WO2024070099A1 - Data processing system, physical quantity measuring device, data collection device, data processing method, data provision method, and data collection method - Google Patents

Data processing system, physical quantity measuring device, data collection device, data processing method, data provision method, and data collection method Download PDF

Info

Publication number
WO2024070099A1
WO2024070099A1 PCT/JP2023/023997 JP2023023997W WO2024070099A1 WO 2024070099 A1 WO2024070099 A1 WO 2024070099A1 JP 2023023997 W JP2023023997 W JP 2023023997W WO 2024070099 A1 WO2024070099 A1 WO 2024070099A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical quantity
data
time
measurement
unit
Prior art date
Application number
PCT/JP2023/023997
Other languages
French (fr)
Japanese (ja)
Inventor
裕太 坂巻
泰雅 山田
孝志 関口
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Publication of WO2024070099A1 publication Critical patent/WO2024070099A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C15/00Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path
    • G08C15/06Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path successively, i.e. using time division

Definitions

  • the present invention relates to a data processing system, a physical quantity measuring device, a data collecting device, a data processing method, a data providing method, and a data collecting method.
  • Patent Document 1 discloses a power supply monitor device that adds the date and time (measurement time) measured by a real-time clock (RTC) circuit to monitor information extracted by a power supply monitor information extraction means, and transmits the information to a remote monitoring system.
  • RTC real-time clock
  • the power supply monitoring device disclosed in Patent Document 1 is equipped with a real-time clock circuit for adding the measurement time to the monitoring information, which causes an increase in costs. Therefore, in order to reduce costs, it is considered to eliminate the real-time clock circuit.
  • simply eliminating the real-time clock circuit poses the problem that, when analyzing the monitoring information, it becomes unclear at what point in time the monitoring information was acquired, making it difficult to analyze the monitoring information in chronological order, for example.
  • the present invention aims to provide a data processing system, a physical quantity measuring device, a data collecting device, a data processing method, a data providing method, and a data collecting method that make it possible to identify the measurement time on the physical quantity data collecting device side without providing a real-time clock circuit on the measuring device side that measures the physical quantity.
  • a data processing system comprises: A data processing system including one or more physical quantity measuring devices and one or more data collecting devices configured to be able to communicate with the physical quantity measuring devices,
  • the physical quantity measuring device includes: A physical quantity sensor that measures a physical quantity of a measurement target; a storage unit configured to store physical quantity data obtained by measuring the physical quantity using the physical quantity sensor in a ring buffer format; a timer count unit that counts a count value over time; a measurement processing unit that stores in the storage unit the physical quantity data obtained when the physical quantity is measured by the physical quantity sensor under a predetermined sampling condition based on the count value counted by the timer count unit; a time measurement processing unit that measures an elapsed time since the physical quantity sensor last measured the physical quantity as an elapsed time since the last measurement by the timer counting unit; a transmission processing unit that transmits to the data collecting device, when a predetermined transmission condition is satisfied, a physical quantity data sequence configured so that a measurement order of the physical
  • the physical quantity measuring device transmits to the data collecting device a physical quantity data string configured so that the measurement order can be determined from the multiple physical quantity data obtained when the physical quantity sensor measures each physical quantity under sampling conditions, and the time since last measurement measured by the timer counting unit as the time elapsed since the physical quantity sensor last measured the physical quantity, and the data collecting device determines the measurement time for each of the multiple physical quantity data constituting the physical quantity data string based on the current time measured by the time measuring unit and the time since last measurement. Therefore, the data collecting device can determine the measurement time for each of the physical quantity data without providing a real-time clock circuit on the physical quantity measuring device side.
  • FIG. 1 is an overall configuration diagram showing an example of a data processing system 1.
  • FIG. 2 is a block diagram showing an example of a physical quantity measuring device 3.
  • FIG. 2 is a functional explanatory diagram showing an example of a physical quantity measuring device 3.
  • FIG. 2 is a block diagram showing an example of a data collection device 4.
  • FIG. 2 is a functional explanatory diagram showing an example of a data collection device 4.
  • FIG. 9 is a hardware configuration diagram showing an example of a computer 900 constituting each device. 4 is a flowchart showing an example of an operation of the physical quantity measuring device 3 (data processing device 31) and the data collecting device 4.
  • FIG. 1 is an overall configuration diagram showing an example of a data processing system 1.
  • the data processing system 1 processes physical quantity data obtained when the physical quantity of a measurement target is measured by the pump device 2, and functions as a system for managing the pump device 2.
  • the data processing system 1 mainly comprises a pump device 2 to be monitored, a physical quantity measuring device 3 that can be attached to the pump device 2, a data collection device 4 configured to be able to communicate with the physical quantity measuring device 3, a data management device 5 configured to be able to communicate with the data collection device 4, and a terminal device 6 configured to be able to communicate with the data management device 5.
  • Each of the devices 2-6 is, for example, configured as a general-purpose or dedicated computer (see FIG. 6 described below), and is configured to be able to mutually send and receive various data via a network 7.
  • the number of each of the devices 2-6 is not limited to the example in FIG. 1, and may be one or more.
  • the pump device 2 is a device that transports any fluid, and is installed and used in, for example, infrastructure facilities (waterworks, sewage systems, etc.) and plant facilities (oil refineries, power generation, manufacturing, chemical processes, etc.).
  • the pump device 2 includes a pump section 20, a motor 21 that serves as the drive source for the pump device 2, a coupling section 22 that transmits the drive force generated by the motor 21 to the pump section 20, and a pump control panel 23 that controls the operation of the pump device 2.
  • the pump section 20 is composed of, for example, an impeller, a rotating shaft, bearings, a mechanical seal, a gland packing, a casing, piping, etc.
  • the motor 21 is composed of, for example, an inverter motor or other type of motor.
  • the coupling section 22 is composed of, for example, a coupling, a coupling, a joint, bearings, etc.
  • the pump control panel 23 is, for example, an embedded computer, and controls the rotational operation of the motor 21 based on the set values of the operating conditions set by the user (the person who installs the pump device 2 or the manager, etc.) and the detection values of sensors (not shown) provided in each of the pump section 20 and the motor 21.
  • the pump device 2 may be configured to be able to communicate with each of the devices 3 to 6.
  • the physical quantity measuring device 3 is a device that measures a physical quantity resulting from the pump device 2, and is attached, for example, to any position of the pump section 20, the motor 21, or the joint section 22.
  • the physical quantity measuring device 3 includes a physical quantity sensor 30 that measures the physical quantity of the measurement target, a data processing device 31 that processes physical quantity data obtained when the physical quantity is measured by the physical quantity sensor 30, and a housing 300 that incorporates the physical quantity sensor 30 and the data processing device 31 and can be attached to the pump device 2.
  • the physical quantity to be measured by the physical quantity sensor 30 is, for example, acceleration (vibration), speed, displacement, environmental sound, etc.
  • the physical quantity sensor 30 is composed of, for example, an acceleration sensor capable of measuring acceleration, a speed sensor capable of measuring speed, a displacement sensor capable of measuring displacement, a microphone capable of measuring environmental sound, etc.
  • the physical quantity to be measured is not limited to the above examples, and may be, for example, pressure, load, temperature, current value, voltage value, etc.
  • a physical quantity sensor 30 such as a pressure sensor, load sensor, temperature sensor, current sensor, voltage sensor, etc. is used.
  • the physical quantity sensor 30 may include multiple sensors for measuring multiple physical quantities, respectively.
  • the data processing device 31 is a device for processing physical quantity data obtained by converting analog signals indicating physical quantities measured by the physical quantity sensor 30 into digital signals.
  • the data processing device 31 may include an A/D conversion circuit that converts analog signals into digital signals, or may obtain physical quantity data from the physical quantity sensor 30 after it has been converted into a digital signal.
  • the mounting position of the housing 300 is determined according to the physical quantity to be measured. Note that one physical quantity measuring device 3 may be attached to the pump device 2, or, as shown in FIG. 1, multiple physical quantity measuring devices 3 may be attached. When multiple physical quantity measuring devices 3 are attached, they may measure a common physical quantity or different physical quantities.
  • the data collection device 4 is used by a user (such as the manager of the pump device 2 or an inspection/repair worker) at the installation location of the pump device 2 to collect data from the physical quantity measuring device 3 (specifically, the data processing device 31).
  • the data collection device 4 is composed of a portable computer such as a smartphone or tablet.
  • the data collection device 4 has programs such as applications and browsers installed and accepts various input operations.
  • the data collection device 4 displays the data collected from the physical quantity measuring device 3 on a display screen and transmits the data to the data management device 5.
  • the data management device 5 has a database 50 for managing the data collected by the data collection device 4, and is configured, for example, as a server-type computer or a cloud-type computer.
  • the data management device 5 stores the data received from the data collection device 4 in the database 50, and transmits notification information to the terminal device 6 when the data satisfies a predetermined notification condition. Furthermore, when the data management device 5 receives a reference request for the data stored in the database 50 from the terminal device 6, it transmits reference information for the database 50 to the terminal device 6.
  • the terminal device 6 is a device used by a user (such as the manager of the pump device 2 or an inspection/repair worker) who is located in a remote location away from the installation location of the pump device 2, and is configured, for example, as a stationary computer or a portable computer. Programs such as applications and browsers are installed on the terminal device 6, and the terminal device 6 accepts various input operations and displays various information (notification information and reference information for the database 50) on the display screen.
  • the terminal device 6 may also serve as the data collection device 4.
  • the network 7 is configured by wired or wireless communication, or a combination of wired and wireless communication, according to any communication standard.
  • a standardized communication network such as the Internet, or a communication network managed within a building such as a local network, or a combination of these communication networks can be used.
  • an international standard is typically used as the communication standard for wireless communication. Examples of international standard communication means include IEEE802.15.4, IEEE802.15.1, IEEE802.15.11a, 11b, 11g, 11n, 11ac, 11ad, ISO/IEC14513-3-10, IEEE802.15.4g, etc.
  • methods such as Bluetooth (registered trademark), Bluetooth Low Energy, Wi-Fi, ZigBee (registered trademark), Sub-GHz, EnOcean (registered trademark), and LTE can be used.
  • FIG. 2 is a block diagram showing an example of a physical quantity measuring device 3.
  • FIG. 3 is a functional explanatory diagram showing an example of a physical quantity measuring device 3.
  • the physical quantity measuring device 3 includes, as its main components, a control unit 32, a timer count unit 33, a memory unit 34, a communication unit 35, and a power supply 36 that constitute a data processing device 31.
  • the control unit 32 functions as a measurement processing unit 320, a timing processing unit 321, and a transmission processing unit 322, for example, by executing a data processing program 340 stored in the memory unit 34.
  • the count value C may be, for example, a value obtained by counting the internal clock (clock count value), or a value obtained by converting the clock count value into time based on the clock period (or clock frequency) of the internal clock (time count value). If the clock period is, for example, 0.1 ms, then a clock count value of "600,000 times” is converted into a time count value of "60,000 ms", or in other words, "60 s". In this embodiment, a case will be described in which a time count value is used as the count value C.
  • the memory unit 34 stores various programs (such as the data processing program 340) and data (such as setting information 341, ring buffer data 342, time since last measurement Tf, etc.) used in the operation of the physical quantity measuring device 3.
  • programs such as the data processing program 340
  • data such as setting information 341, ring buffer data 342, time since last measurement Tf, etc.
  • sampling conditions are stored as setting parameters referenced by the control unit 32 when the physical quantity measuring device 3 operates.
  • the setting information 341 is also configured to be configurable via the data collecting device 4.
  • the sampling conditions are conditions that determine the measurement time points at which the physical quantity is measured by the physical quantity sensor 30, and are set, for example, by a sampling period or a sampling frequency. In this embodiment, a case will be described where the sampling period Sp is set as the sampling condition.
  • the ring buffer data 342 stores the physical quantity data D in a ring buffer format when the physical quantity is measured by the physical quantity sensor 30.
  • the ring buffer data 342 has a memory area (physical quantity data memory area) that is secured according to the maximum number of pieces of physical quantity data D that can be stored. As shown in FIG. 3, the ring buffer data 342 is managed by a next storage memory address An indicating the memory address A when the physical quantity data D will be stored next, and a next storage index In indicating the index I when the physical quantity data D will be stored next.
  • the ring buffer data 342 has a data structure in which, for each memory address A arranged in the physical quantity data memory area, an index I to which the measurement order of the physical quantity data D is assigned by, for example, a serial number, a count value C by the timer count unit 33 at the time of measuring the physical quantity data D, and a buffer for storing the physical quantity data D measured by the physical quantity sensor 30 in association with each other.
  • the count value C may be omitted, or if the count value C is, for example, a cumulative value and can be substituted for information indicating the measurement order of the physical quantity data D, the index I may be omitted.
  • the communication unit 35 functions as a communication interface for transmitting and receiving various data, for example, to and from the data collection device 4 via the network 7.
  • the power supply 36 is composed of, for example, a primary battery, a secondary battery, a solar cell, a fuel cell, etc., and supplies power to each part of the physical quantity measuring device 3.
  • the power supply 36 may receive power from the pump device 2.
  • the measurement processing unit 320 stores the physical quantity data D obtained when the physical quantity sensor 30 measures the physical quantity under the sampling conditions defined in the setting information 341 in the ring buffer data 342 of the memory unit 34 based on the count value C counted by the timer count unit 33.
  • the measurement processing unit 320 sends a command to the timer counting unit 33 to indicate the generation period of the interrupt signal in order to make the timer counting unit 33 generate an interrupt signal according to the sampling period Sp as a sampling condition.
  • the measurement processing unit 320 receives the interrupt signal from the timer counting unit 33, measures the physical quantity by the physical quantity sensor 30 at that timing (measurement time point), and acquires the physical quantity data D.
  • the measurement processing unit 320 stores the index I indicated by the next storage index In and the count value C by the timer counting unit 33 when the interrupt signal was accepted in the buffer indicated by the next storage memory address An, together with the acquired physical quantity data D. Furthermore, the measurement processing unit 320 updates the next storage memory address An to the memory address A indicating the next buffer (in the case of the last buffer, it returns to the first buffer), and updates the next storage index In by incrementing the index I.
  • the measurement processing unit 320 may acquire the physical quantity data D by performing a predetermined calculation on the physical quantity measured by the physical quantity sensor 30.
  • the calculation on the physical quantity data D is, for example, a calculation to obtain a moving average of the physical quantity data D for a predetermined number of data points having different measurement times, such as a simple moving average or a weighted moving average.
  • the timing processing unit 321 measures the time elapsed since the physical quantity sensor 30 last measured the physical quantity as physical quantity data D as the elapsed time since last measurement Tf. For example, the timing processing unit 321 sends a command to the timer counting unit 33 to instruct the reading of the count value C at the measurement time when the physical quantity sensor 30 measured the physical quantity as physical quantity data D and at the target time for measuring the elapsed time since last measurement Tf. In this way, the timing processing unit 321 measures the elapsed time since last measurement Tf by taking the difference between the count value C by the timer counting unit 33 at the measurement time of the physical quantity data D and the count value C by the timer counting unit 33 at the target time for measuring.
  • the timing processing unit 321 may measure the elapsed time Tf since the last measurement using the count value C corresponding to the physical quantity data D last stored in the ring buffer data 342 as the count value C at the measurement time point.
  • the timing processing unit 321 may also measure the elapsed time Tf since the last measurement using the count value C at the target time point by sending a command to the timer count unit 33 to reset the count value C at the measurement time point of the physical quantity data D.
  • the transmission processing unit 322 transmits to the data collecting device 4 a physical quantity data string Dset1 composed of multiple physical quantity data D stored in the ring buffer data 342 of the storage unit 34, and the elapsed time since last measurement Tf timed by the timing processing unit 321 at the time when the transmission condition is satisfied (time to be measured).
  • the transmission processing unit 322 may transmit the sampling condition defined in the setting information 341 together with the physical quantity data string Dset1 and the elapsed time since last measurement Tf to the data collecting device 4.
  • the transmission condition may be, for example, when a data request for physical quantity data D is received from the data collection device 4, or when the number of data points of physical quantity data D stored in the ring buffer data 342 exceeds a predetermined reference value.
  • the physical quantity data string Dset1 is a data set consisting of a plurality of physical quantity data D configured to enable the measurement order of the physical quantity data D to be determined.
  • the physical quantity data string Dset1 includes at least one of an index I and a count value C corresponding to each of the physical quantity data D in order to enable the measurement order of the physical quantity data D to be determined.
  • the time elapsed since the last measurement Tf corresponds to the time elapsed from the last measurement of a physical quantity as the physical quantity data D among the plurality of physical quantity data D constituting the physical quantity data string Dset1 to the time when the transmission condition is satisfied, by being timed by the timing processing unit 321 at the time when the transmission condition is satisfied.
  • the physical quantity data string Dset1 is configured of 100 pieces of physical quantity data D1 to D100, and includes an index I and a count value C.
  • the time elapsed since the last measurement Tf is illustrated as the time elapsed from the measurement time of the last measured physical quantity data D100.
  • FIG. 4 is a block diagram showing an example of a data collection device 4.
  • FIG. 5 is a functional explanatory diagram showing an example of a data collection device 4.
  • the data collection device 4 includes, as its main components, a control unit 40, a time measurement unit 41, a memory unit 42, a communication unit 43, an input unit 44, and an output unit 45.
  • the control unit 40 functions as a reception processing unit 400, a time identification processing unit 401, and a storage processing unit 402, for example, by executing a data collection program 420 stored in the storage unit 42.
  • the time measurement unit 41 is formed, for example, by an integrated circuit that incorporates a real-time clock (RTC) circuit, and measures the current time Tc.
  • the time measurement unit 41 operates by accepting various commands from the control unit 40. Examples of commands include reading and setting the current time Tc.
  • the time measurement unit 41 may be incorporated into the control unit 40 and realized as part of the functions of the control unit 40.
  • the storage unit 42 stores various programs (such as the data collection program 420) and data (such as the setting information 421) used in the operation of the data collection device 4.
  • the setting information 421 stores, for example, setting parameters (such as data collection conditions) referenced by the control unit 40 when the data collection device 4 operates.
  • the setting information 421 is also configured to be configurable, for example, via the data collection device 4.
  • the communication unit 43 functions as a communication interface that transmits and receives various data between, for example, the physical quantity measuring device 3 and the data management device 5 via the network 7.
  • the input unit 44 and the output unit 45 function as a user interface by accepting input operations from the user and outputting various information via a display screen or voice.
  • the reception processing unit 400 transmits a data request for the physical quantity data D to the physical quantity measuring device 3, and receives the physical quantity data string Dset1 and the time since last measurement Tf from the physical quantity measuring device 3 in response.
  • the reception processing unit 400 transmits a data request for the physical quantity data D to the physical quantity measuring device 3 when, as a collection condition, a user's input operation instructing collection of physical data is accepted, when a data collection condition defined in the setting information 421 is satisfied, or when an execution command is received from the data management device 5 instructing collection of physical data.
  • the reception processing unit 400 may further receive sampling conditions from the physical quantity measuring device 3 along with the physical quantity data string Dset1 and the time since last measurement Tf.
  • the time determination processing unit 401 determines the measurement time Ts when the physical quantity was measured as the physical quantity data D for each of the multiple physical quantity data D constituting the physical quantity data string Dset1 received by the receiving processing unit 400, based on the current time Tc measured by the time measurement unit 41 and the time since the last measurement Tf received by the receiving processing unit 400.
  • the time determination processing unit 401 may determine a measurement time Ts for each of the multiple physical quantity data D constituting the physical quantity data string Dset1 based on the current time Tc, the time elapsed since the last measurement Tf, and the sampling conditions. In that case, when determining the measurement time Ts, instead of subtracting the count value C, the time determination processing unit 401 may subtract, for example, a time equivalent to the sampling period Sp based on the sampling conditions.
  • the storage processing unit 402 associates the measurement time Ts identified by the time identification processing unit 401 with each piece of physical quantity data D to the physical quantity data string Dset1 received by the reception processing unit 400, and stores the data in the database 50 as a storage device. Specifically, the storage processing unit 402 associates the physical quantity data D and the measurement time Ts with each piece of physical quantity data D to generate a physical quantity data string Dset2 with the measurement time, which is composed of the physical quantity data D and the measurement time Ts. The physical quantity data string Dset2 with the measurement time is then transmitted by the storage processing unit 402 to the data management device 5, where it is stored in the database 50.
  • the physical quantity data string Dset2 with the measurement time may be displayed on the display screen of the data collecting device 4.
  • identification information for identifying at least one of the pump device 2 and the physical quantity measuring device 3 (such as the device ID of the pump device 2 or the device ID of the physical quantity measuring device 3) may be added to the physical quantity data string Dset2 with the measurement time by the storage processing unit 402 (which may be the transmission processing unit 322 of the physical quantity measuring device 3).
  • the physical quantity data string Dset2 with the measurement time may be stored in the database 50 in a state associated with the identification information.
  • FIG. 6 is a hardware configuration diagram showing an example of a computer 900 that constitutes each device.
  • Each of the pump device 2 (mainly the pump control panel 23), the physical quantity measuring device 3 (mainly the data processing device 31), the data collecting device 4, the data management device 5, and the terminal device 6 is configured by a general-purpose or dedicated computer 900.
  • the computer 900 includes, as its main components, a bus 910, a processor 912, a memory 914, an input device 916, an output device 917, a display device 918, a storage device 920, a communication I/F (interface) unit 922, an external device I/F unit 924, an I/O (input/output) device I/F unit 926, and a media input/output unit 928.
  • a bus 910 the bus 910
  • a processor 912 the computer 900
  • a memory 914 includes, as its main components, a bus 910, a processor 912, a memory 914, an input device 916, an output device 917, a display device 918, a storage device 920, a communication I/F (interface) unit 922, an external device I/F unit 924, an I/O (input/output) device I/F unit 926, and a media input/output unit 928.
  • I/F interface
  • the processor 912 is composed of one or more arithmetic processing devices (CPU (Central Processing Unit), MPU (Micro-Processing Unit), DSP (Digital Signal Processor), GPU (Graphics Processing Unit), NPU (Neural Processing Unit), etc.) and operates as a control unit that controls the entire computer 900.
  • the memory 914 stores various data and programs 930, and is composed of, for example, volatile memory (DRAM, SRAM, etc.) that functions as main memory, non-volatile memory (ROM), flash memory, etc.
  • the input device 916 is, for example, a keyboard, a mouse, a numeric keypad, an electronic pen, etc., and functions as an input unit.
  • the output device 917 is, for example, a sound (audio) output device, a vibration device, etc., and functions as an output unit.
  • the display device 918 is, for example, a liquid crystal display, an organic EL display, electronic paper, a projector, etc., and functions as an output unit.
  • the input device 916 and the display device 918 may be integrated, such as a touch panel display.
  • the storage device 920 is, for example, a HDD, an SSD, etc., and functions as a memory unit. The storage device 920 stores various data necessary for the execution of the operating system and the program 930.
  • the communication I/F unit 922 is connected to a network 940 (which may be the same as the network 7 in FIG. 1) such as the Internet or an intranet by wire or wirelessly, and functions as a communication unit that transmits and receives data to and from other computers according to a predetermined communication standard.
  • the external device I/F unit 924 is connected to an external device 950 such as a camera, printer, scanner, or reader/writer by wire or wirelessly, and functions as a communication unit that transmits and receives data to and from the external device 950 according to a predetermined communication standard.
  • the I/O device I/F unit 926 is connected to an I/O device 960 such as various sensors and actuators, and functions as a communication unit that transmits and receives various signals and data, such as detection signals from sensors and control signals to actuators, between the I/O device 960.
  • the media input/output unit 928 is composed of, for example, a drive device such as a DVD drive or a CD drive, a memory card slot, and a USB connector, and reads and writes data to and from media (non-temporary storage media) 970 such as DVDs, CDs, memory cards, and USB memories.
  • processor 912 calls up program 930 stored in storage device 920 into memory 914, executes it, and controls each part of computer 900 via bus 910.
  • Program 930 may be stored in memory 914 instead of storage device 920.
  • Program 930 may be recorded on media 970 in an installable file format or an executable file format, and provided to computer 900 via media input/output unit 928.
  • Program 930 may be provided to computer 900 by downloading it over network 940 via communication I/F unit 922.
  • the computer 900 may realize various functions that are realized by the processor 912 executing the program 930 using hardware such as an FPGA (Field-Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit).
  • FPGA Field-Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • Computer 900 may be, for example, a desktop computer or a portable computer, and may be any type of electronic device.
  • Computer 900 may be a client computer, a server computer, or a cloud computer, or may be, for example, an embedded computer called a control panel, controller (including a microcomputer, programmable logic controller, or sequencer), etc.
  • FIG. 7 is a flowchart showing an example of the operation of the physical quantity measuring device 3 (data processing device 31) and the data collecting device 4.
  • a series of processes (data processing method) shown in Fig. 7 is executed by a process (data providing method) by the physical quantity measuring device 3 and a process (data collecting method) by the data collecting device 4.
  • the data collection device 4 receives a user input operation instructing collection of physical quantity data D when the physical quantity measuring device 3 repeatedly measures a physical quantity according to the sampling period Sp as the sampling condition defined in the setting information 341.
  • step S100 when the measurement processing unit 320 of the physical quantity measuring device 3 receives an interrupt signal at a timing (measurement time point) based on the sampling condition (sampling period Sp in this embodiment) based on the count value C measured by the timer count unit 33, the measurement processing unit 320 measures the physical quantity using the physical quantity sensor 30 and acquires physical quantity data D. Then, the measurement processing unit 320 stores the index I and count value C together with the acquired physical quantity data D in the ring buffer data 342. At that time, the measurement processing unit 320 updates the next storage memory address An and the next storage index In.
  • the measurement processing unit 320 repeats step S100 described above, and physical quantity data D is accumulated in the ring buffer data 342.
  • step S200 when the reception processing unit 400 of the data collection device 4 receives a user input operation instructing the collection of physical quantity data D, the reception processing unit 400 starts communication with the physical quantity measuring device 3 and transmits a data request for the physical quantity data D to the physical quantity measuring device 3.
  • step S110 the transmission processing unit 322 receives a data request from the data collection device 4 and determines that the transmission conditions are met.
  • step S111 the transmission processing unit 322 refers to the ring buffer data 342 and acquires a physical quantity data string Dset1 composed of multiple pieces of physical quantity data D.
  • step S112 the timing processing unit 321 measures the time since last measurement Tf, which indicates the time since the physical quantity sensor 30 last measured the physical quantity at the time when the transmission condition is satisfied. That is, the timing processing unit 321 measures the time since last measurement Tf, which is the time that has elapsed from the measurement time when the physical quantity data D when the physical quantity was last measured, among the multiple physical quantity data D included in the physical quantity data string Dset1, was stored, to the time when the transmission condition is satisfied.
  • step S113 the transmission processing unit 322 transmits the physical quantity data sequence Dset1 acquired in step S110 and the time since the last measurement Tf measured in step S112 to the data collection device 4.
  • step S210 the reception processing unit 400 receives the physical quantity data sequence Dset1 and the time since the last measurement Tf from the physical quantity measuring device 3 as a response to the data request sent in step S200.
  • step S211 the time determination processing unit 401 obtains the current time Tc measured by the time measurement unit 41 by sending a command to the time measurement unit 41 to read the current time Tc.
  • step S212 the time determination processing unit 401 determines the measurement time Ts for each of the multiple physical quantity data D constituting the physical quantity data string Dset1 received in step S210, based on the current time Tc acquired in step S211 and the time since the last measurement Tf received in step S210.
  • step S213 the storage processing unit 402 generates a physical quantity data string Dset2 with the measurement time by associating the measurement time Ts identified in step S212 with each piece of physical quantity data D with the physical quantity data string Dset1 received in step S210.
  • the storage processing unit 402 then transmits the physical quantity data string Dset2 with the measurement time to the data management device 5, thereby storing it in the database 50, which serves as a storage device.
  • step S100 corresponds to a measurement process
  • steps S110 to S111 and S112 correspond to a timing process
  • step S113 corresponds to a transmission process.
  • steps S200 and S210 correspond to a reception process
  • steps S211 and S212 correspond to a time determination process
  • step S213 corresponds to a storage process.
  • the physical quantity measuring device 3 (data processing device 31) transmits to the data collecting device a physical quantity data string Dset1 configured so that the measurement order can be determined based on a plurality of physical quantity data D obtained when the physical quantity sensor 30 measures each physical quantity under sampling conditions, and a time elapsed since last measurement Tf measured by the timer counting unit 33 as the time elapsed since the physical quantity sensor 30 last measured the physical quantity, and the data collecting device determines the measurement time Ts for each of the plurality of physical quantity data D constituting the physical quantity data string Dset1 based on the current time Tc measured by the time measuring unit 41 and the time elapsed since last measurement Tf. Therefore, the data collecting device 4 can determine the measurement time Ts for each of the physical quantity data D without providing a real-time clock circuit on the physical quantity measuring device 3 (data processing device 31) side.
  • the data processing device 31 is realized by the physical quantity measuring device 3, which is a device separate from the pump device 2.
  • the functions of the data processing device 31 may be realized by the pump device 2 by being incorporated into the pump control panel 23 of the pump device 2.
  • the physical quantity sensor 30 and the pump control panel 23 may be connected by wire or wirelessly to transmit and receive various data.
  • the pump device 2 may also be equipped with the physical quantity sensor 30.
  • the physical quantity data string Dset1 transmitted by the physical quantity measuring device 3 is transmitted by the data collecting device 4 to the data management device 5 as a physical quantity data string Dset2 with the measurement time, and stored in the database 50 as a storage device.
  • the device to which the physical quantity data string Dset2 with the measurement time is transmitted and the storage device to which it is stored may be changed as appropriate.
  • the physical quantity data string Dset2 with the measurement time may be transmitted to the data management device 5 or the terminal device 6, or may be stored in a storage device provided in the data collecting device 4 or the terminal device 6.
  • the physical quantity measuring device 3 (data processing device 31) operates according to the flowchart shown in FIG. 7.
  • the order in which the steps are executed may be changed as appropriate, and some steps may be omitted.
  • the physical quantity measuring device 3 is described as being attached to the pump device 2, but it may also be attached to various devices, such as a refrigerator, a gas machine, a machine tool, a press machine, a conveying machine, a diagnostic device, etc. In that case, the physical quantity sensor 30 only needs to measure the physical quantity resulting from the various devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

This data processing system includes a physical quantity measuring device and a data collection device. This physical quantity measuring device transmits a physical quantity data string constituted by a plurality of physical quantity data, which are obtained when the physical quantity is measured by a physical quantity sensor under sampling conditions, so that the measurement order thereof can be determined, and a time elapsed since the last measurement, which is obtained by measuring, with a timer count unit, the time elapsed after the physical quantity was measured last time by the physical quantity sensor, to the data collection device. The data collection device specifies a measurement time for each of the plurality of physical quantity data, which constitute the physical quantity data string, on the basis of the current time measured by a time measurement unit and the time elapsed since the last measurement.

Description

データ処理システム、物理量計測装置、データ収集装置、データ処理方法、データ提供方法、及び、データ収集方法DATA PROCESSING SYSTEM, PHYSICAL QUANTITY MEASURING APPARATUS, DATA COLLECTION APPARATUS, DATA PROCESSING METHOD, DATA PROVIDING METHOD, AND DATA COLLECTION METHOD
 本発明は、データ処理システム、物理量計測装置、データ収集装置、データ処理方法、データ提供方法、及び、データ収集方法に関する。
 本願は、2022年9月29日に、日本に出願された特願2022-156371号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a data processing system, a physical quantity measuring device, a data collecting device, a data processing method, a data providing method, and a data collecting method.
This application claims priority based on Japanese Patent Application No. 2022-156371, filed on September 29, 2022, the contents of which are incorporated herein by reference.
 従来、監視対象物に計測装置を取り付けて、監視対象装置の状態を監視することが行われている。例えば、特許文献1には、電源モニタ情報抽出手段により抽出されたモニタ情報に、リアルタイムクロック(RTC)回路で計測した日時(計測時刻)を付加して、遠隔監視システムに送信する電源モニタ装置が開示されている。  Traditionally, a measuring device is attached to an object to be monitored to monitor the state of the device. For example, Patent Document 1 discloses a power supply monitor device that adds the date and time (measurement time) measured by a real-time clock (RTC) circuit to monitor information extracted by a power supply monitor information extraction means, and transmits the information to a remote monitoring system.
日本国特開2002-34181号公報Japanese Patent Publication No. 2002-34181
 特許文献1に開示された電源モニタ装置では、モニタ情報に計測時刻を付加するためのリアルタイムクロック回路を備えているため、コストアップの原因となっている。そこで、コスト低減のため、リアルタイムクロック回路を無くすことが考えられる。しかしながら、リアルタイムクロック回路を単になくしただけでは、モニタ情報を解析する際に、どの時点で取得されたモニタ情報であるかが不明となり、例えば、モニタ情報を時系列で解析することが困難になるという問題点があった。 The power supply monitoring device disclosed in Patent Document 1 is equipped with a real-time clock circuit for adding the measurement time to the monitoring information, which causes an increase in costs. Therefore, in order to reduce costs, it is considered to eliminate the real-time clock circuit. However, simply eliminating the real-time clock circuit poses the problem that, when analyzing the monitoring information, it becomes unclear at what point in time the monitoring information was acquired, making it difficult to analyze the monitoring information in chronological order, for example.
 本発明は、上述した課題に鑑み、物理量を計測する計測装置側にリアルタイムクロック回路を備えることなく、物理量データの収集装置側で計測時刻を特定することを可能とするデータ処理システム、物理量計測装置、データ収集装置、データ処理方法、データ提供方法、及び、データ収集方法を提供することを目的とする。 In view of the above-mentioned problems, the present invention aims to provide a data processing system, a physical quantity measuring device, a data collecting device, a data processing method, a data providing method, and a data collecting method that make it possible to identify the measurement time on the physical quantity data collecting device side without providing a real-time clock circuit on the measuring device side that measures the physical quantity.
 上記目的を達成するために、本発明の一態様に係るデータ処理システムは、
 1又は複数の物理量計測装置と、前記物理量計測装置と通信可能に構成された1又は複数のデータ収集装置と、を備えるデータ処理システムであって、
 前記物理量計測装置は、
  計測対象の物理量を計測する物理量センサと、
  前記物理量センサにより前記物理量を計測した物理量データをリングバッファ形式で記憶する記憶部と、
  時間の経過に伴ってカウント値をカウントするタイマーカウント部と、
  前記タイマーカウント部によりカウントされた前記カウント値に基づいて、所定のサンプリング条件にて前記物理量センサにより前記物理量を計測したときの前記物理量データを前記記憶部に記憶する計測処理部と、
  前記物理量センサが前記物理量を最後に計測してからの経過時間を前記タイマーカウント部により最終計測後経過時間として計時する計時処理部と、
  所定の送信条件が満たされたとき、前記記憶部に記憶された複数の前記物理量データにより前記物理量データの計測順が判別可能に構成された物理量データ列と、前記計時処理部により計時された前記最終計測後経過時間とを前記データ収集装置に送信する送信処理部と、を備え、
 前記データ収集装置は、
  現在時刻を計測する時刻計測部と、
  前記物理量計測装置から前記物理量データ列と前記最終計測後経過時間とを受信する受信処理部と、
  前記時刻計測部により計測された前記現在時刻と、前記受信処理部により受信された前記最終計測後経過時間とに基づいて、前記受信処理部により受信された前記物理量データ列を構成する複数の前記物理量データの各々に対して前記物理量データとして前記物理量が計測されたときの計測時刻を特定する時刻特定処理部と、
  前記受信処理部により受信された前記物理量データ列に、前記時刻特定処理部により特定された前記計測時刻を前記物理量データ毎に対応付けて記憶装置に記憶する記憶処理部と、を備える。
In order to achieve the above object, a data processing system according to one aspect of the present invention comprises:
A data processing system including one or more physical quantity measuring devices and one or more data collecting devices configured to be able to communicate with the physical quantity measuring devices,
The physical quantity measuring device includes:
A physical quantity sensor that measures a physical quantity of a measurement target;
a storage unit configured to store physical quantity data obtained by measuring the physical quantity using the physical quantity sensor in a ring buffer format;
a timer count unit that counts a count value over time;
a measurement processing unit that stores in the storage unit the physical quantity data obtained when the physical quantity is measured by the physical quantity sensor under a predetermined sampling condition based on the count value counted by the timer count unit;
a time measurement processing unit that measures an elapsed time since the physical quantity sensor last measured the physical quantity as an elapsed time since the last measurement by the timer counting unit;
a transmission processing unit that transmits to the data collecting device, when a predetermined transmission condition is satisfied, a physical quantity data sequence configured so that a measurement order of the physical quantity data can be determined based on the plurality of physical quantity data stored in the storage unit, and the elapsed time since the last measurement measured by the timing processing unit,
The data collection device includes:
a time measurement unit that measures the current time;
a reception processing unit that receives the physical quantity data string and the elapsed time since the last measurement from the physical quantity measuring device;
a time determination processing unit that determines a measurement time when a physical quantity was measured as the physical quantity data for each of the plurality of physical quantity data constituting the physical quantity data sequence received by the reception processing unit, based on the current time measured by the time measurement unit and the elapsed time since last measurement received by the reception processing unit;
The physical quantity data sequence received by the reception processing unit is associated with the measurement time identified by the time identification processing unit for each piece of physical quantity data, and the associated measurement time is stored in a storage device.
 本発明に係るデータ処理装置によれば、物理量計測装置が、サンプリング条件にて物理量センサが物理量をそれぞれ計測したときの複数の物理量データによりその計測順が判別可能に構成された物理量データ列と、物理量センサが物理量を最後に計測してからの経過時間をタイマーカウント部により計測した最終計測後経過時間とをデータ収集装置に送信し、データ収集装置が、時刻計測部により計測された現在時刻と、最終計測後経過時間とに基づいて、物理量データ列を構成する複数の物理量データの各々に対して計測時刻を特定する。したがって、物理量計測装置側にリアルタイムクロック回路を備えることなく、データ収集装置側で物理量データの各々における計測時刻を特定することができる。 In the data processing device according to the present invention, the physical quantity measuring device transmits to the data collecting device a physical quantity data string configured so that the measurement order can be determined from the multiple physical quantity data obtained when the physical quantity sensor measures each physical quantity under sampling conditions, and the time since last measurement measured by the timer counting unit as the time elapsed since the physical quantity sensor last measured the physical quantity, and the data collecting device determines the measurement time for each of the multiple physical quantity data constituting the physical quantity data string based on the current time measured by the time measuring unit and the time since last measurement. Therefore, the data collecting device can determine the measurement time for each of the physical quantity data without providing a real-time clock circuit on the physical quantity measuring device side.
 上記以外の課題、構成及び効果は、後述する発明を実施するための形態にて明らかにされる。  Problems, configurations and effects other than those mentioned above will be made clear in the detailed description of the invention described below.
データ処理システム1の一例を示す全体構成図である。1 is an overall configuration diagram showing an example of a data processing system 1. 物理量計測装置3の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of a physical quantity measuring device 3. 物理量計測装置3の一例を示す機能説明図である。FIG. 2 is a functional explanatory diagram showing an example of a physical quantity measuring device 3. データ収集装置4の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of a data collection device 4. データ収集装置4の一例を示す機能説明図である。FIG. 2 is a functional explanatory diagram showing an example of a data collection device 4. 各装置を構成するコンピュータ900の一例を示すハードウエア構成図である。FIG. 9 is a hardware configuration diagram showing an example of a computer 900 constituting each device. 物理量計測装置3(データ処理装置31)及びデータ収集装置4による動作の一例を示すフローチャートである。4 is a flowchart showing an example of an operation of the physical quantity measuring device 3 (data processing device 31) and the data collecting device 4.
 以下、図面を参照して本発明を実施するための実施形態について説明する。以下では、本発明の目的を達成するための説明に必要な範囲を模式的に示し、本発明の該当部分の説明に必要な範囲を主に説明する。 Below, an embodiment for carrying out the present invention will be described with reference to the drawings. Below, the scope necessary for the explanation to achieve the object of the present invention will be shown in a schematic manner, and the scope necessary for the explanation of the relevant parts of the present invention will be mainly described.
 図1は、データ処理システム1の一例を示す全体構成図である。データ処理システム1は、ポンプ装置2にて計測対象の物理量を計測したときの物理量データを処理し、ポンプ装置2を管理するためのシステムとして機能する。 FIG. 1 is an overall configuration diagram showing an example of a data processing system 1. The data processing system 1 processes physical quantity data obtained when the physical quantity of a measurement target is measured by the pump device 2, and functions as a system for managing the pump device 2.
 データ処理システム1は、その主要な構成として、監視対象のポンプ装置2と、ポンプ装置2に取付可能な物理量計測装置3と、物理量計測装置3と通信可能に構成されたデータ収集装置4と、データ収集装置4と通信可能に構成されたデータ管理装置5と、データ管理装置5と通信可能に構成された端末装置6とを備える。各装置2~6は、例えば、汎用又は専用のコンピュータ(後述の図6参照)で構成されるとともに、ネットワーク7を介して各種のデータを相互に送受信可能に構成される。なお、各装置2~6の数は、図1の例に限られず、1つでもよいし、複数でもよい。 The data processing system 1 mainly comprises a pump device 2 to be monitored, a physical quantity measuring device 3 that can be attached to the pump device 2, a data collection device 4 configured to be able to communicate with the physical quantity measuring device 3, a data management device 5 configured to be able to communicate with the data collection device 4, and a terminal device 6 configured to be able to communicate with the data management device 5. Each of the devices 2-6 is, for example, configured as a general-purpose or dedicated computer (see FIG. 6 described below), and is configured to be able to mutually send and receive various data via a network 7. The number of each of the devices 2-6 is not limited to the example in FIG. 1, and may be one or more.
 ポンプ装置2は、任意の流体を移送する装置であり、例えば、インフラ設備(上水道、下水道等)やプラント設備(石油精製、発電、製造、化学プロセス等)に設置されて使用される。ポンプ装置2は、ポンプ部20と、ポンプ装置2の駆動源となるモータ21と、モータ21が発生した駆動力をポンプ部20に伝達する継手部22と、ポンプ装置2の動作を制御するポンプ制御盤23とを備える。 The pump device 2 is a device that transports any fluid, and is installed and used in, for example, infrastructure facilities (waterworks, sewage systems, etc.) and plant facilities (oil refineries, power generation, manufacturing, chemical processes, etc.). The pump device 2 includes a pump section 20, a motor 21 that serves as the drive source for the pump device 2, a coupling section 22 that transmits the drive force generated by the motor 21 to the pump section 20, and a pump control panel 23 that controls the operation of the pump device 2.
 ポンプ部20は、例えば、羽根車、回転軸、軸受、メカニカルシール、グランドパッキン、ケーシング、配管等で構成される。モータ21は、例えば、インバータモータ等の任意の形式のモータで構成される。継手部22は、例えば、カップリング、継手、ジョイント、軸受等で構成される。ポンプ制御盤23は、例えば、組込型コンピュータで構成され、ユーザ(ポンプ装置2の設置作業者や管理者等)により運転条件が設定された設定値と、ポンプ部20及びモータ21の各部に設けられたセンサ類(不図示)の検出値とに基づいて、モータ21の回転動作を制御する。なお、ポンプ装置2は、各装置3~6と通信可能に構成されていてもよい。 The pump section 20 is composed of, for example, an impeller, a rotating shaft, bearings, a mechanical seal, a gland packing, a casing, piping, etc. The motor 21 is composed of, for example, an inverter motor or other type of motor. The coupling section 22 is composed of, for example, a coupling, a coupling, a joint, bearings, etc. The pump control panel 23 is, for example, an embedded computer, and controls the rotational operation of the motor 21 based on the set values of the operating conditions set by the user (the person who installs the pump device 2 or the manager, etc.) and the detection values of sensors (not shown) provided in each of the pump section 20 and the motor 21. The pump device 2 may be configured to be able to communicate with each of the devices 3 to 6.
 物理量計測装置3は、ポンプ装置2に起因する物理量を計測する装置であり、例えば、ポンプ部20、モータ21又は継手部22の任意の位置に取り付けられる。物理量計測装置3は、計測対象の物理量を計測する物理量センサ30と、物理量センサ30により物理量を計測したときの物理量データを処理するデータ処理装置31と、物理量センサ30及びデータ処理装置31を内蔵し、ポンプ装置2に取付可能な筐体300とを備える。 The physical quantity measuring device 3 is a device that measures a physical quantity resulting from the pump device 2, and is attached, for example, to any position of the pump section 20, the motor 21, or the joint section 22. The physical quantity measuring device 3 includes a physical quantity sensor 30 that measures the physical quantity of the measurement target, a data processing device 31 that processes physical quantity data obtained when the physical quantity is measured by the physical quantity sensor 30, and a housing 300 that incorporates the physical quantity sensor 30 and the data processing device 31 and can be attached to the pump device 2.
 物理量センサ30による計測対象の物理量は、例えば、加速度(振動)、速度、変位、環境音等である。物理量センサ30は、例えば、加速度を計測可能な加速度センサ、速度を計測可能な速度センサ、変位を計測可能な変位センサ、環境音を計測可能なマイクロホン等で構成される。なお、計測対象の物理量は、上記の例に限られず、例えば、圧力、荷重、温度、電流値、電圧値等の物理量でもよく、その場合には、圧力センサ、荷重センサ、温度センサ、電流センサ、電圧センサ等の物理量センサ30が用いられる。また、物理量センサ30は、複数の物理量をそれぞれ計測するための複数のセンサを含んでもよい。 The physical quantity to be measured by the physical quantity sensor 30 is, for example, acceleration (vibration), speed, displacement, environmental sound, etc. The physical quantity sensor 30 is composed of, for example, an acceleration sensor capable of measuring acceleration, a speed sensor capable of measuring speed, a displacement sensor capable of measuring displacement, a microphone capable of measuring environmental sound, etc. Note that the physical quantity to be measured is not limited to the above examples, and may be, for example, pressure, load, temperature, current value, voltage value, etc. In that case, a physical quantity sensor 30 such as a pressure sensor, load sensor, temperature sensor, current sensor, voltage sensor, etc. is used. Furthermore, the physical quantity sensor 30 may include multiple sensors for measuring multiple physical quantities, respectively.
 データ処理装置31は、物理量センサ30により計測された物理量を示すアナログ信号がデジタル信号に変換された物理量データを処理するための装置である。なお、データ処理装置31は、アナログ信号をデジタル信号に変換するA/D変換回路を備えていてもよいし、物理量センサ30からデジタル信号に変換後の物理量データを取得してもよい。 The data processing device 31 is a device for processing physical quantity data obtained by converting analog signals indicating physical quantities measured by the physical quantity sensor 30 into digital signals. The data processing device 31 may include an A/D conversion circuit that converts analog signals into digital signals, or may obtain physical quantity data from the physical quantity sensor 30 after it has been converted into a digital signal.
 筐体300の取付位置は、計測対象の物理量に応じて決められる。なお、ポンプ装置2には、1つの物理量計測装置3が取り付けられてもよいし、図1に示すように、複数の物理量計測装置3が取り付けられてもよい。複数の物理量計測装置3が取り付けられる場合には、共通の物理量を計測してもよいし、異なる物理量を計測してもよい。 The mounting position of the housing 300 is determined according to the physical quantity to be measured. Note that one physical quantity measuring device 3 may be attached to the pump device 2, or, as shown in FIG. 1, multiple physical quantity measuring devices 3 may be attached. When multiple physical quantity measuring devices 3 are attached, they may measure a common physical quantity or different physical quantities.
 データ収集装置4は、ポンプ装置2の設置場所に所在するユーザ(ポンプ装置2の管理者や点検・修理作業者等)により使用されて、物理量計測装置3(具体的には、データ処理装置31)からデータを収集する装置である。データ収集装置4は、例えば、スマートフォンやタブレット等の携帯型コンピュータで構成される。データ収集装置4のユーザが、例えば、物理量計測装置3から所定の距離内に接近したときに、物理量計測装置3との間で通信が確立されることで、データ収集装置4は物理量計測装置3からデータを収集する。また、データ収集装置4は、アプリケーションやブラウザ等のプログラムがインストールされて、各種の入力操作を受け付ける。また、データ収集装置4は、物理量計測装置3から収集したデータを表示画面に表示したり、そのデータをデータ管理装置5に送信したりする。 The data collection device 4 is used by a user (such as the manager of the pump device 2 or an inspection/repair worker) at the installation location of the pump device 2 to collect data from the physical quantity measuring device 3 (specifically, the data processing device 31). The data collection device 4 is composed of a portable computer such as a smartphone or tablet. When the user of the data collection device 4 approaches within a predetermined distance from the physical quantity measuring device 3, for example, communication is established between the data collection device 4 and the physical quantity measuring device 3, and the data collection device 4 collects data from the physical quantity measuring device 3. In addition, the data collection device 4 has programs such as applications and browsers installed and accepts various input operations. In addition, the data collection device 4 displays the data collected from the physical quantity measuring device 3 on a display screen and transmits the data to the data management device 5.
 データ管理装置5は、データ収集装置4により収集されたデータを管理するためのデータベース50を備え、例えば、サーバ型コンピュータやクラウド型コンピュータで構成される。データ管理装置5は、データ収集装置4から受信したデータをデータベース50に格納したり、そのデータが所定の通知条件を満たすときに、通知情報を端末装置6に送信したりする。さらに、データ管理装置5は、データベース50に格納したデータの参照要求を端末装置6から受け付けたときに、データベース50の参照情報を端末装置6に送信する。 The data management device 5 has a database 50 for managing the data collected by the data collection device 4, and is configured, for example, as a server-type computer or a cloud-type computer. The data management device 5 stores the data received from the data collection device 4 in the database 50, and transmits notification information to the terminal device 6 when the data satisfies a predetermined notification condition. Furthermore, when the data management device 5 receives a reference request for the data stored in the database 50 from the terminal device 6, it transmits reference information for the database 50 to the terminal device 6.
 端末装置6は、ポンプ装置2の設置場所から離れた遠隔地に所在するユーザ(ポンプ装置2の管理者や点検・修理作業者等)により使用される装置であり、例えば、据置型コンピュータや携帯型コンピュータで構成される。端末装置6は、アプリケーションやブラウザ等のプログラムがインストールされて、各種の入力操作を受け付けるとともに、各種の情報(通知情報やデータベース50の参照情報)を表示画面に表示する。なお、端末装置6は、データ収集装置4を兼用してもよい。 The terminal device 6 is a device used by a user (such as the manager of the pump device 2 or an inspection/repair worker) who is located in a remote location away from the installation location of the pump device 2, and is configured, for example, as a stationary computer or a portable computer. Programs such as applications and browsers are installed on the terminal device 6, and the terminal device 6 accepts various input operations and displays various information (notification information and reference information for the database 50) on the display screen. The terminal device 6 may also serve as the data collection device 4.
 ネットワーク7は、任意の通信規格に従って有線通信又は無線通信、あるいは、有線通信と無線通信の組合せにより構成される。具体的には、例えば、インターネット等の標準化された通信網、又はローカルネットワーク等の建物内で管理される通信網、あるいは、これらの通信網の組合せを利用することができる。また、無線通信の通信規格としては、典型的には国際規格が用いられる。国際規格の通信手段として、IEEE802.15.4、IEEE802.15.1、IEEE802.15.11a、11b、11g、11n、11ac、11ad、ISO/IEC14513-3-10、IEEE802.15.4g等の方式がある。また、Bluetooth(登録商標)、BluetoothLowEnergy、Wi-Fi、ZigBee(登録商標)、Sub-GHz、EnOcean(登録商標)、LTE等の方式を用いることもできる。 The network 7 is configured by wired or wireless communication, or a combination of wired and wireless communication, according to any communication standard. Specifically, for example, a standardized communication network such as the Internet, or a communication network managed within a building such as a local network, or a combination of these communication networks can be used. Furthermore, an international standard is typically used as the communication standard for wireless communication. Examples of international standard communication means include IEEE802.15.4, IEEE802.15.1, IEEE802.15.11a, 11b, 11g, 11n, 11ac, 11ad, ISO/IEC14513-3-10, IEEE802.15.4g, etc. Also, methods such as Bluetooth (registered trademark), Bluetooth Low Energy, Wi-Fi, ZigBee (registered trademark), Sub-GHz, EnOcean (registered trademark), and LTE can be used.
 図2は、物理量計測装置3の一例を示すブロック図である。図3は、物理量計測装置3の一例を示す機能説明図である。物理量計測装置3は、その主要な構成要素として、上記の物理量センサ30の他に、データ処理装置31を構成する制御部32、タイマーカウント部33、記憶部34、通信部35及び電源36を備える。 FIG. 2 is a block diagram showing an example of a physical quantity measuring device 3. FIG. 3 is a functional explanatory diagram showing an example of a physical quantity measuring device 3. In addition to the physical quantity sensor 30, the physical quantity measuring device 3 includes, as its main components, a control unit 32, a timer count unit 33, a memory unit 34, a communication unit 35, and a power supply 36 that constitute a data processing device 31.
 制御部32は、例えば、記憶部34に記憶されたデータ処理プログラム340を実行することにより、計測処理部320、計時処理部321、及び、送信処理部322として機能する。 The control unit 32 functions as a measurement processing unit 320, a timing processing unit 321, and a transmission processing unit 322, for example, by executing a data processing program 340 stored in the memory unit 34.
 タイマーカウント部33は、例えば、タイマー回路を内蔵する集積回路で構成され、時間の経過に伴ってカウント値Cをカウントする。タイマーカウント部33は、制御部32から各種のコマンドを受け付けて動作する。コマンドとしては、例えば、カウント値Cの読出やリセット、カウントの開始や終了、カウント値Cに基づく割込信号の発生周期等が挙げられる。なお、タイマーカウント部33は、制御部32に組み込まれて、制御部32の機能の一部として実現されてもよい。 The timer count unit 33 is, for example, configured with an integrated circuit incorporating a timer circuit, and counts the count value C as time passes. The timer count unit 33 operates by accepting various commands from the control unit 32. Examples of commands include reading or resetting the count value C, starting or ending a count, and the period during which an interrupt signal is generated based on the count value C. The timer count unit 33 may be incorporated into the control unit 32 and realized as part of the functions of the control unit 32.
 カウント値Cは、例えば、内部クロックをカウントした値(クロックカウント値)や、内部クロックのクロック周期(クロック周波数でもよい)に基づいてクロックカウント値を時間に換算した値(時間カウント値)等が用いられる。クロック周期が、例えば、0.1[ms]である場合には、クロックカウント値「600,000回」は、時間カウント値としては「60,000ms」、すなわち、「60s」と換算される。本実施形態では、カウント値Cとして、時間カウント値を用いる場合について説明する。 The count value C may be, for example, a value obtained by counting the internal clock (clock count value), or a value obtained by converting the clock count value into time based on the clock period (or clock frequency) of the internal clock (time count value). If the clock period is, for example, 0.1 ms, then a clock count value of "600,000 times" is converted into a time count value of "60,000 ms", or in other words, "60 s". In this embodiment, a case will be described in which a time count value is used as the count value C.
 記憶部34は、物理量計測装置3の動作で使用される各種のプログラム(データ処理プログラム340等)やデータ(設定情報341、リングバッファデータ342、最終計測後経過時間Tf等)を記憶する。 The memory unit 34 stores various programs (such as the data processing program 340) and data (such as setting information 341, ring buffer data 342, time since last measurement Tf, etc.) used in the operation of the physical quantity measuring device 3.
 設定情報341には、例えば、物理量計測装置3が動作する際に制御部32により参照される設定パラメータとして、例えば、サンプリング条件が記憶される。また、設定情報341は、データ収集装置4を介して設定可能に構成される。サンプリング条件は、物理量センサ30にて物理量を計測する計測時点を定める条件であり、例えば、サンプリング周期やサンプリング周波数により設定される。本実施形態では、サンプリング条件として、サンプリング周期Spが設定されている場合について説明する。 In the setting information 341, for example, sampling conditions are stored as setting parameters referenced by the control unit 32 when the physical quantity measuring device 3 operates. The setting information 341 is also configured to be configurable via the data collecting device 4. The sampling conditions are conditions that determine the measurement time points at which the physical quantity is measured by the physical quantity sensor 30, and are set, for example, by a sampling period or a sampling frequency. In this embodiment, a case will be described where the sampling period Sp is set as the sampling condition.
 リングバッファデータ342には、物理量センサ30により物理量を計測したときの物理量データDがリングバッファ形式で記憶される。リングバッファデータ342は、物理量データDを記憶可能な上限のデータ数に応じて確保されたメモリの領域(物理量データメモリ領域)を有する。図3に示すように、リングバッファデータ342は、物理量データDを次回記憶するときのメモリアドレスAを示す次回記憶メモリアドレスAnと、物理量データDを次回記憶するときのインデックスIを示す次回記憶インデックスInとにより管理される。 The ring buffer data 342 stores the physical quantity data D in a ring buffer format when the physical quantity is measured by the physical quantity sensor 30. The ring buffer data 342 has a memory area (physical quantity data memory area) that is secured according to the maximum number of pieces of physical quantity data D that can be stored. As shown in FIG. 3, the ring buffer data 342 is managed by a next storage memory address An indicating the memory address A when the physical quantity data D will be stored next, and a next storage index In indicating the index I when the physical quantity data D will be stored next.
 リングバッファデータ342は、そのデータ構成として、図3に示すように、物理量データメモリ領域に配列された各メモリアドレスAに対して、例えば、通し番号等により物理量データDの計測順が割り振られるインデックスIと、物理量データDの計測時点におけるタイマーカウント部33によるカウント値Cと、物理量センサ30により計測された物理量データDとをそれぞれ対応付けて記憶するためのバッファを有する。なお、カウント値Cは省略されてもよいし、カウント値Cが、例えば、累積値であり、物理量データDの計測順を示す情報として代用できる場合には、インデックスIは省略されてもよい。 3, the ring buffer data 342 has a data structure in which, for each memory address A arranged in the physical quantity data memory area, an index I to which the measurement order of the physical quantity data D is assigned by, for example, a serial number, a count value C by the timer count unit 33 at the time of measuring the physical quantity data D, and a buffer for storing the physical quantity data D measured by the physical quantity sensor 30 in association with each other. Note that the count value C may be omitted, or if the count value C is, for example, a cumulative value and can be substituted for information indicating the measurement order of the physical quantity data D, the index I may be omitted.
 通信部35は、ネットワーク7を介して、例えば、データ収集装置4との間で各種のデータを送受信する通信インターフェースとして機能する。電源36は、例えば、一次電池、二次電池、太陽電池、燃料電池等で構成され、物理量計測装置3の各部に電力を供給する。なお、電源36は、ポンプ装置2から電力供給を受けてもよい。 The communication unit 35 functions as a communication interface for transmitting and receiving various data, for example, to and from the data collection device 4 via the network 7. The power supply 36 is composed of, for example, a primary battery, a secondary battery, a solar cell, a fuel cell, etc., and supplies power to each part of the physical quantity measuring device 3. The power supply 36 may receive power from the pump device 2.
 計測処理部320は、タイマーカウント部33によりカウントされたカウント値Cに基づいて、設定情報341で定められたサンプリング条件にて物理量センサ30が物理量を計測したときの物理量データDを記憶部34のリングバッファデータ342に記憶する。 The measurement processing unit 320 stores the physical quantity data D obtained when the physical quantity sensor 30 measures the physical quantity under the sampling conditions defined in the setting information 341 in the ring buffer data 342 of the memory unit 34 based on the count value C counted by the timer count unit 33.
 例えば、計測処理部320は、サンプリング条件としてのサンプリング周期Spに従ってタイマーカウント部33に割込信号を発生させるために、割込信号の発生周期を指示するコマンドをタイマーカウント部33に送る。そのコマンドを受け付けたタイマーカウント部33によるカウント値Cが割込信号の発生周期(=サンプリング周期Sp)を満たすと、計測処理部320は、タイマーカウント部33から割込信号を受け付けて、そのタイミング(計測時点)で物理量センサ30により物理量を計測し、物理量データDを取得する。そして、計測処理部320は、次回記憶メモリアドレスAnが示すバッファに対して、その取得した物理量データDとともに、次回記憶インデックスInが示すインデックスIと、割込信号を受け付けたときのタイマーカウント部33によるカウント値Cとを記憶する。さらに、計測処理部320は、次のバッファ(末尾のバッファの場合には、先頭のバッファに戻る)を示すメモリアドレスAに次回記憶メモリアドレスAnを更新するとともに、インデックスIをインクリメントすることで次回記憶インデックスInを更新する。 For example, the measurement processing unit 320 sends a command to the timer counting unit 33 to indicate the generation period of the interrupt signal in order to make the timer counting unit 33 generate an interrupt signal according to the sampling period Sp as a sampling condition. When the count value C by the timer counting unit 33 that has received the command satisfies the generation period of the interrupt signal (=sampling period Sp), the measurement processing unit 320 receives the interrupt signal from the timer counting unit 33, measures the physical quantity by the physical quantity sensor 30 at that timing (measurement time point), and acquires the physical quantity data D. Then, the measurement processing unit 320 stores the index I indicated by the next storage index In and the count value C by the timer counting unit 33 when the interrupt signal was accepted in the buffer indicated by the next storage memory address An, together with the acquired physical quantity data D. Furthermore, the measurement processing unit 320 updates the next storage memory address An to the memory address A indicating the next buffer (in the case of the last buffer, it returns to the first buffer), and updates the next storage index In by incrementing the index I.
 なお、計測処理部320は、物理量センサ30により計測された物理量に対して所定の演算を行うことにより物理量データDを取得してもよい。物理量データDに対する演算は、例えば、計測時点が異なる所定のデータ点数分の物理量データDに対して移動平均を求める演算であり、例えば、単純移動平均や加重移動平均等が挙げられる。 The measurement processing unit 320 may acquire the physical quantity data D by performing a predetermined calculation on the physical quantity measured by the physical quantity sensor 30. The calculation on the physical quantity data D is, for example, a calculation to obtain a moving average of the physical quantity data D for a predetermined number of data points having different measurement times, such as a simple moving average or a weighted moving average.
 計時処理部321は、物理量センサ30が物理量データDとして物理量を最後に計測してからの経過時間を最終計測後経過時間Tfとして計時する。例えば、計時処理部321は、物理量センサ30が物理量データDとして物理量を計測した計測時点と、最終計測後経過時間Tfを計時する対象となる計時対象時点とにおいて、カウント値Cの読出を指示するコマンドをタイマーカウント部33にそれぞれ送る。こうして、物理量データDの計測時点におけるタイマーカウント部33によるカウント値Cと、計時対象時点におけるタイマーカウント部33によるカウント値Cとの差分を取ることで、計時処理部321は最終計測後経過時間Tfを計時する。 The timing processing unit 321 measures the time elapsed since the physical quantity sensor 30 last measured the physical quantity as physical quantity data D as the elapsed time since last measurement Tf. For example, the timing processing unit 321 sends a command to the timer counting unit 33 to instruct the reading of the count value C at the measurement time when the physical quantity sensor 30 measured the physical quantity as physical quantity data D and at the target time for measuring the elapsed time since last measurement Tf. In this way, the timing processing unit 321 measures the elapsed time since last measurement Tf by taking the difference between the count value C by the timer counting unit 33 at the measurement time of the physical quantity data D and the count value C by the timer counting unit 33 at the target time for measuring.
 なお、計時処理部321は、計測時点におけるカウント値Cとして、リングバッファデータ342に最後に記憶された物理量データDに対応するカウント値Cを用いて、最終計測後経過時間Tfを計時してもよい。また、計時処理部321は、物理量データDの計測時点において、カウント値Cのリセットを指示するコマンドをタイマーカウント部33に送ることで、計時対象時点におけるカウント値Cを用いて最終計測後経過時間Tfを計時してもよい。 The timing processing unit 321 may measure the elapsed time Tf since the last measurement using the count value C corresponding to the physical quantity data D last stored in the ring buffer data 342 as the count value C at the measurement time point. The timing processing unit 321 may also measure the elapsed time Tf since the last measurement using the count value C at the target time point by sending a command to the timer count unit 33 to reset the count value C at the measurement time point of the physical quantity data D.
 送信処理部322は、所定の送信条件が満たされたとき、記憶部34のリングバッファデータ342に記憶された複数の物理量データDにより構成された物理量データ列Dset1と、送信条件が満たされた送信条件充足時点(計時対象時点)において計時処理部321により計時された最終計測後経過時間Tfとをデータ収集装置4に送信する。なお、送信処理部322は、物理量データ列Dset1及び最終計測後経過時間Tfとともに、設定情報341で定められたサンプリング条件をデータ収集装置4に送信してもよい。 When a predetermined transmission condition is satisfied, the transmission processing unit 322 transmits to the data collecting device 4 a physical quantity data string Dset1 composed of multiple physical quantity data D stored in the ring buffer data 342 of the storage unit 34, and the elapsed time since last measurement Tf timed by the timing processing unit 321 at the time when the transmission condition is satisfied (time to be measured). The transmission processing unit 322 may transmit the sampling condition defined in the setting information 341 together with the physical quantity data string Dset1 and the elapsed time since last measurement Tf to the data collecting device 4.
 送信条件は、例えば、データ収集装置4から物理量データDのデータ要求を受信したときや、リングバッファデータ342に記憶された物理量データDのデータ点数が所定の基準値を超えたとき等が挙げられる。 The transmission condition may be, for example, when a data request for physical quantity data D is received from the data collection device 4, or when the number of data points of physical quantity data D stored in the ring buffer data 342 exceeds a predetermined reference value.
 物理量データ列Dset1は、物理量データDの計測順が判別可能に構成された複数の物理量データDからなるデータセットである。物理量データ列Dset1には、物理量データDの計測順を判別可能とするために、物理量データDの各々に対応するインデックスI及びカウント値Cの少なくとも一方が含まれる。最終計測後経過時間Tfは、送信条件が満たされた送信条件充足時点にて計時処理部321により計時されることで、物理量データ列Dset1を構成する複数の物理量データDのうち物理量データDとして物理量を最後に計測してから送信条件充足時点までの経過時間に相当する。図3では、物理量データ列Dset1として、100点の物理量データD1~D100で構成され、インデックスI及びカウント値Cを含む場合が例示されている。また、最終計測後経過時間Tfは、最後に計測した物理量データD100の計測時点からの経過時間である場合が例示されている。 The physical quantity data string Dset1 is a data set consisting of a plurality of physical quantity data D configured to enable the measurement order of the physical quantity data D to be determined. The physical quantity data string Dset1 includes at least one of an index I and a count value C corresponding to each of the physical quantity data D in order to enable the measurement order of the physical quantity data D to be determined. The time elapsed since the last measurement Tf corresponds to the time elapsed from the last measurement of a physical quantity as the physical quantity data D among the plurality of physical quantity data D constituting the physical quantity data string Dset1 to the time when the transmission condition is satisfied, by being timed by the timing processing unit 321 at the time when the transmission condition is satisfied. In FIG. 3, the physical quantity data string Dset1 is configured of 100 pieces of physical quantity data D1 to D100, and includes an index I and a count value C. In addition, the time elapsed since the last measurement Tf is illustrated as the time elapsed from the measurement time of the last measured physical quantity data D100.
 図4は、データ収集装置4の一例を示すブロック図である。図5は、データ収集装置4の一例を示す機能説明図である。データ収集装置4は、その主要な構成要素として、制御部40、時刻計測部41、記憶部42、通信部43、入力部44及び出力部45を備える。 FIG. 4 is a block diagram showing an example of a data collection device 4. FIG. 5 is a functional explanatory diagram showing an example of a data collection device 4. The data collection device 4 includes, as its main components, a control unit 40, a time measurement unit 41, a memory unit 42, a communication unit 43, an input unit 44, and an output unit 45.
 制御部40は、例えば、記憶部42に記憶されたデータ収集プログラム420を実行することにより、受信処理部400、時刻特定処理部401、及び、記憶処理部402として機能する。 The control unit 40 functions as a reception processing unit 400, a time identification processing unit 401, and a storage processing unit 402, for example, by executing a data collection program 420 stored in the storage unit 42.
 時刻計測部41は、例えば、リアルタイムクロック(RTC)回路を内蔵する集積回路で構成され、現在時刻Tcを計測する。時刻計測部41は、制御部40から各種のコマンドを受け付けて動作する。コマンドとしては、例えば、現在時刻Tcの読出や設定等が挙げられる。なお、時刻計測部41は、制御部40に組み込まれて、制御部40の機能の一部として実現されてもよい。 The time measurement unit 41 is formed, for example, by an integrated circuit that incorporates a real-time clock (RTC) circuit, and measures the current time Tc. The time measurement unit 41 operates by accepting various commands from the control unit 40. Examples of commands include reading and setting the current time Tc. The time measurement unit 41 may be incorporated into the control unit 40 and realized as part of the functions of the control unit 40.
 記憶部42は、データ収集装置4の動作で使用される各種のプログラム(データ収集プログラム420等)やデータ(設定情報421等)を記憶する。設定情報421には、例えば、データ収集装置4が動作する際に制御部40により参照される設定パラメータ(データ収集条件等)が記憶される。また、設定情報421は、例えば、データ収集装置4を介して設定可能に構成される。 The storage unit 42 stores various programs (such as the data collection program 420) and data (such as the setting information 421) used in the operation of the data collection device 4. The setting information 421 stores, for example, setting parameters (such as data collection conditions) referenced by the control unit 40 when the data collection device 4 operates. The setting information 421 is also configured to be configurable, for example, via the data collection device 4.
 通信部43は、ネットワーク7を介して、例えば、物理量計測装置3やデータ管理装置5との間で各種のデータを送受信する通信インターフェースとして機能する。入力部44及び出力部45は、ユーザの入力操作を受け付けるとともに、各種の情報を表示画面や音声を介して出力することでユーザインターフェースとして機能する。 The communication unit 43 functions as a communication interface that transmits and receives various data between, for example, the physical quantity measuring device 3 and the data management device 5 via the network 7. The input unit 44 and the output unit 45 function as a user interface by accepting input operations from the user and outputting various information via a display screen or voice.
 受信処理部400は、所定の収集条件が満たされたとき、物理量データDのデータ要求を物理量計測装置3に送信することで、その応答として、物理量計測装置3から物理量データ列Dset1と最終計測後経過時間Tfとを受信する。例えば、受信処理部400は、収集条件として、物理データの収集を指示するユーザの入力操作を受け付けたときや、設定情報421で定められたデータ収集条件が満たされたときや、物理データの収集を指示するデータ管理装置5からの実行指令を受信したとき等に、物理量データDのデータ要求を物理量計測装置3に送信する。なお、受信処理部400は、物理量計測装置3から物理量データ列Dset1及び最終計測後経過時間Tfとともに、サンプリング条件をさらに受信してもよい。 When a predetermined collection condition is satisfied, the reception processing unit 400 transmits a data request for the physical quantity data D to the physical quantity measuring device 3, and receives the physical quantity data string Dset1 and the time since last measurement Tf from the physical quantity measuring device 3 in response. For example, the reception processing unit 400 transmits a data request for the physical quantity data D to the physical quantity measuring device 3 when, as a collection condition, a user's input operation instructing collection of physical data is accepted, when a data collection condition defined in the setting information 421 is satisfied, or when an execution command is received from the data management device 5 instructing collection of physical data. The reception processing unit 400 may further receive sampling conditions from the physical quantity measuring device 3 along with the physical quantity data string Dset1 and the time since last measurement Tf.
 時刻特定処理部401は、時刻計測部41により計測された現在時刻Tcと、受信処理部400により受信された最終計測後経過時間Tfとに基づいて、受信処理部400により受信された物理量データ列Dset1を構成する複数の物理量データDの各々に対して物理量データDとして物理量が計測されたときの計測時刻Tsを特定する。 The time determination processing unit 401 determines the measurement time Ts when the physical quantity was measured as the physical quantity data D for each of the multiple physical quantity data D constituting the physical quantity data string Dset1 received by the receiving processing unit 400, based on the current time Tc measured by the time measurement unit 41 and the time since the last measurement Tf received by the receiving processing unit 400.
 例えば、時刻特定処理部401は、現在時刻Tcの読出を指示するコマンドを時刻計測部41に送ることで、時刻計測部41により計測された現在時刻Tcを取得する。そして、物理量データ列Dset1が、例えば、図3及び図5に例示するように、100点の物理量データD1~D100で構成され、カウント値C1~C100を含む場合には、時刻特定処理部401は、現在時刻Tcを基準にして、現在時刻Tcから最終計測後経過時間Tfを減算した時刻を、最後に計測した物理量データD100の計測時刻Ts100(=Tc-Tf)と特定する。そして、時刻特定処理部401は、その計測時刻Ts100からカウント値C100を減算した時刻を、最後の計測時点から1サンプリング周期分前に計測した物理量データD99の計測時刻Ts99(=T100-C100)と特定する。そして、時刻特定処理部401は、その計測時刻Ts99からカウント値C99を減算した時刻を、最後の計測時点から2サンプリング周期分前に計測した物理量データD98の計測時刻Ts98(=T99-C99)と特定する。このような処理を繰り返すことで、時刻特定処理部401は、物理量データD1~D97の各々に対しても計測時刻Ts1~Ts97を特定する。 For example, the time determination processing unit 401 obtains the current time Tc measured by the time measurement unit 41 by sending a command to the time measurement unit 41 to instruct the time measurement unit 41 to read out the current time Tc. Then, when the physical quantity data string Dset1 is composed of 100 points of physical quantity data D1 to D100 and includes count values C1 to C100, for example, as illustrated in Figures 3 and 5, the time determination processing unit 401 determines the time obtained by subtracting the elapsed time Tf since the last measurement from the current time Tc based on the current time Tc as the measurement time Ts100 (= Tc - Tf) of the last measured physical quantity data D100. Then, the time determination processing unit 401 determines the time obtained by subtracting the count value C100 from the measurement time Ts100 as the measurement time Ts99 (= T100 - C100) of the physical quantity data D99 measured one sampling period before the last measurement point. The time determination processing unit 401 then determines the time obtained by subtracting the count value C99 from the measurement time Ts99 as the measurement time Ts98 (=T99-C99) of the physical quantity data D98 measured two sampling periods before the last measurement point. By repeating this process, the time determination processing unit 401 determines the measurement times Ts1 to Ts97 for each of the physical quantity data D1 to D97.
 なお、時刻特定処理部401は、サンプリング条件をさらに受信した場合には、現在時刻Tcと、最終計測後経過時間Tf及びサンプリング条件とに基づいて、物理量データ列Dset1を構成する複数の物理量データDの各々に対して計測時刻Tsを特定してもよい。その場合には、時刻特定処理部401は、計測時刻Tsを特定する際に、カウント値Cを減算する代わりに、例えば、サンプリング条件に基づくサンプリング周期Spに相当する時間を減算すればよい。 If the time determination processing unit 401 further receives sampling conditions, the time determination processing unit 401 may determine a measurement time Ts for each of the multiple physical quantity data D constituting the physical quantity data string Dset1 based on the current time Tc, the time elapsed since the last measurement Tf, and the sampling conditions. In that case, when determining the measurement time Ts, instead of subtracting the count value C, the time determination processing unit 401 may subtract, for example, a time equivalent to the sampling period Sp based on the sampling conditions.
 記憶処理部402は、受信処理部400により受信された物理量データ列Dset1に、時刻特定処理部401により特定された計測時刻Tsを物理量データD毎に対応付けて、記憶装置としてのデータベース50に記憶する。具体的には、記憶処理部402は、物理量データD及び計測時刻Tsを物理量データD毎に対応付けることで、物理量データD及び計測時刻Tsで構成される計測時刻付きの物理量データ列Dset2を生成する。そして、その計測時刻付きの物理量データ列Dset2が記憶処理部402によりデータ管理装置5に送信されることで、データベース50に格納される。 The storage processing unit 402 associates the measurement time Ts identified by the time identification processing unit 401 with each piece of physical quantity data D to the physical quantity data string Dset1 received by the reception processing unit 400, and stores the data in the database 50 as a storage device. Specifically, the storage processing unit 402 associates the physical quantity data D and the measurement time Ts with each piece of physical quantity data D to generate a physical quantity data string Dset2 with the measurement time, which is composed of the physical quantity data D and the measurement time Ts. The physical quantity data string Dset2 with the measurement time is then transmitted by the storage processing unit 402 to the data management device 5, where it is stored in the database 50.
 なお、計測時刻付きの物理量データ列Dset2は、データ収集装置4の表示画面に表示されてもよい。また、計測時刻付きの物理量データ列Dset2には、記憶処理部402(物理量計測装置3の送信処理部322でもよい)により、例えば、ポンプ装置2及び物理量計測装置3の少なくとも一方を識別するための識別情報(ポンプ装置2の装置ID、物理量計測装置3の装置ID等)が付加されてもよい。その場合には、計測時刻付きの物理量データ列Dset2に識別情報が関連付けられた状態でデータベース50に格納されてもよい。 The physical quantity data string Dset2 with the measurement time may be displayed on the display screen of the data collecting device 4. In addition, identification information for identifying at least one of the pump device 2 and the physical quantity measuring device 3 (such as the device ID of the pump device 2 or the device ID of the physical quantity measuring device 3) may be added to the physical quantity data string Dset2 with the measurement time by the storage processing unit 402 (which may be the transmission processing unit 322 of the physical quantity measuring device 3). In this case, the physical quantity data string Dset2 with the measurement time may be stored in the database 50 in a state associated with the identification information.
 図6は、各装置を構成するコンピュータ900の一例を示すハードウエア構成図である。ポンプ装置2(主にポンプ制御盤23)、物理量計測装置3(主にデータ処理装置31)、データ収集装置4、データ管理装置5、及び、端末装置6の各々は、汎用又は専用のコンピュータ900により構成される。 FIG. 6 is a hardware configuration diagram showing an example of a computer 900 that constitutes each device. Each of the pump device 2 (mainly the pump control panel 23), the physical quantity measuring device 3 (mainly the data processing device 31), the data collecting device 4, the data management device 5, and the terminal device 6 is configured by a general-purpose or dedicated computer 900.
 コンピュータ900は、図6に示すように、その主要な構成要素として、バス910、プロセッサ912、メモリ914、入力デバイス916、出力デバイス917、表示デバイス918、ストレージ装置920、通信I/F(インターフェース)部922、外部機器I/F部924、I/O(入出力)デバイスI/F部926、及び、メディア入出力部928を備える。なお、上記の構成要素は、コンピュータ900が使用される用途に応じて適宜省略されてもよい。 As shown in FIG. 6, the computer 900 includes, as its main components, a bus 910, a processor 912, a memory 914, an input device 916, an output device 917, a display device 918, a storage device 920, a communication I/F (interface) unit 922, an external device I/F unit 924, an I/O (input/output) device I/F unit 926, and a media input/output unit 928. Note that the above components may be omitted as appropriate depending on the application for which the computer 900 is used.
 プロセッサ912は、1つ又は複数の演算処理装置(CPU(Central Processing Unit)、MPU(Micro-Processing Unit)、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)、NPU(Neural Processing Unit)等で構成され、コンピュータ900全体を統括する制御部として動作する。メモリ914は、各種のデータ及びプログラム930を記憶し、例えば、メインメモリとして機能する揮発性メモリ(DRAM、SRAM等)と、不揮発性メモリ(ROM)、フラッシュメモリ等とで構成される。 The processor 912 is composed of one or more arithmetic processing devices (CPU (Central Processing Unit), MPU (Micro-Processing Unit), DSP (Digital Signal Processor), GPU (Graphics Processing Unit), NPU (Neural Processing Unit), etc.) and operates as a control unit that controls the entire computer 900. The memory 914 stores various data and programs 930, and is composed of, for example, volatile memory (DRAM, SRAM, etc.) that functions as main memory, non-volatile memory (ROM), flash memory, etc.
 入力デバイス916は、例えば、キーボード、マウス、テンキー、電子ペン等で構成され、入力部として機能する。出力デバイス917は、例えば、音(音声)出力装置、バイブレーション装置等で構成され、出力部として機能する。表示デバイス918は、例えば、液晶ディスプレイ、有機ELディスプレイ、電子ペーパー、プロジェクタ等で構成され、出力部として機能する。入力デバイス916及び表示デバイス918は、タッチパネルディスプレイのように、一体的に構成されてもよい。ストレージ装置920は、例えば、HDD、SSD等で構成され、記憶部として機能する。ストレージ装置920は、オペレーティングシステムやプログラム930の実行に必要な各種のデータを記憶する。 The input device 916 is, for example, a keyboard, a mouse, a numeric keypad, an electronic pen, etc., and functions as an input unit. The output device 917 is, for example, a sound (audio) output device, a vibration device, etc., and functions as an output unit. The display device 918 is, for example, a liquid crystal display, an organic EL display, electronic paper, a projector, etc., and functions as an output unit. The input device 916 and the display device 918 may be integrated, such as a touch panel display. The storage device 920 is, for example, a HDD, an SSD, etc., and functions as a memory unit. The storage device 920 stores various data necessary for the execution of the operating system and the program 930.
 通信I/F部922は、インターネットやイントラネット等のネットワーク940(図1のネットワーク7と同じであってもよい)に有線又は無線により接続され、所定の通信規格に従って他のコンピュータとの間でデータの送受信を行う通信部として機能する。外部機器I/F部924は、カメラ、プリンタ、スキャナ、リーダライタ等の外部機器950に有線又は無線により接続され、所定の通信規格に従って外部機器950との間でデータの送受信を行う通信部として機能する。I/OデバイスI/F部926は、各種のセンサ、アクチュエータ等のI/Oデバイス960に接続され、I/Oデバイス960との間で、例えば、センサによる検出信号やアクチュエータへの制御信号等の各種の信号やデータの送受信を行う通信部として機能する。メディア入出力部928は、例えば、DVDドライブ、CDドライブ等のドライブ装置、メモリカードスロット、USBコネクタで構成され、DVD、CD、メモリカード、USBメモリ等のメディア(非一時的な記憶媒体)970に対してデータの読み書きを行う。 The communication I/F unit 922 is connected to a network 940 (which may be the same as the network 7 in FIG. 1) such as the Internet or an intranet by wire or wirelessly, and functions as a communication unit that transmits and receives data to and from other computers according to a predetermined communication standard. The external device I/F unit 924 is connected to an external device 950 such as a camera, printer, scanner, or reader/writer by wire or wirelessly, and functions as a communication unit that transmits and receives data to and from the external device 950 according to a predetermined communication standard. The I/O device I/F unit 926 is connected to an I/O device 960 such as various sensors and actuators, and functions as a communication unit that transmits and receives various signals and data, such as detection signals from sensors and control signals to actuators, between the I/O device 960. The media input/output unit 928 is composed of, for example, a drive device such as a DVD drive or a CD drive, a memory card slot, and a USB connector, and reads and writes data to and from media (non-temporary storage media) 970 such as DVDs, CDs, memory cards, and USB memories.
 上記構成を有するコンピュータ900において、プロセッサ912は、ストレージ装置920に記憶されたプログラム930をメモリ914に呼び出して実行し、バス910を介してコンピュータ900の各部を制御する。なお、プログラム930は、ストレージ装置920に代えて、メモリ914に記憶されてもよい。プログラム930は、インストール可能なファイル形式又は実行可能なファイル形式でメディア970に記録され、メディア入出力部928を介してコンピュータ900に提供されてもよい。プログラム930は、通信I/F部922を介してネットワーク940経由でダウンロードすることによりコンピュータ900に提供されてもよい。また、コンピュータ900は、プロセッサ912がプログラム930を実行することで実現する各種の機能を、例えば、FPGA(Field-Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)等のハードウエアで実現してもよい。 In computer 900 having the above configuration, processor 912 calls up program 930 stored in storage device 920 into memory 914, executes it, and controls each part of computer 900 via bus 910. Program 930 may be stored in memory 914 instead of storage device 920. Program 930 may be recorded on media 970 in an installable file format or an executable file format, and provided to computer 900 via media input/output unit 928. Program 930 may be provided to computer 900 by downloading it over network 940 via communication I/F unit 922. In addition, the computer 900 may realize various functions that are realized by the processor 912 executing the program 930 using hardware such as an FPGA (Field-Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit).
 コンピュータ900は、例えば、据置型コンピュータや携帯型コンピュータで構成され、任意の形態の電子機器である。コンピュータ900は、クライアント型コンピュータでもよいし、サーバ型コンピュータやクラウド型コンピュータでもよいし、例えば、制御盤、コントローラ(マイコン、プログラマブルロジックコントローラ、シーケンサを含む)等と呼ばれる組込型コンピュータでもよい。 Computer 900 may be, for example, a desktop computer or a portable computer, and may be any type of electronic device. Computer 900 may be a client computer, a server computer, or a cloud computer, or may be, for example, an embedded computer called a control panel, controller (including a microcomputer, programmable logic controller, or sequencer), etc.
(データ処理方法)
 図7は、物理量計測装置3(データ処理装置31)及びデータ収集装置4による動作の一例を示すフローチャートである。図7に示す一連の処理(データ処理方法)は、物理量計測装置3による処理(データ提供方法)と、データ収集装置4による処理(データ収集方法)とにより実行される。
(Data processing method)
Fig. 7 is a flowchart showing an example of the operation of the physical quantity measuring device 3 (data processing device 31) and the data collecting device 4. A series of processes (data processing method) shown in Fig. 7 is executed by a process (data providing method) by the physical quantity measuring device 3 and a process (data collecting method) by the data collecting device 4.
 以下では、物理量計測装置3が、設定情報341で定められたサンプリング条件としてのサンプリング周期Spに従って物理量を繰り返し計測している状況において、データ収集装置4が、物理量データDの収集を指示するユーザの入力操作を受け付けた場合について、図7を参照して説明する。 Below, a case will be described with reference to FIG. 7 where the data collection device 4 receives a user input operation instructing collection of physical quantity data D when the physical quantity measuring device 3 repeatedly measures a physical quantity according to the sampling period Sp as the sampling condition defined in the setting information 341.
 まず、ステップS100にて、物理量計測装置3の計測処理部320は、タイマーカウント部33により計時されたカウント値Cに基づいて、サンプリング条件(本実施形態では、サンプリング周期Sp)に基づくタイミング(計測時点)にて割込信号を受け付けると、物理量センサ30により物理量を計測し、物理量データDを取得する。そして、計測処理部320は、その取得した物理量データDとともに、インデックスI及びカウント値Cをリングバッファデータ342に記憶する。その際、計測処理部320は、次回記憶メモリアドレスAn及び次回記憶インデックスInを更新する。 First, in step S100, when the measurement processing unit 320 of the physical quantity measuring device 3 receives an interrupt signal at a timing (measurement time point) based on the sampling condition (sampling period Sp in this embodiment) based on the count value C measured by the timer count unit 33, the measurement processing unit 320 measures the physical quantity using the physical quantity sensor 30 and acquires physical quantity data D. Then, the measurement processing unit 320 stores the index I and count value C together with the acquired physical quantity data D in the ring buffer data 342. At that time, the measurement processing unit 320 updates the next storage memory address An and the next storage index In.
 サンプリング条件を満たす計測時点が到来する毎に、計測処理部320は、上記のステップS100を繰り返すことで、リングバッファデータ342には、物理量データDが蓄積される。 Each time a measurement time point that satisfies the sampling conditions arrives, the measurement processing unit 320 repeats step S100 described above, and physical quantity data D is accumulated in the ring buffer data 342.
 一方、ステップS200にて、データ収集装置4の受信処理部400は、物理量データDの収集を指示するユーザの入力操作を受け付けると、物理量計測装置3との通信を開始し、物理量データDのデータ要求を物理量計測装置3に送信する。 On the other hand, in step S200, when the reception processing unit 400 of the data collection device 4 receives a user input operation instructing the collection of physical quantity data D, the reception processing unit 400 starts communication with the physical quantity measuring device 3 and transmits a data request for the physical quantity data D to the physical quantity measuring device 3.
 そして、ステップS110にて、送信処理部322は、データ収集装置4からデータ要求を受信し、送信条件が満たされたと判断する。 Then, in step S110, the transmission processing unit 322 receives a data request from the data collection device 4 and determines that the transmission conditions are met.
 次に、ステップS111にて、送信処理部322は、リングバッファデータ342を参照し、複数の物理量データDにより構成された物理量データ列Dset1を取得する。 Next, in step S111, the transmission processing unit 322 refers to the ring buffer data 342 and acquires a physical quantity data string Dset1 composed of multiple pieces of physical quantity data D.
 次に、ステップS112にて、計時処理部321は、送信条件が満たされた送信条件充足時点において、物理量センサ30が物理量を最後に計測してからの経過時間を示す最終計測後経過時間Tfを計時する。すなわち、計時処理部321は、物理量データ列Dset1に含まれる複数の物理量データDのうち、最後に物理量を計測したときの物理量データDを記憶した計測時点から上記の送信条件充足時点までに経過した経過時間を最終計測後経過時間Tfとして計時する。 Next, in step S112, the timing processing unit 321 measures the time since last measurement Tf, which indicates the time since the physical quantity sensor 30 last measured the physical quantity at the time when the transmission condition is satisfied. That is, the timing processing unit 321 measures the time since last measurement Tf, which is the time that has elapsed from the measurement time when the physical quantity data D when the physical quantity was last measured, among the multiple physical quantity data D included in the physical quantity data string Dset1, was stored, to the time when the transmission condition is satisfied.
 次に、ステップS113にて、送信処理部322は、ステップS110にて取得した物理量データ列Dset1と、ステップS112にて計時された最終計測後経過時間Tfとをデータ収集装置4に送信する。 Next, in step S113, the transmission processing unit 322 transmits the physical quantity data sequence Dset1 acquired in step S110 and the time since the last measurement Tf measured in step S112 to the data collection device 4.
 そして、ステップS210にて、受信処理部400は、ステップS200に送信したデータ要求に対する応答として、物理量計測装置3から物理量データ列Dset1及び最終計測後経過時間Tfを受信する。 Then, in step S210, the reception processing unit 400 receives the physical quantity data sequence Dset1 and the time since the last measurement Tf from the physical quantity measuring device 3 as a response to the data request sent in step S200.
 次に、ステップS211にて、時刻特定処理部401は、現在時刻Tcの読出を指示するコマンドを時刻計測部41に送ることで、時刻計測部41により計測された現在時刻Tcを取得する。 Next, in step S211, the time determination processing unit 401 obtains the current time Tc measured by the time measurement unit 41 by sending a command to the time measurement unit 41 to read the current time Tc.
 そして、ステップS212にて、時刻特定処理部401は、ステップS211にて取得した現在時刻Tcと、ステップS210にて受信された最終計測後経過時間Tfとに基づいて、ステップS210にて受信された物理量データ列Dset1を構成する複数の物理量データDの各々に対して計測時刻Tsを特定する。 Then, in step S212, the time determination processing unit 401 determines the measurement time Ts for each of the multiple physical quantity data D constituting the physical quantity data string Dset1 received in step S210, based on the current time Tc acquired in step S211 and the time since the last measurement Tf received in step S210.
 次に、ステップS213にて、記憶処理部402は、ステップS210にて受信された物理量データ列Dset1に、ステップS212にて特定された計測時刻Tsを物理量データD毎に対応付けることで、計測時刻付きの物理量データ列Dset2を生成する。そして、記憶処理部402は、その計測時刻付きの物理量データ列Dset2をデータ管理装置5に送信することで、記憶装置としてのデータベース50に記憶する。 Next, in step S213, the storage processing unit 402 generates a physical quantity data string Dset2 with the measurement time by associating the measurement time Ts identified in step S212 with each piece of physical quantity data D with the physical quantity data string Dset1 received in step S210. The storage processing unit 402 then transmits the physical quantity data string Dset2 with the measurement time to the data management device 5, thereby storing it in the database 50, which serves as a storage device.
 以上のようにして、一連の処理を終了する。なお、物理量計測装置3による処理(データ提供方法)において、ステップS100が計測処理工程、ステップS110~S111、S112が計時処理工程、ステップS113が送信処理工程に相当する。また、データ収集装置4による処理(データ収集方法)において、ステップS200、S210が受信処理工程、ステップS211、S212が時刻特定処理工程、ステップS213が記憶処理工程に相当する。 In this manner, the series of processes is completed. In the process (data provision method) by the physical quantity measuring device 3, step S100 corresponds to a measurement process, steps S110 to S111 and S112 correspond to a timing process, and step S113 corresponds to a transmission process. In the process (data collection method) by the data collecting device 4, steps S200 and S210 correspond to a reception process, steps S211 and S212 correspond to a time determination process, and step S213 corresponds to a storage process.
 本発明に係るデータ処理システム1によれば、物理量計測装置3(データ処理装置31)が、サンプリング条件にて物理量センサ30が物理量をそれぞれ計測したときの複数の物理量データDによりその計測順が判別可能に構成された物理量データ列Dset1と、物理量センサ30が物理量を最後に計測してからの経過時間をタイマーカウント部33により計測した最終計測後経過時間Tfとをデータ収集装置に送信し、データ収集装置が、時刻計測部41により計測された現在時刻Tcと、最終計測後経過時間Tfとに基づいて、物理量データ列Dset1を構成する複数の物理量データDの各々に対して計測時刻Tsを特定する。したがって、物理量計測装置3(データ処理装置31)側にリアルタイムクロック回路を備えることなく、データ収集装置4側で物理量データDの各々における計測時刻Tsを特定することができる。 According to the data processing system 1 of the present invention, the physical quantity measuring device 3 (data processing device 31) transmits to the data collecting device a physical quantity data string Dset1 configured so that the measurement order can be determined based on a plurality of physical quantity data D obtained when the physical quantity sensor 30 measures each physical quantity under sampling conditions, and a time elapsed since last measurement Tf measured by the timer counting unit 33 as the time elapsed since the physical quantity sensor 30 last measured the physical quantity, and the data collecting device determines the measurement time Ts for each of the plurality of physical quantity data D constituting the physical quantity data string Dset1 based on the current time Tc measured by the time measuring unit 41 and the time elapsed since last measurement Tf. Therefore, the data collecting device 4 can determine the measurement time Ts for each of the physical quantity data D without providing a real-time clock circuit on the physical quantity measuring device 3 (data processing device 31) side.
(他の実施形態)
 本発明は上述した実施形態に制約されず、本発明の主旨を逸脱しない範囲内で種々変更して実施することが可能である。そして、それらはすべて、本発明の技術思想に含まれる。
Other Embodiments
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit and scope of the present invention. All such modifications are included in the technical concept of the present invention.
 上記実施形態では、データ処理装置31が、ポンプ装置2とは別体の装置である物理量計測装置3で実現される場合について説明した。しかしながら、データ処理装置31の機能の一部又は全部(特に制御部32の機能)が、ポンプ装置2のポンプ制御盤23に組み込まれることによりポンプ装置2で実現されてもよい。その場合には、物理量センサ30と、ポンプ制御盤23とを有線又は無線により接続し、各種のデータを送受信すればよい。また、ポンプ装置2が、物理量センサ30を備えてもよい。 In the above embodiment, a case has been described in which the data processing device 31 is realized by the physical quantity measuring device 3, which is a device separate from the pump device 2. However, some or all of the functions of the data processing device 31 (particularly the functions of the control unit 32) may be realized by the pump device 2 by being incorporated into the pump control panel 23 of the pump device 2. In that case, the physical quantity sensor 30 and the pump control panel 23 may be connected by wire or wirelessly to transmit and receive various data. The pump device 2 may also be equipped with the physical quantity sensor 30.
 上記実施形態では、物理量計測装置3により送信された物理量データ列Dset1は、データ収集装置4により計測時刻付きの物理量データ列Dset2としてデータ管理装置5に送信されて、記憶装置としてのデータベース50に格納される場合について説明した。しかしながら、計測時刻付きの物理量データ列Dset2の送信先の装置や格納先の記憶装置は適宜変更されてもよい。例えば、計測時刻付きの物理量データ列Dset2は、データ管理装置5や端末装置6に送信されてもよいし、データ収集装置4や端末装置6が備える記憶装置に格納されてもよい。 In the above embodiment, a case has been described in which the physical quantity data string Dset1 transmitted by the physical quantity measuring device 3 is transmitted by the data collecting device 4 to the data management device 5 as a physical quantity data string Dset2 with the measurement time, and stored in the database 50 as a storage device. However, the device to which the physical quantity data string Dset2 with the measurement time is transmitted and the storage device to which it is stored may be changed as appropriate. For example, the physical quantity data string Dset2 with the measurement time may be transmitted to the data management device 5 or the terminal device 6, or may be stored in a storage device provided in the data collecting device 4 or the terminal device 6.
 上記実施形態では、物理量計測装置3(データ処理装置31)が、図7に示すフローチャートに従って動作する場合について説明した。しかしながら、各ステップの実行順序を適宜変更してもよいし、一部のステップを省略してもよい。 In the above embodiment, the physical quantity measuring device 3 (data processing device 31) operates according to the flowchart shown in FIG. 7. However, the order in which the steps are executed may be changed as appropriate, and some steps may be omitted.
 上記実施形態では、物理量計測装置3は、ポンプ装置2に取り付けられる場合について説明したが、例えば、冷凍機、気体機械、工作機械、プレス機器、搬送機器、診断機器等の各種の装置に取り付けられてもよい。その場合には、物理量センサ30は、各種の装置に起因する物理量を計測すればよい。 In the above embodiment, the physical quantity measuring device 3 is described as being attached to the pump device 2, but it may also be attached to various devices, such as a refrigerator, a gas machine, a machine tool, a press machine, a conveying machine, a diagnostic device, etc. In that case, the physical quantity sensor 30 only needs to measure the physical quantity resulting from the various devices.
1…データ処理システム、2…ポンプ装置、3…物理量計測装置、4…データ収集装置、5…データ管理装置、6…端末装置、7…ネットワーク、20…ポンプ部、21…モータ、22…継手部、23…ポンプ制御盤、30…物理量センサ、31…データ処理装置、32…制御部、33…タイマーカウント部、34…記憶部、35…通信部、36…電源、40…制御部、41…時刻計測部、42…記憶部、43…通信部、44…入力部、45…出力部、50…データベース、300…筐体、320…計測処理部、321…計時処理部、322…送信処理部、340…データ処理プログラム、341…設定情報、342…リングバッファデータ、400…受信処理部、401…時刻特定処理部、402…記憶処理部、420…データ収集プログラム、421…設定情報、C…カウント値、D…物理量データ、Dset1、Dset2…物理量データ列、Sp…サンプリング周期、Tc…現在時刻、Tf…最終計測後経過時間、Ts…計測時刻 1...data processing system, 2...pump device, 3...physical quantity measuring device, 4...data collection device, 5...data management device, 6...terminal device, 7...network, 20...pump section, 21...motor, 22...joint section, 23...pump control panel, 30...physical quantity sensor, 31...data processing device, 32...control section, 33...timer count section, 34...storage section, 35...communication section, 36...power supply, 40...control section, 41...time measurement section, 42...storage section, 43...communication section, 44...input section, 45...output section, 50...database 300...housing, 320...measurement processing unit, 321...time counting processing unit, 322...transmission processing unit, 340...data processing program, 341...setting information, 342...ring buffer data, 400...reception processing unit, 401...time identification processing unit, 402...storage processing unit, 420...data collection program, 421...setting information, C...count value, D...physical quantity data, Dset1, Dset2...physical quantity data string, Sp...sampling period, Tc...current time, Tf...time since last measurement, Ts...measurement time

Claims (7)

  1.  1又は複数の物理量計測装置と、前記物理量計測装置と通信可能に構成された1又は複数のデータ収集装置と、を備えるデータ処理システムであって、
     前記物理量計測装置は、
      計測対象の物理量を計測する物理量センサと、
      前記物理量センサにより前記物理量を計測した物理量データをリングバッファ形式で記憶する記憶部と、
      時間の経過に伴ってカウント値をカウントするタイマーカウント部と、
      前記タイマーカウント部によりカウントされた前記カウント値に基づいて、所定のサンプリング条件にて前記物理量センサにより前記物理量を計測したときの前記物理量データを前記記憶部に記憶する計測処理部と、
      前記物理量センサが前記物理量を最後に計測してからの経過時間を前記タイマーカウント部により最終計測後経過時間として計時する計時処理部と、
      所定の送信条件が満たされたとき、前記記憶部に記憶された複数の前記物理量データにより前記物理量データの計測順が判別可能に構成された物理量データ列と、前記計時処理部により計時された前記最終計測後経過時間とを前記データ収集装置に送信する送信処理部と、を備え、
     前記データ収集装置は、
      現在時刻を計測する時刻計測部と、
      前記物理量計測装置から前記物理量データ列と前記最終計測後経過時間とを受信する受信処理部と、
      前記時刻計測部により計測された前記現在時刻と、前記受信処理部により受信された前記最終計測後経過時間とに基づいて、前記受信処理部により受信された前記物理量データ列を構成する複数の前記物理量データの各々に対して前記物理量データとして前記物理量が計測されたときの計測時刻を特定する時刻特定処理部と、
      前記受信処理部により受信された前記物理量データ列に、前記時刻特定処理部により特定された前記計測時刻を前記物理量データ毎に対応付けて記憶装置に記憶する記憶処理部と、を備える、
     データ処理システム。
    A data processing system including one or more physical quantity measuring devices and one or more data collecting devices configured to be able to communicate with the physical quantity measuring devices,
    The physical quantity measuring device includes:
    A physical quantity sensor that measures a physical quantity of a measurement target;
    a storage unit configured to store physical quantity data obtained by measuring the physical quantity using the physical quantity sensor in a ring buffer format;
    a timer count unit that counts a count value over time;
    a measurement processing unit that stores in the storage unit the physical quantity data obtained when the physical quantity is measured by the physical quantity sensor under a predetermined sampling condition based on the count value counted by the timer count unit;
    a time measurement processing unit that measures an elapsed time since the physical quantity sensor last measured the physical quantity as an elapsed time since the last measurement by the timer counting unit;
    a transmission processing unit that transmits to the data collecting device, when a predetermined transmission condition is satisfied, a physical quantity data sequence configured so that a measurement order of the physical quantity data can be determined based on the plurality of physical quantity data stored in the storage unit, and the elapsed time since the last measurement measured by the timing processing unit,
    The data collection device includes:
    a time measurement unit that measures the current time;
    a reception processing unit that receives the physical quantity data string and the elapsed time since the last measurement from the physical quantity measuring device;
    a time determination processing unit that determines a measurement time when a physical quantity was measured as the physical quantity data for each of the plurality of physical quantity data constituting the physical quantity data sequence received by the reception processing unit, based on the current time measured by the time measurement unit and the elapsed time since last measurement received by the reception processing unit;
    a storage processing unit that associates the measurement time identified by the time identification processing unit with the physical quantity data sequence received by the reception processing unit and stores the physical quantity data in a storage device.
    Data processing system.
  2.  前記送信処理部は、
      前記物理量データ列及び前記最終計測後経過時間とともに、前記サンプリング条件を前記データ収集装置に送信し、
     前記時刻特定処理部は、
      前記時刻計測部により計測された前記現在時刻と、前記受信処理部により受信された前記最終計測後経過時間及び前記サンプリング条件とに基づいて、前記受信処理部により受信された前記物理量データ列を構成する複数の前記物理量データの各々に対して前記計測時刻を特定する、
     請求項1に記載のデータ処理システム。
    The transmission processing unit is
    transmitting the sampling conditions to the data collecting device together with the physical quantity data string and the time elapsed since the last measurement;
    The time identification processing unit is
    determining the measurement time for each of the plurality of physical quantity data constituting the physical quantity data string received by the reception processing unit, based on the current time measured by the time measurement unit, the elapsed time since the last measurement received by the reception processing unit, and the sampling condition;
    2. The data processing system of claim 1.
  3.  データ収集装置と通信可能に構成された物理量計測装置であって、
     計測対象の物理量を計測する物理量センサと、
     前記物理量センサにより前記物理量を計測した物理量データをリングバッファ形式で記憶する記憶部と、
     時間の経過に伴ってカウント値をカウントするタイマーカウント部と、
     前記タイマーカウント部によりカウントされた前記カウント値に基づいて、所定のサンプリング条件にて前記物理量センサにより前記物理量を計測したときの前記物理量データを前記記憶部に記憶する計測処理部と、
     前記物理量センサが前記物理量を最後に計測してからの経過時間を前記タイマーカウント部により最終計測後経過時間として計時する計時処理部と、
     所定の送信条件が満たされたとき、前記記憶部に記憶された複数の前記物理量データにより前記物理量データの計測順が判別可能に構成された物理量データ列と、前記計時処理部により計時された前記最終計測後経過時間とを前記データ収集装置に送信する送信処理部と、を備える、
     物理量計測装置。
    A physical quantity measuring device configured to be able to communicate with a data collection device,
    A physical quantity sensor that measures a physical quantity of a measurement target;
    a storage unit configured to store physical quantity data obtained by measuring the physical quantity using the physical quantity sensor in a ring buffer format;
    a timer count unit that counts a count value over time;
    a measurement processing unit that stores in the storage unit the physical quantity data obtained when the physical quantity is measured by the physical quantity sensor under a predetermined sampling condition based on the count value counted by the timer count unit;
    a time measurement processing unit that measures an elapsed time since the physical quantity sensor last measured the physical quantity as an elapsed time since the last measurement by the timer counting unit;
    a transmission processing unit that transmits to the data collecting device, when a predetermined transmission condition is satisfied, a physical quantity data sequence configured so that a measurement order of the physical quantity data can be determined based on the plurality of physical quantity data stored in the storage unit, and the elapsed time since the last measurement measured by the timing processing unit.
    Physical quantity measuring device.
  4.  1又は複数の物理量計測装置と通信可能に構成されたデータ収集装置であって、
     現在時刻を計測する時刻計測部と、
     前記物理量計測装置から、所定のサンプリング条件にて計測対象の物理量をそれぞれ計測したときの複数の物理量データにより前記物理量データの計測順が判別可能に構成された物理量データ列と、前記物理量データとして前記物理量を最後に計測してからの経過時間を示す最終計測後経過時間と、を受信する受信処理部と、
     前記時刻計測部により計測された前記現在時刻と、前記受信処理部により受信された前記最終計測後経過時間とに基づいて、前記受信処理部により受信された前記物理量データ列を構成する複数の前記物理量データの各々に対して前記物理量データとして前記物理量が計測されたときの計測時刻を特定する時刻特定処理部と、
     前記受信処理部により受信された前記物理量データ列に、前記時刻特定処理部により特定された前記計測時刻を前記物理量データ毎に対応付けて記憶装置に記憶する記憶処理部と、を備える、
     データ収集装置。
    A data collection device configured to be able to communicate with one or more physical quantity measuring devices,
    a time measurement unit that measures the current time;
    a receiving and processing unit that receives, from the physical quantity measuring device, a physical quantity data string configured so that a measurement order of the physical quantity data can be determined based on a plurality of physical quantity data obtained when each physical quantity of a measurement target is measured under a predetermined sampling condition, and a time since last measurement that indicates the time elapsed since the physical quantity was last measured as the physical quantity data;
    a time determination processing unit that determines a measurement time when a physical quantity was measured as the physical quantity data for each of the plurality of physical quantity data constituting the physical quantity data sequence received by the reception processing unit, based on the current time measured by the time measurement unit and the elapsed time since last measurement received by the reception processing unit;
    a storage processing unit that associates the measurement time identified by the time identification processing unit with the physical quantity data sequence received by the reception processing unit and stores the physical quantity data in a storage device.
    Data collection equipment.
  5.  計測対象の物理量を計測する物理量センサ、前記物理量センサにより前記物理量を計測した物理量データをリングバッファ形式で記憶する記憶部、及び、時間の経過に伴ってカウント値をカウントするタイマーカウント部を備える物理量計測装置と、現在時刻を計測する時刻計測部を備えるとともに、前記物理量計測装置と通信可能に構成されたデータ収集装置と、を備えるデータ処理システムを用いて、データを処理するデータ処理方法であって、
     前記物理量計測装置にて、
      前記タイマーカウント部によりカウントされた前記カウント値に基づいて、所定のサンプリング条件にて前記物理量センサにより前記物理量を計測したときの前記物理量データを前記記憶部に記憶する計測処理工程と、
      前記物理量センサが前記物理量を最後に計測してからの経過時間を前記タイマーカウント部により最終計測後経過時間として計時する計時処理工程と、
      所定の送信条件が満たされたとき、前記記憶部に記憶された複数の前記物理量データにより前記物理量データの計測順が判別可能に構成された物理量データ列と、前記計時処理工程により計時された前記最終計測後経過時間とを前記データ収集装置に送信する送信処理工程と、を行い、
     前記データ収集装置にて、
      前記物理量計測装置から前記物理量データ列と前記最終計測後経過時間とを受信する受信処理工程と、
      前記時刻計測部により計測された前記現在時刻と、前記受信処理工程により受信された前記最終計測後経過時間とに基づいて、前記受信処理工程により受信された前記物理量データ列を構成する複数の前記物理量データの各々に対して前記物理量データとして前記物理量が計測されたときの計測時刻を特定する時刻特定処理工程と、
     前記受信処理工程により受信された前記物理量データ列に、前記時刻特定処理工程により特定された前記計測時刻を前記物理量データ毎に対応付けて記憶装置に記憶する記憶処理工程と、を行う、
     データ処理方法。
    A data processing method for processing data using a data processing system including a physical quantity measuring device including a physical quantity sensor that measures a physical quantity of a measurement target, a storage unit that stores physical quantity data obtained by measuring the physical quantity by the physical quantity sensor in a ring buffer format, and a timer count unit that counts a count value over time, and a data collecting device that includes a time measuring unit that measures a current time and is configured to be able to communicate with the physical quantity measuring device, the data processing system comprising:
    In the physical quantity measuring device,
    a measurement processing step of storing, in the storage unit, physical quantity data obtained when the physical quantity is measured by the physical quantity sensor under a predetermined sampling condition based on the count value counted by the timer count unit;
    a timing process step of measuring an elapsed time since the physical quantity sensor last measured the physical quantity as an elapsed time since the last measurement by the timer counting unit;
    a transmission processing step of transmitting to the data collecting device, when a predetermined transmission condition is satisfied, a physical quantity data string configured so that a measurement order of the physical quantity data can be determined based on the plurality of physical quantity data stored in the storage unit, and the elapsed time since the final measurement measured in the timing processing step;
    In the data collection device,
    a receiving process step of receiving the physical quantity data string and the time elapsed since the last measurement from the physical quantity measuring device;
    a time identification process step of identifying a measurement time when a physical quantity was measured as the physical quantity data for each of the plurality of physical quantity data constituting the physical quantity data string received by the reception process step, based on the current time measured by the time measurement unit and the time elapsed since last measurement received by the reception process step;
    a storage processing step of storing the physical quantity data sequence received in the reception processing step in a storage device in such a manner that the measurement time identified in the time identification processing step is associated with each piece of physical quantity data.
    Data processing methods.
  6.  計測対象の物理量を計測する物理量センサ、前記物理量センサにより前記物理量を計測した物理量データをリングバッファ形式で記憶する記憶部、及び、時間の経過に伴ってカウント値をカウントするタイマーカウント部を備えるとともに、1又は複数のデータ収集装置と通信可能に構成された物理量計測装置を用いて、データを提供するデータ提供方法であって、
     前記タイマーカウント部によりカウントされた前記カウント値に基づいて、所定のサンプリング条件にて前記物理量センサにより前記物理量を計測したときの前記物理量データを前記記憶部に記憶する計測処理工程と、
     前記物理量センサが前記物理量を最後に計測してからの経過時間を前記タイマーカウント部により最終計測後経過時間として計時する計時処理工程と、
     所定の送信条件が満たされたとき、前記記憶部に記憶された複数の前記物理量データにより前記物理量データの計測順が判別可能に構成された物理量データ列と、前記計時処理工程により計時された前記最終計測後経過時間とを前記データ収集装置に送信する送信処理工程と、を行う、
     データ提供方法。
    A data providing method for providing data using a physical quantity measuring device including a physical quantity sensor that measures a physical quantity of a measurement target, a storage unit that stores physical quantity data obtained by measuring the physical quantity by the physical quantity sensor in a ring buffer format, and a timer count unit that counts a count value over time, and configured to be capable of communicating with one or a plurality of data collecting devices, the method comprising:
    a measurement processing step of storing, in the storage unit, physical quantity data obtained when the physical quantity is measured by the physical quantity sensor under a predetermined sampling condition based on the count value counted by the timer count unit;
    a timing process step of measuring an elapsed time since the physical quantity sensor last measured the physical quantity as an elapsed time since the last measurement by the timer counting unit;
    a transmission processing step of transmitting, when a predetermined transmission condition is satisfied, to the data collecting device, a physical quantity data sequence configured so that a measurement order of the physical quantity data can be determined based on the plurality of physical quantity data stored in the storage unit, and the elapsed time since the final measurement measured in the timing processing step;
    How data is provided.
  7.  現在時刻を計測する時刻計測部を備えるとともに、1又は複数の物理量計測装置と通信可能に構成されたデータ収集装置を用いて、データを収集するデータ収集方法であって、
     前記物理量計測装置から、所定のサンプリング条件にて計測対象の物理量をそれぞれ計測したときの複数の物理量データにより前記物理量データの計測順が判別可能に構成された物理量データ列と、前記物理量データとして前記物理量を最後に計測してからの経過時間を示す最終計測後経過時間とを受信する受信処理工程と、
     前記時刻計測部により計測された前記現在時刻と、前記受信処理工程により受信された前記最終計測後経過時間とに基づいて、前記受信処理工程により受信された前記物理量データ列を構成する複数の前記物理量データの各々に対して前記物理量データとして前記物理量が計測されたときの計測時刻を特定する時刻特定処理工程と、
     前記受信処理工程により受信された前記物理量データ列に、前記時刻特定処理工程により特定された前記計測時刻を前記物理量データ毎に対応付けて記憶装置に記憶する記憶処理工程と、を行う、
     データ収集方法。
    1. A data collection method for collecting data using a data collection device that includes a time measurement unit that measures a current time and is configured to be able to communicate with one or more physical quantity measuring devices, comprising:
    a receiving process step of receiving, from the physical quantity measuring device, a physical quantity data string configured so that a measurement order of the physical quantity data can be determined based on a plurality of physical quantity data obtained when each physical quantity of a measurement target is measured under a predetermined sampling condition, and a time since last measurement indicating an elapsed time since the physical quantity was last measured as the physical quantity data;
    a time identification process step of identifying a measurement time when a physical quantity was measured as the physical quantity data for each of the plurality of physical quantity data constituting the physical quantity data string received by the reception process step, based on the current time measured by the time measurement unit and the time elapsed since last measurement received by the reception process step;
    a storage processing step of storing the physical quantity data sequence received in the reception processing step in a storage device in such a manner that the measurement time identified in the time identification processing step is associated with each piece of physical quantity data.
    Data collection methods.
PCT/JP2023/023997 2022-09-29 2023-06-28 Data processing system, physical quantity measuring device, data collection device, data processing method, data provision method, and data collection method WO2024070099A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-156371 2022-09-29
JP2022156371A JP2024049876A (en) 2022-09-29 2022-09-29 DATA PROCESSING SYSTEM, PHYSICAL QUANTITY MEASURING APPARATUS, DATA COLLECTION APPARATUS, DATA PROCESSING METHOD, DATA PROVIDING METHOD, AND DATA COLLECTION METHOD

Publications (1)

Publication Number Publication Date
WO2024070099A1 true WO2024070099A1 (en) 2024-04-04

Family

ID=90476929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023997 WO2024070099A1 (en) 2022-09-29 2023-06-28 Data processing system, physical quantity measuring device, data collection device, data processing method, data provision method, and data collection method

Country Status (2)

Country Link
JP (1) JP2024049876A (en)
WO (1) WO2024070099A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114210A (en) * 2006-12-14 2007-05-10 T & D:Kk Measuring unit and its control method
JP2014066723A (en) * 2013-11-29 2014-04-17 Panasonic Corp Physical quantity data processing program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114210A (en) * 2006-12-14 2007-05-10 T & D:Kk Measuring unit and its control method
JP2014066723A (en) * 2013-11-29 2014-04-17 Panasonic Corp Physical quantity data processing program

Also Published As

Publication number Publication date
JP2024049876A (en) 2024-04-10

Similar Documents

Publication Publication Date Title
CN110837448B (en) Method and computing device for remotely monitoring a test performed in a test device
EP3232280B1 (en) Field device maintenance apparatus, method for maintaining a field device, and storage medium
CN112101662A (en) Equipment health condition and life cycle detection method, storage medium and electronic equipment
KR20190079917A (en) SYSTEM AND APPARATUS FOR OBTAINING DATA OF FACILITY AND SENSOR BASED ON INDUSTRIAL IoT SERVICE
CN105209995A (en) Monitoring system and diagnostic device and monitoring terminal thereof
JP2006243979A (en) Housing monitoring system, housing monitoring data management system and housing monitoring method
WO2016009883A1 (en) System for inspecting portable terminal use and server thereof
JP2023106444A (en) Information processing system, information processing method, and information processing device
CN114595987A (en) Multi-device centralized management method, device, system, electronic device and storage medium
JP2018190029A (en) Facility monitoring device
WO2024070099A1 (en) Data processing system, physical quantity measuring device, data collection device, data processing method, data provision method, and data collection method
JP5089716B2 (en) Data collection device, air conditioning device, data collection system, data collection method and program
WO2024075444A1 (en) Data processing system, data collection device, physical quantity measurement device, data processing method, data collection method, data presentation method, and data structure
CN112067324A (en) Automatic inspection system
US20200166433A1 (en) Exception-based route plan generation
WO2024084917A1 (en) Data processing system, data collection device, data processing method, and data collection method
WO2024079949A1 (en) Data processing system, data collection device, data management device, data processing method, data collection method, and data management method
JP2019215792A (en) Test information management device, test information management method, test information management program, and recording medium
JP2018156373A (en) Facility maintenance information management system and method of managing facility maintenance information
TW202414159A (en) Data processing systems, physical measurement devices, data collection devices, data processing methods, data providing methods, and data collection methods
WO2024057635A1 (en) Data processing device, physical quantity measurement device, data processing system, and data processing method
WO2024062690A1 (en) Data processing device, physical quantity measuring device, data processing system, and data processing method
US9229438B2 (en) System responsive to machine vibrations and method of use
JP2019031830A (en) Bearing abnormality detector, information system, bearing abnormality detection method, and program
RU2608790C1 (en) Device and system for equipment state parameters monitoring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871344

Country of ref document: EP

Kind code of ref document: A1