WO2024062690A1 - Data processing device, physical quantity measuring device, data processing system, and data processing method - Google Patents

Data processing device, physical quantity measuring device, data processing system, and data processing method Download PDF

Info

Publication number
WO2024062690A1
WO2024062690A1 PCT/JP2023/020803 JP2023020803W WO2024062690A1 WO 2024062690 A1 WO2024062690 A1 WO 2024062690A1 JP 2023020803 W JP2023020803 W JP 2023020803W WO 2024062690 A1 WO2024062690 A1 WO 2024062690A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
physical quantity
processing
processing unit
measuring device
Prior art date
Application number
PCT/JP2023/020803
Other languages
French (fr)
Japanese (ja)
Inventor
裕太 坂巻
泰雅 山田
孝志 関口
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Publication of WO2024062690A1 publication Critical patent/WO2024062690A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C15/00Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path
    • G08C15/06Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path successively, i.e. using time division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom

Definitions

  • the present invention relates to a data processing device, a physical quantity measuring device, a data processing system, and a data processing method.
  • Patent Document 1 describes a measurement sensor that measures vibrations, etc. of a monitored object, a measurement control unit that performs measurements by the measurement sensor in a predetermined positioning cycle, and a communication process that transmits measurement data by the measurement sensor to a diagnostic device.
  • a measuring instrument with a communication function is disclosed.
  • the measurement control means is always in a sleep state, and when a set point in the measurement cycle is reached, it automatically starts up and causes the measurement sensor to perform the measurement.
  • the measurement data is transmitted by the communication processing means.
  • the measurement data at a specific point in time may include sudden values due to the influence of the measurement environment of the measurement sensor, the driving condition of the monitored object, etc., so moving averages etc. It is effective to perform the following calculations.
  • the state of the monitored object abnormality, failure, etc.
  • trend monitoring first monitoring process
  • second monitoring processing real-time monitoring
  • the measuring device with a communication function disclosed in Patent Document 1 does not disclose that calculations such as a moving average are performed on measurement data at a plurality of points in time, or that monitoring is performed in a plurality of measurement cycles.
  • the present invention provides a data processing device, a physical quantity measuring device, a data processing system, and a physical quantity measuring device that can reduce power consumption while realizing a first monitoring process and a second monitoring process with different monitoring cycles. and to provide a data processing method.
  • a data processing device repeatedly acquires a physical quantity to be measured as physical quantity data, and performs a predetermined operation on the acquired physical quantity data to obtain processed data.
  • An arithmetic processing unit that generates a communication processing unit that sequentially transmits the processed data to a data collection device each time the processing data is generated by the calculation processing unit, and the calculation processing unit transmits the processing data when a predetermined start condition is satisfied.
  • the system enters a standby state for a predetermined standby time, acquires the physical quantity data at the latest point in time after the elapse of the standby time, and acquires the latest acquired physical quantity data.
  • Generating the second processed data by performing the calculation on the physical quantity data for the number of data points, which is made up of the physical quantity data at a point in time and the physical quantity data at a past point in time acquired in the past than the latest point in time.
  • the second arithmetic processing is repeatedly executed until the termination condition is satisfied.
  • the arithmetic processing unit when the predetermined start condition is satisfied, the arithmetic processing unit generates the first processed data by performing a calculation on the physical quantity data corresponding to the number of data points.
  • the arithmetic processing is executed and the first processed data is transmitted by the communication processing section.
  • the second arithmetic processing is not executed because a predetermined termination condition is satisfied.
  • only one batch of processing data is transmitted, so that it can be used, for example, for trend monitoring (first monitoring processing).
  • first monitoring processing since the device does not enter a standby state due to the standby time, power consumption can be reduced by the amount of the standby time.
  • the calculation processing section shifts to a standby state for a predetermined waiting time, and the physical quantity data corresponding to the number of data points including the physical quantity data at the latest point in time is stored.
  • a second arithmetic process of generating second process data by performing a calculation on the second process data is repeatedly executed until an end condition is satisfied, and the communication processing unit sequentially transmits the second process data. Since the processed data is thereby repeatedly transmitted, it can be used, for example, for real-time monitoring (second monitoring processing).
  • the system shifts to a standby state that consumes less power than the normal operating state for the duration of the standby time, and as the standby time passes, physical quantity data is acquired and calculations are performed, so unnecessary physical quantity data acquisition and calculations are avoided.
  • power consumption is reduced, and by transitioning to a standby state, power consumption is reduced. Therefore, it is possible to reduce power consumption while realizing the first monitoring process and the second monitoring process with different monitoring cycles.
  • FIG. 1 is an overall configuration diagram showing an example of a data processing system.
  • FIG. 1 is a block diagram showing an example of a physical quantity measuring device.
  • FIG. 1 is a block diagram showing an example of a data collection device.
  • FIG. 2 is a hardware configuration diagram showing an example of a computer configuring each device. It is a flowchart which shows an example of the 1st monitoring operation by a physical quantity measuring device (data processing device) and a data collection device. It is a flowchart which shows an example of the 2nd monitoring operation by a physical quantity measurement device (data processing device) and a data collection device.
  • 7 is a flowchart (continuation of FIG. 6) illustrating an example of a second monitoring operation by the physical quantity measuring device (data processing device) and the data collecting device.
  • FIG. 1 is an overall configuration diagram showing an example of a data processing system 1. As shown in FIG. The data processing system 1 functions as a system for processing physical quantity data when a physical quantity to be measured is measured by the pump apparatus 2 and for managing the pump apparatus 2 .
  • the data processing system 1 mainly comprises a pump device 2 to be monitored, a physical quantity measuring device 3 that can be attached to the pump device 2, a data collection device 4 configured to be able to communicate with the physical quantity measuring device 3, a data management device 5 configured to be able to communicate with the data collection device 4, and a terminal device 6 configured to be able to communicate with the data management device 5.
  • Each of the devices 2-6 is, for example, configured as a general-purpose or dedicated computer (see FIG. 4 described below), and is configured to be able to mutually send and receive various data via a network 7.
  • the number of each of the devices 2-6 is not limited to the example in FIG. 1, and may be one or more.
  • the pump device 2 is a device that transfers any fluid, and is installed and used, for example, in infrastructure equipment (water supply, sewerage, etc.) or plant equipment (oil refining, power generation, manufacturing, chemical process, etc.).
  • the pump device 2 includes a pump section 20, a motor 21 that serves as a drive source for the pump device 2, a transmission section 22 that transmits the driving force generated by the motor 21 to the pump section 20, and a pump that controls the operation of the pump device 2.
  • a control panel 23 is provided.
  • the pump section 20 is composed of, for example, an impeller, a rotating shaft, a bearing, a mechanical seal, a gland packing, a casing, and piping.
  • the motor 21 is constituted by an arbitrary type of motor such as an inverter motor, for example.
  • the transmission section 22 is composed of, for example, a coupling, a joint, a joint, a bearing, and the like.
  • the pump control panel 23 is composed of, for example, a built-in computer. The pump control panel 23 stores operating conditions set by a user (such as an installer or administrator of the pump device 2), and sensors (not shown) installed in each part of the pump unit 20 and motor 21. The rotational operation of the motor 21 is controlled based on the detected value.
  • the pump device 2 may be configured to be able to communicate with each of the devices 3 to 6.
  • the physical quantity measuring device 3 is a device that measures a physical quantity caused by the pump device 2, and is attached to an arbitrary position of the pump section 20, the motor 21, or the transmission section 22, for example.
  • the physical quantity measuring device 3 includes a physical quantity sensor 30 that measures a physical quantity to be measured, a data processing device 31 that processes physical quantity data when the physical quantity is measured by the physical quantity sensor 30, and the physical quantity sensor 30 and the data processing device 31. , and a housing 300 that can be attached to the pump device 2.
  • the physical quantities to be measured by the physical quantity sensor 30 include, for example, acceleration (vibration), velocity, displacement, and environmental sound.
  • the physical quantity sensor 30 includes, for example, an acceleration sensor that can measure acceleration, a speed sensor that can measure speed, a displacement sensor that can measure displacement, a microphone that can measure environmental sound, and the like.
  • the physical quantity to be measured is not limited to the above example, and may be a physical quantity such as pressure, load, temperature, current value, voltage value, etc. In that case, a pressure sensor, a load sensor, a temperature sensor, a current sensor, etc. , a physical quantity sensor 30 such as a voltage sensor is used. Further, the physical quantity sensor 30 may include a plurality of sensors for respectively measuring a plurality of physical quantities.
  • the data processing device 31 is a device for processing physical quantity data obtained by converting an analog signal indicating a physical quantity measured by the physical quantity sensor 30 into a digital signal. Note that the data processing device 31 may include an A/D conversion circuit that converts an analog signal into a digital signal, or may acquire physical quantity data converted into a digital signal from the physical quantity sensor 30.
  • the mounting position of the housing 300 is determined according to the physical quantity to be measured.
  • one physical quantity measuring device 3 may be attached to the pump device 2, or as shown in FIG. 1, a plurality of physical quantity measuring devices 3 may be attached.
  • a plurality of physical quantity measuring devices 3 may be devices that measure a common physical quantity or may be devices that measure different physical quantities.
  • the data collection device 4 is used by a user (an administrator, an inspection/repair worker, etc. of the pump device 2) located at the installation location of the pump device 2, and is used by the physical quantity measuring device 3 (specifically, the data processing device 31). ) is a device that collects data from The data collection device 4 is composed of, for example, a portable computer such as a smartphone or a tablet. For example, when the user of the data collection device 4 approaches within a predetermined distance from the physical quantity measuring device 3, communication is established with the physical quantity measuring device 3, thereby collecting data from the physical quantity measuring device 3. .
  • the data collection device 4 has programs such as applications and browsers installed thereon and accepts various input operations, and also displays the data collected from the physical quantity measurement device 3 on a display screen and transfers the data to the data management device 5. or send it to.
  • the data management device 5 includes a database 50 for managing data collected by the data collection device 4, and is configured with a server-type computer or a cloud-type computer, for example.
  • the data management device 5 stores the data received from the data collection device 4 in the database 50. Further, the data management device 5 transmits notification information to the terminal device 6 when the data received from the data collection device 4 satisfies a predetermined notification condition.
  • the data management device 5 receives a request to reference data stored in the database 50 from the terminal device 6, it transmits the reference information of the database 50 to the terminal device 6.
  • the terminal device 6 is a device used by a user (such as the manager of the pump device 2 or an inspection/repair worker) located in a remote location away from the installation location of the pump device 2, and is configured, for example, as a stationary computer or a portable computer. Programs such as applications and browsers are installed on the terminal device 6, and the terminal device 6 accepts various input operations and displays various information (notification information and reference information for the database 50) on the display screen.
  • the terminal device 6 may also be a device that doubles as the data collection device 4.
  • the network 7 is configured by wired communication, wireless communication, or a combination of wired communication and wireless communication according to any communication standard.
  • a standardized communication network such as the Internet
  • a communication network managed within a building such as a local network, or a combination of these communication networks
  • international standards are typically used as communication standards for wireless communication.
  • methods such as Bluetooth (registered trademark), Bluetooth Low Energy, Wi-Fi, ZigBee (registered trademark), Sub-GHz, EnOcean (registered trademark), and LTE can also be used.
  • FIG. 2 is a block diagram showing an example of the physical quantity measuring device 3.
  • the physical quantity measuring device 3 includes, as its main components, a control section 32, a communication section 33, a storage section 34, and a power supply 35, which constitute a data processing device 31, in addition to the physical quantity sensor 30 described above.
  • the control unit 32 functions as an arithmetic processing unit 320 and a communication processing unit 321, for example, by executing a data processing program 340 stored in the storage unit 34.
  • the communication unit 33 functions as a communication interface that transmits and receives various data to and from the data collection device 4 via the network 7, for example.
  • the storage unit 34 stores various programs (data processing program 340, etc.) and data (setting information 341, etc.) used in the operation of the physical quantity measuring device 3.
  • the setting information 341 stores, for example, setting parameters (number of data points Dn, standby time Wt, etc.) that are referenced by the control unit 32 when the physical quantity measuring device 3 operates, and also stores, for example, setting parameters that are referenced by the control unit 32 when the physical quantity measuring device 3 operates.
  • the power source 35 is composed of, for example, a primary battery, a secondary battery, a solar cell, a fuel cell, etc., and supplies power to each part of the physical quantity measuring device 3. Note that the power source 35 may receive power supply from the pump device 2.
  • the arithmetic processing unit 320 repeatedly acquires the physical quantity to be measured measured by the physical quantity sensor 30 as the physical quantity data D, and generates the processed data Rp by performing a predetermined operation on the acquired physical quantity data D.
  • a moving average is calculated for the physical quantity data D for a predetermined number of data points at different measurement points. Examples of the moving average include a simple moving average and a weighted moving average.
  • the arithmetic processing unit 320 When a predetermined start condition is met, the arithmetic processing unit 320 repeatedly obtains the physical quantity data D by a predetermined number of data points Dn, and performs a calculation on the physical quantity data D1 corresponding to the obtained number of data points. A first arithmetic process is executed to generate processed data Rp1. In the first monitoring process, unlike the second arithmetic processing described later, the physical quantity data D corresponding to the number of data points is acquired and the calculation is performed, so that the physical quantity data D corresponding to the number of data points is acquired and the calculation is performed. Power consumption is reduced.
  • the arithmetic processing unit 320 shifts to a standby state for a predetermined standby time Wt, and after the elapse of the standby time Wt, the physical quantity data at the latest point in time is Dnew is acquired, and the second calculation is performed on the physical quantity data D2 for the number of data points consisting of the acquired physical quantity data Dnew at the latest point in time and the physical quantity data Dpass at the past point in time acquired in the past than the latest point in time.
  • the second arithmetic processing for generating the processed data Rp2 is repeatedly executed until the termination condition is satisfied.
  • the standby time Wt is set, for example, based on the time obtained by subtracting the acquisition time of the physical quantity data D and the calculation time of the second processing data Rp2 from the second monitoring cycle S2 described below.
  • the system transitions to a standby state that consumes less power than the normal operating state for only the standby time Wt, and physical quantity data D is acquired and calculations are performed as the standby time Wt elapses, thereby reducing power consumption by avoiding the acquisition and calculation of unnecessary physical quantity data D, and reducing power consumption by transitioning to the standby state.
  • the physical quantity data D2 for the number of data points to be calculated in the second calculation process is the physical quantity data Dnew of one point at the latest point, and the physical quantity data Dnew from the latest point. It consists of physical quantity data Dpass1, Dpass2, and Dpass3 for three points, which are the most recent past points.
  • the calculation processing unit 320 calculates a moving average every time it acquires the physical quantity data Dnew at the latest point in time
  • the calculation processing unit 320 calculates the moving average for the physical quantity data Dpass (Dpass1, Dpass2, Dpass3) at the past point in time.
  • the storage unit 34 may be stored in the storage unit 34, and the storage unit 34 may be referred to when calculating the moving average.
  • the physical quantity data Dpass stored in the storage unit 34 may be deleted in the order of the oldest acquisition time, taking into consideration the storage capacity of the storage unit 34 and the like.
  • the start condition and the end condition are determined based on, for example, the communication state with the data collection device 4 and the on/off state of the power supply of the physical quantity measuring device 3. For example, as for the communication state with the data collection device 4, when the communication with the data collection device 4 starts, the calculation processing unit 320 determines that the start condition is satisfied, starts the first calculation process, and collects the data. When the communication with the device 4 is completed, it is determined that the termination condition is satisfied, and the second arithmetic processing is terminated.
  • the arithmetic processing unit 320 determines that the start condition is satisfied, starts the first arithmetic processing, and When the power of the measuring device 3 is turned off, it is determined that the termination condition is satisfied, and the second arithmetic processing is terminated.
  • the arithmetic processing unit 320 ends the second arithmetic processing and shifts to the sleep state, which consumes less power than the standby state, and when the start condition is met, the arithmetic processing unit 320 exits the sleep state. It is also possible to return and start the first arithmetic processing.
  • the communication processing unit 321 sequentially transmits the processing data Rp to the data collection device 4 every time the processing data Rp is generated by the arithmetic processing unit 320.
  • the communication processing unit 321 transmits the first processed data Rp1 and generates the first processed data Rp1 in the second arithmetic processing.
  • the communication processing unit 321 transmits the second processing data Rp2.
  • the processing data Rp transmitted by the communication processing unit 321 is received by the data collection device 4, it is further transmitted from the data collection device 4 to the data management device 5, thereby being stored in the database 50. Further, the processed data Rp may be displayed on the display screen of the data collection device 4.
  • the processing data Rp includes, for example, identification information for identifying at least one of the pump device 2 and the physical quantity measuring device 3 (device ID of the pump device 2, physical quantity measuring device 3) may be added, and in that case, the processing data Rp and the identification information may be stored in the database 50 in an associated state.
  • FIG. 3 is a block diagram showing an example of the data collection device 4.
  • the data collection device 4 includes a control section 40, a communication section 41, a storage section 42, an input section 43, and an output section 44 as its main components.
  • the control unit 40 functions as a first collection processing unit 400 and a second collection processing unit 401, for example, by executing a data collection program 420 stored in the storage unit 42.
  • the communication unit 41 functions as a communication interface for transmitting and receiving various data between, for example, the physical quantity measuring device 3 and the data management device 5 via the network 7.
  • the storage unit 42 stores various programs (such as the data collection program 420) and data (such as setting information 421) used in the operation of the data collection device 4.
  • the setting information 421 stores, for example, setting parameters (such as the first monitoring period S1 and the second monitoring period S2) referenced by the control unit 40 when the data collection device 4 operates, and is configured to be set, for example, via the data collection device 4.
  • the input unit 43 and the output unit 44 function as a user interface by accepting input operations from the user and outputting various information via a display screen or voice.
  • the first collection processing unit 400 performs a first monitoring operation to collect processing data Rp1 based on the first monitoring cycle S1. For example, the first collection processing unit 400 collects the processed data Rp1 by repeatedly executing the first monitoring process according to the first monitoring cycle S1.
  • the first monitoring process is to start communication with the physical quantity measuring device 3, receive first processing data from the physical quantity measuring device 3, and end communication with the physical quantity measuring device 3.
  • the first monitoring period S1 is set, for example, in units of hours or days, as a value suitable for trend monitoring (first monitoring processing).
  • the second collection processing unit 401 performs a second monitoring operation to collect the processed data Rp1 and Rp2 based on a second monitoring cycle S2 ( ⁇ S1) that is shorter than the first monitoring cycle S1. For example, the second collection processing unit 401 starts communication with the physical quantity measuring device 3, receives the first processed data Rp1 from the physical quantity measuring device 3, and executes the second monitoring process. Collect data Rp1 and Rp2. The second monitoring process is to repeatedly receive the second processing data Rp2 according to the second monitoring cycle S2, and to terminate communication with the physical quantity measuring device 3.
  • the second monitoring period S2 is set, for example, in seconds or minutes as a value suitable for real-time monitoring (second monitoring processing).
  • FIG. 4 is a hardware configuration diagram showing an example of a computer 900 that constitutes each device.
  • Each of the pump device 2 (mainly the pump control panel 23), the physical quantity measuring device 3 (mainly the data processing device 31), the data management device 5, and the terminal device 6 is configured by a general-purpose or dedicated computer 900.
  • the computer 900 includes a bus 910, a processor 912, a memory 914, an input device 916, an output device 917, a display device 918, a storage device 920, and a communication I/F (interface) as its main components. 922 , an external device I/F section 924 , an I/O (input/output) device I/F section 926 , and a media input/output section 928 . Note that the above-mentioned components may be omitted as appropriate depending on the purpose for which the computer 900 is used.
  • the processor 912 includes one or more arithmetic processing units (CPU (Central Processing Unit), MPU (Micro-Processing Unit), DSP (Digital Signal Processor), GPU (Graphics Processing Unit), NPU (Neural Processing Unit), etc.) It operates as a control unit that controls the entire computer 900.
  • the memory 914 stores various data and programs 930, and includes, for example, a volatile memory (DRAM, SRAM, etc.) that functions as a main memory, a nonvolatile memory (ROM), a flash memory, etc.
  • the input device 916 is, for example, a keyboard, a mouse, a numeric keypad, an electronic pen, etc., and functions as an input unit.
  • the output device 917 is, for example, a sound (audio) output device, a vibration device, etc., and functions as an output unit.
  • the display device 918 is, for example, a liquid crystal display, an organic EL display, electronic paper, a projector, etc., and functions as an output unit.
  • the input device 916 and the display device 918 may be integrated, such as a touch panel display.
  • the storage device 920 is, for example, a HDD, an SSD, etc., and functions as a memory unit. The storage device 920 stores various data necessary for the execution of the operating system and the program 930.
  • the communication I/F unit 922 is connected to a network 940 (which may be the same as the network 7 in FIG. 1) such as the Internet or an intranet by wire or wirelessly, and functions as a communication unit that transmits and receives data to and from other computers according to a predetermined communication standard.
  • the external device I/F unit 924 is connected to an external device 950 such as a camera, printer, scanner, or reader/writer by wire or wirelessly, and functions as a communication unit that transmits and receives data to and from the external device 950 according to a predetermined communication standard.
  • the I/O device I/F unit 926 is connected to an I/O device 960 such as various sensors and actuators, and functions as a communication unit that transmits and receives various signals and data, such as detection signals from sensors and control signals to actuators, between the I/O device 960.
  • the media input/output unit 928 is composed of, for example, a drive device such as a DVD drive or a CD drive, a memory card slot, and a USB connector, and reads and writes data to and from media (non-temporary storage media) 970 such as DVDs, CDs, memory cards, and USB memories.
  • the processor 912 calls the program 930 stored in the storage device 920 to the memory 914 and executes it, and controls each part of the computer 900 via the bus 910.
  • the program 930 may be stored in the memory 914 instead of the storage device 920.
  • the program 930 may be recorded on the medium 970 in an installable file format or an executable file format, and provided to the computer 900 via the media input/output unit 928.
  • the program 930 may be provided to the computer 900 by being downloaded via the network 940 via the communication I/F unit 922.
  • the computer 900 implements various functions realized by the processor 912 executing the program 930, for example, using FPGA (Field-Programmable Gate Array), ASIC (Application Specific Integrated Circuit), etc. Even if it is realized by hardware good.
  • the computer 900 is, for example, a stationary computer or a portable computer, and is any type of electronic device.
  • the computer 900 may be a client-type computer, a server-type computer, a cloud-type computer, or, for example, an embedded computer called a control panel, controller (including a microcomputer, programmable logic controller, and sequencer), or the like.
  • FIG. 5 is a flowchart showing an example of the first monitoring operation by the physical quantity measuring device 3 (data processing device 31) and the data collecting device 4.
  • 6 and 7 are flowcharts showing an example of the second monitoring operation by the physical quantity measuring device 3 (data processing device 31) and the data collecting device 4.
  • the series of processes (data processing method) shown in FIGS. 5 to 7 may be executed, for example, based on a user's input operation to the data collection device 4, or executed by the data management device 5 to the data collection device 4. It may also be executed based on a command.
  • step S200 when the arithmetic processing unit 320 of the physical quantity measuring device 3 receives the communication start request from the data collecting device 4, it starts communication with the data collecting device 4, and in step S210, the processing unit 320 of the physical quantity measuring device 3 Judgment is fulfilled. At this time, if the control unit 32 is in the sleep state, it returns from the sleep state in step S211.
  • step S230 the communication processing unit 321 transmits the first processing data Rp1 generated in steps S220 to S221 (first calculation processing) to the data collection device 4.
  • step S110 when the first collection processing unit 400 receives the first processing data Rp1 from the data collection device 4, the first collection processing unit 400 performs output processing to output the first processing data Rp1, for example, to the data management device. 5 or displayed on the display screen of the data collection device 4.
  • step S111 the first collection processing unit 400 transmits a communication termination request to the physical quantity measuring device 3 to terminate communication with the physical quantity measuring device 3. Then, in step S120, the first collection processing unit 400 monitors whether or not the monitoring time point according to the first monitoring cycle S1 has arrived, and if it is determined that the next monitoring time point has arrived, the first collection processing unit 400 The process returns to step S100.
  • step S240 upon receiving the communication termination request from the data collection device 4, the arithmetic processing unit 320 ends communication with the data collection device 4.
  • step S250 the arithmetic processing unit 320 determines whether the termination condition is satisfied depending on whether or not a communication termination request is received from the data collection device 4.
  • step S251 it is determined that the termination condition is satisfied.
  • step S252 the arithmetic processing unit 320 enters a sleep state and maintains the sleep state until a new communication start request is received.
  • the first collection processing unit 400 collects processing data Rp1 by repeatedly transmitting a communication start request every time the first monitoring cycle S1 elapses through the first monitoring process. Note that steps S200 to S221 and steps S240 to S252 correspond to arithmetic processing steps, and step S230 corresponds to a communication processing step.
  • step S200 when the arithmetic processing unit 320 of the physical quantity measuring device 3 receives the communication start request from the data collecting device 4, it starts communication with the data collecting device 4, and in step S210, the processing unit 320 of the physical quantity measuring device 3 is determined to be satisfied. At this time, if the control unit 32 is in the sleep state, it returns from the sleep state in step S211.
  • step S110 when the second collection processing unit 401 receives the first processed data Rp1 from the data collection device 4, it performs an output process to output the first processed data Rp1.
  • steps S111 and S240 indicated by broken lines in FIG. 6 are processes that are not actually executed, and the second collection processing unit 401 outputs the communication termination request after outputting the first processing data is not transmitted to the physical quantity measuring device 3.
  • step S250 the arithmetic processing unit 320 determines whether the termination condition is satisfied depending on whether or not a communication termination request is received from the data collection device 4, but since the communication termination request is not received. , it is determined that the termination condition is not satisfied, and the process proceeds to step S260.
  • the arithmetic processing unit 320 executes the second arithmetic processing. Specifically, the arithmetic processing unit 320 transitions to a standby state for a predetermined standby time Wt in step S260. Then, after the waiting time Wt has elapsed, in step S261, the physical quantity data Dnew at the latest point in time is acquired, and in step S262, the physical quantity data Dnew at one point at the acquired latest point in time is combined with the physical quantity data Dnew at the latest point in time.
  • the second processed data is obtained by performing an operation on the four points of physical quantity data D2 (Dnew, Dpsas1, Dpsas2, Dpsas3), which is made up of the acquired three points of physical quantity data Dpsas (Dpsas1, Dpsas2, Dpsas3) at the past point in time. Generate Rp2. Note that the physical quantity data Dpsas at the past point in time is the physical quantity data D acquired up to three times before, and is read out from the storage unit 34. Then, the physical quantity data Dnew at the latest point in time is stored in the storage unit 34, and in the next second calculation process, it is read out as the physical quantity data Dpsas at the past point in time.
  • step S270 the communication processing unit 321 transmits the second processed data Rp2 generated in steps S260 to S262 (second calculation processing) to the data collection device 4.
  • step S130 when the second collection processing unit 401 receives the second processed data Rp2 from the data collection device 4, it performs an output process to output the second processed data Rp2.
  • step S290 the arithmetic processing unit 320 monitors whether the termination condition is satisfied depending on whether a communication termination request is received from the data collection device 4.
  • step S290 the arithmetic processing unit 320 determines that the termination condition is not satisfied because the communication termination request is not received. , the process returns to step S260. Then, steps S260 to S262 (second arithmetic processing) are executed, and in step S270, the process of transmitting the second processed data Rp2 to the data collection device 4 is repeatedly executed until the termination condition is satisfied. Therefore, in step S130, the second collection processing unit 401 repeatedly receives the second processed data Rp2 from the data collection device 4.
  • step S131 the second collection processing unit 401 transmits a communication termination request to the physical quantity measuring device 3.
  • the second collection processing unit 401 receives an input operation instructing to end the second monitoring operation, or when the monitoring period of the second monitoring operation ends, the second collection processing unit 401 receives a communication
  • a termination request may be sent to the physical quantity measuring device 3.
  • step S280 upon receiving the communication termination request from the data collection device 4, the arithmetic processing unit 320 terminates the communication with the data collection device 4, and in step S290, the arithmetic processing unit 320 terminates the communication from the data collection device 4. It is determined whether the termination condition is satisfied depending on whether a request is received or not. Since a communication termination request has been received, it is determined in step S251 that the termination condition is satisfied. Then, in step S252, the arithmetic processing unit 320 shifts to a sleep state.
  • the arithmetic processing unit 320 shifts to a standby state according to the standby time Wt corresponding to the second monitoring cycle S2,
  • the communication processing unit 321 repeatedly transmits the second processing data Rp2 by repeatedly executing the second arithmetic processing that generates the second processing data Rp2.
  • the second collection processing unit 401 receives the first processing data Rp1 from the physical quantity measuring device 3 and performs a second monitoring process of repeatedly receiving the second processing data Rp2 according to the second monitoring cycle S2. By executing this, the processing data Rp1 and Rp2 are collected every time the second monitoring period S2 elapses. Note that steps S200 to S221, steps S240 to S262, and S280 to S290 correspond to arithmetic processing steps, and steps S230 and S270 correspond to communication processing steps.
  • the calculation processing unit 320 executes a first calculation process that generates first processed data Rp1 by performing calculations on the physical quantity data D1 for the number of data points, and transmits the first processed data Rp1 by the communication processing unit 321.
  • a predetermined end condition is satisfied, so that the second calculation process is not executed.
  • only one batch of processed data Rp1 is transmitted, which can be used, for example, for trend monitoring (first monitoring process).
  • the device does not enter a standby state due to the standby time Wt, so power consumption for the standby time is reduced.
  • the calculation processing unit 320 transitions to a standby state for a predetermined standby time Wt, and repeatedly executes the second calculation process in which the second processing data Rp2 is generated by performing calculations on the physical quantity data D2 for the number of data points including the latest physical quantity data Dnew until the end condition is satisfied, and the communication processing unit 321 sequentially transmits the second processing data Rp2.
  • the processing data Rp2 is repeatedly transmitted, so that it can be used for real-time monitoring (second monitoring process), for example.
  • the system transitions to a standby state that consumes less power than the normal operating state for the standby time Wt, and the physical quantity data D is acquired and calculated as the standby time Wt elapses, so that the acquisition and calculation of unnecessary physical quantity data D is avoided, thereby reducing power consumption, and the transition to the standby state reduces power consumption. Therefore, it is possible to reduce power consumption while realizing the first monitoring process and the second monitoring process with different monitoring periods.
  • the data processing device 31 is implemented by the physical quantity measuring device 3, which is a separate device from the pump device 2.
  • some or all of the functions of the data processing device 31 may be implemented in the pump device 2 by being incorporated into the pump control panel 23 of the pump device 2.
  • the physical quantity sensor 30 and the pump control panel 23 may be connected by wire or wirelessly to transmit and receive various data.
  • the pump device 2 may include a physical quantity sensor 30.
  • the processed data Rp1 and Rp2 transmitted by the physical quantity measuring device 3 are received by the data management device 5 via the data collection device 4 and stored in the database 50 as a storage device. did.
  • the destination devices and storage devices of the processed data Rp1 and Rp2 may be changed as appropriate.
  • the processed data Rp1 and Rp2 may be transmitted to the data management device 5 or the terminal device 6, or may be stored in a storage device included in the data collection device 4 or the terminal device 6.
  • the physical quantity measuring device 3 is described as being attached to the pump device 2.
  • the physical quantity measuring device 3 may be attached to various devices, such as a refrigerator, a gas machine, a machine tool, a press machine, a conveying machine, a diagnostic machine, etc.
  • the physical quantity sensor 30 may be configured to measure the physical quantity resulting from the various devices.
  • First collection processing section 401 ...Second collection processing unit, 420...Data collection program, 421...Setting information, D1, D2, Dnew, Dpass, Dpass1, Dpass2, Dpass3...Physical quantity data, Dn...Number of data points, Rp...Processing data, Rp1...First processing data, Rp2...second processing data, S1...first monitoring cycle, S2...second monitoring cycle, Wt...standby time

Abstract

This data processing device comprises: an arithmetic operation unit that repeatedly acquires the physical quantity to be measured, as physical quantity data, and performs a prescribed arithmetic operation on the physical quantity data so as to generate process data; and a communication processing unit that sequentially transmits process data each time process data is generated. The arithmetic operation unit executes a first arithmetic operation on the physical quantity data of a prescribed number of data points and generates first process data when a prescribed start condition is satisfied, and executes a second arithmetic operation until an end condition is satisfied, on physical quantity data for a number of data points comprising physical quantity data at the most recent time and physical quantity data at a past time and generates second process data after the elapse of a prescribed wait time when a prescribed end condition is not satisfied after executing the first arithmetic operation.

Description

データ処理装置、物理量計測装置、データ処理システム、及び、データ処理方法Data processing device, physical quantity measuring device, data processing system, and data processing method
 本発明は、データ処理装置、物理量計測装置、データ処理システム、及び、データ処理方法に関する。
 本願は、2022年9月21日に日本に出願された特願2022-150424号について優先権を主張し、その内容をここに援用する。
The present invention relates to a data processing device, a physical quantity measuring device, a data processing system, and a data processing method.
This application claims priority to Japanese Patent Application No. 2022-150424 filed in Japan on September 21, 2022, the contents of which are incorporated herein.
 従来、監視対象物に計測装置を取り付けて、監視対象装置の状態を監視することが行われている。例えば、特許文献1には、監視対象物の振動等を測定する測定センサと、測定センサによる測定を所定の測位サイクルで行う測定制御手段と、測定センサによる測定データを診断装置に送信する通信処理手段とを備える通信機能付き測定器が開示されている。 Conventionally, a measuring device is attached to a monitored object to monitor the state of the monitored device. For example, Patent Document 1 describes a measurement sensor that measures vibrations, etc. of a monitored object, a measurement control unit that performs measurements by the measurement sensor in a predetermined positioning cycle, and a communication process that transmits measurement data by the measurement sensor to a diagnostic device. A measuring instrument with a communication function is disclosed.
日本国特開2014-225080号公報Japanese Patent Application Publication No. 2014-225080
 特許文献1に開示された通信機能付き測定器では、測定制御手段が、常時はスリープ状態にあり、測定サイクルにより設定された時点に至ると、自動起動して測定用センサに計測させて、その測定データを通信処理手段により送信させる。 In the measuring device with a communication function disclosed in Patent Document 1, the measurement control means is always in a sleep state, and when a set point in the measurement cycle is reached, it automatically starts up and causes the measurement sensor to perform the measurement. The measurement data is transmitted by the communication processing means.
 ここで、特定時点の測定データでは、測定センサの測定環境や監視対象物の運転状況等の影響を受けて突発値が含まれる可能性があるため、複数時点の測定データに対して移動平均等の演算を行うことが有効である。また、監視対象物の状態(異常や故障等)を判定する際に、その判定する状態に応じて、例えば、測定サイクルを時間単位や日単位で設定するような傾向監視(第1の監視処理)と、測定サイクルを秒単位や分単位で設定するようなリアルタイム監視(第2の監視処理)とを使い分けたり、併用したりすることが必要である。しかしながら、特許文献1に開示された通信機能付き測定器では、複数時点の測定データに対して移動平均等の演算を行うことや、複数の測定サイクルで監視するようなことは開示されていない。 Here, the measurement data at a specific point in time may include sudden values due to the influence of the measurement environment of the measurement sensor, the driving condition of the monitored object, etc., so moving averages etc. It is effective to perform the following calculations. In addition, when determining the state of the monitored object (abnormality, failure, etc.), depending on the state to be determined, for example, trend monitoring (first monitoring process ) and real-time monitoring (second monitoring processing) in which the measurement cycle is set in seconds or minutes, or in combination. However, the measuring device with a communication function disclosed in Patent Document 1 does not disclose that calculations such as a moving average are performed on measurement data at a plurality of points in time, or that monitoring is performed in a plurality of measurement cycles.
 本発明は、上述した課題に鑑み、監視周期が異なる第1の監視処理及び第2の監視処理を実現しつつ、消費電力の低減を可能とするデータ処理装置、物理量計測装置、データ処理システム、及び、データ処理方法を提供することを目的とする。 In view of the above-mentioned problems, the present invention provides a data processing device, a physical quantity measuring device, a data processing system, and a physical quantity measuring device that can reduce power consumption while realizing a first monitoring process and a second monitoring process with different monitoring cycles. and to provide a data processing method.
 上記目的を達成するために、本発明の一態様に係るデータ処理装置は、計測対象の物理量を物理量データとして繰り返し取得し、取得した前記物理量データに対して所定の演算を行うことにより処理データを生成する演算処理部と、
 前記演算処理部により前記処理データが生成される毎に前記処理データをデータ収集装置に順次送信する通信処理部と、を備え、前記演算処理部は、所定の開始条件が満たされたとき、前記物理量データを所定のデータ点数だけ繰り返し取得し、取得した前記データ点数分の前記物理量データに対して前記演算を行うことにより第1の前記処理データを生成する第1の演算処理を実行し、前記第1の演算処理の実行後に所定の終了条件が満たされていないとき、所定の待機時間だけ待機状態に移行し、前記待機時間の経過後に最新時点の前記物理量データを取得し、取得した前記最新時点の前記物理量データと、前記最新時点よりも過去に取得した過去時点の前記物理量データとからなる前記データ点数分の前記物理量データに対して前記演算を行うことにより第2の前記処理データを生成する第2の演算処理を、前記終了条件が満たされるまで繰り返し実行する。
In order to achieve the above object, a data processing device according to one aspect of the present invention repeatedly acquires a physical quantity to be measured as physical quantity data, and performs a predetermined operation on the acquired physical quantity data to obtain processed data. An arithmetic processing unit that generates
a communication processing unit that sequentially transmits the processed data to a data collection device each time the processing data is generated by the calculation processing unit, and the calculation processing unit transmits the processing data when a predetermined start condition is satisfied. Repeatedly acquiring physical quantity data for a predetermined number of data points, and performing the first calculation process to generate the first processed data by performing the calculation on the physical quantity data corresponding to the acquired number of data points, When a predetermined end condition is not satisfied after the first calculation process is executed, the system enters a standby state for a predetermined standby time, acquires the physical quantity data at the latest point in time after the elapse of the standby time, and acquires the latest acquired physical quantity data. Generating the second processed data by performing the calculation on the physical quantity data for the number of data points, which is made up of the physical quantity data at a point in time and the physical quantity data at a past point in time acquired in the past than the latest point in time. The second arithmetic processing is repeatedly executed until the termination condition is satisfied.
 本発明に係るデータ処理装置によれば、所定の開始条件が満たされると、演算処理部が、データ点数分の物理量データに対して演算を行うことにより第1の処理データを生成する第1の演算処理を実行し、通信処理部によりその第1の処理データを送信する。このとき、所定の終了条件が満たされることで、第2の演算処理は実行されない。これにより、1回分の処理データだけが送信されるので、例えば、傾向監視(第1の監視処理)に利用することができる。また、第1の監視処理では、待機時間による待機状態に移行しないため、待機時間分の消費電力の低減が図られる。一方、第1の演算処理の実行後に所定の終了条件が満たされていないと、演算処理部が、所定の待機時間だけ待機状態に移行し、最新時点の物理量データを含むデータ点数分の物理量データに対して演算を行うことにより第2の処理データを生成する第2の演算処理を、終了条件が満たされるまで繰り返し実行し、通信処理部によりその第2の処理データを順次送信する。これにより、処理データが繰り返し送信されるので、例えば、リアルタイム監視(第2の監視処理)に利用することができる。その際、通常の動作状態よりも消費電力が少ない待機状態に待機時間だけ移行し、待機時間の経過に合わせて物理量データが取得されて演算が行われるので、無用な物理量データの取得や演算が回避されることによる消費電力の低減と、待機状態への移行による消費電力の低減とが図られる。したがって、監視周期が異なる第1の監視処理及び第2の監視処理を実現しつつ、消費電力の低減を図ることができる。 According to the data processing device according to the present invention, when the predetermined start condition is satisfied, the arithmetic processing unit generates the first processed data by performing a calculation on the physical quantity data corresponding to the number of data points. The arithmetic processing is executed and the first processed data is transmitted by the communication processing section. At this time, the second arithmetic processing is not executed because a predetermined termination condition is satisfied. As a result, only one batch of processing data is transmitted, so that it can be used, for example, for trend monitoring (first monitoring processing). Furthermore, in the first monitoring process, since the device does not enter a standby state due to the standby time, power consumption can be reduced by the amount of the standby time. On the other hand, if the predetermined termination condition is not met after the first calculation process is executed, the calculation processing section shifts to a standby state for a predetermined waiting time, and the physical quantity data corresponding to the number of data points including the physical quantity data at the latest point in time is stored. A second arithmetic process of generating second process data by performing a calculation on the second process data is repeatedly executed until an end condition is satisfied, and the communication processing unit sequentially transmits the second process data. Since the processed data is thereby repeatedly transmitted, it can be used, for example, for real-time monitoring (second monitoring processing). At that time, the system shifts to a standby state that consumes less power than the normal operating state for the duration of the standby time, and as the standby time passes, physical quantity data is acquired and calculations are performed, so unnecessary physical quantity data acquisition and calculations are avoided. By avoiding this, power consumption is reduced, and by transitioning to a standby state, power consumption is reduced. Therefore, it is possible to reduce power consumption while realizing the first monitoring process and the second monitoring process with different monitoring cycles.
 上記以外の課題、構成及び効果は、後述する発明を実施するための形態にて明らかにされる。 Problems, configurations, and effects other than those described above will be made clear in the detailed description of the invention described below.
データ処理システムの一例を示す全体構成図である。1 is an overall configuration diagram showing an example of a data processing system. 物理量計測装置の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of a physical quantity measuring device. データ収集装置の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of a data collection device. 各装置を構成するコンピュータの一例を示すハードウエア構成図である。FIG. 2 is a hardware configuration diagram showing an example of a computer configuring each device. 物理量計測装置(データ処理装置)及びデータ収集装置による第1の監視動作の一例を示すフローチャートである。It is a flowchart which shows an example of the 1st monitoring operation by a physical quantity measuring device (data processing device) and a data collection device. 物理量計測装置(データ処理装置)及びデータ収集装置による第2の監視動作の一例を示すフローチャートである。It is a flowchart which shows an example of the 2nd monitoring operation by a physical quantity measurement device (data processing device) and a data collection device. 物理量計測装置(データ処理装置)及びデータ収集装置による第2の監視動作の一例を示すフローチャート(図6の続き)である。7 is a flowchart (continuation of FIG. 6) illustrating an example of a second monitoring operation by the physical quantity measuring device (data processing device) and the data collecting device.
 以下、図面を参照して本発明を実施するための実施形態について説明する。以下では、本発明の目的を達成するための説明に必要な範囲を模式的に示し、本発明の該当部分の説明に必要な範囲を主に説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. Below, the range necessary for explanation to achieve the purpose of the present invention will be schematically shown, and the range necessary for explanation of the relevant part of the present invention will be mainly explained.
 図1は、データ処理システム1の一例を示す全体構成図である。データ処理システム1は、ポンプ装置2にて計測対象の物理量を計測したときの物理量データを処理し、ポンプ装置2を管理するためのシステムとして機能する。 FIG. 1 is an overall configuration diagram showing an example of a data processing system 1. As shown in FIG. The data processing system 1 functions as a system for processing physical quantity data when a physical quantity to be measured is measured by the pump apparatus 2 and for managing the pump apparatus 2 .
 データ処理システム1は、その主要な構成として、監視対象のポンプ装置2と、ポンプ装置2に取付可能な物理量計測装置3と、物理量計測装置3と通信可能に構成されたデータ収集装置4と、データ収集装置4と通信可能に構成されたデータ管理装置5と、データ管理装置5と通信可能に構成された端末装置6とを備える。各装置2~6は、例えば、汎用又は専用のコンピュータ(後述の図4参照)で構成されるとともに、ネットワーク7を介して各種のデータを相互に送受信可能に構成される。なお、各装置2~6の数は、図1の例に限られず、1つでもよいし、複数でもよい。 The data processing system 1 mainly comprises a pump device 2 to be monitored, a physical quantity measuring device 3 that can be attached to the pump device 2, a data collection device 4 configured to be able to communicate with the physical quantity measuring device 3, a data management device 5 configured to be able to communicate with the data collection device 4, and a terminal device 6 configured to be able to communicate with the data management device 5. Each of the devices 2-6 is, for example, configured as a general-purpose or dedicated computer (see FIG. 4 described below), and is configured to be able to mutually send and receive various data via a network 7. The number of each of the devices 2-6 is not limited to the example in FIG. 1, and may be one or more.
 ポンプ装置2は、任意の流体を移送する装置であり、例えば、インフラ設備(上水道、下水道等)やプラント設備(石油精製、発電、製造、化学プロセス等)に設置されて使用される。ポンプ装置2は、ポンプ部20と、ポンプ装置2の駆動源となるモータ21と、モータ21が発生した駆動力をポンプ部20に伝達する伝達部22と、ポンプ装置2の動作を制御するポンプ制御盤23とを備える。 The pump device 2 is a device that transfers any fluid, and is installed and used, for example, in infrastructure equipment (water supply, sewerage, etc.) or plant equipment (oil refining, power generation, manufacturing, chemical process, etc.). The pump device 2 includes a pump section 20, a motor 21 that serves as a drive source for the pump device 2, a transmission section 22 that transmits the driving force generated by the motor 21 to the pump section 20, and a pump that controls the operation of the pump device 2. A control panel 23 is provided.
 ポンプ部20は、例えば、羽根車、回転軸、軸受、メカニカルシール、グランドパッキン、ケーシング、配管等で構成される。モータ21は、例えば、インバータモータ等の任意の形式のモータで構成される。伝達部22は、例えば、カップリング、継手、ジョイント、軸受等で構成される。ポンプ制御盤23は、例えば、組込型コンピュータで構成される。ポンプ制御盤23は、ユーザ(ポンプ装置2の設置作業者や管理者等)により運転条件が設定された設定値と、ポンプ部20及びモータ21の各部に設けられたセンサ類(不図示)の検出値とに基づいて、モータ21の回転動作を制御する。なお、ポンプ装置2は、各装置3~6と通信可能に構成されていてもよい。 The pump section 20 is composed of, for example, an impeller, a rotating shaft, a bearing, a mechanical seal, a gland packing, a casing, and piping. The motor 21 is constituted by an arbitrary type of motor such as an inverter motor, for example. The transmission section 22 is composed of, for example, a coupling, a joint, a joint, a bearing, and the like. The pump control panel 23 is composed of, for example, a built-in computer. The pump control panel 23 stores operating conditions set by a user (such as an installer or administrator of the pump device 2), and sensors (not shown) installed in each part of the pump unit 20 and motor 21. The rotational operation of the motor 21 is controlled based on the detected value. Note that the pump device 2 may be configured to be able to communicate with each of the devices 3 to 6.
 物理量計測装置3は、ポンプ装置2に起因する物理量を計測する装置であり、例えば、ポンプ部20、モータ21又は伝達部22の任意の位置に取り付けられる。物理量計測装置3は、計測対象の物理量を計測する物理量センサ30と、物理量センサ30により物理量を計測したときの物理量データを処理するデータ処理装置31と、物理量センサ30及びデータ処理装置31を内蔵し、ポンプ装置2に取付可能な筐体300とを備える。 The physical quantity measuring device 3 is a device that measures a physical quantity caused by the pump device 2, and is attached to an arbitrary position of the pump section 20, the motor 21, or the transmission section 22, for example. The physical quantity measuring device 3 includes a physical quantity sensor 30 that measures a physical quantity to be measured, a data processing device 31 that processes physical quantity data when the physical quantity is measured by the physical quantity sensor 30, and the physical quantity sensor 30 and the data processing device 31. , and a housing 300 that can be attached to the pump device 2.
 物理量センサ30による計測対象の物理量は、例えば、加速度(振動)、速度、変位、環境音等である。物理量センサ30は、例えば、加速度を計測可能な加速度センサ、速度を計測可能な速度センサ、変位を計測可能な変位センサ、環境音を計測可能なマイクロホン等で構成される。なお、計測対象の物理量は、上記の例に限られず、例えば、圧力、荷重、温度、電流値、電圧値等の物理量でもよく、その場合には、圧力センサ、荷重センサ、温度センサ、電流センサ、電圧センサ等の物理量センサ30が用いられる。また、物理量センサ30は、複数の物理量をそれぞれ計測するための複数のセンサを含んでいてもよい。 The physical quantities to be measured by the physical quantity sensor 30 include, for example, acceleration (vibration), velocity, displacement, and environmental sound. The physical quantity sensor 30 includes, for example, an acceleration sensor that can measure acceleration, a speed sensor that can measure speed, a displacement sensor that can measure displacement, a microphone that can measure environmental sound, and the like. Note that the physical quantity to be measured is not limited to the above example, and may be a physical quantity such as pressure, load, temperature, current value, voltage value, etc. In that case, a pressure sensor, a load sensor, a temperature sensor, a current sensor, etc. , a physical quantity sensor 30 such as a voltage sensor is used. Further, the physical quantity sensor 30 may include a plurality of sensors for respectively measuring a plurality of physical quantities.
 データ処理装置31は、物理量センサ30により計測された物理量を示すアナログ信号がデジタル信号に変換された物理量データを処理するための装置である。なお、データ処理装置31は、アナログ信号をデジタル信号に変換するA/D変換回路を備えていてもよいし、物理量センサ30からデジタル信号に変換後の物理量データを取得してもよい。 The data processing device 31 is a device for processing physical quantity data obtained by converting an analog signal indicating a physical quantity measured by the physical quantity sensor 30 into a digital signal. Note that the data processing device 31 may include an A/D conversion circuit that converts an analog signal into a digital signal, or may acquire physical quantity data converted into a digital signal from the physical quantity sensor 30.
 筐体300の取付位置は、計測対象の物理量に応じて決められる。なお、ポンプ装置2には、1つの物理量計測装置3が取り付けられてもよいし、図1に示すように、複数の物理量計測装置3が取り付けられてもよい。複数の物理量計測装置3が取り付けられる場合には、共通の物理量を計測する装置でもよいし、異なる物理量を計測する装置でもよい。 The mounting position of the housing 300 is determined according to the physical quantity to be measured. Note that one physical quantity measuring device 3 may be attached to the pump device 2, or as shown in FIG. 1, a plurality of physical quantity measuring devices 3 may be attached. When a plurality of physical quantity measuring devices 3 are attached, they may be devices that measure a common physical quantity or may be devices that measure different physical quantities.
 データ収集装置4は、ポンプ装置2の設置場所に所在するユーザ(ポンプ装置2の管理者や点検・修理作業者等)により使用されて、物理量計測装置3(具体的には、データ処理装置31)からデータを収集する装置である。データ収集装置4は、例えば、スマートフォンやタブレット等の携帯型コンピュータで構成される。データ収集装置4のユーザが、例えば、物理量計測装置3から所定の距離内に接近したときに、物理量計測装置3との間で通信が確立されることで、物理量計測装置3からデータを収集する。また、データ収集装置4は、アプリケーションやブラウザ等のプログラムがインストールされて、各種の入力操作を受け付けるとともに、物理量計測装置3から収集したデータを表示画面に表示したり、そのデータをデータ管理装置5に送信したりする。 The data collection device 4 is used by a user (an administrator, an inspection/repair worker, etc. of the pump device 2) located at the installation location of the pump device 2, and is used by the physical quantity measuring device 3 (specifically, the data processing device 31). ) is a device that collects data from The data collection device 4 is composed of, for example, a portable computer such as a smartphone or a tablet. For example, when the user of the data collection device 4 approaches within a predetermined distance from the physical quantity measuring device 3, communication is established with the physical quantity measuring device 3, thereby collecting data from the physical quantity measuring device 3. . In addition, the data collection device 4 has programs such as applications and browsers installed thereon and accepts various input operations, and also displays the data collected from the physical quantity measurement device 3 on a display screen and transfers the data to the data management device 5. or send it to.
 データ管理装置5は、データ収集装置4により収集されたデータを管理するためのデータベース50を備え、例えば、サーバ型コンピュータやクラウド型コンピュータで構成される。データ管理装置5は、データ収集装置4から受信したデータをデータベース50に格納する。また、データ管理装置5は、データ収集装置4から受信したデータが所定の通知条件を満たすときに、通知情報を端末装置6に送信する。データ管理装置5は、データベース50に格納したデータの参照要求を端末装置6から受け付けたときに、データベース50の参照情報を端末装置6に送信する。 The data management device 5 includes a database 50 for managing data collected by the data collection device 4, and is configured with a server-type computer or a cloud-type computer, for example. The data management device 5 stores the data received from the data collection device 4 in the database 50. Further, the data management device 5 transmits notification information to the terminal device 6 when the data received from the data collection device 4 satisfies a predetermined notification condition. When the data management device 5 receives a request to reference data stored in the database 50 from the terminal device 6, it transmits the reference information of the database 50 to the terminal device 6.
 端末装置6は、ポンプ装置2の設置場所から離れた遠隔地に所在するユーザ(ポンプ装置2の管理者や点検・修理作業者等)により使用される装置であり、例えば、据置型コンピュータや携帯型コンピュータで構成される。端末装置6は、アプリケーションやブラウザ等のプログラムがインストールされて、各種の入力操作を受け付けるとともに、各種の情報(通知情報やデータベース50の参照情報)を表示画面に表示する。なお、端末装置6は、データ収集装置4を兼用する装置でもよい。 The terminal device 6 is a device used by a user (such as the manager of the pump device 2 or an inspection/repair worker) located in a remote location away from the installation location of the pump device 2, and is configured, for example, as a stationary computer or a portable computer. Programs such as applications and browsers are installed on the terminal device 6, and the terminal device 6 accepts various input operations and displays various information (notification information and reference information for the database 50) on the display screen. The terminal device 6 may also be a device that doubles as the data collection device 4.
 ネットワーク7は、任意の通信規格に従って有線通信又は無線通信、あるいは、有線通信と無線通信の組合せにより構成される。具体的には、例えば、インターネット等の標準化された通信網、又はローカルネットワーク等の建物内で管理される通信網、あるいは、これらの通信網の組合せを利用することができる。また、無線通信の通信規格としては、典型的には国際規格が用いられる。国際規格の通信手段として、IEEE802.15.4、IEEE802.15.1、IEEE802.15.11a、11b、11g、11n、11ac、11ad、ISO/IEC14513-3-10、IEEE802.15.4g等の方式がある。また、Bluetooth(登録商標)、BluetoothLowEnergy、Wi-Fi、ZigBee(登録商標)、Sub-GHz、EnOcean(登録商標)、LTE等の方式を用いることもできる。 The network 7 is configured by wired communication, wireless communication, or a combination of wired communication and wireless communication according to any communication standard. Specifically, for example, a standardized communication network such as the Internet, a communication network managed within a building such as a local network, or a combination of these communication networks can be used. Furthermore, international standards are typically used as communication standards for wireless communication. As communication means of international standards, IEEE802.15.4, IEEE802.15.1, IEEE802.15.11a, 11b, 11g, 11n, 11ac, 11ad, ISO/IEC14513-3-10, IEEE802.15.4g, etc. There is a method. Furthermore, methods such as Bluetooth (registered trademark), Bluetooth Low Energy, Wi-Fi, ZigBee (registered trademark), Sub-GHz, EnOcean (registered trademark), and LTE can also be used.
 図2は、物理量計測装置3の一例を示すブロック図である。物理量計測装置3は、その主要な構成要素として、上記の物理量センサ30の他に、データ処理装置31を構成する制御部32、通信部33、記憶部34及び電源35を備える。 FIG. 2 is a block diagram showing an example of the physical quantity measuring device 3. The physical quantity measuring device 3 includes, as its main components, a control section 32, a communication section 33, a storage section 34, and a power supply 35, which constitute a data processing device 31, in addition to the physical quantity sensor 30 described above.
 制御部32は、例えば、記憶部34に記憶されたデータ処理プログラム340を実行することにより、演算処理部320、及び、通信処理部321として機能する。通信部33は、ネットワーク7を介して、例えば、データ収集装置4との間で各種のデータを送受信する通信インターフェースとして機能する。記憶部34は、物理量計測装置3の動作で使用される各種のプログラム(データ処理プログラム340等)やデータ(設定情報341等)を記憶する。設定情報341には、例えば、物理量計測装置3が動作する際に制御部32により参照される設定パラメータ(データ点数Dn、待機時間Wt等)が記憶されるとともに、例えば、データ収集装置4を介して設定可能に構成される。電源35は、例えば、一次電池、二次電池、太陽電池、燃料電池等で構成され、物理量計測装置3の各部に電力を供給する。なお、電源35は、ポンプ装置2から電力供給を受けてもよい。 The control unit 32 functions as an arithmetic processing unit 320 and a communication processing unit 321, for example, by executing a data processing program 340 stored in the storage unit 34. The communication unit 33 functions as a communication interface that transmits and receives various data to and from the data collection device 4 via the network 7, for example. The storage unit 34 stores various programs (data processing program 340, etc.) and data (setting information 341, etc.) used in the operation of the physical quantity measuring device 3. The setting information 341 stores, for example, setting parameters (number of data points Dn, standby time Wt, etc.) that are referenced by the control unit 32 when the physical quantity measuring device 3 operates, and also stores, for example, setting parameters that are referenced by the control unit 32 when the physical quantity measuring device 3 operates. It is configured to be configurable. The power source 35 is composed of, for example, a primary battery, a secondary battery, a solar cell, a fuel cell, etc., and supplies power to each part of the physical quantity measuring device 3. Note that the power source 35 may receive power supply from the pump device 2.
 演算処理部320は、物理量センサ30により計測された計測対象の物理量を物理量データDとして繰り返し取得し、その取得した物理量データDに対して所定の演算を行うことにより処理データRpを生成する。物理量データDに対する演算は、例えば、計測時点が異なる所定のデータ点数分の物理量データDに対して移動平均を求める。移動平均としては、例えば、単純移動平均や加重移動平均等である。 The arithmetic processing unit 320 repeatedly acquires the physical quantity to be measured measured by the physical quantity sensor 30 as the physical quantity data D, and generates the processed data Rp by performing a predetermined operation on the acquired physical quantity data D. In the calculation for the physical quantity data D, for example, a moving average is calculated for the physical quantity data D for a predetermined number of data points at different measurement points. Examples of the moving average include a simple moving average and a weighted moving average.
 演算処理部320は、所定の開始条件が満たされたとき、物理量データDを所定のデータ点数Dnだけ繰り返し取得し、その取得したデータ点数分の物理量データD1に対して演算を行うことにより第1の処理データRp1を生成する第1の演算処理を実行する。第1の監視処理では、後述する第2の演算処理のように、待機時間による待機状態に移行しないため、データ点数分の物理量データDが取得されて演算が行われるので、待機時間分の消費電力の低減が図られる。 When a predetermined start condition is met, the arithmetic processing unit 320 repeatedly obtains the physical quantity data D by a predetermined number of data points Dn, and performs a calculation on the physical quantity data D1 corresponding to the obtained number of data points. A first arithmetic process is executed to generate processed data Rp1. In the first monitoring process, unlike the second arithmetic processing described later, the physical quantity data D corresponding to the number of data points is acquired and the calculation is performed, so that the physical quantity data D corresponding to the number of data points is acquired and the calculation is performed. Power consumption is reduced.
 また、演算処理部320は、第1の演算処理の実行後に所定の終了条件が満たされていないとき、所定の待機時間Wtだけ待機状態に移行し、待機時間Wtの経過後に最新時点の物理量データDnewを取得し、その取得した最新時点の物理量データDnewと、最新時点よりも過去に取得した過去時点の物理量データDpassとからなるデータ点数分の物理量データD2に対して演算を行うことにより第2の処理データRp2を生成する第2の演算処理を、終了条件が満たされるまで繰り返し実行する。 Further, when the predetermined end condition is not satisfied after execution of the first arithmetic processing, the arithmetic processing unit 320 shifts to a standby state for a predetermined standby time Wt, and after the elapse of the standby time Wt, the physical quantity data at the latest point in time is Dnew is acquired, and the second calculation is performed on the physical quantity data D2 for the number of data points consisting of the acquired physical quantity data Dnew at the latest point in time and the physical quantity data Dpass at the past point in time acquired in the past than the latest point in time. The second arithmetic processing for generating the processed data Rp2 is repeatedly executed until the termination condition is satisfied.
 待機時間Wtは、例えば、後述する第2の監視周期S2から物理量データDの取得時間と、第2の処理データRp2の演算時間とを減算した時間を目安にして設定される。第2の演算処理では、通常の動作状態よりも消費電力が少ない待機状態に待機時間Wtだけ移行し、待機時間Wtの経過に合わせて物理量データDが取得されて演算が行われるので、無用な物理量データDの取得や演算が回避されることによる消費電力の低減と、待機状態への移行による消費電力の低減とが図られる。 The standby time Wt is set, for example, based on the time obtained by subtracting the acquisition time of the physical quantity data D and the calculation time of the second processing data Rp2 from the second monitoring cycle S2 described below. In the second calculation process, the system transitions to a standby state that consumes less power than the normal operating state for only the standby time Wt, and physical quantity data D is acquired and calculations are performed as the standby time Wt elapses, thereby reducing power consumption by avoiding the acquisition and calculation of unnecessary physical quantity data D, and reducing power consumption by transitioning to the standby state.
 データ点数Dnが、例えば、「4点」の場合には、第2の演算処理で演算が行われるデータ点数分の物理量データD2は、最新時点の1点の物理量データDnewと、最新時点から遡って直近の過去時点である3点分の物理量データDpass1、Dpass2、Dpass3とからなる。データ点数分の物理量データD2に対する演算として、演算処理部320が、例えば、最新時点の物理量データDnewを取得する毎に移動平均を求める場合には、過去時点の物理量データDpass(Dpass1、Dpass2、Dpass3)を記憶部34に記憶しておき、移動平均を求める際に記憶部34を参照するようにすればよい。その際、記憶部34に記憶された物理量データDpassは、記憶部34の記憶容量等を考慮して、その取得した時点が古い順に削除されるようにすればよい。 For example, when the number of data points Dn is "4 points," the physical quantity data D2 for the number of data points to be calculated in the second calculation process is the physical quantity data Dnew of one point at the latest point, and the physical quantity data Dnew from the latest point. It consists of physical quantity data Dpass1, Dpass2, and Dpass3 for three points, which are the most recent past points. As a calculation for the physical quantity data D2 for the number of data points, for example, when the calculation processing unit 320 calculates a moving average every time it acquires the physical quantity data Dnew at the latest point in time, the calculation processing unit 320 calculates the moving average for the physical quantity data Dpass (Dpass1, Dpass2, Dpass3) at the past point in time. ) may be stored in the storage unit 34, and the storage unit 34 may be referred to when calculating the moving average. At this time, the physical quantity data Dpass stored in the storage unit 34 may be deleted in the order of the oldest acquisition time, taking into consideration the storage capacity of the storage unit 34 and the like.
 開始条件及び終了条件は、例えば、データ収集装置4との通信状態や物理量計測装置3の電源のオンオフ状態に基づいて定められる。例えば、データ収集装置4との通信状態として、演算処理部320は、データ収集装置4との通信が開始したとき、開始条件が満たされたと判断し、第1の演算処理を開始し、データ収集装置4との通信が終了したとき、終了条件が満たされたと判断し、第2の演算処理を終了する。また、物理量計測装置3の電源のオンオフ状態として、演算処理部320は、物理量計測装置3の電源がオンされたとき、開始条件が満たされたと判断し、第1の演算処理を開始し、物理量計測装置3の電源がオフされたとき、終了条件が満たされた判断し、第2の演算処理を終了する。 The start condition and the end condition are determined based on, for example, the communication state with the data collection device 4 and the on/off state of the power supply of the physical quantity measuring device 3. For example, as for the communication state with the data collection device 4, when the communication with the data collection device 4 starts, the calculation processing unit 320 determines that the start condition is satisfied, starts the first calculation process, and collects the data. When the communication with the device 4 is completed, it is determined that the termination condition is satisfied, and the second arithmetic processing is terminated. Further, as the on/off state of the power of the physical quantity measuring device 3, when the power of the physical quantity measuring device 3 is turned on, the arithmetic processing unit 320 determines that the start condition is satisfied, starts the first arithmetic processing, and When the power of the measuring device 3 is turned off, it is determined that the termination condition is satisfied, and the second arithmetic processing is terminated.
 なお、演算処理部320は、終了条件が満たされたとき、第2の演算処理を終了し、待機状態よりも消費電力が少ないスリープ状態に移行し、開始条件が満たされたとき、スリープ状態から復帰し、第1の演算処理を開始するようにしてもよい。 Note that when the end condition is met, the arithmetic processing unit 320 ends the second arithmetic processing and shifts to the sleep state, which consumes less power than the standby state, and when the start condition is met, the arithmetic processing unit 320 exits the sleep state. It is also possible to return and start the first arithmetic processing.
 通信処理部321は、演算処理部320により処理データRpが生成される毎に処理データRpをデータ収集装置4に順次送信する。演算処理部320が、第1の演算処理にて第1の処理データRp1を生成した場合には、通信処理部321は、第1の処理データRp1を送信し、第2の演算処理にて第2の処理データRp2を生成した場合には、通信処理部321は、第2の処理データRp2を送信する。 The communication processing unit 321 sequentially transmits the processing data Rp to the data collection device 4 every time the processing data Rp is generated by the arithmetic processing unit 320. When the arithmetic processing unit 320 generates the first processed data Rp1 in the first arithmetic processing, the communication processing unit 321 transmits the first processed data Rp1 and generates the first processed data Rp1 in the second arithmetic processing. When the second processing data Rp2 is generated, the communication processing unit 321 transmits the second processing data Rp2.
 通信処理部321により送信された処理データRpは、データ収集装置4により受信されると、データ収集装置4によりデータ管理装置5にさらに送信されることで、データベース50に格納される。また、処理データRpは、データ収集装置4の表示画面に表示されてもよい。なお、処理データRpには、通信処理部321又はデータ収集装置4により、例えば、ポンプ装置2及び物理量計測装置3の少なくとも一方を識別するための識別情報(ポンプ装置2の装置ID、物理量計測装置3の装置ID等)が付加されてもよく、その場合には、処理データRp及び識別情報が関連付けられた状態でデータベース50に格納されるようにしてもよい。 When the processing data Rp transmitted by the communication processing unit 321 is received by the data collection device 4, it is further transmitted from the data collection device 4 to the data management device 5, thereby being stored in the database 50. Further, the processed data Rp may be displayed on the display screen of the data collection device 4. Note that the processing data Rp includes, for example, identification information for identifying at least one of the pump device 2 and the physical quantity measuring device 3 (device ID of the pump device 2, physical quantity measuring device 3) may be added, and in that case, the processing data Rp and the identification information may be stored in the database 50 in an associated state.
 図3は、データ収集装置4の一例を示すブロック図である。データ収集装置4は、その主要な構成要素として、制御部40、通信部41、記憶部42、入力部43及び出力部44を備える。 FIG. 3 is a block diagram showing an example of the data collection device 4. The data collection device 4 includes a control section 40, a communication section 41, a storage section 42, an input section 43, and an output section 44 as its main components.
 制御部40は、例えば、記憶部42に記憶されたデータ収集プログラム420を実行することにより、第1の収集処理部400、及び、第2の収集処理部401として機能する。通信部41は、ネットワーク7を介して、例えば、物理量計測装置3やデータ管理装置5との間で各種のデータを送受信する通信インターフェースとして機能する。記憶部42は、データ収集装置4の動作で使用される各種のプログラム(データ収集プログラム420等)やデータ(設定情報421等)を記憶する。設定情報421には、例えば、データ収集装置4が動作する際に制御部40により参照される設定パラメータ(第1の監視周期S1、第2の監視周期S2等)が記憶されるとともに、例えば、データ収集装置4を介して設定可能に構成される。入力部43及び出力部44は、ユーザの入力操作を受け付けるとともに、各種の情報を表示画面や音声を介して出力することでユーザインターフェースとして機能する。 The control unit 40 functions as a first collection processing unit 400 and a second collection processing unit 401, for example, by executing a data collection program 420 stored in the storage unit 42. The communication unit 41 functions as a communication interface for transmitting and receiving various data between, for example, the physical quantity measuring device 3 and the data management device 5 via the network 7. The storage unit 42 stores various programs (such as the data collection program 420) and data (such as setting information 421) used in the operation of the data collection device 4. The setting information 421 stores, for example, setting parameters (such as the first monitoring period S1 and the second monitoring period S2) referenced by the control unit 40 when the data collection device 4 operates, and is configured to be set, for example, via the data collection device 4. The input unit 43 and the output unit 44 function as a user interface by accepting input operations from the user and outputting various information via a display screen or voice.
 第1の収集処理部400は、第1の監視周期S1に基づいて、処理データRp1を収集する第1の監視動作を行う。例えば、第1の収集処理部400は、第1の監視処理を、第1の監視周期S1に従って繰り返し実行することにより、処理データRp1を収集する。第1の監視処理は、物理量計測装置3との通信を開始し、物理量計測装置3から第1の処理データを受信し、物理量計測装置3との通信を終了することである。第1の監視周期S1は、例えば、傾向監視(第1の監視処理)に適した値として、時間単位や日単位で設定される。 The first collection processing unit 400 performs a first monitoring operation to collect processing data Rp1 based on the first monitoring cycle S1. For example, the first collection processing unit 400 collects the processed data Rp1 by repeatedly executing the first monitoring process according to the first monitoring cycle S1. The first monitoring process is to start communication with the physical quantity measuring device 3, receive first processing data from the physical quantity measuring device 3, and end communication with the physical quantity measuring device 3. The first monitoring period S1 is set, for example, in units of hours or days, as a value suitable for trend monitoring (first monitoring processing).
 第2の収集処理部401は、第1の監視周期S1よりも短い第2の監視周期S2(<S1)に基づいて、処理データRp1、Rp2を収集する第2の監視動作を行う。例えば、第2の収集処理部401は、物理量計測装置3との通信を開始し、物理量計測装置3から第1の処理データRp1を受信するとともに、第2の監視処理を実行することにより、処理データRp1、Rp2を収集する。第2の監視処理は、第2の処理データRp2を第2の監視周期S2に従って繰り返し受信し、物理量計測装置3との通信を終了することである。第2の監視周期S2は、例えば、リアルタイム監視(第2の監視処理)に適した値として、秒単位や分単位で設定される。 The second collection processing unit 401 performs a second monitoring operation to collect the processed data Rp1 and Rp2 based on a second monitoring cycle S2 (<S1) that is shorter than the first monitoring cycle S1. For example, the second collection processing unit 401 starts communication with the physical quantity measuring device 3, receives the first processed data Rp1 from the physical quantity measuring device 3, and executes the second monitoring process. Collect data Rp1 and Rp2. The second monitoring process is to repeatedly receive the second processing data Rp2 according to the second monitoring cycle S2, and to terminate communication with the physical quantity measuring device 3. The second monitoring period S2 is set, for example, in seconds or minutes as a value suitable for real-time monitoring (second monitoring processing).
 図4は、各装置を構成するコンピュータ900の一例を示すハードウエア構成図である。ポンプ装置2(主にポンプ制御盤23)、物理量計測装置3(主にデータ処理装置31)、データ管理装置5、及び、端末装置6の各々は、汎用又は専用のコンピュータ900により構成される。 FIG. 4 is a hardware configuration diagram showing an example of a computer 900 that constitutes each device. Each of the pump device 2 (mainly the pump control panel 23), the physical quantity measuring device 3 (mainly the data processing device 31), the data management device 5, and the terminal device 6 is configured by a general-purpose or dedicated computer 900.
 コンピュータ900は、図4に示すように、その主要な構成要素として、バス910、プロセッサ912、メモリ914、入力デバイス916、出力デバイス917、表示デバイス918、ストレージ装置920、通信I/F(インターフェース)部922、外部機器I/F部924、I/O(入出力)デバイスI/F部926、及び、メディア入出力部928を備える。なお、上記の構成要素は、コンピュータ900が使用される用途に応じて適宜省略されてもよい。 As shown in FIG. 4, the computer 900 includes a bus 910, a processor 912, a memory 914, an input device 916, an output device 917, a display device 918, a storage device 920, and a communication I/F (interface) as its main components. 922 , an external device I/F section 924 , an I/O (input/output) device I/F section 926 , and a media input/output section 928 . Note that the above-mentioned components may be omitted as appropriate depending on the purpose for which the computer 900 is used.
 プロセッサ912は、1つ又は複数の演算処理装置(CPU(Central Processing Unit)、MPU(Micro-Processing Unit)、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)、NPU(Neural Processing Unit)等)で構成され、コンピュータ900全体を統括する制御部として動作する。メモリ914は、各種のデータ及びプログラム930を記憶し、例えば、メインメモリとして機能する揮発性メモリ(DRAM、SRAM等)と、不揮発性メモリ(ROM)、フラッシュメモリ等とで構成される。 The processor 912 includes one or more arithmetic processing units (CPU (Central Processing Unit), MPU (Micro-Processing Unit), DSP (Digital Signal Processor), GPU (Graphics Processing Unit), NPU (Neural Processing Unit), etc.) It operates as a control unit that controls the entire computer 900. The memory 914 stores various data and programs 930, and includes, for example, a volatile memory (DRAM, SRAM, etc.) that functions as a main memory, a nonvolatile memory (ROM), a flash memory, etc.
 入力デバイス916は、例えば、キーボード、マウス、テンキー、電子ペン等で構成され、入力部として機能する。出力デバイス917は、例えば、音(音声)出力装置、バイブレーション装置等で構成され、出力部として機能する。表示デバイス918は、例えば、液晶ディスプレイ、有機ELディスプレイ、電子ペーパー、プロジェクタ等で構成され、出力部として機能する。入力デバイス916及び表示デバイス918は、タッチパネルディスプレイのように、一体的に構成されていてもよい。ストレージ装置920は、例えば、HDD、SSD等で構成され、記憶部として機能する。ストレージ装置920は、オペレーティングシステムやプログラム930の実行に必要な各種のデータを記憶する。 The input device 916 is, for example, a keyboard, a mouse, a numeric keypad, an electronic pen, etc., and functions as an input unit. The output device 917 is, for example, a sound (audio) output device, a vibration device, etc., and functions as an output unit. The display device 918 is, for example, a liquid crystal display, an organic EL display, electronic paper, a projector, etc., and functions as an output unit. The input device 916 and the display device 918 may be integrated, such as a touch panel display. The storage device 920 is, for example, a HDD, an SSD, etc., and functions as a memory unit. The storage device 920 stores various data necessary for the execution of the operating system and the program 930.
 通信I/F部922は、インターネットやイントラネット等のネットワーク940(図1のネットワーク7と同じであってもよい)に有線又は無線により接続され、所定の通信規格に従って他のコンピュータとの間でデータの送受信を行う通信部として機能する。外部機器I/F部924は、カメラ、プリンタ、スキャナ、リーダライタ等の外部機器950に有線又は無線により接続され、所定の通信規格に従って外部機器950との間でデータの送受信を行う通信部として機能する。I/OデバイスI/F部926は、各種のセンサ、アクチュエータ等のI/Oデバイス960に接続され、I/Oデバイス960との間で、例えば、センサによる検出信号やアクチュエータへの制御信号等の各種の信号やデータの送受信を行う通信部として機能する。メディア入出力部928は、例えば、DVDドライブ、CDドライブ等のドライブ装置、メモリカードスロット、USBコネクタで構成され、DVD、CD、メモリカード、USBメモリ等のメディア(非一時的な記憶媒体)970に対してデータの読み書きを行う。 The communication I/F unit 922 is connected to a network 940 (which may be the same as the network 7 in FIG. 1) such as the Internet or an intranet by wire or wirelessly, and functions as a communication unit that transmits and receives data to and from other computers according to a predetermined communication standard. The external device I/F unit 924 is connected to an external device 950 such as a camera, printer, scanner, or reader/writer by wire or wirelessly, and functions as a communication unit that transmits and receives data to and from the external device 950 according to a predetermined communication standard. The I/O device I/F unit 926 is connected to an I/O device 960 such as various sensors and actuators, and functions as a communication unit that transmits and receives various signals and data, such as detection signals from sensors and control signals to actuators, between the I/O device 960. The media input/output unit 928 is composed of, for example, a drive device such as a DVD drive or a CD drive, a memory card slot, and a USB connector, and reads and writes data to and from media (non-temporary storage media) 970 such as DVDs, CDs, memory cards, and USB memories.
 上記構成を有するコンピュータ900において、プロセッサ912は、ストレージ装置920に記憶されたプログラム930をメモリ914に呼び出して実行し、バス910を介してコンピュータ900の各部を制御する。なお、プログラム930は、ストレージ装置920に代えて、メモリ914に記憶されていてもよい。プログラム930は、インストール可能なファイル形式又は実行可能なファイル形式でメディア970に記録され、メディア入出力部928を介してコンピュータ900に提供されてもよい。プログラム930は、通信I/F部922を介してネットワーク940経由でダウンロードすることによりコンピュータ900に提供されてもよい。また、コンピュータ900は、プロセッサ912がプログラム930を実行することで実現する各種の機能を、例えば、FPGA(Field-Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)等のハードウエアで実現するものでもよい。 In the computer 900 having the above configuration, the processor 912 calls the program 930 stored in the storage device 920 to the memory 914 and executes it, and controls each part of the computer 900 via the bus 910. Note that the program 930 may be stored in the memory 914 instead of the storage device 920. The program 930 may be recorded on the medium 970 in an installable file format or an executable file format, and provided to the computer 900 via the media input/output unit 928. The program 930 may be provided to the computer 900 by being downloaded via the network 940 via the communication I/F unit 922. Further, the computer 900 implements various functions realized by the processor 912 executing the program 930, for example, using FPGA (Field-Programmable Gate Array), ASIC (Application Specific Integrated Circuit), etc. Even if it is realized by hardware good.
 コンピュータ900は、例えば、据置型コンピュータや携帯型コンピュータで構成され、任意の形態の電子機器である。コンピュータ900は、クライアント型コンピュータでもよいし、サーバ型コンピュータやクラウド型コンピュータでもよいし、例えば、制御盤、コントローラ(マイコン、プログラマブルロジックコントローラ、シーケンサを含む)等と呼ばれる組込型コンピュータでもよい。 The computer 900 is, for example, a stationary computer or a portable computer, and is any type of electronic device. The computer 900 may be a client-type computer, a server-type computer, a cloud-type computer, or, for example, an embedded computer called a control panel, controller (including a microcomputer, programmable logic controller, and sequencer), or the like.
(データ処理方法)
 図5は、物理量計測装置3(データ処理装置31)及びデータ収集装置4による第1の監視動作の一例を示すフローチャートである。図6及び図7は、物理量計測装置3(データ処理装置31)及びデータ収集装置4による第2の監視動作の一例を示すフローチャートである。図5から図7に示す一連の処理(データ処理方法)は、例えば、データ収集装置4に対するユーザの入力操作に基づいて実行されてもよいし、データ管理装置5からのデータ収集装置4に対する実行指令に基づいて実行されてもよい。
(Data processing method)
FIG. 5 is a flowchart showing an example of the first monitoring operation by the physical quantity measuring device 3 (data processing device 31) and the data collecting device 4. 6 and 7 are flowcharts showing an example of the second monitoring operation by the physical quantity measuring device 3 (data processing device 31) and the data collecting device 4. The series of processes (data processing method) shown in FIGS. 5 to 7 may be executed, for example, based on a user's input operation to the data collection device 4, or executed by the data management device 5 to the data collection device 4. It may also be executed based on a command.
(第1の監視動作)
 以下では、データ収集装置4が、第1の監視動作を開始するように指示する入力操作を受け付けた場合について、図5を参照して説明する。
(First monitoring operation)
Below, a case where the data collection device 4 receives an input operation instructing to start the first monitoring operation will be described with reference to FIG. 5.
 まず、データ収集装置4の第1の収集処理部400は、上記の入力操作を受け付けると、図5に示すステップS100にて、物理量計測装置3との通信を開始するための通信開始要求を物理量計測装置3に送信する。 First, when the first collection processing unit 400 of the data collection device 4 receives the above input operation, in step S100 shown in FIG. Send to measuring device 3.
 そして、ステップS200にて、物理量計測装置3の演算処理部320は、データ収集装置4から通信開始要求を受信すると、データ収集装置4との間で通信を開始し、ステップS210にて、開始条件が満たされた判断する。その際、制御部32がスリープ状態である場合には、ステップS211にて、スリープ状態から復帰する。 Then, in step S200, when the arithmetic processing unit 320 of the physical quantity measuring device 3 receives the communication start request from the data collecting device 4, it starts communication with the data collecting device 4, and in step S210, the processing unit 320 of the physical quantity measuring device 3 Judgment is fulfilled. At this time, if the control unit 32 is in the sleep state, it returns from the sleep state in step S211.
 次に、ステップS220~S221にて、演算処理部320は、第1の演算処理を実行する。具体的には、演算処理部320は、ステップS220にて、物理量データDを所定のデータ点数Dn(本実施形態では、Dn=「4点」)だけ繰り返し取得する。そして、ステップS221にて、その取得した4点の物理量データD1に対して、例えば、移動平均を求める演算を行うことにより第1の処理データRp1を生成する。 Next, in steps S220 to S221, the calculation processing unit 320 executes a first calculation process. Specifically, in step S220, the calculation processing unit 320 repeatedly acquires physical quantity data D a predetermined number of data points Dn (in this embodiment, Dn = "4 points"). Then, in step S221, the calculation processing unit 320 performs an operation to obtain, for example, a moving average on the acquired four points of physical quantity data D1 to generate first processing data Rp1.
 次に、ステップS230にて、通信処理部321は、ステップS220~S221(第1の演算処理)で生成した第1の処理データRp1をデータ収集装置4に送信する。 Next, in step S230, the communication processing unit 321 transmits the first processing data Rp1 generated in steps S220 to S221 (first calculation processing) to the data collection device 4.
 そして、ステップS110にて、第1の収集処理部400は、データ収集装置4から第1の処理データRp1を受信すると、その第1の処理データRp1を出力する出力処理として、例えば、データ管理装置5のデータベース50に格納したり、データ収集装置4の表示画面に表示したりする。 Then, in step S110, when the first collection processing unit 400 receives the first processing data Rp1 from the data collection device 4, the first collection processing unit 400 performs output processing to output the first processing data Rp1, for example, to the data management device. 5 or displayed on the display screen of the data collection device 4.
 次に、ステップS111にて、第1の収集処理部400は、物理量計測装置3との通信を終了するための通信終了要求を物理量計測装置3に送信する。そして、ステップS120にて、第1の収集処理部400は、第1の監視周期S1による監視時点が到来したか否かを監視し、次の監視時点が到来したと判断した場合には、上記のステップS100に戻る。 Next, in step S111, the first collection processing unit 400 transmits a communication termination request to the physical quantity measuring device 3 to terminate communication with the physical quantity measuring device 3. Then, in step S120, the first collection processing unit 400 monitors whether or not the monitoring time point according to the first monitoring cycle S1 has arrived, and if it is determined that the next monitoring time point has arrived, the first collection processing unit 400 The process returns to step S100.
 一方、ステップS240にて、演算処理部320は、データ収集装置4から通信終了要求を受信すると、データ収集装置4との間で通信を終了する。次に、ステップS250にて、演算処理部320は、データ収集装置4から通信終了要求を受信したか否かに応じて終了条件が満たされたか否かを判断するが、通信終了要求を受信したため、ステップS251にて、終了条件が満たされたと判断する。そして、ステップS252にて、演算処理部320は、スリープ状態に移行し、新たな通信開始要求を受信するまでスリープ状態を維持する。 On the other hand, in step S240, upon receiving the communication termination request from the data collection device 4, the arithmetic processing unit 320 ends communication with the data collection device 4. Next, in step S250, the arithmetic processing unit 320 determines whether the termination condition is satisfied depending on whether or not a communication termination request is received from the data collection device 4. , in step S251, it is determined that the termination condition is satisfied. Then, in step S252, the arithmetic processing unit 320 enters a sleep state and maintains the sleep state until a new communication start request is received.
 以上のようにして、演算処理部320は、通信開始要求を受信する毎にスリープ状態から復帰して第1の処理データRp1を生成する第1の演算処理を実行し、通信処理部321により第1の処理データRp1を繰り返し送信する。一方、第1の収集処理部400は、第1の監視処理により第1の監視周期S1が経過する毎に通信開始要求を繰り返し送信することにより、処理データRp1を収集する。なお、ステップS200~S221、ステップS240~S252が演算処理工程、ステップS230が通信処理工程に相当する。 As described above, each time the arithmetic processing unit 320 receives a communication start request, it returns from the sleep state and executes the first arithmetic processing to generate the first processing data Rp1. 1 processing data Rp1 is repeatedly transmitted. On the other hand, the first collection processing unit 400 collects processing data Rp1 by repeatedly transmitting a communication start request every time the first monitoring cycle S1 elapses through the first monitoring process. Note that steps S200 to S221 and steps S240 to S252 correspond to arithmetic processing steps, and step S230 corresponds to a communication processing step.
(第2の監視動作)
 以下では、データ収集装置4が、第2の監視動作を開始するように指示する入力操作を受け付けた場合について、図6及び図7を参照して説明する。なお、図6及び図7に示す各ステップにおいて、図5と同様の処理を行うステップに対して図5と同一のステップ番号を付与している。
(Second monitoring operation)
Below, a case where the data collection device 4 receives an input operation instructing to start the second monitoring operation will be described with reference to FIGS. 6 and 7. Note that in each step shown in FIGS. 6 and 7, the same step numbers as in FIG. 5 are assigned to steps that perform the same processing as in FIG.
 まず、データ収集装置4の第2の収集処理部401は、上記の入力操作を受け付けると、図6に示すステップS100にて、物理量計測装置3との通信を開始するための通信開始要求を物理量計測装置3に送信する。 First, when the second collection processing unit 401 of the data collection device 4 receives the above input operation, in step S100 shown in FIG. Send to measuring device 3.
 そして、ステップS200にて、物理量計測装置3の演算処理部320は、データ収集装置4から通信開始要求を受信すると、データ収集装置4との間で通信を開始し、ステップS210にて、開始条件が満たされたと判断する。その際、制御部32がスリープ状態である場合には、ステップS211にて、スリープ状態から復帰する。 Then, in step S200, when the arithmetic processing unit 320 of the physical quantity measuring device 3 receives the communication start request from the data collecting device 4, it starts communication with the data collecting device 4, and in step S210, the processing unit 320 of the physical quantity measuring device 3 is determined to be satisfied. At this time, if the control unit 32 is in the sleep state, it returns from the sleep state in step S211.
 次に、ステップS220にて、演算処理部320は、物理量データDを所定のデータ点数Dn(本実施形態では、Dn=「4点」)だけ繰り返し取得し、ステップS221にて、その取得した4点分の物理量データD1に対して演算を行うことにより第1の処理データRp1を生成する。そして、ステップS230にて、通信処理部321は、ステップS220~S221(第1の演算処理)で生成した第1の処理データRp1をデータ収集装置4に送信する。 Next, in step S220, the arithmetic processing unit 320 repeatedly acquires the physical quantity data D by a predetermined number of data points Dn (in this embodiment, Dn = "4 points"), and in step S221, the The first processing data Rp1 is generated by performing calculations on the physical quantity data D1 for the points. Then, in step S230, the communication processing unit 321 transmits the first processing data Rp1 generated in steps S220 to S221 (first calculation processing) to the data collection device 4.
 そして、ステップS110にて、第2の収集処理部401は、データ収集装置4から第1の処理データRp1を受信すると、その第1の処理データRp1を出力する出力処理を行う。ここで、図6の破線で示すステップS111、S240は、実際には実行されない処理であり、第2の収集処理部401は、第1の処理データRp1の出力処理を行った後に、通信終了要求を物理量計測装置3に送信しない。 Then, in step S110, when the second collection processing unit 401 receives the first processed data Rp1 from the data collection device 4, it performs an output process to output the first processed data Rp1. Here, steps S111 and S240 indicated by broken lines in FIG. 6 are processes that are not actually executed, and the second collection processing unit 401 outputs the communication termination request after outputting the first processing data is not transmitted to the physical quantity measuring device 3.
 そのため、ステップS250にて、演算処理部320は、データ収集装置4から通信終了要求を受信したか否かに応じて終了条件が満たされたか否かを判断するが、通信終了要求を受信しないため、終了条件が満たされていないと判断し、ステップS260に進む。 Therefore, in step S250, the arithmetic processing unit 320 determines whether the termination condition is satisfied depending on whether or not a communication termination request is received from the data collection device 4, but since the communication termination request is not received. , it is determined that the termination condition is not satisfied, and the process proceeds to step S260.
 そして、ステップS260~S262にて、演算処理部320は、第2の演算処理を実行する。具体的には、演算処理部320は、ステップS260にて、所定の待機時間Wtだけ待機状態に移行する。そして、その待機時間Wtの経過後に、ステップS261にて、最新時点の物理量データDnewを取得し、ステップS262にて、その取得した最新時点の1点の物理量データDnewと、最新時点よりも過去に取得した過去時点の3点の物理量データDpsas(Dpsas1、Dpsas2、Dpsas3)とからなる4点分の物理量データD2(Dnew、Dpsas1、Dpsas2、Dpsas3)に対して演算を行うことにより第2の処理データRp2を生成する。なお、過去時点の物理量データDpsasは、3回分前までに取得した物理量データDであり、記憶部34から読み出される。そして、最新時点の物理量データDnewは、記憶部34に記憶されて、次回の第2の演算処理では、過去時点の物理量データDpsasとして読み出される。 Then, in steps S260 to S262, the arithmetic processing unit 320 executes the second arithmetic processing. Specifically, the arithmetic processing unit 320 transitions to a standby state for a predetermined standby time Wt in step S260. Then, after the waiting time Wt has elapsed, in step S261, the physical quantity data Dnew at the latest point in time is acquired, and in step S262, the physical quantity data Dnew at one point at the acquired latest point in time is combined with the physical quantity data Dnew at the latest point in time. The second processed data is obtained by performing an operation on the four points of physical quantity data D2 (Dnew, Dpsas1, Dpsas2, Dpsas3), which is made up of the acquired three points of physical quantity data Dpsas (Dpsas1, Dpsas2, Dpsas3) at the past point in time. Generate Rp2. Note that the physical quantity data Dpsas at the past point in time is the physical quantity data D acquired up to three times before, and is read out from the storage unit 34. Then, the physical quantity data Dnew at the latest point in time is stored in the storage unit 34, and in the next second calculation process, it is read out as the physical quantity data Dpsas at the past point in time.
 次に、ステップS270にて、通信処理部321は、ステップS260~S262(第2の演算処理)で生成した第2の処理データRp2をデータ収集装置4に送信する。 Next, in step S270, the communication processing unit 321 transmits the second processed data Rp2 generated in steps S260 to S262 (second calculation processing) to the data collection device 4.
 そして、ステップS130にて、第2の収集処理部401は、データ収集装置4から第2の処理データRp2を受信すると、その第2の処理データRp2を出力する出力処理を行う。 Then, in step S130, when the second collection processing unit 401 receives the second processed data Rp2 from the data collection device 4, it performs an output process to output the second processed data Rp2.
 一方、ステップS290にて、演算処理部320は、データ収集装置4から通信終了要求を受信したか否かに応じて終了条件が満たされたか否かを監視する。 On the other hand, in step S290, the arithmetic processing unit 320 monitors whether the termination condition is satisfied depending on whether a communication termination request is received from the data collection device 4.
 ここで、図7の破線で示すステップS131、S280が実行されない場合について説明すると、ステップS290にて、演算処理部320は、通信終了要求を受信しないため、終了条件が満たされていないと判断し、ステップS260に戻る。そして、ステップS260~S262(第2の演算処理)を実行し、ステップS270にて、第2の処理データRp2をデータ収集装置4に送信する処理を終了条件が満たされるまで繰り返し実行する。そのため、ステップS130にて、第2の収集処理部401は、データ収集装置4から第2の処理データRp2を繰り返し受信する。 Here, to explain the case where steps S131 and S280 indicated by the broken line in FIG. 7 are not executed, in step S290, the arithmetic processing unit 320 determines that the termination condition is not satisfied because the communication termination request is not received. , the process returns to step S260. Then, steps S260 to S262 (second arithmetic processing) are executed, and in step S270, the process of transmitting the second processed data Rp2 to the data collection device 4 is repeatedly executed until the termination condition is satisfied. Therefore, in step S130, the second collection processing unit 401 repeatedly receives the second processed data Rp2 from the data collection device 4.
 一方、図7の破線で示すステップS131、S280が実行される場合について説明すると、ステップS131にて、第2の収集処理部401は、通信終了要求を物理量計測装置3に送信する。ここで、第2の収集処理部401は、例えば、第2の監視動作を終了するように指示する入力操作を受け付けたり、第2の監視動作による監視期間が終了したりした場合には、通信終了要求を物理量計測装置3に送信するようにすればよい。 On the other hand, to explain the case where steps S131 and S280 indicated by the broken line in FIG. 7 are executed, in step S131, the second collection processing unit 401 transmits a communication termination request to the physical quantity measuring device 3. Here, the second collection processing unit 401 receives an input operation instructing to end the second monitoring operation, or when the monitoring period of the second monitoring operation ends, the second collection processing unit 401 receives a communication A termination request may be sent to the physical quantity measuring device 3.
 そして、ステップS280にて、演算処理部320は、データ収集装置4から通信終了要求を受信すると、データ収集装置4との間で通信を終了し、ステップS290にて、データ収集装置4から通信終了要求を受信したか否かに応じて終了条件が満たされたか否かを判断するが、通信終了要求を受信したため、ステップS251にて、終了条件が満たされたと判断する。そして、ステップS252にて、演算処理部320は、スリープ状態に移行する。 Then, in step S280, upon receiving the communication termination request from the data collection device 4, the arithmetic processing unit 320 terminates the communication with the data collection device 4, and in step S290, the arithmetic processing unit 320 terminates the communication from the data collection device 4. It is determined whether the termination condition is satisfied depending on whether a request is received or not. Since a communication termination request has been received, it is determined in step S251 that the termination condition is satisfied. Then, in step S252, the arithmetic processing unit 320 shifts to a sleep state.
 以上のようにして、演算処理部320は、第1の処理データRp1を生成する第1の演算処理を実行した後、第2の監視周期S2に対応する待機時間Wtによる待機状態に移行し、第2の処理データRp2を生成する第2の演算処理を繰り返し実行することにより、通信処理部321により第2の処理データRp2を繰り返し送信する。一方、第2の収集処理部401は、物理量計測装置3から第1の処理データRp1を受信するとともに、第2の処理データRp2を第2の監視周期S2に従って繰り返し受信する第2の監視処理を実行することにより、第2の監視周期S2が経過する毎に処理データRp1、Rp2を収集する。なお、ステップS200~S221、ステップS240~S262、S280~S290が演算処理工程、ステップS230、S270が通信処理工程に相当する。 As described above, after executing the first arithmetic processing to generate the first processing data Rp1, the arithmetic processing unit 320 shifts to a standby state according to the standby time Wt corresponding to the second monitoring cycle S2, The communication processing unit 321 repeatedly transmits the second processing data Rp2 by repeatedly executing the second arithmetic processing that generates the second processing data Rp2. On the other hand, the second collection processing unit 401 receives the first processing data Rp1 from the physical quantity measuring device 3 and performs a second monitoring process of repeatedly receiving the second processing data Rp2 according to the second monitoring cycle S2. By executing this, the processing data Rp1 and Rp2 are collected every time the second monitoring period S2 elapses. Note that steps S200 to S221, steps S240 to S262, and S280 to S290 correspond to arithmetic processing steps, and steps S230 and S270 correspond to communication processing steps.
 本発明に係る物理量計測装置3(データ処理装置31)によれば、所定の開始条件が満たされると、演算処理部320が、データ点数分の物理量データD1に対して演算を行うことにより第1の処理データRp1を生成する第1の演算処理を実行し、通信処理部321によりその第1の処理データRp1を送信する。このとき、所定の終了条件が満たされることで、第2の演算処理は実行されない。これにより、1回分の処理データRp1だけが送信されるので、例えば、傾向監視(第1の監視処理)に利用することができる。また、第1の監視処理では、待機時間Wtによる待機状態に移行しないため、待機時間分の消費電力の低減が図られる。一方、第1の演算処理の実行後に所定の終了条件が満たされていないと、演算処理部320が、所定の待機時間Wtだけ待機状態に移行し、最新時点の物理量データDnewを含むデータ点数分の物理量データD2に対して演算を行うことにより第2の処理データRp2を生成する第2の演算処理を、終了条件が満たされるまで繰り返し実行し、通信処理部321によりその第2の処理データRp2を順次送信する。これにより、処理データRp2が繰り返し送信されるので、例えば、リアルタイム監視(第2の監視処理)に利用することができる。その際、通常の動作状態よりも消費電力が少ない待機状態に待機時間Wtだけ移行し、待機時間Wtの経過に合わせて物理量データDが取得されて演算が行われるので、無用な物理量データDの取得や演算が回避されることによる消費電力の低減と、待機状態への移行による消費電力の低減とが図られる。したがって、監視周期が異なる第1の監視処理及び第2の監視処理を実現しつつ、消費電力の低減を図ることができる。 In the physical quantity measuring device 3 (data processing device 31) of the present invention, when a predetermined start condition is satisfied, the calculation processing unit 320 executes a first calculation process that generates first processed data Rp1 by performing calculations on the physical quantity data D1 for the number of data points, and transmits the first processed data Rp1 by the communication processing unit 321. At this time, a predetermined end condition is satisfied, so that the second calculation process is not executed. As a result, only one batch of processed data Rp1 is transmitted, which can be used, for example, for trend monitoring (first monitoring process). Furthermore, in the first monitoring process, the device does not enter a standby state due to the standby time Wt, so power consumption for the standby time is reduced. On the other hand, if the predetermined end condition is not satisfied after the execution of the first calculation process, the calculation processing unit 320 transitions to a standby state for a predetermined standby time Wt, and repeatedly executes the second calculation process in which the second processing data Rp2 is generated by performing calculations on the physical quantity data D2 for the number of data points including the latest physical quantity data Dnew until the end condition is satisfied, and the communication processing unit 321 sequentially transmits the second processing data Rp2. As a result, the processing data Rp2 is repeatedly transmitted, so that it can be used for real-time monitoring (second monitoring process), for example. At that time, the system transitions to a standby state that consumes less power than the normal operating state for the standby time Wt, and the physical quantity data D is acquired and calculated as the standby time Wt elapses, so that the acquisition and calculation of unnecessary physical quantity data D is avoided, thereby reducing power consumption, and the transition to the standby state reduces power consumption. Therefore, it is possible to reduce power consumption while realizing the first monitoring process and the second monitoring process with different monitoring periods.
(他の実施形態)
 本発明は上述した実施形態に制約されず、本発明の主旨を逸脱しない範囲内で種々変更して実施することが可能である。そして、それらはすべて、本発明の技術思想に含まれる。
(Other embodiments)
The present invention is not limited to the embodiments described above, and can be implemented with various changes without departing from the spirit of the present invention. All of them are included in the technical idea of the present invention.
 上記実施形態では、データ処理装置31が、ポンプ装置2とは別体の装置である物理量計測装置3で実現される場合について説明した。これに代えて、データ処理装置31の機能の一部又は全部(特に制御部32の機能)が、ポンプ装置2のポンプ制御盤23に組み込まれることによりポンプ装置2で実現されていてもよい。その場合には、物理量センサ30と、ポンプ制御盤23とを有線又は無線により接続し、各種のデータを送受信するようにすればよい。また、ポンプ装置2が、物理量センサ30を備えるようにしてもよい。 In the above embodiment, a case has been described in which the data processing device 31 is implemented by the physical quantity measuring device 3, which is a separate device from the pump device 2. Alternatively, some or all of the functions of the data processing device 31 (particularly the functions of the control unit 32) may be implemented in the pump device 2 by being incorporated into the pump control panel 23 of the pump device 2. In that case, the physical quantity sensor 30 and the pump control panel 23 may be connected by wire or wirelessly to transmit and receive various data. Further, the pump device 2 may include a physical quantity sensor 30.
 上記実施形態では、物理量計測装置3により送信された処理データRp1、Rp2は、データ収集装置4を中継してデータ管理装置5に受信されて、記憶装置としてのデータベース50に格納される場合について説明した。処理データRp1、Rp2の送信先の装置や格納先の記憶装置は適宜変更されてもよい。例えば、処理データRp1、Rp2は、データ管理装置5や端末装置6に送信されてもよいし、データ収集装置4や端末装置6が備える記憶装置に格納されてもよい。 In the above embodiment, a case will be described in which the processed data Rp1 and Rp2 transmitted by the physical quantity measuring device 3 are received by the data management device 5 via the data collection device 4 and stored in the database 50 as a storage device. did. The destination devices and storage devices of the processed data Rp1 and Rp2 may be changed as appropriate. For example, the processed data Rp1 and Rp2 may be transmitted to the data management device 5 or the terminal device 6, or may be stored in a storage device included in the data collection device 4 or the terminal device 6.
 上記実施形態では、物理量計測装置3(データ処理装置31)が、図5から図7に示すフローチャートに従って動作する場合について説明した。各ステップの実行順序を適宜変更してもよいし、一部のステップを省略してもよい。 In the above embodiment, a case has been described in which the physical quantity measuring device 3 (data processing device 31) operates according to the flowcharts shown in FIGS. 5 to 7. The execution order of each step may be changed as appropriate, or some steps may be omitted.
 上記実施形態では、物理量計測装置3は、ポンプ装置2に取り付けられる場合について説明した。これに代えて、例えば、冷凍機、気体機械、工作機械、プレス機器、搬送機器、診断機器等の各種の装置に取り付けられてもよい。その場合には、物理量センサ30は、各種の装置に起因する物理量を計測するようにすればよい。 In the above embodiment, the physical quantity measuring device 3 is described as being attached to the pump device 2. Alternatively, the physical quantity measuring device 3 may be attached to various devices, such as a refrigerator, a gas machine, a machine tool, a press machine, a conveying machine, a diagnostic machine, etc. In that case, the physical quantity sensor 30 may be configured to measure the physical quantity resulting from the various devices.
1…データ処理システム、2…ポンプ装置、3…物理量計測装置、4…データ収集装置、5…データ管理装置、6…端末装置、7…ネットワーク、20…ポンプ部、21…モータ、22…伝達部、23…ポンプ制御盤、30…物理量センサ、31…データ処理装置、32…制御部、33…通信部、34…記憶部、35…電源、40…制御部、41…通信部、42…記憶部、43…入力部、44…出力部、50…データベース、320…演算処理部、321…通信処理部、340…データ処理プログラム、341…設定情報、400…第1の収集処理部、401…第2の収集処理部、420…データ収集プログラム、421…設定情報、D1、D2、Dnew、Dpass、Dpass1、Dpass2、Dpass3…物理量データ、Dn…データ点数、Rp…処理データ、Rp1…第1の処理データ、Rp2…第2の処理データ、S1…第1の監視周期、S2…第2の監視周期、Wt…待機時間 DESCRIPTION OF SYMBOLS 1...Data processing system, 2...Pump device, 3...Physical quantity measuring device, 4...Data collection device, 5...Data management device, 6...Terminal device, 7...Network, 20...Pump section, 21...Motor, 22...Transmission Part, 23...Pump control panel, 30...Physical quantity sensor, 31...Data processing device, 32...Control unit, 33...Communication unit, 34...Storage unit, 35...Power supply, 40...Control unit, 41...Communication unit, 42... Storage section, 43... Input section, 44... Output section, 50... Database, 320... Arithmetic processing section, 321... Communication processing section, 340... Data processing program, 341... Setting information, 400... First collection processing section, 401 ...Second collection processing unit, 420...Data collection program, 421...Setting information, D1, D2, Dnew, Dpass, Dpass1, Dpass2, Dpass3...Physical quantity data, Dn...Number of data points, Rp...Processing data, Rp1...First processing data, Rp2...second processing data, S1...first monitoring cycle, S2...second monitoring cycle, Wt...standby time

Claims (7)

  1.  計測対象の物理量を物理量データとして繰り返し取得し、取得した前記物理量データに対して所定の演算を行うことにより処理データを生成する演算処理部と、
     前記演算処理部により前記処理データが生成される毎に前記処理データをデータ収集装置に順次送信する通信処理部と、を備え、
     前記演算処理部は、
      所定の開始条件が満たされたとき、前記物理量データを所定のデータ点数だけ繰り返し取得し、取得した前記データ点数分の前記物理量データに対して前記演算を行うことにより第1の前記処理データを生成する第1の演算処理を実行し、
      前記第1の演算処理の実行後に所定の終了条件が満たされていないとき、所定の待機時間だけ待機状態に移行し、前記待機時間の経過後に最新時点の前記物理量データを取得し、取得した前記最新時点の前記物理量データと、前記最新時点よりも過去に取得した過去時点の前記物理量データとからなる前記データ点数分の前記物理量データに対して前記演算を行うことにより第2の前記処理データを生成する第2の演算処理を、前記終了条件が満たされるまで繰り返し実行する、
     データ処理装置。
    an arithmetic processing unit that repeatedly acquires a physical quantity to be measured as physical quantity data and generates processed data by performing a predetermined operation on the acquired physical quantity data;
    a communication processing unit that sequentially transmits the processed data to a data collection device each time the processed data is generated by the arithmetic processing unit,
    The arithmetic processing unit is
    When a predetermined start condition is met, the physical quantity data is repeatedly obtained for a predetermined number of data points, and the first processing data is generated by performing the calculation on the physical quantity data corresponding to the obtained number of data points. Execute the first calculation process to
    If a predetermined termination condition is not satisfied after execution of the first arithmetic processing, the system enters a standby state for a predetermined standby time, acquires the physical quantity data at the latest point in time after the elapse of the standby time, and The second processed data is obtained by performing the calculation on the physical quantity data for the number of data points, which is made up of the physical quantity data at the latest point in time and the physical quantity data at a past point in time acquired in the past than the latest point in time. repeating the generated second calculation process until the termination condition is met;
    Data processing equipment.
  2.  前記演算処理部は、
      前記終了条件が満たされたとき、前記第2の演算処理を終了し、前記待機状態よりも消費電力が少ないスリープ状態に移行し、
      前記開始条件が満たされたとき、前記スリープ状態から復帰し、前記第1の演算処理を開始する、
     請求項1に記載のデータ処理装置。
    The arithmetic processing unit is
    When the termination condition is met, the second arithmetic processing is terminated and the computer enters a sleep state that consumes less power than the standby state;
    When the start condition is met, returning from the sleep state and starting the first calculation process;
    The data processing device according to claim 1.
  3.  前記演算処理部は、
      前記データ収集装置との通信を開始したとき、前記開始条件が満たされたと判断し、前記第1の演算処理を開始し、
      前記データ収集装置との通信を終了したとき、前記終了条件が満たされたt判断し、前記第2の演算処理を終了する、
     請求項1に記載のデータ処理装置。
    The arithmetic processing unit is
    When communication with the data collection device is started, determining that the start condition is satisfied and starting the first calculation process;
    When communication with the data collection device is terminated, determining that the termination condition is satisfied and terminating the second arithmetic processing;
    The data processing device according to claim 1.
  4.  請求項1から請求項3のいずれか一項に記載のデータ処理装置と、
     計測対象の物理量を計測する物理量センサと、を備える物理量計測装置であって、
     前記演算処理部は、
      前記物理量センサにより計測された前記物理量を前記物理量データとして取得する、
     物理量計測装置。
    A data processing device according to any one of claims 1 to 3,
    A physical quantity measuring device comprising a physical quantity sensor that measures a physical quantity to be measured,
    The arithmetic processing unit is
    acquiring the physical quantity measured by the physical quantity sensor as the physical quantity data;
    Physical quantity measuring device.
  5.  前記物理量計測装置は、
     前記データ処理装置及び前記物理量センサを内蔵し、ポンプ装置に取付可能な筐体をさらに備え、
     前記物理量センサは、
      前記物理量計測装置が取り付けられた前記ポンプ装置に起因する前記物理量を計測する、
     請求項4に記載の物理量計測装置。
    The physical quantity measuring device includes:
    a housing that houses the data processing device and the physical quantity sensor and is attachable to the pump device;
    The physical quantity sensor includes:
    measuring the physical quantity caused by the pump device to which the physical quantity measuring device is attached;
    The physical quantity measuring device according to claim 4 .
  6.  請求項4に記載の1又は複数の物理量計測装置と、
     前記物理量計測装置と通信可能に構成された1又は複数の前記データ収集装置と、を備えるデータ処理システムであって、
     前記データ収集装置は、
      第1の監視周期に基づいて、前記処理データを収集する第1の収集処理部と、
      前記第1の監視周期よりも短い第2の監視周期に基づいて、前記処理データを収集する第2の収集処理部と、を備え、
     前記第1の収集処理部は、
      前記物理量計測装置との通信を開始し、前記物理量計測装置から第1の前記処理データを受信し、前記物理量計測装置との通信を終了する第1の監視処理を、前記第1の監視周期に従って繰り返し実行することにより、前記処理データを収集し、
     前記第2の収集処理部は、
      前記物理量計測装置との通信を開始し、前記物理量計測装置から第1の前記処理データを受信するとともに、第2の前記処理データを前記第2の監視周期に従って繰り返し受信し、前記物理量計測装置との通信を終了する第2の監視処理を実行することにより、前記処理データを収集する、
     データ処理システム。
    One or more physical quantity measuring devices according to claim 4;
    A data processing system comprising one or more data collection devices configured to be able to communicate with the physical quantity measuring device,
    The data collection device includes:
    a first collection processing unit that collects the processed data based on a first monitoring cycle;
    a second collection processing unit that collects the processed data based on a second monitoring cycle shorter than the first monitoring cycle,
    The first collection processing unit includes:
    A first monitoring process that starts communication with the physical quantity measuring device, receives the first processed data from the physical quantity measuring device, and ends communication with the physical quantity measuring device according to the first monitoring cycle. Collecting the processing data by repeated execution,
    The second collection processing unit includes:
    Start communication with the physical quantity measuring device, receive the first processed data from the physical quantity measuring device, repeatedly receive the second processed data according to the second monitoring cycle, and communicate with the physical quantity measuring device. collecting the processing data by executing a second monitoring process of terminating the communication;
    Data processing system.
  7.  コンピュータを用いてデータを処理するデータ処理方法であって、
     計測対象の物理量を物理量データとして繰り返し取得し、取得した前記物理量データに対して所定の演算を行うことにより処理データを生成する演算処理工程と、
     前記演算処理工程により前記処理データが生成される毎に前記処理データをデータ収集装置に順次送信する通信処理工程と、を備え、
     前記演算処理工程は、
      所定の開始条件が満たされたとき、前記物理量データを所定のデータ点数だけ繰り返し取得し、取得した前記データ点数分の前記物理量データに対して前記演算を行うことにより第1の前記処理データを生成する第1の演算処理を実行し、
      前記第1の演算処理の実行後に所定の終了条件が満たされていないとき、所定の待機時間だけ待機状態に移行し、前記待機時間の経過後に最新時点の前記物理量データを取得し、取得した前記最新時点の前記物理量データと、前記最新時点よりも過去に取得した過去時点の前記物理量データとからなる前記データ点数分の前記物理量データに対して前記演算を行うことにより第2の前記処理データを生成する第2の演算処理を、前記終了条件が満たされるまで繰り返し実行する、
     データ処理方法。
    A data processing method for processing data using a computer,
    a calculation processing step of repeatedly acquiring a physical quantity to be measured as physical quantity data and generating processed data by performing a predetermined calculation on the acquired physical quantity data;
    a communication processing step of sequentially transmitting the processed data to a data collection device each time the processed data is generated by the arithmetic processing step;
    The arithmetic processing step is
    When a predetermined start condition is met, the physical quantity data is repeatedly obtained for a predetermined number of data points, and the first processing data is generated by performing the calculation on the physical quantity data corresponding to the obtained number of data points. Execute the first calculation process to
    If a predetermined termination condition is not satisfied after execution of the first arithmetic processing, the system enters a standby state for a predetermined standby time, acquires the physical quantity data at the latest point in time after the elapse of the standby time, and The second processed data is obtained by performing the calculation on the physical quantity data for the number of data points, which is made up of the physical quantity data at the latest point in time and the physical quantity data at a past point in time acquired in the past than the latest point in time. repeating the generated second calculation process until the termination condition is met;
    Data processing methods.
PCT/JP2023/020803 2022-09-21 2023-06-05 Data processing device, physical quantity measuring device, data processing system, and data processing method WO2024062690A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022150424A JP2024044714A (en) 2022-09-21 2022-09-21 DATA PROCESSING APPARATUS, PHYSICAL QUANTITY MEASURING APPARATUS, DATA PROCESSING SYSTEM, AND DATA PROCESSING METHOD
JP2022-150424 2022-09-21

Publications (1)

Publication Number Publication Date
WO2024062690A1 true WO2024062690A1 (en) 2024-03-28

Family

ID=90454323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020803 WO2024062690A1 (en) 2022-09-21 2023-06-05 Data processing device, physical quantity measuring device, data processing system, and data processing method

Country Status (2)

Country Link
JP (1) JP2024044714A (en)
WO (1) WO2024062690A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017191570A (en) * 2016-04-15 2017-10-19 住友電気工業株式会社 Measurement information transmission apparatus, management system, and information processing program
JP2018004387A (en) * 2016-06-30 2018-01-11 株式会社日立製作所 Gradient monitoring system and method
JP2020087301A (en) * 2018-11-30 2020-06-04 富士通株式会社 Data collection system, information processing device, communication node, and data collection method
JP2020141217A (en) * 2019-02-27 2020-09-03 株式会社日立製作所 Sensor device and sensor device management system, sensor device management method
JP2022037269A (en) * 2020-08-25 2022-03-09 日新電機株式会社 Moisture permeation detection method and detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017191570A (en) * 2016-04-15 2017-10-19 住友電気工業株式会社 Measurement information transmission apparatus, management system, and information processing program
JP2018004387A (en) * 2016-06-30 2018-01-11 株式会社日立製作所 Gradient monitoring system and method
JP2020087301A (en) * 2018-11-30 2020-06-04 富士通株式会社 Data collection system, information processing device, communication node, and data collection method
JP2020141217A (en) * 2019-02-27 2020-09-03 株式会社日立製作所 Sensor device and sensor device management system, sensor device management method
JP2022037269A (en) * 2020-08-25 2022-03-09 日新電機株式会社 Moisture permeation detection method and detection device

Also Published As

Publication number Publication date
JP2024044714A (en) 2024-04-02

Similar Documents

Publication Publication Date Title
JP4792851B2 (en) Field equipment
EP2998813A1 (en) Monitoring system and diagnostic device and monitoring terminal thereof
CN104756030A (en) Method, system, and device for monitoring operations of a system asset
JP4937373B2 (en) Data collection system
KR101178669B1 (en) APPARATUS AND METHOD FOR ASSET TRACKING BASED ON Ubiquitous Sensor Network USING MOTION SENSING
WO2016027725A1 (en) Portable diagnosis data measurement transmission device
WO2024062690A1 (en) Data processing device, physical quantity measuring device, data processing system, and data processing method
JP2009258063A (en) Damage monitoring system and measuring device
JP2017128970A (en) Irregularity detection system
JP2005215731A (en) Notification device, management device, management system, sensing data notification program and sensing data management program
EP4063983A1 (en) Field device, measurement method, and non-transitory computer readable medium
US11796199B2 (en) Monitoring for signal pulses on one or more analog inputs of a building controller
JP2010033279A (en) Device for monitoring operation of air conditioner, operation-monitoring system, and operation-monitoring method
JP6663346B2 (en) Plant equipment diagnosis system
WO2024084917A1 (en) Data processing system, data collection device, data processing method, and data collection method
US20090107212A1 (en) Process field instrument with integrated sensor unit and related system and method
KR101120517B1 (en) Motor Variation Preventing System And Its Database establishing Method Using the Same
WO2024079949A1 (en) Data processing system, data collection device, data management device, data processing method, data collection method, and data management method
WO2024075444A1 (en) Data processing system, data collection device, physical quantity measurement device, data processing method, data collection method, data presentation method, and data structure
CN114301857A (en) Water meter communication method and device based on Internet of things
WO2024057635A1 (en) Data processing device, physical quantity measurement device, data processing system, and data processing method
JP2024057203A (en) DATA PROCESSING SYSTEM, DATA COLLECTION DEVICE, DATA MANAGEMENT DEVICE, DATA PROCESSING METHOD, DATA COLLECTION METHOD, AND DATA MANAGEMENT METHOD
WO2024070099A1 (en) Data processing system, physical quantity measuring device, data collection device, data processing method, data provision method, and data collection method
JP7139687B2 (en) Monitoring system
JP4716184B2 (en) 4-wire field device