WO2024070112A1 - Ultrasonic transducer - Google Patents

Ultrasonic transducer Download PDF

Info

Publication number
WO2024070112A1
WO2024070112A1 PCT/JP2023/024764 JP2023024764W WO2024070112A1 WO 2024070112 A1 WO2024070112 A1 WO 2024070112A1 JP 2023024764 W JP2023024764 W JP 2023024764W WO 2024070112 A1 WO2024070112 A1 WO 2024070112A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
beams
gap
layer
ultrasonic transducer
Prior art date
Application number
PCT/JP2023/024764
Other languages
French (fr)
Japanese (ja)
Inventor
荒牧正明
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2024070112A1 publication Critical patent/WO2024070112A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions

Definitions

  • the present invention relates to an ultrasonic transducer.
  • Ultrasonic transducers are used in fingerprint sensors used in mobile phones and medical ultrasound devices.
  • a known type of ultrasonic transducer is the piezoelectric micromachined ultrasonic transducer (pMUT), which uses a piezoelectric material.
  • pMUT piezoelectric micromachined ultrasonic transducer
  • a cavity is provided within a frame made of a substrate so that the substrate is thin.
  • a piezoelectric layer is provided on the substrate in the center of the cavity when viewed from above. It is known to provide a rib containing a piezoelectric layer between the frame and the center of the cavity (for example, Patent Document 1).
  • the present invention was developed in consideration of the above problems, and aims to improve the characteristics.
  • the present invention is an ultrasonic transducer comprising: a substrate having a first gap and a second gap provided above the first gap and adjacent to the first gap, a frame surrounding the first gap in a planar view, a membrane provided in the center of the first gap in a planar view, and a plurality of beams provided within the first gap in a planar view, mechanically connecting the frame and the membrane, and surrounding the second gap with the frame and the membrane in a planar view; and at least two vibration layers provided on at least two of the plurality of beams, each of which includes a piezoelectric layer and a first electrode and a second electrode facing each other with at least a portion of the piezoelectric layer sandwiched therebetween, and the piezoelectric layers in the at least two vibration layers are separated from each other on the membrane.
  • the first electrodes in the at least two vibration layers are electrically connected via the first electrode provided on the frame, the first electrodes in the at least two vibration layers are separated from each other in a region on the membrane where the piezoelectric layers are separated from each other, and the second electrodes in the at least two vibration layers are electrically connected via the second electrode provided on the membrane.
  • the first electrodes in the at least two vibration layers are provided between the piezoelectric layer and the at least two beams, and the first electrodes and the piezoelectric layers are not provided between the second electrodes and the membrane in the regions on the membrane where the piezoelectric layers are separated from each other, and between the at least two beams and the regions, the end faces of the piezoelectric layers are provided toward the center of the membrane from the end faces of the first electrodes, and the end faces of the first electrodes are inclined so that they become thinner as they move toward the center of the membrane.
  • the second electrode can be configured to linearly connect the second electrodes in the at least two vibration layers in the region on the membrane where the piezoelectric layers are separated from each other.
  • the second electrode in the region on the membrane where the piezoelectric layers are separated from each other, can be configured to have a ring-shaped first wiring that surrounds the center of the membrane and a second wiring that connects the first wiring to the second electrodes in the at least two vibration layers.
  • the beams can be configured to extend radially from the membrane in a plan view.
  • the at least two vibration layers can be configured to extend from the at least two beams to a portion of the membrane.
  • the at least two vibration layers can be configured to extend from the at least two beams to a portion of the frame.
  • planar shape of the membrane can be approximately circular or approximately square.
  • the membrane has a planar shape that is generally polygonal, and the corners of the generally polygonal shape can be removed.
  • the outer periphery of the membrane can have a recess that is recessed toward the center of the membrane, and the at least two beams can be configured to be connected to the membrane at the recess.
  • a plurality of vibration layers including the at least two vibration layers may be provided on each of the beams.
  • the lengths of the at least two beams can be approximately the same, and the widths of the at least two beams can be approximately the same.
  • the present invention is a method for manufacturing a semiconductor device comprising: a silicon substrate, a silicon oxide film provided on the silicon substrate, and a silicon layer provided on the silicon oxide film, the silicon substrate being provided in a ring shape, the inside of the ring being a first gap in which the silicon substrate is not provided; a frame having the silicon oxide film and the silicon layer provided on the ring-shaped silicon substrate; a membrane provided in an island shape in the first gap in a plan view, the membrane being made up of the silicon layer or the silicon oxide film and the silicon layer; and a membrane connecting the frame and the membrane, the membrane being connected to the silicon layer or the silicon oxide film.
  • the ultrasonic transducer includes a plurality of beams each made of a silicon oxide film and the silicon layer, and an area surrounded by the side of the beam, the side of the membrane, and the inner surface of the frame is a second gap that is an integral space with the first gap, an SOI substrate, a first electrode provided on the SOI substrate in the frame and the plurality of beams, a piezoelectric layer provided on the first electrode in the frame and the plurality of beams, a second electrode provided on the piezoelectric layer in the plurality of beams, and wiring connected to the second electrode in the plurality of beams and extending over the piezoelectric layer in the frame.
  • the present invention can improve the characteristics.
  • FIG. 1 is a plan view of an ultrasonic transducer according to a first embodiment.
  • 2(a) and 2(b) are cross-sectional views taken along lines AA and BB in FIG. 1, respectively.
  • 3A and 3B are cross-sectional views showing the operation of the ultrasonic transducer in the first embodiment.
  • FIG. 4A is a plan view of an ultrasonic transducer according to a first comparative example
  • FIG. 4B is a cross-sectional view taken along line AA of FIG. 4A.
  • FIG. 5 is a plan view of an ultrasonic transducer according to the second embodiment.
  • 6(a) to 6(c) are cross-sectional views taken along lines AA, BB, and CC in FIG. 5, respectively.
  • FIG. 7A to 7E are cross-sectional views showing a method for manufacturing the ultrasonic transducer in the second embodiment.
  • 8A to 8D are cross-sectional views showing a method for manufacturing the ultrasonic transducer in the second embodiment.
  • FIG. 9 is a plan view of an ultrasonic transducer according to a first modified example of the second embodiment.
  • 10(a) and 10(b) are cross-sectional views taken along line AA of FIG.
  • FIG. 11 is a plan view of an ultrasonic transducer according to a second modification of the second embodiment.
  • 12(a) and 12(b) are enlarged plan views of the end portion of a beam in the third modification of the second embodiment.
  • FIG. 13 is a plan view of an ultrasonic transducer according to the third embodiment.
  • FIG. 14 is a plan view of an ultrasonic transducer according to a fourth embodiment.
  • FIG. 15 is a plan view of an ultrasonic transducer according to a fifth embodiment.
  • FIG. 16 is a plan view of an ultrasonic transducer according to a first modified example of the fifth embodiment.
  • FIG. 17 is a plan view of an ultrasonic transducer according to a second modified example of the fifth embodiment.
  • FIG. 18A is a plan view of an ultrasonic transducer according to a sixth embodiment, and FIG. 18B is an enlarged view of a range A in FIG. 18A. 19A and 19B are enlarged plan views of a first modified example of the sixth embodiment.
  • FIG. 20 is a plan view of an ultrasonic transducer according to a second modification of the sixth embodiment.
  • FIG. 21 is a diagram showing impedance Z versus frequency in the second embodiment.
  • FIG. 1 is a plan view of an ultrasonic transducer according to Example 1.
  • FIGS. 2(a) and 2(b) are cross-sectional views taken along lines A-A and B-B in FIG. 1, respectively.
  • the normal direction of substrate 10 is the Z direction, and the extension directions of the sides of substrate 10 in its planar shape are the X direction and the Y direction.
  • the ultrasonic transducer 100 in Example 1 has a substrate 10 and a vibration layer 18.
  • the substrate 10 has a frame 30, a membrane 32, and a beam 34, and has a gap 36.
  • the gap 36 has a gap 36a (first gap) provided at the bottom of the membrane 32, and a gap 36b (second gap) provided laterally from the side of the membrane 32.
  • the gaps 36a and 36b form the gap 36 as an integrated space.
  • the frame 30 surrounds the gap 36a in a planar view.
  • the membrane 32 is provided in an island shape in the center of the gap 36a in a planar view.
  • the beam 34 is provided within the gap 36a in a planar view, and mechanically connects the frame 30 and the membrane 32.
  • the frame 30, the membrane 32, and the beam 34 surround the gap 36b that contacts the gap 36a. That is, in the area surrounded by the frame 30, the membrane 32, and the beam 34 in a plan view, the gap 36 penetrates the substrate 10 from the back side to the front side of the substrate 10.
  • the ultrasonic transducer 100 has a gap 36 (cavity) formed in it, leaving only the top wall of the substrate 10 and the surrounding frame 30.
  • This shape resembles a box without a lid facing downwards.
  • the top wall of the substrate 10 is etched, and a membrane 32 is formed in the center of the top wall, and at least two beams 34 (bridges) are formed connecting the membrane 32 to the top end of the frame 30.
  • four beams 34 are provided, and if we imagine that the four beams 34 extend inward, the four virtually extended beams 34 form a cross shape.
  • the first gap 36 below the dotted line in Figure 2(b) below the upper wall is designated by the reference symbol 36a.
  • the second gap 36 located in the portion of the upper wall above the dotted line, formed by the side edges of the membrane 32, the side edges of the beams 34, and the upper layer of the frame 30, which is a hollowed-out portion of the upper wall, is designated by the reference symbol 36b. Looking at Figure 1, there are four second gaps 36b. Therefore, this membrane 32 is supported by four beams 34 and is capable of vibrating up and down.
  • the planar shape of the gap 36 in the frame 30 is processed by dry etching and is substantially rectangular, circular, or an intermediate shape between a rectangle and a circle.
  • the planar shape of the membrane 32 is circular here, but may be another polygon.
  • the center 35 of the planar shape of the membrane 32 and the center of the planar shape of the gap 36 approximately coincide.
  • the membrane 32 is provided in a central portion including the intersection of four virtually extended beams 34.
  • the beams 34 are provided point symmetrically with respect to the center 35. In other words, the widths of the four beams 34 are the same, and the lengths of the beams 34 are the same. This is to achieve well-balanced vibration.
  • a vibration layer 18 is provided on the beams 34.
  • This vibration layer 18 includes a piezoelectric layer 14, and a lower electrode 12 and an upper electrode 16 that face each other and sandwich at least a portion of the piezoelectric layer 14 from above and below.
  • the lower electrode 12 is provided between the beams 34 and the piezoelectric layer 14.
  • the upper electrode 16 is provided on the piezoelectric layer 14. It is preferable that the dimensions, materials, and arranged structures of the piezoelectric layer 14 and the upper and lower electrodes 12 and 16 in the four vibration layers 18 of the four beams 34 are the same. This allows the vibration layers 18 to be arranged symmetrically, enabling well-balanced vibration.
  • a control unit 40 is provided on a separate printed circuit board, and the control unit 40 applies an AC voltage between the electrodes 12 and 16.
  • the membrane 32 repeats up and down vibrations, as shown in Figures 3(a) and 3(b).
  • the membrane 32 vibrates in an alternating manner as indicated by arrows 50a and 50b. This causes the membrane 32 to emit ultrasonic waves.
  • the membrane 32 vibrates as indicated by arrows 50a and 50b.
  • Stresses 54a and 54b are applied to the substrate 10 at the beam 34. This causes distortions 52a and 52b in the piezoelectric layer 14 on the beam 34.
  • An AC voltage is generated between the electrodes 12 and 16 due to the piezoelectric effect. By measuring the AC voltage, ultrasonic waves can be received.
  • FIG. 4(a) is a plan view of the ultrasonic transducer according to Comparative Example 1
  • Fig. 4(b) is a cross-sectional view taken along line AA in Fig. 4(a), which also serves to explain the operation of the ultrasonic transducer.
  • a gap 36a is provided at the bottom of the substrate 10. Note that, unlike FIG. 1, there is no gap that penetrates the top wall of the substrate 10.
  • the entire outer periphery of the membrane 32 is connected to the frame 30.
  • An electrode 12 and a piezoelectric layer 14 are provided on the entire surface of the membrane 32, and an electrode 16 is provided on the piezoelectric layer 14 in the center of the membrane 32.
  • the portion that includes the electrodes 12, 16 and the piezoelectric layer 14 is the vibration layer 18.
  • the membrane 32 is connected to the frame 30 without interruption.
  • the entire outer periphery of the membrane 32 becomes the fixed end 62b.
  • the mechanical loss at the fixed end 62b of the outer periphery of the membrane 32 becomes large.
  • the gap 36a is not connected to the space above the membrane 32 (in the +Z direction). Therefore, the gas (air) in the gap 36a is in a state where the top lid is closed, and heat is accumulated in the gap 36a, causing the temperature of the membrane 32 to rise. This temperature rise causes the frequency of the ultrasonic waves to shift.
  • the vibration layer 18 is provided in the center of the membrane 32. As a result, the center of the membrane 32 becomes heavy, suppressing displacement and deteriorating the acoustic characteristics.
  • Example 1 In contrast, in Example 1, as shown in FIG. 1, there is a gap 36b.
  • the beam 34 also mechanically connects the frame 30 and the membrane 32. As a result, the point where the beam 34 and the frame 30 are connected becomes the fixed end 62a.
  • the fixed end 62a in Example 1 is shorter. As a result, when the membrane 32 vibrates, mechanical loss at the fixed end 62a can be suppressed.
  • the gap 36a below the membrane 32 is connected to the outside air via the gap 36b. Therefore, heat accumulation in the gap 36a is suppressed, and the temperature rise of the membrane 32 is suppressed. As a result, the frequency shift of the ultrasonic waves is suppressed.
  • the vibration layer 18 is provided on the multiple beams 34.
  • the piezoelectric layer 14 of the vibration layer 18 is not connected.
  • This beam 34 is supported at two points like a skipping rope, and the width direction is open by the gap 36b, so the vibration of the membrane 32 can be increased.
  • Multiple vibration layers 18 are provided on each of the multiple beams 34. That is, the vibration layer 18 is provided on all four beams 34. This allows the vibration of the membrane 32 to be increased. It is sufficient that at least two vibration layers are provided on at least two beams 34 out of the multiple beams 34. That is, among the multiple beams 34, there may be a beam 34 that does not have a vibration layer 18.
  • the vibration layer 18 may be provided on two beams 34 that are point symmetrical with respect to the center 35, and the vibration layer 18 may not be provided on the other two beams 34.
  • the vibration layer 18 is provided on the narrow beam 34, so that it vibrates the membrane 32 efficiently. Even if the vibration layer 18 is provided on a wide membrane 32, it does not vibrate the membrane 32 as much as the vibration layer 18 on the beam 34. Rather, the vibration layer 18 makes the membrane 32 heavier, resulting in loss.
  • the piezoelectric layers 14 in the vibration layer 18 are separated from each other on the membrane 32. This makes the membrane 32 lighter, so the amount of displacement is increased and the acoustic characteristics are improved.
  • the area of the membrane 32 where the piezoelectric layer 14 is provided is preferably 10% or less of the total area of the membrane 32, and preferably 5% or less.
  • FIG. 5 is a plan view of an ultrasonic transducer according to Example 2.
  • FIGS. 6(a) to 6(c) are cross-sectional views taken along lines A-A, B-B, and C-C of FIG. 5, respectively.
  • the substrate 10 includes a first layer 10a, a second layer 10b, and a third layer 10c.
  • the frame 30 is formed from the first layer 10a, the second layer 10b, and the third layer 10c, and the membrane 32 and the beam 34 are formed from the second layer 10b and the third layer 10c.
  • the membrane 32 and the beam 34 may be formed from the third layer 10c.
  • the portion where the first layer 10a is removed is the gap 36a
  • the portion where the second layer 10b and the third layer 10c are removed is the gap 36b.
  • the gap 36a is a gap in the ring-shaped first layer 10a where the first layer 10a is not provided.
  • the gap 36b is an area surrounded by the side of the beam 34, the side of the membrane 32, and the inner surface of the frame 30, and is an integral space with the gap 36a.
  • the piezoelectric layer 14 and the electrode 12 below the piezoelectric layer 14 are provided over the entire frame 30 and the entire four beams 34.
  • Reference numeral 12 in FIG. 6 denotes the lower electrode.
  • the upper electrode 16 is provided over the entire area above the vibrating beams 34.
  • Reference numeral 20 in FIG. 5 denotes wiring provided on the frame 30, and the wiring 20 is provided integrally with the upper electrode 16.
  • the wiring 20 is formed integrally with the electrode 16 on the beam 34 connected to the center of the left side of the frame 30, and extends counterclockwise. Furthermore, the wiring 20 is formed integrally with the upper electrode 16 of the beam 34 connected to the center of the lower side of the frame 30, the upper electrode 16 of the beam 34 connected to the center of the right side of the frame 30, and the upper electrode 16 of the beam 34 connected to the center of the upper side of the frame 30. The wiring 20 terminates near the upper electrode 16 of the beam 34 connected to the upper side of the frame 30. A pad 22 is provided on the terminated wiring 20.
  • pad 23 which is electrically connected to lower electrode 12, is provided on the upper edge of frame 30, close to pad 22. Since piezoelectric layer 14 is coated on electrode 12, through-hole 21 is provided by removing piezoelectric layer 14. Pad 23 is electrically connected to lower electrode 12 via through-hole 21. Pads 22 and 23 are metal layers, for example, gold layers.
  • the electrodes 12 are provided on the entire surface of the frame 30, but the wiring 20 is formed thin compared to the width of the frame 30, so parasitic capacitance can be suppressed.
  • the pads 22 and 23 are provided adjacent to each other, making it easy to connect to the outside, such as by wire bonding.
  • the vibration of the beam 34 causes the membrane 32 to vibrate up and down, stress tends to concentrate between the membrane 32 and the beam 34. For this reason, as in FIG. 1, when the end of the vibration layer 18 coincides with the end face of the membrane 32 and the beam 34, the mechanical strength of the boundary between the membrane 32 and the beam 34 and the boundary between the beam 34 and the frame 30 tends to decrease.
  • the vibration layer 18 in the region 60, the vibration layer 18 is provided from above the beam 34 to a part of the membrane 32.
  • the vibration layer 18 is provided from above the beam 34 to a part of the membrane 32.
  • the vibration layer 18 covers the two boundaries described above, the mechanical strength between the membrane 32 and the beam 34 and between the beam 34 and the frame 30 can be improved.
  • the outer periphery of the membrane 32 is a curve (circumference), but if the outer periphery of the vibration layer 18 is provided along the outer periphery of the membrane 32, an acute angle is formed on the outer periphery of the vibration layer 18, and the mechanical strength tends to decrease. Therefore, it is preferable that the planar shape of the vibration layer 18 be rectangular so that no sharp angles are formed on the outer periphery of the vibration layer 18.
  • the total planar area of the area 57a is preferably 10% or less of the planar area of the membrane 32, and more preferably 5% or less.
  • the substrate 10 is, for example, an SOI (Silicon on Insulator) substrate, in which a silicon oxide film (SiO 2 ) is formed on a silicon substrate, and a silicon layer is further formed on the silicon oxide film.
  • the first layer 10a and the third layer 10c are a silicon substrate and a silicon layer, respectively, and the second layer 10b is a silicon oxide film.
  • the first layer 10a is a main substrate, and its thickness T10a is 100 ⁇ m to 500 ⁇ m.
  • the thickness T10b of the silicon oxide film of the second layer 10b is 0.1 ⁇ m to 3 ⁇ m.
  • the thickness T10c of the silicon layer of the third layer 10c is 1 ⁇ m to 20 ⁇ m.
  • the substrate 10 may be a silicon substrate, a printed circuit board such as a glass epoxy substrate, a glass substrate, or a sapphire substrate.
  • Electrodes 12 and 16 are, for example, metal films of ruthenium, molybdenum, gold, titanium, platinum, aluminum, copper, chromium, silver, palladium, etc., or laminated films of multiple films selected from among these.
  • the thickness T12 of electrode 12 and the thickness T16 of electrode 16 are, for example, 0.1 ⁇ m to 0.3 ⁇ m.
  • the material of the piezoelectric layer 14 is, for example, PZT (lead zirconate titanate), KNN (potassium sodium niobate), BiFeO 3 (bismuth ferrate), BaTiO 3 (barium titanate), AlN (aluminum nitride), LiNbO 3 (lithium niobate), LiTaO 3 (lithium tantalate), ZnO (zinc oxide) or PVDF (polyvinylidene fluoride).
  • the thickness T14 of the piezoelectric layer 14 is 0.1 ⁇ m to 3 ⁇ m.
  • the pads 22, 23 and wiring are, for example, copper layers or aluminum layers, gold layers, titanium layers, ruthenium layers, chromium layers, and molybdenum layers. They are also laminated films in which multiple layers are selected from these.
  • the width L32 (diameter) of the membrane 32 shown in FIG. 6 is, for example, 50 ⁇ m to 3000 ⁇ m.
  • the length L34 of the beam 34 is, for example, 30 ⁇ m to 300 ⁇ m.
  • the width W34 of the beam 34 is, for example, 50 ⁇ m to 500 ⁇ m.
  • the resonant frequency is 120 kHz.
  • the material and dimensions of each member can be set as appropriate.
  • Figures 7(a) to 8(d) are cross-sectional views showing a manufacturing method of an ultrasonic transducer in Example 2.
  • Figures 7(a) to 7(e), 8(a) and 8(c) correspond to the A-A cross section in Figure 5
  • Figures 8(b) and 8(d) correspond to the B-B cross section in Figure 5.
  • a substrate 10 is prepared.
  • the substrate 10 is formed by stacking a first layer 10a made of a silicon substrate, a second layer 10b made of silicon oxide (SiO 2 ), and a third layer 10c made of a silicon layer.
  • an electrode material that will become the lower electrode 12 is formed over the entire surface of the substrate 10.
  • the electrode 12 is formed, for example, by using a sputtering method or a vacuum deposition method.
  • the entire surface of the electrode 12 is coated with a piezoelectric layer 14.
  • the piezoelectric layer 14 is formed, for example, by using a sputtering method or a vacuum deposition method.
  • an electrode material that will become the electrode 16 is formed over the entire surface of the piezoelectric layer 14 using, for example, a sputtering method or a vacuum deposition method. Then, photolithography and etching are used to pattern the electrode material that corresponds to the upper layer electrode 16 and wiring 20 shown in FIG. 5.
  • the entire surface is covered with photoresist.
  • the photoresist is patterned, leaving behind the portions corresponding to the frame 30 and the beams 34.
  • the photoresist is patterned to form openings that expose the piezoelectric layer 14 in the portion surrounded by the frame 30 and the beams 34 (including the membrane 32 portion).
  • the piezoelectric layer 14 is then etched in the portions of the photoresist openings.
  • the underlying electrode 12 remains as an etching stopper.
  • a through hole 21 may be opened.
  • the electrode 12 remains in the portion that will become the gap 36b surrounded by the frame 30 and the beam 34, and in the portion that will become the membrane 32. For this reason, as shown in FIG. 8(a) and FIG. 8(b), the electrode 12 in this portion is removed by etching. As a result, the electrode 12 and the piezoelectric layer 14 remain in the region that will become the frame 30, and a three-layer vibration layer 18 is formed in the region that will become the beam 34.
  • the third layer 10c and the second layer 10b remain on top. Therefore, as shown in Figures 8(c) and 8(d), the third layer 10c and the second layer 10b in this area are removed by etching. As a result, the gap 36b is formed.
  • the first layer 10a is etched from below and removed to form a gap 36a. This connects gaps 36a and 36b to form gap 36.
  • Au plating is performed to cover the through hole 21, and patterning is performed to form pads 22 and 23 near the through hole 21. In this way, the ultrasonic transducer of Example 2 is manufactured.
  • This manufacturing method is one example, and any manufacturing method that can realize the structure of Figure 5 can be used.
  • the frame 30 includes a first layer 10a, a second layer 10b, and a third layer 10c, and the membrane 32 and the beam 34 include the second layer 10b and the third layer 10c, but do not include the first layer 10a.
  • This structure allows the gaps 36a and 36b to have a desired planar shape.
  • FIG. 9 is a plan view of an ultrasonic transducer according to a first modified example of the second embodiment.
  • Fig. 10(a) and Fig. 10(b) are cross-sectional views taken along line AA in Fig. 9.
  • the wiring 20 is not provided on the piezoelectric layer 14 of the frame 30.
  • the wiring 20 is provided on the membrane 32.
  • the wiring 20 connects the electrodes 16 that cover the entire area of the four beams 34 in straight lines on the membrane 32.
  • the wiring 20 is provided in a cross shape that intersects at the center 35 of the membrane 32.
  • the lower electrode 12 of the vibration layer 18 is provided over the entire area of the frame 30.
  • the upper electrode 16 of the vibration layer 18 is electrically connected via wiring 20 provided on the piezoelectric layer 14 on the frame 30.
  • the lower electrode 12 and the upper electrode 16 sandwich the piezoelectric layer 14 on the frame 30, generating parasitic capacitance.
  • the electrode 16 (second electrode) in the upper layer of the vibration layer 18 is electrically connected via the wiring 20 on the membrane 32.
  • the electrode 12 (first electrode) in the vibration layer 18 is electrically connected via the electrode 12 provided on the frame 30, as in the second embodiment.
  • the electrodes 12 in the lower layer of the vibration layer 18 are commonly connected on the frame 30.
  • the electrodes 16 in the upper layer of the vibration layer 18 are commonly connected on the membrane 32.
  • the four vibration layers 18 are connected in parallel.
  • the electrodes 12 and 16 hardly overlap with each other, sandwiching the piezoelectric layer 14.
  • the width of the upper layer wiring is narrow. This makes it possible to reduce the parasitic capacitance.
  • the electrodes 16 in the vibration layer 18 may be electrically connected via the electrode 16 provided on the frame 30, and the electrodes 12 in the vibration layer 18 may be electrically connected via the electrode 12 provided on the membrane 32.
  • the wiring 20 (second electrode) in the region on the membrane 32 where the piezoelectric layers 14 are separated from each other linearly connects the electrodes 16 on the vibration layer 18. This shortens the wiring 20, thereby suppressing the parasitic capacitance caused by the wiring 20. If the width W20 of the wiring 20 is large, the parasitic capacitance increases. From this perspective, the width W20 of the wiring 20 is preferably 0.5 times or less the width W34 of the beam 34, and more preferably 0.25 times or less.
  • FIG. 10(a) and 10(b) show cross-sectional views of the third layer 10c and vibration layer 18 near the boundary between the beam 34 connected to the right side of the frame 30 in FIG. 9 and the membrane 32.
  • the electrode 12 first electrode
  • the electrode 12 and the piezoelectric layer 14 are not provided between the electrode 16 and the membrane 32.
  • the end face 14a of the piezoelectric layer 14 is provided toward the center of the membrane 32 from the end face 12a of the electrode 12. This is to prevent electrical shorting between the electrodes 12 and 16.
  • the end face 12a of the lower electrode 12 in FIG. 10(a) is patterned vertically.
  • the step formed by the third layer 10c and the electrode 12 is traced to the piezoelectric layer 14 and the upper electrode 16. This causes a crack to occur in the piezoelectric layer 14 or the upper electrode 16 at the step portion 64. As shown in FIG. 9, the membrane 32 vibrates up and down, so a larger distortion occurs in this step portion 64.
  • the end face 12a of the lower electrode 12 is inclined so that the electrode 12 becomes thinner as it moves toward the center of the membrane 32. This makes the step formed by the third layer 10c and the electrode 12 gentler. As a result, the step portion 64 traced by the piezoelectric layer 14 and the electrode 16 can be made gentler. This makes it possible to suppress the occurrence of cracks in the piezoelectric layer 14 or the electrode 16 at the step portion 64. It is preferable that the end face 14a of the piezoelectric layer 14 is also inclined.
  • the angle ⁇ of the end face 12a of the electrode 12 with respect to the bottom surface of the electrode 12 is preferably 10° or more and 45° or less.
  • the other configurations are the same as in Example 2, so a description thereof will be omitted.
  • FIG. 11 is a plan view of an ultrasonic transducer according to a second modification of the second embodiment.
  • the wiring 20 on the membrane 32 includes a ring-shaped wiring 20a (first wiring) and a wiring 20b (second wiring) that connects the ring-shaped wiring 20a to the electrode 16 on the upper layer of the vibration layer 18.
  • the wiring 20 is cross-shaped and passes through the center 35 of the membrane 32. Therefore, when the membrane 32 vibrates up and down, the wiring 20 suppresses the vibration of the membrane 32 non-uniformly.
  • the planar shape of the wiring 20a is a ring surrounding the center 35 of the membrane 32. Therefore, even if the membrane 32 vibrates up and down, the wiring 20a does not suppress the vibration of the central part of the membrane 32, but symmetrically suppresses the membrane 32. Although the wiring 20b suppresses the vibration of the membrane 32 unevenly, the wiring 20b is shorter than the wiring 20 in FIG. 9. Therefore, the wiring 20b does not suppress the vibration of the membrane 32 unevenly as in FIG. 9. Note that, although it is preferable that the width of the wiring 20b is small, it is sufficient if it is equal to or smaller than the width of the vibration layer 18.
  • Fig. 12(a) is a plan view of a connection portion between the right side of the frame 30 and the beam 34 in Fig. 5.
  • Fig. 12(b) is a plan view of a connection portion between the membrane 32 and the beam 34 connected to the right side of the frame 30 in Fig. 5.
  • the corners 65 of the inner side of the frame 30 and both sides of the beam 34 are rounded. That is, the width of the beam 34 gradually widens in a curved manner from the center of the beam 34 toward the frame 30. This rounding reduces the concentration of stress at the corners 65, and suppresses the occurrence of cracks at the corners 65. In particular, at this corner 65, it is preferable to round all layers. That is, referring to FIG. 6(a) to FIG. 6(c), it is preferable to round the piezoelectric layer 14, the upper and lower electrodes 12, 16, and the lower substrate 10.
  • a radius is formed on the outer periphery of the membrane 32 and on the corners 66 on both sides of the beam 34.
  • the width of the beam 34 gradually widens in a curved manner from the center of the beam 34 toward the membrane 32.
  • the width W34b of the beam 34 at the point where it connects to the frame 30 is patterned to be wider than the width W34a at the center of the beam 34.
  • the width W34c of the beam 34 at the point where it connects to the membrane 32 is patterned to be wider than the width W34a at the center of the beam 34.
  • FIG. 13 is a plan view of an ultrasonic transducer according to Example 3.
  • this ultrasonic transducer 105 there are two beams 34, one above the other (or one to the left and right).
  • the two beams 34 are provided point-symmetrically with respect to the center 35 of the membrane 32.
  • Example 3 by providing two beams 34, the parasitic capacitance between the electrodes 12 and 16 can be reduced.
  • FIG. 14 is a plan view of an ultrasonic transducer.
  • the four beams 34 are provided at the corners of the frame 30.
  • the length L34 of the beams 34 can be increased. This allows the planar area of the vibration layer 18 to be increased. This allows the vibration energy of the membrane 32 to be increased, and the up and down vibration of the membrane 32 to be increased.
  • the number and length of the beams 34 can be set as appropriate.
  • the beams 34 In order to vibrate the membrane 32 evenly around the center 35, it is preferable that the beams 34 are point symmetric or rotationally symmetric with respect to the center 35. For this reason, when the planar shape of the gap 36 is rectangular, it is preferable that the number of beams 34 is an even number, such as two or four.
  • the number of beams 34 may be an odd number. If the number of beams 34 is large, the fixed end between the beams 34 and the frame 30 becomes longer. Therefore, it is preferable that the number of beams 34 is six or less, and more preferably four or less.
  • the lengths L34 of the multiple beams 34 are substantially the same as each other, and that the widths W34 of the multiple beams 34 are substantially the same as each other.
  • “the lengths L34 (or widths W34) are substantially the same as each other” means that the difference between the maximum L34 (or W34) and the minimum L34 (or widths W34) among the multiple beams 34 is 0.1 times or less the average value of the L34 (or widths W34) of the multiple beams 34.
  • the beams 34 are arranged to extend radially from the membrane 32 in a planar view.
  • the point where the beam 34 connects to the membrane 32 and the point where the beam 34 connects to the frame 30 overlap on a straight line passing through the center 35.
  • the center 35 of the membrane 32 corresponds to, for example, the center of gravity of the planar shape of the membrane 32.
  • the planar shape of the membrane 32 is rectangular (e.g., square).
  • the four beams 34 are provided at the center of the sides of the rectangular planar shape of the membrane 32.
  • the planar area of the membrane 32 can be made larger than that of the membrane 32 of Example 2 when the length of the beams 34 is the same as that of Example 2. This makes it possible to increase the radiation intensity of the ultrasonic waves.
  • the resonant frequency is 120 kHz when the length of one side of the membrane 32 is 600 ⁇ m and the length L34 of the beams 34 is 120 ⁇ m.
  • [Modification 1 of Example 5] 16 is a plan view of an ultrasonic transducer according to a first modification of the fifth embodiment.
  • the planar shape of the membrane 32 is rectangular (e.g., square), and the corners are cut off in a straight line.
  • the other configurations are the same as those of the fifth embodiment, and therefore the description thereof will be omitted.
  • Fig. 17 is a plan view of an ultrasonic transducer according to Modification 2 of Example 5.
  • the planar shape of the membrane 32 is rectangular (e.g., square) and has rounded corners.
  • the other configurations are the same as those of Example 5, and therefore description thereof will be omitted.
  • the planar shape of the membrane 32 may be approximately circular. In this case, the membrane 32 vibrates concentrically around the center 35. This improves the efficiency of the vibration.
  • the planar shape of the membrane 32 may be approximately regular polygonal (e.g., approximately square). In this case, the area of the membrane 32 can be made larger than when the planar shape of the membrane 32 is approximately circular, and the radiation intensity of the ultrasonic waves can be increased. Furthermore, the membrane 32 having an approximately regular polygonal shape is rotationally symmetric around the center 35. This improves the efficiency of the vibration.
  • the planar shape of the membrane 32 may be an approximately polygonal shape, and the corners of the approximately polygonal shape may be removed.
  • the approximately circular shape, the approximately regular polygonal shape, and the approximately polygonal shape do not have to be geometrically circular, regular polygonal, and polygonal.
  • the approximately regular polygonal shape and the approximately polygonal shape include shapes with corners removed, and as in Example 6 and its variations described below, include cases where a recess is provided on the outer periphery of the membrane 32, and further allow for differences of the order of manufacturing error.
  • the length L30b of the side direction of the corner to be removed is, for example, 0.01 times or more and 0.2 times or less than the length L30a of one side.
  • FIG. 18(a) is a plan view of an ultrasonic transducer according to Example 6, and FIG. 18(b) is an enlarged view of range A in FIG. 18(a).
  • the outer periphery 38 of the membrane 32, particularly the joint with the vibration layer 18 has a recess 38a recessed toward the center 35 of the membrane 32.
  • the beam 34 is connected to the membrane 32 at the recess 38a. This allows the beam 34 to be lengthened, and the capacitance between the electrodes 12 and 16 in the vibration layer 18 can be increased. This allows the vibration of the membrane 32 to be increased.
  • the size of the frame 30 is the same, if the beam 34 is lengthened without providing the recess 38a, the area of the membrane 32 will be reduced, and the radiation intensity of the ultrasonic waves will be reduced. By providing the recess 38a, the area of the membrane 32 can be increased. Therefore, the radiation intensity of the ultrasonic waves can be increased.
  • FIG. 19(a) and 19(b) are enlarged plan views of a first modified example of the sixth embodiment, which are enlarged views corresponding to the range A in FIG. 18(a).
  • the tips of the membrane 32 located on both sides of the recess 38a are cut in a straight line.
  • the tips of the membrane 32 located on both sides of the recess 38a are cut in a rounded shape. This makes it possible to suppress chipping of the tips.
  • [Modification 2 of Example 6] 20 is a plan view of an ultrasonic transducer according to a second modification of the sixth embodiment.
  • the planar shape of the membrane 32 is substantially rectangular (e.g., square).
  • a recess 38a may be provided on the outer periphery 38 of the membrane 32.
  • the other configurations are the same as those of the sixth embodiment, and therefore description thereof will be omitted.
  • First layer 10a silicon layer with thickness T10a of 300 ⁇ m
  • Second layer 10b silicon oxide layer with thickness T10b of 1 ⁇ m
  • Third layer 10c silicon layer with thickness T10c of 5 ⁇ m
  • Electrode 12 aluminum layer with thickness T12 of 0.2 ⁇ m
  • Piezoelectric layer 14 aluminum nitride layer with thickness T14 of 1 ⁇ m
  • Electrode 16 aluminum layer with thickness T16 of 0.2 ⁇ m
  • Beam 34 length L34 is 120 ⁇ m
  • width W34 is 300 ⁇ m
  • the horizontal axis is frequency
  • the vertical axis is impedance Z between electrodes 12 and 16.
  • membrane 32 is more likely to resonate at resonance frequency fr, and Example 2 functions as an ultrasonic transducer.

Abstract

This ultrasonic transducer comprises: a frame 30 having a first gap 36a and a second gap 36b that is provided above the first gap and close to the first gap, the frame surrounding the first gap in plan view; a substrate 10 provided with a membrane 32 provided to a central section of the first gap in plan view, and a plurality of beams 34 provided within the first gap in plan view, the plurality of beams mechanically connecting the frame and the membrane and surrounding the second gap together with the frame and the membrane in plan view; piezoelectric layers 14 provided to each of at least two beams from among the plurality of beams; and at least two oscillation layers 18, each of which is provided with a first electrode 12 and a second electrode 16 that face each other across at least one of the piezoelectric layers. The piezoelectric layers between the at least two oscillation layers are separated from one another on the membrane. 

Description

超音波トランスデューサUltrasonic Transducers
 本発明は、超音波トランスデューサに関する。 The present invention relates to an ultrasonic transducer.
 携帯電話等に用いられる指紋センサや医療用エコー装置には、超音波トランスデューサが用いられている。超音波トランスデューサとして、圧電体を用いた圧電型マイクロマシン超音波トランスデューサ(pMUT:Piezoelectric Micromachined Ultrasonic Transducer)が知られている。pMUTでは、基板からなるフレーム内に基板が薄くなるようにキャビティを設ける。キャビティの平面視における中央部の基板上に圧電層が設けられる。フレームとキャビティの中央部との間に圧電層を含むリブを設けることが知られている(例えば特許文献1)。 Ultrasonic transducers are used in fingerprint sensors used in mobile phones and medical ultrasound devices. A known type of ultrasonic transducer is the piezoelectric micromachined ultrasonic transducer (pMUT), which uses a piezoelectric material. In a pMUT, a cavity is provided within a frame made of a substrate so that the substrate is thin. A piezoelectric layer is provided on the substrate in the center of the cavity when viewed from above. It is known to provide a rib containing a piezoelectric layer between the frame and the center of the cavity (for example, Patent Document 1).
米国特許出願公開第2020/0194658号明細書US Patent Application Publication No. 2020/0194658
 キャビティの平面視における中央部に圧電層を設けると、基板の振動が妨げられる。これにより、超音波トランスデューサの特性が劣化する。 If a piezoelectric layer is placed in the center of the cavity in a plan view, the vibration of the substrate is hindered. This degrades the characteristics of the ultrasonic transducer.
 本発明は、上記課題に鑑みなされたものであり、特性を向上させることを目的とする。 The present invention was developed in consideration of the above problems, and aims to improve the characteristics.
 本発明は、第1空隙と、前記第1空隙の上方において、前記第1空隙に接して設けられる第2空隙と、を有し、平面視において前記第1空隙を囲むフレームと、平面視において前記第1空隙の中央部に設けられたメンブレンと、平面視において前記第1空隙内に設けられ、前記フレームと前記メンブレンとを機械的に接続し、平面視において前記フレームと前記メンブレンとで前記第2空隙を囲む複数の梁と、を備える基板と、前記複数の梁のうち少なくとも2つの梁上にそれぞれ設けられ、圧電層と、前記圧電層の少なくとも一部を挟み対向する第1電極および第2電極と、を各々備える少なくとも2つの振動層と、を備え、前記メンブレン上において、前記少なくとも2つの振動層における前記圧電層は互いに分離されている超音波トランスデューサである。 The present invention is an ultrasonic transducer comprising: a substrate having a first gap and a second gap provided above the first gap and adjacent to the first gap, a frame surrounding the first gap in a planar view, a membrane provided in the center of the first gap in a planar view, and a plurality of beams provided within the first gap in a planar view, mechanically connecting the frame and the membrane, and surrounding the second gap with the frame and the membrane in a planar view; and at least two vibration layers provided on at least two of the plurality of beams, each of which includes a piezoelectric layer and a first electrode and a second electrode facing each other with at least a portion of the piezoelectric layer sandwiched therebetween, and the piezoelectric layers in the at least two vibration layers are separated from each other on the membrane.
 上記構成において、前記少なくとも2つの振動層における前記第1電極は、前記フレーム上に設けられた前記第1電極を介し電気的に接続され、前記メンブレン上において前記圧電層が互いに分離された領域において前記少なくとも2つの振動層における前記第1電極は互いに分離され、前記少なくとも2つの振動層における前記第2電極は、前記メンブレン上に設けられた前記第2電極を介し電気的に接続される構成とすることができる。 In the above configuration, the first electrodes in the at least two vibration layers are electrically connected via the first electrode provided on the frame, the first electrodes in the at least two vibration layers are separated from each other in a region on the membrane where the piezoelectric layers are separated from each other, and the second electrodes in the at least two vibration layers are electrically connected via the second electrode provided on the membrane.
 上記構成において、前記少なくとも2つの振動層における前記第1電極は前記圧電層と前記少なくとも2つの梁との間に設けられ、前記メンブレン上において前記圧電層が互いに分離された領域における前記第2電極と前記メンブレンとの間には、前記第1電極および前記圧電層は設けられておらず、前記少なくとも2つの梁と前記領域との間において、前記圧電層の端面は、前記第1電極の端面より前記メンブレンの中心方向に設けられ、前記第1電極の端面は、前記第1電極が前記メンブレンの中心方向に行くにしたがい薄くなるように傾斜する構成とすることができる。 In the above configuration, the first electrodes in the at least two vibration layers are provided between the piezoelectric layer and the at least two beams, and the first electrodes and the piezoelectric layers are not provided between the second electrodes and the membrane in the regions on the membrane where the piezoelectric layers are separated from each other, and between the at least two beams and the regions, the end faces of the piezoelectric layers are provided toward the center of the membrane from the end faces of the first electrodes, and the end faces of the first electrodes are inclined so that they become thinner as they move toward the center of the membrane.
 上記構成において、前記メンブレン上において前記圧電層が互いに分離された領域において前記第2電極は、前記少なくとも2つの振動層における前記第2電極を直線的に接続する構成とすることができる。 In the above configuration, the second electrode can be configured to linearly connect the second electrodes in the at least two vibration layers in the region on the membrane where the piezoelectric layers are separated from each other.
 上記構成において、前記メンブレン上において前記圧電層が互いに分離された領域において前記第2電極は、前記メンブレンの中心を囲む環状の第1配線と、前記第1配線と前記少なくとも2つの振動層における前記第2電極とを接続する第2配線と、を有する構成とすることができる。 In the above configuration, in the region on the membrane where the piezoelectric layers are separated from each other, the second electrode can be configured to have a ring-shaped first wiring that surrounds the center of the membrane and a second wiring that connects the first wiring to the second electrodes in the at least two vibration layers.
 上記構成において、平面視において、前記複数の梁は、前記メンブレンから放射状に延在して設けられている構成とすることができる。 In the above configuration, the beams can be configured to extend radially from the membrane in a plan view.
 上記構成において、前記少なくとも2つの振動層は、前記少なくとも2つの梁上から前記メンブレン上の一部まで設けられている構成とすることができる。 In the above configuration, the at least two vibration layers can be configured to extend from the at least two beams to a portion of the membrane.
 上記構成において、前記少なくとも2つの振動層は、前記少なくとも2つの梁上から前記フレーム上の一部まで設けられている構成とすることができる。 In the above configuration, the at least two vibration layers can be configured to extend from the at least two beams to a portion of the frame.
 上記構成において、前記メンブレンの平面形状は略円形状または略正方形状である構成とすることができる。 In the above configuration, the planar shape of the membrane can be approximately circular or approximately square.
 前記メンブレンの平面形状は略多角形状であり、略多角形状の角部が除去されている構成とすることができる。 The membrane has a planar shape that is generally polygonal, and the corners of the generally polygonal shape can be removed.
 上記構成において、前記メンブレンの外周は、前記メンブレンの中心に向かい凹む凹部を有し、前記少なくとも2つの梁は前記凹部において前記メンブレンに接続される構成とすることができる。 In the above configuration, the outer periphery of the membrane can have a recess that is recessed toward the center of the membrane, and the at least two beams can be configured to be connected to the membrane at the recess.
 上記構成において、前記複数の梁上に、前記少なくとも2つの振動層を含む複数の振動層がそれぞれ設けられている構成とすることができる。 In the above configuration, a plurality of vibration layers including the at least two vibration layers may be provided on each of the beams.
 上記構成において、前記少なくとも2つの梁の長さは互いに略同じであり、前記少なくとも2つの梁の幅は互いに略同じである構成とすることができる。 In the above configuration, the lengths of the at least two beams can be approximately the same, and the widths of the at least two beams can be approximately the same.
 本発明は、シリコン基板、前記シリコン基板上に設けられたシリコン酸化膜および前記シリコン酸化膜上に設けられたシリコン層からなり、前記シリコン基板がリング状に設けられ、前記リング状内は前記シリコン基板が設けられていない第1空隙であり、前記リング状の前記シリコン基板上に設けられた前記シリコン酸化膜および前記シリコン層を有するフレームと、平面視において、前記第1空隙内に島状に設けられ、前記シリコン層、または、前記シリコン酸化膜と前記シリコン層と、からなるメンブレンと、前記フレームと前記メンブレンとを接続し、前記シリコン層、または、前記シリコン酸化膜と前記シリコン層と、からなる複数の梁と、を備え、前記梁の側面、前記メンブレンの側面および前記フレームの内面により囲まれた領域は、前記第1空隙と一体空間となった第2空隙であるSOI基板と、前記フレームおよび前記複数の梁における前記SOI基板上に設けられた第1電極と、前記フレームおよび前記複数の梁における前記第1電極上に設けられた圧電層と、前記複数の梁における前記圧電層上に設けられた第2電極と、前記複数の梁における前記第2電極と接続され、前記フレームにおける前記圧電層上を延在する配線と、を備える超音波トランスデューサである。 The present invention is a method for manufacturing a semiconductor device comprising: a silicon substrate, a silicon oxide film provided on the silicon substrate, and a silicon layer provided on the silicon oxide film, the silicon substrate being provided in a ring shape, the inside of the ring being a first gap in which the silicon substrate is not provided; a frame having the silicon oxide film and the silicon layer provided on the ring-shaped silicon substrate; a membrane provided in an island shape in the first gap in a plan view, the membrane being made up of the silicon layer or the silicon oxide film and the silicon layer; and a membrane connecting the frame and the membrane, the membrane being connected to the silicon layer or the silicon oxide film. The ultrasonic transducer includes a plurality of beams each made of a silicon oxide film and the silicon layer, and an area surrounded by the side of the beam, the side of the membrane, and the inner surface of the frame is a second gap that is an integral space with the first gap, an SOI substrate, a first electrode provided on the SOI substrate in the frame and the plurality of beams, a piezoelectric layer provided on the first electrode in the frame and the plurality of beams, a second electrode provided on the piezoelectric layer in the plurality of beams, and wiring connected to the second electrode in the plurality of beams and extending over the piezoelectric layer in the frame.
 本発明によれば、特性を向上させることができる。 The present invention can improve the characteristics.
図1は、実施例1に係る超音波トランスデューサの平面図である。FIG. 1 is a plan view of an ultrasonic transducer according to a first embodiment. 図2(a)および図2(b)は、それぞれ図1のA-A断面図およびB-B断面図である。2(a) and 2(b) are cross-sectional views taken along lines AA and BB in FIG. 1, respectively. 図3(a)および図3(b)は、実施例1における超音波トランスデューサの動作を示す断面図である。3A and 3B are cross-sectional views showing the operation of the ultrasonic transducer in the first embodiment. 図4(a)は、比較例1に係る超音波トランスデューサの平面図、図4(b)は、図4(a)のA-A断面図である。FIG. 4A is a plan view of an ultrasonic transducer according to a first comparative example, and FIG. 4B is a cross-sectional view taken along line AA of FIG. 4A. 図5は、実施例2に係る超音波トランスデューサの平面図である。FIG. 5 is a plan view of an ultrasonic transducer according to the second embodiment. 図6(a)から図6(c)は、図5のそれぞれA-A断面図、B-B断面図およびC-C断面図である。6(a) to 6(c) are cross-sectional views taken along lines AA, BB, and CC in FIG. 5, respectively. 図7(a)から図7(e)は、実施例2における超音波トランスデューサの製造方法を示す断面図である。7A to 7E are cross-sectional views showing a method for manufacturing the ultrasonic transducer in the second embodiment. 図8(a)から図8(d)は、実施例2における超音波トランスデューサの製造方法を示す断面図である。8A to 8D are cross-sectional views showing a method for manufacturing the ultrasonic transducer in the second embodiment. 図9は、実施例2の変形例1に係る超音波トランスデューサの平面図である。FIG. 9 is a plan view of an ultrasonic transducer according to a first modified example of the second embodiment. 図10(a)および図10(b)は、図9のA-A断面図である。10(a) and 10(b) are cross-sectional views taken along line AA of FIG. 図11は、実施例2の変形例2に係る超音波トランスデューサの平面図である。FIG. 11 is a plan view of an ultrasonic transducer according to a second modification of the second embodiment. 図12(a)および図12(b)は、実施例2の変形例3における梁の端部の拡大平面図である。12(a) and 12(b) are enlarged plan views of the end portion of a beam in the third modification of the second embodiment. 図13は、実施例3に係る超音波トランスデューサの平面図である。FIG. 13 is a plan view of an ultrasonic transducer according to the third embodiment. 図14は、実施例4に係る超音波トランスデューサの平面図である。FIG. 14 is a plan view of an ultrasonic transducer according to a fourth embodiment. 図15は、実施例5に係る超音波トランスデューサの平面図である。FIG. 15 is a plan view of an ultrasonic transducer according to a fifth embodiment. 図16は、実施例5の変形例1に係る超音波トランスデューサの平面図である。FIG. 16 is a plan view of an ultrasonic transducer according to a first modified example of the fifth embodiment. 図17は、実施例5の変形例2に係る超音波トランスデューサの平面図である。FIG. 17 is a plan view of an ultrasonic transducer according to a second modified example of the fifth embodiment. 図18(a)は、実施例6に係る超音波トランスデューサの平面図、図18(b)は、図18(a)の範囲Aの拡大図である。FIG. 18A is a plan view of an ultrasonic transducer according to a sixth embodiment, and FIG. 18B is an enlarged view of a range A in FIG. 18A. 図19(a)および図19(b)は、実施例6の変形例1における拡大平面図である。19A and 19B are enlarged plan views of a first modified example of the sixth embodiment. 図20は、実施例6の変形例2に係る超音波トランスデューサの平面図である。FIG. 20 is a plan view of an ultrasonic transducer according to a second modification of the sixth embodiment. 図21は、実施例2における周波数に対するインピーダンスZを示す図である。FIG. 21 is a diagram showing impedance Z versus frequency in the second embodiment.
 以下、図面を参照し実施例について説明する。 The following describes the embodiment with reference to the drawings.
 図1は、実施例1に係る超音波トランスデューサの平面図である。図2(a)および図2(b)は、それぞれ図1のA-A線およびB-B線における断面図である。基板10の法線方向をZ方向、基板10の平面形状における辺の延伸方向をX方向およびY方向とする。 FIG. 1 is a plan view of an ultrasonic transducer according to Example 1. FIGS. 2(a) and 2(b) are cross-sectional views taken along lines A-A and B-B in FIG. 1, respectively. The normal direction of substrate 10 is the Z direction, and the extension directions of the sides of substrate 10 in its planar shape are the X direction and the Y direction.
 実施例1における超音波トランスデューサ100は、基板10と、振動層18を有する。基板10は、フレーム30と、メンブレン32と、梁34と、を備え、空隙36を有する。空隙36は、メンブレン32の下部に設けられた空隙36a(第1空隙)を有し、メンブレン32の側面から横方向に設けられた空隙36b(第2空隙)を有する。空隙36aと36bとで一体空間として空隙36を形成する。フレーム30は、平面視において空隙36aを囲む。メンブレン32は、平面視において空隙36aの中央部に島状に設けられている。梁34は、平面視において空隙36a内に設けられ、フレーム30とメンブレン32とを機械的に接続する。平面視においてフレーム30とメンブレン32と梁34とは空隙36aと接する空隙36bを囲む。すなわち、平面視においてフレーム30とメンブレン32と梁34とに囲まれた領域において、空隙36は基板10の裏面から表側へ基板10を貫通する。 The ultrasonic transducer 100 in Example 1 has a substrate 10 and a vibration layer 18. The substrate 10 has a frame 30, a membrane 32, and a beam 34, and has a gap 36. The gap 36 has a gap 36a (first gap) provided at the bottom of the membrane 32, and a gap 36b (second gap) provided laterally from the side of the membrane 32. The gaps 36a and 36b form the gap 36 as an integrated space. The frame 30 surrounds the gap 36a in a planar view. The membrane 32 is provided in an island shape in the center of the gap 36a in a planar view. The beam 34 is provided within the gap 36a in a planar view, and mechanically connects the frame 30 and the membrane 32. In a planar view, the frame 30, the membrane 32, and the beam 34 surround the gap 36b that contacts the gap 36a. That is, in the area surrounded by the frame 30, the membrane 32, and the beam 34 in a plan view, the gap 36 penetrates the substrate 10 from the back side to the front side of the substrate 10.
 さらに言い換える。超音波トランスデューサ100には、基板10の上壁と周囲のフレーム30を残して、空隙36(キャビティ)が形成されている。これは蓋の無い箱が下を向いた様な形状である。またこの基板10の上壁は、エッチング処理が施され、上壁の中央にはメンブレン32が、さらには、このメンブレン32とフレーム30の上端をつなぐ少なくとも2本の梁34(ブリッジ)が形成される。なお、図1において、梁34は4本設けられており、4本の梁34が内側に延伸することを仮想すれば、仮想的に延伸した4本の梁34は十字形を構成する。 In other words, the ultrasonic transducer 100 has a gap 36 (cavity) formed in it, leaving only the top wall of the substrate 10 and the surrounding frame 30. This shape resembles a box without a lid facing downwards. The top wall of the substrate 10 is etched, and a membrane 32 is formed in the center of the top wall, and at least two beams 34 (bridges) are formed connecting the membrane 32 to the top end of the frame 30. In FIG. 1, four beams 34 are provided, and if we imagine that the four beams 34 extend inward, the four virtually extended beams 34 form a cross shape.
 そして説明の都合上、上壁の下、図2(b)では、空隙36のうち点線より下層の第1空隙を符号36aとする。また、上壁の一部をくり抜いた部分で、前記点線より上の上壁の部分に位置する空隙36であり、メンブレン32の側辺、梁34の側辺およびフレーム30の上層で構成する第2空隙を符号36bとする。図1で見れば、第2空隙36bは、4つある。よってこのメンブレン32は、4本の梁34で支持されて、上下振動を行うことが可能である。 For ease of explanation, the first gap 36 below the dotted line in Figure 2(b) below the upper wall is designated by the reference symbol 36a. The second gap 36 located in the portion of the upper wall above the dotted line, formed by the side edges of the membrane 32, the side edges of the beams 34, and the upper layer of the frame 30, which is a hollowed-out portion of the upper wall, is designated by the reference symbol 36b. Looking at Figure 1, there are four second gaps 36b. Therefore, this membrane 32 is supported by four beams 34 and is capable of vibrating up and down.
 フレーム30内の空隙36の平面形状は、ドライエッチングで処理され、実質的に矩形、円または矩形と円の中間形状である。また、メンブレン32の平面形状は、ここでは円形状であるが、他の多角形でよい。メンブレン32の平面形状の中心35と空隙36の平面形状の中心とは略一致している。また、メンブレン32は、仮想的に延伸した4本の梁34の交点を含む中央部に設けられる。梁34は、中心35に対し点対称に設けられている。すなわち、4つの梁34の幅は互いに同じであり、梁34の長さは互いに同じである。これは、バランスの良い振動を実現するためである。 The planar shape of the gap 36 in the frame 30 is processed by dry etching and is substantially rectangular, circular, or an intermediate shape between a rectangle and a circle. The planar shape of the membrane 32 is circular here, but may be another polygon. The center 35 of the planar shape of the membrane 32 and the center of the planar shape of the gap 36 approximately coincide. The membrane 32 is provided in a central portion including the intersection of four virtually extended beams 34. The beams 34 are provided point symmetrically with respect to the center 35. In other words, the widths of the four beams 34 are the same, and the lengths of the beams 34 are the same. This is to achieve well-balanced vibration.
 梁34上に振動層18が設けられている。この振動層18は、圧電層14と、圧電層14の少なくとも一部を上下に挟み対向する下層の電極12および上層の電極16と、を備えている。下層の電極12は、梁34と圧電層14との間に設けられている。上層の電極16は圧電層14上に設けられている。なお、4本の梁34の4つの振動層18における圧電層14、上下の電極12および16の寸法、材料および配置される構造は、同じであることが好ましい。これにより、振動層18が対称に配置されるため、バランスのよい振動が可能となる。 A vibration layer 18 is provided on the beams 34. This vibration layer 18 includes a piezoelectric layer 14, and a lower electrode 12 and an upper electrode 16 that face each other and sandwich at least a portion of the piezoelectric layer 14 from above and below. The lower electrode 12 is provided between the beams 34 and the piezoelectric layer 14. The upper electrode 16 is provided on the piezoelectric layer 14. It is preferable that the dimensions, materials, and arranged structures of the piezoelectric layer 14 and the upper and lower electrodes 12 and 16 in the four vibration layers 18 of the four beams 34 are the same. This allows the vibration layers 18 to be arranged symmetrically, enabling well-balanced vibration.
 実施例1における超音波トランスデューサの超音波の動作を、図3(a)および図3(b)を用いて説明する。 The ultrasonic operation of the ultrasonic transducer in Example 1 will be explained using Figures 3(a) and 3(b).
 図3(a)および図3(b)に示すように、別途プリント基板に制御部40が設けられており、制御部40は電極12と16との間に交流電圧を加える。電極12と16との間に交流電圧が印加されると、図3(a)と図3(b)に示すように、メンブレン32は上下振動を繰り返す。 As shown in Figures 3(a) and 3(b), a control unit 40 is provided on a separate printed circuit board, and the control unit 40 applies an AC voltage between the electrodes 12 and 16. When an AC voltage is applied between the electrodes 12 and 16, the membrane 32 repeats up and down vibrations, as shown in Figures 3(a) and 3(b).
 図3(a)のように、電極12および16に例えばそれぞれ負および正の電圧が加わる。圧電効果により、上層の圧電層14内の面方向には、圧電層14が縮むような歪み52aが生じる。その際、梁34に相当する基板10に加わる応力54aは伸びる方向の応力となる。左右の両側の基板10に伸びる方向の応力54aが加わると、中央のメンブレン32の基板10には圧縮する方向の応力56aが加わる。これにより、矢印50aのようにメンブレン32は上方に膨れる。 As shown in FIG. 3(a), for example, negative and positive voltages are applied to the electrodes 12 and 16, respectively. Due to the piezoelectric effect, a distortion 52a occurs in the planar direction within the upper piezoelectric layer 14, causing the piezoelectric layer 14 to shrink. At that time, stress 54a applied to the substrate 10 corresponding to the beam 34 becomes an elongation stress. When stress 54a in the elongation direction is applied to the substrates 10 on both the left and right sides, stress 56a in the compression direction is applied to the substrate 10 of the central membrane 32. This causes the membrane 32 to bulge upward as indicated by arrow 50a.
 図3(b)のように、梁34上の電極12および16に例えばそれぞれ正および負の電圧が加わる。逆圧電効果により、圧電層14内の面方向に圧電層14が伸びるような歪み52bが生じる。梁34内の面内方向に加わる応力54bは圧縮方向の応力となる。両側の基板10に圧縮方向の応力54bが加わると、メンブレン32の基板10には伸びる方向の応力56bが加わる。これにより、矢印50bのようにメンブレン32は下方に凹む。 As shown in FIG. 3(b), for example, positive and negative voltages are applied to the electrodes 12 and 16 on the beam 34, respectively. The inverse piezoelectric effect generates a distortion 52b that causes the piezoelectric layer 14 to stretch in the in-plane direction within the piezoelectric layer 14. The stress 54b applied in the in-plane direction within the beam 34 is a compressive stress. When compressive stress 54b is applied to the substrates 10 on both sides, an expanding stress 56b is applied to the substrate 10 of the membrane 32. This causes the membrane 32 to dent downward as indicated by arrow 50b.
 図3(a)と図3(b)との状態が繰り返されることにより、メンブレン32が矢印50aと50bを交互に繰り返すように振動する。これにより、メンブレン32から超音波が放射される。超音波を受信する場合には、超音波を受けると、メンブレン32が矢印50aおよび50bのように振動する。これにより、メンブレン32の基板10に応力56aおよび56bが加わる。梁34における基板10に応力54aおよび54bが加わる。これにより、梁34上の圧電層14に歪み52aおよび52bが生じる。圧電効果により、電極12と16との間に交流の電圧が生成される。交流電圧を測定することで、超音波を受信できる。 By repeating the states of FIG. 3(a) and FIG. 3(b), the membrane 32 vibrates in an alternating manner as indicated by arrows 50a and 50b. This causes the membrane 32 to emit ultrasonic waves. When ultrasonic waves are received, the membrane 32 vibrates as indicated by arrows 50a and 50b. This applies stresses 56a and 56b to the substrate 10 of the membrane 32. Stresses 54a and 54b are applied to the substrate 10 at the beam 34. This causes distortions 52a and 52b in the piezoelectric layer 14 on the beam 34. An AC voltage is generated between the electrodes 12 and 16 due to the piezoelectric effect. By measuring the AC voltage, ultrasonic waves can be received.
[比較例1:メンブレンの中央部に圧電層]
 図4(a)は、比較例1に係る超音波トランスデューサの平面図、図4(b)は、図4(a)のA-A断面図である。また、超音波トランスデューサの動作を説明する図を兼ねている。
[Comparative Example 1: Piezoelectric layer in the center of the membrane]
Fig. 4(a) is a plan view of the ultrasonic transducer according to Comparative Example 1, and Fig. 4(b) is a cross-sectional view taken along line AA in Fig. 4(a), which also serves to explain the operation of the ultrasonic transducer.
 この超音波トランスデューサ120では、基板10の下部に空隙36aが設けられている。なお、図1のように、基板10の上壁を貫通する空隙は設けられていない。メンブレン32の外周の全ては、フレーム30に接続されている。メンブレン32の全面上に電極12および圧電層14が設けられ、メンブレン32の中央部の圧電層14上に電極16が設けられている。電極12、16および圧電層14を備える部分が振動層18である。 In this ultrasonic transducer 120, a gap 36a is provided at the bottom of the substrate 10. Note that, unlike FIG. 1, there is no gap that penetrates the top wall of the substrate 10. The entire outer periphery of the membrane 32 is connected to the frame 30. An electrode 12 and a piezoelectric layer 14 are provided on the entire surface of the membrane 32, and an electrode 16 is provided on the piezoelectric layer 14 in the center of the membrane 32. The portion that includes the electrodes 12, 16 and the piezoelectric layer 14 is the vibration layer 18.
 図4(b)に示すように、電極12と16との間に交流電圧が加わると、圧電層14内に圧縮する方向の歪み52cが生成される。これにより、下層の基板10内には、伸びる方向の応力54cが生じる。これにより、矢印50cのように、メンブレン32は上方に膨らむ。電極12と16とに加わる電圧の正負が交互に入れ替わることにより、メンブレン32の変形方向は上方と下方とを繰り返す。これにより、メンブレン32から超音波が放射される。 As shown in FIG. 4(b), when an AC voltage is applied between electrodes 12 and 16, a compressive strain 52c is generated in the piezoelectric layer 14. This generates an elongation stress 54c in the underlying substrate 10. This causes the membrane 32 to bulge upward, as indicated by arrow 50c. As the voltage applied to electrodes 12 and 16 alternates between positive and negative, the deformation direction of the membrane 32 alternates between upward and downward. This causes ultrasound to be emitted from the membrane 32.
[比較例1の問題点]
 図4(a)のように、メンブレン32がフレーム30と切れ目なく接続されている。メンブレン32の外周が全て固定端62bとなる。これにより、メンブレン32が上下に振動するときに、メンブレン32の外周の固定端62bにおける機械的損失が大きくなる。また、空隙36aは、メンブレン32上(+Z方向)の空間とつながっていない。このため、空隙36a内の気体(空気)は、上蓋が閉じられている状態であり、空隙36a内に熱が蓄積され、メンブレン32の温度が上昇する。この温度上昇により、超音波の周波数がシフトしてしまう。さらに、振動層18がメンブレン32の中央部に設けられている。このため、メンブレン32の中央部が重くなることで変位が抑制され、音響特性が劣化する。
[Problems with Comparative Example 1]
As shown in FIG. 4A, the membrane 32 is connected to the frame 30 without interruption. The entire outer periphery of the membrane 32 becomes the fixed end 62b. As a result, when the membrane 32 vibrates up and down, the mechanical loss at the fixed end 62b of the outer periphery of the membrane 32 becomes large. In addition, the gap 36a is not connected to the space above the membrane 32 (in the +Z direction). Therefore, the gas (air) in the gap 36a is in a state where the top lid is closed, and heat is accumulated in the gap 36a, causing the temperature of the membrane 32 to rise. This temperature rise causes the frequency of the ultrasonic waves to shift. Furthermore, the vibration layer 18 is provided in the center of the membrane 32. As a result, the center of the membrane 32 becomes heavy, suppressing displacement and deteriorating the acoustic characteristics.
 これに対し、実施例1では、図1のように、空隙36bを有している。また梁34は、フレーム30とメンブレン32を機械的に接続する。これにより、梁34とフレーム30を接続する箇所が固定端62aとなる。比較例1の全周にわたる固定端62bの接続部分に比べると、実施例1の固定端62aは短くなる。これにより、メンブレン32が振動するときに、固定端62aにおける機械的損失を抑制できる。また、実施例1では、メンブレン32の下の空隙36aは空隙36bを介し外部の空気とつながる。よって、空隙36a内の蓄熱が抑制され、メンブレン32の温度上昇が抑制される。これにより、超音波の周波数シフトが抑制される。 In contrast, in Example 1, as shown in FIG. 1, there is a gap 36b. The beam 34 also mechanically connects the frame 30 and the membrane 32. As a result, the point where the beam 34 and the frame 30 are connected becomes the fixed end 62a. Compared to the connection portion of the fixed end 62b that covers the entire circumference of the comparative example 1, the fixed end 62a in Example 1 is shorter. As a result, when the membrane 32 vibrates, mechanical loss at the fixed end 62a can be suppressed. Also, in Example 1, the gap 36a below the membrane 32 is connected to the outside air via the gap 36b. Therefore, heat accumulation in the gap 36a is suppressed, and the temperature rise of the membrane 32 is suppressed. As a result, the frequency shift of the ultrasonic waves is suppressed.
 さらに、実施例1では、複数の梁34上に振動層18が設けられている。しかし、メンブレン32において、振動層18の圧電層14は接続していない。この梁34は、縄跳びの縄のように2点支持で幅方向は、空隙36bにより開放されているため、メンブレン32の振動を大きくできる。複数の梁34上にそれぞれ複数の振動層18が設けられている。すなわち、4本の梁34の全ての上に振動層18が設けられている。これにより、メンブレン32の振動を大きくできる。複数の梁34のうち少なくとも2つの梁34上に少なくとも2つの振動層がそれぞれ設けられていればよい。すなわち、複数の梁34のうち振動層18が設けられていない梁34があってもよい。例えば、図1の4本の梁34のうち、中心35に対し点対称な2本の梁34に振動層18が設けられ、他の2本の梁34には振動層18は設けられていなくてもよい。 Furthermore, in the first embodiment, the vibration layer 18 is provided on the multiple beams 34. However, in the membrane 32, the piezoelectric layer 14 of the vibration layer 18 is not connected. This beam 34 is supported at two points like a skipping rope, and the width direction is open by the gap 36b, so the vibration of the membrane 32 can be increased. Multiple vibration layers 18 are provided on each of the multiple beams 34. That is, the vibration layer 18 is provided on all four beams 34. This allows the vibration of the membrane 32 to be increased. It is sufficient that at least two vibration layers are provided on at least two beams 34 out of the multiple beams 34. That is, among the multiple beams 34, there may be a beam 34 that does not have a vibration layer 18. For example, among the four beams 34 in FIG. 1, the vibration layer 18 may be provided on two beams 34 that are point symmetrical with respect to the center 35, and the vibration layer 18 may not be provided on the other two beams 34.
 振動層18は幅の狭い梁34に設けられていることにより、メンブレン32を効率よく振動させる。幅の広いメンブレン32上に振動層18が設けられていても、梁34上の振動層18ほどメンブレン32を振動させない。むしろ、振動層18によりメンブレン32が重くなるため、損失が生じる。実施例1では、メンブレン32上において、振動層18における圧電層14は互いに分離されている。これにより、メンブレン32が軽くなるため、変位量が大きくなり、音響特性が向上する。メンブレン32のうち圧電層14が設けられる領域は、メンブレン32全体の面積の10%以下が好ましく、5%以下が好ましい。 The vibration layer 18 is provided on the narrow beam 34, so that it vibrates the membrane 32 efficiently. Even if the vibration layer 18 is provided on a wide membrane 32, it does not vibrate the membrane 32 as much as the vibration layer 18 on the beam 34. Rather, the vibration layer 18 makes the membrane 32 heavier, resulting in loss. In the first embodiment, the piezoelectric layers 14 in the vibration layer 18 are separated from each other on the membrane 32. This makes the membrane 32 lighter, so the amount of displacement is increased and the acoustic characteristics are improved. The area of the membrane 32 where the piezoelectric layer 14 is provided is preferably 10% or less of the total area of the membrane 32, and preferably 5% or less.
 図5は、実施例2に係る超音波トランスデューサの平面図である。図6(a)から図6(c)は、図5のそれぞれA-A断面図、B-B断面図およびC-C断面図である。 FIG. 5 is a plan view of an ultrasonic transducer according to Example 2. FIGS. 6(a) to 6(c) are cross-sectional views taken along lines A-A, B-B, and C-C of FIG. 5, respectively.
 超音波トランスデューサ101では、基板10は、第1層10a、第2層10bおよび第3層10cを備える。フレーム30は、第1層10a、第2層10bおよび第3層10cから形成され、メンブレン32および梁34は、第2層10bおよび第3層10cから形成される。メンブレン32および梁34は、第3層10cから形成されていてもよい。第1層10aが除去された部分が空隙36aであり、第2層10bおよび第3層10cが除去された部分が空隙36bである。すなわち、空隙36aは、リング状の第1層10aの内の第1層10aが設けられていない空隙である。空隙36bは、梁34の側面、メンブレン32の側面およびフレーム30の内面により囲まれた領域であり、空隙36aと一体空間である。 In the ultrasonic transducer 101, the substrate 10 includes a first layer 10a, a second layer 10b, and a third layer 10c. The frame 30 is formed from the first layer 10a, the second layer 10b, and the third layer 10c, and the membrane 32 and the beam 34 are formed from the second layer 10b and the third layer 10c. The membrane 32 and the beam 34 may be formed from the third layer 10c. The portion where the first layer 10a is removed is the gap 36a, and the portion where the second layer 10b and the third layer 10c are removed is the gap 36b. In other words, the gap 36a is a gap in the ring-shaped first layer 10a where the first layer 10a is not provided. The gap 36b is an area surrounded by the side of the beam 34, the side of the membrane 32, and the inner surface of the frame 30, and is an integral space with the gap 36a.
 図5の平面において、圧電層14および圧電層14の下層の電極12は、フレーム30の全域、4本の梁34の全域に設けられる。図6の符号12が下層の電極である。そして上層の電極16は、振動する梁34の上の全域に設けられる。図5で示す符号20が、フレーム30の上に設けられた配線で、配線20は上層の電極16と一体として設けられている。 In the plane of FIG. 5, the piezoelectric layer 14 and the electrode 12 below the piezoelectric layer 14 are provided over the entire frame 30 and the entire four beams 34. Reference numeral 12 in FIG. 6 denotes the lower electrode. The upper electrode 16 is provided over the entire area above the vibrating beams 34. Reference numeral 20 in FIG. 5 denotes wiring provided on the frame 30, and the wiring 20 is provided integrally with the upper electrode 16.
 配線20は、フレーム30の左側辺の中央に接続された梁34上の電極16と一体として形成され、左回りに延在する。さらに、配線20は、フレーム30の下側辺の中央に接続された梁34の上層の電極16、フレーム30の右側辺の中央に接続された梁34の上層の電極16、そしてフレーム30の上側辺の中央に接続された梁34の上層の電極16と一体として形成される。配線20は、フレーム30の上側辺に接続された梁34の上層の電極16の近傍において終端する。終端された配線20上にパッド22が設けられている。 The wiring 20 is formed integrally with the electrode 16 on the beam 34 connected to the center of the left side of the frame 30, and extends counterclockwise. Furthermore, the wiring 20 is formed integrally with the upper electrode 16 of the beam 34 connected to the center of the lower side of the frame 30, the upper electrode 16 of the beam 34 connected to the center of the right side of the frame 30, and the upper electrode 16 of the beam 34 connected to the center of the upper side of the frame 30. The wiring 20 terminates near the upper electrode 16 of the beam 34 connected to the upper side of the frame 30. A pad 22 is provided on the terminated wiring 20.
 一方、下層の電極12に電気的に接続されるパッド23は、パッド22に近接して、フレーム30の上側辺に設けられる。電極12上に圧電層14が被覆されているので、圧電層14を取り除いた貫通孔21が設けられる。パッド23は、貫通孔21を介して下層の電極12と電気的に接続する。パッド22および23は、例えば金層等の金属層である。 On the other hand, pad 23, which is electrically connected to lower electrode 12, is provided on the upper edge of frame 30, close to pad 22. Since piezoelectric layer 14 is coated on electrode 12, through-hole 21 is provided by removing piezoelectric layer 14. Pad 23 is electrically connected to lower electrode 12 via through-hole 21. Pads 22 and 23 are metal layers, for example, gold layers.
 電極12をフレーム30の全面に設けているが、配線20は、フレーム30の幅に対して細く形成されているので寄生容量を抑制できる。また、パッド22および23が隣接して設けられているため、ワイヤボンディング等の外部との接続作業が容易となる。 The electrodes 12 are provided on the entire surface of the frame 30, but the wiring 20 is formed thin compared to the width of the frame 30, so parasitic capacitance can be suppressed. In addition, the pads 22 and 23 are provided adjacent to each other, making it easy to connect to the outside, such as by wire bonding.
 梁34の振動でメンブレン32を上下に振動させるため、メンブレン32と梁34の間に応力が集中しやすい。このため、図1のように、振動層18の端がメンブレン32と梁34との端面と一致している場合、メンブレン32と梁34との境界、梁34とフレーム30との境界の部分は、機械的強度が低下しやすい。一方、実施例2の図5では、領域60において、振動層18は、梁34上からメンブレン32上の一部まで設けられている。領域61において、振動層18は、梁34上からメンブレン32上の一部まで設けられている。このように、振動層18が前述した2つの境界を覆うため、メンブレン32と梁34との間、梁34とフレーム30との間の機械的強度を向上させることができる。メンブレン32の外周は曲線(円周)であるが、振動層18の外周をメンブレン32の外周に沿って設けると、振動層18の外周に鋭角な部分が形成され、機械的強度が低下しやすくなる。よって、振動層18の外周に鋭角な部分が形成されないように、振動層18の平面形状を矩形状とすることが好ましい。 Because the vibration of the beam 34 causes the membrane 32 to vibrate up and down, stress tends to concentrate between the membrane 32 and the beam 34. For this reason, as in FIG. 1, when the end of the vibration layer 18 coincides with the end face of the membrane 32 and the beam 34, the mechanical strength of the boundary between the membrane 32 and the beam 34 and the boundary between the beam 34 and the frame 30 tends to decrease. On the other hand, in FIG. 5 of the second embodiment, in the region 60, the vibration layer 18 is provided from above the beam 34 to a part of the membrane 32. In the region 61, the vibration layer 18 is provided from above the beam 34 to a part of the membrane 32. In this way, since the vibration layer 18 covers the two boundaries described above, the mechanical strength between the membrane 32 and the beam 34 and between the beam 34 and the frame 30 can be improved. The outer periphery of the membrane 32 is a curve (circumference), but if the outer periphery of the vibration layer 18 is provided along the outer periphery of the membrane 32, an acute angle is formed on the outer periphery of the vibration layer 18, and the mechanical strength tends to decrease. Therefore, it is preferable that the planar shape of the vibration layer 18 be rectangular so that no sharp angles are formed on the outer periphery of the vibration layer 18.
 振動層18がメンブレン32と重なる領域57aが大きくなると、メンブレン32が重くなり、機械的損失が大きくなる。この観点から領域57aの平面面積の合計は、メンブレン32の平面面積の10%以下が好ましく、5%以下がより好ましい。 If the area 57a where the vibration layer 18 overlaps with the membrane 32 becomes large, the membrane 32 becomes heavy and mechanical loss increases. From this perspective, the total planar area of the area 57a is preferably 10% or less of the planar area of the membrane 32, and more preferably 5% or less.
 基板10は、例えば、SOI(Silicon on insulator)基板であり、シリコン基板上にシリコン酸化膜(SiO)が形成され、さらにシリコン酸化膜上にシリコン層が形成されたものである。第1層10aおよび第3層10cはそれぞれシリコン基板およびシリコン層であり、第2層10bはシリコン酸化膜である。第1層10aは、メインの基板であり、その厚さT10aは100μm~500μmである。第2層10bのシリコン酸化膜の厚さT10bは、0.1μm~3μmである。さらに、第3層10cのシリコン層の厚さT10cは、1μm~20μmである。なお、基板10は、シリコン基板、ガラスエポキシ基板等のプリント基板、ガラス基板またはサファイア基板でもよい。 The substrate 10 is, for example, an SOI (Silicon on Insulator) substrate, in which a silicon oxide film (SiO 2 ) is formed on a silicon substrate, and a silicon layer is further formed on the silicon oxide film. The first layer 10a and the third layer 10c are a silicon substrate and a silicon layer, respectively, and the second layer 10b is a silicon oxide film. The first layer 10a is a main substrate, and its thickness T10a is 100 μm to 500 μm. The thickness T10b of the silicon oxide film of the second layer 10b is 0.1 μm to 3 μm. Furthermore, the thickness T10c of the silicon layer of the third layer 10c is 1 μm to 20 μm. The substrate 10 may be a silicon substrate, a printed circuit board such as a glass epoxy substrate, a glass substrate, or a sapphire substrate.
 電極12および16は、例えばルテニウム、モリブデン、金、チタン、白金、アルミニウム、銅、クロム、銀またはパラジウム等の金属膜またはこれらの中から複数の膜が選択された積層膜である。電極12の厚さT12および電極16の厚さT16は、例えば0.1μm~0.3μmである。 Electrodes 12 and 16 are, for example, metal films of ruthenium, molybdenum, gold, titanium, platinum, aluminum, copper, chromium, silver, palladium, etc., or laminated films of multiple films selected from among these. The thickness T12 of electrode 12 and the thickness T16 of electrode 16 are, for example, 0.1 μm to 0.3 μm.
 圧電層14の材料は、例えばPZT(チタン酸ジルコン酸鉛)、KNN(ニオブ酸カリウムナトリウム)、BiFeO(鉄酸ビスマス)、BaTiO(チタン酸バリウム)、AlN(窒化アルミニウム)、LiNbO(ニオブ酸リチウム)、LiTaO(タンタル酸リチウム)、ZnO(酸化亜鉛)またはPVDF(ポリフッ化ビニリデン)である。圧電層14の厚さT14は、0.1μm~3μmである。 The material of the piezoelectric layer 14 is, for example, PZT (lead zirconate titanate), KNN (potassium sodium niobate), BiFeO 3 (bismuth ferrate), BaTiO 3 (barium titanate), AlN (aluminum nitride), LiNbO 3 (lithium niobate), LiTaO 3 (lithium tantalate), ZnO (zinc oxide) or PVDF (polyvinylidene fluoride). The thickness T14 of the piezoelectric layer 14 is 0.1 μm to 3 μm.
 パッド22、23および配線は、例えば銅層またはアルミニウム層、金層、チタン層、ルテニウム層、クロム層、モリブデン層である。また、これらの中から複数の層が選択された積層膜である。図6に示すメンブレン32の幅L32(直径)は、例えば50μm~3000μmである。梁34の長さL34は、例えば30μm~300μmである。梁34の幅W34は、例えば50μm~500μmである。一例として、メンブレン32の幅L32を600μm、梁34の長さL34を120μmとしたときの共振周波数は120kHzである。各部材の材料および寸法は、適宜設定できる。 The pads 22, 23 and wiring are, for example, copper layers or aluminum layers, gold layers, titanium layers, ruthenium layers, chromium layers, and molybdenum layers. They are also laminated films in which multiple layers are selected from these. The width L32 (diameter) of the membrane 32 shown in FIG. 6 is, for example, 50 μm to 3000 μm. The length L34 of the beam 34 is, for example, 30 μm to 300 μm. The width W34 of the beam 34 is, for example, 50 μm to 500 μm. As an example, when the width L32 of the membrane 32 is 600 μm and the length L34 of the beam 34 is 120 μm, the resonant frequency is 120 kHz. The material and dimensions of each member can be set as appropriate.
[実施例2の製造方法]
 図7(a)から図8(d)は、実施例2における超音波トランスデューサの製造方法を示す断面図である。図7(a)から図7(e)、図8(a)および図8(c)は、図5のA-A断面に相当し、図8(b)および図8(d)は、図5のB-B断面に相当する。
[Production method of Example 2]
Figures 7(a) to 8(d) are cross-sectional views showing a manufacturing method of an ultrasonic transducer in Example 2. Figures 7(a) to 7(e), 8(a) and 8(c) correspond to the A-A cross section in Figure 5, and Figures 8(b) and 8(d) correspond to the B-B cross section in Figure 5.
 図7(a)に示すように、基板10を準備する。基板10は、シリコン基板からなる第1層10a、シリコン酸化物(SiO)からなる第2層10b、およびシリコン層からなる第3層10cが積層されている。 7A, a substrate 10 is prepared. The substrate 10 is formed by stacking a first layer 10a made of a silicon substrate, a second layer 10b made of silicon oxide (SiO 2 ), and a third layer 10c made of a silicon layer.
 図7(b)に示すように、基板10上の全面に下層の電極12となる電極材料を形成する。電極12は、例えばスパッタリング法または真空蒸着法を用い形成する。 As shown in FIG. 7(b), an electrode material that will become the lower electrode 12 is formed over the entire surface of the substrate 10. The electrode 12 is formed, for example, by using a sputtering method or a vacuum deposition method.
 続いて、図7(c)に示すように、電極12上の全面に圧電層14を被覆する。圧電層14は、例えばスパッタリング法または真空蒸着法を用い形成する。 Next, as shown in FIG. 7(c), the entire surface of the electrode 12 is coated with a piezoelectric layer 14. The piezoelectric layer 14 is formed, for example, by using a sputtering method or a vacuum deposition method.
 図7(d)に示すように、圧電層14上の全面に電極16となる電極材料を例えばスパッタリング法または真空蒸着法を用い形成する。その後、フォトリソグラフィ法およびエッチング法を用い、図5に示す上層の電極16と配線20に相当する電極材料をパターニングする。 As shown in FIG. 7(d), an electrode material that will become the electrode 16 is formed over the entire surface of the piezoelectric layer 14 using, for example, a sputtering method or a vacuum deposition method. Then, photolithography and etching are used to pattern the electrode material that corresponds to the upper layer electrode 16 and wiring 20 shown in FIG. 5.
 続いて、図7(e)に示すように、全面にフォトレジストを被覆する。フォトレジストをフレーム30と梁34に対応する部分を残し、パターニングする。フォトレジストは、フレーム30と梁34とで囲まれた部分(メンブレン32の部分を含む)における圧電層14が露出する開口が形成されるようにパターニングされる。その後、フォトレジストの開口の部分の圧電層14をエッチングする。その際、下層の電極12は、エッチングストッパーとして残存する。この際、貫通孔21を開口してもよい。 Next, as shown in FIG. 7(e), the entire surface is covered with photoresist. The photoresist is patterned, leaving behind the portions corresponding to the frame 30 and the beams 34. The photoresist is patterned to form openings that expose the piezoelectric layer 14 in the portion surrounded by the frame 30 and the beams 34 (including the membrane 32 portion). The piezoelectric layer 14 is then etched in the portions of the photoresist openings. At this time, the underlying electrode 12 remains as an etching stopper. At this time, a through hole 21 may be opened.
 図7(e)のように、フレーム30と梁34とで囲まれた空隙36bとなる部分と、メンブレン32となる部分と、における電極12が残存している。このため、図8(a)および図8(b)に示すように、この部分の電極12をエッチングして取り除く。これにより、フレーム30となる領域に電極12および圧電層14が残存し、梁34となる領域に3層構造の振動層18が形成される。 As shown in FIG. 7(e), the electrode 12 remains in the portion that will become the gap 36b surrounded by the frame 30 and the beam 34, and in the portion that will become the membrane 32. For this reason, as shown in FIG. 8(a) and FIG. 8(b), the electrode 12 in this portion is removed by etching. As a result, the electrode 12 and the piezoelectric layer 14 remain in the region that will become the frame 30, and a three-layer vibration layer 18 is formed in the region that will become the beam 34.
 フレーム30、梁34およびメンブレン32により囲まれた部分、つまり空隙36bとなる部分には、上層に第3層10cおよび第2層10bが残存している。そこで、図8(c)および図8(d)に示すように、この部分の第3層10cおよび第2層10bをエッチングして取り除く。この結果、空隙36bが形成される。 In the area surrounded by the frame 30, the beam 34, and the membrane 32, that is, the area that becomes the gap 36b, the third layer 10c and the second layer 10b remain on top. Therefore, as shown in Figures 8(c) and 8(d), the third layer 10c and the second layer 10b in this area are removed by etching. As a result, the gap 36b is formed.
 最後に、図6(a)および図6(b)に示すように、第1層10aを下からエッチングして除去して、空隙36aを形成する。これにより、空隙36aと36bとが接続し空隙36となる。その後、貫通孔21を覆うように、Auメッキ処理を行い、パターニングすることで、貫通孔21の近傍にパッド22および23を形成する。以上により、実施例2に係る超音波トランスデューサが製造される。本製造方法は一例であり、図5の構造が実現できる製造方法であればよい。 Finally, as shown in Figures 6(a) and 6(b), the first layer 10a is etched from below and removed to form a gap 36a. This connects gaps 36a and 36b to form gap 36. After that, Au plating is performed to cover the through hole 21, and patterning is performed to form pads 22 and 23 near the through hole 21. In this way, the ultrasonic transducer of Example 2 is manufactured. This manufacturing method is one example, and any manufacturing method that can realize the structure of Figure 5 can be used.
 実施例2では、フレーム30は、第1層10a、第2層10bおよび第3層10cを含み、メンブレン32および梁34は、第2層10bおよび第3層10cを含み、第1層10aを含まない。このような構造により、空隙36aと36bとを所望の平面形状とすることができる。 In Example 2, the frame 30 includes a first layer 10a, a second layer 10b, and a third layer 10c, and the membrane 32 and the beam 34 include the second layer 10b and the third layer 10c, but do not include the first layer 10a. This structure allows the gaps 36a and 36b to have a desired planar shape.
[実施例2の変形例1]
 図9は、実施例2の変形例1に係る超音波トランスデューサの平面図である。図10(a)および図10(b)は、図9のA-A断面図である。
[Modification 1 of Example 2]
Fig. 9 is a plan view of an ultrasonic transducer according to a first modified example of the second embodiment. Fig. 10(a) and Fig. 10(b) are cross-sectional views taken along line AA in Fig. 9.
 この超音波トランスデューサ102では、配線20はフレーム30の圧電層14上に設けられていない。メンブレン32の上に配線20が設けられている。配線20は、4つの梁34の全域を覆う電極16を、メンブレン32上において直線でつなぐ。配線20は、メンブレン32の中心35において交差する十字状に設けられている。 In this ultrasonic transducer 102, the wiring 20 is not provided on the piezoelectric layer 14 of the frame 30. The wiring 20 is provided on the membrane 32. The wiring 20 connects the electrodes 16 that cover the entire area of the four beams 34 in straight lines on the membrane 32. The wiring 20 is provided in a cross shape that intersects at the center 35 of the membrane 32.
 実施例2の図5から図6(b)では、振動層18における下層の電極12は、フレーム30上の全域に設けられている。振動層18における上層の電極16は、フレーム30上の圧電層14の上に設けられた配線20を介し電気的に接続されている。この場合、フレーム30上において、下層の電極12と上層の電極16とが圧電層14を挟み、寄生容量が発生する。 In Fig. 5 to Fig. 6(b) of Example 2, the lower electrode 12 of the vibration layer 18 is provided over the entire area of the frame 30. The upper electrode 16 of the vibration layer 18 is electrically connected via wiring 20 provided on the piezoelectric layer 14 on the frame 30. In this case, the lower electrode 12 and the upper electrode 16 sandwich the piezoelectric layer 14 on the frame 30, generating parasitic capacitance.
 そこで、実施例2の変形例1では、図9のように、振動層18における上層の電極16(第2電極)は、メンブレン32上の配線20を介し電気的に接続されている。振動層18における電極12(第1電極)は、実施例2と同様にフレーム30上に設けられた電極12を介し電気的に接続されている。振動層18の下層の電極12は、フレーム30上で共通接続されている。また振動層18の上層の電極16は、メンブレン32の上で共通接続されている。よって4本の振動層18は並列接続となる。フレーム30およびメンブレン32において、電極12と16とは圧電層14を挟みほとんど重ならない。また、上層の配線の幅が狭い。このことから、寄生容量の低減が可能となる。なお、振動層18における電極16がフレーム30上に設けられた電極16を介し電気的に接続され、振動層18における電極12がメンブレン32上に設けられた電極12を介し電気的に接続されていてもよい。 Therefore, in the first modified example of the second embodiment, as shown in FIG. 9, the electrode 16 (second electrode) in the upper layer of the vibration layer 18 is electrically connected via the wiring 20 on the membrane 32. The electrode 12 (first electrode) in the vibration layer 18 is electrically connected via the electrode 12 provided on the frame 30, as in the second embodiment. The electrodes 12 in the lower layer of the vibration layer 18 are commonly connected on the frame 30. The electrodes 16 in the upper layer of the vibration layer 18 are commonly connected on the membrane 32. Thus, the four vibration layers 18 are connected in parallel. In the frame 30 and the membrane 32, the electrodes 12 and 16 hardly overlap with each other, sandwiching the piezoelectric layer 14. In addition, the width of the upper layer wiring is narrow. This makes it possible to reduce the parasitic capacitance. The electrodes 16 in the vibration layer 18 may be electrically connected via the electrode 16 provided on the frame 30, and the electrodes 12 in the vibration layer 18 may be electrically connected via the electrode 12 provided on the membrane 32.
 また、メンブレン32上において圧電層14が互いに分離された領域における配線20(第2電極)は、振動層18における電極16を直線的に接続する。これにより、配線20が短くなるため、配線20による寄生容量を抑制できる。配線20の幅W20が大きいと寄生容量が増加する。この観点から配線20の幅W20は、梁34の幅W34の0.5倍以下が好ましく、0.25倍以下がより好ましい。 In addition, the wiring 20 (second electrode) in the region on the membrane 32 where the piezoelectric layers 14 are separated from each other linearly connects the electrodes 16 on the vibration layer 18. This shortens the wiring 20, thereby suppressing the parasitic capacitance caused by the wiring 20. If the width W20 of the wiring 20 is large, the parasitic capacitance increases. From this perspective, the width W20 of the wiring 20 is preferably 0.5 times or less the width W34 of the beam 34, and more preferably 0.25 times or less.
 図10(a)および図10(b)は、図9のフレーム30の右側辺に接続された梁34とメンブレン32との境界付近の第3層10cおよび振動層18の断面図を示している。電極12(第1電極)は圧電層14と梁34との間に設けられ、電極16とメンブレン32との間には、電極12および圧電層14は設けられていない。この場合、梁34とメンブレン32上の圧電層14が設けられていない領域との間において、圧電層14の端面14aは、電極12の端面12aよりメンブレン32の中心方向に設けられる。これは、電極12と16との電気的短絡を抑制するためである。 10(a) and 10(b) show cross-sectional views of the third layer 10c and vibration layer 18 near the boundary between the beam 34 connected to the right side of the frame 30 in FIG. 9 and the membrane 32. The electrode 12 (first electrode) is provided between the piezoelectric layer 14 and the beam 34, and the electrode 12 and the piezoelectric layer 14 are not provided between the electrode 16 and the membrane 32. In this case, between the beam 34 and the area on the membrane 32 where the piezoelectric layer 14 is not provided, the end face 14a of the piezoelectric layer 14 is provided toward the center of the membrane 32 from the end face 12a of the electrode 12. This is to prevent electrical shorting between the electrodes 12 and 16.
 図10(a)の下層の電極12の端面12aは、垂直にパターニングされている。第3層10cと電極12とにより形成される段差が、圧電層14および上層の電極16にトレースされる。これにより、段差部分64において圧電層14または上層の電極16にクラックが発生する。図9のように、メンブレン32が上下に振動することから、この段差部分64には、より大きな歪が発生する。 The end face 12a of the lower electrode 12 in FIG. 10(a) is patterned vertically. The step formed by the third layer 10c and the electrode 12 is traced to the piezoelectric layer 14 and the upper electrode 16. This causes a crack to occur in the piezoelectric layer 14 or the upper electrode 16 at the step portion 64. As shown in FIG. 9, the membrane 32 vibrates up and down, so a larger distortion occurs in this step portion 64.
 図10(b)では、下層の電極12の端面12aは、電極12がメンブレン32の中心方向に行くにしたがい薄くなるように傾斜している。これにより、第3層10cと電極12とにより形成される段差がなだらかになる。その結果、圧電層14および電極16にトレースされる段差部分64をなだらかにできる。これにより、段差部分64の圧電層14または電極16におけるクラックの発生を抑制できる。圧電層14の端面14aも傾斜することが好ましい。電極12の端面12aの電極12の下面に対する角度θは、10°以上かつ45°以下が好ましい。その他の構成は実施例2と同じであり説明を省略する。 In FIG. 10(b), the end face 12a of the lower electrode 12 is inclined so that the electrode 12 becomes thinner as it moves toward the center of the membrane 32. This makes the step formed by the third layer 10c and the electrode 12 gentler. As a result, the step portion 64 traced by the piezoelectric layer 14 and the electrode 16 can be made gentler. This makes it possible to suppress the occurrence of cracks in the piezoelectric layer 14 or the electrode 16 at the step portion 64. It is preferable that the end face 14a of the piezoelectric layer 14 is also inclined. The angle θ of the end face 12a of the electrode 12 with respect to the bottom surface of the electrode 12 is preferably 10° or more and 45° or less. The other configurations are the same as in Example 2, so a description thereof will be omitted.
[実施例2の変形例2]
 図11は、実施例2の変形例2に係る超音波トランスデューサの平面図である。
[Modification 2 of Example 2]
FIG. 11 is a plan view of an ultrasonic transducer according to a second modification of the second embodiment.
 メンブレン32上の配線20は、リング状の配線20a(第1配線)およびリング状の配線20aと振動層18の上層の電極16をつなぐ配線20b(第2配線)を備えている。 The wiring 20 on the membrane 32 includes a ring-shaped wiring 20a (first wiring) and a wiring 20b (second wiring) that connects the ring-shaped wiring 20a to the electrode 16 on the upper layer of the vibration layer 18.
 図9の構造では、配線20がメンブレン32の中心35を通過する十字状である。このため、メンブレン32が上下振動するとき、配線20が不均一にメンブレン32の振動を抑える。 In the structure of FIG. 9, the wiring 20 is cross-shaped and passes through the center 35 of the membrane 32. Therefore, when the membrane 32 vibrates up and down, the wiring 20 suppresses the vibration of the membrane 32 non-uniformly.
 一方、図11では、配線20aの平面形状がメンブレン32の中心35を囲む環状である。このため、メンブレン32が上下振動しても、配線20aは、メンブレン32の中央部の振動を抑えず、対称にメンブレン32を抑える。配線20bは不均一にメンブレン32の振動を抑えるものの、配線20bは図9の配線20より短い。このため、配線20bは、図9ほど不均一にメンブレン32の振動を抑えない。なお、配線20bの幅は、小さいことが好ましいが、振動層18の幅以下であればよい。 On the other hand, in FIG. 11, the planar shape of the wiring 20a is a ring surrounding the center 35 of the membrane 32. Therefore, even if the membrane 32 vibrates up and down, the wiring 20a does not suppress the vibration of the central part of the membrane 32, but symmetrically suppresses the membrane 32. Although the wiring 20b suppresses the vibration of the membrane 32 unevenly, the wiring 20b is shorter than the wiring 20 in FIG. 9. Therefore, the wiring 20b does not suppress the vibration of the membrane 32 unevenly as in FIG. 9. Note that, although it is preferable that the width of the wiring 20b is small, it is sufficient if it is equal to or smaller than the width of the vibration layer 18.
[実施例2の変形例3]
 図12(a)は、図5のフレーム30の右側と梁34との接続部分を見た平面図である。図12(b)は、図5のメンブレン32とフレーム30の右側に接続された梁34との接続部分を見た平面図である。
[Modification 3 of Example 2]
Fig. 12(a) is a plan view of a connection portion between the right side of the frame 30 and the beam 34 in Fig. 5. Fig. 12(b) is a plan view of a connection portion between the membrane 32 and the beam 34 connected to the right side of the frame 30 in Fig. 5.
 図5において、フレーム30と振動層18の交差部分を平面視で観察すると、フレーム30の内側側辺と梁34の両側辺により、ほぼ90°の角部が構成される。振動層18が上下振動すると、角部に応力が集中して、角部にクラックが発生するおそれがある。 In Figure 5, when the intersection of the frame 30 and the vibration layer 18 is observed in a plan view, the inner side of the frame 30 and both sides of the beam 34 form a corner at approximately 90°. When the vibration layer 18 vibrates up and down, stress is concentrated at the corner, which may cause cracks to occur at the corner.
 図12(a)に示すように、フレーム30の内側側辺と梁34の両側辺の角部65には、アールが形成されている。すなわち、梁34の中央部からフレーム30に向かうにしたがい梁34の幅が曲線的に徐々に広くなる。このアールによって、角部65への応力の集中が緩和されて、角部65におけるクラックの発生を抑制できる。特にこの角部65では、全ての層をアールにすることが好ましい。すなわち、図6(a)から図6(c)を用い説明すれば、圧電層14、上下の電極12、16および下層の基板10をアール加工することが好ましい。 As shown in FIG. 12(a), the corners 65 of the inner side of the frame 30 and both sides of the beam 34 are rounded. That is, the width of the beam 34 gradually widens in a curved manner from the center of the beam 34 toward the frame 30. This rounding reduces the concentration of stress at the corners 65, and suppresses the occurrence of cracks at the corners 65. In particular, at this corner 65, it is preferable to round all layers. That is, referring to FIG. 6(a) to FIG. 6(c), it is preferable to round the piezoelectric layer 14, the upper and lower electrodes 12, 16, and the lower substrate 10.
 図12(b)では、メンブレン32の外周と梁34の両側辺の角部66に、アールが形成されている。すなわち、梁34の中央部からメンブレン32に向かうにしたがい梁34の幅が曲線的に徐々に広くなる。図12(a)と同様に、圧電層14、上下の電極12、16および下層の基板10含めてアール加工することが好ましい。 In FIG. 12(b), a radius is formed on the outer periphery of the membrane 32 and on the corners 66 on both sides of the beam 34. In other words, the width of the beam 34 gradually widens in a curved manner from the center of the beam 34 toward the membrane 32. As in FIG. 12(a), it is preferable to perform radius processing on the piezoelectric layer 14, the upper and lower electrodes 12, 16, and the underlying substrate 10.
 図12(a)に示すように、フレーム30に接続する箇所の梁34の幅W34bは、梁34の中央部における幅W34aより広くパターニングされている。図12(b)でも同様に、メンブレン32に接続する箇所の梁34の幅W34cは、梁34の中央部における幅W34aより広くパターニングされている。 As shown in FIG. 12(a), the width W34b of the beam 34 at the point where it connects to the frame 30 is patterned to be wider than the width W34a at the center of the beam 34. Similarly, in FIG. 12(b), the width W34c of the beam 34 at the point where it connects to the membrane 32 is patterned to be wider than the width W34a at the center of the beam 34.
 図13は、実施例3に係る超音波トランスデューサの平面図である。この超音波トランスデューサ105では、梁34の本数が上下(または左右)に2本である。2本の梁34は、メンブレン32の中心35に対し点対称に設けられている。実施例3では、梁34の本数を2本とすることで、電極12と16との間の寄生容量を小さくできる。 FIG. 13 is a plan view of an ultrasonic transducer according to Example 3. In this ultrasonic transducer 105, there are two beams 34, one above the other (or one to the left and right). The two beams 34 are provided point-symmetrically with respect to the center 35 of the membrane 32. In Example 3, by providing two beams 34, the parasitic capacitance between the electrodes 12 and 16 can be reduced.
 図14は、超音波トランスデューサの平面図である。この超音波トランスデューサ106では、4本の梁34は、フレーム30の角部に設けられている。梁34を角部に設けることで、梁34の長さL34を大きくできる。これにより、振動層18の平面の面積を大きくできる。これにより、メンブレン32の振動エネルギーを大きくでき、メンブレン32の上下振動を大きくできる。 FIG. 14 is a plan view of an ultrasonic transducer. In this ultrasonic transducer 106, the four beams 34 are provided at the corners of the frame 30. By providing the beams 34 at the corners, the length L34 of the beams 34 can be increased. This allows the planar area of the vibration layer 18 to be increased. This allows the vibration energy of the membrane 32 to be increased, and the up and down vibration of the membrane 32 to be increased.
 実施例2から4のように、梁34の本数および長さは適宜設定できる。メンブレン32を、中心35を中心に均等に振動させるためには、梁34は、中心35に対し点対称または回転対称であることが好ましい。このため、空隙36の平面形状が矩形の場合、梁34の本数は2本または4本等の偶数であることが好ましい。フレーム30の平面形状が円形状であり、空隙36の平面形状が円形状の場合には、梁34の本数は奇数でもよい。梁34の本数が多くなると。梁34とフレーム30との間の固定端が長くなる。よって、梁34の本数は6本以下が好ましく、4本以下がより好ましい。 As in Examples 2 to 4, the number and length of the beams 34 can be set as appropriate. In order to vibrate the membrane 32 evenly around the center 35, it is preferable that the beams 34 are point symmetric or rotationally symmetric with respect to the center 35. For this reason, when the planar shape of the gap 36 is rectangular, it is preferable that the number of beams 34 is an even number, such as two or four. When the planar shape of the frame 30 is circular and the planar shape of the gap 36 is also circular, the number of beams 34 may be an odd number. If the number of beams 34 is large, the fixed end between the beams 34 and the frame 30 becomes longer. Therefore, it is preferable that the number of beams 34 is six or less, and more preferably four or less.
 また、メンブレン32を、中心35を中心に対称または均一に振動させるためには、複数の梁34の長さL34は互いに略同じであり、複数の梁34の幅W34は略同じであることが好ましい。例えば、長さL34(または幅W34)が互いに略同じ、とは、複数の梁34のうち最大のL34(またはW34)と最小のL34(または幅W34)の差が、複数の梁34のL34(または幅W34)の平均値の0.1倍以下であればよい。 Furthermore, in order to vibrate the membrane 32 symmetrically or uniformly around the center 35, it is preferable that the lengths L34 of the multiple beams 34 are substantially the same as each other, and that the widths W34 of the multiple beams 34 are substantially the same as each other. For example, "the lengths L34 (or widths W34) are substantially the same as each other" means that the difference between the maximum L34 (or W34) and the minimum L34 (or widths W34) among the multiple beams 34 is 0.1 times or less the average value of the L34 (or widths W34) of the multiple beams 34.
 さらに、メンブレン32を、中心35を中心に対称に振動させるためには、平面視において、複数の梁34は、メンブレン32から放射状に延在して設けられていることが好ましい。複数の梁34の各々において、梁34がメンブレン32に接続する箇所と、梁34がフレーム30に接続する箇所とは、中心35を通る1つの直線に重なる。なお、メンブレン32の中心35は、例えばメンブレン32の平面形状の重心に相当する。 Furthermore, in order to vibrate the membrane 32 symmetrically around the center 35, it is preferable that the beams 34 are arranged to extend radially from the membrane 32 in a planar view. In each of the beams 34, the point where the beam 34 connects to the membrane 32 and the point where the beam 34 connects to the frame 30 overlap on a straight line passing through the center 35. The center 35 of the membrane 32 corresponds to, for example, the center of gravity of the planar shape of the membrane 32.
 図15に示すように、実施例5の超音波トランスデューサ107では、メンブレン32の平面形状は矩形状(例えば正方形状)である。4つの梁34は、メンブレン32の矩形状の平面形状の辺の中央部に設けられている。実施例5では、メンブレン32の平面形状を矩形形状にすることで、実施例2のメンブレン32に比べ、梁34の長さを実施例2と同じとしたとき、メンブレン32の平面面積を大きくできる。これにより、超音波の放射強度を大きくできる。一例として、メンブレン32の1辺の長さを600μm、梁34の長さL34を120μmとしたときの共振周波数は120kHzである。 As shown in FIG. 15, in the ultrasonic transducer 107 of Example 5, the planar shape of the membrane 32 is rectangular (e.g., square). The four beams 34 are provided at the center of the sides of the rectangular planar shape of the membrane 32. In Example 5, by making the planar shape of the membrane 32 rectangular, the planar area of the membrane 32 can be made larger than that of the membrane 32 of Example 2 when the length of the beams 34 is the same as that of Example 2. This makes it possible to increase the radiation intensity of the ultrasonic waves. As an example, the resonant frequency is 120 kHz when the length of one side of the membrane 32 is 600 μm and the length L34 of the beams 34 is 120 μm.
[実施例5の変形例1]
 図16は、実施例5の変形例1に係る超音波トランスデューサの平面図である。実施例5の変形例1の超音波トランスデューサ108では、メンブレン32の平面形状は矩形状(例えば正方形状)であり、角部が直線状に切り落とされている。その他の構成は実施例5と同じであり説明を省略する。
[Modification 1 of Example 5]
16 is a plan view of an ultrasonic transducer according to a first modification of the fifth embodiment. In the ultrasonic transducer 108 according to the first modification of the fifth embodiment, the planar shape of the membrane 32 is rectangular (e.g., square), and the corners are cut off in a straight line. The other configurations are the same as those of the fifth embodiment, and therefore the description thereof will be omitted.
[実施例5の変形例2]
 図17は、実施例5の変形例2に係る超音波トランスデューサの平面図である。図17に示すように、実施例5の変形例2の超音波トランスデューサ109では、メンブレン32の平面形状は矩形状(例えば正方形状)であり、角部が丸い角丸形状である。その他の構成は実施例5と同じであり説明を省略する。
[Modification 2 of Example 5]
Fig. 17 is a plan view of an ultrasonic transducer according to Modification 2 of Example 5. As shown in Fig. 17, in an ultrasonic transducer 109 according to Modification 2 of Example 5, the planar shape of the membrane 32 is rectangular (e.g., square) and has rounded corners. The other configurations are the same as those of Example 5, and therefore description thereof will be omitted.
 メンブレン32は、上下に振動するため、図15の実施例5のようにメンブレン32の平面形状が矩形の場合、矩形の角部にチッピングが生じやすい。実施例5の変形例1および2のように、メンブレン32の平面形状の矩形の角部を直線状にカットまたは角丸形状とすることで、角部のチッピングを抑制できる。 Because the membrane 32 vibrates up and down, if the membrane 32 has a rectangular planar shape as in Example 5 of FIG. 15, chipping is likely to occur at the corners of the rectangle. As in Variations 1 and 2 of Example 5, chipping at the corners can be suppressed by cutting the rectangular planar shape of the membrane 32 in a straight line or making the corners rounded.
 実施例1から4のように、メンブレン32の平面形状は略円形状でもよい。この場合、メンブレン32は中心35を中心に同心円状に振動する。よって、振動の効率が向上する。実施例5のように、メンブレン32の平面形状は略正多角形状(例えば略正方形状)でもよい。この場合、メンブレン32の平面形状は略円形状の場合に比べ、メンブレン32の面積を大きくでき、超音波の放射強度を大きくできる。また、略正多角形状のメンブレン32は中心35を中心に回転対称となる。よって、振動の効率が向上する。 As in Examples 1 to 4, the planar shape of the membrane 32 may be approximately circular. In this case, the membrane 32 vibrates concentrically around the center 35. This improves the efficiency of the vibration. As in Example 5, the planar shape of the membrane 32 may be approximately regular polygonal (e.g., approximately square). In this case, the area of the membrane 32 can be made larger than when the planar shape of the membrane 32 is approximately circular, and the radiation intensity of the ultrasonic waves can be increased. Furthermore, the membrane 32 having an approximately regular polygonal shape is rotationally symmetric around the center 35. This improves the efficiency of the vibration.
 また、実施例5の変形例1および2のように、メンブレン32の平面形状は略多角形状であり、略多角形状の角部が除去されていてもよい。なお、略円形状、略正多角形状および略多角形状とは、幾何学的な円形、正多角形および多角形でなくてもよい。例えば、実施例5の変形例1および2のように、略正多角形状および略多角形状には、角部が除去された形状も含み、後述する実施例6およびその変形例のように、メンブレン32の外周に凹部が設けられた場合を含み、さらに、製造誤差程度の差を許容する。1辺の長さL30aに対し、除去される角部の辺方向の長さL30bは、例えば0.01倍以上かつ0.2倍以下である。 Also, as in the first and second variations of Example 5, the planar shape of the membrane 32 may be an approximately polygonal shape, and the corners of the approximately polygonal shape may be removed. Note that the approximately circular shape, the approximately regular polygonal shape, and the approximately polygonal shape do not have to be geometrically circular, regular polygonal, and polygonal. For example, as in the first and second variations of Example 5, the approximately regular polygonal shape and the approximately polygonal shape include shapes with corners removed, and as in Example 6 and its variations described below, include cases where a recess is provided on the outer periphery of the membrane 32, and further allow for differences of the order of manufacturing error. The length L30b of the side direction of the corner to be removed is, for example, 0.01 times or more and 0.2 times or less than the length L30a of one side.
 図18(a)は、実施例6に係る超音波トランスデューサの平面図、図18(b)は、図18(a)の範囲Aの拡大図である。実施例6の超音波トランスデューサ110では、メンブレン32の外周38、特に振動層18との接合部は、メンブレン32の中心35に向かい凹む凹部38aを有している。梁34は凹部38aにおいてメンブレン32に接続される。これにより、梁34を長くできるため、振動層18における電極12と16との静電容量を大きくできる。これにより、メンブレン32の振動を大きくできる。また、フレーム30の大きさが同じと仮定した場合に、凹部38aを設けずに、梁34を長くすると、メンブレン32の面積が小さくなり、超音波の放射強度が小さくなる。凹部38aを設けることで、メンブレン32の面積を大きくできる。よって、超音波の放射強度を大きくできる。 18(a) is a plan view of an ultrasonic transducer according to Example 6, and FIG. 18(b) is an enlarged view of range A in FIG. 18(a). In the ultrasonic transducer 110 of Example 6, the outer periphery 38 of the membrane 32, particularly the joint with the vibration layer 18, has a recess 38a recessed toward the center 35 of the membrane 32. The beam 34 is connected to the membrane 32 at the recess 38a. This allows the beam 34 to be lengthened, and the capacitance between the electrodes 12 and 16 in the vibration layer 18 can be increased. This allows the vibration of the membrane 32 to be increased. Also, assuming that the size of the frame 30 is the same, if the beam 34 is lengthened without providing the recess 38a, the area of the membrane 32 will be reduced, and the radiation intensity of the ultrasonic waves will be reduced. By providing the recess 38a, the area of the membrane 32 can be increased. Therefore, the radiation intensity of the ultrasonic waves can be increased.
[実施例6の変形例1]
 図19(a)および図19(b)は、実施例6の変形例1における拡大平面図であり、図18(a)の範囲Aに相当する拡大図である。この超音波トランスデューサでは、凹部38aの両側に位置するメンブレン32の先端が直線状にカットされている。図19(b)に示すように、凹部38aの両側に位置するメンブレン32の先端が丸くカットされている。これにより、先端のチッピングを抑制できる。
[Modification 1 of Example 6]
19(a) and 19(b) are enlarged plan views of a first modified example of the sixth embodiment, which are enlarged views corresponding to the range A in FIG. 18(a). In this ultrasonic transducer, the tips of the membrane 32 located on both sides of the recess 38a are cut in a straight line. As shown in FIG. 19(b), the tips of the membrane 32 located on both sides of the recess 38a are cut in a rounded shape. This makes it possible to suppress chipping of the tips.
[実施例6の変形例2]
 図20は、実施例6の変形例2に係る超音波トランスデューサの平面図である。この超音波トランスデューサ111では、メンブレン32の平面形状が略矩形状(例えば正方形状)である。メンブレン32の平面形状が略多角形状の場合に、メンブレン32の外周38に凹部38aを設けてもよい。その他の構成は実施例6と同じであり説明を省略する。
[Modification 2 of Example 6]
20 is a plan view of an ultrasonic transducer according to a second modification of the sixth embodiment. In this ultrasonic transducer 111, the planar shape of the membrane 32 is substantially rectangular (e.g., square). When the planar shape of the membrane 32 is substantially polygonal, a recess 38a may be provided on the outer periphery 38 of the membrane 32. The other configurations are the same as those of the sixth embodiment, and therefore description thereof will be omitted.
[実施例2のシミュレーション]
 実施例2の超音波トランスデューサ101が機能することを、有限要素法を用いた三次元のシミュレーションにより確認した。
[Simulation of Example 2]
The function of the ultrasonic transducer 101 of Example 2 was confirmed by a three-dimensional simulation using the finite element method.
 図5および図6(a)において、シミュレーションした超音波トランスデューサの条件は以下である。
 第1層10a:厚さT10aが300μmのシリコン層
 第2層10b:厚さT10bが1μmの酸化シリコン層
 第3層10c:厚さT10cが5μmのシリコン層
 電極12:厚さT12が0.2μmのアルミニウム層
 圧電層14:厚さT14が1μの窒化アルミニウム層
 電極16:厚さT16が0.2μmのアルミニウム層
 メンブレン32:平面形状は直径が600μmの円形
 梁34:長さL34は120μm、幅W34は300μm
In FIG. 5 and FIG. 6(a), the conditions of the ultrasonic transducer simulated are as follows.
First layer 10a: silicon layer with thickness T10a of 300 μm Second layer 10b: silicon oxide layer with thickness T10b of 1 μm Third layer 10c: silicon layer with thickness T10c of 5 μm Electrode 12: aluminum layer with thickness T12 of 0.2 μm Piezoelectric layer 14: aluminum nitride layer with thickness T14 of 1 μm Electrode 16: aluminum layer with thickness T16 of 0.2 μm Membrane 32: plane shape is a circle with a diameter of 600 μm Beam 34: length L34 is 120 μm, width W34 is 300 μm
 図21において、横軸は周波数であり、縦軸は電極12と16との間のインピーダンスZである。図21のようにインピーダンスZが最小になる共振周波数frと共振周波数frより高い周波数にインピーダンスZが最大となる反共振周波数faが生じている。実施例2ではメンブレン32は共振周波数frにおいて共振しやすくなり、実施例2は超音波トランスデューサとして機能することがわかった。 In FIG. 21, the horizontal axis is frequency, and the vertical axis is impedance Z between electrodes 12 and 16. As shown in FIG. 21, there is a resonance frequency fr at which impedance Z is at a minimum, and an anti-resonance frequency fa at a frequency higher than resonance frequency fr at which impedance Z is at a maximum. In Example 2, it was found that membrane 32 is more likely to resonate at resonance frequency fr, and Example 2 functions as an ultrasonic transducer.
 以上のシミュレーションように、梁34に振動層18を設け、メンブレン32に振動層18を設けなくても、メンブレン32をたわみ振動させることができる。 As shown in the above simulation, by providing a vibration layer 18 on the beam 34, it is possible to cause the membrane 32 to flex and vibrate even without providing a vibration layer 18 on the membrane 32.
 以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。  Although the embodiments of the present invention have been described in detail above, the present invention is not limited to these specific embodiments, and various modifications and variations are possible within the scope of the gist of the present invention as described in the claims.
 10 基板
 10a 第1層
 10b 第2層
 10c 第3層
 12、16 電極
 12a、14a 端面
 14 圧電層
 18 振動層
 20、20a、20b 配線
 21 貫通孔
 22、23 パッド
 30 フレーム
 32 メンブレン
 34 梁
 35 中心
 36 36a、36b 空隙
 38 外周
 38a 凹部
 40 制御部
 
REFERENCE SIGNS LIST 10 Substrate 10a First layer 10b Second layer 10c Third layer 12, 16 Electrode 12a, 14a End surface 14 Piezoelectric layer 18 Vibration layer 20, 20a, 20b Wiring 21 Through hole 22, 23 Pad 30 Frame 32 Membrane 34 Beam 35 Center 36 36a, 36b Void 38 Outer periphery 38a Recess 40 Control unit

Claims (14)

  1.  第1空隙と、前記第1空隙の上方において、前記第1空隙に接して設けられる第2空隙と、を有し、
     平面視において前記第1空隙を囲むフレームと、
     平面視において前記第1空隙の中央部に設けられたメンブレンと、
     平面視において前記第1空隙内に設けられ、前記フレームと前記メンブレンとを機械的に接続し、平面視において前記フレームと前記メンブレンとで前記第2空隙を囲む複数の梁と、
    を備える基板と、
     前記複数の梁のうち少なくとも2つの梁上にそれぞれ設けられ、圧電層と、前記圧電層の少なくとも一部を挟み対向する第1電極および第2電極と、を各々備える少なくとも2つの振動層と、
     を備え、
     前記メンブレン上において、前記少なくとも2つの振動層における前記圧電層は互いに分離されている超音波トランスデューサ。
    a first gap and a second gap provided above the first gap and in contact with the first gap,
    a frame surrounding the first gap in a plan view;
    A membrane provided in a central portion of the first gap in a plan view;
    a plurality of beams provided within the first gap in a plan view, mechanically connecting the frame and the membrane, and surrounding the second gap with the frame and the membrane in a plan view;
    A substrate comprising:
    At least two vibration layers each provided on at least two beams among the plurality of beams, each including a piezoelectric layer and a first electrode and a second electrode opposed to each other with at least a part of the piezoelectric layer interposed therebetween;
    Equipped with
    An ultrasonic transducer, wherein the piezoelectric layers of the at least two vibration layers are separated from each other on the membrane.
  2.  前記少なくとも2つの振動層における前記第1電極は、前記フレーム上に設けられた前記第1電極を介し電気的に接続され、
     前記メンブレン上において前記圧電層が互いに分離された領域において前記少なくとも2つの振動層における前記第1電極は互いに分離され、
     前記少なくとも2つの振動層における前記第2電極は、前記メンブレン上に設けられた前記第2電極を介し電気的に接続される請求項1に記載の超音波トランスデューサ。
    the first electrodes in the at least two vibration layers are electrically connected to each other via the first electrode provided on the frame;
    The first electrodes of the at least two vibration layers are separated from each other in a region on the membrane where the piezoelectric layers are separated from each other,
    The ultrasonic transducer according to claim 1 , wherein the second electrodes in the at least two vibration layers are electrically connected via the second electrode provided on the membrane.
  3.  前記少なくとも2つの振動層における前記第1電極は前記圧電層と前記少なくとも2つの梁との間に設けられ、前記メンブレン上において前記圧電層が互いに分離された領域における前記第2電極と前記メンブレンとの間には、前記第1電極および前記圧電層は設けられておらず、
     前記少なくとも2つの梁と前記領域との間において、前記圧電層の端面は、前記第1電極の端面より前記メンブレンの中心方向に設けられ、前記第1電極の端面は、前記第1電極が前記メンブレンの中心方向に行くにしたがい薄くなるように傾斜する請求項2に記載の超音波トランスデューサ。
    the first electrodes in the at least two vibration layers are provided between the piezoelectric layer and the at least two beams, and the first electrodes and the piezoelectric layers are not provided between the second electrodes and the membrane in regions on the membrane where the piezoelectric layers are separated from each other;
    3. The ultrasonic transducer of claim 2, wherein between the at least two beams and the region, an end face of the piezoelectric layer is disposed toward the center of the membrane relative to the end face of the first electrode, and the end face of the first electrode is inclined so that the first electrode becomes thinner as it approaches the center of the membrane.
  4.  前記メンブレン上において前記圧電層が互いに分離された領域において前記第2電極は、前記少なくとも2つの振動層における前記第2電極を直線的に接続する請求項2に記載の超音波トランスデューサ。 The ultrasonic transducer of claim 2, wherein the second electrode linearly connects the second electrodes in the at least two vibration layers in an area on the membrane where the piezoelectric layers are separated from each other.
  5.  前記メンブレン上において前記圧電層が互いに分離された領域において前記第2電極は、前記メンブレンの中心を囲む環状の第1配線と、前記第1配線と前記少なくとも2つの振動層における前記第2電極とを接続する第2配線と、を有する請求項2に記載の超音波トランスデューサ。 The ultrasonic transducer of claim 2, wherein the second electrode in the region on the membrane where the piezoelectric layers are separated from each other has a first annular wiring that surrounds the center of the membrane and a second wiring that connects the first wiring to the second electrodes in the at least two vibration layers.
  6.  平面視において、前記複数の梁は、前記メンブレンから放射状に延在して設けられている請求項1から5のいずれか一項に記載の超音波トランスデューサ。 An ultrasonic transducer according to any one of claims 1 to 5, wherein the beams extend radially from the membrane in a plan view.
  7.  前記少なくとも2つの振動層は、前記少なくとも2つの梁上から前記メンブレン上の一部まで設けられている請求項1から5のいずれか一項に記載の超音波トランスデューサ。 An ultrasonic transducer according to any one of claims 1 to 5, wherein the at least two vibration layers are provided from the at least two beams to a portion of the membrane.
  8.  前記少なくとも2つの振動層は、前記少なくとも2つの梁上から前記フレーム上の一部まで設けられている請求項1から5のいずれか一項に記載の超音波トランスデューサ。 An ultrasonic transducer according to any one of claims 1 to 5, wherein the at least two vibration layers are provided from the at least two beams to a portion of the frame.
  9.  前記メンブレンの平面形状は略円形状または略正方形状である請求項1から5のいずれか一項に記載の超音波トランスデューサ。 An ultrasonic transducer according to any one of claims 1 to 5, in which the planar shape of the membrane is approximately circular or approximately square.
  10.  前記メンブレンの平面形状は略多角形状であり、略多角形状の角部が除去されている請求項1から5のいずれか一項に記載の超音波トランスデューサ。 An ultrasonic transducer according to any one of claims 1 to 5, in which the planar shape of the membrane is approximately polygonal, and the corners of the approximately polygonal shape have been removed.
  11.  前記メンブレンの外周は、前記メンブレンの中心に向かい凹む凹部を有し、前記少なくとも2つの梁は前記凹部において前記メンブレンに接続される請求項1から5のいずれか一項に記載の超音波トランスデューサ。 An ultrasonic transducer according to any one of claims 1 to 5, in which the outer periphery of the membrane has a recess that is recessed toward the center of the membrane, and the at least two beams are connected to the membrane at the recess.
  12.  前記複数の梁上に、前記少なくとも2つの振動層を含む複数の振動層がそれぞれ設けられている請求項1から5のいずれか一項に記載の超音波トランスデューサ。 An ultrasonic transducer according to any one of claims 1 to 5, in which a plurality of vibration layers including the at least two vibration layers are provided on each of the beams.
  13.  前記少なくとも2つの梁の長さは互いに略同じであり、前記少なくとも2つの梁の幅は互いに略同じである請求項1から5のいずれか一項に記載の超音波トランスデューサ。 An ultrasonic transducer according to any one of claims 1 to 5, wherein the lengths of the at least two beams are approximately the same, and the widths of the at least two beams are approximately the same.
  14.  シリコン基板、前記シリコン基板上に設けられたシリコン酸化膜および前記シリコン酸化膜上に設けられたシリコン層からなり、
     前記シリコン基板がリング状に設けられ、前記リング状内は前記シリコン基板が設けられていない第1空隙であり、前記リング状の前記シリコン基板上に設けられた前記シリコン酸化膜および前記シリコン層を有するフレームと、
     平面視において、前記第1空隙内に島状に設けられ、前記シリコン層、または、前記シリコン酸化膜と前記シリコン層と、からなるメンブレンと、
     前記フレームと前記メンブレンとを接続し、前記シリコン層、または、前記シリコン酸化膜と前記シリコン層と、からなる複数の梁と、
    を備え、
     前記梁の側面、前記メンブレンの側面および前記フレームの内面により囲まれた領域は、前記第1空隙と一体空間となった第2空隙であるSOI基板と、
     前記フレームおよび前記複数の梁における前記SOI基板上に設けられた第1電極と、
     前記フレームおよび前記複数の梁における前記第1電極上に設けられた圧電層と、
     前記複数の梁における前記圧電層上に設けられた第2電極と、
     前記複数の梁における前記第2電極と接続され、前記フレームにおける前記圧電層上を延在する配線と、
    を備える超音波トランスデューサ。
    a silicon substrate, a silicon oxide film provided on the silicon substrate, and a silicon layer provided on the silicon oxide film;
    the silicon substrate is provided in a ring shape, the inside of the ring shape is a first gap in which the silicon substrate is not provided, and a frame having the silicon oxide film and the silicon layer provided on the ring-shaped silicon substrate;
    a membrane provided in an island shape in the first gap in a plan view, the membrane being made of the silicon layer or the silicon oxide film and the silicon layer;
    a plurality of beams connecting the frame and the membrane and each of which is made of the silicon layer or the silicon oxide film and the silicon layer;
    Equipped with
    an SOI substrate, the region surrounded by the side surface of the beam, the side surface of the membrane, and the inner surface of the frame being a second gap integrated with the first gap;
    a first electrode provided on the SOI substrate in the frame and the plurality of beams;
    a piezoelectric layer provided on the frame and the first electrodes of the beams;
    A second electrode provided on the piezoelectric layer of each of the beams;
    Wiring connected to the second electrodes of the beams and extending over the piezoelectric layer of the frame;
    An ultrasonic transducer comprising:
PCT/JP2023/024764 2022-09-30 2023-07-04 Ultrasonic transducer WO2024070112A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-158941 2022-09-30
JP2022158941 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024070112A1 true WO2024070112A1 (en) 2024-04-04

Family

ID=90476976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024764 WO2024070112A1 (en) 2022-09-30 2023-07-04 Ultrasonic transducer

Country Status (1)

Country Link
WO (1) WO2024070112A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9516421B1 (en) * 2015-12-18 2016-12-06 Knowles Electronics, Llc Acoustic sensing apparatus and method of manufacturing the same
US20170021391A1 (en) * 2014-10-02 2017-01-26 Chirp Microsystems Micromachined ultrasonic transducers with a slotted membrane structure
US20190222940A1 (en) * 2018-01-15 2019-07-18 Merry Electronics(Shenzhen) Co., Ltd. Piezoelectric transducer
US20200194658A1 (en) * 2017-11-16 2020-06-18 Chirp Microsystems, Inc. Piezoelectric micromachined ultrasonic transducer with a patterned membrane structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170021391A1 (en) * 2014-10-02 2017-01-26 Chirp Microsystems Micromachined ultrasonic transducers with a slotted membrane structure
US9516421B1 (en) * 2015-12-18 2016-12-06 Knowles Electronics, Llc Acoustic sensing apparatus and method of manufacturing the same
US20200194658A1 (en) * 2017-11-16 2020-06-18 Chirp Microsystems, Inc. Piezoelectric micromachined ultrasonic transducer with a patterned membrane structure
US20190222940A1 (en) * 2018-01-15 2019-07-18 Merry Electronics(Shenzhen) Co., Ltd. Piezoelectric transducer

Similar Documents

Publication Publication Date Title
US7586241B2 (en) Electroacoustic transducer
JP4930381B2 (en) Piezoelectric vibration device
US8357981B2 (en) Transducer devices having different frequencies based on layer thicknesses and method of fabricating the same
JP4252584B2 (en) Piezoelectric thin film resonator and filter
KR101242314B1 (en) Piezoelectric thin film resonant element and circuit component using the same
WO2007119556A1 (en) Piezoelectric resonator and piezoelectric filter
JP6489234B2 (en) Piezoelectric element, piezoelectric microphone, piezoelectric resonator, and method of manufacturing piezoelectric element
JP2018182463A (en) Piezoelectric thin film resonator, filter and multiplexer
JP6123171B2 (en) Ultrasonic transducer, ultrasonic probe and ultrasonic inspection equipment
JP5360432B2 (en) Piezoelectric device
JP2006020277A (en) Thin film bulk acoustic resonator and method of manufacturing the same
JP4395892B2 (en) Piezoelectric thin film device and manufacturing method thereof
WO2019155663A1 (en) Mems device
CN111146328A (en) Single crystal piezoelectric structure and electronic device having the same
WO2024070112A1 (en) Ultrasonic transducer
TW202114257A (en) Piezo-electric element
JP2017208711A (en) Piezoelectric thin film resonator, filter and multiplexer
WO2022158249A1 (en) Elastic wave device, filter device, and method for manufacturing elastic wave device
JP2013179405A (en) Piezoelectric device, manufacturing method therefor
JP2010187195A (en) Vibrating piece, method for manufacturing the same, and vibrator
JP2023150868A (en) Ultrasonic transducer, manufacturing method for the same, and ultrasonic transducer element
CN114761143A (en) Piezoelectric device
US20240048114A1 (en) Acoustic wave device and manufacturing method for acoustic wave device
US20230387879A1 (en) Acoustic wave device
JP7298212B2 (en) ultrasound device, ultrasound machine