tを覆う上端板カバー170Tが配置され、上端板160Tと上端板カバー170Tとで閉塞される上端板カバー室180Tが形成される。上端板カバー170Tは、上端板160Tと上シリンダ121Tとを固定する複数のボルト175によって上端板160Tに固定される。上端板カバー170Tには、上端板カバー室180Tと本体容器10の内部を連通する上端板カバー吐出穴172が設けられている。また、圧縮部12が本体容器10内に設けられる際、本体容器10の内周面10aが上端板160Tの外周面182aに焼き嵌めされると共に、本体容器10と溶接された複数の溶接部V(図4)によって接合される。本実施例における上端板160Tの構造の詳細については後述する。 The upper end plate 160T is provided with an upper discharge hole 190T that penetrates the upper end plate 160T and communicates with the upper compression chamber 133T. An upper discharge valve 200T, which is a reed valve that opens and closes the upper discharge hole 190T, and an upper discharge valve retainer 201T that regulates the warping of the upper discharge valve 200T are fixed to the upper end plate 160T by an upper rivet 202T. An upper end plate cover 170T that covers the upper discharge hole 190T is disposed on the upper side of the upper end plate 160T, and an upper end plate cover chamber 180T that is closed by the upper end plate 160T and the upper end plate cover 170T is formed. The upper end plate cover 170T is fixed to the upper end plate 160T by a plurality of bolts 175 that fix the upper end plate 160T to the upper cylinder 121T. The upper end plate cover 170T is provided with an upper end plate cover discharge hole 172 that communicates between the upper end plate cover chamber 180T and the inside of the main container 10. When the compression section 12 is provided in the main container 10, the inner peripheral surface 10a of the main container 10 is shrink-fitted to the outer peripheral surface 182a of the upper end plate 160T and is joined to the main container 10 by a plurality of welds V (FIG. 4). The structure of the upper end plate 160T in this embodiment will be described in detail later.
 下端板160Sには、下端板160Sを貫通して下圧縮室133Sに連通する下吐出穴190Sが設けられている。下端板160Sには、下吐出穴190Sを開閉するリード弁である下吐出弁200Sと、下吐出弁200Sの反りを規制する下吐出弁押さえ201Sと、が下リベット202Sによって固定されている。下端板160Sの下側には、下吐出穴190Sを覆う下端板カバー170Sが配置され、下端板160Sと下端板カバー170Sとで閉塞される下端板カバー室180Sを形成する(図1参照)。下端板カバー170Sは、下端板160Sと下シリンダ121Sとを固定する複数のボルト175によって下端板160Sに固定される。 The lower end plate 160S is provided with a lower discharge hole 190S that penetrates the lower end plate 160S and communicates with the lower compression chamber 133S. A lower discharge valve 200S, which is a reed valve that opens and closes the lower discharge hole 190S, and a lower discharge valve holder 201S that regulates the warping of the lower discharge valve 200S are fixed to the lower end plate 160S by a lower rivet 202S. A lower end plate cover 170S that covers the lower discharge hole 190S is arranged below the lower end plate 160S, forming a lower end plate cover chamber 180S that is closed by the lower end plate 160S and the lower end plate cover 170S (see Figure 1). The lower end plate cover 170S is fixed to the lower end plate 160S by a plurality of bolts 175 that fix the lower end plate 160S and the lower cylinder 121S.
 また、圧縮部12には、下端板160S、下シリンダ121S、中間仕切板140、上端板160T及び上シリンダ121Tを貫通し、下端板カバー室180Sと上端板カバー室180Tとを連通する冷媒通路穴136(図2参照)が設けられている。 The compression section 12 also has a refrigerant passage hole 136 (see FIG. 2) that penetrates the lower end plate 160S, the lower cylinder 121S, the intermediate partition plate 140, the upper end plate 160T, and the upper cylinder 121T and connects the lower end plate cover chamber 180S and the upper end plate cover chamber 180T.
 以下に、回転軸15の回転による冷媒の流れを説明する。回転軸15の回転によって、回転軸15の上偏心部152Tに嵌め込まれた上ピストン125T、及び下偏心部152Sに嵌め込まれた下ピストン125Sが公転運動することにより、上吸入室131T及び下吸入室131Sが容積を拡大しながら冷媒を吸入する。冷媒の吸入路として、冷凍サイクルの低圧冷媒は、アキュムレータ吸入管27を通してアキュムレータ25の内部に吸入され、気体冷媒だけが上気液分離管31T及び下気液分離管31Sに吸入される。上気液分離管31Tに吸入された気体冷媒は、上連絡管104Tと上圧縮部吸入管102Tとを通って上吸入室131Tに吸入される。同様に、下気液分離管31Sに吸入された気体冷媒は、下連絡管104Sと下圧縮部吸入管102Sとを通って下吸入室131Sに吸入される。 The flow of refrigerant caused by the rotation of the rotating shaft 15 will be explained below. As the rotating shaft 15 rotates, the upper piston 125T fitted into the upper eccentric portion 152T of the rotating shaft 15 and the lower piston 125S fitted into the lower eccentric portion 152S revolve, causing the upper suction chamber 131T and the lower suction chamber 131S to expand in volume while drawing in refrigerant. As a refrigerant intake path, low-pressure refrigerant from the refrigeration cycle is drawn into the accumulator 25 through the accumulator suction pipe 27, and only gaseous refrigerant is drawn into the upper gas-liquid separation pipe 31T and the lower gas-liquid separation pipe 31S. The gaseous refrigerant drawn into the upper gas-liquid separation pipe 31T is drawn into the upper suction chamber 131T through the upper connecting pipe 104T and the upper compression section suction pipe 102T. Similarly, the gas refrigerant drawn into the lower gas-liquid separation pipe 31S passes through the lower connecting pipe 104S and the lower compression section suction pipe 102S and is drawn into the lower suction chamber 131S.
 次に、回転軸15の回転による吐出冷媒の流れを説明する。回転軸15の回転によって、回転軸15の上偏心部152Tに嵌合された上ピストン125Tが公転運動することにより、上圧縮室133Tが容積を縮小しながら冷媒を圧縮し、圧縮した冷媒の圧力が上吐出弁200Tの外側の上端板カバー室180Tの圧力よりも高くなったとき、上吐出弁200Tが開いて上圧縮室133Tから上端板カバー室180Tへ冷媒を吐出する。上端板カバー室180Tに吐出された冷媒は、上端板カバー170Tに設けられた上端板カバー吐出穴172から本体容器10内に吐出される。 Next, the flow of the discharged refrigerant caused by the rotation of the rotating shaft 15 will be explained. As the rotating shaft 15 rotates, the upper piston 125T fitted to the upper eccentric portion 152T of the rotating shaft 15 revolves, compressing the refrigerant while reducing the volume of the upper compression chamber 133T. When the pressure of the compressed refrigerant becomes higher than the pressure in the upper end plate cover chamber 180T outside the upper discharge valve 200T, the upper discharge valve 200T opens and discharges the refrigerant from the upper compression chamber 133T to the upper end plate cover chamber 180T. The refrigerant discharged into the upper end plate cover chamber 180T is discharged into the main container 10 from the upper end plate cover discharge hole 172 provided in the upper end plate cover 170T.
 また、回転軸15の回転によって、回転軸15の下偏心部152Sに嵌め込まれた下ピストン125Sが公転運動することにより、下圧縮室133Sが容積を縮小しながら冷媒を圧縮し、圧縮した冷媒の圧力が下吐出弁200Sの外側の下端板カバー室180Sの圧力よりも高くなったとき、下吐出弁200Sが開いて下圧縮室133Sから下端板カバー室180Sへ冷媒を吐出する。下端板カバー室180Sに吐出された冷媒は、冷媒通路穴136及び上端板カバー室180Tを通って上端板カバー170Tに設けられた上端板カバー吐出穴172Tから本体容器10内に吐出される。 Also, as the rotating shaft 15 rotates, the lower piston 125S fitted into the lower eccentric portion 152S of the rotating shaft 15 revolves, compressing the refrigerant while reducing the volume of the lower compression chamber 133S. When the pressure of the compressed refrigerant becomes higher than the pressure in the lower end plate cover chamber 180S outside the lower discharge valve 200S, the lower discharge valve 200S opens and discharges the refrigerant from the lower compression chamber 133S to the lower end plate cover chamber 180S. The refrigerant discharged into the lower end plate cover chamber 180S passes through the refrigerant passage hole 136 and the upper end plate cover chamber 180T and is discharged into the main body container 10 from the upper end plate cover discharge hole 172T provided in the upper end plate cover 170T.
 本体容器10内に吐出された冷媒は、ステータ111の外周に設けられた上下を連通する切欠き(図示せず)、又はステータ111の巻線部の隙間(図示せず)、又はステータ111とロータ112との隙間115(図1参照)を通ってモータ11の上方に導かれ、本体容器10の上部に配置された吐出管107から吐出される。 The refrigerant discharged into the main container 10 is guided above the motor 11 through a notch (not shown) on the outer periphery of the stator 111 that connects the top and bottom, or through a gap in the winding part of the stator 111 (not shown), or through the gap 115 between the stator 111 and the rotor 112 (see Figure 1), and is discharged from the discharge pipe 107 located at the top of the main container 10.
 次に、潤滑油18の流れを説明する。本体容器10の下部に封入されている潤滑油18は、回転軸15の遠心力により回転軸15の内部(図示せず)を通って圧縮部12に供給される。圧縮部12に供給された潤滑油18は、冷媒に巻き込まれ霧状となって冷媒と共に本体容器10の内部に排出される。霧状となって本体容器10の内部に排出された潤滑油18はモータ11の回転力によって遠心力で冷媒と分離され、油滴となって再び本体容器10の下部に戻る。しかし一部の潤滑油18は分離されずに冷媒と共に冷凍サイクルに排出される。冷凍サイクルに排出された潤滑油18は冷凍サイクルを循環してアキュムレータ25に戻り、アキュムレータ25の内部で分離されアキュムレータ25における下部に滞留する。アキュムレータ25における下部に滞留した潤滑油18は吸入冷媒と共に上吸入室131T、下吸入室131Sに吸入される。 Next, the flow of the lubricating oil 18 will be explained. The lubricating oil 18 sealed in the lower part of the main container 10 is supplied to the compression section 12 through the inside of the rotating shaft 15 (not shown) by the centrifugal force of the rotating shaft 15. The lubricating oil 18 supplied to the compression section 12 is mixed with the refrigerant and is discharged into the inside of the main container 10 together with the refrigerant in a mist form. The mist of the lubricating oil 18 discharged into the inside of the main container 10 is separated from the refrigerant by the centrifugal force of the rotational force of the motor 11, and returns to the bottom of the main container 10 as oil droplets. However, some of the lubricating oil 18 is not separated and is discharged into the refrigerant together with the refrigerant into the refrigeration cycle. The lubricating oil 18 discharged into the refrigeration cycle circulates through the refrigeration cycle and returns to the accumulator 25, where it is separated inside the accumulator 25 and accumulates in the lower part of the accumulator 25. The lubricating oil 18 accumulated in the lower part of the accumulator 25 is sucked into the upper suction chamber 131T and the lower suction chamber 131S together with the suctioned refrigerant.
(圧縮機の特徴的な構成)
 次に、実施例の圧縮機1の特徴的な構成について説明する。実施例の特徴には、上ベーン127T及び下ベーン127S(以下、ベーン127とも称する。)の表面に形成された高硬度コーティング層211、窒化拡散層212が含まれる。上ベーン127Tと下ベーン127Sは構造が同一であるため、以下、上ベーン127Tについて説明し、下ベーン127Sの説明を省略する。
(Characteristic configuration of the compressor)
Next, a characteristic configuration of the compressor 1 of the embodiment will be described. The characteristics of the embodiment include a high-hardness coating layer 211 and a nitride diffusion layer 212 formed on the surfaces of the upper vane 127T and the lower vane 127S (hereinafter also referred to as vane 127). Since the upper vane 127T and the lower vane 127S have the same structure, the upper vane 127T will be described below, and a description of the lower vane 127S will be omitted.
 図3は、実施例のベーンを示す斜視図である。図3に示すように、上ベーン127Tは、上ピストン125Tの外周面に対して摺動する先端面129aと、上ベーン溝128Tの内面に対して摺動する第1側面129b及び第2側面129cと、を有する。また、上ベーン127Tは、上端板160Tの端面に対して摺動する第1端面129dと、端板としての中間仕切板140の端面に対して摺動する第2端面129eと、上スプリング126Tによって押圧される背面129fと、を有する。なお、下ベーン127Sについて補足すると、下ベーン127Sは、端板としての中間仕切板140の端面に対して摺動する第1端面129dと、下端板160Sの端面に対して摺動する第2端面129eと、を有する。 Figure 3 is a perspective view showing the vane of the embodiment. As shown in Figure 3, the upper vane 127T has a tip surface 129a that slides against the outer circumferential surface of the upper piston 125T, and a first side surface 129b and a second side surface 129c that slide against the inner surface of the upper vane groove 128T. The upper vane 127T also has a first end surface 129d that slides against the end surface of the upper end plate 160T, a second end surface 129e that slides against the end surface of the intermediate partition plate 140 as an end plate, and a back surface 129f that is pressed by the upper spring 126T. In addition, regarding the lower vane 127S, the lower vane 127S has a first end surface 129d that slides against the end surface of the intermediate partition plate 140 as an end plate, and a second end surface 129e that slides against the end surface of the lower end plate 160S.
 上ベーン127Tは、鉄系の金属材料である母材によって形成されており、第1側面129b及び第2側面129c、第1端面129d及び第2端面129eがそれぞれ平坦な板状に形成されている。実施例における上ベーン127Tは、Cr(クロム)の含有量が4.5[wt%]を超える母材によって形成されている。母材の一例としては、Crの含有量が16[wt%]~18[wt%]程度のSUS440C(ステンレス鋼の一種)、Crの含有量が4.8[wt%]~5.5[wt%]程度のSKD61(ダイス鋼の一種)、Crの含有量11.0[wt%]~13.0[wt%]程度のSKD11(ダイス鋼の一種)などが用いられている。 The upper vane 127T is formed from a base material that is an iron-based metal material, and the first side surface 129b, the second side surface 129c, the first end surface 129d, and the second end surface 129e are each formed in a flat plate shape. In the embodiment, the upper vane 127T is formed from a base material with a Cr (chromium) content of more than 4.5 [wt%]. Examples of base materials that can be used include SUS440C (a type of stainless steel) with a Cr content of about 16 [wt%] to 18 [wt%], SKD61 (a type of die steel) with a Cr content of about 4.8 [wt%] to 5.5 [wt%], and SKD11 (a type of die steel) with a Cr content of about 11.0 [wt%] to 13.0 [wt%].
 このように上ベーン127Tは、Crの含有量が4.5[wt%]を超える母材によって形成されることで耐摩耗性及び耐焼き付き性が適正に確保されている。また、上ベーン127Tは、Crの含有量が10[wt%]を越えるステンレス鋼によって形成される場合には、特に摺動面積が広い第1側面129b及び第2側面129cの耐摩耗性、耐焼き付き性を十分に確保できる。 In this way, the upper vane 127T is formed from a base material with a Cr content exceeding 4.5 wt% to ensure adequate wear resistance and seizure resistance. Furthermore, when the upper vane 127T is formed from stainless steel with a Cr content exceeding 10 wt%, the wear resistance and seizure resistance of the first side surface 129b and the second side surface 129c, which have a particularly large sliding area, can be sufficiently ensured.
 上ベーン127Tの先端面129aは、第1端面129d及び第2端面129eに直交する方向から見たときに、円弧状に形成されている。上ベーン127Tの背面129fには、上スプリング126Tの端部が係合する係合部138が、平坦な背面129fの一部を切り欠いて形成されている。 The tip surface 129a of the upper vane 127T is formed in an arc shape when viewed from a direction perpendicular to the first end surface 129d and the second end surface 129e. The back surface 129f of the upper vane 127T has an engagement portion 138 with which the end of the upper spring 126T engages, which is formed by cutting out a part of the flat back surface 129f.
 図4は、実施例のベーン127の高硬度コーティング層及び窒化拡散層を示す断面図である。図4は、ベーン127の第1端面129d及び第2端面129eに直交する断面図である。図5は、実施例のベーン127の先端部を拡大して示す断面図である。図5は、ベーン127の第1側面129b及び第2側面129cに直交する断面図である。 FIG. 4 is a cross-sectional view showing the high-hardness coating layer and nitride diffusion layer of the vane 127 of the embodiment. FIG. 4 is a cross-sectional view perpendicular to the first end face 129d and the second end face 129e of the vane 127. FIG. 5 is a cross-sectional view showing an enlarged tip portion of the vane 127 of the embodiment. FIG. 5 is a cross-sectional view perpendicular to the first side face 129b and the second side face 129c of the vane 127.
 図4に示すように、上ベーン127Tの先端面129aには、高硬度コーティング層211が形成されている。また、上ベーン127Tの外周面には、窒化処理によって、先端面129aの外周縁部(例えば、先端面129aにおいて、第1側面129b、第2側面129c、第1端面129d、第2端面129eのそれぞれに隣接する箇所)を除き、第1側面129b及び第2側面129cの全域、第1端面129d及び第2端面129eの全域、背面129f及び係合部138の表面138aの全域に窒化拡散層212が形成されており、窒化拡散層212の上に、窒化化合物層213、いわゆる白層が形成されている。なお、窒化化合物層213は、窒化処理された上ベーン127Tの寸法精度や面精度を確保するために所定の厚さ以下になるように削られてもよい。また、窒化化合物層213は、窒化拡散層212の上から完全に除去されることで上ベーン127Tの外表面に窒化拡散層212が露出されてもよく、多孔質性の窒化化合物層213の摩耗を未然に防げる。 As shown in FIG. 4, a high-hardness coating layer 211 is formed on the tip surface 129a of the upper vane 127T. In addition, a nitride diffusion layer 212 is formed on the outer peripheral surface of the upper vane 127T by nitriding treatment on the entire first side surface 129b and the second side surface 129c, the entire first end surface 129d and the entire second end surface 129e, the entire back surface 129f, and the entire surface 138a of the engagement portion 138, except for the outer peripheral edge portion of the tip surface 129a (for example, the portion of the tip surface 129a adjacent to each of the first side surface 129b, the second side surface 129c, the first end surface 129d, and the second end surface 129e). A nitride compound layer 213, a so-called white layer, is formed on the nitride diffusion layer 212. The nitride compound layer 213 may be cut to a predetermined thickness or less in order to ensure the dimensional accuracy and surface accuracy of the nitrided upper vane 127T. In addition, the nitride compound layer 213 may be completely removed from above the nitride diffusion layer 212, exposing the nitride diffusion layer 212 on the outer surface of the upper vane 127T, thereby preventing wear of the porous nitride compound layer 213.
 図5に示すように、上ベーン127Tの先端面129aの全域には、高硬度コーティング層211が形成されている。高硬度コーティング層211は、例えば、DLC(ダイヤモンドライクカーボン)、CrN(窒化クロム)、Cr2N(窒化二クロム)等である。高硬度コーティング層211の硬度は、1500[HV]以上であり、上ベーン127Tの先端面129aの耐摩耗性が適正に確保されている。一方、上ベーン127Tの第1側面129b、第2側面129c、第1端面129d、第2端面129eに形成された窒化拡散層212または窒化化合物層213の硬度は、900[HV]以上であることが望ましい。 As shown in FIG. 5, a high-hardness coating layer 211 is formed over the entire tip surface 129a of the upper vane 127T. The high-hardness coating layer 211 is, for example, DLC (diamond-like carbon), CrN (chromium nitride), Cr2N (dichromium nitride), etc. The hardness of the high-hardness coating layer 211 is 1500 [HV] or more, and the wear resistance of the tip surface 129a of the upper vane 127T is appropriately ensured. On the other hand, the hardness of the nitride diffusion layer 212 or the nitride compound layer 213 formed on the first side surface 129b, the second side surface 129c, the first end surface 129d, and the second end surface 129e of the upper vane 127T is desirably 900 [HV] or more.
 上ベーン127Tの各製造工程については後述するが、実施例の上ベーン127Tには、高硬度コーティング層211の形成後に窒化拡散層212が形成されている。このため、上ベーン127Tの先端面129aは、図4及び図5に示すように、窒化拡散層212が形成されない領域Aを有する。 The manufacturing steps of the upper vane 127T will be described later, but in the embodiment, the upper vane 127T has a nitride diffusion layer 212 formed after the formation of the high-hardness coating layer 211. Therefore, the tip surface 129a of the upper vane 127T has an area A where the nitride diffusion layer 212 is not formed, as shown in Figures 4 and 5.
(圧縮機が備えるベーンの製造方法)
 以上のように構成された圧縮機1が備えるベーン127の製造方法について説明する。図6は、実施例のベーン127の製造方法を説明するための模式図である。図7は、実施例のベーン127の製造方法を説明するためのフローチャートである。
(Method of manufacturing vanes included in a compressor)
A method for manufacturing the vane 127 included in the compressor 1 configured as above will be described. Fig. 6 is a schematic diagram for explaining the method for manufacturing the vane 127 of the embodiment. Fig. 7 is a flow chart for explaining the method for manufacturing the vane 127 of the embodiment.
 図6及び図7に示すように、Cr(クローム)の含有量が4.5[wt%]を超える母材によってベーン127を形成する(ステップS1)。これにより、ベーン127の耐摩耗性及び耐焼き付き性が適正に確保される。実施例では、例えば、Crの含有量が16[wt%]~18[wt%]程度のステンレス鋼によってベーン127を形成する。Crの含有量が10[wt%]を越えるステンレス鋼によってベーン127を形成することで、特に摺動面積が広い第1側面129b及び第2側面129cの耐摩耗性、耐焼き付き性を十分に確保できる。 As shown in Figures 6 and 7, the vane 127 is formed from a base material with a Cr (chromium) content exceeding 4.5 wt% (step S1). This ensures that the vane 127 has adequate wear resistance and seizure resistance. In this embodiment, for example, the vane 127 is formed from stainless steel with a Cr content of approximately 16 wt% to 18 wt%. By forming the vane 127 from stainless steel with a Cr content exceeding 10 wt%, it is possible to adequately ensure wear resistance and seizure resistance, particularly for the first side surface 129b and the second side surface 129c, which have a large sliding area.
 続いて、本実施例では、ベーン127を形成した後、ベーン127を焼き入れすることにより(ステップS2)、母材の耐摩耗性、機械的強度を高める。ベーン127の焼き入れ後、ベーン127を焼き戻しすることにより(ステップS3)、母材の靭性が高められる。 Next, in this embodiment, after the vane 127 is formed, the vane 127 is hardened (step S2) to increase the wear resistance and mechanical strength of the base material. After the vane 127 is hardened, the vane 127 is tempered (step S3) to increase the toughness of the base material.
 次に、ベーン127の先端面129aに、高硬度コーティング層211を形成する(ステップS4)。高硬度コーティング層211は、例えば、DLC(ダイヤモンドライクカーボン)、CrN(窒化クロム)、Cr2N(窒化二クロム)等の各種のコーティングのいずれかによって形成される。これにより、ベーン127の先端面129aの耐摩耗性が高められる。 Next, a high-hardness coating layer 211 is formed on the tip surface 129a of the vane 127 (step S4). The high-hardness coating layer 211 is formed by any of a variety of coatings, such as DLC (diamond-like carbon), CrN (chromium nitride), Cr2N (dichromium nitride), etc. This increases the wear resistance of the tip surface 129a of the vane 127.
 高硬度コーティング層211の形成は、例えば、真空蒸着、スパッタリングによって形成される。また、本実施例では、ベーン127の先端面129aのみに高硬度コーティング層211を形成するようにしたことで、高硬度コーティング層211を形成しない側面129b、129c同士及び端面129d、129e同士を接触させて複数のベーン127を配列してコーティングを行うことが可能になる。このため、1度にコーティングを行えるベーン127の個数を増やせるので、ベーン127の製造コストの低減を図ることができる。 The high-hardness coating layer 211 is formed by, for example, vacuum deposition or sputtering. In this embodiment, the high-hardness coating layer 211 is formed only on the tip surface 129a of the vane 127, so that the side surfaces 129b, 129c and end surfaces 129d, 129e on which the high-hardness coating layer 211 is not formed are brought into contact with each other, and multiple vanes 127 can be arranged and coated. This allows the number of vanes 127 that can be coated at one time to be increased, thereby reducing the manufacturing costs of the vanes 127.
 実施例の製造方法は、ベーン127の先端面129aのみに高硬度コーティング層211を形成する工程を有することに限定されない。必要に応じて、ベーン127の先端面129aに加えて、例えば、後述する図8や図9にて示されるような複数のベーン127を一度にまとめてコーティングする場合には、第1側面129b、第2側面129c、第1端面129d、第2端面129eの4つの面のうちのいずれか1つの面または複数の面に、高硬度コーティング層211が形成されていてもよい。また、ベーン127の先端面129aに加えて、例えば、第1側面129b、第2側面129c、第1端面129d、第2端面129eのそれぞれにおける、先端面129aと隣接する部分に、高硬度コーティング層211が形成されていてもよい。 The manufacturing method of the embodiment is not limited to having a process of forming the high-hardness coating layer 211 only on the tip surface 129a of the vane 127. If necessary, in addition to the tip surface 129a of the vane 127, for example, when multiple vanes 127 are coated at once as shown in Figures 8 and 9 described later, the high-hardness coating layer 211 may be formed on any one or more of the four surfaces of the first side surface 129b, the second side surface 129c, the first end surface 129d, and the second end surface 129e. In addition to the tip surface 129a of the vane 127, for example, the high-hardness coating layer 211 may be formed on the parts of the first side surface 129b, the second side surface 129c, the first end surface 129d, and the second end surface 129e adjacent to the tip surface 129a.
 続いて、高硬度コーティング層211の形成後、ベーン127を窒化処理する。窒化処理は、ガス窒化やガス軟窒化、イオン窒化等が例示される。窒化処理では、母材の表面から内部に窒素原子が浸透し拡散することで、母材の外表面付近に窒化拡散層212や窒化化合物層213が形成される。実施例では、ベーン127の窒化処理によって、ベーン127の第1側面129b及び第2側面129c、第1端面129d及び第2端面129e、背面129f及び係合部138の表面138aに、窒化拡散層212が形成されると共に、窒化拡散層212よりも外表面側に窒化化合物層213が形成される。 Subsequently, after the formation of the high-hardness coating layer 211, the vane 127 is subjected to a nitriding treatment. Examples of nitriding treatment include gas nitriding, gas soft nitriding, and ion nitriding. In the nitriding treatment, nitrogen atoms penetrate and diffuse from the surface of the base material to the inside, forming a nitride diffusion layer 212 and a nitride compound layer 213 near the outer surface of the base material. In the embodiment, the nitriding treatment of the vane 127 forms a nitride diffusion layer 212 on the first side surface 129b and second side surface 129c, the first end surface 129d and second end surface 129e, the back surface 129f, and the surface 138a of the engagement portion 138 of the vane 127, and also forms a nitride compound layer 213 on the outer surface side of the nitride diffusion layer 212.
 このように実施例では、ベーン127を窒化処理する前に、ベーン127の先端面129aに高硬度コーティング層211を形成する。このため、高硬度コーティング層211は、ベーン127に形成される窒化化合物層213の上(外表面側)に形成されることが避けられるので、高硬度コーティング層211と先端面129aとの密着性が確保されるとともに、高硬度コーティング層211によって先端面129aの耐摩耗性、耐焼き付き性が高められる。このため、高硬度コーティング層211の密着性を高めるための混合層を形成するといった特殊な工程を追加する必要がなく、ベーン127の製造コストの低減を図れる。また、ベーン127を窒化処理することで、ベーン127の第1側面129b及び第2側面129c、第1端面129d及び第2端面129eの耐摩耗性、耐焼き付き性が確保される。 In this embodiment, before the vane 127 is nitrided, the high-hardness coating layer 211 is formed on the tip surface 129a of the vane 127. Therefore, the high-hardness coating layer 211 is not formed on the nitride compound layer 213 (on the outer surface side) formed on the vane 127, so that the adhesion between the high-hardness coating layer 211 and the tip surface 129a is ensured, and the wear resistance and seizure resistance of the tip surface 129a are improved by the high-hardness coating layer 211. Therefore, there is no need to add a special process such as forming a mixed layer to improve the adhesion of the high-hardness coating layer 211, and the manufacturing cost of the vane 127 can be reduced. In addition, by nitriding the vane 127, the wear resistance and seizure resistance of the first side surface 129b and the second side surface 129c, the first end surface 129d and the second end surface 129e of the vane 127 are ensured.
 最後に、ベーン127の窒化化合物層213を削る(ステップS6)。この工程では、窒化化合物層213の厚さが所定厚さ(例えば、1[μm])以下になるように窒化化合物層213を削る。また、この工程では、ベーン127の第1側面129b及び第2側面129c、第1端面129d及び第2端面129eに形成された窒化化合物層213をそれぞれ削る。これにより、窒化処理に伴ってベーン127の表面に生じた微少な膨らみや微小な凹部を有する表層を削り、第1側面129b及び第2側面129c、第1端面29d及び第2端面129eを平坦面とすることで、上ベーン溝128T(下ベーン溝128S)の内面、上端板160T(下端板160S)及び中間仕切板140の端面に対して摺動するベーン127の寸法精度や面精度(平面度)を確保できる。 Finally, the nitride layer 213 of the vane 127 is removed (step S6). In this process, the nitride layer 213 is removed so that the thickness of the nitride layer 213 is a predetermined thickness (e.g., 1 μm) or less. Also, in this process, the nitride layer 213 formed on the first side surface 129b and the second side surface 129c, and the first end surface 129d and the second end surface 129e of the vane 127 are removed. This removes the surface layer with minute bulges and minute recesses that occur on the surface of the vane 127 due to the nitriding process, and makes the first side surface 129b and the second side surface 129c, the first end surface 29d and the second end surface 129e flat, thereby ensuring the dimensional accuracy and surface accuracy (flatness) of the vane 127 that slides against the inner surface of the upper vane groove 128T (lower vane groove 128S), the upper end plate 160T (lower end plate 160S), and the end surface of the intermediate partition plate 140.
 なお、窒化化合物層213を削る工程では、窒化化合物層213が完全に除去されるまで削られることで、窒化拡散層212がベーン127の外部へ露出されてもよい。これにより、硬度が高い一方で多孔質なために脆い窒化化合物層213が、高い面圧で摺動する際に摩耗してしまうのを未然に防ぐことができる。実施例では、ベーン127の第1側面129b及び第2側面129c、第1端面129d及び第2端面129e、背面129f及び係合部138の表面138aの窒化化合物層213がそれぞれ除去されて窒化拡散層212が露出されるが、例えば、摺動面積が広い第1側面129b及び第2側面129cの窒化化合物層213が完全に除去されて窒化拡散層212が露出され、第1端面129d及び第2端面129e、背面129f及び係合部138の表面138aの窒化化合物層213は、完全には除去されずに窒化拡散層212を覆っていてもよい。 In the process of scraping the nitride layer 213, the nitride layer 213 may be scraped until it is completely removed, thereby exposing the nitride diffusion layer 212 to the outside of the vane 127. This makes it possible to prevent the nitride layer 213, which is hard but porous and therefore brittle, from being worn down when sliding under high surface pressure. In the embodiment, the nitride compound layer 213 on the first side surface 129b and the second side surface 129c, the first end surface 129d and the second end surface 129e, the back surface 129f, and the surface 138a of the engagement portion 138 of the vane 127 is removed to expose the nitride diffusion layer 212, but for example, the nitride compound layer 213 on the first side surface 129b and the second side surface 129c, which have a large sliding area, may be completely removed to expose the nitride diffusion layer 212, and the nitride compound layer 213 on the first end surface 129d and the second end surface 129e, the back surface 129f, and the surface 138a of the engagement portion 138 may not be completely removed and may cover the nitride diffusion layer 212.
 なお、ベーン127の耐摩耗性を確保する観点では、窒化化合物層213の硬度が窒化拡散層212よりも高いので、ベーン127の窒化拡散層212の上に窒化化合物層213が形成されていても支障がない。このため、本実施例の製造方法は、窒化化合物層213を削る工程を有することに限定されず、窒化拡散層212の上に窒化化合物層213が残されてもよい。この場合、窒化化合物層213を削らずに済むので、工数を削減してベーン127の製造を容易化することができる。 In addition, from the viewpoint of ensuring the wear resistance of the vane 127, since the hardness of the nitride compound layer 213 is higher than that of the nitride diffusion layer 212, there is no problem even if the nitride compound layer 213 is formed on the nitride diffusion layer 212 of the vane 127. Therefore, the manufacturing method of this embodiment is not limited to having a step of removing the nitride compound layer 213, and the nitride compound layer 213 may be left on the nitride diffusion layer 212. In this case, since there is no need to remove the nitride compound layer 213, the number of steps can be reduced and the manufacturing of the vane 127 can be facilitated.
 図8は、実施例における高硬度コーティング層211の形成工程の一例を説明するための模式図である。図9は、実施例における高硬度コーティング層211の形成工程の他の例を説明するための模式図である。 FIG. 8 is a schematic diagram for explaining an example of the process for forming the high-hardness coating layer 211 in the embodiment. FIG. 9 is a schematic diagram for explaining another example of the process for forming the high-hardness coating layer 211 in the embodiment.
 ベーン127の先端面129aに高硬度コーティング層211を形成する形成工程では、ベーン127に高硬度コーティング層211を形成するとき、隣り合わせに置かれたベーン127の対向する面同士を接触させるように複数のベーン127を配列し、複数のベーン127の各先端面129aに高硬度コーティング層211を一括して形成する。これにより、1度の形成工程で高硬度コーティング層211を形成できるベーン127の個数を増やせるので、ベーン127の製造コストを低減できる。ここで、隣り合うベーン127同士の対向する面は、第1側面129b及び第2側面129c、第1端面129d及び第2端面129eを含む。 In the forming process of forming the high-hardness coating layer 211 on the tip surface 129a of the vane 127, when forming the high-hardness coating layer 211 on the vane 127, the vanes 127 are arranged so that the opposing surfaces of adjacent vanes 127 are in contact with each other, and the high-hardness coating layer 211 is formed on each tip surface 129a of the vanes 127 at once. This increases the number of vanes 127 on which the high-hardness coating layer 211 can be formed in one forming process, thereby reducing the manufacturing cost of the vane 127. Here, the opposing surfaces of adjacent vanes 127 include the first side surface 129b and the second side surface 129c, the first end surface 129d and the second end surface 129e.
 具体的には図8に示すように、処理炉内に複数のベーン127を配列する場合、隣り合うベーン127の各側面129b、129c同士、すなわち、対向する第1側面129bと第2側面129cが接するように並べることで、複数のベーン127の各先端面129aに高硬度コーティング層211を形成する。このように、ベーン127へのコーティングのマスキング部材として他のベーン127を利用することで、ベーン127のコーティングを施さない面へのマスキング工程を削減することもできる。 Specifically, as shown in FIG. 8, when multiple vanes 127 are arranged in a processing furnace, the side surfaces 129b, 129c of adjacent vanes 127, i.e., the opposing first side surface 129b and second side surface 129c, are arranged so that they are in contact with each other, thereby forming a high-hardness coating layer 211 on each tip surface 129a of the multiple vanes 127. In this way, by using other vanes 127 as masking members for coating the vanes 127, it is possible to reduce the masking process for the surfaces of the vanes 127 that are not to be coated.
 処理炉内に複数のベーン127を配列する他の例として、図9に示すように、隣り合うベーン127の各側面129b、129c同士、すなわち、対向する第1側面129bと第2側面129cが接するように並べると共に、隣り合うベーン127の各端面129d、129e同士、すなわち、対向する第1端面129dと第2端面129eが接するように並べてもよい。これにより、1度の形成工程で高硬度コーティング層211を形成できるベーン127の個数を更に増やし、ベーン127の製造コストを更に低減できる。 As another example of arranging multiple vanes 127 in a processing furnace, as shown in FIG. 9, adjacent vanes 127 may be arranged so that their respective side faces 129b, 129c, i.e., the opposing first side face 129b and second side face 129c, are in contact with each other, and adjacent vanes 127 may be arranged so that their respective end faces 129d, 129e, i.e., the opposing first end face 129d and second end face 129e, are in contact with each other. This further increases the number of vanes 127 that can form a high-hardness coating layer 211 in a single formation process, and further reduces the manufacturing cost of the vanes 127.
(冷凍サイクル装置の構成)
 ここで、圧縮機1を備える冷凍サイクル装置2の一例を説明する。図10は、実施例の圧縮機1を備える冷凍サイクル装置2を示す模式図である。
(Configuration of refrigeration cycle device)
Here, a description will be given of an example of a refrigeration cycle device 2 including the compressor 1. Fig. 10 is a schematic diagram showing a refrigeration cycle device 2 including the compressor 1 of the embodiment.
 図10に示すように、実施例の冷凍サイクル装置2は、本体容器10及びアキュムレータ26を有する圧縮機1と、圧縮機1で圧縮された冷媒を凝縮させる凝縮器(第1熱交換器4と第2熱交換器6のいずれか一方)と、凝縮器で凝縮された冷媒を減圧する減圧器としての膨張弁5と、膨張弁5で減圧された冷媒を蒸発させる蒸発器(第1熱交換器4と第2熱交換器6のいずれか他方)と、圧縮機1から吐出された冷媒が循環する配管7と、を備える。 As shown in FIG. 10, the refrigeration cycle device 2 of the embodiment includes a compressor 1 having a main container 10 and an accumulator 26, a condenser (either the first heat exchanger 4 or the second heat exchanger 6) that condenses the refrigerant compressed by the compressor 1, an expansion valve 5 as a pressure reducer that reduces the pressure of the refrigerant condensed by the condenser, an evaporator (the other of the first heat exchanger 4 or the second heat exchanger 6) that evaporates the refrigerant reduced in pressure by the expansion valve 5, and a pipe 7 through which the refrigerant discharged from the compressor 1 circulates.
 圧縮機1から吐出された冷媒が流れる配管7の流路には、冷媒の流れを切り替える四方弁8が設けられている。例えば、冷凍サイクル装置2を冷房運転する場合、図10中に実線の矢印で示すように冷媒が循環し、室内熱交換器である第1熱交換器4が凝縮器に相当し、室外熱交換器である第2熱交換器6が蒸発器に相当する。なお、冷凍サイクル装置2を暖房運転する場合には、図10中に点線の矢印で示すように冷媒が循環し、室外熱交換器である第2熱交換器6が凝縮器に相当し、室内熱交換器である第1熱交換器4が蒸発器に相当する。 A four-way valve 8 for switching the flow of the refrigerant is provided in the flow path of the pipe 7 through which the refrigerant discharged from the compressor 1 flows. For example, when the refrigeration cycle device 2 is in cooling operation, the refrigerant circulates as shown by the solid arrows in FIG. 10, the first heat exchanger 4, which is the indoor heat exchanger, corresponds to the condenser, and the second heat exchanger 6, which is the outdoor heat exchanger, corresponds to the evaporator. Note that when the refrigeration cycle device 2 is in heating operation, the refrigerant circulates as shown by the dotted arrows in FIG. 10, the second heat exchanger 6, which is the outdoor heat exchanger, corresponds to the condenser, and the first heat exchanger 4, which is the indoor heat exchanger, corresponds to the evaporator.
(実施例の効果)
 上述したように、実施例のベーン127の製造方法は、上ピストン125T(下ピストン125S)の外周面に対して摺動する先端面129aを有する上ベーン127T(下ベーン127S)を、Cr含有量が4.5[wt%]を超える母材によって形成し、上ベーン127T(下ベーン127S)の少なくとも先端面129aに高硬度コーティング層211を形成し、高硬度コーティング層211の形成後に上ベーン127T(下ベーン127S)を窒化処理する。このように、上ベーン127T(下ベーン127S)を窒化処理する前に、上ベーン127T(下ベーン127S)の先端面129aに高硬度コーティング層211を形成することで、高硬度コーティング層211が窒化化合物層213の上に形成されることが避けられるので、高硬度コーティング層211と先端面129aとの密着性が確保され、高硬度コーティング層211によって先端面129aの耐摩耗性、耐焼き付き性が高められる。このため、高硬度コーティング層211の密着性を高めるための工程を追加する必要がなく、上ベーン127T(下ベーン127S)の製造コストの低減を図れる。また、上ベーン127T(下ベーン127S)を窒化処理することで、上ベーン127T(下ベーン127S)の第1側面129b及び第2側面129c、第1端面129d及び第2端面129eの耐摩耗性、耐焼き付き性が確保される。
(Effects of the embodiment)
As described above, in the manufacturing method of the vane 127 of the embodiment, the upper vane 127T (lower vane 127S) having a tip surface 129a that slides against the outer peripheral surface of the upper piston 125T (lower piston 125S) is formed from a base material having a Cr content exceeding 4.5 [wt %], a high-hardness coating layer 211 is formed on at least the tip surface 129a of the upper vane 127T (lower vane 127S), and after the formation of the high-hardness coating layer 211, the upper vane 127T (lower vane 127S) is subjected to a nitriding treatment. In this way, by forming the high-hardness coating layer 211 on the tip surface 129a of the upper vane 127T (lower vane 127S) before subjecting the upper vane 127T (lower vane 127S) to nitriding treatment, it is possible to prevent the high-hardness coating layer 211 from being formed on the nitride compound layer 213, thereby ensuring adhesion between the high-hardness coating layer 211 and the tip surface 129a, and the wear resistance and seizure resistance of the tip surface 129a are improved by the high-hardness coating layer 211. Therefore, there is no need to add a process for improving the adhesion of the high-hardness coating layer 211, and the manufacturing cost of the upper vane 127T (lower vane 127S) can be reduced. In addition, by nitriding the upper vane 127T (lower vane 127S), the wear resistance and seizure resistance of the first side surface 129b and second side surface 129c, first end surface 129d and second end surface 129e of the upper vane 127T (lower vane 127S) are ensured.
 したがって、実施例のベーン127の製造方法によれば、ベーン127の先端面129aと、第1側面129b及び第2側面129cと、第1端面129d及び第2端面129eとに必要な耐摩耗性、耐焼き付き性を確保すると共に、ベーン127の製造コストを低減する。また、例えば、高硬度コーティング層211をベーン127の先端面129aのみに形成することで、高硬度コーティング層211を形成しない側面129b、129c同士及び端面129d、129e同士を接触させて複数のベーン127を配列してコーティングを行うことが可能になる。このため、1度にまとめてコーティングを行えるベーン127の個数を増やせるので、ベーン127の製造コストの低減を図れる。 Therefore, according to the manufacturing method of the vane 127 of the embodiment, the wear resistance and seizure resistance required for the tip surface 129a, the first side surface 129b and the second side surface 129c, and the first end surface 129d and the second end surface 129e of the vane 127 are ensured, and the manufacturing cost of the vane 127 is reduced. Also, for example, by forming the high-hardness coating layer 211 only on the tip surface 129a of the vane 127, it becomes possible to arrange multiple vanes 127 and coat them by bringing the side surfaces 129b, 129c and the end surfaces 129d, 129e, on which the high-hardness coating layer 211 is not formed, into contact with each other. This allows the number of vanes 127 that can be coated at one time to be increased, thereby reducing the manufacturing cost of the vane 127.
 また、実施例のベーン127の製造方法は、ベーン127の第1側面129b及び第2側面129c、第1端面129d及び第2端面129eに形成された窒化拡散層212上の窒化化合物層213をそれぞれ削る。これにより、窒化処理に伴って微少に変形したベーン127の表層を削り、上ベーン溝128T(下ベーン溝128S)の内面、上端板160T(下端板160S)及び中間仕切板140の端面に対して摺動するベーン127の寸法精度や面精度を確保できる。 In addition, the manufacturing method of the vane 127 of the embodiment cuts the nitride compound layer 213 on the nitride diffusion layer 212 formed on the first side 129b and second side 129c, first end face 129d and second end face 129e of the vane 127. This cuts the surface layer of the vane 127 that has been slightly deformed due to the nitriding process, ensuring the dimensional accuracy and surface accuracy of the vane 127 that slides against the inner surface of the upper vane groove 128T (lower vane groove 128S), the upper end plate 160T (lower end plate 160S), and the end face of the intermediate partition plate 140.
 また、実施例のベーン127の製造方法は、窒化化合物層213を削ることによって窒化拡散層212を露出させる。これにより、窒化化合物層213が除去されるので、ベーン127からの窒化化合物層213の剥離を未然に防げる。 In addition, the manufacturing method of the vane 127 of the embodiment exposes the nitride diffusion layer 212 by scraping the nitride layer 213. This removes the nitride layer 213, thereby preventing the nitride layer 213 from peeling off from the vane 127.
 また、実施例のベーン127の製造方法は、ベーン127に高硬度コーティング層211を形成する前に、ベーン217を焼き入れし、その後、焼き戻しを行う。これにより、ベーン127の母材の耐摩耗性(硬度)を更に高められる。 In addition, in the manufacturing method of the vane 127 of the embodiment, the vane 217 is quenched and then tempered before forming the high-hardness coating layer 211 on the vane 127. This further increases the wear resistance (hardness) of the base material of the vane 127.
 また、実施例のベーン127の製造方法は、ベーン127に高硬度コーティング層211を形成するとき、隣り合うベーン127の対向する面同士を接触させるように複数のベーン127を配列し、複数のベーン127の各先端面129aに高硬度コーティング層211を一括して形成する。これにより、1度の形成工程で高硬度コーティング層211を形成できるベーン127の個数を増やせるので、ベーン127の製造コストを低減できる。また、ベーン127へのコーティングのマスキング部材として他のベーン127を利用することで、ベーン127のコーティングを施さない面へのマスキング工程を削減することもできる。 In addition, in the manufacturing method of the vane 127 of the embodiment, when forming the high-hardness coating layer 211 on the vane 127, multiple vanes 127 are arranged so that the opposing surfaces of adjacent vanes 127 are in contact with each other, and the high-hardness coating layer 211 is formed on each tip surface 129a of the multiple vanes 127 at once. This increases the number of vanes 127 on which the high-hardness coating layer 211 can be formed in one formation process, thereby reducing the manufacturing cost of the vane 127. In addition, by using other vanes 127 as masking members for coating the vane 127, the masking process for the surfaces of the vane 127 that are not to be coated can also be reduced.
 また、実施例のベーン127の製造方法は、DLC、CrN、Cr2Nのいずれかによって高硬度コーティング層211を形成する。これにより、高硬度コーティング層211の硬度が1500[HV]以上に確保されるので、ベーン127の先端面129aの耐摩耗性を適正に確保できる。 In addition, the manufacturing method of the vane 127 of the embodiment forms the high-hardness coating layer 211 using either DLC, CrN, or Cr2N. This ensures that the hardness of the high-hardness coating layer 211 is 1500 [HV] or more, so that the wear resistance of the tip surface 129a of the vane 127 can be appropriately ensured.
 また、実施例のベーン127の製造方法は、ステンレス鋼を母材としてベーン127を形成する。これにより、Crの含有量が10[wt%]を越えるステンレス鋼によってベーン127が形成されるので、特に摺動面積が広い第1側面129b及び第2側面129cの耐摩耗性、耐焼き付き性を十分に確保できる。 In addition, the manufacturing method of the vane 127 in the embodiment uses stainless steel as the base material to form the vane 127. As a result, the vane 127 is formed from stainless steel with a Cr content exceeding 10 wt %, so that the wear resistance and seizure resistance of the first side surface 129b and the second side surface 129c, which have a particularly large sliding area, can be sufficiently ensured.
 なお、本実施例では、圧縮機1として、上シリンダ121Tと下シリンダ121Sの2つのシリンダ121を備える2シリンダ式のロータリ圧縮機を例示したが、シリンダ121を1つだけ備える1シリンダ式のロータリ圧縮機であってもよい。 In this embodiment, a two-cylinder rotary compressor having two cylinders 121, an upper cylinder 121T and a lower cylinder 121S, is exemplified as the compressor 1, but a one-cylinder rotary compressor having only one cylinder 121 may also be used.
   1 圧縮機
   2 冷凍サイクル装置
   4 第1熱交換器(凝縮器)
   5 膨張弁(減圧器)
   6 第2熱交換器(蒸発器)
 121T 上シリンダ(シリンダ)
 121S 下シリンダ(シリンダ)
 125T 上ピストン(ピストン)
 125S 下ピストン(ピストン)
 127 ベーン
 127T 上ベーン(ベーン)
 127S 下ベーン(ベーン)
 128T 上ベーン溝(ベーン溝)
 128S 下ベーン溝(ベーン溝)
 129a 先端面
 129b 第1側面
 129c 第2側面
 129d 第1端面
 129e 第2端面
 129f 背面
 131T 上吸入室(吸入室)
 131S 下吸入室(吸入室)
 133T 上圧縮室(圧縮室)
 133S 下圧縮室(圧縮室)
 140 中間仕切板(端板)
 160T 上端板(端板)
 160S 下端板(端板)
 211 高硬度コーティング層
 212 窒化拡散層
 213 窒化化合物層
   A 領域
1 Compressor 2 Refrigeration cycle device 4 First heat exchanger (condenser)
5 Expansion valve (pressure reducer)
6 Second heat exchanger (evaporator)
121T Upper cylinder (cylinder)
121S Lower Cylinder (Cylinder)
125T upper piston (piston)
125S Lower piston (piston)
127 Vane 127T Upper Vane (Vane)
127S Lower vane (vane)
128T Upper vane groove (vane groove)
128S Lower vane groove (vane groove)
129a: tip surface; 129b: first side surface; 129c: second side surface; 129d: first end surface; 129e: second end surface; 129f: rear surface; 131T: upper suction chamber (suction chamber)
131S Lower suction chamber (suction chamber)
133T Upper compression chamber (compression chamber)
133S Lower compression chamber (compression chamber)
140 Intermediate partition plate (end plate)
160T Upper end plate (end plate)
160S Lower end plate (end plate)
211 High-hardness coating layer 212 Nitride diffusion layer 213 Nitride compound layer A region

Claims (14)

  1.  シリンダと、前記シリンダの内周面に沿って公転するピストンと、前記シリンダの両端を塞ぐ端板と、を備える圧縮機に用いられ、前記シリンダと前記ピストンとの間に形成されるシリンダ室を吸入室と圧縮室とに区画するように前記シリンダのベーン溝に設けられるベーンの製造方法であって、
     前記ピストンの外周面に対して摺動する先端面を有する前記ベーンを、Cr含有量が4.5[wt%]を超える母材によって形成し、
     前記ベーンの少なくとも前記先端面に高硬度コーティング層を形成し、
     前記高硬度コーティング層の形成後に前記ベーンを窒化処理する、ベーンの製造方法。
    A method for manufacturing a vane used in a compressor including a cylinder, a piston that revolves along an inner circumferential surface of the cylinder, and end plates that close both ends of the cylinder, the vane being provided in a vane groove of the cylinder so as to divide a cylinder chamber formed between the cylinder and the piston into a suction chamber and a compression chamber, comprising the steps of:
    The vane has a tip surface that slides against an outer circumferential surface of the piston, and is formed from a base material having a Cr content of more than 4.5 [wt%],
    forming a high-hardness coating layer on at least the tip surface of the vane;
    the vane is subjected to a nitriding treatment after the formation of the high-hardness coating layer.
  2.  前記ベーン溝の内面に対して摺動する側面と、前記端板に対して摺動する端面と、を有する前記ベーンに、前記窒化処理によって窒化拡散層を形成し、
     前記ベーンの前記側面及び前記端面に形成された前記窒化拡散層上の窒化化合物層を削る、
    請求項1に記載のベーンの製造方法。
    forming a nitride diffusion layer by the nitriding treatment on the vane having a side surface that slides against the inner surface of the vane groove and an end surface that slides against the end plate;
    removing the nitride compound layer on the nitride diffusion layer formed on the side surface and the end surface of the vane;
    A method for manufacturing the vane of claim 1 .
  3.  前記窒化化合物層を削ることによって前記窒化拡散層を露出させる、
     請求項2に記載のベーンの製造方法。
    The nitride compound layer is removed to expose the nitride diffusion layer.
    A method for manufacturing the vane according to claim 2.
  4.  前記ベーンに前記高硬度コーティング層を形成する前に、前記ベーンを焼き入れし、その後、焼き戻しを行う、
    請求項1ないし3のいずれか1項に記載のベーンの製造方法。
    Before forming the high hardness coating layer on the vane, the vane is quenched and then tempered.
    A method for manufacturing a vane according to any one of claims 1 to 3.
  5.  前記ベーンに前記高硬度コーティング層を形成するとき、隣り合う前記ベーンの対向する面同士を接触させるように複数の前記ベーンを配列し、前記複数のベーンの各先端面に前記高硬度コーティング層を一括して形成する、
    請求項1に記載のベーンの製造方法。
    When forming the high-hardness coating layer on the vane, a plurality of the vanes are arranged so that the opposing surfaces of the adjacent vanes are in contact with each other, and the high-hardness coating layer is formed on each tip surface of the plurality of vanes at the same time.
    A method for manufacturing the vane of claim 1 .
  6.  DLC、CrN、Cr2Nのいずれかによって前記高硬度コーティング層を形成する、
    請求項1に記載のベーンの製造方法。
    The high-hardness coating layer is formed using any one of DLC, CrN, and CrN.
    A method for manufacturing the vane of claim 1 .
  7.  ステンレス鋼を母材として前記ベーンを形成する、
    請求項1に記載のベーンの製造方法。
    The vane is formed using stainless steel as a base material.
    A method for manufacturing the vane of claim 1 .
  8.  シリンダと、前記シリンダの内周面に沿って公転するピストンと、前記シリンダの両端を塞ぐ端板と、を備える圧縮機に用いられ、前記シリンダと前記ピストンとの間に形成されるシリンダ室を吸入室と圧縮室とに区画するように前記シリンダのベーン溝に設けられるベーンであって、
     前記ピストンの外周面と摺動する先端面と、前記シリンダのベーン溝の各内面と摺動する第1側面及第2側面と、各端板と摺動する第1端面及び第2端面と、を有し、Cr含有量が4.5[wt%]を超える母材によって形成され、
     少なくとも前記先端面に高硬度コーティング層が形成され、
     少なくとも前記第1側面、前記第2側面、前記第1端面及び前記第2端面に窒化拡散層が形成され、
     前記先端面は、窒化拡散層が形成されない領域を有する、ベーン。
    A vane is used in a compressor including a cylinder, a piston that revolves along an inner circumferential surface of the cylinder, and end plates that close both ends of the cylinder, the vane being provided in a vane groove of the cylinder so as to divide a cylinder chamber formed between the cylinder and the piston into a suction chamber and a compression chamber,
    a tip surface that slides against the outer circumferential surface of the piston, a first side surface and a second side surface that slide against each inner surface of the vane groove of the cylinder, and a first end surface and a second end surface that slide against each end plate, the tip surface being formed from a base material having a Cr content of more than 4.5 [wt%];
    A high-hardness coating layer is formed at least on the tip surface,
    a nitride diffusion layer is formed on at least the first side surface, the second side surface, the first end surface, and the second end surface;
    The vane, wherein the tip surface has a region where a nitride diffusion layer is not formed.
  9.  前記第1側面及び前記第2側面、前記第1端面及び前記第2端面は、前記窒化拡散層が露出している、
    請求項8に記載のベーン。
    the nitride diffusion layer is exposed at the first side surface, the second side surface, the first end surface, and the second end surface;
    The vane of claim 8.
  10.  前記高硬度コーティング層は、DLC、CrN、Cr2Nのいずれかである、
    請求項8に記載のベーン。
    The high-hardness coating layer is any one of DLC, CrN, and CrN;
    The vane of claim 8.
  11.  ステンレス鋼を母材として形成された、
    請求項8に記載のベーン。
    Formed from stainless steel as the base material,
    The vane of claim 8.
  12.  前記高硬度コーティング層の硬度は、1500[HV]以上である、
    請求項8に記載のベーン。
    The hardness of the high-hardness coating layer is 1500 [HV] or more.
    The vane of claim 8.
  13.  請求項8ないし12のいずれか1項に記載のベーンと、前記シリンダと、前記ピストンと、前記端板と、を備える圧縮機。 A compressor comprising the vane according to any one of claims 8 to 12, the cylinder, the piston, and the end plate.
  14.  請求項13に記載の圧縮機と、前記圧縮機で圧縮された冷媒を凝縮させる凝縮器と、前記凝縮器で凝縮された冷媒を減圧する減圧器と、前記減圧器で減圧された冷媒を蒸発させる蒸発器と、を備える冷凍サイクル装置。 A refrigeration cycle device comprising the compressor according to claim 13, a condenser for condensing the refrigerant compressed by the compressor, a pressure reducer for reducing the pressure of the refrigerant condensed by the condenser, and an evaporator for evaporating the refrigerant reduced in pressure by the pressure reducer.
PCT/JP2023/029337 2022-09-29 2023-08-10 Method for manufacturing vane, vane, compressor equipped with vane, and refrigeration cycle device WO2024070280A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022155889A JP2024049585A (en) 2022-09-29 2022-09-29 Method for manufacturing vane, vane, compressor including vane, and refrigeration cycle device
JP2022-155889 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024070280A1 true WO2024070280A1 (en) 2024-04-04

Family

ID=90477219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029337 WO2024070280A1 (en) 2022-09-29 2023-08-10 Method for manufacturing vane, vane, compressor equipped with vane, and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP2024049585A (en)
WO (1) WO2024070280A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578792A (en) * 1991-03-27 1993-03-30 Nippon Piston Ring Co Ltd Rotary type fluid compressor
JP2005048687A (en) * 2003-07-30 2005-02-24 Matsushita Electric Ind Co Ltd Vane for refrigerant compressors, method of manufacturing the same and refrigerant compressor
JP2005155459A (en) * 2003-11-26 2005-06-16 Sanyo Electric Co Ltd Compressor
JP2014222027A (en) * 2013-05-13 2014-11-27 三菱電機株式会社 Vane for compressor, rolling piston type compressor, and method for producing vane for compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578792A (en) * 1991-03-27 1993-03-30 Nippon Piston Ring Co Ltd Rotary type fluid compressor
JP2005048687A (en) * 2003-07-30 2005-02-24 Matsushita Electric Ind Co Ltd Vane for refrigerant compressors, method of manufacturing the same and refrigerant compressor
JP2005155459A (en) * 2003-11-26 2005-06-16 Sanyo Electric Co Ltd Compressor
JP2014222027A (en) * 2013-05-13 2014-11-27 三菱電機株式会社 Vane for compressor, rolling piston type compressor, and method for producing vane for compressor

Also Published As

Publication number Publication date
JP2024049585A (en) 2024-04-10

Similar Documents

Publication Publication Date Title
EP3054163B1 (en) Rotary compressor
WO2024070280A1 (en) Method for manufacturing vane, vane, compressor equipped with vane, and refrigeration cycle device
CN106321432B (en) Rotary compressor
JP2006177225A (en) Rotary compressor
JP2012202236A (en) Rotary compressor
JP2020084898A (en) Rotary compressor
JP2017031831A (en) Rotary Compressor
CN215109490U (en) Rotary compressor
JP6064719B2 (en) Rotary compressor
JP2017031830A (en) Rotary Compressor
AU2015224264A1 (en) Rotary compressor
JP6614268B2 (en) Rotary compressor
WO2021152915A1 (en) Rotary compressor
JP7424260B2 (en) rotary compressor
JP2023008278A (en) rotary compressor
JP5418364B2 (en) Rotary compressor
JP2014185619A (en) Rotary compressor
JP2023030651A (en) rotary compressor
JP6834388B2 (en) Rotary compressor
JP6926449B2 (en) Rotary compressor
KR20090012867A (en) Two stage rotary compressor
JP2014015850A (en) Rotary compressor
JP2005048687A (en) Vane for refrigerant compressors, method of manufacturing the same and refrigerant compressor
JP2016089811A (en) Rotary compressor
JPH10159774A (en) Rotary compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871522

Country of ref document: EP

Kind code of ref document: A1