JP2006020277A - Thin film bulk acoustic resonator and method of manufacturing the same - Google Patents

Thin film bulk acoustic resonator and method of manufacturing the same Download PDF

Info

Publication number
JP2006020277A
JP2006020277A JP2005038228A JP2005038228A JP2006020277A JP 2006020277 A JP2006020277 A JP 2006020277A JP 2005038228 A JP2005038228 A JP 2005038228A JP 2005038228 A JP2005038228 A JP 2005038228A JP 2006020277 A JP2006020277 A JP 2006020277A
Authority
JP
Japan
Prior art keywords
electrode
piezoelectric layer
acoustic resonator
thin film
film bulk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005038228A
Other languages
Japanese (ja)
Inventor
Shuichi Oka
修一 岡
Akikazu Oono
晃計 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005038228A priority Critical patent/JP2006020277A/en
Publication of JP2006020277A publication Critical patent/JP2006020277A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the spurious caused by a lateral vibration mode. <P>SOLUTION: The thin film bulk acoustic resonator includes a laminated body having a first electrode comprised of at least one conductive layer formed on a supporting substrate, at least one piezoelectric layer adjacently formed on an upper surface of the first electrode, and a second electrode comprised of at least one conductive layer adjacently formed on an upper surface of the piezoelectric layer, and has a structure where an end face of the piezoelectric layer appears by removing the piezoelectric layer positioned near an outer peripheral edge of the second electrode and at least a part of the end face is positioned inside the second electrode. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、通信機器に使用される小型高周波フィルタに適用して好適な薄膜バルク音響共振器及びその製造方法に関する。   The present invention relates to a thin-film bulk acoustic resonator suitable for application to a small high-frequency filter used in communication equipment and a method for manufacturing the same.

近年、携帯電話やPDA(personal digital assistant 個人向携帯情報通信)機器等の通信機器の高機能化、高速化に伴い、内蔵される数100MHz〜数GHz動作の高周波フィルタには、これまでに増して小型化、低コスト化の要求がある。この要求を満たす高周波フィルタの有力候補が、半導体製造技術を用いて形成できる圧電体層が示す電気音響効果を利用した薄膜バルク音響共振器から成るフィルタである。   In recent years, with the increase in functionality and speed of communication devices such as mobile phones and PDAs (personal digital assistants), the number of built-in high frequency filters operating from several hundred MHz to several GHz has increased. Therefore, there is a demand for downsizing and cost reduction. A promising candidate for a high-frequency filter that satisfies this requirement is a filter composed of a thin-film bulk acoustic resonator that utilizes the electroacoustic effect exhibited by a piezoelectric layer that can be formed using semiconductor manufacturing technology.

この薄膜バルク音響共振器の代表的な従来例として非特許文献1に記載されている空気ブリッジ型と呼ばれる図15及び図16に示すものがある。図15はこの空気ブリッジ型の薄膜バルク音響共振器の例の平面図、図16は図15のA−A線断面図である。   As a typical conventional example of this thin film bulk acoustic resonator, there is one shown in FIG. 15 and FIG. 16 called an air bridge type described in Non-Patent Document 1. FIG. 15 is a plan view of an example of this air bridge type thin film bulk acoustic resonator, and FIG. 16 is a cross-sectional view taken along line AA of FIG.

この従来の空気ブリッジ型の薄膜バルク音響共振器は図15及び図16に示す如く、高抵抗シリコンや高抵抗ガリウム砒素から成る支持基板1上に厚さ0.1〜0.5μmの方形の下部電極3を設ける。   As shown in FIGS. 15 and 16, this conventional air-bridge type thin film bulk acoustic resonator has a rectangular lower part having a thickness of 0.1 to 0.5 μm on a support substrate 1 made of high resistance silicon or high resistance gallium arsenide. An electrode 3 is provided.

この下部電極3上に厚さ1〜2μm程度の圧電体層4を設け、この圧電体層4上に厚さ0.1〜0.5μm程度の方形の上部電極5を設ける。   A piezoelectric layer 4 having a thickness of about 1 to 2 μm is provided on the lower electrode 3, and a rectangular upper electrode 5 having a thickness of about 0.1 to 0.5 μm is provided on the piezoelectric layer 4.

この下部電極3、圧電体層4及び上部電極5は半導体製造技術で周知のスパッタ堆積技術やレジストをマスクとした各種エッチング技術を用いて順次形成される。   The lower electrode 3, the piezoelectric layer 4 and the upper electrode 5 are sequentially formed using a sputter deposition technique well known in the semiconductor manufacturing technique and various etching techniques using a resist as a mask.

下部電極3及び上部電極5としては例えばモリブデン、タングステン、チタン、白金、ルテニウム、アルミニウム等が使用され、圧電体層4としては例えば窒化アルミニウムや酸化亜鉛が用いられる。   For example, molybdenum, tungsten, titanium, platinum, ruthenium, aluminum or the like is used as the lower electrode 3 and the upper electrode 5, and aluminum nitride or zinc oxide is used as the piezoelectric layer 4, for example.

この上部電極5と下部電極3とが圧電体層4を介して重なり合った領域(即ち薄膜バルク音響共振器として動作する領域)の直下に厚さを0.5〜3μm程度の空気層2を形成し、この下部電極3も上部電極5と同様に空気と接する境界面をもっている。   An air layer 2 having a thickness of about 0.5 to 3 μm is formed immediately below a region where the upper electrode 5 and the lower electrode 3 overlap with each other via the piezoelectric layer 4 (that is, a region operating as a thin film bulk acoustic resonator). The lower electrode 3 also has a boundary surface in contact with air, like the upper electrode 5.

この空気層2は、シリコン酸化膜、PSG膜(phosphorus silicate glass リンを添加したシリカガラス膜)、BPSG膜(boron phosphorus silicate glass ホウ素とリンを添加したシリカガラス膜)、SOG膜等を図15、図16に示す如きビアホール6を介してHF水溶液でエッチング除去することで形成される。   The air layer 2 includes a silicon oxide film, a PSG film (a silica glass film added with phosphorous silicate glass phosphorus), a BPSG film (a silica glass film added with boron and phosphorus), an SOG film, etc. FIG. It is formed by etching away with an HF aqueous solution through a via hole 6 as shown in FIG.

次に、この図15及び図16に示す薄膜バルク音響共振器の動作につき説明する。   Next, the operation of the thin film bulk acoustic resonator shown in FIGS. 15 and 16 will be described.

この上部電極5と下部電極3との間に交流電圧を印加して時間的に変化する電界を圧電体層4の内部に生じさせると、圧電体層4は電気的エネルギーの一部を弾性波(以下音波と記す)という形の機械的エネルギーへ変換する。   When an alternating voltage is applied between the upper electrode 5 and the lower electrode 3 to generate a time-varying electric field in the piezoelectric layer 4, the piezoelectric layer 4 generates a part of electric energy as an elastic wave. It is converted to mechanical energy in the form of (hereinafter referred to as sound waves).

この機械的エネルギーは上部電極5及び下部電極3の電極面の垂直方向である圧電体層4の膜厚方向に伝搬され、再び電気的エネルギーへと変換される。この電気的/機械的エネルギーの変換過程でその効率が優れる特定の周波数が存在し、この周波数を持つ交流電圧を印加したとき、この薄膜バルク音響共振器は極めて低いインピーダンスを示す。   This mechanical energy is propagated in the film thickness direction of the piezoelectric layer 4, which is the direction perpendicular to the electrode surfaces of the upper electrode 5 and the lower electrode 3, and is converted back into electrical energy. There is a specific frequency that is highly efficient in the electrical / mechanical energy conversion process, and when an AC voltage having this frequency is applied, the thin film bulk acoustic resonator exhibits a very low impedance.

この特定の周波数は一般に共振周波数γと呼ばれ、その値γは一次近似として、上部電極5と下部電極3との存在を無視したとき、
γ=V/(2t)
で与えられる。ここでVは圧電体層4中の音波の速度、tは圧電体層4の厚さである。
This specific frequency is generally called the resonance frequency γ, and its value γ is a first order approximation, and when the presence of the upper electrode 5 and the lower electrode 3 is ignored,
γ = V / (2t)
Given in. Here, V is the velocity of the sound wave in the piezoelectric layer 4, and t is the thickness of the piezoelectric layer 4.

音波の波長をλとすると、
V=γλ
の関係が成立することから、
t=λ/2
となる。
If the wavelength of the sound wave is λ,
V = γλ
Since the relationship of
t = λ / 2
It becomes.

これは、圧電体層4中で誘起された音波が圧電体層4と上部電極5及び下部電極3との境界面で上下に反射を繰り返し、丁度、その半波長に対応した定在波が形成されていることを意味する。   This is because the sound wave induced in the piezoelectric layer 4 repeatedly reflects up and down at the boundary surface between the piezoelectric layer 4 and the upper electrode 5 and the lower electrode 3, and a standing wave corresponding to the half wavelength is formed. Means that

換言すれば、半波長の定在波が立っている音波の周波数と外部印加の交流電圧の周波数が一致したときが共振周波数γとなる。   In other words, the resonance frequency γ is when the frequency of the sound wave where the standing wave of half wavelength is standing matches the frequency of the externally applied AC voltage.

この共振周波数で、この薄膜バルク音響共振器のインピーダンスが極めて小さくなることを利用したものとして複数の薄膜バルク音響共振器をラダー型に組み、所望の周波数帯の電気信号のみを低損失で通過させるバンドパスフィルタが非特許文献1に紹介されている。   By utilizing the fact that the impedance of this thin film bulk acoustic resonator becomes extremely small at this resonance frequency, a plurality of thin film bulk acoustic resonators are assembled in a ladder shape, and only electrical signals in a desired frequency band are passed with low loss. A band-pass filter is introduced in Non-Patent Document 1.

この薄膜バルク音響共振器は、例えば図17(図15、図16例の薄膜バルク音響共振器として動作する領域)に示す如く、上述の通り電極面に垂直方向に立つ振動モード(以下、主振動モードと呼ぶ)の音波7を利用するが、この電極面と並行方向に伝搬する振動モード(以下、横振動モードと呼ぶ)の音波8も誘起される。   For example, as shown in FIG. 17 (region operating as the thin film bulk acoustic resonator of FIGS. 15 and 16), this thin film bulk acoustic resonator has a vibration mode (hereinafter referred to as main vibration) that stands in the direction perpendicular to the electrode surface as described above. A sound wave 7 of a vibration mode (hereinafter referred to as a transverse vibration mode) propagating in a direction parallel to the electrode surface is also induced.

この横振動モードの音波8が上部電極5の端の圧電体層4中の仮想の垂直面9や圧電体層4の端面等の音響インピーダンスが大きく変わる境界面で反射を繰り返し、その結果、音波8の定在波が形成されると、この薄膜バルク音響共振器あるいはこの薄膜バルク音響共振器を使用したバンドパスフィルタの共振特性や品質係数が大きく劣化する。   The sound wave 8 in the transverse vibration mode is repeatedly reflected on the boundary surface where the acoustic impedance greatly changes, such as the virtual vertical surface 9 in the piezoelectric layer 4 at the end of the upper electrode 5 and the end surface of the piezoelectric layer 4. When the standing wave of 8 is formed, the resonance characteristics and quality factor of this thin film bulk acoustic resonator or a bandpass filter using this thin film bulk acoustic resonator are greatly deteriorated.

具体的には、横振動モードの音波8は主振動モードの音波7に比較して長距離を伝搬するため、横振動モードの音波8の周波数は主振動モードの音波7の周波数、即ち共振周波数γよりかなり低くなるが、横振動モードの音波8の高調波成分が、この共振周波数γの近傍の周波数を持つ場合があり、この薄膜バルク音響共振器の共振特性にスプリアスと呼ばれるノイズが発生する。またバンドパスフィルタを構成すると、通過周波数帯域でリップルが発生し、不要に大きな挿入損を引き起こす。   Specifically, since the transverse vibration mode sound wave 8 propagates a longer distance than the main vibration mode sound wave 7, the frequency of the transverse vibration mode sound wave 8 is the frequency of the main vibration mode sound wave 7, that is, the resonance frequency. Although it is considerably lower than γ, the harmonic component of the sound wave 8 in the transverse vibration mode may have a frequency in the vicinity of the resonance frequency γ, and noise called spurious is generated in the resonance characteristics of the thin film bulk acoustic resonator. . If a bandpass filter is configured, ripples are generated in the pass frequency band, causing an unnecessary large insertion loss.

従来、この横振動モードに起因するスプリアスを改善することを目的として、上部電極5の外側にて、圧電体層4端面を垂直ではない形状にする改善案が提案されている(特許文献1の図17参照)。この圧電体層4の端面を垂直ではない形状としたときは、この端面に到達した横振動モードの音波8を分散することで、横振動モードの定在波を生じさせづらくしている。
特表2003−505906号公報 K.M.Lakin “Thin film resonator and filters" Proceedings of the 1999 IEEE Ultrasonics Symposium, Vol.2, pp895-906, 17-20 Oct.1999.
Conventionally, for the purpose of improving the spurious attributed to the transverse vibration mode, an improvement plan has been proposed in which the end face of the piezoelectric layer 4 is formed in a non-vertical shape outside the upper electrode 5 (Patent Document 1). FIG. 17). When the end face of the piezoelectric layer 4 has a non-vertical shape, it is difficult to generate a standing wave in the transverse vibration mode by dispersing the sound wave 8 in the transverse vibration mode that has reached the end face.
Special table 2003-505906 gazette KMLakin “Thin film resonator and filters” Proceedings of the 1999 IEEE Ultrasonics Symposium, Vol.2, pp895-906, 17-20 Oct.1999.

然しながら、この特許文献1の記載では圧電体層4の端面に到達した横振動モードの音波8を分散するのであるが、横振動モードの音波8の反射の大部分は図17に示す如く圧電体層4の端面ではなく上部電極5の端に垂直な仮想の反射面9で発生するため、圧電体層4のこの上部電極5の外側を垂直でない形状にしても、横振動モードに起因するスプリアスに対する抑制効果は少ない不都合があった。   However, in the description of Patent Document 1, the transverse vibration mode sound wave 8 reaching the end face of the piezoelectric layer 4 is dispersed, but most of the reflection of the transverse vibration mode sound wave 8 is as shown in FIG. Since the noise occurs not on the end face of the layer 4 but on the virtual reflecting surface 9 perpendicular to the end of the upper electrode 5, even if the outer side of the upper electrode 5 of the piezoelectric layer 4 has a non-vertical shape, spurious due to the transverse vibration mode. There were few inconveniences to the suppression effect.

本発明は、斯る点に鑑み、横振動モードに起因するスプリアスを低減することを目的とする。   In view of this point, an object of the present invention is to reduce spurious due to the transverse vibration mode.

本発明による薄膜バルク音響共振器は、支持基板の上に形成された少なくとも1層の導電層から成る第1の電極と、この第1の電極の上面に隣接して形成された少なくとも1層から成る圧電体層と、この圧電体層の上面に隣接して形成された少なくとも1層の導電層から成る第2の電極との積層体で構成された薄膜バルク音響共振器において、この第2の電極の少なくとも外周端近傍に位置するこの圧電体層を除去することで、この圧電体層の端面が出現した構造を有し、且つこの端面の少なくとも一部がこの第2の電極の内側に位置する構造であるものである。   A thin film bulk acoustic resonator according to the present invention includes a first electrode made of at least one conductive layer formed on a support substrate, and at least one layer formed adjacent to the upper surface of the first electrode. A thin film bulk acoustic resonator comprising a laminate of a piezoelectric layer comprising a piezoelectric material layer and a second electrode comprising at least one conductive layer formed adjacent to the upper surface of the piezoelectric layer; By removing the piezoelectric layer located at least near the outer peripheral edge of the electrode, the piezoelectric layer has a structure in which the end face appears, and at least a part of the end face is located inside the second electrode. It is a structure to do.

また、本発明による薄膜バルク音響共振器は、上述において、圧電体層の端面を第2の電極に垂直ではなく、傾きを持ち、且つ周期性を持たない凹凸形状としたものである。   In the above-described thin film bulk acoustic resonator according to the present invention, the end face of the piezoelectric layer is not perpendicular to the second electrode, but has an uneven shape having an inclination and no periodicity.

本発明によれば、第2の電極の外周端近傍に少なくとも位置する圧電体層を除去することで、この圧電体層の端面が出現した構造を有し、且つこの端面の少なくとも一部がこの第2の電極の内側に位置する構造とし、この第2の電極の端部に対応する圧電体層をなくしたので、圧電体層の第2の電極の端に垂直な仮想の反射面が形成されることがなく、この部分による横振動モードの音波の反射が存在しないため、横振動モードに起因するスプリアスを低減することができる。   According to the present invention, by removing the piezoelectric layer located at least in the vicinity of the outer peripheral end of the second electrode, the piezoelectric layer has a structure in which the end face appears, and at least a part of the end face has this structure. Since the structure is located inside the second electrode and the piezoelectric layer corresponding to the end of the second electrode is eliminated, a virtual reflecting surface perpendicular to the end of the second electrode of the piezoelectric layer is formed. Since there is no reflection of the sound wave in the transverse vibration mode by this portion, spurious due to the transverse vibration mode can be reduced.

また本発明により、更に圧電体層の端面を第2の電極に垂直ではなく、傾きを持ち、且つ周期性を持たない凹凸形状としたときは、この横振動モードの音波の端面での反射は乱反射となり、この音波の定在波は立たず、結果としてスプリアスを低減できる。   Further, according to the present invention, when the end face of the piezoelectric layer is not uneven with respect to the second electrode but is inclined and has an irregular shape having no periodicity, the reflection of the sound wave in the transverse vibration mode on the end face is as follows. It becomes irregular reflection and the standing wave of this sound wave does not stand up, and as a result, spurious can be reduced.

以下、図1〜図10及び図13を参照して、本発明薄膜バルク音響共振器及びその製造方法を実施するための最良の形態の例につき説明する。   Hereinafter, an example of the best mode for carrying out the thin film bulk acoustic resonator of the present invention and the manufacturing method thereof will be described with reference to FIGS.

本例による薄膜バルク音響共振器は、図1〜図3に示す構造を有しており、図2は平面図、図1は図2のI−I線断面図である。図1〜図3に示す本例による薄膜バルク音響共振器は、支持基板20の上に形成された導電層から成る下部電極22と、この下部電極22の上面に隣接して形成された圧電体層23と、この圧電体層23の上面に隣接して形成された導電層から成る上部電極24との積層体で構成されており、この上部電極24の外周端近傍に少なくとも位置するこの圧電体層23を除去することで、この圧電体層23の端面51が出現した構造を有し、且つこの端面51の少なくとも一部がこの上部電極24の内側に位置する構造を持つ。   The thin film bulk acoustic resonator according to this example has the structure shown in FIG. 1 to FIG. 3, FIG. 2 is a plan view, and FIG. 1 is a cross-sectional view taken along the line II in FIG. The thin film bulk acoustic resonator according to this example shown in FIGS. 1 to 3 includes a lower electrode 22 made of a conductive layer formed on a support substrate 20 and a piezoelectric body formed adjacent to the upper surface of the lower electrode 22. This piezoelectric body is composed of a laminate of a layer 23 and an upper electrode 24 made of a conductive layer formed adjacent to the upper surface of the piezoelectric layer 23, and is located at least near the outer peripheral end of the upper electrode 24. By removing the layer 23, the end face 51 of the piezoelectric layer 23 appears and at least a part of the end face 51 is located inside the upper electrode 24.

また、本例においては、この上部電極24と下部電極22とが圧電体層23を介して重なり合った領域(即ち、薄膜バルク音響共振器として動作する領域)の直下に、厚さ0.5〜3μm程度の空気層21を形成し、この下部電極22も上部電極24と同様に空気と接する境界面を持つようにする。   In this example, the thickness of 0.5 to 0.5 is directly below the region where the upper electrode 24 and the lower electrode 22 overlap with each other via the piezoelectric layer 23 (that is, the region operating as a thin film bulk acoustic resonator). An air layer 21 of about 3 μm is formed, and the lower electrode 22 has a boundary surface in contact with air, like the upper electrode 24.

次に、この図1〜図3に示す薄膜バルク音響共振器の製造方法の例を図4〜図10を参照して説明する。   Next, an example of a method for manufacturing the thin film bulk acoustic resonator shown in FIGS. 1 to 3 will be described with reference to FIGS.

先ず、図4に示す如く、比抵抗1000Ωcmを超える高抵抗シリコンや高抵抗ガリウム砒素から成る支持基板20に、後工程で空気層21となる所定の大きさの方形の穴(凹部)31を形成する。この穴(凹部)31の深さを0.5〜3μm程度とする。   First, as shown in FIG. 4, a rectangular hole (concave portion) 31 having a predetermined size to be an air layer 21 is formed in a support substrate 20 made of high resistance silicon or high resistance gallium arsenide having a specific resistance exceeding 1000 Ωcm. To do. The depth of the hole (concave portion) 31 is set to about 0.5 to 3 μm.

次に、この穴(凹部)31にこの穴(凹部)31の深さ以上の厚さを持つ犠牲層32を堆積形成する。この犠牲層32としては、シリコン酸化膜、PSG膜、BPSG膜、SOG膜等とする。この犠牲層32を成形後、図5に示す如くCMP(chemical mechanical polishing 化学機械研磨)等により犠牲層32のエッチバックを行い、残された犠牲層32と支持基板20の表面が一致した平坦面に形成する。   Next, a sacrificial layer 32 having a thickness equal to or greater than the depth of the hole (recess) 31 is deposited and formed in the hole (recess) 31. The sacrificial layer 32 is a silicon oxide film, a PSG film, a BPSG film, an SOG film, or the like. After the sacrificial layer 32 is formed, the sacrificial layer 32 is etched back by CMP (chemical mechanical polishing) or the like as shown in FIG. 5, and the remaining sacrificial layer 32 and the surface of the support substrate 20 coincide with each other. To form.

その後、半導体製造技術で周知のスパッタ堆積技術を用いて、図6に示す如くこの犠牲層32及び支持基板20上にこの犠牲層32を跨いで下部電極22を堆積形成する。この下部電極22としてはモリブデン、タングステン、白金、ルテニウム等を使用する。モリブデンを使用したとき、この下部電極22の厚さは0.1〜0.5μm程度が望ましく、本例では0.23μmとした。この下部電極22を堆積後、レジストをマスクとした各種エッチング技術を用いて所望の平面形状を有するパターンに形成した。   Thereafter, the lower electrode 22 is deposited and formed on the sacrificial layer 32 and the support substrate 20 across the sacrificial layer 32 as shown in FIG. As this lower electrode 22, molybdenum, tungsten, platinum, ruthenium or the like is used. When molybdenum is used, the thickness of the lower electrode 22 is desirably about 0.1 to 0.5 μm, and is 0.23 μm in this example. After this lower electrode 22 was deposited, it was formed into a pattern having a desired planar shape using various etching techniques using a resist as a mask.

次に図7に示す如くスパッタ堆積技術を用い厚さ1〜2μm程度の圧電体層23を堆積する。この圧電体層23としては例えば窒化アルミニウムや酸化亜鉛を使用する。   Next, as shown in FIG. 7, a piezoelectric layer 23 having a thickness of about 1 to 2 μm is deposited using a sputter deposition technique. As the piezoelectric layer 23, for example, aluminum nitride or zinc oxide is used.

その後、図8に示す如く、この圧電体層23上にスパッタ堆積技術を用いて上部電極24を堆積形成する。この上部電極24としては下部電極22と同様にモリブデンを使用し、その膜厚を0.23μmとした。この上部電極24としてはモリブデン、タングステン、白金、ルテニウム等が使用でき、膜厚は0.1〜0.5μmが望ましい。この上部電極24を堆積後、レジストをマスクとした各種エッチング技術を使用し、所望の平面形状例えば100μm×100μmの正方形のパターンに形成した。   Thereafter, as shown in FIG. 8, an upper electrode 24 is deposited on the piezoelectric layer 23 by using a sputter deposition technique. As the upper electrode 24, molybdenum was used in the same manner as the lower electrode 22, and the film thickness was set to 0.23 μm. As the upper electrode 24, molybdenum, tungsten, platinum, ruthenium or the like can be used, and the film thickness is preferably 0.1 to 0.5 μm. After depositing the upper electrode 24, various etching techniques using a resist as a mask were used to form a desired planar shape, for example, a square pattern of 100 μm × 100 μm.

次に図9に示す如く、この上部電極24をマスクとして、この圧電体層23の一部を表面側からエッチングし、圧電体層23の端面51が出現するようにする。例えば圧電体層23として膜厚1.2μmの窒化アルミニウム層を用いる場合、約38〜40℃に加熱した現像液(例えば東京応化製、商品名NMD−3)に7〜9分は浸すことで、厚さにして約0.8μmの窒化アルミニウム層をエッチングできる。   Next, as shown in FIG. 9, a part of the piezoelectric layer 23 is etched from the surface side using the upper electrode 24 as a mask so that the end face 51 of the piezoelectric layer 23 appears. For example, when an aluminum nitride layer having a film thickness of 1.2 μm is used as the piezoelectric layer 23, it is immersed in a developer heated to about 38 to 40 ° C. (for example, product name NMD-3, manufactured by Tokyo Ohka Kogyo Co., Ltd.) for 7 to 9 minutes. An aluminum nitride layer having a thickness of about 0.8 μm can be etched.

この場合、この現像液は窒化アルミニウム層に対して異方性エッチング特性を示すため、圧電体層23である窒化アルミニウム層の端面51は基本的には約57度のテーパー角を持つ、しかし実際には、窒化アルミニウム層の表面又は内部に点在する不均一がマスクとなってエッチングが進行する場合が頻繁に見られ、結果として、図9に示す如く微小な円錐構造が多数乱立した断面形状が形成される。   In this case, since the developing solution exhibits anisotropic etching characteristics with respect to the aluminum nitride layer, the end face 51 of the aluminum nitride layer which is the piezoelectric layer 23 basically has a taper angle of about 57 degrees, but actually In many cases, the etching proceeds frequently using the non-uniformity scattered on the surface or inside of the aluminum nitride layer as a mask, and as a result, a cross-sectional shape in which a large number of minute conical structures are scattered as shown in FIG. Is formed.

この場合、図9に示す如く、圧電体層23の端面51にも微小円錐が現れ、結果として、不規則な凹凸が形成される。この端面51に現れる微小円錐の発生頻度が高い場合には、端面51と上部電極24とが交わる交線は不規則な曲線区分を有するが、頻度が低い場合には微小円錐の形成が交線に影響を及ぼしにくく、この交線は、ほぼ上部電極24の外周端の形状が反映される。   In this case, as shown in FIG. 9, a minute cone appears on the end face 51 of the piezoelectric layer 23, and as a result, irregular irregularities are formed. When the occurrence frequency of the microcone appearing on the end face 51 is high, the intersection line where the end face 51 and the upper electrode 24 intersect has an irregular curve section, but when the frequency is low, the formation of the microcone is an intersection line. The intersecting line reflects almost the shape of the outer peripheral end of the upper electrode 24.

いずれの場合でも、このエッチング時での微小円錐の発生による端面51での不規則な凹凸は、程度の差はあるものの生じており、横振動モードの音波の反射が乱反射され定在波は立たないので、後述する如く反共振周波数近傍で生じるスプリアスは抑制される。   In any case, irregular irregularities on the end face 51 due to the generation of micro cones at the time of etching occur to some extent, and reflection of sound waves in the transverse vibration mode is irregularly reflected and standing waves are generated. Therefore, spurious generated near the anti-resonance frequency is suppressed as will be described later.

この場合、圧電体層23の端面51の上端の上部電極24と交わる交線はこの上部電極24の内側に位置している。この端面51と上部電極24との交線が上部電極24内へ侵入した距離Lは、エッチングで除去される圧電体層23である窒化アルミニウム層の厚さをαとしたとき、この上部電極24の外周端を起点として、上部電極24であるモリブデンとの界面に沿ったエッチングも伴い、最大2αであった。   In this case, the line of intersection with the upper electrode 24 at the upper end of the end surface 51 of the piezoelectric layer 23 is located inside the upper electrode 24. The distance L at which the line of intersection between the end face 51 and the upper electrode 24 penetrates into the upper electrode 24 is defined as α when the thickness of the aluminum nitride layer, which is the piezoelectric layer 23 removed by etching, is α. The maximum was 2α with the etching along the interface with molybdenum, which is the upper electrode 24, starting from the outer peripheral edge.

この場合、図9に示す如く、上部電極24の外周端近傍及び外側に位置する圧電体層23を厚み方向視で全てではなく、一部残すように除去することで、この圧電体層23の端面51を出現させている。   In this case, as shown in FIG. 9, the piezoelectric layer 23 located near and outside the outer peripheral edge of the upper electrode 24 is removed so as to leave a part instead of all in the thickness direction view. An end face 51 is made to appear.

次に図10に示す如く圧電体層23及び下部電極22を貫通して犠牲層32に至るビアホ−ル26を形成し、このビアホ−ル26を介してHF水溶液で犠牲層32を完全に除去して空気層21を形成し、図1、図3に示す如き薄膜バルク音響共振器を得る。   Next, as shown in FIG. 10, a via hole 26 penetrating the piezoelectric layer 23 and the lower electrode 22 and reaching the sacrificial layer 32 is formed, and the sacrificial layer 32 is completely removed with an HF aqueous solution through the via hole 26. Thus, an air layer 21 is formed, and a thin film bulk acoustic resonator as shown in FIGS. 1 and 3 is obtained.

次にこの図1〜図3に示す薄膜バルク音響共振器の動作につき説明する。   Next, the operation of the thin film bulk acoustic resonator shown in FIGS. 1 to 3 will be described.

この上部電極24と下部電極22との間に交流電圧を印加して時間的に変化する電界を圧電体層23の内部に生じさせると、圧電体層23は電気的エネルギーの一部を弾性波(以下音波と記す)という形の機械的エネルギーへ変換する。   When an alternating voltage is applied between the upper electrode 24 and the lower electrode 22 to generate a time-varying electric field inside the piezoelectric layer 23, the piezoelectric layer 23 generates a part of electric energy as an elastic wave. It is converted to mechanical energy in the form of (hereinafter referred to as sound waves).

この機械的エネルギー(主振動モードの音波41)は図3に示す如く上部電極24及び下部電極22の電極面の垂直方向である圧電体層23の膜厚方向に伝搬され、再び電気的エネルギーへと変換される。この電気的/機械的エネルギーの変換過程でその効率が優れる特定の周波数が存在し、この周波数を持つ交流電圧を印加したとき、この薄膜バルク音響共振器は極めて低いインピーダンスを示す。   This mechanical energy (sound wave 41 in the main vibration mode) is propagated in the film thickness direction of the piezoelectric layer 23, which is perpendicular to the electrode surfaces of the upper electrode 24 and the lower electrode 22, as shown in FIG. Is converted. There is a specific frequency that is highly efficient in the electrical / mechanical energy conversion process, and when an AC voltage having this frequency is applied, the thin film bulk acoustic resonator exhibits a very low impedance.

この特定の周波数は一般に共振周波数γと呼ばれ、その値γは一次近似として、上部電極24と下部電極22との存在を無視したとき、
γ=V/(2t)
で与えられる。ここでVは圧電体層23中の音波の速度、tは圧電体層23の厚さである。
This specific frequency is generally called the resonance frequency γ, and its value γ is a first order approximation, and when the presence of the upper electrode 24 and the lower electrode 22 is ignored,
γ = V / (2t)
Given in. Here, V is the speed of sound waves in the piezoelectric layer 23, and t is the thickness of the piezoelectric layer 23.

音波の波長をλとすると、
V=γλ
の関係が成立することから、
t=λ/2
となる。
If the wavelength of the sound wave is λ,
V = γλ
Since the relationship of
t = λ / 2
It becomes.

これは、圧電体層23中で誘起された音波が圧電体層23と上部電極24及び下部電極22との境界面で上下に反射を繰り返し、丁度、その半波長に対応した定在波が形成されていることを意味する。   This is because the sound wave induced in the piezoelectric layer 23 repeatedly reflects up and down at the boundary surface between the piezoelectric layer 23 and the upper electrode 24 and the lower electrode 22, and a standing wave corresponding to the half wavelength is formed. Means that

換言すれば、半波長の定在波が立っている音波の周波数と外部印加の交流電圧の周波数が一致したときが共振周波数γとなる。   In other words, the resonance frequency γ is when the frequency of the sound wave where the standing wave of half wavelength is standing matches the frequency of the externally applied AC voltage.

本例によれば、上部電極24をマスクとして圧電体層23のエッチングで出現した端面51の上端が、上部電極24の外周端よりも内側に位置しているので、この上部電極24の外周端に隣接する圧電体層23はない。このため、図3に示す如くこの上部電極24の外周端で上部電極24に垂直な仮想の反射面は存在せず、この部分による横振動モードの音波42の反射がなく、横振動モードに起因するスプリアスを低減することができる。   According to this example, since the upper end of the end surface 51 that appears by etching the piezoelectric layer 23 using the upper electrode 24 as a mask is located inside the outer peripheral end of the upper electrode 24, the outer peripheral end of the upper electrode 24 There is no piezoelectric layer 23 adjacent to. Therefore, as shown in FIG. 3, there is no virtual reflection surface perpendicular to the upper electrode 24 at the outer peripheral edge of the upper electrode 24, and there is no reflection of the sound wave 42 in the transverse vibration mode by this portion, which is caused by the transverse vibration mode. Spurious to be reduced can be reduced.

また本例によれば、上部電極24をマスクとして圧電体層23をエッチングして端面51を出現させているので、端面51はこの上部電極24に垂直ではなく、傾きを持ち、且つ周期性の無い凹凸形状となるので、図3に示す如く、この横振動モードの音波42のこの端面51での反射は乱反射となる。このため、この音波42の定在波は立たず、結果としてスプリアスを低減できる。   Further, according to this example, since the end face 51 appears by etching the piezoelectric layer 23 using the upper electrode 24 as a mask, the end face 51 is not perpendicular to the upper electrode 24 but has an inclination and has periodicity. Since there is no uneven shape, as shown in FIG. 3, the reflection of the sound wave 42 in the transverse vibration mode on the end face 51 is irregular reflection. For this reason, the standing wave of the sound wave 42 does not stand, and as a result, spurious can be reduced.

因みに、図1に示す如き構成の薄膜バルク音響共振器を試作し、そのインピーダンスを交流電圧の周波数を変えて実測した結果を図13に示す。比較のため、図17に示す如き、圧電体層4をエッチングしていない構成についても試作し実測した結果を図14に示す。ここで示すインピーダンスの値は、薄膜バルク音響共振器を単なる並行平板容量と見なしたときの容量値で規格化してある。   Incidentally, a thin film bulk acoustic resonator having a configuration as shown in FIG. 1 is prototyped, and the result of actually measuring the impedance by changing the frequency of the AC voltage is shown in FIG. For comparison, FIG. 14 shows the results of trial manufacture and measurement of a configuration in which the piezoelectric layer 4 is not etched as shown in FIG. The impedance value shown here is normalized by a capacitance value when the thin film bulk acoustic resonator is regarded as a simple parallel plate capacitance.

この薄膜バルク音響共振器の構成としては、上部電極24,5及び下部電極22,3としてモリブデンを使用し、厚さを夫々0.23μmとし、圧電体層23,4として窒化アルミニウムを使用し、厚さを1.2μmとし、上部電極24,5は100μm×100μmの正方形とした。また、圧電体層23即ち窒化アルミニウム層を0.7μmエッチングすることで、端面51に無秩序な凹凸形状を形成した。   As the configuration of this thin film bulk acoustic resonator, molybdenum is used as the upper electrodes 24 and 5 and the lower electrodes 22 and 3, the thickness is 0.23 μm, respectively, and aluminum nitride is used as the piezoelectric layers 23 and 4. The thickness was 1.2 μm, and the upper electrodes 24 and 5 were squares of 100 μm × 100 μm. Further, the piezoelectric layer 23, that is, the aluminum nitride layer was etched by 0.7 μm to form a disordered uneven shape on the end face 51.

図17に示す如き、圧電体層4としての窒化アルミニウム層の膜厚が上部電極5の外周端の内外で同じである従来の薄膜バルク音響共振器は図14に示すように反共振周波数1.92GHz及びその近傍でノイズ状にインピーダンスが大きく変化しており、横振動モードによるスプリアスが顕著に確認される。   As shown in FIG. 17, the conventional thin film bulk acoustic resonator in which the thickness of the aluminum nitride layer as the piezoelectric layer 4 is the same inside and outside the outer peripheral edge of the upper electrode 5 is shown in FIG. At 92 GHz and in the vicinity thereof, the impedance changes greatly like noise, and spurious due to the transverse vibration mode is remarkably confirmed.

一方、図1に示す本例による薄膜バルク音響共振器は、図13に示す如く反共振周波数1.963GHz近傍でのスプリアスは激減し、比較的滑らかな特性となっている。これは本例によれば、横振動モードによるスプリアスが抑制されたことを意味する。   On the other hand, the thin film bulk acoustic resonator according to the present example shown in FIG. 1 has a relatively smooth characteristic with spurious reductions near the antiresonance frequency of 1.963 GHz as shown in FIG. This means that, according to this example, spurious due to the transverse vibration mode is suppressed.

尚、上述製造例では、圧電体層23を現像液でエッチングした後に犠牲層32を除去する如く述べたが、この犠牲層32を圧電体層23をエッチングする前に除去しても良いことは勿論である。   In the manufacturing example described above, the sacrificial layer 32 is removed after the piezoelectric layer 23 is etched with the developer. However, the sacrificial layer 32 may be removed before the piezoelectric layer 23 is etched. Of course.

また、上述例では、上部電極24をマスクとして圧電体層23を現像液でエッチングしたが、この上部電極24に、レジストやシリコン酸化膜、シリコン窒化膜等の保護膜を付加してからこの圧電体層23をエッチングするようにしても良い。上述例では上部電極24にモリブデンを用い、これをマスクとして圧電体層23を現像液でエッチングしたが、上部電極24として現像液に不溶(難溶)でない金属を用いた場合、この保護膜が必要である。   In the above-described example, the piezoelectric layer 23 is etched with a developing solution using the upper electrode 24 as a mask, but this piezoelectric film is added with a protective film such as a resist, a silicon oxide film, or a silicon nitride film. The body layer 23 may be etched. In the above example, molybdenum is used for the upper electrode 24 and the piezoelectric layer 23 is etched with a developing solution using this as a mask. However, when a metal that is not insoluble (insoluble) in the developing solution is used for the upper electrode 24, this protective film is formed. is necessary.

また、上述例では圧電体層23をエッチングするのに現像液を用いたが、この代わりに他の薬液であっても良いことは勿論である。   In the above-described example, the developer is used to etch the piezoelectric layer 23, but other chemicals may be used instead.

上述、図1に示す例では、上部電極24の外周端近傍及び外側に位置する圧電体層23を厚み方向視で全てではなく、一部残すように除去することで、この圧電体層23の端面51を出現させた構造としたが、この代わりに図11に示すように上部電極24の外周近傍のみの圧電体層23をレジストをマスクとしてエッチングし、上部電極24の外周端近傍の内側の直下に端面51の少なくとも一部を形成し、且つこの端面51に周期性のない無秩序な凹凸を形成するようにしても良い。   In the example shown in FIG. 1 described above, by removing the piezoelectric layer 23 located in the vicinity of the outer peripheral edge of the upper electrode 24 and on the outer side so as to leave a part instead of all in the thickness direction view, In this structure, the end face 51 appears. Instead, as shown in FIG. 11, the piezoelectric layer 23 only in the vicinity of the outer periphery of the upper electrode 24 is etched using the resist as a mask, It is also possible to form at least a part of the end face 51 directly below and to form irregular irregularities having no periodicity on the end face 51.

斯る図11例においても、図1例同様の作用効果が得られることは容易に理解できよう。   It can be easily understood that the same operational effects as in FIG. 1 can be obtained in the example of FIG.

また図12も本発明を実施するための最良の形態の他の例を示す。この図12例は図1例において、上部電極24の外周端近傍及び外側に位置する圧電体層23を厚み方向視で完全に除去することで、圧電体層23の端面51を出現するようにしたものである。   FIG. 12 also shows another example of the best mode for carrying out the present invention. This example of FIG. 12 is the same as that of FIG. 1 so that the end face 51 of the piezoelectric layer 23 appears by completely removing the piezoelectric layer 23 located near and on the outer periphery of the upper electrode 24 in the thickness direction. It is a thing.

斯る図12例においても上部電極24の外周端近傍の内側直下に端面51の少なくとも一部を形成し、且つこの端面51に周期性のない無秩序な凹凸が形成され、図1例同様の作用効果が得られることは容易に理解できよう。   In the example of FIG. 12 as well, at least a part of the end surface 51 is formed immediately below the inner periphery in the vicinity of the outer peripheral end of the upper electrode 24, and irregular irregularities having no periodicity are formed on the end surface 51, and the same action as in FIG. It can be easily understood that the effect can be obtained.

また、上述例では、上部電極24及び下部電極22を一層の導電層で形成した例につき述べたが、この上部電極24及び下部電極22を夫々複数の導電層により構成するようにしても良いことは勿論である。   In the above-described example, the example in which the upper electrode 24 and the lower electrode 22 are formed of a single conductive layer has been described. However, the upper electrode 24 and the lower electrode 22 may be configured by a plurality of conductive layers. Of course.

また上述例では圧電体層23を一層の圧電体層で形成した例につき述べたが、この圧電体層23を複数の圧電体層により構成するようにしても良いことは勿論である。   In the above-described example, the example in which the piezoelectric layer 23 is formed of a single piezoelectric layer has been described, but it is needless to say that the piezoelectric layer 23 may be configured by a plurality of piezoelectric layers.

また上述例では上部電極24の形状を正方形とした例につき述べたが、この形状は平行な対辺を持つ矩形、台形、平行四辺形、その他の多角形、平行な対辺を持たない三角形やその他の多角形、更には円形、半円形、楕円形等一部が曲線となっている形状等任意の形状であっても良い。   In the above example, the upper electrode 24 has a square shape, but this shape is a rectangle having parallel opposite sides, a trapezoid, a parallelogram, other polygons, a triangle having no parallel opposite sides, and other shapes. It may be an arbitrary shape such as a polygonal shape, a circular shape, a semi-circular shape, an elliptical shape or the like in which a part is a curved line.

また上述例では、下部電極22の下側の支持基板20に空気層21を設けた例につき述べたが、この空気層21に空気の代わりに窒素、不活性ガス等の気体を入れるようにしても良いことは勿論である。   In the above example, the air layer 21 is provided on the support substrate 20 below the lower electrode 22. However, instead of air, a gas such as nitrogen or an inert gas is put into the air layer 21. Of course, it is also good.

また、この空気層21の代わりに、非特許文献1に記載の如く、空気層21と同様に主振動モードの音波41を効果的に反射できる音響反射ミラーをこの下部電極22と支持基板20との間に挿入するようにしても良いことは勿論である。   Further, instead of the air layer 21, as described in Non-Patent Document 1, an acoustic reflection mirror capable of effectively reflecting the sound wave 41 in the main vibration mode similarly to the air layer 21 is formed with the lower electrode 22 and the support substrate 20. Of course, it may be inserted in between.

また、更に本発明を薄膜バルク音響共振器の変形である積み重ね型薄膜バルク音響共振器に同様に適用できることは勿論である。   Further, it is needless to say that the present invention can be similarly applied to a stacked thin film bulk acoustic resonator which is a modification of the thin film bulk acoustic resonator.

また、本発明は上述例に限ることなく、本発明の要旨を逸脱することなく、その他種々の構成が採り得ることは勿論である。   Further, the present invention is not limited to the above-described example, and various other configurations can be adopted without departing from the gist of the present invention.

本発明薄膜バルク音響共振器を実施するため最良の形態の例を示す図2のI−I線断面図である。It is the II sectional view taken on the line of FIG. 2 which shows the example of the best form for implementing this invention thin film bulk acoustic resonator. 図1の平面図である。It is a top view of FIG. 本例の動作の説明に供する図2のI−I線断面図である。It is the II sectional view taken on the line of FIG. 2 with which it uses for description of operation | movement of this example. 本発明による製造方法の例の説明に供する断面図である。It is sectional drawing with which it uses for description of the example of the manufacturing method by this invention. 本発明による製造方法の例の説明に供する断面図である。It is sectional drawing with which it uses for description of the example of the manufacturing method by this invention. 本発明による製造方法の例の説明に供する断面図である。It is sectional drawing with which it uses for description of the example of the manufacturing method by this invention. 本発明による製造方法の例の説明に供する断面図である。It is sectional drawing with which it uses for description of the example of the manufacturing method by this invention. 本発明による製造方法の例の説明に供する断面図である。It is sectional drawing with which it uses for description of the example of the manufacturing method by this invention. 本発明による製造方法の例の説明に供する断面図である。It is sectional drawing with which it uses for description of the example of the manufacturing method by this invention. 本発明による製造方法の例の説明に供する断面図である。It is sectional drawing with which it uses for description of the example of the manufacturing method by this invention. 本発明を実施するための最良の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of the best form for implementing this invention. 本発明を実施するための最良の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of the best form for implementing this invention. 本発明の説明に供する電気的特性図である。It is an electrical property figure with which it uses for description of this invention. 従来例の説明に供する電気的特性図である。It is an electrical characteristic figure with which it uses for description of a prior art example. 従来の薄膜バルク音響共振器の例の平面図である。It is a top view of the example of the conventional thin film bulk acoustic resonator. 図15のA−A線断面図である。It is the sectional view on the AA line of FIG. 図16の要部の断面図である。It is sectional drawing of the principal part of FIG.

符号の説明Explanation of symbols

20‥‥支持基板、21‥‥空気層、22‥‥下部電極、23‥‥圧電体層、24‥‥上部電極、51‥‥端面   20 ... Support substrate, 21 ... Air layer, 22 ... Lower electrode, 23 ... Piezoelectric layer, 24 ... Upper electrode, 51 ... End face

Claims (14)

支持基板の上に形成された少なくとも1層の導電層から成る第1の電極と、
該第1の電極の上面に隣接して形成された少なくとも1層から成る圧電体層と、該圧電体層の上面に隣接して形成された少なくとも1層の導電層から成る第2の電極との積層体で構成された薄膜バルク音響共振器において、
前記第2の電極の少なくとも外周端近傍に位置する前記圧電体層を除去することで前記圧電体層の端面が出現した構造を有し、且つ前記端面の少なくとも一部が前記第2の電極の内側に位置する構造であることを特徴とする薄膜バルク音響共振器。
A first electrode comprising at least one conductive layer formed on a support substrate;
A piezoelectric layer comprising at least one layer formed adjacent to the upper surface of the first electrode; and a second electrode comprising at least one conductive layer formed adjacent to the upper surface of the piezoelectric layer; In a thin film bulk acoustic resonator composed of a laminate of
An end face of the piezoelectric layer appears by removing the piezoelectric layer located at least near the outer peripheral edge of the second electrode, and at least a part of the end face of the second electrode A thin film bulk acoustic resonator, characterized in that it has a structure located inside.
請求項1記載の薄膜バルク音響共振器において、
前記第2の電極の外周端近傍のみに位置する前記圧電体層を、厚み方向視で一部残すように除去することで前記圧電体層の端面を出現させた構造であることを特徴とする薄膜バルク音響共振器。
The thin film bulk acoustic resonator of claim 1,
The piezoelectric layer positioned only in the vicinity of the outer peripheral end of the second electrode is removed so as to leave a part in the thickness direction view, and the end surface of the piezoelectric layer is made to appear. Thin film bulk acoustic resonator.
請求項1記載の薄膜バルク音響共振器において、
前記第2の電極の外周端近傍及び外側に位置する前記圧電体層を、厚み方向視で一部残すように除去することで前記圧電体層の端面を出現させた構造であることを特徴とする薄膜バルク音響共振器。
The thin film bulk acoustic resonator of claim 1,
A structure in which the end face of the piezoelectric layer is made to appear by removing the piezoelectric layer located near and outside the outer peripheral end of the second electrode so as to leave a part in the thickness direction view. Thin film bulk acoustic resonator.
請求項1記載の薄膜バルク音響共振器において、
前記第2の電極の外周端近傍及び外側に位置する前記圧電体層を、厚み方向視で完全に除去することで前記圧電体層の端面を出現させた構造であることを特徴とする薄膜バルク音響共振器。
The thin film bulk acoustic resonator of claim 1,
A thin film bulk having a structure in which an end face of the piezoelectric layer appears by completely removing the piezoelectric layer located near and outside the outer peripheral end of the second electrode in the thickness direction. Acoustic resonator.
請求項1、2、3又は4記載の薄膜バルク音響共振器において、
前記圧電体層の端面は前記第2の電極に垂直ではない傾きを持つことを特徴とする薄膜バルク音響共振器。
The thin film bulk acoustic resonator according to claim 1, 2, 3 or 4,
The thin film bulk acoustic resonator according to claim 1, wherein an end face of the piezoelectric layer has an inclination that is not perpendicular to the second electrode.
請求項1、2、3又は4記載の薄膜バルク音響共振器において、
前記圧電体層の端面は前記第2の電極に垂直ではなく傾きを持ち、且つ周期性を持たない凹凸形状から成ることを特徴とする薄膜バルク音響共振器。
The thin film bulk acoustic resonator according to claim 1, 2, 3 or 4,
The thin film bulk acoustic resonator is characterized in that an end face of the piezoelectric layer is not perpendicular to the second electrode but has an inclination and has an irregular shape having no periodicity.
請求項5又は6記載の薄膜バルク音響共振器において、
前記圧電体層の除去をエッチングで行うと共に前記エッチングで除去される前記圧電体層の厚さをαとしたとき、前記第2の電極の外周端を起点として、前記端面の先端が前記第2の電極の内側に侵入する距離は2α以下であることを特徴とする薄膜バルク音響共振器。
The thin film bulk acoustic resonator according to claim 5 or 6,
When the piezoelectric layer is removed by etching and the thickness of the piezoelectric layer removed by the etching is α, the end of the end face is the second end from the outer peripheral end of the second electrode. A thin film bulk acoustic resonator, characterized in that a distance penetrating inside the electrode is 2α or less.
請求項1、2、3、4、5、6又は7記載の薄膜バルク音響共振器において、
前記第1の電極と前記支持基板との間に気体層又は音響反射ミラーを挿入したことを特徴とする薄膜バルク音響共振器。
The thin film bulk acoustic resonator according to claim 1, 2, 3, 4, 5, 6 or 7,
A thin film bulk acoustic resonator, wherein a gas layer or an acoustic reflection mirror is inserted between the first electrode and the support substrate.
支持基板の上に形成された少なくとも1層の導電層から成る第1の電極と、該第1の電極の上面に隣接して形成された少なくとも1層から成る圧電体層と、該圧電体層の上面に隣接して形成された少なくとも1層の導電層から成る第2の電極との積層体で構成され、
前記第2の電極の外周端近傍に位置する前記圧電体層を除去することで前記圧電体層の端面が出現した構造を有し、且つ前記端面の少なくとも一部が、前記第2の電極の内側に位置する構造とする薄膜バルク音響共振器の製造方法において、
前記第2の外周端近傍のみを開口したレジストをマスクとして、露出した前記圧電体層を、厚み方向視で一部残すようにエッチング除去することを特徴とする薄膜バルク音響共振器の製造方法。
A first electrode comprising at least one conductive layer formed on a support substrate; at least one piezoelectric layer formed adjacent to the upper surface of the first electrode; and the piezoelectric layer A layered body with a second electrode made of at least one conductive layer formed adjacent to the upper surface of
An end face of the piezoelectric layer appears by removing the piezoelectric layer located in the vicinity of the outer peripheral end of the second electrode, and at least a part of the end face has a structure of the second electrode. In the method of manufacturing a thin film bulk acoustic resonator having a structure located inside,
A method of manufacturing a thin-film bulk acoustic resonator, comprising: removing a portion of the exposed piezoelectric layer so as to leave a part in a thickness direction view, using a resist having an opening only in the vicinity of the second outer peripheral edge as a mask.
支持基板の上に形成された少なくとも1層の導電層から成る第1の電極と、該第1の電極の上面に隣接して形成された少なくとも1層から成る圧電体層と、該圧電体層の上面に隣接して形成された少なくとも1層の導電層から成る第2の電極との積層体で構成され、
前記第2の電極の外周端近傍に位置する前記圧電体層を除去することで前記圧電体層の端面が出現した構造を有し、且つ前記端面の少なくとも一部が、前記第2の電極の内側に位置する構造とする薄膜バルク音響共振器の製造方法において、
前記第2の電極の外周端近傍のみが開口されたパターンを有する絶縁膜をマスクとして、露出した前記圧電体層を、厚み方向視で一部残すようにエッチング除去することを特徴とする薄膜バルク音響共振器の製造方法。
A first electrode comprising at least one conductive layer formed on a support substrate; at least one piezoelectric layer formed adjacent to the upper surface of the first electrode; and the piezoelectric layer A layered body with a second electrode made of at least one conductive layer formed adjacent to the upper surface of
An end face of the piezoelectric layer appears by removing the piezoelectric layer located in the vicinity of the outer peripheral end of the second electrode, and at least a part of the end face has a structure of the second electrode. In the method of manufacturing a thin film bulk acoustic resonator having a structure located inside,
A thin-film bulk characterized by etching away the exposed piezoelectric layer so as to leave a part in the thickness direction view, using an insulating film having a pattern in which only the vicinity of the outer peripheral edge of the second electrode is opened as a mask. A method for manufacturing an acoustic resonator.
支持基板の上に形成された少なくとも1層の導電層から成る第1の電極と、該第1の電極の上面に隣接して形成された少なくとも1層から成る圧電体層と、該圧電体層の上面に隣接して形成された少なくとも1層の導電層から成る第2の電極との積層体で構成され、
前記第2の電極の外周端近傍に位置する前記圧電体層を除去することで前記圧電体層の端面が出現した構造を有し、且つ該端面の少なくとも一部が、前記第2の電極の内側に位置する構造とする薄膜バルク音響共振器の製造方法において、
前記第2の電極の外周端近傍及びその内部を開口したレジストをマスクとして、露出した前記圧電体層を、一部残すようにエッチング除去することを特徴とする薄膜バルク音響共振器の製造方法。
A first electrode comprising at least one conductive layer formed on a support substrate; at least one piezoelectric layer formed adjacent to the upper surface of the first electrode; and the piezoelectric layer A layered body with a second electrode made of at least one conductive layer formed adjacent to the upper surface of
An end face of the piezoelectric layer appears by removing the piezoelectric layer located in the vicinity of the outer peripheral end of the second electrode, and at least a part of the end face of the second electrode In the method of manufacturing a thin film bulk acoustic resonator having a structure located inside,
A method of manufacturing a thin-film bulk acoustic resonator, comprising: removing a part of the exposed piezoelectric layer so as to leave a part thereof, using a resist having an opening near and at an outer peripheral end of the second electrode as a mask.
支持基板の上に形成された少なくとも1層の導電層から成る第1の電極と、該第1の電極の上面に隣接して形成された少なくとも1層から成る圧電体層と、該圧電体層の上面に隣接して形成された少なくとも1層の導電層から成る第2の電極との積層体で構成され、
前記第2の電極の外周端近傍に位置する前記圧電体層を除去することで前記圧電体層の端面が出現した構造を有し、且つ該端面の少なくとも一部が、前記第2の電極の内側に位置する構造とする薄膜バルク音響共振器の製造方法において、
前記第2の電極の外周端近傍及びその内部が開口されたパターンを有する絶縁膜をマスクとして、露出した前記圧電体層を、厚み方向視で一部残すようにエッチング除去することを特徴とする薄膜バルク音響共振器の製造方法。
A first electrode comprising at least one conductive layer formed on a support substrate; at least one piezoelectric layer formed adjacent to the upper surface of the first electrode; and the piezoelectric layer A layered body with a second electrode made of at least one conductive layer formed adjacent to the upper surface of
An end face of the piezoelectric layer appears by removing the piezoelectric layer located in the vicinity of the outer peripheral end of the second electrode, and at least a part of the end face of the second electrode In the method of manufacturing a thin film bulk acoustic resonator having a structure located inside,
Using the insulating film having a pattern in which the vicinity of the outer peripheral edge of the second electrode and the inside of the second electrode are opened as a mask, the exposed piezoelectric layer is etched away so as to leave a part in the thickness direction view. A method for manufacturing a thin film bulk acoustic resonator.
支持基板の上に形成された少なくとも1層の導電層から成る第1の電極と、該第1の電極の上面に隣接して形成された少なくとも1層から成る圧電体層と、該圧電体層の上面に隣接して形成された少なくとも1層の導電層から成る第2の電極との積層体で構成され、
前記第2の電極の外周端近傍及び外側に位置する前記圧電体層を、厚み方向視で一部残すように除去することで前記圧電体層の端面が出現した構造を有し、且つ該端面の少なくとも一部が、前記第2の電極の内側に位置する構造とする薄膜バルク音響共振器の製造方法において、
前記第2の電極をマスクとして、露出した前記圧電体層を、厚み方向視で一部残すようにエッチング除去することを特徴とする薄膜バルク音響共振器の製造方法。
A first electrode comprising at least one conductive layer formed on a support substrate; at least one piezoelectric layer formed adjacent to the upper surface of the first electrode; and the piezoelectric layer A layered body with a second electrode made of at least one conductive layer formed adjacent to the upper surface of
The piezoelectric layer has a structure in which the end face of the piezoelectric layer appears by removing the piezoelectric layer located near and on the outer peripheral end of the second electrode so as to leave a part in the thickness direction view, and the end face In the method of manufacturing a thin film bulk acoustic resonator, at least a part of the structure is located inside the second electrode.
Using the second electrode as a mask, the exposed piezoelectric layer is removed by etching so as to leave a part in a thickness direction view.
支持基板の上に形成された少なくとも1層の導電層から成る第1の電極と、該第1の電極の上面に隣接して形成された少なくとも1層から成る圧電体層と、該圧電体層の上面に隣接して形成された少なくとも1層の導電層から成る第2の電極との積層体で構成され、
前記第2の電極の外周端近傍及び外側に位置する前記圧電体層を、厚み方向視で一部残すように除去することで前記圧電体層の端面が出現した構造を有し、且つ該端面の少なくとも一部が、前記第2の電極の内側に位置する構造とする薄膜バルク音響共振器の製造方法において、
前記第2の電極を保護したレジスト又は絶縁膜をマスクとして、露出した前記圧電体層を、厚み方向視で一部残すようにエッチング除去することを特徴とする薄膜バルク音響共振器の製造方法。
A first electrode comprising at least one conductive layer formed on a support substrate; at least one piezoelectric layer formed adjacent to the upper surface of the first electrode; and the piezoelectric layer A layered body with a second electrode made of at least one conductive layer formed adjacent to the upper surface of
The piezoelectric layer has a structure in which the end face of the piezoelectric layer appears by removing the piezoelectric layer located near and on the outer peripheral end of the second electrode so as to leave a part in the thickness direction view, and the end face In the method of manufacturing a thin film bulk acoustic resonator, at least a part of the structure is located inside the second electrode.
A method of manufacturing a thin-film bulk acoustic resonator, comprising: removing a part of the exposed piezoelectric layer in a thickness direction view, using a resist or insulating film protecting the second electrode as a mask.
JP2005038228A 2004-06-03 2005-02-15 Thin film bulk acoustic resonator and method of manufacturing the same Pending JP2006020277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005038228A JP2006020277A (en) 2004-06-03 2005-02-15 Thin film bulk acoustic resonator and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004166243 2004-06-03
JP2005038228A JP2006020277A (en) 2004-06-03 2005-02-15 Thin film bulk acoustic resonator and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2006020277A true JP2006020277A (en) 2006-01-19

Family

ID=35794055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005038228A Pending JP2006020277A (en) 2004-06-03 2005-02-15 Thin film bulk acoustic resonator and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2006020277A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1850478A3 (en) * 2006-04-28 2009-12-02 Fujitsu Media Devices Limited Piezoelectric thin-film resonator and filter using the same
JP2010087578A (en) * 2008-09-29 2010-04-15 Kyocera Corp Bulk acoustic wave resonator and electronic component
WO2013031725A1 (en) * 2011-09-01 2013-03-07 株式会社村田製作所 Piezoelectric bulk wave device and production method therefor
WO2013031724A1 (en) * 2011-09-01 2013-03-07 株式会社村田製作所 Piezoelectric bulk wave device and production method therefor
EP1914888B1 (en) * 2006-10-17 2013-06-12 Taiyo Yuden Co., Ltd. Fabrication method of a ladder filter
JP2013168748A (en) * 2012-02-14 2013-08-29 Taiyo Yuden Co Ltd Acoustic wave device
US20140125203A1 (en) * 2009-11-25 2014-05-08 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave (baw) resonator structure having an electrode with a cantilevered portion and a piezoelectric layer with varying amounts of dopant
US20140139077A1 (en) * 2009-06-24 2014-05-22 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator structure having an electrode with a cantilevered portion
US20140176261A1 (en) * 2011-02-28 2014-06-26 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Acoustic resonator device with at least one air-ring and frame
US9184725B2 (en) * 2011-08-09 2015-11-10 Taiyo Yuden Co., Ltd. Acoustic wave device
US9608592B2 (en) 2014-01-21 2017-03-28 Avago Technologies General Ip (Singapore) Pte. Ltd. Film bulk acoustic wave resonator (FBAR) having stress-relief
US9673778B2 (en) 2009-06-24 2017-06-06 Avago Technologies General Ip (Singapore) Pte. Ltd. Solid mount bulk acoustic wave resonator structure comprising a bridge
US20170170809A1 (en) * 2015-12-14 2017-06-15 Taiyo Yuden Co., Ltd. Piezoelectric thin film resonator, filter, and duplexer
JP2017139707A (en) * 2016-02-05 2017-08-10 太陽誘電株式会社 Piezoelectric thin film resonator, filter, and duplexer
US10177732B2 (en) 2015-07-29 2019-01-08 Taiyo Yuden Co., Ltd. Piezoelectric thin film resonator, filter, and duplexer
US10461719B2 (en) 2009-06-24 2019-10-29 Avago Technologies International Sales Pte. Limited Acoustic resonator structure having an electrode with a cantilevered portion
US10615776B2 (en) * 2017-07-03 2020-04-07 Taiyo Yuden Co., Ltd. Piezoelectric thin film resonator, filter, and multiplexer
CN113037243A (en) * 2021-03-24 2021-06-25 江苏物联网研究发展中心 Film bulk acoustic resonator for suppressing parasitic clutter
JP2022507223A (en) * 2019-04-04 2022-01-18 中芯集成電路(寧波)有限公司上海分公司 Bulk acoustic wave resonator and its manufacturing method, filter, radio frequency communication system
US12009803B2 (en) 2019-04-04 2024-06-11 Ningbo Semiconductor International Corporation Bulk acoustic wave resonator, filter and radio frequency communication system

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1850478A3 (en) * 2006-04-28 2009-12-02 Fujitsu Media Devices Limited Piezoelectric thin-film resonator and filter using the same
US8756777B2 (en) 2006-10-17 2014-06-24 Taiyo Yuden Co., Ltd. Method of manufacturing a ladder filter
EP1914888B1 (en) * 2006-10-17 2013-06-12 Taiyo Yuden Co., Ltd. Fabrication method of a ladder filter
JP2010087578A (en) * 2008-09-29 2010-04-15 Kyocera Corp Bulk acoustic wave resonator and electronic component
US10461719B2 (en) 2009-06-24 2019-10-29 Avago Technologies International Sales Pte. Limited Acoustic resonator structure having an electrode with a cantilevered portion
US9673778B2 (en) 2009-06-24 2017-06-06 Avago Technologies General Ip (Singapore) Pte. Ltd. Solid mount bulk acoustic wave resonator structure comprising a bridge
US20140139077A1 (en) * 2009-06-24 2014-05-22 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator structure having an electrode with a cantilevered portion
US9520856B2 (en) * 2009-06-24 2016-12-13 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator structure having an electrode with a cantilevered portion
US20140125203A1 (en) * 2009-11-25 2014-05-08 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave (baw) resonator structure having an electrode with a cantilevered portion and a piezoelectric layer with varying amounts of dopant
US9450561B2 (en) * 2009-11-25 2016-09-20 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave (BAW) resonator structure having an electrode with a cantilevered portion and a piezoelectric layer with varying amounts of dopant
US9571064B2 (en) * 2011-02-28 2017-02-14 Avago Technologies General Ip (Singapore) Pte. Ltd. Acoustic resonator device with at least one air-ring and frame
US20140176261A1 (en) * 2011-02-28 2014-06-26 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Acoustic resonator device with at least one air-ring and frame
US9184725B2 (en) * 2011-08-09 2015-11-10 Taiyo Yuden Co., Ltd. Acoustic wave device
US9530956B2 (en) 2011-09-01 2016-12-27 Murata Manufacturing Co., Ltd. Piezoelectric bulk wave device, and method of manufacturing the piezoelectric bulk wave device
US9837598B2 (en) 2011-09-01 2017-12-05 Murata Manufacturing Co., Ltd. Piezoelectric bulk wave device, and method of manufacturing the piezoelectric bulk wave device
JPWO2013031725A1 (en) * 2011-09-01 2015-03-23 株式会社村田製作所 Piezoelectric bulk wave device and manufacturing method thereof
CN103765770A (en) * 2011-09-01 2014-04-30 株式会社村田制作所 Piezoelectric bulk wave device and production method therefor
JPWO2013031724A1 (en) * 2011-09-01 2015-03-23 株式会社村田製作所 Piezoelectric bulk wave device and manufacturing method thereof
WO2013031724A1 (en) * 2011-09-01 2013-03-07 株式会社村田製作所 Piezoelectric bulk wave device and production method therefor
WO2013031725A1 (en) * 2011-09-01 2013-03-07 株式会社村田製作所 Piezoelectric bulk wave device and production method therefor
JP2013168748A (en) * 2012-02-14 2013-08-29 Taiyo Yuden Co Ltd Acoustic wave device
US9608592B2 (en) 2014-01-21 2017-03-28 Avago Technologies General Ip (Singapore) Pte. Ltd. Film bulk acoustic wave resonator (FBAR) having stress-relief
US10177732B2 (en) 2015-07-29 2019-01-08 Taiyo Yuden Co., Ltd. Piezoelectric thin film resonator, filter, and duplexer
US10205432B2 (en) * 2015-12-14 2019-02-12 Taiyo Yuden Co., Ltd. Piezoelectric thin film resonator, filter, and duplexer
US20170170809A1 (en) * 2015-12-14 2017-06-15 Taiyo Yuden Co., Ltd. Piezoelectric thin film resonator, filter, and duplexer
JP2017139707A (en) * 2016-02-05 2017-08-10 太陽誘電株式会社 Piezoelectric thin film resonator, filter, and duplexer
US10680576B2 (en) * 2016-02-05 2020-06-09 Taiyo Yuden Co., Ltd. Piezoelectric thin film resonator, filter, and duplexer
US10615776B2 (en) * 2017-07-03 2020-04-07 Taiyo Yuden Co., Ltd. Piezoelectric thin film resonator, filter, and multiplexer
JP2022507223A (en) * 2019-04-04 2022-01-18 中芯集成電路(寧波)有限公司上海分公司 Bulk acoustic wave resonator and its manufacturing method, filter, radio frequency communication system
JP7339694B2 (en) 2019-04-04 2023-09-06 中芯集成電路(寧波)有限公司上海分公司 Bulk acoustic wave resonator, manufacturing method thereof, filter, radio frequency communication system
US12009803B2 (en) 2019-04-04 2024-06-11 Ningbo Semiconductor International Corporation Bulk acoustic wave resonator, filter and radio frequency communication system
CN113037243A (en) * 2021-03-24 2021-06-25 江苏物联网研究发展中心 Film bulk acoustic resonator for suppressing parasitic clutter

Similar Documents

Publication Publication Date Title
JP2006020277A (en) Thin film bulk acoustic resonator and method of manufacturing the same
CN110324022B (en) Resonator and preparation method thereof
JP6336712B2 (en) Piezoelectric thin film resonator, filter and duplexer
KR20060049516A (en) Thin film bulk acoustic resonator and method of manufacturing the same
KR102642910B1 (en) Acoustic resonator and method of manufacturing thereof
JP5689080B2 (en) Piezoelectric thin film resonator, communication module, communication device
JP5172844B2 (en) Piezoelectric thin film resonator, filter using the same, duplexer using the filter, and communication device using the filter or the duplexer
JP6371518B2 (en) Piezoelectric thin film resonator, method for manufacturing the same, filter, and duplexer
JP4802900B2 (en) Thin film piezoelectric resonator and manufacturing method thereof
KR101867285B1 (en) Acoustic Wave Resonator And Filter including the Same
JP2006005924A (en) Acoustic resonator
CN110611493A (en) Acoustic wave resonator, acoustic wave resonator filter including the same, and method of manufacturing the same
JP2015188216A (en) Acoustic resonator with planarization layer and method of fabricating the same
JP2005073175A (en) Piezoelectric thin film resonator, and its manufacturing method
JP4775445B2 (en) Thin film piezoelectric resonator and thin film piezoelectric filter
JP2016096466A (en) Piezoelectric thin film resonator, filter and duplexer
KR20180107852A (en) Acoustic resonator and manufacturing method thereof
JP4488167B2 (en) filter
JP2008182543A (en) Thin film piezoelectric resonator and thin film piezoelectric filter using the same
JP5040172B2 (en) Thin film piezoelectric resonator and thin film piezoelectric filter
JP2007227998A (en) Thin film piezoelectric resonator and thin film piezoelectric filter using the same
CN114978093A (en) Acoustic wave resonator, filter, communication apparatus, and method of manufacturing the same
JP2005348357A (en) Thin film bulk sound resonator
JP4687345B2 (en) Thin film bulk acoustic resonator
KR100502569B1 (en) The fbar filter using selective bragg reflecting layer